Bootstrap.java revision 1080:6a90ece54f72
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.runtime.linker;
27
28import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
29
30import java.lang.invoke.CallSite;
31import java.lang.invoke.ConstantCallSite;
32import java.lang.invoke.MethodHandle;
33import java.lang.invoke.MethodHandles;
34import java.lang.invoke.MethodHandles.Lookup;
35import java.lang.invoke.MethodType;
36import jdk.internal.dynalink.CallSiteDescriptor;
37import jdk.internal.dynalink.DynamicLinker;
38import jdk.internal.dynalink.DynamicLinkerFactory;
39import jdk.internal.dynalink.GuardedInvocationFilter;
40import jdk.internal.dynalink.beans.BeansLinker;
41import jdk.internal.dynalink.beans.StaticClass;
42import jdk.internal.dynalink.linker.GuardedInvocation;
43import jdk.internal.dynalink.linker.LinkRequest;
44import jdk.internal.dynalink.linker.LinkerServices;
45import jdk.nashorn.api.scripting.JSObject;
46import jdk.nashorn.internal.codegen.CompilerConstants.Call;
47import jdk.nashorn.internal.codegen.ObjectClassGenerator;
48import jdk.nashorn.internal.codegen.RuntimeCallSite;
49import jdk.nashorn.internal.lookup.MethodHandleFactory;
50import jdk.nashorn.internal.lookup.MethodHandleFunctionality;
51import jdk.nashorn.internal.runtime.JSType;
52import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
53import jdk.nashorn.internal.runtime.ScriptFunction;
54import jdk.nashorn.internal.runtime.ScriptRuntime;
55import jdk.nashorn.internal.runtime.options.Options;
56
57/**
58 * This class houses bootstrap method for invokedynamic instructions generated by compiler.
59 */
60public final class Bootstrap {
61    /** Reference to the seed boostrap function */
62    public static final Call BOOTSTRAP = staticCallNoLookup(Bootstrap.class, "bootstrap", CallSite.class, Lookup.class, String.class, MethodType.class, int.class);
63
64    private static final MethodHandleFunctionality MH = MethodHandleFactory.getFunctionality();
65
66    /**
67     * The default dynalink relink threshold for megamorphisism is 8. In the case
68     * of object fields only, it is fine. However, with dual fields, in order to get
69     * performance on benchmarks with a lot of object instantiation and then field
70     * reassignment, it can take slightly more relinks to become stable with type
71     * changes swapping out an entire proprety map and making a map guard fail.
72     * Therefore the relink threshold is set to 16 for dual fields (now the default).
73     * This doesn't seem to have any other negative performance implication.
74     *
75     * See for example octane.gbemu, run with --log=fields:warning to study
76     * megamorphic behavior
77     */
78    private static final int NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD =
79            ObjectClassGenerator.OBJECT_FIELDS_ONLY ?
80                     8 :
81                    16;
82
83    // do not create me!!
84    private Bootstrap() {
85    }
86
87    private static final DynamicLinker dynamicLinker;
88    static {
89        final DynamicLinkerFactory factory = new DynamicLinkerFactory();
90        final NashornBeansLinker nashornBeansLinker = new NashornBeansLinker();
91        factory.setPrioritizedLinkers(
92            new NashornLinker(),
93            new NashornPrimitiveLinker(),
94            new NashornStaticClassLinker(),
95            new BoundDynamicMethodLinker(),
96            new JavaSuperAdapterLinker(),
97            new JSObjectLinker(nashornBeansLinker),
98            new BrowserJSObjectLinker(nashornBeansLinker),
99            new ReflectionCheckLinker());
100        factory.setFallbackLinkers(nashornBeansLinker, new NashornBottomLinker());
101        factory.setSyncOnRelink(true);
102        factory.setPrelinkFilter(new GuardedInvocationFilter() {
103            @Override
104            public GuardedInvocation filter(final GuardedInvocation inv, final LinkRequest request, final LinkerServices linkerServices) {
105                final CallSiteDescriptor desc = request.getCallSiteDescriptor();
106                return OptimisticReturnFilters.filterOptimisticReturnValue(inv, desc).asType(linkerServices, desc.getMethodType());
107            }
108        });
109        final int relinkThreshold = Options.getIntProperty("nashorn.unstable.relink.threshold", NASHORN_DEFAULT_UNSTABLE_RELINK_THRESHOLD);
110        if (relinkThreshold > -1) {
111            factory.setUnstableRelinkThreshold(relinkThreshold);
112        }
113
114        // Linkers for any additional language runtimes deployed alongside Nashorn will be picked up by the factory.
115        factory.setClassLoader(Bootstrap.class.getClassLoader());
116
117        dynamicLinker = factory.createLinker();
118    }
119
120    /**
121     * Returns if the given object is a "callable"
122     * @param obj object to be checked for callability
123     * @return true if the obj is callable
124     */
125    public static boolean isCallable(final Object obj) {
126        if (obj == ScriptRuntime.UNDEFINED || obj == null) {
127            return false;
128        }
129
130        return obj instanceof ScriptFunction ||
131            ((obj instanceof JSObject) && ((JSObject)obj).isFunction()) ||
132            isDynamicMethod(obj) ||
133            isFunctionalInterfaceObject(obj) ||
134            obj instanceof StaticClass;
135    }
136
137    /**
138     * Returns if the given object is a dynalink Dynamic method
139     * @param obj object to be checked
140     * @return true if the obj is a dynamic method
141     */
142    public static boolean isDynamicMethod(final Object obj) {
143        return obj instanceof BoundDynamicMethod || BeansLinker.isDynamicMethod(obj);
144    }
145
146    /**
147     * Returns if the given object is an instance of an interface annotated with
148     * java.lang.FunctionalInterface
149     * @param obj object to be checked
150     * @return true if the obj is an instance of @FunctionalInterface interface
151     */
152    public static boolean isFunctionalInterfaceObject(final Object obj) {
153        return !JSType.isPrimitive(obj) && (NashornBottomLinker.getFunctionalInterfaceMethod(obj.getClass()) != null);
154    }
155
156    /**
157     * Create a call site and link it for Nashorn. This version of the method conforms to the invokedynamic bootstrap
158     * method expected signature and is referenced from Nashorn generated bytecode as the bootstrap method for all
159     * invokedynamic instructions.
160     * @param lookup MethodHandle lookup. Ignored as Nashorn only uses public lookup.
161     * @param opDesc Dynalink dynamic operation descriptor.
162     * @param type   Method type.
163     * @param flags  flags for call type, trace/profile etc.
164     * @return CallSite with MethodHandle to appropriate method or null if not found.
165     */
166    public static CallSite bootstrap(final Lookup lookup, final String opDesc, final MethodType type, final int flags) {
167        return dynamicLinker.link(LinkerCallSite.newLinkerCallSite(lookup, opDesc, type, flags));
168    }
169
170    /**
171     * Bootstrapper for a specialized Runtime call
172     *
173     * @param lookup       lookup
174     * @param initialName  initial name for callsite
175     * @param type         method type for call site
176     *
177     * @return callsite for a runtime node
178     */
179    public static CallSite runtimeBootstrap(final MethodHandles.Lookup lookup, final String initialName, final MethodType type) {
180        return new RuntimeCallSite(type, initialName);
181    }
182
183    /**
184     * Boostrapper for math calls that may overflow
185     * @param lookup         lookup
186     * @param name           name of operation
187     * @param type           method type
188     * @param programPoint   program point to bind to callsite
189     *
190     * @return callsite for a math instrinic node
191     */
192    public static CallSite mathBootstrap(final MethodHandles.Lookup lookup, final String name, final MethodType type, final int programPoint) {
193        final MethodHandle mh;
194        switch (name) {
195        case "iadd":
196            mh = JSType.ADD_EXACT.methodHandle();
197            break;
198        case "isub":
199            mh = JSType.SUB_EXACT.methodHandle();
200            break;
201        case "imul":
202            mh = JSType.MUL_EXACT.methodHandle();
203            break;
204        case "idiv":
205            mh = JSType.DIV_EXACT.methodHandle();
206            break;
207        case "irem":
208            mh = JSType.REM_EXACT.methodHandle();
209            break;
210        case "ineg":
211            mh = JSType.NEGATE_EXACT.methodHandle();
212            break;
213        case "ladd":
214            mh = JSType.ADD_EXACT_LONG.methodHandle();
215            break;
216        case "lsub":
217            mh = JSType.SUB_EXACT_LONG.methodHandle();
218            break;
219        case "lmul":
220            mh = JSType.MUL_EXACT_LONG.methodHandle();
221            break;
222        case "ldiv":
223            mh = JSType.DIV_EXACT_LONG.methodHandle();
224            break;
225        case "lrem":
226            mh = JSType.REM_EXACT_LONG.methodHandle();
227            break;
228        case "lneg":
229            mh = JSType.NEGATE_EXACT_LONG.methodHandle();
230            break;
231        default:
232            throw new AssertionError("unsupported math intrinsic");
233        }
234        return new ConstantCallSite(MH.insertArguments(mh, mh.type().parameterCount() - 1, programPoint));
235    }
236
237    /**
238     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. You can use this method to
239     * create a method handle that when invoked acts completely as if it were a Nashorn-linked call site. An overview of
240     * available dynamic operations can be found in the
241     * <a href="https://github.com/szegedi/dynalink/wiki/User-Guide-0.6">Dynalink User Guide</a>, but we'll show few
242     * examples here:
243     * <ul>
244     *   <li>Get a named property with fixed name:
245     *     <pre>
246     * MethodHandle getColor = Boostrap.createDynamicInvoker("dyn:getProp:color", Object.class, Object.class);
247     * Object obj = ...; // somehow obtain the object
248     * Object color = getColor.invokeExact(obj);
249     *     </pre>
250     *   </li>
251     *   <li>Get a named property with variable name:
252     *     <pre>
253     * MethodHandle getProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, String.class);
254     * Object obj = ...; // somehow obtain the object
255     * Object color = getProperty.invokeExact(obj, "color");
256     * Object shape = getProperty.invokeExact(obj, "shape");
257     * MethodHandle getNumProperty = Boostrap.createDynamicInvoker("dyn:getElem", Object.class, Object.class, int.class);
258     * Object elem42 = getNumProperty.invokeExact(obj, 42);
259     *     </pre>
260     *   </li>
261     *   <li>Set a named property with fixed name:
262     *     <pre>
263     * MethodHandle setColor = Boostrap.createDynamicInvoker("dyn:setProp:color", void.class, Object.class, Object.class);
264     * Object obj = ...; // somehow obtain the object
265     * setColor.invokeExact(obj, Color.BLUE);
266     *     </pre>
267     *   </li>
268     *   <li>Set a property with variable name:
269     *     <pre>
270     * MethodHandle setProperty = Boostrap.createDynamicInvoker("dyn:setElem", void.class, Object.class, String.class, Object.class);
271     * Object obj = ...; // somehow obtain the object
272     * setProperty.invokeExact(obj, "color", Color.BLUE);
273     * setProperty.invokeExact(obj, "shape", Shape.CIRCLE);
274     *     </pre>
275     *   </li>
276     *   <li>Call a function on an object; two-step variant. This is the actual variant used by Nashorn-generated code:
277     *     <pre>
278     * MethodHandle findFooFunction = Boostrap.createDynamicInvoker("dyn:getMethod:foo", Object.class, Object.class);
279     * Object obj = ...; // somehow obtain the object
280     * Object foo_fn = findFooFunction.invokeExact(obj);
281     * MethodHandle callFunctionWithTwoArgs = Boostrap.createDynamicInvoker("dyn:call", Object.class, Object.class, Object.class, Object.class, Object.class);
282     * // Note: "call" operation takes a function, then a "this" value, then the arguments:
283     * Object foo_retval = callFunctionWithTwoArgs.invokeExact(foo_fn, obj, arg1, arg2);
284     *     </pre>
285     *   </li>
286     *   <li>Call a function on an object; single-step variant. Although Nashorn doesn't use this variant and never
287     *   emits any INVOKEDYNAMIC instructions with {@code dyn:getMethod}, it still supports this standard Dynalink
288     *   operation:
289     *     <pre>
290     * MethodHandle callFunctionFooWithTwoArgs = Boostrap.createDynamicInvoker("dyn:callMethod:foo", Object.class, Object.class, Object.class, Object.class);
291     * Object obj = ...; // somehow obtain the object
292     * Object foo_retval = callFunctionFooWithTwoArgs.invokeExact(obj, arg1, arg2);
293     *     </pre>
294     *   </li>
295     * </ul>
296     * Few additional remarks:
297     * <ul>
298     * <li>Just as Nashorn works with any Java object, the invokers returned from this method can also be applied to
299     * arbitrary Java objects in addition to Nashorn JavaScript objects.</li>
300     * <li>For invoking a named function on an object, you can also use the {@link InvokeByName} convenience class.</li>
301     * <li>For Nashorn objects {@code getElem}, {@code getProp}, and {@code getMethod} are handled almost identically,
302     * since JavaScript doesn't distinguish between different kinds of properties on an object. Either can be used with
303     * fixed property name or a variable property name. The only significant difference is handling of missing
304     * properties: {@code getMethod} for a missing member will link to a potential invocation of
305     * {@code __noSuchMethod__} on the object, {@code getProp} for a missing member will link to a potential invocation
306     * of {@code __noSuchProperty__}, while {@code getElem} for a missing member will link to an empty getter.</li>
307     * <li>In similar vein, {@code setElem} and {@code setProp} are handled identically on Nashorn objects.</li>
308     * <li>There's no rule that the variable property identifier has to be a {@code String} for {@code getProp/setProp}
309     * and {@code int} for {@code getElem/setElem}. You can declare their type to be {@code int}, {@code double},
310     * {@code Object}, and so on regardless of the kind of the operation.</li>
311     * <li>You can be as specific in parameter types as you want. E.g. if you know that the receiver of the operation
312     * will always be {@code ScriptObject}, you can pass {@code ScriptObject.class} as its parameter type. If you happen
313     * to link to a method that expects different types, (you can use these invokers on POJOs too, after all, and end up
314     * linking with their methods that have strongly-typed signatures), all necessary conversions allowed by either Java
315     * or JavaScript will be applied: if invoked methods specify either primitive or wrapped Java numeric types, or
316     * {@code String} or {@code boolean/Boolean}, then the parameters might be subjected to standard ECMAScript
317     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the
318     * expected parameter type is a SAM type, and you pass a JavaScript function, a proxy object implementing the SAM
319     * type and delegating to the function will be passed. Linkage can often be optimized when linkers have more
320     * specific type information than "everything can be an object".</li>
321     * <li>You can also be as specific in return types as you want. For return types any necessary type conversion
322     * available in either Java or JavaScript will be automatically applied, similar to the process described for
323     * parameters, only in reverse direction:  if you specify any either primitive or wrapped Java numeric type, or
324     * {@code String} or {@code boolean/Boolean}, then the return values will be subjected to standard ECMAScript
325     * {@code ToNumber}, {@code ToString}, and {@code ToBoolean} conversion, respectively. Less obviously, if the return
326     * type is a SAM type, and the return value is a JavaScript function, a proxy object implementing the SAM type and
327     * delegating to the function will be returned.</li>
328     * </ul>
329     * @param opDesc Dynalink dynamic operation descriptor.
330     * @param rtype the return type for the operation
331     * @param ptypes the parameter types for the operation
332     * @return MethodHandle for invoking the operation.
333     */
334    public static MethodHandle createDynamicInvoker(final String opDesc, final Class<?> rtype, final Class<?>... ptypes) {
335        return createDynamicInvoker(opDesc, MethodType.methodType(rtype, ptypes));
336    }
337
338    /**
339     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
340     * {@link #createDynamicInvoker(String, Class, Class...)} but with an additional parameter to
341     * set the call site flags of the dynamic invoker.
342     * @param opDesc Dynalink dynamic operation descriptor.
343     * @param flags the call site flags for the operation
344     * @param rtype the return type for the operation
345     * @param ptypes the parameter types for the operation
346     * @return MethodHandle for invoking the operation.
347     */
348    public static MethodHandle createDynamicInvoker(final String opDesc, final int flags, final Class<?> rtype, final Class<?>... ptypes) {
349        return bootstrap(MethodHandles.publicLookup(), opDesc, MethodType.methodType(rtype, ptypes), flags).dynamicInvoker();
350    }
351
352    /**
353     * Returns a dynamic invoker for a specified dynamic operation using the public lookup. Similar to
354     * {@link #createDynamicInvoker(String, Class, Class...)} but with return and parameter types composed into a
355     * method type in the signature. See the discussion of that method for details.
356     * @param opDesc Dynalink dynamic operation descriptor.
357     * @param type the method type for the operation
358     * @return MethodHandle for invoking the operation.
359     */
360    public static MethodHandle createDynamicInvoker(final String opDesc, final MethodType type) {
361        return bootstrap(MethodHandles.publicLookup(), opDesc, type, 0).dynamicInvoker();
362    }
363
364    /**
365     * Binds a bean dynamic method (returned by invoking {@code dyn:getMethod} on an object linked with
366     * {@code BeansLinker} to a receiver.
367     * @param dynamicMethod the dynamic method to bind
368     * @param boundThis the bound "this" value.
369     * @return a bound dynamic method.
370     */
371    public static Object bindDynamicMethod(final Object dynamicMethod, final Object boundThis) {
372        return new BoundDynamicMethod(dynamicMethod, boundThis);
373    }
374
375    /**
376     * Creates a super-adapter for an adapter, that is, an adapter to the adapter that allows invocation of superclass
377     * methods on it.
378     * @param adapter the original adapter
379     * @return a new adapter that can be used to invoke super methods on the original adapter.
380     */
381    public static Object createSuperAdapter(final Object adapter) {
382        return new JavaSuperAdapter(adapter);
383    }
384
385    /**
386     * If the given class is a reflection-specific class (anything in {@code java.lang.reflect} and
387     * {@code java.lang.invoke} package, as well a {@link Class} and any subclass of {@link ClassLoader}) and there is
388     * a security manager in the system, then it checks the {@code nashorn.JavaReflection} {@code RuntimePermission}.
389     * @param clazz the class being tested
390     * @param isStatic is access checked for static members (or instance members)
391     */
392    public static void checkReflectionAccess(final Class<?> clazz, final boolean isStatic) {
393        ReflectionCheckLinker.checkReflectionAccess(clazz, isStatic);
394    }
395
396    /**
397     * Returns the Nashorn's internally used dynamic linker's services object. Note that in code that is processing a
398     * linking request, you will normally use the {@code LinkerServices} object passed by whatever top-level linker
399     * invoked the linking (if the call site is in Nashorn-generated code, you'll get this object anyway). You should
400     * only resort to retrieving a linker services object using this method when you need some linker services (e.g.
401     * type converter method handles) outside of a code path that is linking a call site.
402     * @return Nashorn's internal dynamic linker's services object.
403     */
404    public static LinkerServices getLinkerServices() {
405        return dynamicLinker.getLinkerServices();
406    }
407
408    /**
409     * Takes a guarded invocation, and ensures its method and guard conform to the type of the call descriptor, using
410     * all type conversions allowed by the linker's services. This method is used by Nashorn's linkers as a last step
411     * before returning guarded invocations. Most of the code used to produce the guarded invocations does not make an
412     * effort to coordinate types of the methods, and so a final type adjustment before a guarded invocation is returned
413     * to the aggregating linker is the responsibility of the linkers themselves.
414     * @param inv the guarded invocation that needs to be type-converted. Can be null.
415     * @param linkerServices the linker services object providing the type conversions.
416     * @param desc the call site descriptor to whose method type the invocation needs to conform.
417     * @return the type-converted guarded invocation. If input is null, null is returned. If the input invocation
418     * already conforms to the requested type, it is returned unchanged.
419     */
420    static GuardedInvocation asTypeSafeReturn(final GuardedInvocation inv, final LinkerServices linkerServices, final CallSiteDescriptor desc) {
421        return inv == null ? null : inv.asTypeSafeReturn(linkerServices, desc.getMethodType());
422    }
423}
424