TypeEvaluator.java revision 1063:6e9a98b55502
1/*
2 * Copyright (c) 2010, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.codegen;
27
28import static jdk.nashorn.internal.runtime.Property.NOT_CONFIGURABLE;
29import static jdk.nashorn.internal.runtime.Property.NOT_ENUMERABLE;
30import static jdk.nashorn.internal.runtime.Property.NOT_WRITABLE;
31
32import java.lang.invoke.MethodType;
33import jdk.nashorn.internal.codegen.types.Type;
34import jdk.nashorn.internal.ir.AccessNode;
35import jdk.nashorn.internal.ir.CallNode;
36import jdk.nashorn.internal.ir.Expression;
37import jdk.nashorn.internal.ir.FunctionNode;
38import jdk.nashorn.internal.ir.IdentNode;
39import jdk.nashorn.internal.ir.IndexNode;
40import jdk.nashorn.internal.ir.Optimistic;
41import jdk.nashorn.internal.objects.ArrayBufferView;
42import jdk.nashorn.internal.objects.NativeArray;
43import jdk.nashorn.internal.runtime.FindProperty;
44import jdk.nashorn.internal.runtime.JSType;
45import jdk.nashorn.internal.runtime.Property;
46import jdk.nashorn.internal.runtime.RecompilableScriptFunctionData;
47import jdk.nashorn.internal.runtime.ScriptFunction;
48import jdk.nashorn.internal.runtime.ScriptObject;
49import jdk.nashorn.internal.runtime.ScriptRuntime;
50
51/**
52 * Functionality for using a runtime scope to look up value types.
53 * Used during recompilation.
54 */
55final class TypeEvaluator {
56    /**
57     * Type signature for invocation of functions without parameters: we must pass (callee, this) of type
58     * (ScriptFunction, Object) respectively. We also use Object as the return type (we must pass something,
59     * but it'll be ignored; it can't be void, though).
60     */
61    private static final MethodType EMPTY_INVOCATION_TYPE = MethodType.methodType(Object.class, ScriptFunction.class, Object.class);
62
63    private final Compiler compiler;
64    private final ScriptObject runtimeScope;
65
66    TypeEvaluator(final Compiler compiler, final ScriptObject runtimeScope) {
67        this.compiler = compiler;
68        this.runtimeScope = runtimeScope;
69    }
70
71    /**
72     * Returns true if the expression can be safely evaluated, and its value is an object known to always use
73     * String as the type of its property names retrieved through
74     * {@link ScriptRuntime#toPropertyIterator(Object)}. It is used to avoid optimistic assumptions about its
75     * property name types.
76     * @param expr the expression to test
77     * @return true if the expression can be safely evaluated, and its value is an object known to always use
78     * String as the type of its property iterators.
79     */
80    boolean hasStringPropertyIterator(final Expression expr) {
81        return evaluateSafely(expr) instanceof ScriptObject;
82    }
83
84    Type getOptimisticType(final Optimistic node) {
85        assert compiler.useOptimisticTypes();
86
87        final int  programPoint = node.getProgramPoint();
88        final Type validType    = compiler.getInvalidatedProgramPointType(programPoint);
89
90        if (validType != null) {
91            return validType;
92        }
93
94        final Type mostOptimisticType = node.getMostOptimisticType();
95        final Type evaluatedType      = getEvaluatedType(node);
96
97        if (evaluatedType != null) {
98            if (evaluatedType.widerThan(mostOptimisticType)) {
99                final Type newValidType = evaluatedType.isObject() || evaluatedType.isBoolean() ? Type.OBJECT : evaluatedType;
100                // Update invalidatedProgramPoints so we don't re-evaluate the expression next time. This is a heuristic
101                // as we're doing a tradeoff. Re-evaluating expressions on each recompile takes time, but it might
102                // notice a widening in the type of the expression and thus prevent an unnecessary deoptimization later.
103                // We'll presume though that the types of expressions are mostly stable, so if we evaluated it in one
104                // compilation, we'll keep to that and risk a low-probability deoptimization if its type gets widened
105                // in the future.
106                compiler.addInvalidatedProgramPoint(node.getProgramPoint(), newValidType);
107            }
108            return evaluatedType;
109        }
110        return mostOptimisticType;
111    }
112
113    private static Type getPropertyType(final ScriptObject sobj, final String name) {
114        final FindProperty find = sobj.findProperty(name, true);
115        if (find == null) {
116            return null;
117        }
118
119        final Property property      = find.getProperty();
120        final Class<?> propertyClass = property.getCurrentType();
121        if (propertyClass == null) {
122            // propertyClass == null means its value is Undefined. It is probably not initialized yet, so we won't make
123            // a type assumption yet.
124            return null;
125        } else if (propertyClass.isPrimitive()) {
126            return Type.typeFor(propertyClass);
127        }
128
129        final ScriptObject owner = find.getOwner();
130        if (property.hasGetterFunction(owner)) {
131            // Can have side effects, so we can't safely evaluate it; since !propertyClass.isPrimitive(), it's Object.
132            return Type.OBJECT;
133        }
134
135        // Safely evaluate the property, and return the narrowest type for the actual value (e.g. Type.INT for a boxed
136        // integer).
137        final Object value = property.needsDeclaration() ? ScriptRuntime.UNDEFINED : property.getObjectValue(owner, owner);
138        if (value == ScriptRuntime.UNDEFINED) {
139            return null;
140        }
141        return Type.typeFor(JSType.unboxedFieldType(value));
142    }
143
144    /**
145     * Declares a symbol name as belonging to a non-scoped local variable during an on-demand compilation of a single
146     * function. This method will add an explicit Undefined binding for the local into the runtime scope if it's
147     * otherwise implicitly undefined so that when an expression is evaluated for the name, it won't accidentally find
148     * an unrelated value higher up the scope chain. It is only required to call this method when doing an optimistic
149     * on-demand compilation.
150     * @param symbolName the name of the symbol that is to be declared as being a non-scoped local variable.
151     */
152    void declareLocalSymbol(final String symbolName) {
153        assert
154            compiler.useOptimisticTypes() &&
155            compiler.isOnDemandCompilation() &&
156            runtimeScope != null :
157                "useOptimistic=" +
158                    compiler.useOptimisticTypes() +
159                    " isOnDemand=" +
160                    compiler.isOnDemandCompilation() +
161                    " scope="+runtimeScope;
162
163        if (runtimeScope.findProperty(symbolName, false) == null) {
164            runtimeScope.addOwnProperty(symbolName, NOT_WRITABLE | NOT_ENUMERABLE | NOT_CONFIGURABLE, ScriptRuntime.UNDEFINED);
165        }
166    }
167
168    private Object evaluateSafely(final Expression expr) {
169        if (expr instanceof IdentNode) {
170            return runtimeScope == null ? null : evaluatePropertySafely(runtimeScope, ((IdentNode)expr).getName());
171        }
172
173        if (expr instanceof AccessNode) {
174            final AccessNode accessNode = (AccessNode)expr;
175            final Object     base       = evaluateSafely(accessNode.getBase());
176            if (!(base instanceof ScriptObject)) {
177                return null;
178            }
179            return evaluatePropertySafely((ScriptObject)base, accessNode.getProperty());
180        }
181
182        return null;
183    }
184
185    private static Object evaluatePropertySafely(final ScriptObject sobj, final String name) {
186        final FindProperty find = sobj.findProperty(name, true);
187        if (find == null) {
188            return null;
189        }
190        final Property     property = find.getProperty();
191        final ScriptObject owner    = find.getOwner();
192        if (property.hasGetterFunction(owner)) {
193            // Possible side effects; can't evaluate safely
194            return null;
195        }
196        return property.getObjectValue(owner, owner);
197    }
198
199
200    private Type getEvaluatedType(final Optimistic expr) {
201        if (expr instanceof IdentNode) {
202            if (runtimeScope == null) {
203                return null;
204            }
205            return getPropertyType(runtimeScope, ((IdentNode)expr).getName());
206        } else if (expr instanceof AccessNode) {
207            final AccessNode accessNode = (AccessNode)expr;
208            final Object base = evaluateSafely(accessNode.getBase());
209            if (!(base instanceof ScriptObject)) {
210                return null;
211            }
212            return getPropertyType((ScriptObject)base, accessNode.getProperty());
213        } else if (expr instanceof IndexNode) {
214            final IndexNode indexNode = (IndexNode)expr;
215            final Object    base = evaluateSafely(indexNode.getBase());
216            if(base instanceof NativeArray || base instanceof ArrayBufferView) {
217                // NOTE: optimistic array getters throw UnwarrantedOptimismException based on the type of their
218                // underlying array storage, not based on values of individual elements. Thus, a LongArrayData will
219                // throw UOE for every optimistic int linkage attempt, even if the long value being returned in the
220                // first invocation would be representable as int. That way, we can presume that the array's optimistic
221                // type is the most optimistic type for which an element getter has a chance of executing successfully.
222                return ((ScriptObject)base).getArray().getOptimisticType();
223            }
224        } else if (expr instanceof CallNode) {
225            // Currently, we'll only try to guess the return type of immediately invoked function expressions with no
226            // parameters, that is (function() { ... })(). We could do better, but these are all heuristics and we can
227            // gradually introduce them as needed. An easy one would be to do the same for .call(this) idiom.
228            final CallNode callExpr = (CallNode)expr;
229            final Expression fnExpr = callExpr.getFunction();
230            if (fnExpr instanceof FunctionNode) {
231                final FunctionNode fn = (FunctionNode)fnExpr;
232                if (callExpr.getArgs().isEmpty()) {
233                    final RecompilableScriptFunctionData data = compiler.getScriptFunctionData(fn.getId());
234                    if (data != null) {
235                        return Type.typeFor(data.getReturnType(EMPTY_INVOCATION_TYPE, runtimeScope));
236                    }
237                }
238            }
239        }
240
241        return null;
242    }
243}
244