NativeJava.java revision 1060:ca67ae7c46cb
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.objects;
27
28import static jdk.nashorn.internal.runtime.ECMAErrors.typeError;
29import static jdk.nashorn.internal.runtime.ScriptRuntime.UNDEFINED;
30import java.lang.invoke.MethodHandles;
31import java.lang.reflect.Array;
32import java.util.Collection;
33import java.util.Deque;
34import java.util.List;
35import jdk.internal.dynalink.beans.StaticClass;
36import jdk.internal.dynalink.support.TypeUtilities;
37import jdk.nashorn.api.scripting.JSObject;
38import jdk.nashorn.internal.objects.annotations.Attribute;
39import jdk.nashorn.internal.objects.annotations.Function;
40import jdk.nashorn.internal.objects.annotations.ScriptClass;
41import jdk.nashorn.internal.objects.annotations.Where;
42import jdk.nashorn.internal.runtime.Context;
43import jdk.nashorn.internal.runtime.JSType;
44import jdk.nashorn.internal.runtime.ListAdapter;
45import jdk.nashorn.internal.runtime.PropertyMap;
46import jdk.nashorn.internal.runtime.ScriptFunction;
47import jdk.nashorn.internal.runtime.ScriptObject;
48import jdk.nashorn.internal.runtime.ScriptRuntime;
49import jdk.nashorn.internal.runtime.linker.Bootstrap;
50import jdk.nashorn.internal.runtime.linker.JavaAdapterFactory;
51
52/**
53 * This class is the implementation for the {@code Java} global object exposed to programs running under Nashorn. This
54 * object acts as the API entry point to Java platform specific functionality, dealing with creating new instances of
55 * Java classes, subclassing Java classes, implementing Java interfaces, converting between Java arrays and ECMAScript
56 * arrays, and so forth.
57 */
58@ScriptClass("Java")
59public final class NativeJava {
60
61    // initialized by nasgen
62    @SuppressWarnings("unused")
63    private static PropertyMap $nasgenmap$;
64
65    private NativeJava() {
66        // don't create me
67        throw new UnsupportedOperationException();
68    }
69
70    /**
71     * Returns true if the specified object is a Java type object, that is an instance of {@link StaticClass}.
72     * @param self not used
73     * @param type the object that is checked if it is a type object or not
74     * @return tells whether given object is a Java type object or not.
75     * @see #type(Object, Object)
76     */
77    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
78    public static boolean isType(final Object self, final Object type) {
79        return type instanceof StaticClass;
80    }
81
82    /**
83     * Returns synchronized wrapper version of the given ECMAScript function.
84     * @param self not used
85     * @param func the ECMAScript function whose synchronized version is returned.
86     * @param obj the object (i.e, lock) on which the function synchronizes.
87     * @return synchronized wrapper version of the given ECMAScript function.
88     */
89    @Function(name="synchronized", attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
90    public static Object synchronizedFunc(final Object self, final Object func, final Object obj) {
91        if (func instanceof ScriptFunction) {
92            return ((ScriptFunction)func).makeSynchronizedFunction(obj);
93        }
94
95        throw typeError("not.a.function", ScriptRuntime.safeToString(func));
96    }
97
98    /**
99     * Returns true if the specified object is a Java method.
100     * @param self not used
101     * @param obj the object that is checked if it is a Java method object or not
102     * @return tells whether given object is a Java method object or not.
103     */
104    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
105    public static boolean isJavaMethod(final Object self, final Object obj) {
106        return Bootstrap.isDynamicMethod(obj);
107    }
108
109    /**
110     * Returns true if the specified object is a java function (but not script function)
111     * @param self not used
112     * @param obj the object that is checked if it is a Java function or not
113     * @return tells whether given object is a Java function or not
114     */
115    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
116    public static boolean isJavaFunction(final Object self, final Object obj) {
117        return Bootstrap.isCallable(obj) && !(obj instanceof ScriptFunction);
118    }
119
120    /**
121     * Returns true if the specified object is a Java object but not a script object
122     * @param self not used
123     * @param obj the object that is checked
124     * @return tells whether given object is a Java object but not a script object
125     */
126    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
127    public static boolean isJavaObject(final Object self, final Object obj) {
128        return obj != null && !(obj instanceof ScriptObject);
129    }
130
131    /**
132     * Returns true if the specified object is a ECMAScript object, that is an instance of {@link ScriptObject}.
133     * @param self not used
134     * @param obj the object that is checked if it is a ECMAScript object or not
135     * @return tells whether given object is a ECMAScript object or not.
136     */
137    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
138    public static boolean isScriptObject(final Object self, final Object obj) {
139        return obj instanceof ScriptObject;
140    }
141
142    /**
143     * Returns true if the specified object is a ECMAScript function, that is an instance of {@link ScriptFunction}.
144     * @param self not used
145     * @param obj the object that is checked if it is a ECMAScript function or not
146     * @return tells whether given object is a ECMAScript function or not.
147     */
148    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
149    public static boolean isScriptFunction(final Object self, final Object obj) {
150        return obj instanceof ScriptFunction;
151    }
152
153    /**
154     * <p>
155     * Given a name of a Java type, returns an object representing that type in Nashorn. The Java class of the objects
156     * used to represent Java types in Nashorn is not {@link java.lang.Class} but rather {@link StaticClass}. They are
157     * the objects that you can use with the {@code new} operator to create new instances of the class as well as to
158     * access static members of the class. In Nashorn, {@code Class} objects are just regular Java objects that aren't
159     * treated specially. Instead of them, {@link StaticClass} instances - which we sometimes refer to as "Java type
160     * objects" are used as constructors with the {@code new} operator, and they expose static fields, properties, and
161     * methods. While this might seem confusing at first, it actually closely matches the Java language: you use a
162     * different expression (e.g. {@code java.io.File}) as an argument in "new" and to address statics, and it is
163     * distinct from the {@code Class} object (e.g. {@code java.io.File.class}). Below we cover in details the
164     * properties of the type objects.
165     * </p>
166     * <p><b>Constructing Java objects</b></p>
167     * Examples:
168     * <pre>
169     * var arrayListType = Java.type("java.util.ArrayList")
170     * var intType = Java.type("int")
171     * var stringArrayType = Java.type("java.lang.String[]")
172     * var int2DArrayType = Java.type("int[][]")
173     * </pre>
174     * Note that the name of the type is always a string for a fully qualified name. You can use any of these types to
175     * create new instances, e.g.:
176     * <pre>
177     * var anArrayList = new Java.type("java.util.ArrayList")
178     * </pre>
179     * or
180     * <pre>
181     * var ArrayList = Java.type("java.util.ArrayList")
182     * var anArrayList = new ArrayList
183     * var anArrayListWithSize = new ArrayList(16)
184     * </pre>
185     * In the special case of inner classes, you can either use the JVM fully qualified name, meaning using {@code $}
186     * sign in the class name, or you can use the dot:
187     * <pre>
188     * var ftype = Java.type("java.awt.geom.Arc2D$Float")
189     * </pre>
190     * and
191     * <pre>
192     * var ftype = Java.type("java.awt.geom.Arc2D.Float")
193     * </pre>
194     * both work. Note however that using the dollar sign is faster, as Java.type first tries to resolve the class name
195     * as it is originally specified, and the internal JVM names for inner classes use the dollar sign. If you use the
196     * dot, Java.type will internally get a ClassNotFoundException and subsequently retry by changing the last dot to
197     * dollar sign. As a matter of fact, it'll keep replacing dots with dollar signs until it either successfully loads
198     * the class or runs out of all dots in the name. This way it can correctly resolve and load even multiply nested
199     * inner classes with the dot notation. Again, this will be slower than using the dollar signs in the name. An
200     * alternative way to access the inner class is as a property of the outer class:
201     * <pre>
202     * var arctype = Java.type("java.awt.geom.Arc2D")
203     * var ftype = arctype.Float
204     * </pre>
205     * <p>
206     * You can access both static and non-static inner classes. If you want to create an instance of a non-static
207     * inner class, remember to pass an instance of its outer class as the first argument to the constructor.
208     * </p>
209     * <p>
210     * If the type is abstract, you can instantiate an anonymous subclass of it using an argument list that is
211     * applicable to any of its public or protected constructors, but inserting a JavaScript object with functions
212     * properties that provide JavaScript implementations of the abstract methods. If method names are overloaded, the
213     * JavaScript function will provide implementation for all overloads. E.g.:
214     * </p>
215     * <pre>
216     * var TimerTask =  Java.type("java.util.TimerTask")
217     * var task = new TimerTask({ run: function() { print("Hello World!") } })
218     * </pre>
219     * <p>
220     * Nashorn supports a syntactic extension where a "new" expression followed by an argument is identical to
221     * invoking the constructor and passing the argument to it, so you can write the above example also as:
222     * </p>
223     * <pre>
224     * var task = new TimerTask {
225     *     run: function() {
226     *       print("Hello World!")
227     *     }
228     * }
229     * </pre>
230     * <p>
231     * which is very similar to Java anonymous inner class definition. On the other hand, if the type is an abstract
232     * type with a single abstract method (commonly referred to as a "SAM type") or all abstract methods it has share
233     * the same overloaded name), then instead of an object, you can just pass a function, so the above example can
234     * become even more simplified to:
235     * </p>
236     * <pre>
237     * var task = new TimerTask(function() { print("Hello World!") })
238     * </pre>
239     * <p>
240     * Note that in every one of these cases if you are trying to instantiate an abstract class that has constructors
241     * that take some arguments, you can invoke those simply by specifying the arguments after the initial
242     * implementation object or function.
243     * </p>
244     * <p>The use of functions can be taken even further; if you are invoking a Java method that takes a SAM type,
245     * you can just pass in a function object, and Nashorn will know what you meant:
246     * </p>
247     * <pre>
248     * var timer = new Java.type("java.util.Timer")
249     * timer.schedule(function() { print("Hello World!") })
250     * </pre>
251     * <p>
252     * Here, {@code Timer.schedule()} expects a {@code TimerTask} as its argument, so Nashorn creates an instance of a
253     * {@code TimerTask} subclass and uses the passed function to implement its only abstract method, {@code run()}. In
254     * this usage though, you can't use non-default constructors; the type must be either an interface, or must have a
255     * protected or public no-arg constructor.
256     * </p>
257     * <p>
258     * You can also subclass non-abstract classes; for that you will need to use the {@link #extend(Object, Object...)}
259     * method.
260     * </p>
261     * <p><b>Accessing static members</b></p>
262     * Examples:
263     * <pre>
264     * var File = Java.type("java.io.File")
265     * var pathSep = File.pathSeparator
266     * var tmpFile1 = File.createTempFile("abcdefg", ".tmp")
267     * var tmpFile2 = File.createTempFile("abcdefg", ".tmp", new File("/tmp"))
268     * </pre>
269     * Actually, you can even assign static methods to variables, so the above example can be rewritten as:
270     * <pre>
271     * var File = Java.type("java.io.File")
272     * var createTempFile = File.createTempFile
273     * var tmpFile1 = createTempFile("abcdefg", ".tmp")
274     * var tmpFile2 = createTempFile("abcdefg", ".tmp", new File("/tmp"))
275     * </pre>
276     * If you need to access the actual {@code java.lang.Class} object for the type, you can use the {@code class}
277     * property on the object representing the type:
278     * <pre>
279     * var File = Java.type("java.io.File")
280     * var someFile = new File("blah")
281     * print(File.class === someFile.getClass()) // prints true
282     * </pre>
283     * Of course, you can also use the {@code getClass()} method or its equivalent {@code class} property on any
284     * instance of the class. Other way round, you can use the synthetic {@code static} property on any
285     * {@code java.lang.Class} object to retrieve its type-representing object:
286     * <pre>
287     * var File = Java.type("java.io.File")
288     * print(File.class.static === File) // prints true
289     * </pre>
290     * <p><b>{@code instanceof} operator</b></p>
291     * The standard ECMAScript {@code instanceof} operator is extended to recognize Java objects and their type objects:
292     * <pre>
293     * var File = Java.type("java.io.File")
294     * var aFile = new File("foo")
295     * print(aFile instanceof File) // prints true
296     * print(aFile instanceof File.class) // prints false - Class objects aren't type objects.
297     * </pre>
298     * @param self not used
299     * @param objTypeName the object whose JS string value represents the type name. You can use names of primitive Java
300     * types to obtain representations of them, and you can use trailing square brackets to represent Java array types.
301     * @return the object representing the named type
302     * @throws ClassNotFoundException if the class is not found
303     */
304    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
305    public static Object type(final Object self, final Object objTypeName) throws ClassNotFoundException {
306        return type(objTypeName);
307    }
308
309    private static StaticClass type(final Object objTypeName) throws ClassNotFoundException {
310        return StaticClass.forClass(type(JSType.toString(objTypeName)));
311    }
312
313    private static Class<?> type(final String typeName) throws ClassNotFoundException {
314        if (typeName.endsWith("[]")) {
315            return arrayType(typeName);
316        }
317
318        return simpleType(typeName);
319    }
320
321    /**
322     * Returns name of a java type {@link StaticClass}.
323     * @param self not used
324     * @param type the type whose name is returned
325     * @return name of the given type
326     */
327    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
328    public static Object typeName(final Object self, final Object type) {
329        if (type instanceof StaticClass) {
330            return ((StaticClass)type).getRepresentedClass().getName();
331        } else if (type instanceof Class) {
332            return ((Class<?>)type).getName();
333        } else {
334            return UNDEFINED;
335        }
336    }
337
338    /**
339     * Given a script object and a Java type, converts the script object into the desired Java type. Currently it
340     * performs shallow creation of Java arrays, as well as wrapping of objects in Lists and Dequeues. Example:
341     * <pre>
342     * var anArray = [1, "13", false]
343     * var javaIntArray = Java.to(anArray, "int[]")
344     * print(javaIntArray[0]) // prints 1
345     * print(javaIntArray[1]) // prints 13, as string "13" was converted to number 13 as per ECMAScript ToNumber conversion
346     * print(javaIntArray[2]) // prints 0, as boolean false was converted to number 0 as per ECMAScript ToNumber conversion
347     * </pre>
348     * @param self not used
349     * @param obj the script object. Can be null.
350     * @param objType either a {@link #type(Object, Object) type object} or a String describing the type of the Java
351     * object to create. Can not be null. If undefined, a "default" conversion is presumed (allowing the argument to be
352     * omitted).
353     * @return a Java object whose value corresponds to the original script object's value. Specifically, for array
354     * target types, returns a Java array of the same type with contents converted to the array's component type. Does
355     * not recursively convert for multidimensional arrays. For {@link List} or {@link Deque}, returns a live wrapper
356     * around the object, see {@link ListAdapter} for details. Returns null if obj is null.
357     * @throws ClassNotFoundException if the class described by objType is not found
358     */
359    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
360    public static Object to(final Object self, final Object obj, final Object objType) throws ClassNotFoundException {
361        if (obj == null) {
362            return null;
363        }
364
365        if (!(obj instanceof ScriptObject) && !(obj instanceof JSObject)) {
366            throw typeError("not.an.object", ScriptRuntime.safeToString(obj));
367        }
368
369        final Class<?> targetClass;
370        if(objType == UNDEFINED) {
371            targetClass = Object[].class;
372        } else {
373            final StaticClass targetType;
374            if(objType instanceof StaticClass) {
375                targetType = (StaticClass)objType;
376            } else {
377                targetType = type(objType);
378            }
379            targetClass = targetType.getRepresentedClass();
380        }
381
382        if(targetClass.isArray()) {
383            return JSType.toJavaArray(obj, targetClass.getComponentType());
384        }
385
386        if(targetClass == List.class || targetClass == Deque.class) {
387            return ListAdapter.create(obj);
388        }
389
390        throw typeError("unsupported.java.to.type", targetClass.getName());
391    }
392
393    /**
394     * Given a Java array or {@link Collection}, returns a JavaScript array with a shallow copy of its contents. Note
395     * that in most cases, you can use Java arrays and lists natively in Nashorn; in cases where for some reason you
396     * need to have an actual JavaScript native array (e.g. to work with the array comprehensions functions), you will
397     * want to use this method. Example:
398     * <pre>
399     * var File = Java.type("java.io.File")
400     * var listHomeDir = new File("~").listFiles()
401     * var jsListHome = Java.from(listHomeDir)
402     * var jpegModifiedDates = jsListHome
403     *     .filter(function(val) { return val.getName().endsWith(".jpg") })
404     *     .map(function(val) { return val.lastModified() })
405     * </pre>
406     * @param self not used
407     * @param objArray the java array or collection. Can be null.
408     * @return a JavaScript array with the copy of Java array's or collection's contents. Returns null if objArray is
409     * null.
410     */
411    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
412    public static NativeArray from(final Object self, final Object objArray) {
413        if (objArray == null) {
414            return null;
415        } else if (objArray instanceof Collection) {
416            return new NativeArray(((Collection<?>)objArray).toArray());
417        } else if (objArray instanceof Object[]) {
418            return new NativeArray(((Object[])objArray).clone());
419        } else if (objArray instanceof int[]) {
420            return new NativeArray(((int[])objArray).clone());
421        } else if (objArray instanceof double[]) {
422            return new NativeArray(((double[])objArray).clone());
423        } else if (objArray instanceof long[]) {
424            return new NativeArray(((long[])objArray).clone());
425        } else if (objArray instanceof byte[]) {
426            return new NativeArray(copyArray((byte[])objArray));
427        } else if (objArray instanceof short[]) {
428            return new NativeArray(copyArray((short[])objArray));
429        } else if (objArray instanceof char[]) {
430            return new NativeArray(copyArray((char[])objArray));
431        } else if (objArray instanceof float[]) {
432            return new NativeArray(copyArray((float[])objArray));
433        } else if (objArray instanceof boolean[]) {
434            return new NativeArray(copyArray((boolean[])objArray));
435        }
436
437        throw typeError("cant.convert.to.javascript.array", objArray.getClass().getName());
438    }
439
440    private static int[] copyArray(final byte[] in) {
441        final int[] out = new int[in.length];
442        for(int i = 0; i < in.length; ++i) {
443            out[i] = in[i];
444        }
445        return out;
446    }
447
448    private static int[] copyArray(final short[] in) {
449        final int[] out = new int[in.length];
450        for(int i = 0; i < in.length; ++i) {
451            out[i] = in[i];
452        }
453        return out;
454    }
455
456    private static int[] copyArray(final char[] in) {
457        final int[] out = new int[in.length];
458        for(int i = 0; i < in.length; ++i) {
459            out[i] = in[i];
460        }
461        return out;
462    }
463
464    private static double[] copyArray(final float[] in) {
465        final double[] out = new double[in.length];
466        for(int i = 0; i < in.length; ++i) {
467            out[i] = in[i];
468        }
469        return out;
470    }
471
472    private static Object[] copyArray(final boolean[] in) {
473        final Object[] out = new Object[in.length];
474        for(int i = 0; i < in.length; ++i) {
475            out[i] = in[i];
476        }
477        return out;
478    }
479
480    private static Class<?> simpleType(final String typeName) throws ClassNotFoundException {
481        final Class<?> primClass = TypeUtilities.getPrimitiveTypeByName(typeName);
482        if(primClass != null) {
483            return primClass;
484        }
485        final Context ctx = Global.getThisContext();
486        try {
487            return ctx.findClass(typeName);
488        } catch(final ClassNotFoundException e) {
489            // The logic below compensates for a frequent user error - when people use dot notation to separate inner
490            // class names, i.e. "java.lang.Character.UnicodeBlock" vs."java.lang.Character$UnicodeBlock". The logic
491            // below will try alternative class names, replacing dots at the end of the name with dollar signs.
492            final StringBuilder nextName = new StringBuilder(typeName);
493            int lastDot = nextName.length();
494            for(;;) {
495                lastDot = nextName.lastIndexOf(".", lastDot - 1);
496                if(lastDot == -1) {
497                    // Exhausted the search space, class not found - rethrow the original exception.
498                    throw e;
499                }
500                nextName.setCharAt(lastDot, '$');
501                try {
502                    return ctx.findClass(nextName.toString());
503                } catch(final ClassNotFoundException cnfe) {
504                    // Intentionally ignored, so the loop retries with the next name
505                }
506            }
507        }
508
509    }
510
511    private static Class<?> arrayType(final String typeName) throws ClassNotFoundException {
512        return Array.newInstance(type(typeName.substring(0, typeName.length() - 2)), 0).getClass();
513    }
514
515    /**
516     * Returns a type object for a subclass of the specified Java class (or implementation of the specified interface)
517     * that acts as a script-to-Java adapter for it. See {@link #type(Object, Object)} for a discussion of type objects,
518     * and see {@link JavaAdapterFactory} for details on script-to-Java adapters. Note that you can also implement
519     * interfaces and subclass abstract classes using {@code new} operator on a type object for an interface or abstract
520     * class. However, to extend a non-abstract class, you will have to use this method. Example:
521     * <pre>
522     * var ArrayList = Java.type("java.util.ArrayList")
523     * var ArrayListExtender = Java.extend(ArrayList)
524     * var printSizeInvokedArrayList = new ArrayListExtender() {
525     *     size: function() { print("size invoked!"); }
526     * }
527     * var printAddInvokedArrayList = new ArrayListExtender() {
528     *     add: function(x, y) {
529     *       if(typeof(y) === "undefined") {
530     *           print("add(e) invoked!");
531     *       } else {
532     *           print("add(i, e) invoked!");
533     *       }
534     * }
535     * </pre>
536     * We can see several important concepts in the above example:
537     * <ul>
538     * <li>Every specified list of Java types will have one extender subclass in Nashorn per caller protection domain -
539     * repeated invocations of {@code extend} for the same list of types for scripts same protection domain will yield
540     * the same extender type. It's a generic adapter that delegates to whatever JavaScript functions its implementation
541     * object has on a per-instance basis.</li>
542     * <li>If the Java method is overloaded (as in the above example {@code List.add()}), then your JavaScript adapter
543     * must be prepared to deal with all overloads.</li>
544     * <li>To invoke super methods from adapters, call them on the adapter instance prefixing them with {@code super$},
545     * or use the special {@link #_super(Object, Object) super-adapter}.</li>
546     * <li>It is also possible to specify an ordinary JavaScript object as the last argument to {@code extend}. In that
547     * case, it is treated as a class-level override. {@code extend} will return an extender class where all instances
548     * will have the methods implemented by functions on that object, just as if that object were passed as the last
549     * argument to their constructor. Example:
550     * <pre>
551     * var Runnable = Java.type("java.lang.Runnable")
552     * var R1 = Java.extend(Runnable, {
553     *     run: function() {
554     *         print("R1.run() invoked!")
555     *     }
556     * })
557     * var r1 = new R1
558     * var t = new java.lang.Thread(r1)
559     * t.start()
560     * t.join()
561     * </pre>
562     * As you can see, you don't have to pass any object when you create a new instance of {@code R1} as its
563     * {@code run()} function was defined already when extending the class. If you also want to add instance-level
564     * overrides on these objects, you will have to repeatedly use {@code extend()} to subclass the class-level adapter.
565     * For such adapters, the order of precedence is instance-level method, class-level method, superclass method, or
566     * {@code UnsupportedOperationException} if the superclass method is abstract. If we continue our previous example:
567     * <pre>
568     * var R2 = Java.extend(R1);
569     * var r2 = new R2(function() { print("r2.run() invoked!") })
570     * r2.run()
571     * </pre>
572     * We'll see it'll print {@code "r2.run() invoked!"}, thus overriding on instance-level the class-level behavior.
573     * Note that you must use {@code Java.extend} to explicitly create an instance-override adapter class from a
574     * class-override adapter class, as the class-override adapter class is no longer abstract.
575     * </li>
576     * </ul>
577     * @param self not used
578     * @param types the original types. The caller must pass at least one Java type object of class {@link StaticClass}
579     * representing either a public interface or a non-final public class with at least one public or protected
580     * constructor. If more than one type is specified, at most one can be a class and the rest have to be interfaces.
581     * Invoking the method twice with exactly the same types in the same order - in absence of class-level overrides -
582     * will return the same adapter class, any reordering of types or even addition or removal of redundant types (i.e.
583     * interfaces that other types in the list already implement/extend, or {@code java.lang.Object} in a list of types
584     * consisting purely of interfaces) will result in a different adapter class, even though those adapter classes are
585     * functionally identical; we deliberately don't want to incur the additional processing cost of canonicalizing type
586     * lists. As a special case, the last argument can be a {@code ScriptObject} instead of a type. In this case, a
587     * separate adapter class is generated - new one for each invocation - that will use the passed script object as its
588     * implementation for all instances. Instances of such adapter classes can then be created without passing another
589     * script object in the constructor, as the class has a class-level behavior defined by the script object. However,
590     * you can still pass a script object (or if it's a SAM type, a function) to the constructor to provide further
591     * instance-level overrides.
592     *
593     * @return a new {@link StaticClass} that represents the adapter for the original types.
594     */
595    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR)
596    public static Object extend(final Object self, final Object... types) {
597        if(types == null || types.length == 0) {
598            throw typeError("extend.expects.at.least.one.argument");
599        }
600        final int l = types.length;
601        final int typesLen;
602        final ScriptObject classOverrides;
603        if(types[l - 1] instanceof ScriptObject) {
604            classOverrides = (ScriptObject)types[l - 1];
605            typesLen = l - 1;
606            if(typesLen == 0) {
607                throw typeError("extend.expects.at.least.one.type.argument");
608            }
609        } else {
610            classOverrides = null;
611            typesLen = l;
612        }
613        final Class<?>[] stypes = new Class<?>[typesLen];
614        try {
615            for(int i = 0; i < typesLen; ++i) {
616                stypes[i] = ((StaticClass)types[i]).getRepresentedClass();
617            }
618        } catch(final ClassCastException e) {
619            throw typeError("extend.expects.java.types");
620        }
621        // Note that while the public API documentation claims self is not used, we actually use it.
622        // ScriptFunction.findCallMethod will bind the lookup object into it, and we can then use that lookup when
623        // requesting the adapter class. Note that if Java.extend is invoked with no lookup object, it'll pass the
624        // public lookup which'll result in generation of a no-permissions adapter. A typical situation this can happen
625        // is when the extend function is bound.
626        final MethodHandles.Lookup lookup;
627        if(self instanceof MethodHandles.Lookup) {
628            lookup = (MethodHandles.Lookup)self;
629        } else {
630            lookup = MethodHandles.publicLookup();
631        }
632        return JavaAdapterFactory.getAdapterClassFor(stypes, classOverrides, lookup);
633    }
634
635    /**
636     * When given an object created using {@code Java.extend()} or equivalent mechanism (that is, any JavaScript-to-Java
637     * adapter), returns an object that can be used to invoke superclass methods on that object. E.g.:
638     * <pre>
639     * var cw = new FilterWriterAdapter(sw) {
640     *     write: function(s, off, len) {
641     *         s = capitalize(s, off, len)
642     *         cw_super.write(s, 0, s.length())
643     *     }
644     * }
645     * var cw_super = Java.super(cw)
646     * </pre>
647     * @param self the {@code Java} object itself - not used.
648     * @param adapter the original Java adapter instance for which the super adapter is created.
649     * @return a super adapter for the original adapter
650     */
651    @Function(attributes = Attribute.NOT_ENUMERABLE, where = Where.CONSTRUCTOR, name="super")
652    public static Object _super(final Object self, final Object adapter) {
653        return Bootstrap.createSuperAdapter(adapter);
654    }
655}
656