NativeJava.java revision 1297:92f7bf49eb65
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.objects;
27
28import static jdk.nashorn.internal.runtime.ECMAErrors.typeError;
29import static jdk.nashorn.internal.runtime.ScriptRuntime.UNDEFINED;
30
31import java.lang.invoke.MethodHandles;
32import java.lang.reflect.Array;
33import java.util.Collection;
34import java.util.Deque;
35import java.util.List;
36import java.util.Map;
37import java.util.Queue;
38import jdk.internal.dynalink.beans.StaticClass;
39import jdk.internal.dynalink.support.TypeUtilities;
40import jdk.nashorn.api.scripting.JSObject;
41import jdk.nashorn.api.scripting.ScriptObjectMirror;
42import jdk.nashorn.internal.objects.annotations.Attribute;
43import jdk.nashorn.internal.objects.annotations.Function;
44import jdk.nashorn.internal.objects.annotations.ScriptClass;
45import jdk.nashorn.internal.objects.annotations.Where;
46import jdk.nashorn.internal.runtime.Context;
47import jdk.nashorn.internal.runtime.JSType;
48import jdk.nashorn.internal.runtime.ListAdapter;
49import jdk.nashorn.internal.runtime.PropertyMap;
50import jdk.nashorn.internal.runtime.ScriptFunction;
51import jdk.nashorn.internal.runtime.ScriptObject;
52import jdk.nashorn.internal.runtime.ScriptRuntime;
53import jdk.nashorn.internal.runtime.linker.Bootstrap;
54import jdk.nashorn.internal.runtime.linker.JavaAdapterFactory;
55
56/**
57 * This class is the implementation for the {@code Java} global object exposed to programs running under Nashorn. This
58 * object acts as the API entry point to Java platform specific functionality, dealing with creating new instances of
59 * Java classes, subclassing Java classes, implementing Java interfaces, converting between Java arrays and ECMAScript
60 * arrays, and so forth.
61 */
62@ScriptClass("Java")
63public final class NativeJava {
64
65    // initialized by nasgen
66    @SuppressWarnings("unused")
67    private static PropertyMap $nasgenmap$;
68
69    private NativeJava() {
70        // don't create me
71        throw new UnsupportedOperationException();
72    }
73
74    /**
75     * Returns true if the specified object is a Java type object, that is an instance of {@link StaticClass}.
76     * @param self not used
77     * @param type the object that is checked if it is a type object or not
78     * @return tells whether given object is a Java type object or not.
79     * @see #type(Object, Object)
80     */
81    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
82    public static boolean isType(final Object self, final Object type) {
83        return type instanceof StaticClass;
84    }
85
86    /**
87     * Returns synchronized wrapper version of the given ECMAScript function.
88     * @param self not used
89     * @param func the ECMAScript function whose synchronized version is returned.
90     * @param obj the object (i.e, lock) on which the function synchronizes.
91     * @return synchronized wrapper version of the given ECMAScript function.
92     */
93    @Function(name="synchronized", attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
94    public static Object synchronizedFunc(final Object self, final Object func, final Object obj) {
95        if (func instanceof ScriptFunction) {
96            return ((ScriptFunction)func).makeSynchronizedFunction(obj);
97        }
98
99        throw typeError("not.a.function", ScriptRuntime.safeToString(func));
100    }
101
102    /**
103     * Returns true if the specified object is a Java method.
104     * @param self not used
105     * @param obj the object that is checked if it is a Java method object or not
106     * @return tells whether given object is a Java method object or not.
107     */
108    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
109    public static boolean isJavaMethod(final Object self, final Object obj) {
110        return Bootstrap.isDynamicMethod(obj);
111    }
112
113    /**
114     * Returns true if the specified object is a java function (but not script function)
115     * @param self not used
116     * @param obj the object that is checked if it is a Java function or not
117     * @return tells whether given object is a Java function or not
118     */
119    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
120    public static boolean isJavaFunction(final Object self, final Object obj) {
121        return Bootstrap.isCallable(obj) && !(obj instanceof ScriptFunction);
122    }
123
124    /**
125     * Returns true if the specified object is a Java object but not a script object
126     * @param self not used
127     * @param obj the object that is checked
128     * @return tells whether given object is a Java object but not a script object
129     */
130    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
131    public static boolean isJavaObject(final Object self, final Object obj) {
132        return obj != null && !(obj instanceof ScriptObject);
133    }
134
135    /**
136     * Returns true if the specified object is a ECMAScript object, that is an instance of {@link ScriptObject}.
137     * @param self not used
138     * @param obj the object that is checked if it is a ECMAScript object or not
139     * @return tells whether given object is a ECMAScript object or not.
140     */
141    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
142    public static boolean isScriptObject(final Object self, final Object obj) {
143        return obj instanceof ScriptObject;
144    }
145
146    /**
147     * Returns true if the specified object is a ECMAScript function, that is an instance of {@link ScriptFunction}.
148     * @param self not used
149     * @param obj the object that is checked if it is a ECMAScript function or not
150     * @return tells whether given object is a ECMAScript function or not.
151     */
152    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
153    public static boolean isScriptFunction(final Object self, final Object obj) {
154        return obj instanceof ScriptFunction;
155    }
156
157    /**
158     * <p>
159     * Given a name of a Java type, returns an object representing that type in Nashorn. The Java class of the objects
160     * used to represent Java types in Nashorn is not {@link java.lang.Class} but rather {@link StaticClass}. They are
161     * the objects that you can use with the {@code new} operator to create new instances of the class as well as to
162     * access static members of the class. In Nashorn, {@code Class} objects are just regular Java objects that aren't
163     * treated specially. Instead of them, {@link StaticClass} instances - which we sometimes refer to as "Java type
164     * objects" are used as constructors with the {@code new} operator, and they expose static fields, properties, and
165     * methods. While this might seem confusing at first, it actually closely matches the Java language: you use a
166     * different expression (e.g. {@code java.io.File}) as an argument in "new" and to address statics, and it is
167     * distinct from the {@code Class} object (e.g. {@code java.io.File.class}). Below we cover in details the
168     * properties of the type objects.
169     * </p>
170     * <p><b>Constructing Java objects</b></p>
171     * Examples:
172     * <pre>
173     * var arrayListType = Java.type("java.util.ArrayList")
174     * var intType = Java.type("int")
175     * var stringArrayType = Java.type("java.lang.String[]")
176     * var int2DArrayType = Java.type("int[][]")
177     * </pre>
178     * Note that the name of the type is always a string for a fully qualified name. You can use any of these types to
179     * create new instances, e.g.:
180     * <pre>
181     * var anArrayList = new Java.type("java.util.ArrayList")
182     * </pre>
183     * or
184     * <pre>
185     * var ArrayList = Java.type("java.util.ArrayList")
186     * var anArrayList = new ArrayList
187     * var anArrayListWithSize = new ArrayList(16)
188     * </pre>
189     * In the special case of inner classes, you can either use the JVM fully qualified name, meaning using {@code $}
190     * sign in the class name, or you can use the dot:
191     * <pre>
192     * var ftype = Java.type("java.awt.geom.Arc2D$Float")
193     * </pre>
194     * and
195     * <pre>
196     * var ftype = Java.type("java.awt.geom.Arc2D.Float")
197     * </pre>
198     * both work. Note however that using the dollar sign is faster, as Java.type first tries to resolve the class name
199     * as it is originally specified, and the internal JVM names for inner classes use the dollar sign. If you use the
200     * dot, Java.type will internally get a ClassNotFoundException and subsequently retry by changing the last dot to
201     * dollar sign. As a matter of fact, it'll keep replacing dots with dollar signs until it either successfully loads
202     * the class or runs out of all dots in the name. This way it can correctly resolve and load even multiply nested
203     * inner classes with the dot notation. Again, this will be slower than using the dollar signs in the name. An
204     * alternative way to access the inner class is as a property of the outer class:
205     * <pre>
206     * var arctype = Java.type("java.awt.geom.Arc2D")
207     * var ftype = arctype.Float
208     * </pre>
209     * <p>
210     * You can access both static and non-static inner classes. If you want to create an instance of a non-static
211     * inner class, remember to pass an instance of its outer class as the first argument to the constructor.
212     * </p>
213     * <p>
214     * If the type is abstract, you can instantiate an anonymous subclass of it using an argument list that is
215     * applicable to any of its public or protected constructors, but inserting a JavaScript object with functions
216     * properties that provide JavaScript implementations of the abstract methods. If method names are overloaded, the
217     * JavaScript function will provide implementation for all overloads. E.g.:
218     * </p>
219     * <pre>
220     * var TimerTask =  Java.type("java.util.TimerTask")
221     * var task = new TimerTask({ run: function() { print("Hello World!") } })
222     * </pre>
223     * <p>
224     * Nashorn supports a syntactic extension where a "new" expression followed by an argument is identical to
225     * invoking the constructor and passing the argument to it, so you can write the above example also as:
226     * </p>
227     * <pre>
228     * var task = new TimerTask {
229     *     run: function() {
230     *       print("Hello World!")
231     *     }
232     * }
233     * </pre>
234     * <p>
235     * which is very similar to Java anonymous inner class definition. On the other hand, if the type is an abstract
236     * type with a single abstract method (commonly referred to as a "SAM type") or all abstract methods it has share
237     * the same overloaded name), then instead of an object, you can just pass a function, so the above example can
238     * become even more simplified to:
239     * </p>
240     * <pre>
241     * var task = new TimerTask(function() { print("Hello World!") })
242     * </pre>
243     * <p>
244     * Note that in every one of these cases if you are trying to instantiate an abstract class that has constructors
245     * that take some arguments, you can invoke those simply by specifying the arguments after the initial
246     * implementation object or function.
247     * </p>
248     * <p>The use of functions can be taken even further; if you are invoking a Java method that takes a SAM type,
249     * you can just pass in a function object, and Nashorn will know what you meant:
250     * </p>
251     * <pre>
252     * var timer = new Java.type("java.util.Timer")
253     * timer.schedule(function() { print("Hello World!") })
254     * </pre>
255     * <p>
256     * Here, {@code Timer.schedule()} expects a {@code TimerTask} as its argument, so Nashorn creates an instance of a
257     * {@code TimerTask} subclass and uses the passed function to implement its only abstract method, {@code run()}. In
258     * this usage though, you can't use non-default constructors; the type must be either an interface, or must have a
259     * protected or public no-arg constructor.
260     * </p>
261     * <p>
262     * You can also subclass non-abstract classes; for that you will need to use the {@link #extend(Object, Object...)}
263     * method.
264     * </p>
265     * <p><b>Accessing static members</b></p>
266     * Examples:
267     * <pre>
268     * var File = Java.type("java.io.File")
269     * var pathSep = File.pathSeparator
270     * var tmpFile1 = File.createTempFile("abcdefg", ".tmp")
271     * var tmpFile2 = File.createTempFile("abcdefg", ".tmp", new File("/tmp"))
272     * </pre>
273     * Actually, you can even assign static methods to variables, so the above example can be rewritten as:
274     * <pre>
275     * var File = Java.type("java.io.File")
276     * var createTempFile = File.createTempFile
277     * var tmpFile1 = createTempFile("abcdefg", ".tmp")
278     * var tmpFile2 = createTempFile("abcdefg", ".tmp", new File("/tmp"))
279     * </pre>
280     * If you need to access the actual {@code java.lang.Class} object for the type, you can use the {@code class}
281     * property on the object representing the type:
282     * <pre>
283     * var File = Java.type("java.io.File")
284     * var someFile = new File("blah")
285     * print(File.class === someFile.getClass()) // prints true
286     * </pre>
287     * Of course, you can also use the {@code getClass()} method or its equivalent {@code class} property on any
288     * instance of the class. Other way round, you can use the synthetic {@code static} property on any
289     * {@code java.lang.Class} object to retrieve its type-representing object:
290     * <pre>
291     * var File = Java.type("java.io.File")
292     * print(File.class.static === File) // prints true
293     * </pre>
294     * <p><b>{@code instanceof} operator</b></p>
295     * The standard ECMAScript {@code instanceof} operator is extended to recognize Java objects and their type objects:
296     * <pre>
297     * var File = Java.type("java.io.File")
298     * var aFile = new File("foo")
299     * print(aFile instanceof File) // prints true
300     * print(aFile instanceof File.class) // prints false - Class objects aren't type objects.
301     * </pre>
302     * @param self not used
303     * @param objTypeName the object whose JS string value represents the type name. You can use names of primitive Java
304     * types to obtain representations of them, and you can use trailing square brackets to represent Java array types.
305     * @return the object representing the named type
306     * @throws ClassNotFoundException if the class is not found
307     */
308    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
309    public static Object type(final Object self, final Object objTypeName) throws ClassNotFoundException {
310        return type(objTypeName);
311    }
312
313    private static StaticClass type(final Object objTypeName) throws ClassNotFoundException {
314        return StaticClass.forClass(type(JSType.toString(objTypeName)));
315    }
316
317    private static Class<?> type(final String typeName) throws ClassNotFoundException {
318        if (typeName.endsWith("[]")) {
319            return arrayType(typeName);
320        }
321
322        return simpleType(typeName);
323    }
324
325    /**
326     * Returns name of a java type {@link StaticClass}.
327     * @param self not used
328     * @param type the type whose name is returned
329     * @return name of the given type
330     */
331    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
332    public static Object typeName(final Object self, final Object type) {
333        if (type instanceof StaticClass) {
334            return ((StaticClass)type).getRepresentedClass().getName();
335        } else if (type instanceof Class) {
336            return ((Class<?>)type).getName();
337        } else {
338            return UNDEFINED;
339        }
340    }
341
342    /**
343     * Given a script object and a Java type, converts the script object into the desired Java type. Currently it
344     * performs shallow creation of Java arrays, as well as wrapping of objects in Lists, Dequeues, Queues,
345     * and Collections. Example:
346     * <pre>
347     * var anArray = [1, "13", false]
348     * var javaIntArray = Java.to(anArray, "int[]")
349     * print(javaIntArray[0]) // prints 1
350     * print(javaIntArray[1]) // prints 13, as string "13" was converted to number 13 as per ECMAScript ToNumber conversion
351     * print(javaIntArray[2]) // prints 0, as boolean false was converted to number 0 as per ECMAScript ToNumber conversion
352     * </pre>
353     * @param self not used
354     * @param obj the script object. Can be null.
355     * @param objType either a {@link #type(Object, Object) type object} or a String describing the type of the Java
356     * object to create. Can not be null. If undefined, a "default" conversion is presumed (allowing the argument to be
357     * omitted).
358     * @return a Java object whose value corresponds to the original script object's value. Specifically, for array
359     * target types, returns a Java array of the same type with contents converted to the array's component type.
360     * Converts recursively when the target type is multidimensional array. For {@link List}, {@link Deque},
361     * {@link Queue}, or {@link Collection}, returns a live wrapper around the object, see {@link ListAdapter} for
362     * details. Returns null if obj is null.
363     * @throws ClassNotFoundException if the class described by objType is not found
364     */
365    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
366    public static Object to(final Object self, final Object obj, final Object objType) throws ClassNotFoundException {
367        if (obj == null) {
368            return null;
369        }
370
371        if (!(obj instanceof ScriptObject) && !(obj instanceof JSObject)) {
372            throw typeError("not.an.object", ScriptRuntime.safeToString(obj));
373        }
374
375        final Class<?> targetClass;
376        if(objType == UNDEFINED) {
377            targetClass = Object[].class;
378        } else {
379            final StaticClass targetType;
380            if(objType instanceof StaticClass) {
381                targetType = (StaticClass)objType;
382            } else {
383                targetType = type(objType);
384            }
385            targetClass = targetType.getRepresentedClass();
386        }
387
388        if(targetClass.isArray()) {
389            return JSType.toJavaArray(obj, targetClass.getComponentType());
390        }
391
392        if (targetClass == List.class || targetClass == Deque.class || targetClass == Queue.class || targetClass == Collection.class) {
393            return ListAdapter.create(obj);
394        }
395
396        throw typeError("unsupported.java.to.type", targetClass.getName());
397    }
398
399    /**
400     * Given a Java array or {@link Collection}, returns a JavaScript array with a shallow copy of its contents. Note
401     * that in most cases, you can use Java arrays and lists natively in Nashorn; in cases where for some reason you
402     * need to have an actual JavaScript native array (e.g. to work with the array comprehensions functions), you will
403     * want to use this method. Example:
404     * <pre>
405     * var File = Java.type("java.io.File")
406     * var listHomeDir = new File("~").listFiles()
407     * var jsListHome = Java.from(listHomeDir)
408     * var jpegModifiedDates = jsListHome
409     *     .filter(function(val) { return val.getName().endsWith(".jpg") })
410     *     .map(function(val) { return val.lastModified() })
411     * </pre>
412     * @param self not used
413     * @param objArray the java array or collection. Can be null.
414     * @return a JavaScript array with the copy of Java array's or collection's contents. Returns null if objArray is
415     * null.
416     */
417    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
418    public static NativeArray from(final Object self, final Object objArray) {
419        if (objArray == null) {
420            return null;
421        } else if (objArray instanceof Collection) {
422            return new NativeArray(((Collection<?>)objArray).toArray());
423        } else if (objArray instanceof Object[]) {
424            return new NativeArray(((Object[])objArray).clone());
425        } else if (objArray instanceof int[]) {
426            return new NativeArray(((int[])objArray).clone());
427        } else if (objArray instanceof double[]) {
428            return new NativeArray(((double[])objArray).clone());
429        } else if (objArray instanceof long[]) {
430            return new NativeArray(((long[])objArray).clone());
431        } else if (objArray instanceof byte[]) {
432            return new NativeArray(copyArray((byte[])objArray));
433        } else if (objArray instanceof short[]) {
434            return new NativeArray(copyArray((short[])objArray));
435        } else if (objArray instanceof char[]) {
436            return new NativeArray(copyArray((char[])objArray));
437        } else if (objArray instanceof float[]) {
438            return new NativeArray(copyArray((float[])objArray));
439        } else if (objArray instanceof boolean[]) {
440            return new NativeArray(copyArray((boolean[])objArray));
441        }
442
443        throw typeError("cant.convert.to.javascript.array", objArray.getClass().getName());
444    }
445
446    private static int[] copyArray(final byte[] in) {
447        final int[] out = new int[in.length];
448        for(int i = 0; i < in.length; ++i) {
449            out[i] = in[i];
450        }
451        return out;
452    }
453
454    private static int[] copyArray(final short[] in) {
455        final int[] out = new int[in.length];
456        for(int i = 0; i < in.length; ++i) {
457            out[i] = in[i];
458        }
459        return out;
460    }
461
462    private static int[] copyArray(final char[] in) {
463        final int[] out = new int[in.length];
464        for(int i = 0; i < in.length; ++i) {
465            out[i] = in[i];
466        }
467        return out;
468    }
469
470    private static double[] copyArray(final float[] in) {
471        final double[] out = new double[in.length];
472        for(int i = 0; i < in.length; ++i) {
473            out[i] = in[i];
474        }
475        return out;
476    }
477
478    private static Object[] copyArray(final boolean[] in) {
479        final Object[] out = new Object[in.length];
480        for(int i = 0; i < in.length; ++i) {
481            out[i] = in[i];
482        }
483        return out;
484    }
485
486    private static Class<?> simpleType(final String typeName) throws ClassNotFoundException {
487        final Class<?> primClass = TypeUtilities.getPrimitiveTypeByName(typeName);
488        if(primClass != null) {
489            return primClass;
490        }
491        final Context ctx = Global.getThisContext();
492        try {
493            return ctx.findClass(typeName);
494        } catch(final ClassNotFoundException e) {
495            // The logic below compensates for a frequent user error - when people use dot notation to separate inner
496            // class names, i.e. "java.lang.Character.UnicodeBlock" vs."java.lang.Character$UnicodeBlock". The logic
497            // below will try alternative class names, replacing dots at the end of the name with dollar signs.
498            final StringBuilder nextName = new StringBuilder(typeName);
499            int lastDot = nextName.length();
500            for(;;) {
501                lastDot = nextName.lastIndexOf(".", lastDot - 1);
502                if(lastDot == -1) {
503                    // Exhausted the search space, class not found - rethrow the original exception.
504                    throw e;
505                }
506                nextName.setCharAt(lastDot, '$');
507                try {
508                    return ctx.findClass(nextName.toString());
509                } catch(final ClassNotFoundException cnfe) {
510                    // Intentionally ignored, so the loop retries with the next name
511                }
512            }
513        }
514
515    }
516
517    private static Class<?> arrayType(final String typeName) throws ClassNotFoundException {
518        return Array.newInstance(type(typeName.substring(0, typeName.length() - 2)), 0).getClass();
519    }
520
521    /**
522     * Returns a type object for a subclass of the specified Java class (or implementation of the specified interface)
523     * that acts as a script-to-Java adapter for it. See {@link #type(Object, Object)} for a discussion of type objects,
524     * and see {@link JavaAdapterFactory} for details on script-to-Java adapters. Note that you can also implement
525     * interfaces and subclass abstract classes using {@code new} operator on a type object for an interface or abstract
526     * class. However, to extend a non-abstract class, you will have to use this method. Example:
527     * <pre>
528     * var ArrayList = Java.type("java.util.ArrayList")
529     * var ArrayListExtender = Java.extend(ArrayList)
530     * var printSizeInvokedArrayList = new ArrayListExtender() {
531     *     size: function() { print("size invoked!"); }
532     * }
533     * var printAddInvokedArrayList = new ArrayListExtender() {
534     *     add: function(x, y) {
535     *       if(typeof(y) === "undefined") {
536     *           print("add(e) invoked!");
537     *       } else {
538     *           print("add(i, e) invoked!");
539     *       }
540     * }
541     * </pre>
542     * We can see several important concepts in the above example:
543     * <ul>
544     * <li>Every specified list of Java types will have one extender subclass in Nashorn per caller protection domain -
545     * repeated invocations of {@code extend} for the same list of types for scripts same protection domain will yield
546     * the same extender type. It's a generic adapter that delegates to whatever JavaScript functions its implementation
547     * object has on a per-instance basis.</li>
548     * <li>If the Java method is overloaded (as in the above example {@code List.add()}), then your JavaScript adapter
549     * must be prepared to deal with all overloads.</li>
550     * <li>To invoke super methods from adapters, call them on the adapter instance prefixing them with {@code super$},
551     * or use the special {@link #_super(Object, Object) super-adapter}.</li>
552     * <li>It is also possible to specify an ordinary JavaScript object as the last argument to {@code extend}. In that
553     * case, it is treated as a class-level override. {@code extend} will return an extender class where all instances
554     * will have the methods implemented by functions on that object, just as if that object were passed as the last
555     * argument to their constructor. Example:
556     * <pre>
557     * var Runnable = Java.type("java.lang.Runnable")
558     * var R1 = Java.extend(Runnable, {
559     *     run: function() {
560     *         print("R1.run() invoked!")
561     *     }
562     * })
563     * var r1 = new R1
564     * var t = new java.lang.Thread(r1)
565     * t.start()
566     * t.join()
567     * </pre>
568     * As you can see, you don't have to pass any object when you create a new instance of {@code R1} as its
569     * {@code run()} function was defined already when extending the class. If you also want to add instance-level
570     * overrides on these objects, you will have to repeatedly use {@code extend()} to subclass the class-level adapter.
571     * For such adapters, the order of precedence is instance-level method, class-level method, superclass method, or
572     * {@code UnsupportedOperationException} if the superclass method is abstract. If we continue our previous example:
573     * <pre>
574     * var R2 = Java.extend(R1);
575     * var r2 = new R2(function() { print("r2.run() invoked!") })
576     * r2.run()
577     * </pre>
578     * We'll see it'll print {@code "r2.run() invoked!"}, thus overriding on instance-level the class-level behavior.
579     * Note that you must use {@code Java.extend} to explicitly create an instance-override adapter class from a
580     * class-override adapter class, as the class-override adapter class is no longer abstract.
581     * </li>
582     * </ul>
583     * @param self not used
584     * @param types the original types. The caller must pass at least one Java type object of class {@link StaticClass}
585     * representing either a public interface or a non-final public class with at least one public or protected
586     * constructor. If more than one type is specified, at most one can be a class and the rest have to be interfaces.
587     * Invoking the method twice with exactly the same types in the same order - in absence of class-level overrides -
588     * will return the same adapter class, any reordering of types or even addition or removal of redundant types (i.e.
589     * interfaces that other types in the list already implement/extend, or {@code java.lang.Object} in a list of types
590     * consisting purely of interfaces) will result in a different adapter class, even though those adapter classes are
591     * functionally identical; we deliberately don't want to incur the additional processing cost of canonicalizing type
592     * lists. As a special case, the last argument can be a {@code ScriptObject} instead of a type. In this case, a
593     * separate adapter class is generated - new one for each invocation - that will use the passed script object as its
594     * implementation for all instances. Instances of such adapter classes can then be created without passing another
595     * script object in the constructor, as the class has a class-level behavior defined by the script object. However,
596     * you can still pass a script object (or if it's a SAM type, a function) to the constructor to provide further
597     * instance-level overrides.
598     *
599     * @return a new {@link StaticClass} that represents the adapter for the original types.
600     */
601    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
602    public static Object extend(final Object self, final Object... types) {
603        if(types == null || types.length == 0) {
604            throw typeError("extend.expects.at.least.one.argument");
605        }
606        final int l = types.length;
607        final int typesLen;
608        final ScriptObject classOverrides;
609        if(types[l - 1] instanceof ScriptObject) {
610            classOverrides = (ScriptObject)types[l - 1];
611            typesLen = l - 1;
612            if(typesLen == 0) {
613                throw typeError("extend.expects.at.least.one.type.argument");
614            }
615        } else {
616            classOverrides = null;
617            typesLen = l;
618        }
619        final Class<?>[] stypes = new Class<?>[typesLen];
620        try {
621            for(int i = 0; i < typesLen; ++i) {
622                stypes[i] = ((StaticClass)types[i]).getRepresentedClass();
623            }
624        } catch(final ClassCastException e) {
625            throw typeError("extend.expects.java.types");
626        }
627        // Note that while the public API documentation claims self is not used, we actually use it.
628        // ScriptFunction.findCallMethod will bind the lookup object into it, and we can then use that lookup when
629        // requesting the adapter class. Note that if Java.extend is invoked with no lookup object, it'll pass the
630        // public lookup which'll result in generation of a no-permissions adapter. A typical situation this can happen
631        // is when the extend function is bound.
632        final MethodHandles.Lookup lookup;
633        if(self instanceof MethodHandles.Lookup) {
634            lookup = (MethodHandles.Lookup)self;
635        } else {
636            lookup = MethodHandles.publicLookup();
637        }
638        return JavaAdapterFactory.getAdapterClassFor(stypes, classOverrides, lookup);
639    }
640
641    /**
642     * When given an object created using {@code Java.extend()} or equivalent mechanism (that is, any JavaScript-to-Java
643     * adapter), returns an object that can be used to invoke superclass methods on that object. E.g.:
644     * <pre>
645     * var cw = new FilterWriterAdapter(sw) {
646     *     write: function(s, off, len) {
647     *         s = capitalize(s, off, len)
648     *         cw_super.write(s, 0, s.length())
649     *     }
650     * }
651     * var cw_super = Java.super(cw)
652     * </pre>
653     * @param self the {@code Java} object itself - not used.
654     * @param adapter the original Java adapter instance for which the super adapter is created.
655     * @return a super adapter for the original adapter
656     */
657    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR, name="super")
658    public static Object _super(final Object self, final Object adapter) {
659        return Bootstrap.createSuperAdapter(adapter);
660    }
661
662    /**
663     * Returns an object that is compatible with Java JSON libraries expectations; namely, that if it itself, or any
664     * object transitively reachable through it is a JavaScript array, then such objects will be exposed as
665     * {@link JSObject} that also implements the {@link List} interface for exposing the array elements. An explicit
666     * API is required as otherwise Nashorn exposes all objects externally as {@link JSObject}s that also implement the
667     * {@link Map} interface instead. By using this method, arrays will be exposed as {@link List}s and all other
668     * objects as {@link Map}s.
669     * @param self not used
670     * @param obj the object to be exposed in a Java JSON library compatible manner.
671     * @return a wrapper around the object that will enforce Java JSON library compatible exposure.
672     */
673    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
674    public static Object asJSONCompatible(final Object self, final Object obj) {
675        return ScriptObjectMirror.wrapAsJSONCompatible(obj, Context.getGlobal());
676    }
677}
678