CodeGenerator.java revision 1423:c13179703f65
1241675Suqs/*
2241675Suqs * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3275432Sbapt * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4241675Suqs *
5241675Suqs * This code is free software; you can redistribute it and/or modify it
6241675Suqs * under the terms of the GNU General Public License version 2 only, as
7241675Suqs * published by the Free Software Foundation.  Oracle designates this
8241675Suqs * particular file as subject to the "Classpath" exception as provided
9241675Suqs * by Oracle in the LICENSE file that accompanied this code.
10241675Suqs *
11241675Suqs * This code is distributed in the hope that it will be useful, but WITHOUT
12241675Suqs * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13241675Suqs * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14241675Suqs * version 2 for more details (a copy is included in the LICENSE file that
15241675Suqs * accompanied this code).
16241675Suqs *
17241675Suqs * You should have received a copy of the GNU General Public License version
18241675Suqs * 2 along with this work; if not, write to the Free Software Foundation,
19241675Suqs * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20241675Suqs *
21241675Suqs * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22241675Suqs * or visit www.oracle.com if you need additional information or have any
23241675Suqs * questions.
24241675Suqs */
25241675Suqs
26241675Suqspackage jdk.nashorn.internal.codegen;
27241675Suqs
28241675Suqsimport static jdk.nashorn.internal.codegen.ClassEmitter.Flag.PRIVATE;
29241675Suqsimport static jdk.nashorn.internal.codegen.ClassEmitter.Flag.STATIC;
30241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.ARGUMENTS;
31241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.CALLEE;
32241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.CREATE_PROGRAM_FUNCTION;
33241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.GET_MAP;
34241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.GET_STRING;
35241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.QUICK_PREFIX;
36241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.REGEX_PREFIX;
37241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.SCOPE;
38241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.SPLIT_PREFIX;
39241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.THIS;
40241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.VARARGS;
41241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.interfaceCallNoLookup;
42241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.methodDescriptor;
43241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
44241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.typeDescriptor;
45241675Suqsimport static jdk.nashorn.internal.codegen.CompilerConstants.virtualCallNoLookup;
46241675Suqsimport static jdk.nashorn.internal.ir.Symbol.HAS_SLOT;
47241675Suqsimport static jdk.nashorn.internal.ir.Symbol.IS_INTERNAL;
48241675Suqsimport static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.INVALID_PROGRAM_POINT;
49241675Suqsimport static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.isValid;
50241675Suqsimport static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_APPLY_TO_CALL;
51241675Suqsimport static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_DECLARE;
52241675Suqsimport static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_FAST_SCOPE;
53241675Suqsimport static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_OPTIMISTIC;
54241675Suqsimport static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_PROGRAM_POINT_SHIFT;
55241675Suqsimport static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_SCOPE;
56241675Suqs
57241675Suqsimport java.io.PrintWriter;
58241675Suqsimport java.util.ArrayDeque;
59241675Suqsimport java.util.ArrayList;
60241675Suqsimport java.util.Arrays;
61241675Suqsimport java.util.BitSet;
62import java.util.Collection;
63import java.util.Collections;
64import java.util.Deque;
65import java.util.EnumSet;
66import java.util.HashMap;
67import java.util.HashSet;
68import java.util.Iterator;
69import java.util.LinkedList;
70import java.util.List;
71import java.util.Map;
72import java.util.Set;
73import java.util.TreeMap;
74import java.util.function.Supplier;
75import jdk.nashorn.internal.AssertsEnabled;
76import jdk.nashorn.internal.IntDeque;
77import jdk.nashorn.internal.codegen.ClassEmitter.Flag;
78import jdk.nashorn.internal.codegen.CompilerConstants.Call;
79import jdk.nashorn.internal.codegen.types.ArrayType;
80import jdk.nashorn.internal.codegen.types.Type;
81import jdk.nashorn.internal.ir.AccessNode;
82import jdk.nashorn.internal.ir.BaseNode;
83import jdk.nashorn.internal.ir.BinaryNode;
84import jdk.nashorn.internal.ir.Block;
85import jdk.nashorn.internal.ir.BlockStatement;
86import jdk.nashorn.internal.ir.BreakNode;
87import jdk.nashorn.internal.ir.CallNode;
88import jdk.nashorn.internal.ir.CaseNode;
89import jdk.nashorn.internal.ir.CatchNode;
90import jdk.nashorn.internal.ir.ContinueNode;
91import jdk.nashorn.internal.ir.EmptyNode;
92import jdk.nashorn.internal.ir.Expression;
93import jdk.nashorn.internal.ir.ExpressionStatement;
94import jdk.nashorn.internal.ir.ForNode;
95import jdk.nashorn.internal.ir.FunctionNode;
96import jdk.nashorn.internal.ir.FunctionNode.CompilationState;
97import jdk.nashorn.internal.ir.GetSplitState;
98import jdk.nashorn.internal.ir.IdentNode;
99import jdk.nashorn.internal.ir.IfNode;
100import jdk.nashorn.internal.ir.IndexNode;
101import jdk.nashorn.internal.ir.JoinPredecessorExpression;
102import jdk.nashorn.internal.ir.JumpStatement;
103import jdk.nashorn.internal.ir.JumpToInlinedFinally;
104import jdk.nashorn.internal.ir.LabelNode;
105import jdk.nashorn.internal.ir.LexicalContext;
106import jdk.nashorn.internal.ir.LexicalContextNode;
107import jdk.nashorn.internal.ir.LiteralNode;
108import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode;
109import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode.ArrayUnit;
110import jdk.nashorn.internal.ir.LiteralNode.PrimitiveLiteralNode;
111import jdk.nashorn.internal.ir.LocalVariableConversion;
112import jdk.nashorn.internal.ir.LoopNode;
113import jdk.nashorn.internal.ir.Node;
114import jdk.nashorn.internal.ir.ObjectNode;
115import jdk.nashorn.internal.ir.Optimistic;
116import jdk.nashorn.internal.ir.PropertyNode;
117import jdk.nashorn.internal.ir.ReturnNode;
118import jdk.nashorn.internal.ir.RuntimeNode;
119import jdk.nashorn.internal.ir.RuntimeNode.Request;
120import jdk.nashorn.internal.ir.SetSplitState;
121import jdk.nashorn.internal.ir.SplitReturn;
122import jdk.nashorn.internal.ir.Statement;
123import jdk.nashorn.internal.ir.SwitchNode;
124import jdk.nashorn.internal.ir.Symbol;
125import jdk.nashorn.internal.ir.TernaryNode;
126import jdk.nashorn.internal.ir.ThrowNode;
127import jdk.nashorn.internal.ir.TryNode;
128import jdk.nashorn.internal.ir.UnaryNode;
129import jdk.nashorn.internal.ir.VarNode;
130import jdk.nashorn.internal.ir.WhileNode;
131import jdk.nashorn.internal.ir.WithNode;
132import jdk.nashorn.internal.ir.visitor.NodeOperatorVisitor;
133import jdk.nashorn.internal.ir.visitor.NodeVisitor;
134import jdk.nashorn.internal.objects.Global;
135import jdk.nashorn.internal.parser.Lexer.RegexToken;
136import jdk.nashorn.internal.parser.TokenType;
137import jdk.nashorn.internal.runtime.Context;
138import jdk.nashorn.internal.runtime.Debug;
139import jdk.nashorn.internal.runtime.ECMAException;
140import jdk.nashorn.internal.runtime.JSType;
141import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
142import jdk.nashorn.internal.runtime.PropertyMap;
143import jdk.nashorn.internal.runtime.RecompilableScriptFunctionData;
144import jdk.nashorn.internal.runtime.RewriteException;
145import jdk.nashorn.internal.runtime.Scope;
146import jdk.nashorn.internal.runtime.ScriptEnvironment;
147import jdk.nashorn.internal.runtime.ScriptFunction;
148import jdk.nashorn.internal.runtime.ScriptObject;
149import jdk.nashorn.internal.runtime.ScriptRuntime;
150import jdk.nashorn.internal.runtime.Source;
151import jdk.nashorn.internal.runtime.Undefined;
152import jdk.nashorn.internal.runtime.UnwarrantedOptimismException;
153import jdk.nashorn.internal.runtime.arrays.ArrayData;
154import jdk.nashorn.internal.runtime.linker.LinkerCallSite;
155import jdk.nashorn.internal.runtime.logging.DebugLogger;
156import jdk.nashorn.internal.runtime.logging.Loggable;
157import jdk.nashorn.internal.runtime.logging.Logger;
158import jdk.nashorn.internal.runtime.options.Options;
159
160/**
161 * This is the lowest tier of the code generator. It takes lowered ASTs emitted
162 * from Lower and emits Java byte code. The byte code emission logic is broken
163 * out into MethodEmitter. MethodEmitter works internally with a type stack, and
164 * keeps track of the contents of the byte code stack. This way we avoid a large
165 * number of special cases on the form
166 * <pre>
167 * if (type == INT) {
168 *     visitInsn(ILOAD, slot);
169 * } else if (type == DOUBLE) {
170 *     visitInsn(DOUBLE, slot);
171 * }
172 * </pre>
173 * This quickly became apparent when the code generator was generalized to work
174 * with all types, and not just numbers or objects.
175 * <p>
176 * The CodeGenerator visits nodes only once and emits bytecode for them.
177 */
178@Logger(name="codegen")
179final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContext> implements Loggable {
180
181    private static final Type SCOPE_TYPE = Type.typeFor(ScriptObject.class);
182
183    private static final String GLOBAL_OBJECT = Type.getInternalName(Global.class);
184
185    private static final Call CREATE_REWRITE_EXCEPTION = CompilerConstants.staticCallNoLookup(RewriteException.class,
186            "create", RewriteException.class, UnwarrantedOptimismException.class, Object[].class, String[].class);
187    private static final Call CREATE_REWRITE_EXCEPTION_REST_OF = CompilerConstants.staticCallNoLookup(RewriteException.class,
188            "create", RewriteException.class, UnwarrantedOptimismException.class, Object[].class, String[].class, int[].class);
189
190    private static final Call ENSURE_INT = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
191            "ensureInt", int.class, Object.class, int.class);
192    private static final Call ENSURE_LONG = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
193            "ensureLong", long.class, Object.class, int.class);
194    private static final Call ENSURE_NUMBER = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
195            "ensureNumber", double.class, Object.class, int.class);
196
197    private static final Call CREATE_FUNCTION_OBJECT = CompilerConstants.staticCallNoLookup(ScriptFunction.class,
198            "create", ScriptFunction.class, Object[].class, int.class, ScriptObject.class);
199    private static final Call CREATE_FUNCTION_OBJECT_NO_SCOPE = CompilerConstants.staticCallNoLookup(ScriptFunction.class,
200            "create", ScriptFunction.class, Object[].class, int.class);
201
202    private static final Call TO_NUMBER_FOR_EQ = CompilerConstants.staticCallNoLookup(JSType.class,
203            "toNumberForEq", double.class, Object.class);
204    private static final Call TO_NUMBER_FOR_STRICT_EQ = CompilerConstants.staticCallNoLookup(JSType.class,
205            "toNumberForStrictEq", double.class, Object.class);
206
207
208    private static final Class<?> ITERATOR_CLASS = Iterator.class;
209    static {
210        assert ITERATOR_CLASS == CompilerConstants.ITERATOR_PREFIX.type();
211    }
212    private static final Type ITERATOR_TYPE = Type.typeFor(ITERATOR_CLASS);
213    private static final Type EXCEPTION_TYPE = Type.typeFor(CompilerConstants.EXCEPTION_PREFIX.type());
214
215    private static final Integer INT_ZERO = 0;
216
217    /** Constant data & installation. The only reason the compiler keeps this is because it is assigned
218     *  by reflection in class installation */
219    private final Compiler compiler;
220
221    /** Is the current code submitted by 'eval' call? */
222    private final boolean evalCode;
223
224    /** Call site flags given to the code generator to be used for all generated call sites */
225    private final int callSiteFlags;
226
227    /** How many regexp fields have been emitted */
228    private int regexFieldCount;
229
230    /** Line number for last statement. If we encounter a new line number, line number bytecode information
231     *  needs to be generated */
232    private int lastLineNumber = -1;
233
234    /** When should we stop caching regexp expressions in fields to limit bytecode size? */
235    private static final int MAX_REGEX_FIELDS = 2 * 1024;
236
237    /** Current method emitter */
238    private MethodEmitter method;
239
240    /** Current compile unit */
241    private CompileUnit unit;
242
243    private final DebugLogger log;
244
245    /** From what size should we use spill instead of fields for JavaScript objects? */
246    private static final int OBJECT_SPILL_THRESHOLD = Options.getIntProperty("nashorn.spill.threshold", 256);
247
248    private final Set<String> emittedMethods = new HashSet<>();
249
250    // Function Id -> ContinuationInfo. Used by compilation of rest-of function only.
251    private ContinuationInfo continuationInfo;
252
253    private final Deque<Label> scopeEntryLabels = new ArrayDeque<>();
254
255    private static final Label METHOD_BOUNDARY = new Label("");
256    private final Deque<Label> catchLabels = new ArrayDeque<>();
257    // Number of live locals on entry to (and thus also break from) labeled blocks.
258    private final IntDeque labeledBlockBreakLiveLocals = new IntDeque();
259
260    //is this a rest of compilation
261    private final int[] continuationEntryPoints;
262
263    /**
264     * Constructor.
265     *
266     * @param compiler
267     */
268    CodeGenerator(final Compiler compiler, final int[] continuationEntryPoints) {
269        super(new CodeGeneratorLexicalContext());
270        this.compiler                = compiler;
271        this.evalCode                = compiler.getSource().isEvalCode();
272        this.continuationEntryPoints = continuationEntryPoints;
273        this.callSiteFlags           = compiler.getScriptEnvironment()._callsite_flags;
274        this.log                     = initLogger(compiler.getContext());
275    }
276
277    @Override
278    public DebugLogger getLogger() {
279        return log;
280    }
281
282    @Override
283    public DebugLogger initLogger(final Context context) {
284        return context.getLogger(this.getClass());
285    }
286
287    /**
288     * Gets the call site flags, adding the strict flag if the current function
289     * being generated is in strict mode
290     *
291     * @return the correct flags for a call site in the current function
292     */
293    int getCallSiteFlags() {
294        return lc.getCurrentFunction().getCallSiteFlags() | callSiteFlags;
295    }
296
297    /**
298     * Gets the flags for a scope call site.
299     * @param symbol a scope symbol
300     * @return the correct flags for the scope call site
301     */
302    private int getScopeCallSiteFlags(final Symbol symbol) {
303        assert symbol.isScope();
304        final int flags = getCallSiteFlags() | CALLSITE_SCOPE;
305        if (isEvalCode() && symbol.isGlobal()) {
306            return flags; // Don't set fast-scope flag on non-declared globals in eval code - see JDK-8077955.
307        }
308        return isFastScope(symbol) ? flags | CALLSITE_FAST_SCOPE : flags;
309    }
310
311    /**
312     * Are we generating code for 'eval' code?
313     * @return true if currently compiled code is 'eval' code.
314     */
315    boolean isEvalCode() {
316        return evalCode;
317    }
318
319    /**
320     * Are we using dual primitive/object field representation?
321     * @return true if using dual field representation, false for object-only fields
322     */
323    boolean useDualFields() {
324        return compiler.getContext().useDualFields();
325    }
326
327    /**
328     * Load an identity node
329     *
330     * @param identNode an identity node to load
331     * @return the method generator used
332     */
333    private MethodEmitter loadIdent(final IdentNode identNode, final TypeBounds resultBounds) {
334        checkTemporalDeadZone(identNode);
335        final Symbol symbol = identNode.getSymbol();
336
337        if (!symbol.isScope()) {
338            final Type type = identNode.getType();
339            if(type == Type.UNDEFINED) {
340                return method.loadUndefined(resultBounds.widest);
341            }
342
343            assert symbol.hasSlot() || symbol.isParam();
344            return method.load(identNode);
345        }
346
347        assert identNode.getSymbol().isScope() : identNode + " is not in scope!";
348        final int flags = getScopeCallSiteFlags(symbol);
349        if (isFastScope(symbol)) {
350            // Only generate shared scope getter for fast-scope symbols so we know we can dial in correct scope.
351            if (symbol.getUseCount() > SharedScopeCall.FAST_SCOPE_GET_THRESHOLD && !identNode.isOptimistic()) {
352                // As shared scope vars are only used with non-optimistic identifiers, we switch from using TypeBounds to
353                // just a single definitive type, resultBounds.widest.
354                new OptimisticOperation(identNode, TypeBounds.OBJECT) {
355                    @Override
356                    void loadStack() {
357                        method.loadCompilerConstant(SCOPE);
358                    }
359
360                    @Override
361                    void consumeStack() {
362                        loadSharedScopeVar(resultBounds.widest, symbol, flags);
363                    }
364                }.emit();
365            } else {
366                new LoadFastScopeVar(identNode, resultBounds, flags).emit();
367            }
368        } else {
369            //slow scope load, we have no proto depth
370            new LoadScopeVar(identNode, resultBounds, flags).emit();
371        }
372
373        return method;
374    }
375
376    // Any access to LET and CONST variables before their declaration must throw ReferenceError.
377    // This is called the temporal dead zone (TDZ). See https://gist.github.com/rwaldron/f0807a758aa03bcdd58a
378    private void checkTemporalDeadZone(final IdentNode identNode) {
379        if (identNode.isDead()) {
380            method.load(identNode.getSymbol().getName()).invoke(ScriptRuntime.THROW_REFERENCE_ERROR);
381        }
382    }
383
384    // Runtime check for assignment to ES6 const
385    private void checkAssignTarget(final Expression expression) {
386        if (expression instanceof IdentNode && ((IdentNode)expression).getSymbol().isConst()) {
387            method.load(((IdentNode)expression).getSymbol().getName()).invoke(ScriptRuntime.THROW_CONST_TYPE_ERROR);
388        }
389    }
390
391    private boolean isRestOf() {
392        return continuationEntryPoints != null;
393    }
394
395    private boolean isCurrentContinuationEntryPoint(final int programPoint) {
396        return isRestOf() && getCurrentContinuationEntryPoint() == programPoint;
397    }
398
399    private int[] getContinuationEntryPoints() {
400        return isRestOf() ? continuationEntryPoints : null;
401    }
402
403    private int getCurrentContinuationEntryPoint() {
404        return isRestOf() ? continuationEntryPoints[0] : INVALID_PROGRAM_POINT;
405    }
406
407    private boolean isContinuationEntryPoint(final int programPoint) {
408        if (isRestOf()) {
409            assert continuationEntryPoints != null;
410            for (final int cep : continuationEntryPoints) {
411                if (cep == programPoint) {
412                    return true;
413                }
414            }
415        }
416        return false;
417    }
418
419    /**
420     * Check if this symbol can be accessed directly with a putfield or getfield or dynamic load
421     *
422     * @param symbol symbol to check for fast scope
423     * @return true if fast scope
424     */
425    private boolean isFastScope(final Symbol symbol) {
426        if (!symbol.isScope()) {
427            return false;
428        }
429
430        if (!lc.inDynamicScope()) {
431            // If there's no with or eval in context, and the symbol is marked as scoped, it is fast scoped. Such a
432            // symbol must either be global, or its defining block must need scope.
433            assert symbol.isGlobal() || lc.getDefiningBlock(symbol).needsScope() : symbol.getName();
434            return true;
435        }
436
437        if (symbol.isGlobal()) {
438            // Shortcut: if there's a with or eval in context, globals can't be fast scoped
439            return false;
440        }
441
442        // Otherwise, check if there's a dynamic scope between use of the symbol and its definition
443        final String name = symbol.getName();
444        boolean previousWasBlock = false;
445        for (final Iterator<LexicalContextNode> it = lc.getAllNodes(); it.hasNext();) {
446            final LexicalContextNode node = it.next();
447            if (node instanceof Block) {
448                // If this block defines the symbol, then we can fast scope the symbol.
449                final Block block = (Block)node;
450                if (block.getExistingSymbol(name) == symbol) {
451                    assert block.needsScope();
452                    return true;
453                }
454                previousWasBlock = true;
455            } else {
456                if (node instanceof WithNode && previousWasBlock || node instanceof FunctionNode && ((FunctionNode)node).needsDynamicScope()) {
457                    // If we hit a scope that can have symbols introduced into it at run time before finding the defining
458                    // block, the symbol can't be fast scoped. A WithNode only counts if we've immediately seen a block
459                    // before - its block. Otherwise, we are currently processing the WithNode's expression, and that's
460                    // obviously not subjected to introducing new symbols.
461                    return false;
462                }
463                previousWasBlock = false;
464            }
465        }
466        // Should've found the symbol defined in a block
467        throw new AssertionError();
468    }
469
470    private MethodEmitter loadSharedScopeVar(final Type valueType, final Symbol symbol, final int flags) {
471        assert isFastScope(symbol);
472        method.load(getScopeProtoDepth(lc.getCurrentBlock(), symbol));
473        return lc.getScopeGet(unit, symbol, valueType, flags).generateInvoke(method);
474    }
475
476    private class LoadScopeVar extends OptimisticOperation {
477        final IdentNode identNode;
478        private final int flags;
479
480        LoadScopeVar(final IdentNode identNode, final TypeBounds resultBounds, final int flags) {
481            super(identNode, resultBounds);
482            this.identNode = identNode;
483            this.flags = flags;
484        }
485
486        @Override
487        void loadStack() {
488            method.loadCompilerConstant(SCOPE);
489            getProto();
490        }
491
492        void getProto() {
493            //empty
494        }
495
496        @Override
497        void consumeStack() {
498            // If this is either __FILE__, __DIR__, or __LINE__ then load the property initially as Object as we'd convert
499            // it anyway for replaceLocationPropertyPlaceholder.
500            if(identNode.isCompileTimePropertyName()) {
501                method.dynamicGet(Type.OBJECT, identNode.getSymbol().getName(), flags, identNode.isFunction(), false);
502                replaceCompileTimeProperty();
503            } else {
504                dynamicGet(identNode.getSymbol().getName(), flags, identNode.isFunction(), false);
505            }
506        }
507    }
508
509    private class LoadFastScopeVar extends LoadScopeVar {
510        LoadFastScopeVar(final IdentNode identNode, final TypeBounds resultBounds, final int flags) {
511            super(identNode, resultBounds, flags);
512        }
513
514        @Override
515        void getProto() {
516            loadFastScopeProto(identNode.getSymbol(), false);
517        }
518    }
519
520    private MethodEmitter storeFastScopeVar(final Symbol symbol, final int flags) {
521        loadFastScopeProto(symbol, true);
522        method.dynamicSet(symbol.getName(), flags, false);
523        return method;
524    }
525
526    private int getScopeProtoDepth(final Block startingBlock, final Symbol symbol) {
527        //walk up the chain from starting block and when we bump into the current function boundary, add the external
528        //information.
529        final FunctionNode fn   = lc.getCurrentFunction();
530        final int externalDepth = compiler.getScriptFunctionData(fn.getId()).getExternalSymbolDepth(symbol.getName());
531
532        //count the number of scopes from this place to the start of the function
533
534        final int internalDepth = FindScopeDepths.findInternalDepth(lc, fn, startingBlock, symbol);
535        final int scopesToStart = FindScopeDepths.findScopesToStart(lc, fn, startingBlock);
536        int depth = 0;
537        if (internalDepth == -1) {
538            depth = scopesToStart + externalDepth;
539        } else {
540            assert internalDepth <= scopesToStart;
541            depth = internalDepth;
542        }
543
544        return depth;
545    }
546
547    private void loadFastScopeProto(final Symbol symbol, final boolean swap) {
548        final int depth = getScopeProtoDepth(lc.getCurrentBlock(), symbol);
549        assert depth != -1 : "Couldn't find scope depth for symbol " + symbol.getName() + " in " + lc.getCurrentFunction();
550        if (depth > 0) {
551            if (swap) {
552                method.swap();
553            }
554            for (int i = 0; i < depth; i++) {
555                method.invoke(ScriptObject.GET_PROTO);
556            }
557            if (swap) {
558                method.swap();
559            }
560        }
561    }
562
563    /**
564     * Generate code that loads this node to the stack, not constraining its type
565     *
566     * @param expr node to load
567     *
568     * @return the method emitter used
569     */
570    private MethodEmitter loadExpressionUnbounded(final Expression expr) {
571        return loadExpression(expr, TypeBounds.UNBOUNDED);
572    }
573
574    private MethodEmitter loadExpressionAsObject(final Expression expr) {
575        return loadExpression(expr, TypeBounds.OBJECT);
576    }
577
578    MethodEmitter loadExpressionAsBoolean(final Expression expr) {
579        return loadExpression(expr, TypeBounds.BOOLEAN);
580    }
581
582    // Test whether conversion from source to target involves a call of ES 9.1 ToPrimitive
583    // with possible side effects from calling an object's toString or valueOf methods.
584    private static boolean noToPrimitiveConversion(final Type source, final Type target) {
585        // Object to boolean conversion does not cause ToPrimitive call
586        return source.isJSPrimitive() || !target.isJSPrimitive() || target.isBoolean();
587    }
588
589    MethodEmitter loadBinaryOperands(final BinaryNode binaryNode) {
590        return loadBinaryOperands(binaryNode.lhs(), binaryNode.rhs(), TypeBounds.UNBOUNDED.notWiderThan(binaryNode.getWidestOperandType()), false, false);
591    }
592
593    private MethodEmitter loadBinaryOperands(final Expression lhs, final Expression rhs, final TypeBounds explicitOperandBounds, final boolean baseAlreadyOnStack, final boolean forceConversionSeparation) {
594        // ECMAScript 5.1 specification (sections 11.5-11.11 and 11.13) prescribes that when evaluating a binary
595        // expression "LEFT op RIGHT", the order of operations must be: LOAD LEFT, LOAD RIGHT, CONVERT LEFT, CONVERT
596        // RIGHT, EXECUTE OP. Unfortunately, doing it in this order defeats potential optimizations that arise when we
597        // can combine a LOAD with a CONVERT operation (e.g. use a dynamic getter with the conversion target type as its
598        // return value). What we do here is reorder LOAD RIGHT and CONVERT LEFT when possible; it is possible only when
599        // we can prove that executing CONVERT LEFT can't have a side effect that changes the value of LOAD RIGHT.
600        // Basically, if we know that either LEFT already is a primitive value, or does not have to be converted to
601        // a primitive value, or RIGHT is an expression that loads without side effects, then we can do the
602        // reordering and collapse LOAD/CONVERT into a single operation; otherwise we need to do the more costly
603        // separate operations to preserve specification semantics.
604
605        // Operands' load type should not be narrower than the narrowest of the individual operand types, nor narrower
606        // than the lower explicit bound, but it should also not be wider than
607        final Type lhsType = undefinedToNumber(lhs.getType());
608        final Type rhsType = undefinedToNumber(rhs.getType());
609        final Type narrowestOperandType = Type.narrowest(Type.widest(lhsType, rhsType), explicitOperandBounds.widest);
610        final TypeBounds operandBounds = explicitOperandBounds.notNarrowerThan(narrowestOperandType);
611        if (noToPrimitiveConversion(lhsType, explicitOperandBounds.widest) || rhs.isLocal()) {
612            // Can reorder. We might still need to separate conversion, but at least we can do it with reordering
613            if (forceConversionSeparation) {
614                // Can reorder, but can't move conversion into the operand as the operation depends on operands
615                // exact types for its overflow guarantees. E.g. with {L}{%I}expr1 {L}* {L}{%I}expr2 we are not allowed
616                // to merge {L}{%I} into {%L}, as that can cause subsequent overflows; test for JDK-8058610 contains
617                // concrete cases where this could happen.
618                final TypeBounds safeConvertBounds = TypeBounds.UNBOUNDED.notNarrowerThan(narrowestOperandType);
619                loadExpression(lhs, safeConvertBounds, baseAlreadyOnStack);
620                method.convert(operandBounds.within(method.peekType()));
621                loadExpression(rhs, safeConvertBounds, false);
622                method.convert(operandBounds.within(method.peekType()));
623            } else {
624                // Can reorder and move conversion into the operand. Combine load and convert into single operations.
625                loadExpression(lhs, operandBounds, baseAlreadyOnStack);
626                loadExpression(rhs, operandBounds, false);
627            }
628        } else {
629            // Can't reorder. Load and convert separately.
630            final TypeBounds safeConvertBounds = TypeBounds.UNBOUNDED.notNarrowerThan(narrowestOperandType);
631            loadExpression(lhs, safeConvertBounds, baseAlreadyOnStack);
632            final Type lhsLoadedType = method.peekType();
633            loadExpression(rhs, safeConvertBounds, false);
634            final Type convertedLhsType = operandBounds.within(method.peekType());
635            if (convertedLhsType != lhsLoadedType) {
636                // Do it conditionally, so that if conversion is a no-op we don't introduce a SWAP, SWAP.
637                method.swap().convert(convertedLhsType).swap();
638            }
639            method.convert(operandBounds.within(method.peekType()));
640        }
641        assert Type.generic(method.peekType()) == operandBounds.narrowest;
642        assert Type.generic(method.peekType(1)) == operandBounds.narrowest;
643
644        return method;
645    }
646
647    /**
648     * Similar to {@link #loadBinaryOperands(BinaryNode)} but used specifically for loading operands of
649     * relational and equality comparison operators where at least one argument is non-object. (When both
650     * arguments are objects, we use {@link ScriptRuntime#EQ(Object, Object)}, {@link ScriptRuntime#LT(Object, Object)}
651     * etc. methods instead. Additionally, {@code ScriptRuntime} methods are used for strict (in)equality comparison
652     * of a boolean to anything that isn't a boolean.) This method handles the special case where one argument
653     * is an object and another is a primitive. Naively, these could also be delegated to {@code ScriptRuntime} methods
654     * by boxing the primitive. However, in all such cases the comparison is performed on numeric values, so it is
655     * possible to strength-reduce the operation by taking the number value of the object argument instead and
656     * comparing that to the primitive value ("primitive" will always be int, long, double, or boolean, and booleans
657     * compare as ints in these cases, so they're essentially numbers too). This method will emit code for loading
658     * arguments for such strength-reduced comparison. When both arguments are primitives, it just delegates to
659     * {@link #loadBinaryOperands(BinaryNode)}.
660     *
661     * @param cmp the comparison operation for which the operands need to be loaded on stack.
662     * @return the current method emitter.
663     */
664    MethodEmitter loadComparisonOperands(final BinaryNode cmp) {
665        final Expression lhs = cmp.lhs();
666        final Expression rhs = cmp.rhs();
667        final Type lhsType = lhs.getType();
668        final Type rhsType = rhs.getType();
669
670        // Only used when not both are object, for that we have ScriptRuntime.LT etc.
671        assert !(lhsType.isObject() && rhsType.isObject());
672
673        if (lhsType.isObject() || rhsType.isObject()) {
674            // We can reorder CONVERT LEFT and LOAD RIGHT only if either the left is a primitive, or the right
675            // is a local. This is more strict than loadBinaryNode reorder criteria, as it can allow JS primitive
676            // types too (notably: String is a JS primitive, but not a JVM primitive). We disallow String otherwise
677            // we would prematurely convert it to number when comparing to an optimistic expression, e.g. in
678            // "Hello" === String("Hello") the RHS starts out as an optimistic-int function call. If we allowed
679            // reordering, we'd end up with ToNumber("Hello") === {I%}String("Hello") that is obviously incorrect.
680            final boolean canReorder = lhsType.isPrimitive() || rhs.isLocal();
681            // If reordering is allowed, and we're using a relational operator (that is, <, <=, >, >=) and not an
682            // (in)equality operator, then we encourage combining of LOAD and CONVERT into a single operation.
683            // This is because relational operators' semantics prescribes vanilla ToNumber() conversion, while
684            // (in)equality operators need the specialized JSType.toNumberFor[Strict]Equals. E.g. in the code snippet
685            // "i < obj.size" (where i is primitive and obj.size is statically an object), ".size" will thus be allowed
686            // to compile as:
687            //   invokedynamic dyn:getProp|getElem|getMethod:size(Object;)D
688            // instead of the more costly:
689            //   invokedynamic dyn:getProp|getElem|getMethod:size(Object;)Object
690            //   invokestatic JSType.toNumber(Object)D
691            // Note also that even if this is allowed, we're only using it on operands that are non-optimistic, as
692            // otherwise the logic for determining effective optimistic-ness would turn an optimistic double return
693            // into a freely coercible one, which would be wrong.
694            final boolean canCombineLoadAndConvert = canReorder && cmp.isRelational();
695
696            // LOAD LEFT
697            loadExpression(lhs, canCombineLoadAndConvert && !lhs.isOptimistic() ? TypeBounds.NUMBER : TypeBounds.UNBOUNDED);
698
699            final Type lhsLoadedType = method.peekType();
700            final TokenType tt = cmp.tokenType();
701            if (canReorder) {
702                // Can reorder CONVERT LEFT and LOAD RIGHT
703                emitObjectToNumberComparisonConversion(method, tt);
704                loadExpression(rhs, canCombineLoadAndConvert && !rhs.isOptimistic() ? TypeBounds.NUMBER : TypeBounds.UNBOUNDED);
705            } else {
706                // Can't reorder CONVERT LEFT and LOAD RIGHT
707                loadExpression(rhs, TypeBounds.UNBOUNDED);
708                if (lhsLoadedType != Type.NUMBER) {
709                    method.swap();
710                    emitObjectToNumberComparisonConversion(method, tt);
711                    method.swap();
712                }
713            }
714
715            // CONVERT RIGHT
716            emitObjectToNumberComparisonConversion(method, tt);
717            return method;
718        }
719        // For primitive operands, just don't do anything special.
720        return loadBinaryOperands(cmp);
721    }
722
723    private static void emitObjectToNumberComparisonConversion(final MethodEmitter method, final TokenType tt) {
724        switch(tt) {
725        case EQ:
726        case NE:
727            if (method.peekType().isObject()) {
728                TO_NUMBER_FOR_EQ.invoke(method);
729                return;
730            }
731            break;
732        case EQ_STRICT:
733        case NE_STRICT:
734            if (method.peekType().isObject()) {
735                TO_NUMBER_FOR_STRICT_EQ.invoke(method);
736                return;
737            }
738            break;
739        default:
740            break;
741        }
742        method.convert(Type.NUMBER);
743    }
744
745    private static Type undefinedToNumber(final Type type) {
746        return type == Type.UNDEFINED ? Type.NUMBER : type;
747    }
748
749    private static final class TypeBounds {
750        final Type narrowest;
751        final Type widest;
752
753        static final TypeBounds UNBOUNDED = new TypeBounds(Type.UNKNOWN, Type.OBJECT);
754        static final TypeBounds INT = exact(Type.INT);
755        static final TypeBounds NUMBER = exact(Type.NUMBER);
756        static final TypeBounds OBJECT = exact(Type.OBJECT);
757        static final TypeBounds BOOLEAN = exact(Type.BOOLEAN);
758
759        static TypeBounds exact(final Type type) {
760            return new TypeBounds(type, type);
761        }
762
763        TypeBounds(final Type narrowest, final Type widest) {
764            assert widest    != null && widest    != Type.UNDEFINED && widest != Type.UNKNOWN : widest;
765            assert narrowest != null && narrowest != Type.UNDEFINED : narrowest;
766            assert !narrowest.widerThan(widest) : narrowest + " wider than " + widest;
767            assert !widest.narrowerThan(narrowest);
768            this.narrowest = Type.generic(narrowest);
769            this.widest = Type.generic(widest);
770        }
771
772        TypeBounds notNarrowerThan(final Type type) {
773            return maybeNew(Type.narrowest(Type.widest(narrowest, type), widest), widest);
774        }
775
776        TypeBounds notWiderThan(final Type type) {
777            return maybeNew(Type.narrowest(narrowest, type), Type.narrowest(widest, type));
778        }
779
780        boolean canBeNarrowerThan(final Type type) {
781            return narrowest.narrowerThan(type);
782        }
783
784        TypeBounds maybeNew(final Type newNarrowest, final Type newWidest) {
785            if(newNarrowest == narrowest && newWidest == widest) {
786                return this;
787            }
788            return new TypeBounds(newNarrowest, newWidest);
789        }
790
791        TypeBounds booleanToInt() {
792            return maybeNew(CodeGenerator.booleanToInt(narrowest), CodeGenerator.booleanToInt(widest));
793        }
794
795        TypeBounds objectToNumber() {
796            return maybeNew(CodeGenerator.objectToNumber(narrowest), CodeGenerator.objectToNumber(widest));
797        }
798
799        Type within(final Type type) {
800            if(type.narrowerThan(narrowest)) {
801                return narrowest;
802            }
803            if(type.widerThan(widest)) {
804                return widest;
805            }
806            return type;
807        }
808
809        @Override
810        public String toString() {
811            return "[" + narrowest + ", " + widest + "]";
812        }
813    }
814
815    private static Type booleanToInt(final Type t) {
816        return t == Type.BOOLEAN ? Type.INT : t;
817    }
818
819    private static Type objectToNumber(final Type t) {
820        return t.isObject() ? Type.NUMBER : t;
821    }
822
823    MethodEmitter loadExpressionAsType(final Expression expr, final Type type) {
824        if(type == Type.BOOLEAN) {
825            return loadExpressionAsBoolean(expr);
826        } else if(type == Type.UNDEFINED) {
827            assert expr.getType() == Type.UNDEFINED;
828            return loadExpressionAsObject(expr);
829        }
830        // having no upper bound preserves semantics of optimistic operations in the expression (by not having them
831        // converted early) and then applies explicit conversion afterwards.
832        return loadExpression(expr, TypeBounds.UNBOUNDED.notNarrowerThan(type)).convert(type);
833    }
834
835    private MethodEmitter loadExpression(final Expression expr, final TypeBounds resultBounds) {
836        return loadExpression(expr, resultBounds, false);
837    }
838
839    /**
840     * Emits code for evaluating an expression and leaving its value on top of the stack, narrowing or widening it if
841     * necessary.
842     * @param expr the expression to load
843     * @param resultBounds the incoming type bounds. The value on the top of the stack is guaranteed to not be of narrower
844     * type than the narrowest bound, or wider type than the widest bound after it is loaded.
845     * @param baseAlreadyOnStack true if the base of an access or index node is already on the stack. Used to avoid
846     * double evaluation of bases in self-assignment expressions to access and index nodes. {@code Type.OBJECT} is used
847     * to indicate the widest possible type.
848     * @return the method emitter
849     */
850    private MethodEmitter loadExpression(final Expression expr, final TypeBounds resultBounds, final boolean baseAlreadyOnStack) {
851
852        /*
853         * The load may be of type IdentNode, e.g. "x", AccessNode, e.g. "x.y"
854         * or IndexNode e.g. "x[y]". Both AccessNodes and IndexNodes are
855         * BaseNodes and the logic for loading the base object is reused
856         */
857        final CodeGenerator codegen = this;
858
859        final boolean isCurrentDiscard = codegen.lc.isCurrentDiscard(expr);
860        expr.accept(new NodeOperatorVisitor<LexicalContext>(new LexicalContext()) {
861            @Override
862            public boolean enterIdentNode(final IdentNode identNode) {
863                loadIdent(identNode, resultBounds);
864                return false;
865            }
866
867            @Override
868            public boolean enterAccessNode(final AccessNode accessNode) {
869                new OptimisticOperation(accessNode, resultBounds) {
870                    @Override
871                    void loadStack() {
872                        if (!baseAlreadyOnStack) {
873                            loadExpressionAsObject(accessNode.getBase());
874                        }
875                        assert method.peekType().isObject();
876                    }
877                    @Override
878                    void consumeStack() {
879                        final int flags = getCallSiteFlags();
880                        dynamicGet(accessNode.getProperty(), flags, accessNode.isFunction(), accessNode.isIndex());
881                    }
882                }.emit(baseAlreadyOnStack ? 1 : 0);
883                return false;
884            }
885
886            @Override
887            public boolean enterIndexNode(final IndexNode indexNode) {
888                new OptimisticOperation(indexNode, resultBounds) {
889                    @Override
890                    void loadStack() {
891                        if (!baseAlreadyOnStack) {
892                            loadExpressionAsObject(indexNode.getBase());
893                            loadExpressionUnbounded(indexNode.getIndex());
894                        }
895                    }
896                    @Override
897                    void consumeStack() {
898                        final int flags = getCallSiteFlags();
899                        dynamicGetIndex(flags, indexNode.isFunction());
900                    }
901                }.emit(baseAlreadyOnStack ? 2 : 0);
902                return false;
903            }
904
905            @Override
906            public boolean enterFunctionNode(final FunctionNode functionNode) {
907                // function nodes will always leave a constructed function object on stack, no need to load the symbol
908                // separately as in enterDefault()
909                lc.pop(functionNode);
910                functionNode.accept(codegen);
911                // NOTE: functionNode.accept() will produce a different FunctionNode that we discard. This incidentally
912                // doesn't cause problems as we're never touching FunctionNode again after it's visited here - codegen
913                // is the last element in the compilation pipeline, the AST it produces is not used externally. So, we
914                // re-push the original functionNode.
915                lc.push(functionNode);
916                return false;
917            }
918
919            @Override
920            public boolean enterASSIGN(final BinaryNode binaryNode) {
921                checkAssignTarget(binaryNode.lhs());
922                loadASSIGN(binaryNode);
923                return false;
924            }
925
926            @Override
927            public boolean enterASSIGN_ADD(final BinaryNode binaryNode) {
928                checkAssignTarget(binaryNode.lhs());
929                loadASSIGN_ADD(binaryNode);
930                return false;
931            }
932
933            @Override
934            public boolean enterASSIGN_BIT_AND(final BinaryNode binaryNode) {
935                checkAssignTarget(binaryNode.lhs());
936                loadASSIGN_BIT_AND(binaryNode);
937                return false;
938            }
939
940            @Override
941            public boolean enterASSIGN_BIT_OR(final BinaryNode binaryNode) {
942                checkAssignTarget(binaryNode.lhs());
943                loadASSIGN_BIT_OR(binaryNode);
944                return false;
945            }
946
947            @Override
948            public boolean enterASSIGN_BIT_XOR(final BinaryNode binaryNode) {
949                checkAssignTarget(binaryNode.lhs());
950                loadASSIGN_BIT_XOR(binaryNode);
951                return false;
952            }
953
954            @Override
955            public boolean enterASSIGN_DIV(final BinaryNode binaryNode) {
956                checkAssignTarget(binaryNode.lhs());
957                loadASSIGN_DIV(binaryNode);
958                return false;
959            }
960
961            @Override
962            public boolean enterASSIGN_MOD(final BinaryNode binaryNode) {
963                checkAssignTarget(binaryNode.lhs());
964                loadASSIGN_MOD(binaryNode);
965                return false;
966            }
967
968            @Override
969            public boolean enterASSIGN_MUL(final BinaryNode binaryNode) {
970                checkAssignTarget(binaryNode.lhs());
971                loadASSIGN_MUL(binaryNode);
972                return false;
973            }
974
975            @Override
976            public boolean enterASSIGN_SAR(final BinaryNode binaryNode) {
977                checkAssignTarget(binaryNode.lhs());
978                loadASSIGN_SAR(binaryNode);
979                return false;
980            }
981
982            @Override
983            public boolean enterASSIGN_SHL(final BinaryNode binaryNode) {
984                checkAssignTarget(binaryNode.lhs());
985                loadASSIGN_SHL(binaryNode);
986                return false;
987            }
988
989            @Override
990            public boolean enterASSIGN_SHR(final BinaryNode binaryNode) {
991                checkAssignTarget(binaryNode.lhs());
992                loadASSIGN_SHR(binaryNode);
993                return false;
994            }
995
996            @Override
997            public boolean enterASSIGN_SUB(final BinaryNode binaryNode) {
998                checkAssignTarget(binaryNode.lhs());
999                loadASSIGN_SUB(binaryNode);
1000                return false;
1001            }
1002
1003            @Override
1004            public boolean enterCallNode(final CallNode callNode) {
1005                return loadCallNode(callNode, resultBounds);
1006            }
1007
1008            @Override
1009            public boolean enterLiteralNode(final LiteralNode<?> literalNode) {
1010                loadLiteral(literalNode, resultBounds);
1011                return false;
1012            }
1013
1014            @Override
1015            public boolean enterTernaryNode(final TernaryNode ternaryNode) {
1016                loadTernaryNode(ternaryNode, resultBounds);
1017                return false;
1018            }
1019
1020            @Override
1021            public boolean enterADD(final BinaryNode binaryNode) {
1022                loadADD(binaryNode, resultBounds);
1023                return false;
1024            }
1025
1026            @Override
1027            public boolean enterSUB(final UnaryNode unaryNode) {
1028                loadSUB(unaryNode, resultBounds);
1029                return false;
1030            }
1031
1032            @Override
1033            public boolean enterSUB(final BinaryNode binaryNode) {
1034                loadSUB(binaryNode, resultBounds);
1035                return false;
1036            }
1037
1038            @Override
1039            public boolean enterMUL(final BinaryNode binaryNode) {
1040                loadMUL(binaryNode, resultBounds);
1041                return false;
1042            }
1043
1044            @Override
1045            public boolean enterDIV(final BinaryNode binaryNode) {
1046                loadDIV(binaryNode, resultBounds);
1047                return false;
1048            }
1049
1050            @Override
1051            public boolean enterMOD(final BinaryNode binaryNode) {
1052                loadMOD(binaryNode, resultBounds);
1053                return false;
1054            }
1055
1056            @Override
1057            public boolean enterSAR(final BinaryNode binaryNode) {
1058                loadSAR(binaryNode);
1059                return false;
1060            }
1061
1062            @Override
1063            public boolean enterSHL(final BinaryNode binaryNode) {
1064                loadSHL(binaryNode);
1065                return false;
1066            }
1067
1068            @Override
1069            public boolean enterSHR(final BinaryNode binaryNode) {
1070                loadSHR(binaryNode);
1071                return false;
1072            }
1073
1074            @Override
1075            public boolean enterCOMMALEFT(final BinaryNode binaryNode) {
1076                loadCOMMALEFT(binaryNode, resultBounds);
1077                return false;
1078            }
1079
1080            @Override
1081            public boolean enterCOMMARIGHT(final BinaryNode binaryNode) {
1082                loadCOMMARIGHT(binaryNode, resultBounds);
1083                return false;
1084            }
1085
1086            @Override
1087            public boolean enterAND(final BinaryNode binaryNode) {
1088                loadAND_OR(binaryNode, resultBounds, true);
1089                return false;
1090            }
1091
1092            @Override
1093            public boolean enterOR(final BinaryNode binaryNode) {
1094                loadAND_OR(binaryNode, resultBounds, false);
1095                return false;
1096            }
1097
1098            @Override
1099            public boolean enterNOT(final UnaryNode unaryNode) {
1100                loadNOT(unaryNode);
1101                return false;
1102            }
1103
1104            @Override
1105            public boolean enterADD(final UnaryNode unaryNode) {
1106                loadADD(unaryNode, resultBounds);
1107                return false;
1108            }
1109
1110            @Override
1111            public boolean enterBIT_NOT(final UnaryNode unaryNode) {
1112                loadBIT_NOT(unaryNode);
1113                return false;
1114            }
1115
1116            @Override
1117            public boolean enterBIT_AND(final BinaryNode binaryNode) {
1118                loadBIT_AND(binaryNode);
1119                return false;
1120            }
1121
1122            @Override
1123            public boolean enterBIT_OR(final BinaryNode binaryNode) {
1124                loadBIT_OR(binaryNode);
1125                return false;
1126            }
1127
1128            @Override
1129            public boolean enterBIT_XOR(final BinaryNode binaryNode) {
1130                loadBIT_XOR(binaryNode);
1131                return false;
1132            }
1133
1134            @Override
1135            public boolean enterVOID(final UnaryNode unaryNode) {
1136                loadVOID(unaryNode, resultBounds);
1137                return false;
1138            }
1139
1140            @Override
1141            public boolean enterEQ(final BinaryNode binaryNode) {
1142                loadCmp(binaryNode, Condition.EQ);
1143                return false;
1144            }
1145
1146            @Override
1147            public boolean enterEQ_STRICT(final BinaryNode binaryNode) {
1148                loadCmp(binaryNode, Condition.EQ);
1149                return false;
1150            }
1151
1152            @Override
1153            public boolean enterGE(final BinaryNode binaryNode) {
1154                loadCmp(binaryNode, Condition.GE);
1155                return false;
1156            }
1157
1158            @Override
1159            public boolean enterGT(final BinaryNode binaryNode) {
1160                loadCmp(binaryNode, Condition.GT);
1161                return false;
1162            }
1163
1164            @Override
1165            public boolean enterLE(final BinaryNode binaryNode) {
1166                loadCmp(binaryNode, Condition.LE);
1167                return false;
1168            }
1169
1170            @Override
1171            public boolean enterLT(final BinaryNode binaryNode) {
1172                loadCmp(binaryNode, Condition.LT);
1173                return false;
1174            }
1175
1176            @Override
1177            public boolean enterNE(final BinaryNode binaryNode) {
1178                loadCmp(binaryNode, Condition.NE);
1179                return false;
1180            }
1181
1182            @Override
1183            public boolean enterNE_STRICT(final BinaryNode binaryNode) {
1184                loadCmp(binaryNode, Condition.NE);
1185                return false;
1186            }
1187
1188            @Override
1189            public boolean enterObjectNode(final ObjectNode objectNode) {
1190                loadObjectNode(objectNode);
1191                return false;
1192            }
1193
1194            @Override
1195            public boolean enterRuntimeNode(final RuntimeNode runtimeNode) {
1196                loadRuntimeNode(runtimeNode);
1197                return false;
1198            }
1199
1200            @Override
1201            public boolean enterNEW(final UnaryNode unaryNode) {
1202                loadNEW(unaryNode);
1203                return false;
1204            }
1205
1206            @Override
1207            public boolean enterDECINC(final UnaryNode unaryNode) {
1208                checkAssignTarget(unaryNode.getExpression());
1209                loadDECINC(unaryNode);
1210                return false;
1211            }
1212
1213            @Override
1214            public boolean enterJoinPredecessorExpression(final JoinPredecessorExpression joinExpr) {
1215                loadMaybeDiscard(joinExpr, joinExpr.getExpression(), resultBounds);
1216                return false;
1217            }
1218
1219            @Override
1220            public boolean enterGetSplitState(final GetSplitState getSplitState) {
1221                method.loadScope();
1222                method.invoke(Scope.GET_SPLIT_STATE);
1223                return false;
1224            }
1225
1226            @Override
1227            public boolean enterDefault(final Node otherNode) {
1228                // Must have handled all expressions that can legally be encountered.
1229                throw new AssertionError(otherNode.getClass().getName());
1230            }
1231        });
1232        if(!isCurrentDiscard) {
1233            coerceStackTop(resultBounds);
1234        }
1235        return method;
1236    }
1237
1238    private MethodEmitter coerceStackTop(final TypeBounds typeBounds) {
1239        return method.convert(typeBounds.within(method.peekType()));
1240    }
1241
1242    /**
1243     * Closes any still open entries for this block's local variables in the bytecode local variable table.
1244     *
1245     * @param block block containing symbols.
1246     */
1247    private void closeBlockVariables(final Block block) {
1248        for (final Symbol symbol : block.getSymbols()) {
1249            if (symbol.isBytecodeLocal()) {
1250                method.closeLocalVariable(symbol, block.getBreakLabel());
1251            }
1252        }
1253    }
1254
1255    @Override
1256    public boolean enterBlock(final Block block) {
1257        final Label entryLabel = block.getEntryLabel();
1258        if (entryLabel.isBreakTarget()) {
1259            // Entry label is a break target only for an inlined finally block.
1260            assert !method.isReachable();
1261            method.breakLabel(entryLabel, lc.getUsedSlotCount());
1262        } else {
1263            method.label(entryLabel);
1264        }
1265        if(!method.isReachable()) {
1266            return false;
1267        }
1268        if(lc.isFunctionBody() && emittedMethods.contains(lc.getCurrentFunction().getName())) {
1269            return false;
1270        }
1271        initLocals(block);
1272
1273        assert lc.getUsedSlotCount() == method.getFirstTemp();
1274        return true;
1275    }
1276
1277    boolean useOptimisticTypes() {
1278        return !lc.inSplitNode() && compiler.useOptimisticTypes();
1279    }
1280
1281    @Override
1282    public Node leaveBlock(final Block block) {
1283        popBlockScope(block);
1284        method.beforeJoinPoint(block);
1285
1286        closeBlockVariables(block);
1287        lc.releaseSlots();
1288        assert !method.isReachable() || (lc.isFunctionBody() ? 0 : lc.getUsedSlotCount()) == method.getFirstTemp() :
1289            "reachable="+method.isReachable() +
1290            " isFunctionBody=" + lc.isFunctionBody() +
1291            " usedSlotCount=" + lc.getUsedSlotCount() +
1292            " firstTemp=" + method.getFirstTemp();
1293
1294        return block;
1295    }
1296
1297    private void popBlockScope(final Block block) {
1298        final Label breakLabel = block.getBreakLabel();
1299
1300        if(!block.needsScope() || lc.isFunctionBody()) {
1301            emitBlockBreakLabel(breakLabel);
1302            return;
1303        }
1304
1305        final Label beginTryLabel = scopeEntryLabels.pop();
1306        final Label recoveryLabel = new Label("block_popscope_catch");
1307        emitBlockBreakLabel(breakLabel);
1308        final boolean bodyCanThrow = breakLabel.isAfter(beginTryLabel);
1309        if(bodyCanThrow) {
1310            method._try(beginTryLabel, breakLabel, recoveryLabel);
1311        }
1312
1313        Label afterCatchLabel = null;
1314
1315        if(method.isReachable()) {
1316            popScope();
1317            if(bodyCanThrow) {
1318                afterCatchLabel = new Label("block_after_catch");
1319                method._goto(afterCatchLabel);
1320            }
1321        }
1322
1323        if(bodyCanThrow) {
1324            assert !method.isReachable();
1325            method._catch(recoveryLabel);
1326            popScopeException();
1327            method.athrow();
1328        }
1329        if(afterCatchLabel != null) {
1330            method.label(afterCatchLabel);
1331        }
1332    }
1333
1334    private void emitBlockBreakLabel(final Label breakLabel) {
1335        // TODO: this is totally backwards. Block should not be breakable, LabelNode should be breakable.
1336        final LabelNode labelNode = lc.getCurrentBlockLabelNode();
1337        if(labelNode != null) {
1338            // Only have conversions if we're reachable
1339            assert labelNode.getLocalVariableConversion() == null || method.isReachable();
1340            method.beforeJoinPoint(labelNode);
1341            method.breakLabel(breakLabel, labeledBlockBreakLiveLocals.pop());
1342        } else {
1343            method.label(breakLabel);
1344        }
1345    }
1346
1347    private void popScope() {
1348        popScopes(1);
1349    }
1350
1351    /**
1352     * Pop scope as part of an exception handler. Similar to {@code popScope()} but also takes care of adjusting the
1353     * number of scopes that needs to be popped in case a rest-of continuation handler encounters an exception while
1354     * performing a ToPrimitive conversion.
1355     */
1356    private void popScopeException() {
1357        popScope();
1358        final ContinuationInfo ci = getContinuationInfo();
1359        if(ci != null) {
1360            final Label catchLabel = ci.catchLabel;
1361            if(catchLabel != METHOD_BOUNDARY && catchLabel == catchLabels.peek()) {
1362                ++ci.exceptionScopePops;
1363            }
1364        }
1365    }
1366
1367    private void popScopesUntil(final LexicalContextNode until) {
1368        popScopes(lc.getScopeNestingLevelTo(until));
1369    }
1370
1371    private void popScopes(final int count) {
1372        if(count == 0) {
1373            return;
1374        }
1375        assert count > 0; // together with count == 0 check, asserts nonnegative count
1376        if (!method.hasScope()) {
1377            // We can sometimes invoke this method even if the method has no slot for the scope object. Typical example:
1378            // for(;;) { with({}) { break; } }. WithNode normally creates a scope, but if it uses no identifiers and
1379            // nothing else forces creation of a scope in the method, we just won't have the :scope local variable.
1380            return;
1381        }
1382        method.loadCompilerConstant(SCOPE);
1383        for(int i = 0; i < count; ++i) {
1384            method.invoke(ScriptObject.GET_PROTO);
1385        }
1386        method.storeCompilerConstant(SCOPE);
1387    }
1388
1389    @Override
1390    public boolean enterBreakNode(final BreakNode breakNode) {
1391        return enterJumpStatement(breakNode);
1392    }
1393
1394    @Override
1395    public boolean enterJumpToInlinedFinally(final JumpToInlinedFinally jumpToInlinedFinally) {
1396        return enterJumpStatement(jumpToInlinedFinally);
1397    }
1398
1399    private boolean enterJumpStatement(final JumpStatement jump) {
1400        if(!method.isReachable()) {
1401            return false;
1402        }
1403        enterStatement(jump);
1404
1405        method.beforeJoinPoint(jump);
1406        popScopesUntil(jump.getPopScopeLimit(lc));
1407        final Label targetLabel = jump.getTargetLabel(lc);
1408        targetLabel.markAsBreakTarget();
1409        method._goto(targetLabel);
1410
1411        return false;
1412    }
1413
1414    private int loadArgs(final List<Expression> args) {
1415        final int argCount = args.size();
1416        // arg have already been converted to objects here.
1417        if (argCount > LinkerCallSite.ARGLIMIT) {
1418            loadArgsArray(args);
1419            return 1;
1420        }
1421
1422        for (final Expression arg : args) {
1423            assert arg != null;
1424            loadExpressionUnbounded(arg);
1425        }
1426        return argCount;
1427    }
1428
1429    private boolean loadCallNode(final CallNode callNode, final TypeBounds resultBounds) {
1430        lineNumber(callNode.getLineNumber());
1431
1432        final List<Expression> args = callNode.getArgs();
1433        final Expression function = callNode.getFunction();
1434        final Block currentBlock = lc.getCurrentBlock();
1435        final CodeGeneratorLexicalContext codegenLexicalContext = lc;
1436
1437        function.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
1438
1439            private MethodEmitter sharedScopeCall(final IdentNode identNode, final int flags) {
1440                final Symbol symbol = identNode.getSymbol();
1441                final boolean isFastScope = isFastScope(symbol);
1442                new OptimisticOperation(callNode, resultBounds) {
1443                    @Override
1444                    void loadStack() {
1445                        method.loadCompilerConstant(SCOPE);
1446                        if (isFastScope) {
1447                            method.load(getScopeProtoDepth(currentBlock, symbol));
1448                        } else {
1449                            method.load(-1); // Bypass fast-scope code in shared callsite
1450                        }
1451                        loadArgs(args);
1452                    }
1453                    @Override
1454                    void consumeStack() {
1455                        final Type[] paramTypes = method.getTypesFromStack(args.size());
1456                        // We have trouble finding e.g. in Type.typeFor(asm.Type) because it can't see the Context class
1457                        // loader, so we need to weaken reference signatures to Object.
1458                        for(int i = 0; i < paramTypes.length; ++i) {
1459                            paramTypes[i] = Type.generic(paramTypes[i]);
1460                        }
1461                        // As shared scope calls are only used in non-optimistic compilation, we switch from using
1462                        // TypeBounds to just a single definitive type, resultBounds.widest.
1463                        final SharedScopeCall scopeCall = codegenLexicalContext.getScopeCall(unit, symbol,
1464                                identNode.getType(), resultBounds.widest, paramTypes, flags);
1465                        scopeCall.generateInvoke(method);
1466                    }
1467                }.emit();
1468                return method;
1469            }
1470
1471            private void scopeCall(final IdentNode ident, final int flags) {
1472                new OptimisticOperation(callNode, resultBounds) {
1473                    int argsCount;
1474                    @Override
1475                    void loadStack() {
1476                        loadExpressionAsObject(ident); // foo() makes no sense if foo == 3
1477                        // ScriptFunction will see CALLSITE_SCOPE and will bind scope accordingly.
1478                        method.loadUndefined(Type.OBJECT); //the 'this'
1479                        argsCount = loadArgs(args);
1480                    }
1481                    @Override
1482                    void consumeStack() {
1483                        dynamicCall(2 + argsCount, flags, ident.getName());
1484                    }
1485                }.emit();
1486            }
1487
1488            private void evalCall(final IdentNode ident, final int flags) {
1489                final Label invoke_direct_eval  = new Label("invoke_direct_eval");
1490                final Label is_not_eval  = new Label("is_not_eval");
1491                final Label eval_done = new Label("eval_done");
1492
1493                new OptimisticOperation(callNode, resultBounds) {
1494                    int argsCount;
1495                    @Override
1496                    void loadStack() {
1497                        /*
1498                         * We want to load 'eval' to check if it is indeed global builtin eval.
1499                         * If this eval call is inside a 'with' statement, dyn:getMethod|getProp|getElem
1500                         * would be generated if ident is a "isFunction". But, that would result in a
1501                         * bound function from WithObject. We don't want that as bound function as that
1502                         * won't be detected as builtin eval. So, we make ident as "not a function" which
1503                         * results in "dyn:getProp|getElem|getMethod" being generated and so WithObject
1504                         * would return unbounded eval function.
1505                         *
1506                         * Example:
1507                         *
1508                         *  var global = this;
1509                         *  function func() {
1510                         *      with({ eval: global.eval) { eval("var x = 10;") }
1511                         *  }
1512                         */
1513                        loadExpressionAsObject(ident.setIsNotFunction()); // Type.OBJECT as foo() makes no sense if foo == 3
1514                        globalIsEval();
1515                        method.ifeq(is_not_eval);
1516
1517                        // Load up self (scope).
1518                        method.loadCompilerConstant(SCOPE);
1519                        final List<Expression> evalArgs = callNode.getEvalArgs().getArgs();
1520                        // load evaluated code
1521                        loadExpressionAsObject(evalArgs.get(0));
1522                        // load second and subsequent args for side-effect
1523                        final int numArgs = evalArgs.size();
1524                        for (int i = 1; i < numArgs; i++) {
1525                            loadAndDiscard(evalArgs.get(i));
1526                        }
1527                        method._goto(invoke_direct_eval);
1528
1529                        method.label(is_not_eval);
1530                        // load this time but with dyn:getMethod|getProp|getElem
1531                        loadExpressionAsObject(ident); // Type.OBJECT as foo() makes no sense if foo == 3
1532                        // This is some scope 'eval' or global eval replaced by user
1533                        // but not the built-in ECMAScript 'eval' function call
1534                        method.loadNull();
1535                        argsCount = loadArgs(callNode.getArgs());
1536                    }
1537
1538                    @Override
1539                    void consumeStack() {
1540                        // Ordinary call
1541                        dynamicCall(2 + argsCount, flags, "eval");
1542                        method._goto(eval_done);
1543
1544                        method.label(invoke_direct_eval);
1545                        // Special/extra 'eval' arguments. These can be loaded late (in consumeStack) as we know none of
1546                        // them can ever be optimistic.
1547                        method.loadCompilerConstant(THIS);
1548                        method.load(callNode.getEvalArgs().getLocation());
1549                        method.load(CodeGenerator.this.lc.getCurrentFunction().isStrict());
1550                        // direct call to Global.directEval
1551                        globalDirectEval();
1552                        convertOptimisticReturnValue();
1553                        coerceStackTop(resultBounds);
1554                    }
1555                }.emit();
1556
1557                method.label(eval_done);
1558            }
1559
1560            @Override
1561            public boolean enterIdentNode(final IdentNode node) {
1562                final Symbol symbol = node.getSymbol();
1563
1564                if (symbol.isScope()) {
1565                    final int flags = getScopeCallSiteFlags(symbol);
1566                    final int useCount = symbol.getUseCount();
1567
1568                    // Threshold for generating shared scope callsite is lower for fast scope symbols because we know
1569                    // we can dial in the correct scope. However, we also need to enable it for non-fast scopes to
1570                    // support huge scripts like mandreel.js.
1571                    if (callNode.isEval()) {
1572                        evalCall(node, flags);
1573                    } else if (useCount <= SharedScopeCall.FAST_SCOPE_CALL_THRESHOLD
1574                            || !isFastScope(symbol) && useCount <= SharedScopeCall.SLOW_SCOPE_CALL_THRESHOLD
1575                            || CodeGenerator.this.lc.inDynamicScope()
1576                            || callNode.isOptimistic()) {
1577                        scopeCall(node, flags);
1578                    } else {
1579                        sharedScopeCall(node, flags);
1580                    }
1581                    assert method.peekType().equals(resultBounds.within(callNode.getType())) : method.peekType() + " != " + resultBounds + "(" + callNode.getType() + ")";
1582                } else {
1583                    enterDefault(node);
1584                }
1585
1586                return false;
1587            }
1588
1589            @Override
1590            public boolean enterAccessNode(final AccessNode node) {
1591                //check if this is an apply to call node. only real applies, that haven't been
1592                //shadowed from their way to the global scope counts
1593
1594                //call nodes have program points.
1595
1596                final int flags = getCallSiteFlags() | (callNode.isApplyToCall() ? CALLSITE_APPLY_TO_CALL : 0);
1597
1598                new OptimisticOperation(callNode, resultBounds) {
1599                    int argCount;
1600                    @Override
1601                    void loadStack() {
1602                        loadExpressionAsObject(node.getBase());
1603                        method.dup();
1604                        // NOTE: not using a nested OptimisticOperation on this dynamicGet, as we expect to get back
1605                        // a callable object. Nobody in their right mind would optimistically type this call site.
1606                        assert !node.isOptimistic();
1607                        method.dynamicGet(node.getType(), node.getProperty(), flags, true, node.isIndex());
1608                        method.swap();
1609                        argCount = loadArgs(args);
1610                    }
1611                    @Override
1612                    void consumeStack() {
1613                        dynamicCall(2 + argCount, flags, node.toString(false));
1614                    }
1615                }.emit();
1616
1617                return false;
1618            }
1619
1620            @Override
1621            public boolean enterFunctionNode(final FunctionNode origCallee) {
1622                new OptimisticOperation(callNode, resultBounds) {
1623                    FunctionNode callee;
1624                    int argsCount;
1625                    @Override
1626                    void loadStack() {
1627                        callee = (FunctionNode)origCallee.accept(CodeGenerator.this);
1628                        if (callee.isStrict()) { // "this" is undefined
1629                            method.loadUndefined(Type.OBJECT);
1630                        } else { // get global from scope (which is the self)
1631                            globalInstance();
1632                        }
1633                        argsCount = loadArgs(args);
1634                    }
1635
1636                    @Override
1637                    void consumeStack() {
1638                        dynamicCall(2 + argsCount, getCallSiteFlags(), origCallee.getName());
1639                    }
1640                }.emit();
1641                return false;
1642            }
1643
1644            @Override
1645            public boolean enterIndexNode(final IndexNode node) {
1646                new OptimisticOperation(callNode, resultBounds) {
1647                    int argsCount;
1648                    @Override
1649                    void loadStack() {
1650                        loadExpressionAsObject(node.getBase());
1651                        method.dup();
1652                        final Type indexType = node.getIndex().getType();
1653                        if (indexType.isObject() || indexType.isBoolean()) {
1654                            loadExpressionAsObject(node.getIndex()); //TODO boolean
1655                        } else {
1656                            loadExpressionUnbounded(node.getIndex());
1657                        }
1658                        // NOTE: not using a nested OptimisticOperation on this dynamicGetIndex, as we expect to get
1659                        // back a callable object. Nobody in their right mind would optimistically type this call site.
1660                        assert !node.isOptimistic();
1661                        method.dynamicGetIndex(node.getType(), getCallSiteFlags(), true);
1662                        method.swap();
1663                        argsCount = loadArgs(args);
1664                    }
1665                    @Override
1666                    void consumeStack() {
1667                        dynamicCall(2 + argsCount, getCallSiteFlags(), node.toString(false));
1668                    }
1669                }.emit();
1670                return false;
1671            }
1672
1673            @Override
1674            protected boolean enterDefault(final Node node) {
1675                new OptimisticOperation(callNode, resultBounds) {
1676                    int argsCount;
1677                    @Override
1678                    void loadStack() {
1679                        // Load up function.
1680                        loadExpressionAsObject(function); //TODO, e.g. booleans can be used as functions
1681                        method.loadUndefined(Type.OBJECT); // ScriptFunction will figure out the correct this when it sees CALLSITE_SCOPE
1682                        argsCount = loadArgs(args);
1683                        }
1684                        @Override
1685                        void consumeStack() {
1686                            final int flags = getCallSiteFlags() | CALLSITE_SCOPE;
1687                            dynamicCall(2 + argsCount, flags, node.toString(false));
1688                        }
1689                }.emit();
1690                return false;
1691            }
1692        });
1693
1694        return false;
1695    }
1696
1697    /**
1698     * Returns the flags with optimistic flag and program point removed.
1699     * @param flags the flags that need optimism stripped from them.
1700     * @return flags without optimism
1701     */
1702    static int nonOptimisticFlags(final int flags) {
1703        return flags & ~(CALLSITE_OPTIMISTIC | -1 << CALLSITE_PROGRAM_POINT_SHIFT);
1704    }
1705
1706    @Override
1707    public boolean enterContinueNode(final ContinueNode continueNode) {
1708        return enterJumpStatement(continueNode);
1709    }
1710
1711    @Override
1712    public boolean enterEmptyNode(final EmptyNode emptyNode) {
1713        // Don't even record the line number, it's irrelevant as there's no code.
1714        return false;
1715    }
1716
1717    @Override
1718    public boolean enterExpressionStatement(final ExpressionStatement expressionStatement) {
1719        if(!method.isReachable()) {
1720            return false;
1721        }
1722        enterStatement(expressionStatement);
1723
1724        loadAndDiscard(expressionStatement.getExpression());
1725        assert method.getStackSize() == 0;
1726
1727        return false;
1728    }
1729
1730    @Override
1731    public boolean enterBlockStatement(final BlockStatement blockStatement) {
1732        if(!method.isReachable()) {
1733            return false;
1734        }
1735        enterStatement(blockStatement);
1736
1737        blockStatement.getBlock().accept(this);
1738
1739        return false;
1740    }
1741
1742    @Override
1743    public boolean enterForNode(final ForNode forNode) {
1744        if(!method.isReachable()) {
1745            return false;
1746        }
1747        enterStatement(forNode);
1748        if (forNode.isForIn()) {
1749            enterForIn(forNode);
1750        } else {
1751            final Expression init = forNode.getInit();
1752            if (init != null) {
1753                loadAndDiscard(init);
1754            }
1755            enterForOrWhile(forNode, forNode.getModify());
1756        }
1757
1758        return false;
1759    }
1760
1761    private void enterForIn(final ForNode forNode) {
1762        loadExpression(forNode.getModify(), TypeBounds.OBJECT);
1763        method.invoke(forNode.isForEach() ? ScriptRuntime.TO_VALUE_ITERATOR : ScriptRuntime.TO_PROPERTY_ITERATOR);
1764        final Symbol iterSymbol = forNode.getIterator();
1765        final int iterSlot = iterSymbol.getSlot(Type.OBJECT);
1766        method.store(iterSymbol, ITERATOR_TYPE);
1767
1768        method.beforeJoinPoint(forNode);
1769
1770        final Label continueLabel = forNode.getContinueLabel();
1771        final Label breakLabel    = forNode.getBreakLabel();
1772
1773        method.label(continueLabel);
1774        method.load(ITERATOR_TYPE, iterSlot);
1775        method.invoke(interfaceCallNoLookup(ITERATOR_CLASS, "hasNext", boolean.class));
1776        final JoinPredecessorExpression test = forNode.getTest();
1777        final Block body = forNode.getBody();
1778        if(LocalVariableConversion.hasLiveConversion(test)) {
1779            final Label afterConversion = new Label("for_in_after_test_conv");
1780            method.ifne(afterConversion);
1781            method.beforeJoinPoint(test);
1782            method._goto(breakLabel);
1783            method.label(afterConversion);
1784        } else {
1785            method.ifeq(breakLabel);
1786        }
1787
1788        new Store<Expression>(forNode.getInit()) {
1789            @Override
1790            protected void storeNonDiscard() {
1791                // This expression is neither part of a discard, nor needs to be left on the stack after it was
1792                // stored, so we override storeNonDiscard to be a no-op.
1793            }
1794
1795            @Override
1796            protected void evaluate() {
1797                new OptimisticOperation((Optimistic)forNode.getInit(), TypeBounds.UNBOUNDED) {
1798                    @Override
1799                    void loadStack() {
1800                        method.load(ITERATOR_TYPE, iterSlot);
1801                    }
1802
1803                    @Override
1804                    void consumeStack() {
1805                        method.invoke(interfaceCallNoLookup(ITERATOR_CLASS, "next", Object.class));
1806                        convertOptimisticReturnValue();
1807                    }
1808                }.emit();
1809            }
1810        }.store();
1811        body.accept(this);
1812
1813        if(method.isReachable()) {
1814            method._goto(continueLabel);
1815        }
1816        method.label(breakLabel);
1817    }
1818
1819    /**
1820     * Initialize the slots in a frame to undefined.
1821     *
1822     * @param block block with local vars.
1823     */
1824    private void initLocals(final Block block) {
1825        lc.onEnterBlock(block);
1826
1827        final boolean isFunctionBody = lc.isFunctionBody();
1828        final FunctionNode function = lc.getCurrentFunction();
1829        if (isFunctionBody) {
1830            initializeMethodParameters(function);
1831            if(!function.isVarArg()) {
1832                expandParameterSlots(function);
1833            }
1834            if (method.hasScope()) {
1835                if (function.needsParentScope()) {
1836                    method.loadCompilerConstant(CALLEE);
1837                    method.invoke(ScriptFunction.GET_SCOPE);
1838                } else {
1839                    assert function.hasScopeBlock();
1840                    method.loadNull();
1841                }
1842                method.storeCompilerConstant(SCOPE);
1843            }
1844            if (function.needsArguments()) {
1845                initArguments(function);
1846            }
1847        }
1848
1849        /*
1850         * Determine if block needs scope, if not, just do initSymbols for this block.
1851         */
1852        if (block.needsScope()) {
1853            /*
1854             * Determine if function is varargs and consequently variables have to
1855             * be in the scope.
1856             */
1857            final boolean varsInScope = function.allVarsInScope();
1858
1859            // TODO for LET we can do better: if *block* does not contain any eval/with, we don't need its vars in scope.
1860
1861            final boolean hasArguments = function.needsArguments();
1862            final List<MapTuple<Symbol>> tuples = new ArrayList<>();
1863            final Iterator<IdentNode> paramIter = function.getParameters().iterator();
1864            for (final Symbol symbol : block.getSymbols()) {
1865                if (symbol.isInternal() || symbol.isThis()) {
1866                    continue;
1867                }
1868
1869                if (symbol.isVar()) {
1870                    assert !varsInScope || symbol.isScope();
1871                    if (varsInScope || symbol.isScope()) {
1872                        assert symbol.isScope()   : "scope for " + symbol + " should have been set in Lower already " + function.getName();
1873                        assert !symbol.hasSlot()  : "slot for " + symbol + " should have been removed in Lower already" + function.getName();
1874
1875                        //this tuple will not be put fielded, as it has no value, just a symbol
1876                        tuples.add(new MapTuple<Symbol>(symbol.getName(), symbol, null));
1877                    } else {
1878                        assert symbol.hasSlot() || symbol.slotCount() == 0 : symbol + " should have a slot only, no scope";
1879                    }
1880                } else if (symbol.isParam() && (varsInScope || hasArguments || symbol.isScope())) {
1881                    assert symbol.isScope()   : "scope for " + symbol + " should have been set in AssignSymbols already " + function.getName() + " varsInScope="+varsInScope+" hasArguments="+hasArguments+" symbol.isScope()=" + symbol.isScope();
1882                    assert !(hasArguments && symbol.hasSlot())  : "slot for " + symbol + " should have been removed in Lower already " + function.getName();
1883
1884                    final Type   paramType;
1885                    final Symbol paramSymbol;
1886
1887                    if (hasArguments) {
1888                        assert !symbol.hasSlot()  : "slot for " + symbol + " should have been removed in Lower already ";
1889                        paramSymbol = null;
1890                        paramType   = null;
1891                    } else {
1892                        paramSymbol = symbol;
1893                        // NOTE: We're relying on the fact here that Block.symbols is a LinkedHashMap, hence it will
1894                        // return symbols in the order they were defined, and parameters are defined in the same order
1895                        // they appear in the function. That's why we can have a single pass over the parameter list
1896                        // with an iterator, always just scanning forward for the next parameter that matches the symbol
1897                        // name.
1898                        for(;;) {
1899                            final IdentNode nextParam = paramIter.next();
1900                            if(nextParam.getName().equals(symbol.getName())) {
1901                                paramType = nextParam.getType();
1902                                break;
1903                            }
1904                        }
1905                    }
1906
1907                    tuples.add(new MapTuple<Symbol>(symbol.getName(), symbol, paramType, paramSymbol) {
1908                        //this symbol will be put fielded, we can't initialize it as undefined with a known type
1909                        @Override
1910                        public Class<?> getValueType() {
1911                            if (!useDualFields() ||  value == null || paramType == null || paramType.isBoolean()) {
1912                                return Object.class;
1913                            }
1914                            return paramType.getTypeClass();
1915                        }
1916                    });
1917                }
1918            }
1919
1920            /*
1921             * Create a new object based on the symbols and values, generate
1922             * bootstrap code for object
1923             */
1924            new FieldObjectCreator<Symbol>(this, tuples, true, hasArguments) {
1925                @Override
1926                protected void loadValue(final Symbol value, final Type type) {
1927                    method.load(value, type);
1928                }
1929            }.makeObject(method);
1930            // program function: merge scope into global
1931            if (isFunctionBody && function.isProgram()) {
1932                method.invoke(ScriptRuntime.MERGE_SCOPE);
1933            }
1934
1935            method.storeCompilerConstant(SCOPE);
1936            if(!isFunctionBody) {
1937                // Function body doesn't need a try/catch to restore scope, as it'd be a dead store anyway. Allowing it
1938                // actually causes issues with UnwarrantedOptimismException handlers as ASM will sort this handler to
1939                // the top of the exception handler table, so it'll be triggered instead of the UOE handlers.
1940                final Label scopeEntryLabel = new Label("scope_entry");
1941                scopeEntryLabels.push(scopeEntryLabel);
1942                method.label(scopeEntryLabel);
1943            }
1944        } else if (isFunctionBody && function.isVarArg()) {
1945            // Since we don't have a scope, parameters didn't get assigned array indices by the FieldObjectCreator, so
1946            // we need to assign them separately here.
1947            int nextParam = 0;
1948            for (final IdentNode param : function.getParameters()) {
1949                param.getSymbol().setFieldIndex(nextParam++);
1950            }
1951        }
1952
1953        // Debugging: print symbols? @see --print-symbols flag
1954        printSymbols(block, function, (isFunctionBody ? "Function " : "Block in ") + (function.getIdent() == null ? "<anonymous>" : function.getIdent().getName()));
1955    }
1956
1957    /**
1958     * Incoming method parameters are always declared on method entry; declare them in the local variable table.
1959     * @param function function for which code is being generated.
1960     */
1961    private void initializeMethodParameters(final FunctionNode function) {
1962        final Label functionStart = new Label("fn_start");
1963        method.label(functionStart);
1964        int nextSlot = 0;
1965        if(function.needsCallee()) {
1966            initializeInternalFunctionParameter(CALLEE, function, functionStart, nextSlot++);
1967        }
1968        initializeInternalFunctionParameter(THIS, function, functionStart, nextSlot++);
1969        if(function.isVarArg()) {
1970            initializeInternalFunctionParameter(VARARGS, function, functionStart, nextSlot++);
1971        } else {
1972            for(final IdentNode param: function.getParameters()) {
1973                final Symbol symbol = param.getSymbol();
1974                if(symbol.isBytecodeLocal()) {
1975                    method.initializeMethodParameter(symbol, param.getType(), functionStart);
1976                }
1977            }
1978        }
1979    }
1980
1981    private void initializeInternalFunctionParameter(final CompilerConstants cc, final FunctionNode fn, final Label functionStart, final int slot) {
1982        final Symbol symbol = initializeInternalFunctionOrSplitParameter(cc, fn, functionStart, slot);
1983        // Internal function params (:callee, this, and :varargs) are never expanded to multiple slots
1984        assert symbol.getFirstSlot() == slot;
1985    }
1986
1987    private Symbol initializeInternalFunctionOrSplitParameter(final CompilerConstants cc, final FunctionNode fn, final Label functionStart, final int slot) {
1988        final Symbol symbol = fn.getBody().getExistingSymbol(cc.symbolName());
1989        final Type type = Type.typeFor(cc.type());
1990        method.initializeMethodParameter(symbol, type, functionStart);
1991        method.onLocalStore(type, slot);
1992        return symbol;
1993    }
1994
1995    /**
1996     * Parameters come into the method packed into local variable slots next to each other. Nashorn on the other hand
1997     * can use 1-6 slots for a local variable depending on all the types it needs to store. When this method is invoked,
1998     * the symbols are already allocated such wider slots, but the values are still in tightly packed incoming slots,
1999     * and we need to spread them into their new locations.
2000     * @param function the function for which parameter-spreading code needs to be emitted
2001     */
2002    private void expandParameterSlots(final FunctionNode function) {
2003        final List<IdentNode> parameters = function.getParameters();
2004        // Calculate the total number of incoming parameter slots
2005        int currentIncomingSlot = function.needsCallee() ? 2 : 1;
2006        for(final IdentNode parameter: parameters) {
2007            currentIncomingSlot += parameter.getType().getSlots();
2008        }
2009        // Starting from last parameter going backwards, move the parameter values into their new slots.
2010        for(int i = parameters.size(); i-- > 0;) {
2011            final IdentNode parameter = parameters.get(i);
2012            final Type parameterType = parameter.getType();
2013            final int typeWidth = parameterType.getSlots();
2014            currentIncomingSlot -= typeWidth;
2015            final Symbol symbol = parameter.getSymbol();
2016            final int slotCount = symbol.slotCount();
2017            assert slotCount > 0;
2018            // Scoped parameters must not hold more than one value
2019            assert symbol.isBytecodeLocal() || slotCount == typeWidth;
2020
2021            // Mark it as having its value stored into it by the method invocation.
2022            method.onLocalStore(parameterType, currentIncomingSlot);
2023            if(currentIncomingSlot != symbol.getSlot(parameterType)) {
2024                method.load(parameterType, currentIncomingSlot);
2025                method.store(symbol, parameterType);
2026            }
2027        }
2028    }
2029
2030    private void initArguments(final FunctionNode function) {
2031        method.loadCompilerConstant(VARARGS);
2032        if (function.needsCallee()) {
2033            method.loadCompilerConstant(CALLEE);
2034        } else {
2035            // If function is strict mode, "arguments.callee" is not populated, so we don't necessarily need the
2036            // caller.
2037            assert function.isStrict();
2038            method.loadNull();
2039        }
2040        method.load(function.getParameters().size());
2041        globalAllocateArguments();
2042        method.storeCompilerConstant(ARGUMENTS);
2043    }
2044
2045    private boolean skipFunction(final FunctionNode functionNode) {
2046        final ScriptEnvironment env = compiler.getScriptEnvironment();
2047        final boolean lazy = env._lazy_compilation;
2048        final boolean onDemand = compiler.isOnDemandCompilation();
2049
2050        // If this is on-demand or lazy compilation, don't compile a nested (not topmost) function.
2051        if((onDemand || lazy) && lc.getOutermostFunction() != functionNode) {
2052            return true;
2053        }
2054
2055        // If lazy compiling with optimistic types, don't compile the program eagerly either. It will soon be
2056        // invalidated anyway. In presence of a class cache, this further means that an obsoleted program version
2057        // lingers around. Also, currently loading previously persisted optimistic types information only works if
2058        // we're on-demand compiling a function, so with this strategy the :program method can also have the warmup
2059        // benefit of using previously persisted types.
2060        //
2061        // NOTE that this means the first compiled class will effectively just have a :createProgramFunction method, and
2062        // the RecompilableScriptFunctionData (RSFD) object in its constants array. It won't even have the :program
2063        // method. This is by design. It does mean that we're wasting one compiler execution (and we could minimize this
2064        // by just running it up to scope depth calculation, which creates the RSFDs and then this limited codegen).
2065        // We could emit an initial separate compile unit with the initial version of :program in it to better utilize
2066        // the compilation pipeline, but that would need more invasive changes, as currently the assumption that
2067        // :program is emitted into the first compilation unit of the function lives in many places.
2068        return !onDemand && lazy && env._optimistic_types && functionNode.isProgram();
2069    }
2070
2071    @Override
2072    public boolean enterFunctionNode(final FunctionNode functionNode) {
2073        if (skipFunction(functionNode)) {
2074            // In case we are not generating code for the function, we must create or retrieve the function object and
2075            // load it on the stack here.
2076            newFunctionObject(functionNode, false);
2077            return false;
2078        }
2079
2080        final String fnName = functionNode.getName();
2081
2082        // NOTE: we only emit the method for a function with the given name once. We can have multiple functions with
2083        // the same name as a result of inlining finally blocks. However, in the future -- with type specialization,
2084        // notably -- we might need to check for both name *and* signature. Of course, even that might not be
2085        // sufficient; the function might have a code dependency on the type of the variables in its enclosing scopes,
2086        // and the type of such a variable can be different in catch and finally blocks. So, in the future we will have
2087        // to decide to either generate a unique method for each inlined copy of the function, maybe figure out its
2088        // exact type closure and deduplicate based on that, or just decide that functions in finally blocks aren't
2089        // worth it, and generate one method with most generic type closure.
2090        if (!emittedMethods.contains(fnName)) {
2091            log.info("=== BEGIN ", fnName);
2092
2093            assert functionNode.getCompileUnit() != null : "no compile unit for " + fnName + " " + Debug.id(functionNode);
2094            unit = lc.pushCompileUnit(functionNode.getCompileUnit());
2095            assert lc.hasCompileUnits();
2096
2097            final ClassEmitter classEmitter = unit.getClassEmitter();
2098            pushMethodEmitter(isRestOf() ? classEmitter.restOfMethod(functionNode) : classEmitter.method(functionNode));
2099            method.setPreventUndefinedLoad();
2100            if(useOptimisticTypes()) {
2101                lc.pushUnwarrantedOptimismHandlers();
2102            }
2103
2104            // new method - reset last line number
2105            lastLineNumber = -1;
2106
2107            method.begin();
2108
2109            if (isRestOf()) {
2110                assert continuationInfo == null;
2111                continuationInfo = new ContinuationInfo();
2112                method.gotoLoopStart(continuationInfo.getHandlerLabel());
2113            }
2114        }
2115
2116        return true;
2117    }
2118
2119    private void pushMethodEmitter(final MethodEmitter newMethod) {
2120        method = lc.pushMethodEmitter(newMethod);
2121        catchLabels.push(METHOD_BOUNDARY);
2122    }
2123
2124    private void popMethodEmitter() {
2125        method = lc.popMethodEmitter(method);
2126        assert catchLabels.peek() == METHOD_BOUNDARY;
2127        catchLabels.pop();
2128    }
2129
2130    @Override
2131    public Node leaveFunctionNode(final FunctionNode functionNode) {
2132        try {
2133            final boolean markOptimistic;
2134            if (emittedMethods.add(functionNode.getName())) {
2135                markOptimistic = generateUnwarrantedOptimismExceptionHandlers(functionNode);
2136                generateContinuationHandler();
2137                method.end(); // wrap up this method
2138                unit   = lc.popCompileUnit(functionNode.getCompileUnit());
2139                popMethodEmitter();
2140                log.info("=== END ", functionNode.getName());
2141            } else {
2142                markOptimistic = false;
2143            }
2144
2145            FunctionNode newFunctionNode = functionNode.setState(lc, CompilationState.BYTECODE_GENERATED);
2146            if (markOptimistic) {
2147                newFunctionNode = newFunctionNode.setFlag(lc, FunctionNode.IS_DEOPTIMIZABLE);
2148            }
2149
2150            newFunctionObject(newFunctionNode, true);
2151            return newFunctionNode;
2152        } catch (final Throwable t) {
2153            Context.printStackTrace(t);
2154            final VerifyError e = new VerifyError("Code generation bug in \"" + functionNode.getName() + "\": likely stack misaligned: " + t + " " + functionNode.getSource().getName());
2155            e.initCause(t);
2156            throw e;
2157        }
2158    }
2159
2160    @Override
2161    public boolean enterIfNode(final IfNode ifNode) {
2162        if(!method.isReachable()) {
2163            return false;
2164        }
2165        enterStatement(ifNode);
2166
2167        final Expression test = ifNode.getTest();
2168        final Block pass = ifNode.getPass();
2169        final Block fail = ifNode.getFail();
2170
2171        if (Expression.isAlwaysTrue(test)) {
2172            loadAndDiscard(test);
2173            pass.accept(this);
2174            return false;
2175        } else if (Expression.isAlwaysFalse(test)) {
2176            loadAndDiscard(test);
2177            if (fail != null) {
2178                fail.accept(this);
2179            }
2180            return false;
2181        }
2182
2183        final boolean hasFailConversion = LocalVariableConversion.hasLiveConversion(ifNode);
2184
2185        final Label failLabel  = new Label("if_fail");
2186        final Label afterLabel = (fail == null && !hasFailConversion) ? null : new Label("if_done");
2187
2188        emitBranch(test, failLabel, false);
2189
2190        pass.accept(this);
2191        if(method.isReachable() && afterLabel != null) {
2192            method._goto(afterLabel); //don't fallthru to fail block
2193        }
2194        method.label(failLabel);
2195
2196        if (fail != null) {
2197            fail.accept(this);
2198        } else if(hasFailConversion) {
2199            method.beforeJoinPoint(ifNode);
2200        }
2201
2202        if(afterLabel != null && afterLabel.isReachable()) {
2203            method.label(afterLabel);
2204        }
2205
2206        return false;
2207    }
2208
2209    private void emitBranch(final Expression test, final Label label, final boolean jumpWhenTrue) {
2210        new BranchOptimizer(this, method).execute(test, label, jumpWhenTrue);
2211    }
2212
2213    private void enterStatement(final Statement statement) {
2214        lineNumber(statement);
2215    }
2216
2217    private void lineNumber(final Statement statement) {
2218        lineNumber(statement.getLineNumber());
2219    }
2220
2221    private void lineNumber(final int lineNumber) {
2222        if (lineNumber != lastLineNumber && lineNumber != Node.NO_LINE_NUMBER) {
2223            method.lineNumber(lineNumber);
2224            lastLineNumber = lineNumber;
2225        }
2226    }
2227
2228    int getLastLineNumber() {
2229        return lastLineNumber;
2230    }
2231
2232    /**
2233     * Load a list of nodes as an array of a specific type
2234     * The array will contain the visited nodes.
2235     *
2236     * @param arrayLiteralNode the array of contents
2237     * @param arrayType        the type of the array, e.g. ARRAY_NUMBER or ARRAY_OBJECT
2238     *
2239     * @return the method generator that was used
2240     */
2241    private MethodEmitter loadArray(final ArrayLiteralNode arrayLiteralNode, final ArrayType arrayType) {
2242        assert arrayType == Type.INT_ARRAY || arrayType == Type.LONG_ARRAY || arrayType == Type.NUMBER_ARRAY || arrayType == Type.OBJECT_ARRAY;
2243
2244        final Expression[]    nodes    = arrayLiteralNode.getValue();
2245        final Object          presets  = arrayLiteralNode.getPresets();
2246        final int[]           postsets = arrayLiteralNode.getPostsets();
2247        final Class<?>        type     = arrayType.getTypeClass();
2248        final List<ArrayUnit> units    = arrayLiteralNode.getUnits();
2249
2250        loadConstant(presets);
2251
2252        final Type elementType = arrayType.getElementType();
2253
2254        if (units != null) {
2255            final MethodEmitter savedMethod     = method;
2256            final FunctionNode  currentFunction = lc.getCurrentFunction();
2257
2258            for (final ArrayUnit arrayUnit : units) {
2259                unit = lc.pushCompileUnit(arrayUnit.getCompileUnit());
2260
2261                final String className = unit.getUnitClassName();
2262                assert unit != null;
2263                final String name      = currentFunction.uniqueName(SPLIT_PREFIX.symbolName());
2264                final String signature = methodDescriptor(type, ScriptFunction.class, Object.class, ScriptObject.class, type);
2265
2266                pushMethodEmitter(unit.getClassEmitter().method(EnumSet.of(Flag.PUBLIC, Flag.STATIC), name, signature));
2267
2268                method.setFunctionNode(currentFunction);
2269                method.begin();
2270
2271                defineCommonSplitMethodParameters();
2272                defineSplitMethodParameter(CompilerConstants.SPLIT_ARRAY_ARG.slot(), arrayType);
2273
2274                // NOTE: when this is no longer needed, SplitIntoFunctions will no longer have to add IS_SPLIT
2275                // to synthetic functions, and FunctionNode.needsCallee() will no longer need to test for isSplit().
2276                final int arraySlot = fixScopeSlot(currentFunction, 3);
2277
2278                lc.enterSplitNode();
2279
2280                for (int i = arrayUnit.getLo(); i < arrayUnit.getHi(); i++) {
2281                    method.load(arrayType, arraySlot);
2282                    storeElement(nodes, elementType, postsets[i]);
2283                }
2284
2285                method.load(arrayType, arraySlot);
2286                method._return();
2287                lc.exitSplitNode();
2288                method.end();
2289                lc.releaseSlots();
2290                popMethodEmitter();
2291
2292                assert method == savedMethod;
2293                method.loadCompilerConstant(CALLEE);
2294                method.swap();
2295                method.loadCompilerConstant(THIS);
2296                method.swap();
2297                method.loadCompilerConstant(SCOPE);
2298                method.swap();
2299                method.invokestatic(className, name, signature);
2300
2301                unit = lc.popCompileUnit(unit);
2302            }
2303
2304            return method;
2305        }
2306
2307        if(postsets.length > 0) {
2308            final int arraySlot = method.getUsedSlotsWithLiveTemporaries();
2309            method.storeTemp(arrayType, arraySlot);
2310            for (final int postset : postsets) {
2311                method.load(arrayType, arraySlot);
2312                storeElement(nodes, elementType, postset);
2313            }
2314            method.load(arrayType, arraySlot);
2315        }
2316        return method;
2317    }
2318
2319    private void storeElement(final Expression[] nodes, final Type elementType, final int index) {
2320        method.load(index);
2321
2322        final Expression element = nodes[index];
2323
2324        if (element == null) {
2325            method.loadEmpty(elementType);
2326        } else {
2327            loadExpressionAsType(element, elementType);
2328        }
2329
2330        method.arraystore();
2331    }
2332
2333    private MethodEmitter loadArgsArray(final List<Expression> args) {
2334        final Object[] array = new Object[args.size()];
2335        loadConstant(array);
2336
2337        for (int i = 0; i < args.size(); i++) {
2338            method.dup();
2339            method.load(i);
2340            loadExpression(args.get(i), TypeBounds.OBJECT); // variable arity methods always take objects
2341            method.arraystore();
2342        }
2343
2344        return method;
2345    }
2346
2347    /**
2348     * Load a constant from the constant array. This is only public to be callable from the objects
2349     * subpackage. Do not call directly.
2350     *
2351     * @param string string to load
2352     */
2353    void loadConstant(final String string) {
2354        final String       unitClassName = unit.getUnitClassName();
2355        final ClassEmitter classEmitter  = unit.getClassEmitter();
2356        final int          index         = compiler.getConstantData().add(string);
2357
2358        method.load(index);
2359        method.invokestatic(unitClassName, GET_STRING.symbolName(), methodDescriptor(String.class, int.class));
2360        classEmitter.needGetConstantMethod(String.class);
2361    }
2362
2363    /**
2364     * Load a constant from the constant array. This is only public to be callable from the objects
2365     * subpackage. Do not call directly.
2366     *
2367     * @param object object to load
2368     */
2369    void loadConstant(final Object object) {
2370        loadConstant(object, unit, method);
2371    }
2372
2373    private void loadConstant(final Object object, final CompileUnit compileUnit, final MethodEmitter methodEmitter) {
2374        final String       unitClassName = compileUnit.getUnitClassName();
2375        final ClassEmitter classEmitter  = compileUnit.getClassEmitter();
2376        final int          index         = compiler.getConstantData().add(object);
2377        final Class<?>     cls           = object.getClass();
2378
2379        if (cls == PropertyMap.class) {
2380            methodEmitter.load(index);
2381            methodEmitter.invokestatic(unitClassName, GET_MAP.symbolName(), methodDescriptor(PropertyMap.class, int.class));
2382            classEmitter.needGetConstantMethod(PropertyMap.class);
2383        } else if (cls.isArray()) {
2384            methodEmitter.load(index);
2385            final String methodName = ClassEmitter.getArrayMethodName(cls);
2386            methodEmitter.invokestatic(unitClassName, methodName, methodDescriptor(cls, int.class));
2387            classEmitter.needGetConstantMethod(cls);
2388        } else {
2389            methodEmitter.loadConstants().load(index).arrayload();
2390            if (object instanceof ArrayData) {
2391                methodEmitter.checkcast(ArrayData.class);
2392                methodEmitter.invoke(virtualCallNoLookup(ArrayData.class, "copy", ArrayData.class));
2393            } else if (cls != Object.class) {
2394                methodEmitter.checkcast(cls);
2395            }
2396        }
2397    }
2398
2399    private void loadConstantsAndIndex(final Object object, final MethodEmitter methodEmitter) {
2400        methodEmitter.loadConstants().load(compiler.getConstantData().add(object));
2401    }
2402
2403    // literal values
2404    private void loadLiteral(final LiteralNode<?> node, final TypeBounds resultBounds) {
2405        final Object value = node.getValue();
2406
2407        if (value == null) {
2408            method.loadNull();
2409        } else if (value instanceof Undefined) {
2410            method.loadUndefined(resultBounds.within(Type.OBJECT));
2411        } else if (value instanceof String) {
2412            final String string = (String)value;
2413
2414            if (string.length() > MethodEmitter.LARGE_STRING_THRESHOLD / 3) { // 3 == max bytes per encoded char
2415                loadConstant(string);
2416            } else {
2417                method.load(string);
2418            }
2419        } else if (value instanceof RegexToken) {
2420            loadRegex((RegexToken)value);
2421        } else if (value instanceof Boolean) {
2422            method.load((Boolean)value);
2423        } else if (value instanceof Integer) {
2424            if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2425                method.load((Integer)value);
2426                method.convert(Type.OBJECT);
2427            } else if(!resultBounds.canBeNarrowerThan(Type.NUMBER)) {
2428                method.load(((Integer)value).doubleValue());
2429            } else if(!resultBounds.canBeNarrowerThan(Type.LONG)) {
2430                method.load(((Integer)value).longValue());
2431            } else {
2432                method.load((Integer)value);
2433            }
2434        } else if (value instanceof Long) {
2435            if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2436                method.load((Long)value);
2437                method.convert(Type.OBJECT);
2438            } else if(!resultBounds.canBeNarrowerThan(Type.NUMBER)) {
2439                method.load(((Long)value).doubleValue());
2440            } else {
2441                method.load((Long)value);
2442            }
2443        } else if (value instanceof Double) {
2444            if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2445                method.load((Double)value);
2446                method.convert(Type.OBJECT);
2447            } else {
2448                method.load((Double)value);
2449            }
2450        } else if (node instanceof ArrayLiteralNode) {
2451            final ArrayLiteralNode arrayLiteral = (ArrayLiteralNode)node;
2452            final ArrayType atype = arrayLiteral.getArrayType();
2453            loadArray(arrayLiteral, atype);
2454            globalAllocateArray(atype);
2455        } else {
2456            throw new UnsupportedOperationException("Unknown literal for " + node.getClass() + " " + value.getClass() + " " + value);
2457        }
2458    }
2459
2460    private MethodEmitter loadRegexToken(final RegexToken value) {
2461        method.load(value.getExpression());
2462        method.load(value.getOptions());
2463        return globalNewRegExp();
2464    }
2465
2466    private MethodEmitter loadRegex(final RegexToken regexToken) {
2467        if (regexFieldCount > MAX_REGEX_FIELDS) {
2468            return loadRegexToken(regexToken);
2469        }
2470        // emit field
2471        final String       regexName    = lc.getCurrentFunction().uniqueName(REGEX_PREFIX.symbolName());
2472        final ClassEmitter classEmitter = unit.getClassEmitter();
2473
2474        classEmitter.field(EnumSet.of(PRIVATE, STATIC), regexName, Object.class);
2475        regexFieldCount++;
2476
2477        // get field, if null create new regex, finally clone regex object
2478        method.getStatic(unit.getUnitClassName(), regexName, typeDescriptor(Object.class));
2479        method.dup();
2480        final Label cachedLabel = new Label("cached");
2481        method.ifnonnull(cachedLabel);
2482
2483        method.pop();
2484        loadRegexToken(regexToken);
2485        method.dup();
2486        method.putStatic(unit.getUnitClassName(), regexName, typeDescriptor(Object.class));
2487
2488        method.label(cachedLabel);
2489        globalRegExpCopy();
2490
2491        return method;
2492    }
2493
2494    /**
2495     * Check if a property value contains a particular program point
2496     * @param value value
2497     * @param pp    program point
2498     * @return true if it's there.
2499     */
2500    private static boolean propertyValueContains(final Expression value, final int pp) {
2501        return new Supplier<Boolean>() {
2502            boolean contains;
2503
2504            @Override
2505            public Boolean get() {
2506                value.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
2507                    @Override
2508                    public boolean enterFunctionNode(final FunctionNode functionNode) {
2509                        return false;
2510                    }
2511
2512                    @Override
2513                    public boolean enterObjectNode(final ObjectNode objectNode) {
2514                        return false;
2515                    }
2516
2517                    @Override
2518                    public boolean enterDefault(final Node node) {
2519                        if (contains) {
2520                            return false;
2521                        }
2522                        if (node instanceof Optimistic && ((Optimistic)node).getProgramPoint() == pp) {
2523                            contains = true;
2524                            return false;
2525                        }
2526                        return true;
2527                    }
2528                });
2529
2530                return contains;
2531            }
2532        }.get();
2533    }
2534
2535    private void loadObjectNode(final ObjectNode objectNode) {
2536        final List<PropertyNode> elements = objectNode.getElements();
2537
2538        final List<MapTuple<Expression>> tuples = new ArrayList<>();
2539        final List<PropertyNode> gettersSetters = new ArrayList<>();
2540        final int ccp = getCurrentContinuationEntryPoint();
2541
2542        Expression protoNode = null;
2543        boolean restOfProperty = false;
2544
2545        for (final PropertyNode propertyNode : elements) {
2546            final Expression value = propertyNode.getValue();
2547            final String key = propertyNode.getKeyName();
2548            // Just use a pseudo-symbol. We just need something non null; use the name and zero flags.
2549            final Symbol symbol = value == null ? null : new Symbol(key, 0);
2550
2551            if (value == null) {
2552                gettersSetters.add(propertyNode);
2553            } else if (propertyNode.getKey() instanceof IdentNode &&
2554                       key.equals(ScriptObject.PROTO_PROPERTY_NAME)) {
2555                // ES6 draft compliant __proto__ inside object literal
2556                // Identifier key and name is __proto__
2557                protoNode = value;
2558                continue;
2559            }
2560
2561            restOfProperty |=
2562                value != null &&
2563                isValid(ccp) &&
2564                propertyValueContains(value, ccp);
2565
2566            //for literals, a value of null means object type, i.e. the value null or getter setter function
2567            //(I think)
2568            final Class<?> valueType = (!useDualFields() || value == null || value.getType().isBoolean()) ? Object.class : value.getType().getTypeClass();
2569            tuples.add(new MapTuple<Expression>(key, symbol, Type.typeFor(valueType), value) {
2570                @Override
2571                public Class<?> getValueType() {
2572                    return type.getTypeClass();
2573                }
2574            });
2575        }
2576
2577        final ObjectCreator<?> oc;
2578        if (elements.size() > OBJECT_SPILL_THRESHOLD) {
2579            oc = new SpillObjectCreator(this, tuples);
2580        } else {
2581            oc = new FieldObjectCreator<Expression>(this, tuples) {
2582                @Override
2583                protected void loadValue(final Expression node, final Type type) {
2584                    loadExpressionAsType(node, type);
2585                }};
2586        }
2587        oc.makeObject(method);
2588
2589        //if this is a rest of method and our continuation point was found as one of the values
2590        //in the properties above, we need to reset the map to oc.getMap() in the continuation
2591        //handler
2592        if (restOfProperty) {
2593            final ContinuationInfo ci = getContinuationInfo();
2594            // Can be set at most once for a single rest-of method
2595            assert ci.getObjectLiteralMap() == null;
2596            ci.setObjectLiteralMap(oc.getMap());
2597            ci.setObjectLiteralStackDepth(method.getStackSize());
2598        }
2599
2600        method.dup();
2601        if (protoNode != null) {
2602            loadExpressionAsObject(protoNode);
2603            // take care of { __proto__: 34 } or some such!
2604            method.convert(Type.OBJECT);
2605            method.invoke(ScriptObject.SET_PROTO_FROM_LITERAL);
2606        } else {
2607            method.invoke(ScriptObject.SET_GLOBAL_OBJECT_PROTO);
2608        }
2609
2610        for (final PropertyNode propertyNode : gettersSetters) {
2611            final FunctionNode getter = propertyNode.getGetter();
2612            final FunctionNode setter = propertyNode.getSetter();
2613
2614            assert getter != null || setter != null;
2615
2616            method.dup().loadKey(propertyNode.getKey());
2617            if (getter == null) {
2618                method.loadNull();
2619            } else {
2620                getter.accept(this);
2621            }
2622
2623            if (setter == null) {
2624                method.loadNull();
2625            } else {
2626                setter.accept(this);
2627            }
2628
2629            method.invoke(ScriptObject.SET_USER_ACCESSORS);
2630        }
2631    }
2632
2633    @Override
2634    public boolean enterReturnNode(final ReturnNode returnNode) {
2635        if(!method.isReachable()) {
2636            return false;
2637        }
2638        enterStatement(returnNode);
2639
2640        final Type returnType = lc.getCurrentFunction().getReturnType();
2641
2642        final Expression expression = returnNode.getExpression();
2643        if (expression != null) {
2644            loadExpressionUnbounded(expression);
2645        } else {
2646            method.loadUndefined(returnType);
2647        }
2648
2649        method._return(returnType);
2650
2651        return false;
2652    }
2653
2654    private boolean undefinedCheck(final RuntimeNode runtimeNode, final List<Expression> args) {
2655        final Request request = runtimeNode.getRequest();
2656
2657        if (!Request.isUndefinedCheck(request)) {
2658            return false;
2659        }
2660
2661        final Expression lhs = args.get(0);
2662        final Expression rhs = args.get(1);
2663
2664        final Symbol lhsSymbol = lhs instanceof IdentNode ? ((IdentNode)lhs).getSymbol() : null;
2665        final Symbol rhsSymbol = rhs instanceof IdentNode ? ((IdentNode)rhs).getSymbol() : null;
2666        // One must be a "undefined" identifier, otherwise we can't get here
2667        assert lhsSymbol != null || rhsSymbol != null;
2668
2669        final Symbol undefinedSymbol;
2670        if (isUndefinedSymbol(lhsSymbol)) {
2671            undefinedSymbol = lhsSymbol;
2672        } else {
2673            assert isUndefinedSymbol(rhsSymbol);
2674            undefinedSymbol = rhsSymbol;
2675        }
2676
2677        assert undefinedSymbol != null; //remove warning
2678        if (!undefinedSymbol.isScope()) {
2679            return false; //disallow undefined as local var or parameter
2680        }
2681
2682        if (lhsSymbol == undefinedSymbol && lhs.getType().isPrimitive()) {
2683            //we load the undefined first. never mind, because this will deoptimize anyway
2684            return false;
2685        }
2686
2687        if(isDeoptimizedExpression(lhs)) {
2688            // This is actually related to "lhs.getType().isPrimitive()" above: any expression being deoptimized in
2689            // the current chain of rest-of compilations used to have a type narrower than Object (so it was primitive).
2690            // We must not perform undefined check specialization for them, as then we'd violate the basic rule of
2691            // "Thou shalt not alter the stack shape between a deoptimized method and any of its (transitive) rest-ofs."
2692            return false;
2693        }
2694
2695        //make sure that undefined has not been overridden or scoped as a local var
2696        //between us and global
2697        if (!compiler.isGlobalSymbol(lc.getCurrentFunction(), "undefined")) {
2698            return false;
2699        }
2700
2701        final boolean isUndefinedCheck = request == Request.IS_UNDEFINED;
2702        final Expression expr = undefinedSymbol == lhsSymbol ? rhs : lhs;
2703        if (expr.getType().isPrimitive()) {
2704            loadAndDiscard(expr); //throw away lhs, but it still needs to be evaluated for side effects, even if not in scope, as it can be optimistic
2705            method.load(!isUndefinedCheck);
2706        } else {
2707            final Label checkTrue  = new Label("ud_check_true");
2708            final Label end        = new Label("end");
2709            loadExpressionAsObject(expr);
2710            method.loadUndefined(Type.OBJECT);
2711            method.if_acmpeq(checkTrue);
2712            method.load(!isUndefinedCheck);
2713            method._goto(end);
2714            method.label(checkTrue);
2715            method.load(isUndefinedCheck);
2716            method.label(end);
2717        }
2718
2719        return true;
2720    }
2721
2722    private static boolean isUndefinedSymbol(final Symbol symbol) {
2723        return symbol != null && "undefined".equals(symbol.getName());
2724    }
2725
2726    private static boolean isNullLiteral(final Node node) {
2727        return node instanceof LiteralNode<?> && ((LiteralNode<?>) node).isNull();
2728    }
2729
2730    private boolean nullCheck(final RuntimeNode runtimeNode, final List<Expression> args) {
2731        final Request request = runtimeNode.getRequest();
2732
2733        if (!Request.isEQ(request) && !Request.isNE(request)) {
2734            return false;
2735        }
2736
2737        assert args.size() == 2 : "EQ or NE or TYPEOF need two args";
2738
2739        Expression lhs = args.get(0);
2740        Expression rhs = args.get(1);
2741
2742        if (isNullLiteral(lhs)) {
2743            final Expression tmp = lhs;
2744            lhs = rhs;
2745            rhs = tmp;
2746        }
2747
2748        if (!isNullLiteral(rhs)) {
2749            return false;
2750        }
2751
2752        if (!lhs.getType().isObject()) {
2753            return false;
2754        }
2755
2756        if(isDeoptimizedExpression(lhs)) {
2757            // This is actually related to "!lhs.getType().isObject()" above: any expression being deoptimized in
2758            // the current chain of rest-of compilations used to have a type narrower than Object. We must not
2759            // perform null check specialization for them, as then we'd no longer be loading aconst_null on stack
2760            // and thus violate the basic rule of "Thou shalt not alter the stack shape between a deoptimized
2761            // method and any of its (transitive) rest-ofs."
2762            // NOTE also that if we had a representation for well-known constants (e.g. null, 0, 1, -1, etc.) in
2763            // Label$Stack.localLoads then this wouldn't be an issue, as we would never (somewhat ridiculously)
2764            // allocate a temporary local to hold the result of aconst_null before attempting an optimistic
2765            // operation.
2766            return false;
2767        }
2768
2769        // this is a null literal check, so if there is implicit coercion
2770        // involved like {D}x=null, we will fail - this is very rare
2771        final Label trueLabel  = new Label("trueLabel");
2772        final Label falseLabel = new Label("falseLabel");
2773        final Label endLabel   = new Label("end");
2774
2775        loadExpressionUnbounded(lhs);    //lhs
2776        final Label popLabel;
2777        if (!Request.isStrict(request)) {
2778            method.dup(); //lhs lhs
2779            popLabel = new Label("pop");
2780        } else {
2781            popLabel = null;
2782        }
2783
2784        if (Request.isEQ(request)) {
2785            method.ifnull(!Request.isStrict(request) ? popLabel : trueLabel);
2786            if (!Request.isStrict(request)) {
2787                method.loadUndefined(Type.OBJECT);
2788                method.if_acmpeq(trueLabel);
2789            }
2790            method.label(falseLabel);
2791            method.load(false);
2792            method._goto(endLabel);
2793            if (!Request.isStrict(request)) {
2794                method.label(popLabel);
2795                method.pop();
2796            }
2797            method.label(trueLabel);
2798            method.load(true);
2799            method.label(endLabel);
2800        } else if (Request.isNE(request)) {
2801            method.ifnull(!Request.isStrict(request) ? popLabel : falseLabel);
2802            if (!Request.isStrict(request)) {
2803                method.loadUndefined(Type.OBJECT);
2804                method.if_acmpeq(falseLabel);
2805            }
2806            method.label(trueLabel);
2807            method.load(true);
2808            method._goto(endLabel);
2809            if (!Request.isStrict(request)) {
2810                method.label(popLabel);
2811                method.pop();
2812            }
2813            method.label(falseLabel);
2814            method.load(false);
2815            method.label(endLabel);
2816        }
2817
2818        assert runtimeNode.getType().isBoolean();
2819        method.convert(runtimeNode.getType());
2820
2821        return true;
2822    }
2823
2824    /**
2825     * Was this expression or any of its subexpressions deoptimized in the current recompilation chain of rest-of methods?
2826     * @param rootExpr the expression being tested
2827     * @return true if the expression or any of its subexpressions was deoptimized in the current recompilation chain.
2828     */
2829    private boolean isDeoptimizedExpression(final Expression rootExpr) {
2830        if(!isRestOf()) {
2831            return false;
2832        }
2833        return new Supplier<Boolean>() {
2834            boolean contains;
2835            @Override
2836            public Boolean get() {
2837                rootExpr.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
2838                    @Override
2839                    public boolean enterFunctionNode(final FunctionNode functionNode) {
2840                        return false;
2841                    }
2842                    @Override
2843                    public boolean enterDefault(final Node node) {
2844                        if(!contains && node instanceof Optimistic) {
2845                            final int pp = ((Optimistic)node).getProgramPoint();
2846                            contains = isValid(pp) && isContinuationEntryPoint(pp);
2847                        }
2848                        return !contains;
2849                    }
2850                });
2851                return contains;
2852            }
2853        }.get();
2854    }
2855
2856    private void loadRuntimeNode(final RuntimeNode runtimeNode) {
2857        final List<Expression> args = new ArrayList<>(runtimeNode.getArgs());
2858        if (nullCheck(runtimeNode, args)) {
2859           return;
2860        } else if(undefinedCheck(runtimeNode, args)) {
2861            return;
2862        }
2863        // Revert a false undefined check to a strict equality check
2864        final RuntimeNode newRuntimeNode;
2865        final Request request = runtimeNode.getRequest();
2866        if (Request.isUndefinedCheck(request)) {
2867            newRuntimeNode = runtimeNode.setRequest(request == Request.IS_UNDEFINED ? Request.EQ_STRICT : Request.NE_STRICT);
2868        } else {
2869            newRuntimeNode = runtimeNode;
2870        }
2871
2872        for (final Expression arg : args) {
2873            loadExpression(arg, TypeBounds.OBJECT);
2874        }
2875
2876        method.invokestatic(
2877                CompilerConstants.className(ScriptRuntime.class),
2878                newRuntimeNode.getRequest().toString(),
2879                new FunctionSignature(
2880                    false,
2881                    false,
2882                    newRuntimeNode.getType(),
2883                    args.size()).toString());
2884
2885        method.convert(newRuntimeNode.getType());
2886    }
2887
2888    private void defineCommonSplitMethodParameters() {
2889        defineSplitMethodParameter(0, CALLEE);
2890        defineSplitMethodParameter(1, THIS);
2891        defineSplitMethodParameter(2, SCOPE);
2892    }
2893
2894    private void defineSplitMethodParameter(final int slot, final CompilerConstants cc) {
2895        defineSplitMethodParameter(slot, Type.typeFor(cc.type()));
2896    }
2897
2898    private void defineSplitMethodParameter(final int slot, final Type type) {
2899        method.defineBlockLocalVariable(slot, slot + type.getSlots());
2900        method.onLocalStore(type, slot);
2901    }
2902
2903    private int fixScopeSlot(final FunctionNode functionNode, final int extraSlot) {
2904        // TODO hack to move the scope to the expected slot (needed because split methods reuse the same slots as the root method)
2905        final int actualScopeSlot = functionNode.compilerConstant(SCOPE).getSlot(SCOPE_TYPE);
2906        final int defaultScopeSlot = SCOPE.slot();
2907        int newExtraSlot = extraSlot;
2908        if (actualScopeSlot != defaultScopeSlot) {
2909            if (actualScopeSlot == extraSlot) {
2910                newExtraSlot = extraSlot + 1;
2911                method.defineBlockLocalVariable(newExtraSlot, newExtraSlot + 1);
2912                method.load(Type.OBJECT, extraSlot);
2913                method.storeHidden(Type.OBJECT, newExtraSlot);
2914            } else {
2915                method.defineBlockLocalVariable(actualScopeSlot, actualScopeSlot + 1);
2916            }
2917            method.load(SCOPE_TYPE, defaultScopeSlot);
2918            method.storeCompilerConstant(SCOPE);
2919        }
2920        return newExtraSlot;
2921    }
2922
2923    @Override
2924    public boolean enterSplitReturn(final SplitReturn splitReturn) {
2925        if (method.isReachable()) {
2926            method.loadUndefined(lc.getCurrentFunction().getReturnType())._return();
2927        }
2928        return false;
2929    }
2930
2931    @Override
2932    public boolean enterSetSplitState(final SetSplitState setSplitState) {
2933        if (method.isReachable()) {
2934            method.setSplitState(setSplitState.getState());
2935        }
2936        return false;
2937    }
2938
2939    @Override
2940    public boolean enterSwitchNode(final SwitchNode switchNode) {
2941        if(!method.isReachable()) {
2942            return false;
2943        }
2944        enterStatement(switchNode);
2945
2946        final Expression     expression  = switchNode.getExpression();
2947        final List<CaseNode> cases       = switchNode.getCases();
2948
2949        if (cases.isEmpty()) {
2950            // still evaluate expression for side-effects.
2951            loadAndDiscard(expression);
2952            return false;
2953        }
2954
2955        final CaseNode defaultCase       = switchNode.getDefaultCase();
2956        final Label    breakLabel        = switchNode.getBreakLabel();
2957        final int      liveLocalsOnBreak = method.getUsedSlotsWithLiveTemporaries();
2958
2959        if (defaultCase != null && cases.size() == 1) {
2960            // default case only
2961            assert cases.get(0) == defaultCase;
2962            loadAndDiscard(expression);
2963            defaultCase.getBody().accept(this);
2964            method.breakLabel(breakLabel, liveLocalsOnBreak);
2965            return false;
2966        }
2967
2968        // NOTE: it can still change in the tableswitch/lookupswitch case if there's no default case
2969        // but we need to add a synthetic default case for local variable conversions
2970        Label defaultLabel = defaultCase != null ? defaultCase.getEntry() : breakLabel;
2971        final boolean hasSkipConversion = LocalVariableConversion.hasLiveConversion(switchNode);
2972
2973        if (switchNode.isUniqueInteger()) {
2974            // Tree for sorting values.
2975            final TreeMap<Integer, Label> tree = new TreeMap<>();
2976
2977            // Build up sorted tree.
2978            for (final CaseNode caseNode : cases) {
2979                final Node test = caseNode.getTest();
2980
2981                if (test != null) {
2982                    final Integer value = (Integer)((LiteralNode<?>)test).getValue();
2983                    final Label   entry = caseNode.getEntry();
2984
2985                    // Take first duplicate.
2986                    if (!tree.containsKey(value)) {
2987                        tree.put(value, entry);
2988                    }
2989                }
2990            }
2991
2992            // Copy values and labels to arrays.
2993            final int       size   = tree.size();
2994            final Integer[] values = tree.keySet().toArray(new Integer[size]);
2995            final Label[]   labels = tree.values().toArray(new Label[size]);
2996
2997            // Discern low, high and range.
2998            final int lo    = values[0];
2999            final int hi    = values[size - 1];
3000            final long range = (long)hi - (long)lo + 1;
3001
3002            // Find an unused value for default.
3003            int deflt = Integer.MIN_VALUE;
3004            for (final int value : values) {
3005                if (deflt == value) {
3006                    deflt++;
3007                } else if (deflt < value) {
3008                    break;
3009                }
3010            }
3011
3012            // Load switch expression.
3013            loadExpressionUnbounded(expression);
3014            final Type type = expression.getType();
3015
3016            // If expression not int see if we can convert, if not use deflt to trigger default.
3017            if (!type.isInteger()) {
3018                method.load(deflt);
3019                final Class<?> exprClass = type.getTypeClass();
3020                method.invoke(staticCallNoLookup(ScriptRuntime.class, "switchTagAsInt", int.class, exprClass.isPrimitive()? exprClass : Object.class, int.class));
3021            }
3022
3023            if(hasSkipConversion) {
3024                assert defaultLabel == breakLabel;
3025                defaultLabel = new Label("switch_skip");
3026            }
3027            // TABLESWITCH needs (range + 3) 32-bit values; LOOKUPSWITCH needs ((size * 2) + 2). Choose the one with
3028            // smaller representation, favor TABLESWITCH when they're equal size.
3029            if (range + 1 <= (size * 2) && range <= Integer.MAX_VALUE) {
3030                final Label[] table = new Label[(int)range];
3031                Arrays.fill(table, defaultLabel);
3032                for (int i = 0; i < size; i++) {
3033                    final int value = values[i];
3034                    table[value - lo] = labels[i];
3035                }
3036
3037                method.tableswitch(lo, hi, defaultLabel, table);
3038            } else {
3039                final int[] ints = new int[size];
3040                for (int i = 0; i < size; i++) {
3041                    ints[i] = values[i];
3042                }
3043
3044                method.lookupswitch(defaultLabel, ints, labels);
3045            }
3046            // This is a synthetic "default case" used in absence of actual default case, created if we need to apply
3047            // local variable conversions if neither case is taken.
3048            if(hasSkipConversion) {
3049                method.label(defaultLabel);
3050                method.beforeJoinPoint(switchNode);
3051                method._goto(breakLabel);
3052            }
3053        } else {
3054            final Symbol tagSymbol = switchNode.getTag();
3055            // TODO: we could have non-object tag
3056            final int tagSlot = tagSymbol.getSlot(Type.OBJECT);
3057            loadExpressionAsObject(expression);
3058            method.store(tagSymbol, Type.OBJECT);
3059
3060            for (final CaseNode caseNode : cases) {
3061                final Expression test = caseNode.getTest();
3062
3063                if (test != null) {
3064                    method.load(Type.OBJECT, tagSlot);
3065                    loadExpressionAsObject(test);
3066                    method.invoke(ScriptRuntime.EQ_STRICT);
3067                    method.ifne(caseNode.getEntry());
3068                }
3069            }
3070
3071            if (defaultCase != null) {
3072                method._goto(defaultLabel);
3073            } else {
3074                method.beforeJoinPoint(switchNode);
3075                method._goto(breakLabel);
3076            }
3077        }
3078
3079        // First case is only reachable through jump
3080        assert !method.isReachable();
3081
3082        for (final CaseNode caseNode : cases) {
3083            final Label fallThroughLabel;
3084            if(caseNode.getLocalVariableConversion() != null && method.isReachable()) {
3085                fallThroughLabel = new Label("fallthrough");
3086                method._goto(fallThroughLabel);
3087            } else {
3088                fallThroughLabel = null;
3089            }
3090            method.label(caseNode.getEntry());
3091            method.beforeJoinPoint(caseNode);
3092            if(fallThroughLabel != null) {
3093                method.label(fallThroughLabel);
3094            }
3095            caseNode.getBody().accept(this);
3096        }
3097
3098        method.breakLabel(breakLabel, liveLocalsOnBreak);
3099
3100        return false;
3101    }
3102
3103    @Override
3104    public boolean enterThrowNode(final ThrowNode throwNode) {
3105        if(!method.isReachable()) {
3106            return false;
3107        }
3108        enterStatement(throwNode);
3109
3110        if (throwNode.isSyntheticRethrow()) {
3111            method.beforeJoinPoint(throwNode);
3112
3113            //do not wrap whatever this is in an ecma exception, just rethrow it
3114            final IdentNode exceptionExpr = (IdentNode)throwNode.getExpression();
3115            final Symbol exceptionSymbol = exceptionExpr.getSymbol();
3116            method.load(exceptionSymbol, EXCEPTION_TYPE);
3117            method.checkcast(EXCEPTION_TYPE.getTypeClass());
3118            method.athrow();
3119            return false;
3120        }
3121
3122        final Source     source     = getCurrentSource();
3123        final Expression expression = throwNode.getExpression();
3124        final int        position   = throwNode.position();
3125        final int        line       = throwNode.getLineNumber();
3126        final int        column     = source.getColumn(position);
3127
3128        // NOTE: we first evaluate the expression, and only after it was evaluated do we create the new ECMAException
3129        // object and then somewhat cumbersomely move it beneath the evaluated expression on the stack. The reason for
3130        // this is that if expression is optimistic (or contains an optimistic subexpression), we'd potentially access
3131        // the not-yet-<init>ialized object on the stack from the UnwarrantedOptimismException handler, and bytecode
3132        // verifier forbids that.
3133        loadExpressionAsObject(expression);
3134
3135        method.load(source.getName());
3136        method.load(line);
3137        method.load(column);
3138        method.invoke(ECMAException.CREATE);
3139
3140        method.beforeJoinPoint(throwNode);
3141        method.athrow();
3142
3143        return false;
3144    }
3145
3146    private Source getCurrentSource() {
3147        return lc.getCurrentFunction().getSource();
3148    }
3149
3150    @Override
3151    public boolean enterTryNode(final TryNode tryNode) {
3152        if(!method.isReachable()) {
3153            return false;
3154        }
3155        enterStatement(tryNode);
3156
3157        final Block       body        = tryNode.getBody();
3158        final List<Block> catchBlocks = tryNode.getCatchBlocks();
3159        final Symbol      vmException = tryNode.getException();
3160        final Label       entry       = new Label("try");
3161        final Label       recovery    = new Label("catch");
3162        final Label       exit        = new Label("end_try");
3163        final Label       skip        = new Label("skip");
3164
3165        method.canThrow(recovery);
3166        // Effect any conversions that might be observed at the entry of the catch node before entering the try node.
3167        // This is because even the first instruction in the try block must be presumed to be able to transfer control
3168        // to the catch block. Note that this doesn't kill the original values; in this regard it works a lot like
3169        // conversions of assignments within the try block.
3170        method.beforeTry(tryNode, recovery);
3171        method.label(entry);
3172        catchLabels.push(recovery);
3173        try {
3174            body.accept(this);
3175        } finally {
3176            assert catchLabels.peek() == recovery;
3177            catchLabels.pop();
3178        }
3179
3180        method.label(exit);
3181        final boolean bodyCanThrow = exit.isAfter(entry);
3182        if(!bodyCanThrow) {
3183            // The body can't throw an exception; don't even bother emitting the catch handlers, they're all dead code.
3184            return false;
3185        }
3186
3187        method._try(entry, exit, recovery, Throwable.class);
3188
3189        if (method.isReachable()) {
3190            method._goto(skip);
3191        }
3192
3193        for (final Block inlinedFinally : tryNode.getInlinedFinallies()) {
3194            TryNode.getLabelledInlinedFinallyBlock(inlinedFinally).accept(this);
3195            // All inlined finallies end with a jump or a return
3196            assert !method.isReachable();
3197        }
3198
3199
3200        method._catch(recovery);
3201        method.store(vmException, EXCEPTION_TYPE);
3202
3203        final int catchBlockCount = catchBlocks.size();
3204        final Label afterCatch = new Label("after_catch");
3205        for (int i = 0; i < catchBlockCount; i++) {
3206            assert method.isReachable();
3207            final Block catchBlock = catchBlocks.get(i);
3208
3209            // Because of the peculiarities of the flow control, we need to use an explicit push/enterBlock/leaveBlock
3210            // here.
3211            lc.push(catchBlock);
3212            enterBlock(catchBlock);
3213
3214            final CatchNode  catchNode          = (CatchNode)catchBlocks.get(i).getStatements().get(0);
3215            final IdentNode  exception          = catchNode.getException();
3216            final Expression exceptionCondition = catchNode.getExceptionCondition();
3217            final Block      catchBody          = catchNode.getBody();
3218
3219            new Store<IdentNode>(exception) {
3220                @Override
3221                protected void storeNonDiscard() {
3222                    // This expression is neither part of a discard, nor needs to be left on the stack after it was
3223                    // stored, so we override storeNonDiscard to be a no-op.
3224                }
3225
3226                @Override
3227                protected void evaluate() {
3228                    if (catchNode.isSyntheticRethrow()) {
3229                        method.load(vmException, EXCEPTION_TYPE);
3230                        return;
3231                    }
3232                    /*
3233                     * If caught object is an instance of ECMAException, then
3234                     * bind obj.thrown to the script catch var. Or else bind the
3235                     * caught object itself to the script catch var.
3236                     */
3237                    final Label notEcmaException = new Label("no_ecma_exception");
3238                    method.load(vmException, EXCEPTION_TYPE).dup()._instanceof(ECMAException.class).ifeq(notEcmaException);
3239                    method.checkcast(ECMAException.class); //TODO is this necessary?
3240                    method.getField(ECMAException.THROWN);
3241                    method.label(notEcmaException);
3242                }
3243            }.store();
3244
3245            final boolean isConditionalCatch = exceptionCondition != null;
3246            final Label nextCatch;
3247            if (isConditionalCatch) {
3248                loadExpressionAsBoolean(exceptionCondition);
3249                nextCatch = new Label("next_catch");
3250                nextCatch.markAsBreakTarget();
3251                method.ifeq(nextCatch);
3252            } else {
3253                nextCatch = null;
3254            }
3255
3256            catchBody.accept(this);
3257            leaveBlock(catchBlock);
3258            lc.pop(catchBlock);
3259            if(nextCatch != null) {
3260                if(method.isReachable()) {
3261                    method._goto(afterCatch);
3262                }
3263                method.breakLabel(nextCatch, lc.getUsedSlotCount());
3264            }
3265        }
3266
3267        // afterCatch could be the same as skip, except that we need to establish that the vmException is dead.
3268        method.label(afterCatch);
3269        if(method.isReachable()) {
3270            method.markDeadLocalVariable(vmException);
3271        }
3272        method.label(skip);
3273
3274        // Finally body is always inlined elsewhere so it doesn't need to be emitted
3275        assert tryNode.getFinallyBody() == null;
3276
3277        return false;
3278    }
3279
3280    @Override
3281    public boolean enterVarNode(final VarNode varNode) {
3282        if(!method.isReachable()) {
3283            return false;
3284        }
3285        final Expression init = varNode.getInit();
3286        final IdentNode identNode = varNode.getName();
3287        final Symbol identSymbol = identNode.getSymbol();
3288        assert identSymbol != null : "variable node " + varNode + " requires a name with a symbol";
3289        final boolean needsScope = identSymbol.isScope();
3290
3291        if (init == null) {
3292            if (needsScope && varNode.isBlockScoped()) {
3293                // block scoped variables need a DECLARE flag to signal end of temporal dead zone (TDZ)
3294                method.loadCompilerConstant(SCOPE);
3295                method.loadUndefined(Type.OBJECT);
3296                final int flags = getScopeCallSiteFlags(identSymbol) | (varNode.isBlockScoped() ? CALLSITE_DECLARE : 0);
3297                assert isFastScope(identSymbol);
3298                storeFastScopeVar(identSymbol, flags);
3299            }
3300            return false;
3301        }
3302
3303        enterStatement(varNode);
3304        assert method != null;
3305
3306        if (needsScope) {
3307            method.loadCompilerConstant(SCOPE);
3308        }
3309
3310        if (needsScope) {
3311            loadExpressionUnbounded(init);
3312            // block scoped variables need a DECLARE flag to signal end of temporal dead zone (TDZ)
3313            final int flags = getScopeCallSiteFlags(identSymbol) | (varNode.isBlockScoped() ? CALLSITE_DECLARE : 0);
3314            if (isFastScope(identSymbol)) {
3315                storeFastScopeVar(identSymbol, flags);
3316            } else {
3317                method.dynamicSet(identNode.getName(), flags, false);
3318            }
3319        } else {
3320            final Type identType = identNode.getType();
3321            if(identType == Type.UNDEFINED) {
3322                // The initializer is either itself undefined (explicit assignment of undefined to undefined),
3323                // or the left hand side is a dead variable.
3324                assert init.getType() == Type.UNDEFINED || identNode.getSymbol().slotCount() == 0;
3325                loadAndDiscard(init);
3326                return false;
3327            }
3328            loadExpressionAsType(init, identType);
3329            storeIdentWithCatchConversion(identNode, identType);
3330        }
3331
3332        return false;
3333    }
3334
3335    private void storeIdentWithCatchConversion(final IdentNode identNode, final Type type) {
3336        // Assignments happening in try/catch blocks need to ensure that they also store a possibly wider typed value
3337        // that will be live at the exit from the try block
3338        final LocalVariableConversion conversion = identNode.getLocalVariableConversion();
3339        final Symbol symbol = identNode.getSymbol();
3340        if(conversion != null && conversion.isLive()) {
3341            assert symbol == conversion.getSymbol();
3342            assert symbol.isBytecodeLocal();
3343            // Only a single conversion from the target type to the join type is expected.
3344            assert conversion.getNext() == null;
3345            assert conversion.getFrom() == type;
3346            // We must propagate potential type change to the catch block
3347            final Label catchLabel = catchLabels.peek();
3348            assert catchLabel != METHOD_BOUNDARY; // ident conversion only exists in try blocks
3349            assert catchLabel.isReachable();
3350            final Type joinType = conversion.getTo();
3351            final Label.Stack catchStack = catchLabel.getStack();
3352            final int joinSlot = symbol.getSlot(joinType);
3353            // With nested try/catch blocks (incl. synthetic ones for finally), we can have a supposed conversion for
3354            // the exception symbol in the nested catch, but it isn't live in the outer catch block, so prevent doing
3355            // conversions for it. E.g. in "try { try { ... } catch(e) { e = 1; } } catch(e2) { ... }", we must not
3356            // introduce an I->O conversion on "e = 1" assignment as "e" is not live in "catch(e2)".
3357            if(catchStack.getUsedSlotsWithLiveTemporaries() > joinSlot) {
3358                method.dup();
3359                method.convert(joinType);
3360                method.store(symbol, joinType);
3361                catchLabel.getStack().onLocalStore(joinType, joinSlot, true);
3362                method.canThrow(catchLabel);
3363                // Store but keep the previous store live too.
3364                method.store(symbol, type, false);
3365                return;
3366            }
3367        }
3368
3369        method.store(symbol, type, true);
3370    }
3371
3372    @Override
3373    public boolean enterWhileNode(final WhileNode whileNode) {
3374        if(!method.isReachable()) {
3375            return false;
3376        }
3377        if(whileNode.isDoWhile()) {
3378            enterDoWhile(whileNode);
3379        } else {
3380            enterStatement(whileNode);
3381            enterForOrWhile(whileNode, null);
3382        }
3383        return false;
3384    }
3385
3386    private void enterForOrWhile(final LoopNode loopNode, final JoinPredecessorExpression modify) {
3387        // NOTE: the usual pattern for compiling test-first loops is "GOTO test; body; test; IFNE body". We use the less
3388        // conventional "test; IFEQ break; body; GOTO test; break;". It has one extra unconditional GOTO in each repeat
3389        // of the loop, but it's not a problem for modern JIT compilers. We do this because our local variable type
3390        // tracking is unfortunately not really prepared for out-of-order execution, e.g. compiling the following
3391        // contrived but legal JavaScript code snippet would fail because the test changes the type of "i" from object
3392        // to double: var i = {valueOf: function() { return 1} }; while(--i >= 0) { ... }
3393        // Instead of adding more complexity to the local variable type tracking, we instead choose to emit this
3394        // different code shape.
3395        final int liveLocalsOnBreak = method.getUsedSlotsWithLiveTemporaries();
3396        final JoinPredecessorExpression test = loopNode.getTest();
3397        if(Expression.isAlwaysFalse(test)) {
3398            loadAndDiscard(test);
3399            return;
3400        }
3401
3402        method.beforeJoinPoint(loopNode);
3403
3404        final Label continueLabel = loopNode.getContinueLabel();
3405        final Label repeatLabel = modify != null ? new Label("for_repeat") : continueLabel;
3406        method.label(repeatLabel);
3407        final int liveLocalsOnContinue = method.getUsedSlotsWithLiveTemporaries();
3408
3409        final Block   body                  = loopNode.getBody();
3410        final Label   breakLabel            = loopNode.getBreakLabel();
3411        final boolean testHasLiveConversion = test != null && LocalVariableConversion.hasLiveConversion(test);
3412
3413        if(Expression.isAlwaysTrue(test)) {
3414            if(test != null) {
3415                loadAndDiscard(test);
3416                if(testHasLiveConversion) {
3417                    method.beforeJoinPoint(test);
3418                }
3419            }
3420        } else if (test != null) {
3421            if (testHasLiveConversion) {
3422                emitBranch(test.getExpression(), body.getEntryLabel(), true);
3423                method.beforeJoinPoint(test);
3424                method._goto(breakLabel);
3425            } else {
3426                emitBranch(test.getExpression(), breakLabel, false);
3427            }
3428        }
3429
3430        body.accept(this);
3431        if(repeatLabel != continueLabel) {
3432            emitContinueLabel(continueLabel, liveLocalsOnContinue);
3433        }
3434
3435        if (loopNode.hasPerIterationScope() && lc.getCurrentBlock().needsScope()) {
3436            // ES6 for loops with LET init need a new scope for each iteration. We just create a shallow copy here.
3437            method.loadCompilerConstant(SCOPE);
3438            method.invoke(virtualCallNoLookup(ScriptObject.class, "copy", ScriptObject.class));
3439            method.storeCompilerConstant(SCOPE);
3440        }
3441
3442        if(method.isReachable()) {
3443            if(modify != null) {
3444                lineNumber(loopNode);
3445                loadAndDiscard(modify);
3446                method.beforeJoinPoint(modify);
3447            }
3448            method._goto(repeatLabel);
3449        }
3450
3451        method.breakLabel(breakLabel, liveLocalsOnBreak);
3452    }
3453
3454    private void emitContinueLabel(final Label continueLabel, final int liveLocals) {
3455        final boolean reachable = method.isReachable();
3456        method.breakLabel(continueLabel, liveLocals);
3457        // If we reach here only through a continue statement (e.g. body does not exit normally) then the
3458        // continueLabel can have extra non-temp symbols (e.g. exception from a try/catch contained in the body). We
3459        // must make sure those are thrown away.
3460        if(!reachable) {
3461            method.undefineLocalVariables(lc.getUsedSlotCount(), false);
3462        }
3463    }
3464
3465    private void enterDoWhile(final WhileNode whileNode) {
3466        final int liveLocalsOnContinueOrBreak = method.getUsedSlotsWithLiveTemporaries();
3467        method.beforeJoinPoint(whileNode);
3468
3469        final Block body = whileNode.getBody();
3470        body.accept(this);
3471
3472        emitContinueLabel(whileNode.getContinueLabel(), liveLocalsOnContinueOrBreak);
3473        if(method.isReachable()) {
3474            lineNumber(whileNode);
3475            final JoinPredecessorExpression test = whileNode.getTest();
3476            final Label bodyEntryLabel = body.getEntryLabel();
3477            final boolean testHasLiveConversion = LocalVariableConversion.hasLiveConversion(test);
3478            if(Expression.isAlwaysFalse(test)) {
3479                loadAndDiscard(test);
3480                if(testHasLiveConversion) {
3481                    method.beforeJoinPoint(test);
3482                }
3483            } else if(testHasLiveConversion) {
3484                // If we have conversions after the test in do-while, they need to be effected on both branches.
3485                final Label beforeExit = new Label("do_while_preexit");
3486                emitBranch(test.getExpression(), beforeExit, false);
3487                method.beforeJoinPoint(test);
3488                method._goto(bodyEntryLabel);
3489                method.label(beforeExit);
3490                method.beforeJoinPoint(test);
3491            } else {
3492                emitBranch(test.getExpression(), bodyEntryLabel, true);
3493            }
3494        }
3495        method.breakLabel(whileNode.getBreakLabel(), liveLocalsOnContinueOrBreak);
3496    }
3497
3498
3499    @Override
3500    public boolean enterWithNode(final WithNode withNode) {
3501        if(!method.isReachable()) {
3502            return false;
3503        }
3504        enterStatement(withNode);
3505        final Expression expression = withNode.getExpression();
3506        final Block      body       = withNode.getBody();
3507
3508        // It is possible to have a "pathological" case where the with block does not reference *any* identifiers. It's
3509        // pointless, but legal. In that case, if nothing else in the method forced the assignment of a slot to the
3510        // scope object, its' possible that it won't have a slot assigned. In this case we'll only evaluate expression
3511        // for its side effect and visit the body, and not bother opening and closing a WithObject.
3512        final boolean hasScope = method.hasScope();
3513
3514        if (hasScope) {
3515            method.loadCompilerConstant(SCOPE);
3516        }
3517
3518        loadExpressionAsObject(expression);
3519
3520        final Label tryLabel;
3521        if (hasScope) {
3522            // Construct a WithObject if we have a scope
3523            method.invoke(ScriptRuntime.OPEN_WITH);
3524            method.storeCompilerConstant(SCOPE);
3525            tryLabel = new Label("with_try");
3526            method.label(tryLabel);
3527        } else {
3528            // We just loaded the expression for its side effect and to check
3529            // for null or undefined value.
3530            globalCheckObjectCoercible();
3531            tryLabel = null;
3532        }
3533
3534        // Always process body
3535        body.accept(this);
3536
3537        if (hasScope) {
3538            // Ensure we always close the WithObject
3539            final Label endLabel   = new Label("with_end");
3540            final Label catchLabel = new Label("with_catch");
3541            final Label exitLabel  = new Label("with_exit");
3542
3543            method.label(endLabel);
3544            // Somewhat conservatively presume that if the body is not empty, it can throw an exception. In any case,
3545            // we must prevent trying to emit a try-catch for empty range, as it causes a verification error.
3546            final boolean bodyCanThrow = endLabel.isAfter(tryLabel);
3547            if(bodyCanThrow) {
3548                method._try(tryLabel, endLabel, catchLabel);
3549            }
3550
3551            final boolean reachable = method.isReachable();
3552            if(reachable) {
3553                popScope();
3554                if(bodyCanThrow) {
3555                    method._goto(exitLabel);
3556                }
3557            }
3558
3559            if(bodyCanThrow) {
3560                method._catch(catchLabel);
3561                popScopeException();
3562                method.athrow();
3563                if(reachable) {
3564                    method.label(exitLabel);
3565                }
3566            }
3567        }
3568        return false;
3569    }
3570
3571    private void loadADD(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3572        loadExpression(unaryNode.getExpression(), resultBounds.booleanToInt().notWiderThan(Type.NUMBER));
3573        if(method.peekType() == Type.BOOLEAN) {
3574            // It's a no-op in bytecode, but we must make sure it is treated as an int for purposes of type signatures
3575            method.convert(Type.INT);
3576        }
3577    }
3578
3579    private void loadBIT_NOT(final UnaryNode unaryNode) {
3580        loadExpression(unaryNode.getExpression(), TypeBounds.INT).load(-1).xor();
3581    }
3582
3583    private void loadDECINC(final UnaryNode unaryNode) {
3584        final Expression operand     = unaryNode.getExpression();
3585        final Type       type        = unaryNode.getType();
3586        final TypeBounds typeBounds  = new TypeBounds(type, Type.NUMBER);
3587        final TokenType  tokenType   = unaryNode.tokenType();
3588        final boolean    isPostfix   = tokenType == TokenType.DECPOSTFIX || tokenType == TokenType.INCPOSTFIX;
3589        final boolean    isIncrement = tokenType == TokenType.INCPREFIX || tokenType == TokenType.INCPOSTFIX;
3590
3591        assert !type.isObject();
3592
3593        new SelfModifyingStore<UnaryNode>(unaryNode, operand) {
3594
3595            private void loadRhs() {
3596                loadExpression(operand, typeBounds, true);
3597            }
3598
3599            @Override
3600            protected void evaluate() {
3601                if(isPostfix) {
3602                    loadRhs();
3603                } else {
3604                    new OptimisticOperation(unaryNode, typeBounds) {
3605                        @Override
3606                        void loadStack() {
3607                            loadRhs();
3608                            loadMinusOne();
3609                        }
3610                        @Override
3611                        void consumeStack() {
3612                            doDecInc(getProgramPoint());
3613                        }
3614                    }.emit(getOptimisticIgnoreCountForSelfModifyingExpression(operand));
3615                }
3616            }
3617
3618            @Override
3619            protected void storeNonDiscard() {
3620                super.storeNonDiscard();
3621                if (isPostfix) {
3622                    new OptimisticOperation(unaryNode, typeBounds) {
3623                        @Override
3624                        void loadStack() {
3625                            loadMinusOne();
3626                        }
3627                        @Override
3628                        void consumeStack() {
3629                            doDecInc(getProgramPoint());
3630                        }
3631                    }.emit(1); // 1 for non-incremented result on the top of the stack pushed in evaluate()
3632                }
3633            }
3634
3635            private void loadMinusOne() {
3636                if (type.isInteger()) {
3637                    method.load(isIncrement ? 1 : -1);
3638                } else if (type.isLong()) {
3639                    method.load(isIncrement ? 1L : -1L);
3640                } else {
3641                    method.load(isIncrement ? 1.0 : -1.0);
3642                }
3643            }
3644
3645            private void doDecInc(final int programPoint) {
3646                method.add(programPoint);
3647            }
3648        }.store();
3649    }
3650
3651    private static int getOptimisticIgnoreCountForSelfModifyingExpression(final Expression target) {
3652        return target instanceof AccessNode ? 1 : target instanceof IndexNode ? 2 : 0;
3653    }
3654
3655    private void loadAndDiscard(final Expression expr) {
3656        // TODO: move checks for discarding to actual expression load code (e.g. as we do with void). That way we might
3657        // be able to eliminate even more checks.
3658        if(expr instanceof PrimitiveLiteralNode | isLocalVariable(expr)) {
3659            assert !lc.isCurrentDiscard(expr);
3660            // Don't bother evaluating expressions without side effects. Typical usage is "void 0" for reliably generating
3661            // undefined.
3662            return;
3663        }
3664
3665        lc.pushDiscard(expr);
3666        loadExpression(expr, TypeBounds.UNBOUNDED);
3667        if (lc.popDiscardIfCurrent(expr)) {
3668            assert !expr.isAssignment();
3669            // NOTE: if we had a way to load with type void, we could avoid popping
3670            method.pop();
3671        }
3672    }
3673
3674    /**
3675     * Loads the expression with the specified type bounds, but if the parent expression is the current discard,
3676     * then instead loads and discards the expression.
3677     * @param parent the parent expression that's tested for being the current discard
3678     * @param expr the expression that's either normally loaded or discard-loaded
3679     * @param resultBounds result bounds for when loading the expression normally
3680     */
3681    private void loadMaybeDiscard(final Expression parent, final Expression expr, final TypeBounds resultBounds) {
3682        loadMaybeDiscard(lc.popDiscardIfCurrent(parent), expr, resultBounds);
3683    }
3684
3685    /**
3686     * Loads the expression with the specified type bounds, or loads and discards the expression, depending on the
3687     * value of the discard flag. Useful as a helper for expressions with control flow where you often can't combine
3688     * testing for being the current discard and loading the subexpressions.
3689     * @param discard if true, the expression is loaded and discarded
3690     * @param expr the expression that's either normally loaded or discard-loaded
3691     * @param resultBounds result bounds for when loading the expression normally
3692     */
3693    private void loadMaybeDiscard(final boolean discard, final Expression expr, final TypeBounds resultBounds) {
3694        if (discard) {
3695            loadAndDiscard(expr);
3696        } else {
3697            loadExpression(expr, resultBounds);
3698        }
3699    }
3700
3701    private void loadNEW(final UnaryNode unaryNode) {
3702        final CallNode callNode = (CallNode)unaryNode.getExpression();
3703        final List<Expression> args   = callNode.getArgs();
3704
3705        final Expression func = callNode.getFunction();
3706        // Load function reference.
3707        loadExpressionAsObject(func); // must detect type error
3708
3709        method.dynamicNew(1 + loadArgs(args), getCallSiteFlags(), func.toString(false));
3710    }
3711
3712    private void loadNOT(final UnaryNode unaryNode) {
3713        final Expression expr = unaryNode.getExpression();
3714        if(expr instanceof UnaryNode && expr.isTokenType(TokenType.NOT)) {
3715            // !!x is idiomatic boolean cast in JavaScript
3716            loadExpressionAsBoolean(((UnaryNode)expr).getExpression());
3717        } else {
3718            final Label trueLabel  = new Label("true");
3719            final Label afterLabel = new Label("after");
3720
3721            emitBranch(expr, trueLabel, true);
3722            method.load(true);
3723            method._goto(afterLabel);
3724            method.label(trueLabel);
3725            method.load(false);
3726            method.label(afterLabel);
3727        }
3728    }
3729
3730    private void loadSUB(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3731        final Type type = unaryNode.getType();
3732        assert type.isNumeric();
3733        final TypeBounds numericBounds = resultBounds.booleanToInt();
3734        new OptimisticOperation(unaryNode, numericBounds) {
3735            @Override
3736            void loadStack() {
3737                final Expression expr = unaryNode.getExpression();
3738                loadExpression(expr, numericBounds.notWiderThan(Type.NUMBER));
3739            }
3740            @Override
3741            void consumeStack() {
3742                // Must do an explicit conversion to the operation's type when it's double so that we correctly handle
3743                // negation of an int 0 to a double -0. With this, we get the correct negation of a local variable after
3744                // it deoptimized, e.g. "iload_2; i2d; dneg". Without this, we get "iload_2; ineg; i2d".
3745                if(type.isNumber()) {
3746                    method.convert(type);
3747                }
3748                method.neg(getProgramPoint());
3749            }
3750        }.emit();
3751    }
3752
3753    public void loadVOID(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3754        loadAndDiscard(unaryNode.getExpression());
3755        if (!lc.popDiscardIfCurrent(unaryNode)) {
3756            method.loadUndefined(resultBounds.widest);
3757        }
3758    }
3759
3760    public void loadADD(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3761        new OptimisticOperation(binaryNode, resultBounds) {
3762            @Override
3763            void loadStack() {
3764                final TypeBounds operandBounds;
3765                final boolean isOptimistic = isValid(getProgramPoint());
3766                boolean forceConversionSeparation = false;
3767                if(isOptimistic) {
3768                    operandBounds = new TypeBounds(binaryNode.getType(), Type.OBJECT);
3769                } else {
3770                    // Non-optimistic, non-FP +. Allow it to overflow.
3771                    final Type widestOperationType = binaryNode.getWidestOperationType();
3772                    operandBounds = new TypeBounds(Type.narrowest(binaryNode.getWidestOperandType(), resultBounds.widest), widestOperationType);
3773                    forceConversionSeparation = widestOperationType.narrowerThan(resultBounds.widest);
3774                }
3775                loadBinaryOperands(binaryNode.lhs(), binaryNode.rhs(), operandBounds, false, forceConversionSeparation);
3776            }
3777
3778            @Override
3779            void consumeStack() {
3780                method.add(getProgramPoint());
3781            }
3782        }.emit();
3783    }
3784
3785    private void loadAND_OR(final BinaryNode binaryNode, final TypeBounds resultBounds, final boolean isAnd) {
3786        final Type narrowestOperandType = Type.widestReturnType(binaryNode.lhs().getType(), binaryNode.rhs().getType());
3787
3788        final boolean isCurrentDiscard = lc.popDiscardIfCurrent(binaryNode);
3789
3790        final Label skip = new Label("skip");
3791        if(narrowestOperandType == Type.BOOLEAN) {
3792            // optimize all-boolean logical expressions
3793            final Label onTrue = new Label("andor_true");
3794            emitBranch(binaryNode, onTrue, true);
3795            if (isCurrentDiscard) {
3796                method.label(onTrue);
3797            } else {
3798                method.load(false);
3799                method._goto(skip);
3800                method.label(onTrue);
3801                method.load(true);
3802                method.label(skip);
3803            }
3804            return;
3805        }
3806
3807        final TypeBounds outBounds = resultBounds.notNarrowerThan(narrowestOperandType);
3808        final JoinPredecessorExpression lhs = (JoinPredecessorExpression)binaryNode.lhs();
3809        final boolean lhsConvert = LocalVariableConversion.hasLiveConversion(lhs);
3810        final Label evalRhs = lhsConvert ? new Label("eval_rhs") : null;
3811
3812        loadExpression(lhs, outBounds);
3813        if (!isCurrentDiscard) {
3814            method.dup();
3815        }
3816        method.convert(Type.BOOLEAN);
3817        if (isAnd) {
3818            if(lhsConvert) {
3819                method.ifne(evalRhs);
3820            } else {
3821                method.ifeq(skip);
3822            }
3823        } else if(lhsConvert) {
3824            method.ifeq(evalRhs);
3825        } else {
3826            method.ifne(skip);
3827        }
3828
3829        if(lhsConvert) {
3830            method.beforeJoinPoint(lhs);
3831            method._goto(skip);
3832            method.label(evalRhs);
3833        }
3834
3835        if (!isCurrentDiscard) {
3836            method.pop();
3837        }
3838        final JoinPredecessorExpression rhs = (JoinPredecessorExpression)binaryNode.rhs();
3839        loadMaybeDiscard(isCurrentDiscard, rhs, outBounds);
3840        method.beforeJoinPoint(rhs);
3841        method.label(skip);
3842    }
3843
3844    private static boolean isLocalVariable(final Expression lhs) {
3845        return lhs instanceof IdentNode && isLocalVariable((IdentNode)lhs);
3846    }
3847
3848    private static boolean isLocalVariable(final IdentNode lhs) {
3849        return lhs.getSymbol().isBytecodeLocal();
3850    }
3851
3852    // NOTE: does not use resultBounds as the assignment is driven by the type of the RHS
3853    private void loadASSIGN(final BinaryNode binaryNode) {
3854        final Expression lhs = binaryNode.lhs();
3855        final Expression rhs = binaryNode.rhs();
3856
3857        final Type rhsType = rhs.getType();
3858        // Detect dead assignments
3859        if(lhs instanceof IdentNode) {
3860            final Symbol symbol = ((IdentNode)lhs).getSymbol();
3861            if(!symbol.isScope() && !symbol.hasSlotFor(rhsType) && lc.popDiscardIfCurrent(binaryNode)) {
3862                loadAndDiscard(rhs);
3863                method.markDeadLocalVariable(symbol);
3864                return;
3865            }
3866        }
3867
3868        new Store<BinaryNode>(binaryNode, lhs) {
3869            @Override
3870            protected void evaluate() {
3871                // NOTE: we're loading with "at least as wide as" so optimistic operations on the right hand side
3872                // remain optimistic, and then explicitly convert to the required type if needed.
3873                loadExpressionAsType(rhs, rhsType);
3874            }
3875        }.store();
3876    }
3877
3878    /**
3879     * Binary self-assignment that can be optimistic: +=, -=, *=, and /=.
3880     */
3881    private abstract class BinaryOptimisticSelfAssignment extends SelfModifyingStore<BinaryNode> {
3882
3883        /**
3884         * Constructor
3885         *
3886         * @param node the assign op node
3887         */
3888        BinaryOptimisticSelfAssignment(final BinaryNode node) {
3889            super(node, node.lhs());
3890        }
3891
3892        protected abstract void op(OptimisticOperation oo);
3893
3894        @Override
3895        protected void evaluate() {
3896            final Expression lhs = assignNode.lhs();
3897            final Expression rhs = assignNode.rhs();
3898            final Type widestOperationType = assignNode.getWidestOperationType();
3899            final TypeBounds bounds = new TypeBounds(assignNode.getType(), widestOperationType);
3900            new OptimisticOperation(assignNode, bounds) {
3901                @Override
3902                void loadStack() {
3903                    final boolean forceConversionSeparation;
3904                    if (isValid(getProgramPoint()) || widestOperationType == Type.NUMBER) {
3905                        forceConversionSeparation = false;
3906                    } else {
3907                        final Type operandType = Type.widest(booleanToInt(objectToNumber(lhs.getType())), booleanToInt(objectToNumber(rhs.getType())));
3908                        forceConversionSeparation = operandType.narrowerThan(widestOperationType);
3909                    }
3910                    loadBinaryOperands(lhs, rhs, bounds, true, forceConversionSeparation);
3911                }
3912                @Override
3913                void consumeStack() {
3914                    op(this);
3915                }
3916            }.emit(getOptimisticIgnoreCountForSelfModifyingExpression(lhs));
3917            method.convert(assignNode.getType());
3918        }
3919    }
3920
3921    /**
3922     * Non-optimistic binary self-assignment operation. Basically, everything except +=, -=, *=, and /=.
3923     */
3924    private abstract class BinarySelfAssignment extends SelfModifyingStore<BinaryNode> {
3925        BinarySelfAssignment(final BinaryNode node) {
3926            super(node, node.lhs());
3927        }
3928
3929        protected abstract void op();
3930
3931        @Override
3932        protected void evaluate() {
3933            loadBinaryOperands(assignNode.lhs(), assignNode.rhs(), TypeBounds.UNBOUNDED.notWiderThan(assignNode.getWidestOperandType()), true, false);
3934            op();
3935        }
3936    }
3937
3938    private void loadASSIGN_ADD(final BinaryNode binaryNode) {
3939        new BinaryOptimisticSelfAssignment(binaryNode) {
3940            @Override
3941            protected void op(final OptimisticOperation oo) {
3942                assert !(binaryNode.getType().isObject() && oo.isOptimistic);
3943                method.add(oo.getProgramPoint());
3944            }
3945        }.store();
3946    }
3947
3948    private void loadASSIGN_BIT_AND(final BinaryNode binaryNode) {
3949        new BinarySelfAssignment(binaryNode) {
3950            @Override
3951            protected void op() {
3952                method.and();
3953            }
3954        }.store();
3955    }
3956
3957    private void loadASSIGN_BIT_OR(final BinaryNode binaryNode) {
3958        new BinarySelfAssignment(binaryNode) {
3959            @Override
3960            protected void op() {
3961                method.or();
3962            }
3963        }.store();
3964    }
3965
3966    private void loadASSIGN_BIT_XOR(final BinaryNode binaryNode) {
3967        new BinarySelfAssignment(binaryNode) {
3968            @Override
3969            protected void op() {
3970                method.xor();
3971            }
3972        }.store();
3973    }
3974
3975    private void loadASSIGN_DIV(final BinaryNode binaryNode) {
3976        new BinaryOptimisticSelfAssignment(binaryNode) {
3977            @Override
3978            protected void op(final OptimisticOperation oo) {
3979                method.div(oo.getProgramPoint());
3980            }
3981        }.store();
3982    }
3983
3984    private void loadASSIGN_MOD(final BinaryNode binaryNode) {
3985        new BinaryOptimisticSelfAssignment(binaryNode) {
3986            @Override
3987            protected void op(final OptimisticOperation oo) {
3988                method.rem(oo.getProgramPoint());
3989            }
3990        }.store();
3991    }
3992
3993    private void loadASSIGN_MUL(final BinaryNode binaryNode) {
3994        new BinaryOptimisticSelfAssignment(binaryNode) {
3995            @Override
3996            protected void op(final OptimisticOperation oo) {
3997                method.mul(oo.getProgramPoint());
3998            }
3999        }.store();
4000    }
4001
4002    private void loadASSIGN_SAR(final BinaryNode binaryNode) {
4003        new BinarySelfAssignment(binaryNode) {
4004            @Override
4005            protected void op() {
4006                method.sar();
4007            }
4008        }.store();
4009    }
4010
4011    private void loadASSIGN_SHL(final BinaryNode binaryNode) {
4012        new BinarySelfAssignment(binaryNode) {
4013            @Override
4014            protected void op() {
4015                method.shl();
4016            }
4017        }.store();
4018    }
4019
4020    private void loadASSIGN_SHR(final BinaryNode binaryNode) {
4021        new BinarySelfAssignment(binaryNode) {
4022            @Override
4023            protected void op() {
4024                doSHR();
4025            }
4026
4027        }.store();
4028    }
4029
4030    private void doSHR() {
4031        // TODO: make SHR optimistic
4032        method.shr();
4033        toUint();
4034    }
4035
4036    private void toUint() {
4037        JSType.TO_UINT32_I.invoke(method);
4038    }
4039
4040    private void loadASSIGN_SUB(final BinaryNode binaryNode) {
4041        new BinaryOptimisticSelfAssignment(binaryNode) {
4042            @Override
4043            protected void op(final OptimisticOperation oo) {
4044                method.sub(oo.getProgramPoint());
4045            }
4046        }.store();
4047    }
4048
4049    /**
4050     * Helper class for binary arithmetic ops
4051     */
4052    private abstract class BinaryArith {
4053        protected abstract void op(int programPoint);
4054
4055        protected void evaluate(final BinaryNode node, final TypeBounds resultBounds) {
4056            final TypeBounds numericBounds = resultBounds.booleanToInt().objectToNumber();
4057            new OptimisticOperation(node, numericBounds) {
4058                @Override
4059                void loadStack() {
4060                    final TypeBounds operandBounds;
4061                    boolean forceConversionSeparation = false;
4062                    if(numericBounds.narrowest == Type.NUMBER) {
4063                        // Result should be double always. Propagate it into the operands so we don't have lots of I2D
4064                        // and L2D after operand evaluation.
4065                        assert numericBounds.widest == Type.NUMBER;
4066                        operandBounds = numericBounds;
4067                    } else {
4068                        final boolean isOptimistic = isValid(getProgramPoint());
4069                        if(isOptimistic || node.isTokenType(TokenType.DIV) || node.isTokenType(TokenType.MOD)) {
4070                            operandBounds = new TypeBounds(node.getType(), Type.NUMBER);
4071                        } else {
4072                            // Non-optimistic, non-FP subtraction or multiplication. Allow them to overflow.
4073                            operandBounds = new TypeBounds(Type.narrowest(node.getWidestOperandType(),
4074                                    numericBounds.widest), Type.NUMBER);
4075                            forceConversionSeparation = node.getWidestOperationType().narrowerThan(numericBounds.widest);
4076                        }
4077                    }
4078                    loadBinaryOperands(node.lhs(), node.rhs(), operandBounds, false, forceConversionSeparation);
4079                }
4080
4081                @Override
4082                void consumeStack() {
4083                    op(getProgramPoint());
4084                }
4085            }.emit();
4086        }
4087    }
4088
4089    private void loadBIT_AND(final BinaryNode binaryNode) {
4090        loadBinaryOperands(binaryNode);
4091        method.and();
4092    }
4093
4094    private void loadBIT_OR(final BinaryNode binaryNode) {
4095        // Optimize x|0 to (int)x
4096        if (isRhsZero(binaryNode)) {
4097            loadExpressionAsType(binaryNode.lhs(), Type.INT);
4098        } else {
4099            loadBinaryOperands(binaryNode);
4100            method.or();
4101        }
4102    }
4103
4104    private static boolean isRhsZero(final BinaryNode binaryNode) {
4105        final Expression rhs = binaryNode.rhs();
4106        return rhs instanceof LiteralNode && INT_ZERO.equals(((LiteralNode<?>)rhs).getValue());
4107    }
4108
4109    private void loadBIT_XOR(final BinaryNode binaryNode) {
4110        loadBinaryOperands(binaryNode);
4111        method.xor();
4112    }
4113
4114    private void loadCOMMARIGHT(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4115        loadAndDiscard(binaryNode.lhs());
4116        loadMaybeDiscard(binaryNode, binaryNode.rhs(), resultBounds);
4117    }
4118
4119    private void loadCOMMALEFT(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4120        loadMaybeDiscard(binaryNode, binaryNode.lhs(), resultBounds);
4121        loadAndDiscard(binaryNode.rhs());
4122    }
4123
4124    private void loadDIV(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4125        new BinaryArith() {
4126            @Override
4127            protected void op(final int programPoint) {
4128                method.div(programPoint);
4129            }
4130        }.evaluate(binaryNode, resultBounds);
4131    }
4132
4133    private void loadCmp(final BinaryNode binaryNode, final Condition cond) {
4134        loadComparisonOperands(binaryNode);
4135
4136        final Label trueLabel  = new Label("trueLabel");
4137        final Label afterLabel = new Label("skip");
4138
4139        method.conditionalJump(cond, trueLabel);
4140
4141        method.load(Boolean.FALSE);
4142        method._goto(afterLabel);
4143        method.label(trueLabel);
4144        method.load(Boolean.TRUE);
4145        method.label(afterLabel);
4146    }
4147
4148    private void loadMOD(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4149        new BinaryArith() {
4150            @Override
4151            protected void op(final int programPoint) {
4152                method.rem(programPoint);
4153            }
4154        }.evaluate(binaryNode, resultBounds);
4155    }
4156
4157    private void loadMUL(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4158        new BinaryArith() {
4159            @Override
4160            protected void op(final int programPoint) {
4161                method.mul(programPoint);
4162            }
4163        }.evaluate(binaryNode, resultBounds);
4164    }
4165
4166    private void loadSAR(final BinaryNode binaryNode) {
4167        loadBinaryOperands(binaryNode);
4168        method.sar();
4169    }
4170
4171    private void loadSHL(final BinaryNode binaryNode) {
4172        loadBinaryOperands(binaryNode);
4173        method.shl();
4174    }
4175
4176    private void loadSHR(final BinaryNode binaryNode) {
4177        // Optimize x >>> 0 to (uint)x
4178        if (isRhsZero(binaryNode)) {
4179            loadExpressionAsType(binaryNode.lhs(), Type.INT);
4180            toUint();
4181        } else {
4182            loadBinaryOperands(binaryNode);
4183            doSHR();
4184        }
4185    }
4186
4187    private void loadSUB(final BinaryNode binaryNode, final TypeBounds resultBounds) {
4188        new BinaryArith() {
4189            @Override
4190            protected void op(final int programPoint) {
4191                method.sub(programPoint);
4192            }
4193        }.evaluate(binaryNode, resultBounds);
4194    }
4195
4196    @Override
4197    public boolean enterLabelNode(final LabelNode labelNode) {
4198        labeledBlockBreakLiveLocals.push(lc.getUsedSlotCount());
4199        return true;
4200    }
4201
4202    @Override
4203    protected boolean enterDefault(final Node node) {
4204        throw new AssertionError("Code generator entered node of type " + node.getClass().getName());
4205    }
4206
4207    private void loadTernaryNode(final TernaryNode ternaryNode, final TypeBounds resultBounds) {
4208        final Expression test = ternaryNode.getTest();
4209        final JoinPredecessorExpression trueExpr  = ternaryNode.getTrueExpression();
4210        final JoinPredecessorExpression falseExpr = ternaryNode.getFalseExpression();
4211
4212        final Label falseLabel = new Label("ternary_false");
4213        final Label exitLabel  = new Label("ternary_exit");
4214
4215        final Type outNarrowest = Type.narrowest(resultBounds.widest, Type.generic(Type.widestReturnType(trueExpr.getType(), falseExpr.getType())));
4216        final TypeBounds outBounds = resultBounds.notNarrowerThan(outNarrowest);
4217
4218        emitBranch(test, falseLabel, false);
4219
4220        final boolean isCurrentDiscard = lc.popDiscardIfCurrent(ternaryNode);
4221        loadMaybeDiscard(isCurrentDiscard, trueExpr.getExpression(), outBounds);
4222        assert isCurrentDiscard || Type.generic(method.peekType()) == outBounds.narrowest;
4223        method.beforeJoinPoint(trueExpr);
4224        method._goto(exitLabel);
4225        method.label(falseLabel);
4226        loadMaybeDiscard(isCurrentDiscard, falseExpr.getExpression(), outBounds);
4227        assert isCurrentDiscard || Type.generic(method.peekType()) == outBounds.narrowest;
4228        method.beforeJoinPoint(falseExpr);
4229        method.label(exitLabel);
4230    }
4231
4232    /**
4233     * Generate all shared scope calls generated during codegen.
4234     */
4235    void generateScopeCalls() {
4236        for (final SharedScopeCall scopeAccess : lc.getScopeCalls()) {
4237            scopeAccess.generateScopeCall();
4238        }
4239    }
4240
4241    /**
4242     * Debug code used to print symbols
4243     *
4244     * @param block the block we are in
4245     * @param function the function we are in
4246     * @param ident identifier for block or function where applicable
4247     */
4248    private void printSymbols(final Block block, final FunctionNode function, final String ident) {
4249        if (compiler.getScriptEnvironment()._print_symbols || function.getFlag(FunctionNode.IS_PRINT_SYMBOLS)) {
4250            final PrintWriter out = compiler.getScriptEnvironment().getErr();
4251            out.println("[BLOCK in '" + ident + "']");
4252            if (!block.printSymbols(out)) {
4253                out.println("<no symbols>");
4254            }
4255            out.println();
4256        }
4257    }
4258
4259
4260    /**
4261     * The difference between a store and a self modifying store is that
4262     * the latter may load part of the target on the stack, e.g. the base
4263     * of an AccessNode or the base and index of an IndexNode. These are used
4264     * both as target and as an extra source. Previously it was problematic
4265     * for self modifying stores if the target/lhs didn't belong to one
4266     * of three trivial categories: IdentNode, AcessNodes, IndexNodes. In that
4267     * case it was evaluated and tagged as "resolved", which meant at the second
4268     * time the lhs of this store was read (e.g. in a = a (second) + b for a += b,
4269     * it would be evaluated to a nop in the scope and cause stack underflow
4270     *
4271     * see NASHORN-703
4272     *
4273     * @param <T>
4274     */
4275    private abstract class SelfModifyingStore<T extends Expression> extends Store<T> {
4276        protected SelfModifyingStore(final T assignNode, final Expression target) {
4277            super(assignNode, target);
4278        }
4279
4280        @Override
4281        protected boolean isSelfModifying() {
4282            return true;
4283        }
4284    }
4285
4286    /**
4287     * Helper class to generate stores
4288     */
4289    private abstract class Store<T extends Expression> {
4290
4291        /** An assignment node, e.g. x += y */
4292        protected final T assignNode;
4293
4294        /** The target node to store to, e.g. x */
4295        private final Expression target;
4296
4297        /** How deep on the stack do the arguments go if this generates an indy call */
4298        private int depth;
4299
4300        /** If we have too many arguments, we need temporary storage, this is stored in 'quick' */
4301        private IdentNode quick;
4302
4303        /**
4304         * Constructor
4305         *
4306         * @param assignNode the node representing the whole assignment
4307         * @param target     the target node of the assignment (destination)
4308         */
4309        protected Store(final T assignNode, final Expression target) {
4310            this.assignNode = assignNode;
4311            this.target = target;
4312        }
4313
4314        /**
4315         * Constructor
4316         *
4317         * @param assignNode the node representing the whole assignment
4318         */
4319        protected Store(final T assignNode) {
4320            this(assignNode, assignNode);
4321        }
4322
4323        /**
4324         * Is this a self modifying store operation, e.g. *= or ++
4325         * @return true if self modifying store
4326         */
4327        protected boolean isSelfModifying() {
4328            return false;
4329        }
4330
4331        private void prologue() {
4332            /*
4333             * This loads the parts of the target, e.g base and index. they are kept
4334             * on the stack throughout the store and used at the end to execute it
4335             */
4336
4337            target.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
4338                @Override
4339                public boolean enterIdentNode(final IdentNode node) {
4340                    if (node.getSymbol().isScope()) {
4341                        method.loadCompilerConstant(SCOPE);
4342                        depth += Type.SCOPE.getSlots();
4343                        assert depth == 1;
4344                    }
4345                    return false;
4346                }
4347
4348                private void enterBaseNode() {
4349                    assert target instanceof BaseNode : "error - base node " + target + " must be instanceof BaseNode";
4350                    final BaseNode   baseNode = (BaseNode)target;
4351                    final Expression base     = baseNode.getBase();
4352
4353                    loadExpressionAsObject(base);
4354                    depth += Type.OBJECT.getSlots();
4355                    assert depth == 1;
4356
4357                    if (isSelfModifying()) {
4358                        method.dup();
4359                    }
4360                }
4361
4362                @Override
4363                public boolean enterAccessNode(final AccessNode node) {
4364                    enterBaseNode();
4365                    return false;
4366                }
4367
4368                @Override
4369                public boolean enterIndexNode(final IndexNode node) {
4370                    enterBaseNode();
4371
4372                    final Expression index = node.getIndex();
4373                    if (!index.getType().isNumeric()) {
4374                        // could be boolean here as well
4375                        loadExpressionAsObject(index);
4376                    } else {
4377                        loadExpressionUnbounded(index);
4378                    }
4379                    depth += index.getType().getSlots();
4380
4381                    if (isSelfModifying()) {
4382                        //convert "base base index" to "base index base index"
4383                        method.dup(1);
4384                    }
4385
4386                    return false;
4387                }
4388
4389            });
4390        }
4391
4392        /**
4393         * Generates an extra local variable, always using the same slot, one that is available after the end of the
4394         * frame.
4395         *
4396         * @param type the type of the variable
4397         *
4398         * @return the quick variable
4399         */
4400        private IdentNode quickLocalVariable(final Type type) {
4401            final String name = lc.getCurrentFunction().uniqueName(QUICK_PREFIX.symbolName());
4402            final Symbol symbol = new Symbol(name, IS_INTERNAL | HAS_SLOT);
4403            symbol.setHasSlotFor(type);
4404            symbol.setFirstSlot(lc.quickSlot(type));
4405
4406            final IdentNode quickIdent = IdentNode.createInternalIdentifier(symbol).setType(type);
4407
4408            return quickIdent;
4409        }
4410
4411        // store the result that "lives on" after the op, e.g. "i" in i++ postfix.
4412        protected void storeNonDiscard() {
4413            if (lc.popDiscardIfCurrent(assignNode)) {
4414                assert assignNode.isAssignment();
4415                return;
4416            }
4417
4418            if (method.dup(depth) == null) {
4419                method.dup();
4420                final Type quickType = method.peekType();
4421                this.quick = quickLocalVariable(quickType);
4422                final Symbol quickSymbol = quick.getSymbol();
4423                method.storeTemp(quickType, quickSymbol.getFirstSlot());
4424            }
4425        }
4426
4427        private void epilogue() {
4428            /**
4429             * Take the original target args from the stack and use them
4430             * together with the value to be stored to emit the store code
4431             *
4432             * The case that targetSymbol is in scope (!hasSlot) and we actually
4433             * need to do a conversion on non-equivalent types exists, but is
4434             * very rare. See for example test/script/basic/access-specializer.js
4435             */
4436            target.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
4437                @Override
4438                protected boolean enterDefault(final Node node) {
4439                    throw new AssertionError("Unexpected node " + node + " in store epilogue");
4440                }
4441
4442                @Override
4443                public boolean enterIdentNode(final IdentNode node) {
4444                    final Symbol symbol = node.getSymbol();
4445                    assert symbol != null;
4446                    if (symbol.isScope()) {
4447                        final int flags = getScopeCallSiteFlags(symbol);
4448                        if (isFastScope(symbol)) {
4449                            storeFastScopeVar(symbol, flags);
4450                        } else {
4451                            method.dynamicSet(node.getName(), flags, false);
4452                        }
4453                    } else {
4454                        final Type storeType = assignNode.getType();
4455                        if (symbol.hasSlotFor(storeType)) {
4456                            // Only emit a convert for a store known to be live; converts for dead stores can
4457                            // give us an unnecessary ClassCastException.
4458                            method.convert(storeType);
4459                        }
4460                        storeIdentWithCatchConversion(node, storeType);
4461                    }
4462                    return false;
4463
4464                }
4465
4466                @Override
4467                public boolean enterAccessNode(final AccessNode node) {
4468                    method.dynamicSet(node.getProperty(), getCallSiteFlags(), node.isIndex());
4469                    return false;
4470                }
4471
4472                @Override
4473                public boolean enterIndexNode(final IndexNode node) {
4474                    method.dynamicSetIndex(getCallSiteFlags());
4475                    return false;
4476                }
4477            });
4478
4479
4480            // whatever is on the stack now is the final answer
4481        }
4482
4483        protected abstract void evaluate();
4484
4485        void store() {
4486            if (target instanceof IdentNode) {
4487                checkTemporalDeadZone((IdentNode)target);
4488            }
4489            prologue();
4490            evaluate(); // leaves an operation of whatever the operationType was on the stack
4491            storeNonDiscard();
4492            epilogue();
4493            if (quick != null) {
4494                method.load(quick);
4495            }
4496        }
4497    }
4498
4499    private void newFunctionObject(final FunctionNode functionNode, final boolean addInitializer) {
4500        assert lc.peek() == functionNode;
4501
4502        final RecompilableScriptFunctionData data = compiler.getScriptFunctionData(functionNode.getId());
4503
4504        if (functionNode.isProgram() && !compiler.isOnDemandCompilation()) {
4505            final MethodEmitter createFunction = functionNode.getCompileUnit().getClassEmitter().method(
4506                    EnumSet.of(Flag.PUBLIC, Flag.STATIC), CREATE_PROGRAM_FUNCTION.symbolName(),
4507                    ScriptFunction.class, ScriptObject.class);
4508            createFunction.begin();
4509            loadConstantsAndIndex(data, createFunction);
4510            createFunction.load(SCOPE_TYPE, 0);
4511            createFunction.invoke(CREATE_FUNCTION_OBJECT);
4512            createFunction._return();
4513            createFunction.end();
4514        }
4515
4516        if (addInitializer && !compiler.isOnDemandCompilation()) {
4517            functionNode.getCompileUnit().addFunctionInitializer(data, functionNode);
4518        }
4519
4520        // We don't emit a ScriptFunction on stack for the outermost compiled function (as there's no code being
4521        // generated in its outer context that'd need it as a callee).
4522        if (lc.getOutermostFunction() == functionNode) {
4523            return;
4524        }
4525
4526        loadConstantsAndIndex(data, method);
4527
4528        if (functionNode.needsParentScope()) {
4529            method.loadCompilerConstant(SCOPE);
4530            method.invoke(CREATE_FUNCTION_OBJECT);
4531        } else {
4532            method.invoke(CREATE_FUNCTION_OBJECT_NO_SCOPE);
4533        }
4534    }
4535
4536    // calls on Global class.
4537    private MethodEmitter globalInstance() {
4538        return method.invokestatic(GLOBAL_OBJECT, "instance", "()L" + GLOBAL_OBJECT + ';');
4539    }
4540
4541    private MethodEmitter globalAllocateArguments() {
4542        return method.invokestatic(GLOBAL_OBJECT, "allocateArguments", methodDescriptor(ScriptObject.class, Object[].class, Object.class, int.class));
4543    }
4544
4545    private MethodEmitter globalNewRegExp() {
4546        return method.invokestatic(GLOBAL_OBJECT, "newRegExp", methodDescriptor(Object.class, String.class, String.class));
4547    }
4548
4549    private MethodEmitter globalRegExpCopy() {
4550        return method.invokestatic(GLOBAL_OBJECT, "regExpCopy", methodDescriptor(Object.class, Object.class));
4551    }
4552
4553    private MethodEmitter globalAllocateArray(final ArrayType type) {
4554        //make sure the native array is treated as an array type
4555        return method.invokestatic(GLOBAL_OBJECT, "allocate", "(" + type.getDescriptor() + ")Ljdk/nashorn/internal/objects/NativeArray;");
4556    }
4557
4558    private MethodEmitter globalIsEval() {
4559        return method.invokestatic(GLOBAL_OBJECT, "isEval", methodDescriptor(boolean.class, Object.class));
4560    }
4561
4562    private MethodEmitter globalReplaceLocationPropertyPlaceholder() {
4563        return method.invokestatic(GLOBAL_OBJECT, "replaceLocationPropertyPlaceholder", methodDescriptor(Object.class, Object.class, Object.class));
4564    }
4565
4566    private MethodEmitter globalCheckObjectCoercible() {
4567        return method.invokestatic(GLOBAL_OBJECT, "checkObjectCoercible", methodDescriptor(void.class, Object.class));
4568    }
4569
4570    private MethodEmitter globalDirectEval() {
4571        return method.invokestatic(GLOBAL_OBJECT, "directEval",
4572                methodDescriptor(Object.class, Object.class, Object.class, Object.class, Object.class, boolean.class));
4573    }
4574
4575    private abstract class OptimisticOperation {
4576        private final boolean isOptimistic;
4577        // expression and optimistic are the same reference
4578        private final Expression expression;
4579        private final Optimistic optimistic;
4580        private final TypeBounds resultBounds;
4581
4582        OptimisticOperation(final Optimistic optimistic, final TypeBounds resultBounds) {
4583            this.optimistic = optimistic;
4584            this.expression = (Expression)optimistic;
4585            this.resultBounds = resultBounds;
4586            this.isOptimistic = isOptimistic(optimistic) && useOptimisticTypes() &&
4587                    // Operation is only effectively optimistic if its type, after being coerced into the result bounds
4588                    // is narrower than the upper bound.
4589                    resultBounds.within(Type.generic(((Expression)optimistic).getType())).narrowerThan(resultBounds.widest);
4590        }
4591
4592        MethodEmitter emit() {
4593            return emit(0);
4594        }
4595
4596        MethodEmitter emit(final int ignoredArgCount) {
4597            final int     programPoint                  = optimistic.getProgramPoint();
4598            final boolean optimisticOrContinuation      = isOptimistic || isContinuationEntryPoint(programPoint);
4599            final boolean currentContinuationEntryPoint = isCurrentContinuationEntryPoint(programPoint);
4600            final int     stackSizeOnEntry              = method.getStackSize() - ignoredArgCount;
4601
4602            // First store the values on the stack opportunistically into local variables. Doing it before loadStack()
4603            // allows us to not have to pop/load any arguments that are pushed onto it by loadStack() in the second
4604            // storeStack().
4605            storeStack(ignoredArgCount, optimisticOrContinuation);
4606
4607            // Now, load the stack
4608            loadStack();
4609
4610            // Now store the values on the stack ultimately into local variables. In vast majority of cases, this is
4611            // (aside from creating the local types map) a no-op, as the first opportunistic stack store will already
4612            // store all variables. However, there can be operations in the loadStack() that invalidate some of the
4613            // stack stores, e.g. in "x[i] = x[++i]", "++i" will invalidate the already stored value for "i". In such
4614            // unfortunate cases this second storeStack() will restore the invariant that everything on the stack is
4615            // stored into a local variable, although at the cost of doing a store/load on the loaded arguments as well.
4616            final int liveLocalsCount = storeStack(method.getStackSize() - stackSizeOnEntry, optimisticOrContinuation);
4617            assert optimisticOrContinuation == (liveLocalsCount != -1);
4618
4619            final Label beginTry;
4620            final Label catchLabel;
4621            final Label afterConsumeStack = isOptimistic || currentContinuationEntryPoint ? new Label("after_consume_stack") : null;
4622            if(isOptimistic) {
4623                beginTry = new Label("try_optimistic");
4624                final String catchLabelName = (afterConsumeStack == null ? "" : afterConsumeStack.toString()) + "_handler";
4625                catchLabel = new Label(catchLabelName);
4626                method.label(beginTry);
4627            } else {
4628                beginTry = catchLabel = null;
4629            }
4630
4631            consumeStack();
4632
4633            if(isOptimistic) {
4634                method._try(beginTry, afterConsumeStack, catchLabel, UnwarrantedOptimismException.class);
4635            }
4636
4637            if(isOptimistic || currentContinuationEntryPoint) {
4638                method.label(afterConsumeStack);
4639
4640                final int[] localLoads = method.getLocalLoadsOnStack(0, stackSizeOnEntry);
4641                assert everyStackValueIsLocalLoad(localLoads) : Arrays.toString(localLoads) + ", " + stackSizeOnEntry + ", " + ignoredArgCount;
4642                final List<Type> localTypesList = method.getLocalVariableTypes();
4643                final int usedLocals = method.getUsedSlotsWithLiveTemporaries();
4644                final List<Type> localTypes = method.getWidestLiveLocals(localTypesList.subList(0, usedLocals));
4645                assert everyLocalLoadIsValid(localLoads, usedLocals) : Arrays.toString(localLoads) + " ~ " + localTypes;
4646
4647                if(isOptimistic) {
4648                    addUnwarrantedOptimismHandlerLabel(localTypes, catchLabel);
4649                }
4650                if(currentContinuationEntryPoint) {
4651                    final ContinuationInfo ci = getContinuationInfo();
4652                    assert ci != null : "no continuation info found for " + lc.getCurrentFunction();
4653                    assert !ci.hasTargetLabel(); // No duplicate program points
4654                    ci.setTargetLabel(afterConsumeStack);
4655                    ci.getHandlerLabel().markAsOptimisticContinuationHandlerFor(afterConsumeStack);
4656                    // Can't rely on targetLabel.stack.localVariableTypes.length, as it can be higher due to effectively
4657                    // dead local variables.
4658                    ci.lvarCount = localTypes.size();
4659                    ci.setStackStoreSpec(localLoads);
4660                    ci.setStackTypes(Arrays.copyOf(method.getTypesFromStack(method.getStackSize()), stackSizeOnEntry));
4661                    assert ci.getStackStoreSpec().length == ci.getStackTypes().length;
4662                    ci.setReturnValueType(method.peekType());
4663                    ci.lineNumber = getLastLineNumber();
4664                    ci.catchLabel = catchLabels.peek();
4665                }
4666            }
4667            return method;
4668        }
4669
4670        /**
4671         * Stores the current contents of the stack into local variables so they are not lost before invoking something that
4672         * can result in an {@code UnwarantedOptimizationException}.
4673         * @param ignoreArgCount the number of topmost arguments on stack to ignore when deciding on the shape of the catch
4674         * block. Those are used in the situations when we could not place the call to {@code storeStack} early enough
4675         * (before emitting code for pushing the arguments that the optimistic call will pop). This is admittedly a
4676         * deficiency in the design of the code generator when it deals with self-assignments and we should probably look
4677         * into fixing it.
4678         * @return types of the significant local variables after the stack was stored (types for local variables used
4679         * for temporary storage of ignored arguments are not returned).
4680         * @param optimisticOrContinuation if false, this method should not execute
4681         * a label for a catch block for the {@code UnwarantedOptimizationException}, suitable for capturing the
4682         * currently live local variables, tailored to their types.
4683         */
4684        private int storeStack(final int ignoreArgCount, final boolean optimisticOrContinuation) {
4685            if(!optimisticOrContinuation) {
4686                return -1; // NOTE: correct value to return is lc.getUsedSlotCount(), but it wouldn't be used anyway
4687            }
4688
4689            final int stackSize = method.getStackSize();
4690            final Type[] stackTypes = method.getTypesFromStack(stackSize);
4691            final int[] localLoadsOnStack = method.getLocalLoadsOnStack(0, stackSize);
4692            final int usedSlots = method.getUsedSlotsWithLiveTemporaries();
4693
4694            final int firstIgnored = stackSize - ignoreArgCount;
4695            // Find the first value on the stack (from the bottom) that is not a load from a local variable.
4696            int firstNonLoad = 0;
4697            while(firstNonLoad < firstIgnored && localLoadsOnStack[firstNonLoad] != Label.Stack.NON_LOAD) {
4698                firstNonLoad++;
4699            }
4700
4701            // Only do the store/load if first non-load is not an ignored argument. Otherwise, do nothing and return
4702            // the number of used slots as the number of live local variables.
4703            if(firstNonLoad >= firstIgnored) {
4704                return usedSlots;
4705            }
4706
4707            // Find the number of new temporary local variables that we need; it's the number of values on the stack that
4708            // are not direct loads of existing local variables.
4709            int tempSlotsNeeded = 0;
4710            for(int i = firstNonLoad; i < stackSize; ++i) {
4711                if(localLoadsOnStack[i] == Label.Stack.NON_LOAD) {
4712                    tempSlotsNeeded += stackTypes[i].getSlots();
4713                }
4714            }
4715
4716            // Ensure all values on the stack that weren't directly loaded from a local variable are stored in a local
4717            // variable. We're starting from highest local variable index, so that in case ignoreArgCount > 0 the ignored
4718            // ones end up at the end of the local variable table.
4719            int lastTempSlot = usedSlots + tempSlotsNeeded;
4720            int ignoreSlotCount = 0;
4721            for(int i = stackSize; i -- > firstNonLoad;) {
4722                final int loadSlot = localLoadsOnStack[i];
4723                if(loadSlot == Label.Stack.NON_LOAD) {
4724                    final Type type = stackTypes[i];
4725                    final int slots = type.getSlots();
4726                    lastTempSlot -= slots;
4727                    if(i >= firstIgnored) {
4728                        ignoreSlotCount += slots;
4729                    }
4730                    method.storeTemp(type, lastTempSlot);
4731                } else {
4732                    method.pop();
4733                }
4734            }
4735            assert lastTempSlot == usedSlots; // used all temporary locals
4736
4737            final List<Type> localTypesList = method.getLocalVariableTypes();
4738
4739            // Load values back on stack.
4740            for(int i = firstNonLoad; i < stackSize; ++i) {
4741                final int loadSlot = localLoadsOnStack[i];
4742                final Type stackType = stackTypes[i];
4743                final boolean isLoad = loadSlot != Label.Stack.NON_LOAD;
4744                final int lvarSlot = isLoad ? loadSlot : lastTempSlot;
4745                final Type lvarType = localTypesList.get(lvarSlot);
4746                method.load(lvarType, lvarSlot);
4747                if(isLoad) {
4748                    // Conversion operators (I2L etc.) preserve "load"-ness of the value despite the fact that, in the
4749                    // strict sense they are creating a derived value from the loaded value. This special behavior of
4750                    // on-stack conversion operators is necessary to accommodate for differences in local variable types
4751                    // after deoptimization; having a conversion operator throw away "load"-ness would create different
4752                    // local variable table shapes between optimism-failed code and its deoptimized rest-of method).
4753                    // After we load the value back, we need to redo the conversion to the stack type if stack type is
4754                    // different.
4755                    // NOTE: this would only strictly be necessary for widening conversions (I2L, L2D, I2D), and not for
4756                    // narrowing ones (L2I, D2L, D2I) as only widening conversions are the ones that can get eliminated
4757                    // in a deoptimized method, as their original input argument got widened. Maybe experiment with
4758                    // throwing away "load"-ness for narrowing conversions in MethodEmitter.convert()?
4759                    method.convert(stackType);
4760                } else {
4761                    // temporary stores never needs a convert, as their type is always the same as the stack type.
4762                    assert lvarType == stackType;
4763                    lastTempSlot += lvarType.getSlots();
4764                }
4765            }
4766            // used all temporaries
4767            assert lastTempSlot == usedSlots + tempSlotsNeeded;
4768
4769            return lastTempSlot - ignoreSlotCount;
4770        }
4771
4772        private void addUnwarrantedOptimismHandlerLabel(final List<Type> localTypes, final Label label) {
4773            final String lvarTypesDescriptor = getLvarTypesDescriptor(localTypes);
4774            final Map<String, Collection<Label>> unwarrantedOptimismHandlers = lc.getUnwarrantedOptimismHandlers();
4775            Collection<Label> labels = unwarrantedOptimismHandlers.get(lvarTypesDescriptor);
4776            if(labels == null) {
4777                labels = new LinkedList<>();
4778                unwarrantedOptimismHandlers.put(lvarTypesDescriptor, labels);
4779            }
4780            method.markLabelAsOptimisticCatchHandler(label, localTypes.size());
4781            labels.add(label);
4782        }
4783
4784        abstract void loadStack();
4785
4786        // Make sure that whatever indy call site you emit from this method uses {@code getCallSiteFlagsOptimistic(node)}
4787        // or otherwise ensure optimistic flag is correctly set in the call site, otherwise it doesn't make much sense
4788        // to use OptimisticExpression for emitting it.
4789        abstract void consumeStack();
4790
4791        /**
4792         * Emits the correct dynamic getter code. Normally just delegates to method emitter, except when the target
4793         * expression is optimistic, and the desired type is narrower than the optimistic type. In that case, it'll emit a
4794         * dynamic getter with its original optimistic type, and explicitly insert a narrowing conversion. This way we can
4795         * preserve the optimism of the values even if they're subsequently immediately coerced into a narrower type. This
4796         * is beneficial because in this case we can still presume that since the original getter was optimistic, the
4797         * conversion has no side effects.
4798         * @param name the name of the property being get
4799         * @param flags call site flags
4800         * @param isMethod whether we're preferably retrieving a function
4801         * @return the current method emitter
4802         */
4803        MethodEmitter dynamicGet(final String name, final int flags, final boolean isMethod, final boolean isIndex) {
4804            if(isOptimistic) {
4805                return method.dynamicGet(getOptimisticCoercedType(), name, getOptimisticFlags(flags), isMethod, isIndex);
4806            }
4807            return method.dynamicGet(resultBounds.within(expression.getType()), name, nonOptimisticFlags(flags), isMethod, isIndex);
4808        }
4809
4810        MethodEmitter dynamicGetIndex(final int flags, final boolean isMethod) {
4811            if(isOptimistic) {
4812                return method.dynamicGetIndex(getOptimisticCoercedType(), getOptimisticFlags(flags), isMethod);
4813            }
4814            return method.dynamicGetIndex(resultBounds.within(expression.getType()), nonOptimisticFlags(flags), isMethod);
4815        }
4816
4817        MethodEmitter dynamicCall(final int argCount, final int flags, final String msg) {
4818            if (isOptimistic) {
4819                return method.dynamicCall(getOptimisticCoercedType(), argCount, getOptimisticFlags(flags), msg);
4820            }
4821            return method.dynamicCall(resultBounds.within(expression.getType()), argCount, nonOptimisticFlags(flags), msg);
4822        }
4823
4824        int getOptimisticFlags(final int flags) {
4825            return flags | CALLSITE_OPTIMISTIC | (optimistic.getProgramPoint() << CALLSITE_PROGRAM_POINT_SHIFT); //encode program point in high bits
4826        }
4827
4828        int getProgramPoint() {
4829            return isOptimistic ? optimistic.getProgramPoint() : INVALID_PROGRAM_POINT;
4830        }
4831
4832        void convertOptimisticReturnValue() {
4833            if (isOptimistic) {
4834                final Type optimisticType = getOptimisticCoercedType();
4835                if(!optimisticType.isObject()) {
4836                    method.load(optimistic.getProgramPoint());
4837                    if(optimisticType.isInteger()) {
4838                        method.invoke(ENSURE_INT);
4839                    } else if(optimisticType.isLong()) {
4840                        method.invoke(ENSURE_LONG);
4841                    } else if(optimisticType.isNumber()) {
4842                        method.invoke(ENSURE_NUMBER);
4843                    } else {
4844                        throw new AssertionError(optimisticType);
4845                    }
4846                }
4847            }
4848        }
4849
4850        void replaceCompileTimeProperty() {
4851            final IdentNode identNode = (IdentNode)expression;
4852            final String name = identNode.getSymbol().getName();
4853            if (CompilerConstants.__FILE__.name().equals(name)) {
4854                replaceCompileTimeProperty(getCurrentSource().getName());
4855            } else if (CompilerConstants.__DIR__.name().equals(name)) {
4856                replaceCompileTimeProperty(getCurrentSource().getBase());
4857            } else if (CompilerConstants.__LINE__.name().equals(name)) {
4858                replaceCompileTimeProperty(getCurrentSource().getLine(identNode.position()));
4859            }
4860        }
4861
4862        /**
4863         * When an ident with name __FILE__, __DIR__, or __LINE__ is loaded, we'll try to look it up as any other
4864         * identifier. However, if it gets all the way up to the Global object, it will send back a special value that
4865         * represents a placeholder for these compile-time location properties. This method will generate code that loads
4866         * the value of the compile-time location property and then invokes a method in Global that will replace the
4867         * placeholder with the value. Effectively, if the symbol for these properties is defined anywhere in the lexical
4868         * scope, they take precedence, but if they aren't, then they resolve to the compile-time location property.
4869         * @param propertyValue the actual value of the property
4870         */
4871        private void replaceCompileTimeProperty(final Object propertyValue) {
4872            assert method.peekType().isObject();
4873            if(propertyValue instanceof String || propertyValue == null) {
4874                method.load((String)propertyValue);
4875            } else if(propertyValue instanceof Integer) {
4876                method.load(((Integer)propertyValue));
4877                method.convert(Type.OBJECT);
4878            } else {
4879                throw new AssertionError();
4880            }
4881            globalReplaceLocationPropertyPlaceholder();
4882            convertOptimisticReturnValue();
4883        }
4884
4885        /**
4886         * Returns the type that should be used as the return type of the dynamic invocation that is emitted as the code
4887         * for the current optimistic operation. If the type bounds is exact boolean or narrower than the expression's
4888         * optimistic type, then the optimistic type is returned, otherwise the coercing type. Effectively, this method
4889         * allows for moving the coercion into the optimistic type when it won't adversely affect the optimistic
4890         * evaluation semantics, and for preserving the optimistic type and doing a separate coercion when it would
4891         * affect it.
4892         * @return
4893         */
4894        private Type getOptimisticCoercedType() {
4895            final Type optimisticType = expression.getType();
4896            assert resultBounds.widest.widerThan(optimisticType);
4897            final Type narrowest = resultBounds.narrowest;
4898
4899            if(narrowest.isBoolean() || narrowest.narrowerThan(optimisticType)) {
4900                assert !optimisticType.isObject();
4901                return optimisticType;
4902            }
4903            assert !narrowest.isObject();
4904            return narrowest;
4905        }
4906    }
4907
4908    private static boolean isOptimistic(final Optimistic optimistic) {
4909        if(!optimistic.canBeOptimistic()) {
4910            return false;
4911        }
4912        final Expression expr = (Expression)optimistic;
4913        return expr.getType().narrowerThan(expr.getWidestOperationType());
4914    }
4915
4916    private static boolean everyLocalLoadIsValid(final int[] loads, final int localCount) {
4917        for (final int load : loads) {
4918            if(load < 0 || load >= localCount) {
4919                return false;
4920            }
4921        }
4922        return true;
4923    }
4924
4925    private static boolean everyStackValueIsLocalLoad(final int[] loads) {
4926        for (final int load : loads) {
4927            if(load == Label.Stack.NON_LOAD) {
4928                return false;
4929            }
4930        }
4931        return true;
4932    }
4933
4934    private String getLvarTypesDescriptor(final List<Type> localVarTypes) {
4935        final int count = localVarTypes.size();
4936        final StringBuilder desc = new StringBuilder(count);
4937        for(int i = 0; i < count;) {
4938            i += appendType(desc, localVarTypes.get(i));
4939        }
4940        return method.markSymbolBoundariesInLvarTypesDescriptor(desc.toString());
4941    }
4942
4943    private static int appendType(final StringBuilder b, final Type t) {
4944        b.append(t.getBytecodeStackType());
4945        return t.getSlots();
4946    }
4947
4948    private static int countSymbolsInLvarTypeDescriptor(final String lvarTypeDescriptor) {
4949        int count = 0;
4950        for(int i = 0; i < lvarTypeDescriptor.length(); ++i) {
4951            if(Character.isUpperCase(lvarTypeDescriptor.charAt(i))) {
4952                ++count;
4953            }
4954        }
4955        return count;
4956
4957    }
4958    /**
4959     * Generates all the required {@code UnwarrantedOptimismException} handlers for the current function. The employed
4960     * strategy strives to maximize code reuse. Every handler constructs an array to hold the local variables, then
4961     * fills in some trailing part of the local variables (those for which it has a unique suffix in the descriptor),
4962     * then jumps to a handler for a prefix that's shared with other handlers. A handler that fills up locals up to
4963     * position 0 will not jump to a prefix handler (as it has no prefix), but instead end with constructing and
4964     * throwing a {@code RewriteException}. Since we lexicographically sort the entries, we only need to check every
4965     * entry to its immediately preceding one for longest matching prefix.
4966     * @return true if there is at least one exception handler
4967     */
4968    private boolean generateUnwarrantedOptimismExceptionHandlers(final FunctionNode fn) {
4969        if(!useOptimisticTypes()) {
4970            return false;
4971        }
4972
4973        // Take the mapping of lvarSpecs -> labels, and turn them into a descending lexicographically sorted list of
4974        // handler specifications.
4975        final Map<String, Collection<Label>> unwarrantedOptimismHandlers = lc.popUnwarrantedOptimismHandlers();
4976        if(unwarrantedOptimismHandlers.isEmpty()) {
4977            return false;
4978        }
4979
4980        method.lineNumber(0);
4981
4982        final List<OptimismExceptionHandlerSpec> handlerSpecs = new ArrayList<>(unwarrantedOptimismHandlers.size() * 4/3);
4983        for(final String spec: unwarrantedOptimismHandlers.keySet()) {
4984            handlerSpecs.add(new OptimismExceptionHandlerSpec(spec, true));
4985        }
4986        Collections.sort(handlerSpecs, Collections.reverseOrder());
4987
4988        // Map of local variable specifications to labels for populating the array for that local variable spec.
4989        final Map<String, Label> delegationLabels = new HashMap<>();
4990
4991        // Do everything in a single pass over the handlerSpecs list. Note that the list can actually grow as we're
4992        // passing through it as we might add new prefix handlers into it, so can't hoist size() outside of the loop.
4993        for(int handlerIndex = 0; handlerIndex < handlerSpecs.size(); ++handlerIndex) {
4994            final OptimismExceptionHandlerSpec spec = handlerSpecs.get(handlerIndex);
4995            final String lvarSpec = spec.lvarSpec;
4996            if(spec.catchTarget) {
4997                assert !method.isReachable();
4998                // Start a catch block and assign the labels for this lvarSpec with it.
4999                method._catch(unwarrantedOptimismHandlers.get(lvarSpec));
5000                // This spec is a catch target, so emit array creation code. The length of the array is the number of
5001                // symbols - the number of uppercase characters.
5002                method.load(countSymbolsInLvarTypeDescriptor(lvarSpec));
5003                method.newarray(Type.OBJECT_ARRAY);
5004            }
5005            if(spec.delegationTarget) {
5006                // If another handler can delegate to this handler as its prefix, then put a jump target here for the
5007                // shared code (after the array creation code, which is never shared).
5008                method.label(delegationLabels.get(lvarSpec)); // label must exist
5009            }
5010
5011            final boolean lastHandler = handlerIndex == handlerSpecs.size() - 1;
5012
5013            int lvarIndex;
5014            final int firstArrayIndex;
5015            final int firstLvarIndex;
5016            Label delegationLabel;
5017            final String commonLvarSpec;
5018            if(lastHandler) {
5019                // Last handler block, doesn't delegate to anything.
5020                lvarIndex = 0;
5021                firstLvarIndex = 0;
5022                firstArrayIndex = 0;
5023                delegationLabel = null;
5024                commonLvarSpec = null;
5025            } else {
5026                // Not yet the last handler block, will definitely delegate to another handler; let's figure out which
5027                // one. It can be an already declared handler further down the list, or it might need to declare a new
5028                // prefix handler.
5029
5030                // Since we're lexicographically ordered, the common prefix handler is defined by the common prefix of
5031                // this handler and the next handler on the list.
5032                final int nextHandlerIndex = handlerIndex + 1;
5033                final String nextLvarSpec = handlerSpecs.get(nextHandlerIndex).lvarSpec;
5034                commonLvarSpec = commonPrefix(lvarSpec, nextLvarSpec);
5035                // We don't chop symbols in half
5036                assert Character.isUpperCase(commonLvarSpec.charAt(commonLvarSpec.length() - 1));
5037
5038                // Let's find if we already have a declaration for such handler, or we need to insert it.
5039                {
5040                    boolean addNewHandler = true;
5041                    int commonHandlerIndex = nextHandlerIndex;
5042                    for(; commonHandlerIndex < handlerSpecs.size(); ++commonHandlerIndex) {
5043                        final OptimismExceptionHandlerSpec forwardHandlerSpec = handlerSpecs.get(commonHandlerIndex);
5044                        final String forwardLvarSpec = forwardHandlerSpec.lvarSpec;
5045                        if(forwardLvarSpec.equals(commonLvarSpec)) {
5046                            // We already have a handler for the common prefix.
5047                            addNewHandler = false;
5048                            // Make sure we mark it as a delegation target.
5049                            forwardHandlerSpec.delegationTarget = true;
5050                            break;
5051                        } else if(!forwardLvarSpec.startsWith(commonLvarSpec)) {
5052                            break;
5053                        }
5054                    }
5055                    if(addNewHandler) {
5056                        // We need to insert a common prefix handler. Note handlers created with catchTarget == false
5057                        // will automatically have delegationTarget == true (because that's the only reason for their
5058                        // existence).
5059                        handlerSpecs.add(commonHandlerIndex, new OptimismExceptionHandlerSpec(commonLvarSpec, false));
5060                    }
5061                }
5062
5063                firstArrayIndex = countSymbolsInLvarTypeDescriptor(commonLvarSpec);
5064                lvarIndex = 0;
5065                for(int j = 0; j < commonLvarSpec.length(); ++j) {
5066                    lvarIndex += CodeGeneratorLexicalContext.getTypeForSlotDescriptor(commonLvarSpec.charAt(j)).getSlots();
5067                }
5068                firstLvarIndex = lvarIndex;
5069
5070                // Create a delegation label if not already present
5071                delegationLabel = delegationLabels.get(commonLvarSpec);
5072                if(delegationLabel == null) {
5073                    // uo_pa == "unwarranted optimism, populate array"
5074                    delegationLabel = new Label("uo_pa_" + commonLvarSpec);
5075                    delegationLabels.put(commonLvarSpec, delegationLabel);
5076                }
5077            }
5078
5079            // Load local variables handled by this handler on stack
5080            int args = 0;
5081            boolean symbolHadValue = false;
5082            for(int typeIndex = commonLvarSpec == null ? 0 : commonLvarSpec.length(); typeIndex < lvarSpec.length(); ++typeIndex) {
5083                final char typeDesc = lvarSpec.charAt(typeIndex);
5084                final Type lvarType = CodeGeneratorLexicalContext.getTypeForSlotDescriptor(typeDesc);
5085                if (!lvarType.isUnknown()) {
5086                    method.load(lvarType, lvarIndex);
5087                    symbolHadValue = true;
5088                    args++;
5089                } else if(typeDesc == 'U' && !symbolHadValue) {
5090                    // Symbol boundary with undefined last value. Check if all previous values for this symbol were also
5091                    // undefined; if so, emit one explicit Undefined. This serves to ensure that we're emiting exactly
5092                    // one value for every symbol that uses local slots. While we could in theory ignore symbols that
5093                    // are undefined (in other words, dead) at the point where this exception was thrown, unfortunately
5094                    // we can't do it in practice. The reason for this is that currently our liveness analysis is
5095                    // coarse (it can determine whether a symbol has not been read with a particular type anywhere in
5096                    // the function being compiled, but that's it), and a symbol being promoted to Object due to a
5097                    // deoptimization will suddenly show up as "live for Object type", and previously dead U->O
5098                    // conversions on loop entries will suddenly become alive in the deoptimized method which will then
5099                    // expect a value for that slot in its continuation handler. If we had precise liveness analysis, we
5100                    // could go back to excluding known dead symbols from the payload of the RewriteException.
5101                    if(method.peekType() == Type.UNDEFINED) {
5102                        method.dup();
5103                    } else {
5104                        method.loadUndefined(Type.OBJECT);
5105                    }
5106                    args++;
5107                }
5108                if(Character.isUpperCase(typeDesc)) {
5109                    // Reached symbol boundary; reset flag for the next symbol.
5110                    symbolHadValue = false;
5111                }
5112                lvarIndex += lvarType.getSlots();
5113            }
5114            assert args > 0;
5115            // Delegate actual storing into array to an array populator utility method.
5116            //on the stack:
5117            // object array to be populated
5118            // start index
5119            // a lot of types
5120            method.dynamicArrayPopulatorCall(args + 1, firstArrayIndex);
5121            if(delegationLabel != null) {
5122                // We cascade to a prefix handler to fill out the rest of the local variables and throw the
5123                // RewriteException.
5124                assert !lastHandler;
5125                assert commonLvarSpec != null;
5126                // Must undefine the local variables that we have already processed for the sake of correct join on the
5127                // delegate label
5128                method.undefineLocalVariables(firstLvarIndex, true);
5129                final OptimismExceptionHandlerSpec nextSpec = handlerSpecs.get(handlerIndex + 1);
5130                // If the delegate immediately follows, and it's not a catch target (so it doesn't have array setup
5131                // code) don't bother emitting a jump, as we'd just jump to the next instruction.
5132                if(!nextSpec.lvarSpec.equals(commonLvarSpec) || nextSpec.catchTarget) {
5133                    method._goto(delegationLabel);
5134                }
5135            } else {
5136                assert lastHandler;
5137                // Nothing to delegate to, so this handler must create and throw the RewriteException.
5138                // At this point we have the UnwarrantedOptimismException and the Object[] with local variables on
5139                // stack. We need to create a RewriteException, push two references to it below the constructor
5140                // arguments, invoke the constructor, and throw the exception.
5141                loadConstant(getByteCodeSymbolNames(fn));
5142                if (isRestOf()) {
5143                    loadConstant(getContinuationEntryPoints());
5144                    method.invoke(CREATE_REWRITE_EXCEPTION_REST_OF);
5145                } else {
5146                    method.invoke(CREATE_REWRITE_EXCEPTION);
5147                }
5148                method.athrow();
5149            }
5150        }
5151        return true;
5152    }
5153
5154    private static String[] getByteCodeSymbolNames(final FunctionNode fn) {
5155        // Only names of local variables on the function level are captured. This information is used to reduce
5156        // deoptimizations, so as much as we can capture will help. We rely on the fact that function wide variables are
5157        // all live all the time, so the array passed to rewrite exception contains one element for every slotted symbol
5158        // here.
5159        final List<String> names = new ArrayList<>();
5160        for (final Symbol symbol: fn.getBody().getSymbols()) {
5161            if (symbol.hasSlot()) {
5162                if (symbol.isScope()) {
5163                    // slot + scope can only be true for parameters
5164                    assert symbol.isParam();
5165                    names.add(null);
5166                } else {
5167                    names.add(symbol.getName());
5168                }
5169            }
5170        }
5171        return names.toArray(new String[names.size()]);
5172    }
5173
5174    private static String commonPrefix(final String s1, final String s2) {
5175        final int l1 = s1.length();
5176        final int l = Math.min(l1, s2.length());
5177        int lms = -1; // last matching symbol
5178        for(int i = 0; i < l; ++i) {
5179            final char c1 = s1.charAt(i);
5180            if(c1 != s2.charAt(i)) {
5181                return s1.substring(0, lms + 1);
5182            } else if(Character.isUpperCase(c1)) {
5183                lms = i;
5184            }
5185        }
5186        return l == l1 ? s1 : s2;
5187    }
5188
5189    private static class OptimismExceptionHandlerSpec implements Comparable<OptimismExceptionHandlerSpec> {
5190        private final String lvarSpec;
5191        private final boolean catchTarget;
5192        private boolean delegationTarget;
5193
5194        OptimismExceptionHandlerSpec(final String lvarSpec, final boolean catchTarget) {
5195            this.lvarSpec = lvarSpec;
5196            this.catchTarget = catchTarget;
5197            if(!catchTarget) {
5198                delegationTarget = true;
5199            }
5200        }
5201
5202        @Override
5203        public int compareTo(final OptimismExceptionHandlerSpec o) {
5204            return lvarSpec.compareTo(o.lvarSpec);
5205        }
5206
5207        @Override
5208        public String toString() {
5209            final StringBuilder b = new StringBuilder(64).append("[HandlerSpec ").append(lvarSpec);
5210            if(catchTarget) {
5211                b.append(", catchTarget");
5212            }
5213            if(delegationTarget) {
5214                b.append(", delegationTarget");
5215            }
5216            return b.append("]").toString();
5217        }
5218    }
5219
5220    private static class ContinuationInfo {
5221        private final Label handlerLabel;
5222        private Label targetLabel; // Label for the target instruction.
5223        int lvarCount;
5224        // Indices of local variables that need to be loaded on the stack when this node completes
5225        private int[] stackStoreSpec;
5226        // Types of values loaded on the stack
5227        private Type[] stackTypes;
5228        // If non-null, this node should perform the requisite type conversion
5229        private Type returnValueType;
5230        // If we are in the middle of an object literal initialization, we need to update the map
5231        private PropertyMap objectLiteralMap;
5232        // Object literal stack depth for object literal - not necessarily top if property is a tree
5233        private int objectLiteralStackDepth = -1;
5234        // The line number at the continuation point
5235        private int lineNumber;
5236        // The active catch label, in case the continuation point is in a try/catch block
5237        private Label catchLabel;
5238        // The number of scopes that need to be popped before control is transferred to the catch label.
5239        private int exceptionScopePops;
5240
5241        ContinuationInfo() {
5242            this.handlerLabel = new Label("continuation_handler");
5243        }
5244
5245        Label getHandlerLabel() {
5246            return handlerLabel;
5247        }
5248
5249        boolean hasTargetLabel() {
5250            return targetLabel != null;
5251        }
5252
5253        Label getTargetLabel() {
5254            return targetLabel;
5255        }
5256
5257        void setTargetLabel(final Label targetLabel) {
5258            this.targetLabel = targetLabel;
5259        }
5260
5261        int[] getStackStoreSpec() {
5262            return stackStoreSpec.clone();
5263        }
5264
5265        void setStackStoreSpec(final int[] stackStoreSpec) {
5266            this.stackStoreSpec = stackStoreSpec;
5267        }
5268
5269        Type[] getStackTypes() {
5270            return stackTypes.clone();
5271        }
5272
5273        void setStackTypes(final Type[] stackTypes) {
5274            this.stackTypes = stackTypes;
5275        }
5276
5277        Type getReturnValueType() {
5278            return returnValueType;
5279        }
5280
5281        void setReturnValueType(final Type returnValueType) {
5282            this.returnValueType = returnValueType;
5283        }
5284
5285        int getObjectLiteralStackDepth() {
5286            return objectLiteralStackDepth;
5287        }
5288
5289        void setObjectLiteralStackDepth(final int objectLiteralStackDepth) {
5290            this.objectLiteralStackDepth = objectLiteralStackDepth;
5291        }
5292
5293        PropertyMap getObjectLiteralMap() {
5294            return objectLiteralMap;
5295        }
5296
5297        void setObjectLiteralMap(final PropertyMap objectLiteralMap) {
5298            this.objectLiteralMap = objectLiteralMap;
5299        }
5300
5301        @Override
5302        public String toString() {
5303             return "[localVariableTypes=" + targetLabel.getStack().getLocalVariableTypesCopy() + ", stackStoreSpec=" +
5304                     Arrays.toString(stackStoreSpec) + ", returnValueType=" + returnValueType + "]";
5305        }
5306    }
5307
5308    private ContinuationInfo getContinuationInfo() {
5309        return continuationInfo;
5310    }
5311
5312    private void generateContinuationHandler() {
5313        if (!isRestOf()) {
5314            return;
5315        }
5316
5317        final ContinuationInfo ci = getContinuationInfo();
5318        method.label(ci.getHandlerLabel());
5319
5320        // There should never be an exception thrown from the continuation handler, but in case there is (meaning,
5321        // Nashorn has a bug), then line number 0 will be an indication of where it came from (line numbers are Uint16).
5322        method.lineNumber(0);
5323
5324        final Label.Stack stack = ci.getTargetLabel().getStack();
5325        final List<Type> lvarTypes = stack.getLocalVariableTypesCopy();
5326        final BitSet symbolBoundary = stack.getSymbolBoundaryCopy();
5327        final int lvarCount = ci.lvarCount;
5328
5329        final Type rewriteExceptionType = Type.typeFor(RewriteException.class);
5330        // Store the RewriteException into an unused local variable slot.
5331        method.load(rewriteExceptionType, 0);
5332        method.storeTemp(rewriteExceptionType, lvarCount);
5333        // Get local variable array
5334        method.load(rewriteExceptionType, 0);
5335        method.invoke(RewriteException.GET_BYTECODE_SLOTS);
5336        // Store local variables. Note that deoptimization might introduce new value types for existing local variables,
5337        // so we must use both liveLocals and symbolBoundary, as in some cases (when the continuation is inside of a try
5338        // block) we need to store the incoming value into multiple slots. The optimism exception handlers will have
5339        // exactly one array element for every symbol that uses bytecode storage. If in the originating method the value
5340        // was undefined, there will be an explicit Undefined value in the array.
5341        int arrayIndex = 0;
5342        for(int lvarIndex = 0; lvarIndex < lvarCount;) {
5343            final Type lvarType = lvarTypes.get(lvarIndex);
5344            if(!lvarType.isUnknown()) {
5345                method.dup();
5346                method.load(arrayIndex).arrayload();
5347                final Class<?> typeClass = lvarType.getTypeClass();
5348                // Deoptimization in array initializers can cause arrays to undergo component type widening
5349                if(typeClass == long[].class) {
5350                    method.load(rewriteExceptionType, lvarCount);
5351                    method.invoke(RewriteException.TO_LONG_ARRAY);
5352                } else if(typeClass == double[].class) {
5353                    method.load(rewriteExceptionType, lvarCount);
5354                    method.invoke(RewriteException.TO_DOUBLE_ARRAY);
5355                } else if(typeClass == Object[].class) {
5356                    method.load(rewriteExceptionType, lvarCount);
5357                    method.invoke(RewriteException.TO_OBJECT_ARRAY);
5358                } else {
5359                    if(!(typeClass.isPrimitive() || typeClass == Object.class)) {
5360                        // NOTE: this can only happen with dead stores. E.g. for the program "1; []; f();" in which the
5361                        // call to f() will deoptimize the call site, but it'll expect :return to have the type
5362                        // NativeArray. However, in the more optimal version, :return's only live type is int, therefore
5363                        // "{O}:return = []" is a dead store, and the variable will be sent into the continuation as
5364                        // Undefined, however NativeArray can't hold Undefined instance.
5365                        method.loadType(Type.getInternalName(typeClass));
5366                        method.invoke(RewriteException.INSTANCE_OR_NULL);
5367                    }
5368                    method.convert(lvarType);
5369                }
5370                method.storeHidden(lvarType, lvarIndex, false);
5371            }
5372            final int nextLvarIndex = lvarIndex + lvarType.getSlots();
5373            if(symbolBoundary.get(nextLvarIndex - 1)) {
5374                ++arrayIndex;
5375            }
5376            lvarIndex = nextLvarIndex;
5377        }
5378        if (AssertsEnabled.assertsEnabled()) {
5379            method.load(arrayIndex);
5380            method.invoke(RewriteException.ASSERT_ARRAY_LENGTH);
5381        } else {
5382            method.pop();
5383        }
5384
5385        final int[]   stackStoreSpec = ci.getStackStoreSpec();
5386        final Type[]  stackTypes     = ci.getStackTypes();
5387        final boolean isStackEmpty   = stackStoreSpec.length == 0;
5388        boolean replacedObjectLiteralMap = false;
5389        if(!isStackEmpty) {
5390            // Load arguments on the stack
5391            final int objectLiteralStackDepth = ci.getObjectLiteralStackDepth();
5392            for(int i = 0; i < stackStoreSpec.length; ++i) {
5393                final int slot = stackStoreSpec[i];
5394                method.load(lvarTypes.get(slot), slot);
5395                method.convert(stackTypes[i]);
5396                // stack: s0=object literal being initialized
5397                // change map of s0 so that the property we are initializing when we failed
5398                // is now ci.returnValueType
5399                if (i == objectLiteralStackDepth) {
5400                    method.dup();
5401                    assert ci.getObjectLiteralMap() != null;
5402                    assert ScriptObject.class.isAssignableFrom(method.peekType().getTypeClass()) : method.peekType().getTypeClass() + " is not a script object";
5403                    loadConstant(ci.getObjectLiteralMap());
5404                    method.invoke(ScriptObject.SET_MAP);
5405                    replacedObjectLiteralMap = true;
5406                }
5407            }
5408        }
5409        // Must have emitted the code for replacing the map of an object literal if we have a set object literal stack depth
5410        assert ci.getObjectLiteralStackDepth() == -1 || replacedObjectLiteralMap;
5411        // Load RewriteException back.
5412        method.load(rewriteExceptionType, lvarCount);
5413        // Get rid of the stored reference
5414        method.loadNull();
5415        method.storeHidden(Type.OBJECT, lvarCount);
5416        // Mark it dead
5417        method.markDeadSlots(lvarCount, Type.OBJECT.getSlots());
5418
5419        // Load return value on the stack
5420        method.invoke(RewriteException.GET_RETURN_VALUE);
5421
5422        final Type returnValueType = ci.getReturnValueType();
5423
5424        // Set up an exception handler for primitive type conversion of return value if needed
5425        boolean needsCatch = false;
5426        final Label targetCatchLabel = ci.catchLabel;
5427        Label _try = null;
5428        if(returnValueType.isPrimitive()) {
5429            // If the conversion throws an exception, we want to report the line number of the continuation point.
5430            method.lineNumber(ci.lineNumber);
5431
5432            if(targetCatchLabel != METHOD_BOUNDARY) {
5433                _try = new Label("");
5434                method.label(_try);
5435                needsCatch = true;
5436            }
5437        }
5438
5439        // Convert return value
5440        method.convert(returnValueType);
5441
5442        final int scopePopCount = needsCatch ? ci.exceptionScopePops : 0;
5443
5444        // Declare a try/catch for the conversion. If no scopes need to be popped until the target catch block, just
5445        // jump into it. Otherwise, we'll need to create a scope-popping catch block below.
5446        final Label catchLabel = scopePopCount > 0 ? new Label("") : targetCatchLabel;
5447        if(needsCatch) {
5448            final Label _end_try = new Label("");
5449            method.label(_end_try);
5450            method._try(_try, _end_try, catchLabel);
5451        }
5452
5453        // Jump to continuation point
5454        method._goto(ci.getTargetLabel());
5455
5456        // Make a scope-popping exception delegate if needed
5457        if(catchLabel != targetCatchLabel) {
5458            method.lineNumber(0);
5459            assert scopePopCount > 0;
5460            method._catch(catchLabel);
5461            popScopes(scopePopCount);
5462            method.uncheckedGoto(targetCatchLabel);
5463        }
5464    }
5465}
5466