CodeGenerator.java revision 1133:83951bd95ac2
1/*
2 * Copyright (c) 2010, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package jdk.nashorn.internal.codegen;
27
28import static jdk.nashorn.internal.codegen.ClassEmitter.Flag.PRIVATE;
29import static jdk.nashorn.internal.codegen.ClassEmitter.Flag.STATIC;
30import static jdk.nashorn.internal.codegen.CompilerConstants.ARGUMENTS;
31import static jdk.nashorn.internal.codegen.CompilerConstants.CALLEE;
32import static jdk.nashorn.internal.codegen.CompilerConstants.CREATE_PROGRAM_FUNCTION;
33import static jdk.nashorn.internal.codegen.CompilerConstants.GET_MAP;
34import static jdk.nashorn.internal.codegen.CompilerConstants.GET_STRING;
35import static jdk.nashorn.internal.codegen.CompilerConstants.QUICK_PREFIX;
36import static jdk.nashorn.internal.codegen.CompilerConstants.REGEX_PREFIX;
37import static jdk.nashorn.internal.codegen.CompilerConstants.SCOPE;
38import static jdk.nashorn.internal.codegen.CompilerConstants.SPLIT_PREFIX;
39import static jdk.nashorn.internal.codegen.CompilerConstants.THIS;
40import static jdk.nashorn.internal.codegen.CompilerConstants.VARARGS;
41import static jdk.nashorn.internal.codegen.CompilerConstants.constructorNoLookup;
42import static jdk.nashorn.internal.codegen.CompilerConstants.interfaceCallNoLookup;
43import static jdk.nashorn.internal.codegen.CompilerConstants.methodDescriptor;
44import static jdk.nashorn.internal.codegen.CompilerConstants.staticCallNoLookup;
45import static jdk.nashorn.internal.codegen.CompilerConstants.typeDescriptor;
46import static jdk.nashorn.internal.codegen.CompilerConstants.virtualCallNoLookup;
47import static jdk.nashorn.internal.codegen.ObjectClassGenerator.OBJECT_FIELDS_ONLY;
48import static jdk.nashorn.internal.ir.Symbol.HAS_SLOT;
49import static jdk.nashorn.internal.ir.Symbol.IS_INTERNAL;
50import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.INVALID_PROGRAM_POINT;
51import static jdk.nashorn.internal.runtime.UnwarrantedOptimismException.isValid;
52import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_APPLY_TO_CALL;
53import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_DECLARE;
54import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_FAST_SCOPE;
55import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_OPTIMISTIC;
56import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_PROGRAM_POINT_SHIFT;
57import static jdk.nashorn.internal.runtime.linker.NashornCallSiteDescriptor.CALLSITE_SCOPE;
58
59import java.io.PrintWriter;
60import java.util.ArrayDeque;
61import java.util.ArrayList;
62import java.util.Arrays;
63import java.util.BitSet;
64import java.util.Collection;
65import java.util.Collections;
66import java.util.Deque;
67import java.util.EnumSet;
68import java.util.HashMap;
69import java.util.HashSet;
70import java.util.Iterator;
71import java.util.LinkedList;
72import java.util.List;
73import java.util.Map;
74import java.util.Set;
75import java.util.TreeMap;
76import java.util.function.Supplier;
77import jdk.nashorn.internal.AssertsEnabled;
78import jdk.nashorn.internal.IntDeque;
79import jdk.nashorn.internal.codegen.ClassEmitter.Flag;
80import jdk.nashorn.internal.codegen.CompilerConstants.Call;
81import jdk.nashorn.internal.codegen.types.ArrayType;
82import jdk.nashorn.internal.codegen.types.Type;
83import jdk.nashorn.internal.ir.AccessNode;
84import jdk.nashorn.internal.ir.BaseNode;
85import jdk.nashorn.internal.ir.BinaryNode;
86import jdk.nashorn.internal.ir.Block;
87import jdk.nashorn.internal.ir.BlockStatement;
88import jdk.nashorn.internal.ir.BreakNode;
89import jdk.nashorn.internal.ir.BreakableNode;
90import jdk.nashorn.internal.ir.CallNode;
91import jdk.nashorn.internal.ir.CaseNode;
92import jdk.nashorn.internal.ir.CatchNode;
93import jdk.nashorn.internal.ir.ContinueNode;
94import jdk.nashorn.internal.ir.EmptyNode;
95import jdk.nashorn.internal.ir.Expression;
96import jdk.nashorn.internal.ir.ExpressionStatement;
97import jdk.nashorn.internal.ir.ForNode;
98import jdk.nashorn.internal.ir.FunctionNode;
99import jdk.nashorn.internal.ir.FunctionNode.CompilationState;
100import jdk.nashorn.internal.ir.GetSplitState;
101import jdk.nashorn.internal.ir.IdentNode;
102import jdk.nashorn.internal.ir.IfNode;
103import jdk.nashorn.internal.ir.IndexNode;
104import jdk.nashorn.internal.ir.JoinPredecessorExpression;
105import jdk.nashorn.internal.ir.JumpStatement;
106import jdk.nashorn.internal.ir.LabelNode;
107import jdk.nashorn.internal.ir.LexicalContext;
108import jdk.nashorn.internal.ir.LexicalContextNode;
109import jdk.nashorn.internal.ir.LiteralNode;
110import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode;
111import jdk.nashorn.internal.ir.LiteralNode.ArrayLiteralNode.ArrayUnit;
112import jdk.nashorn.internal.ir.LiteralNode.PrimitiveLiteralNode;
113import jdk.nashorn.internal.ir.LocalVariableConversion;
114import jdk.nashorn.internal.ir.LoopNode;
115import jdk.nashorn.internal.ir.Node;
116import jdk.nashorn.internal.ir.ObjectNode;
117import jdk.nashorn.internal.ir.Optimistic;
118import jdk.nashorn.internal.ir.PropertyNode;
119import jdk.nashorn.internal.ir.ReturnNode;
120import jdk.nashorn.internal.ir.RuntimeNode;
121import jdk.nashorn.internal.ir.RuntimeNode.Request;
122import jdk.nashorn.internal.ir.SetSplitState;
123import jdk.nashorn.internal.ir.SplitReturn;
124import jdk.nashorn.internal.ir.Statement;
125import jdk.nashorn.internal.ir.SwitchNode;
126import jdk.nashorn.internal.ir.Symbol;
127import jdk.nashorn.internal.ir.TernaryNode;
128import jdk.nashorn.internal.ir.ThrowNode;
129import jdk.nashorn.internal.ir.TryNode;
130import jdk.nashorn.internal.ir.UnaryNode;
131import jdk.nashorn.internal.ir.VarNode;
132import jdk.nashorn.internal.ir.WhileNode;
133import jdk.nashorn.internal.ir.WithNode;
134import jdk.nashorn.internal.ir.visitor.NodeOperatorVisitor;
135import jdk.nashorn.internal.ir.visitor.NodeVisitor;
136import jdk.nashorn.internal.objects.Global;
137import jdk.nashorn.internal.objects.ScriptFunctionImpl;
138import jdk.nashorn.internal.parser.Lexer.RegexToken;
139import jdk.nashorn.internal.parser.TokenType;
140import jdk.nashorn.internal.runtime.Context;
141import jdk.nashorn.internal.runtime.Debug;
142import jdk.nashorn.internal.runtime.ECMAException;
143import jdk.nashorn.internal.runtime.JSType;
144import jdk.nashorn.internal.runtime.OptimisticReturnFilters;
145import jdk.nashorn.internal.runtime.PropertyMap;
146import jdk.nashorn.internal.runtime.RecompilableScriptFunctionData;
147import jdk.nashorn.internal.runtime.RewriteException;
148import jdk.nashorn.internal.runtime.Scope;
149import jdk.nashorn.internal.runtime.ScriptEnvironment;
150import jdk.nashorn.internal.runtime.ScriptFunction;
151import jdk.nashorn.internal.runtime.ScriptObject;
152import jdk.nashorn.internal.runtime.ScriptRuntime;
153import jdk.nashorn.internal.runtime.Source;
154import jdk.nashorn.internal.runtime.Undefined;
155import jdk.nashorn.internal.runtime.UnwarrantedOptimismException;
156import jdk.nashorn.internal.runtime.arrays.ArrayData;
157import jdk.nashorn.internal.runtime.linker.LinkerCallSite;
158import jdk.nashorn.internal.runtime.logging.DebugLogger;
159import jdk.nashorn.internal.runtime.logging.Loggable;
160import jdk.nashorn.internal.runtime.logging.Logger;
161import jdk.nashorn.internal.runtime.options.Options;
162
163/**
164 * This is the lowest tier of the code generator. It takes lowered ASTs emitted
165 * from Lower and emits Java byte code. The byte code emission logic is broken
166 * out into MethodEmitter. MethodEmitter works internally with a type stack, and
167 * keeps track of the contents of the byte code stack. This way we avoid a large
168 * number of special cases on the form
169 * <pre>
170 * if (type == INT) {
171 *     visitInsn(ILOAD, slot);
172 * } else if (type == DOUBLE) {
173 *     visitInsn(DOUBLE, slot);
174 * }
175 * </pre>
176 * This quickly became apparent when the code generator was generalized to work
177 * with all types, and not just numbers or objects.
178 * <p>
179 * The CodeGenerator visits nodes only once, tags them as resolved and emits
180 * bytecode for them.
181 */
182@Logger(name="codegen")
183final class CodeGenerator extends NodeOperatorVisitor<CodeGeneratorLexicalContext> implements Loggable {
184
185    private static final Type SCOPE_TYPE = Type.typeFor(ScriptObject.class);
186
187    private static final String GLOBAL_OBJECT = Type.getInternalName(Global.class);
188
189    private static final String SCRIPTFUNCTION_IMPL_NAME = Type.getInternalName(ScriptFunctionImpl.class);
190    private static final Type   SCRIPTFUNCTION_IMPL_TYPE   = Type.typeFor(ScriptFunction.class);
191
192    private static final Call CREATE_REWRITE_EXCEPTION = CompilerConstants.staticCallNoLookup(RewriteException.class,
193            "create", RewriteException.class, UnwarrantedOptimismException.class, Object[].class, String[].class);
194    private static final Call CREATE_REWRITE_EXCEPTION_REST_OF = CompilerConstants.staticCallNoLookup(RewriteException.class,
195            "create", RewriteException.class, UnwarrantedOptimismException.class, Object[].class, String[].class, int[].class);
196
197    private static final Call ENSURE_INT = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
198            "ensureInt", int.class, Object.class, int.class);
199    private static final Call ENSURE_LONG = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
200            "ensureLong", long.class, Object.class, int.class);
201    private static final Call ENSURE_NUMBER = CompilerConstants.staticCallNoLookup(OptimisticReturnFilters.class,
202            "ensureNumber", double.class, Object.class, int.class);
203
204    private static final Class<?> ITERATOR_CLASS = Iterator.class;
205    static {
206        assert ITERATOR_CLASS == CompilerConstants.ITERATOR_PREFIX.type();
207    }
208    private static final Type ITERATOR_TYPE = Type.typeFor(ITERATOR_CLASS);
209    private static final Type EXCEPTION_TYPE = Type.typeFor(CompilerConstants.EXCEPTION_PREFIX.type());
210
211    private static final Integer INT_ZERO = Integer.valueOf(0);
212
213    /** Constant data & installation. The only reason the compiler keeps this is because it is assigned
214     *  by reflection in class installation */
215    private final Compiler compiler;
216
217    /** Is the current code submitted by 'eval' call? */
218    private final boolean evalCode;
219
220    /** Call site flags given to the code generator to be used for all generated call sites */
221    private final int callSiteFlags;
222
223    /** How many regexp fields have been emitted */
224    private int regexFieldCount;
225
226    /** Line number for last statement. If we encounter a new line number, line number bytecode information
227     *  needs to be generated */
228    private int lastLineNumber = -1;
229
230    /** When should we stop caching regexp expressions in fields to limit bytecode size? */
231    private static final int MAX_REGEX_FIELDS = 2 * 1024;
232
233    /** Current method emitter */
234    private MethodEmitter method;
235
236    /** Current compile unit */
237    private CompileUnit unit;
238
239    private final DebugLogger log;
240
241    /** From what size should we use spill instead of fields for JavaScript objects? */
242    private static final int OBJECT_SPILL_THRESHOLD = Options.getIntProperty("nashorn.spill.threshold", 256);
243
244    private final Set<String> emittedMethods = new HashSet<>();
245
246    // Function Id -> ContinuationInfo. Used by compilation of rest-of function only.
247    private final Map<Integer, ContinuationInfo> fnIdToContinuationInfo = new HashMap<>();
248
249    private final Deque<Label> scopeEntryLabels = new ArrayDeque<>();
250
251    private static final Label METHOD_BOUNDARY = new Label("");
252    private final Deque<Label> catchLabels = new ArrayDeque<>();
253    // Number of live locals on entry to (and thus also break from) labeled blocks.
254    private final IntDeque labeledBlockBreakLiveLocals = new IntDeque();
255
256    //is this a rest of compilation
257    private final int[] continuationEntryPoints;
258
259    /**
260     * Constructor.
261     *
262     * @param compiler
263     */
264    CodeGenerator(final Compiler compiler, final int[] continuationEntryPoints) {
265        super(new CodeGeneratorLexicalContext());
266        this.compiler                = compiler;
267        this.evalCode                = compiler.getSource().isEvalCode();
268        this.continuationEntryPoints = continuationEntryPoints;
269        this.callSiteFlags           = compiler.getScriptEnvironment()._callsite_flags;
270        this.log                     = initLogger(compiler.getContext());
271    }
272
273    @Override
274    public DebugLogger getLogger() {
275        return log;
276    }
277
278    @Override
279    public DebugLogger initLogger(final Context context) {
280        return context.getLogger(this.getClass());
281    }
282
283    /**
284     * Gets the call site flags, adding the strict flag if the current function
285     * being generated is in strict mode
286     *
287     * @return the correct flags for a call site in the current function
288     */
289    int getCallSiteFlags() {
290        return lc.getCurrentFunction().getCallSiteFlags() | callSiteFlags;
291    }
292
293    /**
294     * Are we generating code for 'eval' code?
295     * @return true if currently compiled code is 'eval' code.
296     */
297    boolean isEvalCode() {
298        return evalCode;
299    }
300
301    /**
302     * Load an identity node
303     *
304     * @param identNode an identity node to load
305     * @return the method generator used
306     */
307    private MethodEmitter loadIdent(final IdentNode identNode, final TypeBounds resultBounds) {
308        checkTemporalDeadZone(identNode);
309        final Symbol symbol = identNode.getSymbol();
310
311        if (!symbol.isScope()) {
312            final Type type = identNode.getType();
313            if(type == Type.UNDEFINED) {
314                return method.loadUndefined(resultBounds.widest);
315            }
316
317            assert symbol.hasSlot() || symbol.isParam();
318            return method.load(identNode);
319        }
320
321        assert identNode.getSymbol().isScope() : identNode + " is not in scope!";
322        final int flags = CALLSITE_SCOPE | getCallSiteFlags();
323        if (isFastScope(symbol)) {
324            // Only generate shared scope getter for fast-scope symbols so we know we can dial in correct scope.
325            if (symbol.getUseCount() > SharedScopeCall.FAST_SCOPE_GET_THRESHOLD && !isOptimisticOrRestOf()) {
326                method.loadCompilerConstant(SCOPE);
327                // As shared scope vars are only used in non-optimistic compilation, we switch from using TypeBounds to
328                // just a single definitive type, resultBounds.widest.
329                loadSharedScopeVar(resultBounds.widest, symbol, flags);
330            } else {
331                new LoadFastScopeVar(identNode, resultBounds, flags).emit();
332            }
333        } else {
334            //slow scope load, we have no proto depth
335            new LoadScopeVar(identNode, resultBounds, flags).emit();
336        }
337
338        return method;
339    }
340
341    // Any access to LET and CONST variables before their declaration must throw ReferenceError.
342    // This is called the temporal dead zone (TDZ). See https://gist.github.com/rwaldron/f0807a758aa03bcdd58a
343    private void checkTemporalDeadZone(final IdentNode identNode) {
344        if (identNode.isDead()) {
345            method.load(identNode.getSymbol().getName());
346            method.invoke(ScriptRuntime.THROW_REFERENCE_ERROR);
347        }
348    }
349
350    private boolean isRestOf() {
351        return continuationEntryPoints != null;
352    }
353
354    private boolean isOptimisticOrRestOf() {
355        return useOptimisticTypes() || isRestOf();
356    }
357
358    private boolean isCurrentContinuationEntryPoint(final int programPoint) {
359        return isRestOf() && getCurrentContinuationEntryPoint() == programPoint;
360    }
361
362    private int[] getContinuationEntryPoints() {
363        return isRestOf() ? continuationEntryPoints : null;
364    }
365
366    private int getCurrentContinuationEntryPoint() {
367        return isRestOf() ? continuationEntryPoints[0] : INVALID_PROGRAM_POINT;
368    }
369
370    private boolean isContinuationEntryPoint(final int programPoint) {
371        if (isRestOf()) {
372            assert continuationEntryPoints != null;
373            for (final int cep : continuationEntryPoints) {
374                if (cep == programPoint) {
375                    return true;
376                }
377            }
378        }
379        return false;
380    }
381
382    /**
383     * Check if this symbol can be accessed directly with a putfield or getfield or dynamic load
384     *
385     * @param symbol symbol to check for fast scope
386     * @return true if fast scope
387     */
388    private boolean isFastScope(final Symbol symbol) {
389        if (!symbol.isScope()) {
390            return false;
391        }
392
393        if (!lc.inDynamicScope()) {
394            // If there's no with or eval in context, and the symbol is marked as scoped, it is fast scoped. Such a
395            // symbol must either be global, or its defining block must need scope.
396            assert symbol.isGlobal() || lc.getDefiningBlock(symbol).needsScope() : symbol.getName();
397            return true;
398        }
399
400        if (symbol.isGlobal()) {
401            // Shortcut: if there's a with or eval in context, globals can't be fast scoped
402            return false;
403        }
404
405        // Otherwise, check if there's a dynamic scope between use of the symbol and its definition
406        final String name = symbol.getName();
407        boolean previousWasBlock = false;
408        for (final Iterator<LexicalContextNode> it = lc.getAllNodes(); it.hasNext();) {
409            final LexicalContextNode node = it.next();
410            if (node instanceof Block) {
411                // If this block defines the symbol, then we can fast scope the symbol.
412                final Block block = (Block)node;
413                if (block.getExistingSymbol(name) == symbol) {
414                    assert block.needsScope();
415                    return true;
416                }
417                previousWasBlock = true;
418            } else {
419                if (node instanceof WithNode && previousWasBlock || node instanceof FunctionNode && ((FunctionNode)node).needsDynamicScope()) {
420                    // If we hit a scope that can have symbols introduced into it at run time before finding the defining
421                    // block, the symbol can't be fast scoped. A WithNode only counts if we've immediately seen a block
422                    // before - its block. Otherwise, we are currently processing the WithNode's expression, and that's
423                    // obviously not subjected to introducing new symbols.
424                    return false;
425                }
426                previousWasBlock = false;
427            }
428        }
429        // Should've found the symbol defined in a block
430        throw new AssertionError();
431    }
432
433    private MethodEmitter loadSharedScopeVar(final Type valueType, final Symbol symbol, final int flags) {
434        assert !isOptimisticOrRestOf();
435        if (isFastScope(symbol)) {
436            method.load(getScopeProtoDepth(lc.getCurrentBlock(), symbol));
437        } else {
438            method.load(-1);
439        }
440        return lc.getScopeGet(unit, symbol, valueType, flags | CALLSITE_FAST_SCOPE).generateInvoke(method);
441    }
442
443    private class LoadScopeVar extends OptimisticOperation {
444        final IdentNode identNode;
445        private final int flags;
446
447        LoadScopeVar(final IdentNode identNode, final TypeBounds resultBounds, final int flags) {
448            super(identNode, resultBounds);
449            this.identNode = identNode;
450            this.flags = flags;
451        }
452
453        @Override
454        void loadStack() {
455            method.loadCompilerConstant(SCOPE);
456            getProto();
457        }
458
459        void getProto() {
460            //empty
461        }
462
463        @Override
464        void consumeStack() {
465            // If this is either __FILE__, __DIR__, or __LINE__ then load the property initially as Object as we'd convert
466            // it anyway for replaceLocationPropertyPlaceholder.
467            if(identNode.isCompileTimePropertyName()) {
468                method.dynamicGet(Type.OBJECT, identNode.getSymbol().getName(), flags, identNode.isFunction());
469                replaceCompileTimeProperty();
470            } else {
471                dynamicGet(identNode.getSymbol().getName(), flags, identNode.isFunction());
472            }
473        }
474    }
475
476    private class LoadFastScopeVar extends LoadScopeVar {
477        LoadFastScopeVar(final IdentNode identNode, final TypeBounds resultBounds, final int flags) {
478            super(identNode, resultBounds, flags | CALLSITE_FAST_SCOPE);
479        }
480
481        @Override
482        void getProto() {
483            loadFastScopeProto(identNode.getSymbol(), false);
484        }
485    }
486
487    private MethodEmitter storeFastScopeVar(final Symbol symbol, final int flags) {
488        loadFastScopeProto(symbol, true);
489        method.dynamicSet(symbol.getName(), flags | CALLSITE_FAST_SCOPE);
490        return method;
491    }
492
493    private int getScopeProtoDepth(final Block startingBlock, final Symbol symbol) {
494        //walk up the chain from starting block and when we bump into the current function boundary, add the external
495        //information.
496        final FunctionNode fn   = lc.getCurrentFunction();
497        final int externalDepth = compiler.getScriptFunctionData(fn.getId()).getExternalSymbolDepth(symbol.getName());
498
499        //count the number of scopes from this place to the start of the function
500
501        final int internalDepth = FindScopeDepths.findInternalDepth(lc, fn, startingBlock, symbol);
502        final int scopesToStart = FindScopeDepths.findScopesToStart(lc, fn, startingBlock);
503        int depth = 0;
504        if (internalDepth == -1) {
505            depth = scopesToStart + externalDepth;
506        } else {
507            assert internalDepth <= scopesToStart;
508            depth = internalDepth;
509        }
510
511        return depth;
512    }
513
514    private void loadFastScopeProto(final Symbol symbol, final boolean swap) {
515        final int depth = getScopeProtoDepth(lc.getCurrentBlock(), symbol);
516        assert depth != -1 : "Couldn't find scope depth for symbol " + symbol.getName() + " in " + lc.getCurrentFunction();
517        if (depth > 0) {
518            if (swap) {
519                method.swap();
520            }
521            for (int i = 0; i < depth; i++) {
522                method.invoke(ScriptObject.GET_PROTO);
523            }
524            if (swap) {
525                method.swap();
526            }
527        }
528    }
529
530    /**
531     * Generate code that loads this node to the stack, not constraining its type
532     *
533     * @param expr node to load
534     *
535     * @return the method emitter used
536     */
537    private MethodEmitter loadExpressionUnbounded(final Expression expr) {
538        return loadExpression(expr, TypeBounds.UNBOUNDED);
539    }
540
541    private MethodEmitter loadExpressionAsObject(final Expression expr) {
542        return loadExpression(expr, TypeBounds.OBJECT);
543    }
544
545    MethodEmitter loadExpressionAsBoolean(final Expression expr) {
546        return loadExpression(expr, TypeBounds.BOOLEAN);
547    }
548
549    // Test whether conversion from source to target involves a call of ES 9.1 ToPrimitive
550    // with possible side effects from calling an object's toString or valueOf methods.
551    private static boolean noToPrimitiveConversion(final Type source, final Type target) {
552        // Object to boolean conversion does not cause ToPrimitive call
553        return source.isJSPrimitive() || !target.isJSPrimitive() || target.isBoolean();
554    }
555
556    MethodEmitter loadBinaryOperands(final BinaryNode binaryNode) {
557        return loadBinaryOperands(binaryNode.lhs(), binaryNode.rhs(), TypeBounds.UNBOUNDED.notWiderThan(binaryNode.getWidestOperandType()), false, false);
558    }
559
560    private MethodEmitter loadBinaryOperands(final Expression lhs, final Expression rhs, final TypeBounds explicitOperandBounds, final boolean baseAlreadyOnStack, final boolean forceConversionSeparation) {
561        // ECMAScript 5.1 specification (sections 11.5-11.11 and 11.13) prescribes that when evaluating a binary
562        // expression "LEFT op RIGHT", the order of operations must be: LOAD LEFT, LOAD RIGHT, CONVERT LEFT, CONVERT
563        // RIGHT, EXECUTE OP. Unfortunately, doing it in this order defeats potential optimizations that arise when we
564        // can combine a LOAD with a CONVERT operation (e.g. use a dynamic getter with the conversion target type as its
565        // return value). What we do here is reorder LOAD RIGHT and CONVERT LEFT when possible; it is possible only when
566        // we can prove that executing CONVERT LEFT can't have a side effect that changes the value of LOAD RIGHT.
567        // Basically, if we know that either LEFT already is a primitive value, or does not have to be converted to
568        // a primitive value, or RIGHT is an expression that loads without side effects, then we can do the
569        // reordering and collapse LOAD/CONVERT into a single operation; otherwise we need to do the more costly
570        // separate operations to preserve specification semantics.
571
572        // Operands' load type should not be narrower than the narrowest of the individual operand types, nor narrower
573        // than the lower explicit bound, but it should also not be wider than
574        final Type lhsType = undefinedToNumber(lhs.getType());
575        final Type rhsType = undefinedToNumber(rhs.getType());
576        final Type narrowestOperandType = Type.narrowest(Type.widest(lhsType, rhsType), explicitOperandBounds.widest);
577        final TypeBounds operandBounds = explicitOperandBounds.notNarrowerThan(narrowestOperandType);
578        if (noToPrimitiveConversion(lhsType, explicitOperandBounds.widest) || rhs.isLocal()) {
579            // Can reorder. We might still need to separate conversion, but at least we can do it with reordering
580            if (forceConversionSeparation) {
581                // Can reorder, but can't move conversion into the operand as the operation depends on operands
582                // exact types for its overflow guarantees. E.g. with {L}{%I}expr1 {L}* {L}{%I}expr2 we are not allowed
583                // to merge {L}{%I} into {%L}, as that can cause subsequent overflows; test for JDK-8058610 contains
584                // concrete cases where this could happen.
585                final TypeBounds safeConvertBounds = TypeBounds.UNBOUNDED.notNarrowerThan(narrowestOperandType);
586                loadExpression(lhs, safeConvertBounds, baseAlreadyOnStack);
587                method.convert(operandBounds.within(method.peekType()));
588                loadExpression(rhs, safeConvertBounds, false);
589                method.convert(operandBounds.within(method.peekType()));
590            } else {
591                // Can reorder and move conversion into the operand. Combine load and convert into single operations.
592                loadExpression(lhs, operandBounds, baseAlreadyOnStack);
593                loadExpression(rhs, operandBounds, false);
594            }
595        } else {
596            // Can't reorder. Load and convert separately.
597            final TypeBounds safeConvertBounds = TypeBounds.UNBOUNDED.notNarrowerThan(narrowestOperandType);
598            loadExpression(lhs, safeConvertBounds, baseAlreadyOnStack);
599            final Type lhsLoadedType = method.peekType();
600            loadExpression(rhs, safeConvertBounds, false);
601            final Type convertedLhsType = operandBounds.within(method.peekType());
602            if (convertedLhsType != lhsLoadedType) {
603                // Do it conditionally, so that if conversion is a no-op we don't introduce a SWAP, SWAP.
604                method.swap().convert(convertedLhsType).swap();
605            }
606            method.convert(operandBounds.within(method.peekType()));
607        }
608        assert Type.generic(method.peekType()) == operandBounds.narrowest;
609        assert Type.generic(method.peekType(1)) == operandBounds.narrowest;
610
611        return method;
612    }
613
614    private static final Type undefinedToNumber(final Type type) {
615        return type == Type.UNDEFINED ? Type.NUMBER : type;
616    }
617
618    private static final class TypeBounds {
619        final Type narrowest;
620        final Type widest;
621
622        static final TypeBounds UNBOUNDED = new TypeBounds(Type.UNKNOWN, Type.OBJECT);
623        static final TypeBounds INT = exact(Type.INT);
624        static final TypeBounds OBJECT = exact(Type.OBJECT);
625        static final TypeBounds BOOLEAN = exact(Type.BOOLEAN);
626
627        static TypeBounds exact(final Type type) {
628            return new TypeBounds(type, type);
629        }
630
631        TypeBounds(final Type narrowest, final Type widest) {
632            assert widest    != null && widest    != Type.UNDEFINED && widest != Type.UNKNOWN : widest;
633            assert narrowest != null && narrowest != Type.UNDEFINED : narrowest;
634            assert !narrowest.widerThan(widest) : narrowest + " wider than " + widest;
635            assert !widest.narrowerThan(narrowest);
636            this.narrowest = Type.generic(narrowest);
637            this.widest = Type.generic(widest);
638        }
639
640        TypeBounds notNarrowerThan(final Type type) {
641            return maybeNew(Type.narrowest(Type.widest(narrowest, type), widest), widest);
642        }
643
644        TypeBounds notWiderThan(final Type type) {
645            return maybeNew(Type.narrowest(narrowest, type), Type.narrowest(widest, type));
646        }
647
648        boolean canBeNarrowerThan(final Type type) {
649            return narrowest.narrowerThan(type);
650        }
651
652        TypeBounds maybeNew(final Type newNarrowest, final Type newWidest) {
653            if(newNarrowest == narrowest && newWidest == widest) {
654                return this;
655            }
656            return new TypeBounds(newNarrowest, newWidest);
657        }
658
659        TypeBounds booleanToInt() {
660            return maybeNew(CodeGenerator.booleanToInt(narrowest), CodeGenerator.booleanToInt(widest));
661        }
662
663        TypeBounds objectToNumber() {
664            return maybeNew(CodeGenerator.objectToNumber(narrowest), CodeGenerator.objectToNumber(widest));
665        }
666
667        Type within(final Type type) {
668            if(type.narrowerThan(narrowest)) {
669                return narrowest;
670            }
671            if(type.widerThan(widest)) {
672                return widest;
673            }
674            return type;
675        }
676
677        @Override
678        public String toString() {
679            return "[" + narrowest + ", " + widest + "]";
680        }
681    }
682
683    private static Type booleanToInt(final Type t) {
684        return t == Type.BOOLEAN ? Type.INT : t;
685    }
686
687    private static Type objectToNumber(final Type t) {
688        return t.isObject() ? Type.NUMBER : t;
689    }
690
691    MethodEmitter loadExpressionAsType(final Expression expr, final Type type) {
692        if(type == Type.BOOLEAN) {
693            return loadExpressionAsBoolean(expr);
694        } else if(type == Type.UNDEFINED) {
695            assert expr.getType() == Type.UNDEFINED;
696            return loadExpressionAsObject(expr);
697        }
698        // having no upper bound preserves semantics of optimistic operations in the expression (by not having them
699        // converted early) and then applies explicit conversion afterwards.
700        return loadExpression(expr, TypeBounds.UNBOUNDED.notNarrowerThan(type)).convert(type);
701    }
702
703    private MethodEmitter loadExpression(final Expression expr, final TypeBounds resultBounds) {
704        return loadExpression(expr, resultBounds, false);
705    }
706
707    /**
708     * Emits code for evaluating an expression and leaving its value on top of the stack, narrowing or widening it if
709     * necessary.
710     * @param expr the expression to load
711     * @param resultBounds the incoming type bounds. The value on the top of the stack is guaranteed to not be of narrower
712     * type than the narrowest bound, or wider type than the widest bound after it is loaded.
713     * @param baseAlreadyOnStack true if the base of an access or index node is already on the stack. Used to avoid
714     * double evaluation of bases in self-assignment expressions to access and index nodes. {@code Type.OBJECT} is used
715     * to indicate the widest possible type.
716     * @return the method emitter
717     */
718    private MethodEmitter loadExpression(final Expression expr, final TypeBounds resultBounds, final boolean baseAlreadyOnStack) {
719
720        /*
721         * The load may be of type IdentNode, e.g. "x", AccessNode, e.g. "x.y"
722         * or IndexNode e.g. "x[y]". Both AccessNodes and IndexNodes are
723         * BaseNodes and the logic for loading the base object is reused
724         */
725        final CodeGenerator codegen = this;
726
727        final Node currentDiscard = codegen.lc.getCurrentDiscard();
728        expr.accept(new NodeOperatorVisitor<LexicalContext>(new LexicalContext()) {
729            @Override
730            public boolean enterIdentNode(final IdentNode identNode) {
731                loadIdent(identNode, resultBounds);
732                return false;
733            }
734
735            @Override
736            public boolean enterAccessNode(final AccessNode accessNode) {
737                new OptimisticOperation(accessNode, resultBounds) {
738                    @Override
739                    void loadStack() {
740                        if (!baseAlreadyOnStack) {
741                            loadExpressionAsObject(accessNode.getBase());
742                        }
743                        assert method.peekType().isObject();
744                    }
745                    @Override
746                    void consumeStack() {
747                        final int flags = getCallSiteFlags();
748                        dynamicGet(accessNode.getProperty(), flags, accessNode.isFunction());
749                    }
750                }.emit(baseAlreadyOnStack ? 1 : 0);
751                return false;
752            }
753
754            @Override
755            public boolean enterIndexNode(final IndexNode indexNode) {
756                new OptimisticOperation(indexNode, resultBounds) {
757                    @Override
758                    void loadStack() {
759                        if (!baseAlreadyOnStack) {
760                            loadExpressionAsObject(indexNode.getBase());
761                            loadExpressionUnbounded(indexNode.getIndex());
762                        }
763                    }
764                    @Override
765                    void consumeStack() {
766                        final int flags = getCallSiteFlags();
767                        dynamicGetIndex(flags, indexNode.isFunction());
768                    }
769                }.emit(baseAlreadyOnStack ? 2 : 0);
770                return false;
771            }
772
773            @Override
774            public boolean enterFunctionNode(final FunctionNode functionNode) {
775                // function nodes will always leave a constructed function object on stack, no need to load the symbol
776                // separately as in enterDefault()
777                lc.pop(functionNode);
778                functionNode.accept(codegen);
779                // NOTE: functionNode.accept() will produce a different FunctionNode that we discard. This incidentally
780                // doesn't cause problems as we're never touching FunctionNode again after it's visited here - codegen
781                // is the last element in the compilation pipeline, the AST it produces is not used externally. So, we
782                // re-push the original functionNode.
783                lc.push(functionNode);
784                return false;
785            }
786
787            @Override
788            public boolean enterASSIGN(final BinaryNode binaryNode) {
789                loadASSIGN(binaryNode);
790                return false;
791            }
792
793            @Override
794            public boolean enterASSIGN_ADD(final BinaryNode binaryNode) {
795                loadASSIGN_ADD(binaryNode);
796                return false;
797            }
798
799            @Override
800            public boolean enterASSIGN_BIT_AND(final BinaryNode binaryNode) {
801                loadASSIGN_BIT_AND(binaryNode);
802                return false;
803            }
804
805            @Override
806            public boolean enterASSIGN_BIT_OR(final BinaryNode binaryNode) {
807                loadASSIGN_BIT_OR(binaryNode);
808                return false;
809            }
810
811            @Override
812            public boolean enterASSIGN_BIT_XOR(final BinaryNode binaryNode) {
813                loadASSIGN_BIT_XOR(binaryNode);
814                return false;
815            }
816
817            @Override
818            public boolean enterASSIGN_DIV(final BinaryNode binaryNode) {
819                loadASSIGN_DIV(binaryNode);
820                return false;
821            }
822
823            @Override
824            public boolean enterASSIGN_MOD(final BinaryNode binaryNode) {
825                loadASSIGN_MOD(binaryNode);
826                return false;
827            }
828
829            @Override
830            public boolean enterASSIGN_MUL(final BinaryNode binaryNode) {
831                loadASSIGN_MUL(binaryNode);
832                return false;
833            }
834
835            @Override
836            public boolean enterASSIGN_SAR(final BinaryNode binaryNode) {
837                loadASSIGN_SAR(binaryNode);
838                return false;
839            }
840
841            @Override
842            public boolean enterASSIGN_SHL(final BinaryNode binaryNode) {
843                loadASSIGN_SHL(binaryNode);
844                return false;
845            }
846
847            @Override
848            public boolean enterASSIGN_SHR(final BinaryNode binaryNode) {
849                loadASSIGN_SHR(binaryNode);
850                return false;
851            }
852
853            @Override
854            public boolean enterASSIGN_SUB(final BinaryNode binaryNode) {
855                loadASSIGN_SUB(binaryNode);
856                return false;
857            }
858
859            @Override
860            public boolean enterCallNode(final CallNode callNode) {
861                return loadCallNode(callNode, resultBounds);
862            }
863
864            @Override
865            public boolean enterLiteralNode(final LiteralNode<?> literalNode) {
866                loadLiteral(literalNode, resultBounds);
867                return false;
868            }
869
870            @Override
871            public boolean enterTernaryNode(final TernaryNode ternaryNode) {
872                loadTernaryNode(ternaryNode, resultBounds);
873                return false;
874            }
875
876            @Override
877            public boolean enterADD(final BinaryNode binaryNode) {
878                loadADD(binaryNode, resultBounds);
879                return false;
880            }
881
882            @Override
883            public boolean enterSUB(final UnaryNode unaryNode) {
884                loadSUB(unaryNode, resultBounds);
885                return false;
886            }
887
888            @Override
889            public boolean enterSUB(final BinaryNode binaryNode) {
890                loadSUB(binaryNode, resultBounds);
891                return false;
892            }
893
894            @Override
895            public boolean enterMUL(final BinaryNode binaryNode) {
896                loadMUL(binaryNode, resultBounds);
897                return false;
898            }
899
900            @Override
901            public boolean enterDIV(final BinaryNode binaryNode) {
902                loadDIV(binaryNode, resultBounds);
903                return false;
904            }
905
906            @Override
907            public boolean enterMOD(final BinaryNode binaryNode) {
908                loadMOD(binaryNode, resultBounds);
909                return false;
910            }
911
912            @Override
913            public boolean enterSAR(final BinaryNode binaryNode) {
914                loadSAR(binaryNode);
915                return false;
916            }
917
918            @Override
919            public boolean enterSHL(final BinaryNode binaryNode) {
920                loadSHL(binaryNode);
921                return false;
922            }
923
924            @Override
925            public boolean enterSHR(final BinaryNode binaryNode) {
926                loadSHR(binaryNode);
927                return false;
928            }
929
930            @Override
931            public boolean enterCOMMALEFT(final BinaryNode binaryNode) {
932                loadCOMMALEFT(binaryNode, resultBounds);
933                return false;
934            }
935
936            @Override
937            public boolean enterCOMMARIGHT(final BinaryNode binaryNode) {
938                loadCOMMARIGHT(binaryNode, resultBounds);
939                return false;
940            }
941
942            @Override
943            public boolean enterAND(final BinaryNode binaryNode) {
944                loadAND_OR(binaryNode, resultBounds, true);
945                return false;
946            }
947
948            @Override
949            public boolean enterOR(final BinaryNode binaryNode) {
950                loadAND_OR(binaryNode, resultBounds, false);
951                return false;
952            }
953
954            @Override
955            public boolean enterNOT(final UnaryNode unaryNode) {
956                loadNOT(unaryNode);
957                return false;
958            }
959
960            @Override
961            public boolean enterADD(final UnaryNode unaryNode) {
962                loadADD(unaryNode, resultBounds);
963                return false;
964            }
965
966            @Override
967            public boolean enterBIT_NOT(final UnaryNode unaryNode) {
968                loadBIT_NOT(unaryNode);
969                return false;
970            }
971
972            @Override
973            public boolean enterBIT_AND(final BinaryNode binaryNode) {
974                loadBIT_AND(binaryNode);
975                return false;
976            }
977
978            @Override
979            public boolean enterBIT_OR(final BinaryNode binaryNode) {
980                loadBIT_OR(binaryNode);
981                return false;
982            }
983
984            @Override
985            public boolean enterBIT_XOR(final BinaryNode binaryNode) {
986                loadBIT_XOR(binaryNode);
987                return false;
988            }
989
990            @Override
991            public boolean enterVOID(final UnaryNode unaryNode) {
992                loadVOID(unaryNode, resultBounds);
993                return false;
994            }
995
996            @Override
997            public boolean enterEQ(final BinaryNode binaryNode) {
998                loadCmp(binaryNode, Condition.EQ);
999                return false;
1000            }
1001
1002            @Override
1003            public boolean enterEQ_STRICT(final BinaryNode binaryNode) {
1004                loadCmp(binaryNode, Condition.EQ);
1005                return false;
1006            }
1007
1008            @Override
1009            public boolean enterGE(final BinaryNode binaryNode) {
1010                loadCmp(binaryNode, Condition.GE);
1011                return false;
1012            }
1013
1014            @Override
1015            public boolean enterGT(final BinaryNode binaryNode) {
1016                loadCmp(binaryNode, Condition.GT);
1017                return false;
1018            }
1019
1020            @Override
1021            public boolean enterLE(final BinaryNode binaryNode) {
1022                loadCmp(binaryNode, Condition.LE);
1023                return false;
1024            }
1025
1026            @Override
1027            public boolean enterLT(final BinaryNode binaryNode) {
1028                loadCmp(binaryNode, Condition.LT);
1029                return false;
1030            }
1031
1032            @Override
1033            public boolean enterNE(final BinaryNode binaryNode) {
1034                loadCmp(binaryNode, Condition.NE);
1035                return false;
1036            }
1037
1038            @Override
1039            public boolean enterNE_STRICT(final BinaryNode binaryNode) {
1040                loadCmp(binaryNode, Condition.NE);
1041                return false;
1042            }
1043
1044            @Override
1045            public boolean enterObjectNode(final ObjectNode objectNode) {
1046                loadObjectNode(objectNode);
1047                return false;
1048            }
1049
1050            @Override
1051            public boolean enterRuntimeNode(final RuntimeNode runtimeNode) {
1052                loadRuntimeNode(runtimeNode);
1053                return false;
1054            }
1055
1056            @Override
1057            public boolean enterNEW(final UnaryNode unaryNode) {
1058                loadNEW(unaryNode);
1059                return false;
1060            }
1061
1062            @Override
1063            public boolean enterDECINC(final UnaryNode unaryNode) {
1064                loadDECINC(unaryNode);
1065                return false;
1066            }
1067
1068            @Override
1069            public boolean enterJoinPredecessorExpression(final JoinPredecessorExpression joinExpr) {
1070                loadExpression(joinExpr.getExpression(), resultBounds);
1071                return false;
1072            }
1073
1074            @Override
1075            public boolean enterGetSplitState(final GetSplitState getSplitState) {
1076                method.loadScope();
1077                method.invoke(Scope.GET_SPLIT_STATE);
1078                return false;
1079            }
1080
1081            @Override
1082            public boolean enterDefault(final Node otherNode) {
1083                // Must have handled all expressions that can legally be encountered.
1084                throw new AssertionError(otherNode.getClass().getName());
1085            }
1086        });
1087        if(currentDiscard != expr) {
1088            coerceStackTop(resultBounds);
1089        }
1090        return method;
1091    }
1092
1093    private MethodEmitter coerceStackTop(final TypeBounds typeBounds) {
1094        return method.convert(typeBounds.within(method.peekType()));
1095    }
1096
1097    /**
1098     * Closes any still open entries for this block's local variables in the bytecode local variable table.
1099     *
1100     * @param block block containing symbols.
1101     */
1102    private void closeBlockVariables(final Block block) {
1103        for (final Symbol symbol : block.getSymbols()) {
1104            if (symbol.isBytecodeLocal()) {
1105                method.closeLocalVariable(symbol, block.getBreakLabel());
1106            }
1107        }
1108    }
1109
1110    @Override
1111    public boolean enterBlock(final Block block) {
1112        method.label(block.getEntryLabel());
1113        if(!method.isReachable()) {
1114            return false;
1115        }
1116        if(lc.isFunctionBody() && emittedMethods.contains(lc.getCurrentFunction().getName())) {
1117            return false;
1118        }
1119        initLocals(block);
1120
1121        assert lc.getUsedSlotCount() == method.getFirstTemp();
1122        return true;
1123    }
1124
1125    private boolean useOptimisticTypes() {
1126        return !lc.inSplitNode() && compiler.useOptimisticTypes();
1127    }
1128
1129    @Override
1130    public Node leaveBlock(final Block block) {
1131        popBlockScope(block);
1132        method.beforeJoinPoint(block);
1133
1134        closeBlockVariables(block);
1135        lc.releaseSlots();
1136        assert !method.isReachable() || (lc.isFunctionBody() ? 0 : lc.getUsedSlotCount()) == method.getFirstTemp() :
1137            "reachable="+method.isReachable() +
1138            " isFunctionBody=" + lc.isFunctionBody() +
1139            " usedSlotCount=" + lc.getUsedSlotCount() +
1140            " firstTemp=" + method.getFirstTemp();
1141
1142        return block;
1143    }
1144
1145    private void popBlockScope(final Block block) {
1146        final Label breakLabel = block.getBreakLabel();
1147
1148        if(!block.needsScope() || lc.isFunctionBody()) {
1149            emitBlockBreakLabel(breakLabel);
1150            return;
1151        }
1152
1153        final Label beginTryLabel = scopeEntryLabels.pop();
1154        final Label recoveryLabel = new Label("block_popscope_catch");
1155        emitBlockBreakLabel(breakLabel);
1156        final boolean bodyCanThrow = breakLabel.isAfter(beginTryLabel);
1157        if(bodyCanThrow) {
1158            method._try(beginTryLabel, breakLabel, recoveryLabel);
1159        }
1160
1161        Label afterCatchLabel = null;
1162
1163        if(method.isReachable()) {
1164            popScope();
1165            if(bodyCanThrow) {
1166                afterCatchLabel = new Label("block_after_catch");
1167                method._goto(afterCatchLabel);
1168            }
1169        }
1170
1171        if(bodyCanThrow) {
1172            assert !method.isReachable();
1173            method._catch(recoveryLabel);
1174            popScopeException();
1175            method.athrow();
1176        }
1177        if(afterCatchLabel != null) {
1178            method.label(afterCatchLabel);
1179        }
1180    }
1181
1182    private void emitBlockBreakLabel(final Label breakLabel) {
1183        // TODO: this is totally backwards. Block should not be breakable, LabelNode should be breakable.
1184        final LabelNode labelNode = lc.getCurrentBlockLabelNode();
1185        if(labelNode != null) {
1186            // Only have conversions if we're reachable
1187            assert labelNode.getLocalVariableConversion() == null || method.isReachable();
1188            method.beforeJoinPoint(labelNode);
1189            method.breakLabel(breakLabel, labeledBlockBreakLiveLocals.pop());
1190        } else {
1191            method.label(breakLabel);
1192        }
1193    }
1194
1195    private void popScope() {
1196        popScopes(1);
1197    }
1198
1199    /**
1200     * Pop scope as part of an exception handler. Similar to {@code popScope()} but also takes care of adjusting the
1201     * number of scopes that needs to be popped in case a rest-of continuation handler encounters an exception while
1202     * performing a ToPrimitive conversion.
1203     */
1204    private void popScopeException() {
1205        popScope();
1206        final ContinuationInfo ci = getContinuationInfo();
1207        if(ci != null) {
1208            final Label catchLabel = ci.catchLabel;
1209            if(catchLabel != METHOD_BOUNDARY && catchLabel == catchLabels.peek()) {
1210                ++ci.exceptionScopePops;
1211            }
1212        }
1213    }
1214
1215    private void popScopesUntil(final LexicalContextNode until) {
1216        popScopes(lc.getScopeNestingLevelTo(until));
1217    }
1218
1219    private void popScopes(final int count) {
1220        if(count == 0) {
1221            return;
1222        }
1223        assert count > 0; // together with count == 0 check, asserts nonnegative count
1224        if (!method.hasScope()) {
1225            // We can sometimes invoke this method even if the method has no slot for the scope object. Typical example:
1226            // for(;;) { with({}) { break; } }. WithNode normally creates a scope, but if it uses no identifiers and
1227            // nothing else forces creation of a scope in the method, we just won't have the :scope local variable.
1228            return;
1229        }
1230        method.loadCompilerConstant(SCOPE);
1231        for(int i = 0; i < count; ++i) {
1232            method.invoke(ScriptObject.GET_PROTO);
1233        }
1234        method.storeCompilerConstant(SCOPE);
1235    }
1236
1237    @Override
1238    public boolean enterBreakNode(final BreakNode breakNode) {
1239        return enterJumpStatement(breakNode);
1240    }
1241
1242    private boolean enterJumpStatement(final JumpStatement jump) {
1243        if(!method.isReachable()) {
1244            return false;
1245        }
1246        enterStatement(jump);
1247
1248        method.beforeJoinPoint(jump);
1249        final BreakableNode target = jump.getTarget(lc);
1250        popScopesUntil(target);
1251        final Label targetLabel = jump.getTargetLabel(target);
1252        targetLabel.markAsBreakTarget();
1253        method._goto(targetLabel);
1254
1255        return false;
1256    }
1257
1258    private int loadArgs(final List<Expression> args) {
1259        final int argCount = args.size();
1260        // arg have already been converted to objects here.
1261        if (argCount > LinkerCallSite.ARGLIMIT) {
1262            loadArgsArray(args);
1263            return 1;
1264        }
1265
1266        for (final Expression arg : args) {
1267            assert arg != null;
1268            loadExpressionUnbounded(arg);
1269        }
1270        return argCount;
1271    }
1272
1273    private boolean loadCallNode(final CallNode callNode, final TypeBounds resultBounds) {
1274        lineNumber(callNode.getLineNumber());
1275
1276        final List<Expression> args = callNode.getArgs();
1277        final Expression function = callNode.getFunction();
1278        final Block currentBlock = lc.getCurrentBlock();
1279        final CodeGeneratorLexicalContext codegenLexicalContext = lc;
1280
1281        function.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
1282
1283            private MethodEmitter sharedScopeCall(final IdentNode identNode, final int flags) {
1284                final Symbol symbol = identNode.getSymbol();
1285                final boolean isFastScope = isFastScope(symbol);
1286                final int scopeCallFlags = flags | (isFastScope ? CALLSITE_FAST_SCOPE : 0);
1287                new OptimisticOperation(callNode, resultBounds) {
1288                    @Override
1289                    void loadStack() {
1290                        method.loadCompilerConstant(SCOPE);
1291                        if (isFastScope) {
1292                            method.load(getScopeProtoDepth(currentBlock, symbol));
1293                        } else {
1294                            method.load(-1); // Bypass fast-scope code in shared callsite
1295                        }
1296                        loadArgs(args);
1297                    }
1298                    @Override
1299                    void consumeStack() {
1300                        final Type[] paramTypes = method.getTypesFromStack(args.size());
1301                        // We have trouble finding e.g. in Type.typeFor(asm.Type) because it can't see the Context class
1302                        // loader, so we need to weaken reference signatures to Object.
1303                        for(int i = 0; i < paramTypes.length; ++i) {
1304                            paramTypes[i] = Type.generic(paramTypes[i]);
1305                        }
1306                        // As shared scope calls are only used in non-optimistic compilation, we switch from using
1307                        // TypeBounds to just a single definitive type, resultBounds.widest.
1308                        final SharedScopeCall scopeCall = codegenLexicalContext.getScopeCall(unit, symbol,
1309                                identNode.getType(), resultBounds.widest, paramTypes, scopeCallFlags);
1310                        scopeCall.generateInvoke(method);
1311                    }
1312                }.emit();
1313                return method;
1314            }
1315
1316            private void scopeCall(final IdentNode ident, final int flags) {
1317                new OptimisticOperation(callNode, resultBounds) {
1318                    int argsCount;
1319                    @Override
1320                    void loadStack() {
1321                        loadExpressionAsObject(ident); // foo() makes no sense if foo == 3
1322                        // ScriptFunction will see CALLSITE_SCOPE and will bind scope accordingly.
1323                        method.loadUndefined(Type.OBJECT); //the 'this'
1324                        argsCount = loadArgs(args);
1325                    }
1326                    @Override
1327                    void consumeStack() {
1328                        dynamicCall(2 + argsCount, flags);
1329                    }
1330                }.emit();
1331            }
1332
1333            private void evalCall(final IdentNode ident, final int flags) {
1334                final Label invoke_direct_eval  = new Label("invoke_direct_eval");
1335                final Label is_not_eval  = new Label("is_not_eval");
1336                final Label eval_done = new Label("eval_done");
1337
1338                new OptimisticOperation(callNode, resultBounds) {
1339                    int argsCount;
1340                    @Override
1341                    void loadStack() {
1342                        /**
1343                         * We want to load 'eval' to check if it is indeed global builtin eval.
1344                         * If this eval call is inside a 'with' statement, dyn:getMethod|getProp|getElem
1345                         * would be generated if ident is a "isFunction". But, that would result in a
1346                         * bound function from WithObject. We don't want that as bound function as that
1347                         * won't be detected as builtin eval. So, we make ident as "not a function" which
1348                         * results in "dyn:getProp|getElem|getMethod" being generated and so WithObject
1349                         * would return unbounded eval function.
1350                         *
1351                         * Example:
1352                         *
1353                         *  var global = this;
1354                         *  function func() {
1355                         *      with({ eval: global.eval) { eval("var x = 10;") }
1356                         *  }
1357                         */
1358                        loadExpressionAsObject(ident.setIsNotFunction()); // Type.OBJECT as foo() makes no sense if foo == 3
1359                        globalIsEval();
1360                        method.ifeq(is_not_eval);
1361
1362                        // Load up self (scope).
1363                        method.loadCompilerConstant(SCOPE);
1364                        final List<Expression> evalArgs = callNode.getEvalArgs().getArgs();
1365                        // load evaluated code
1366                        loadExpressionAsObject(evalArgs.get(0));
1367                        // load second and subsequent args for side-effect
1368                        final int numArgs = evalArgs.size();
1369                        for (int i = 1; i < numArgs; i++) {
1370                            loadAndDiscard(evalArgs.get(i));
1371                        }
1372                        method._goto(invoke_direct_eval);
1373
1374                        method.label(is_not_eval);
1375                        // load this time but with dyn:getMethod|getProp|getElem
1376                        loadExpressionAsObject(ident); // Type.OBJECT as foo() makes no sense if foo == 3
1377                        // This is some scope 'eval' or global eval replaced by user
1378                        // but not the built-in ECMAScript 'eval' function call
1379                        method.loadNull();
1380                        argsCount = loadArgs(callNode.getArgs());
1381                    }
1382
1383                    @Override
1384                    void consumeStack() {
1385                        // Ordinary call
1386                        dynamicCall(2 + argsCount, flags);
1387                        method._goto(eval_done);
1388
1389                        method.label(invoke_direct_eval);
1390                        // Special/extra 'eval' arguments. These can be loaded late (in consumeStack) as we know none of
1391                        // them can ever be optimistic.
1392                        method.loadCompilerConstant(THIS);
1393                        method.load(callNode.getEvalArgs().getLocation());
1394                        method.load(CodeGenerator.this.lc.getCurrentFunction().isStrict());
1395                        // direct call to Global.directEval
1396                        globalDirectEval();
1397                        convertOptimisticReturnValue();
1398                        coerceStackTop(resultBounds);
1399                    }
1400                }.emit();
1401
1402                method.label(eval_done);
1403            }
1404
1405            @Override
1406            public boolean enterIdentNode(final IdentNode node) {
1407                final Symbol symbol = node.getSymbol();
1408
1409                if (symbol.isScope()) {
1410                    final int flags = getCallSiteFlags() | CALLSITE_SCOPE;
1411                    final int useCount = symbol.getUseCount();
1412
1413                    // Threshold for generating shared scope callsite is lower for fast scope symbols because we know
1414                    // we can dial in the correct scope. However, we also need to enable it for non-fast scopes to
1415                    // support huge scripts like mandreel.js.
1416                    if (callNode.isEval()) {
1417                        evalCall(node, flags);
1418                    } else if (useCount <= SharedScopeCall.FAST_SCOPE_CALL_THRESHOLD
1419                            || !isFastScope(symbol) && useCount <= SharedScopeCall.SLOW_SCOPE_CALL_THRESHOLD
1420                            || CodeGenerator.this.lc.inDynamicScope()
1421                            || isOptimisticOrRestOf()) {
1422                        scopeCall(node, flags);
1423                    } else {
1424                        sharedScopeCall(node, flags);
1425                    }
1426                    assert method.peekType().equals(resultBounds.within(callNode.getType())) : method.peekType() + " != " + resultBounds + "(" + callNode.getType() + ")";
1427                } else {
1428                    enterDefault(node);
1429                }
1430
1431                return false;
1432            }
1433
1434            @Override
1435            public boolean enterAccessNode(final AccessNode node) {
1436                //check if this is an apply to call node. only real applies, that haven't been
1437                //shadowed from their way to the global scope counts
1438
1439                //call nodes have program points.
1440
1441                final int flags = getCallSiteFlags() | (callNode.isApplyToCall() ? CALLSITE_APPLY_TO_CALL : 0);
1442
1443                new OptimisticOperation(callNode, resultBounds) {
1444                    int argCount;
1445                    @Override
1446                    void loadStack() {
1447                        loadExpressionAsObject(node.getBase());
1448                        method.dup();
1449                        // NOTE: not using a nested OptimisticOperation on this dynamicGet, as we expect to get back
1450                        // a callable object. Nobody in their right mind would optimistically type this call site.
1451                        assert !node.isOptimistic();
1452                        method.dynamicGet(node.getType(), node.getProperty(), flags, true);
1453                        method.swap();
1454                        argCount = loadArgs(args);
1455                    }
1456                    @Override
1457                    void consumeStack() {
1458                        dynamicCall(2 + argCount, flags);
1459                    }
1460                }.emit();
1461
1462                return false;
1463            }
1464
1465            @Override
1466            public boolean enterFunctionNode(final FunctionNode origCallee) {
1467                new OptimisticOperation(callNode, resultBounds) {
1468                    FunctionNode callee;
1469                    int argsCount;
1470                    @Override
1471                    void loadStack() {
1472                        callee = (FunctionNode)origCallee.accept(CodeGenerator.this);
1473                        if (callee.isStrict()) { // "this" is undefined
1474                            method.loadUndefined(Type.OBJECT);
1475                        } else { // get global from scope (which is the self)
1476                            globalInstance();
1477                        }
1478                        argsCount = loadArgs(args);
1479                    }
1480
1481                    @Override
1482                    void consumeStack() {
1483                        final int flags = getCallSiteFlags();
1484                        //assert callNodeType.equals(callee.getReturnType()) : callNodeType + " != " + callee.getReturnType();
1485                        dynamicCall(2 + argsCount, flags);
1486                    }
1487                }.emit();
1488                return false;
1489            }
1490
1491            @Override
1492            public boolean enterIndexNode(final IndexNode node) {
1493                new OptimisticOperation(callNode, resultBounds) {
1494                    int argsCount;
1495                    @Override
1496                    void loadStack() {
1497                        loadExpressionAsObject(node.getBase());
1498                        method.dup();
1499                        final Type indexType = node.getIndex().getType();
1500                        if (indexType.isObject() || indexType.isBoolean()) {
1501                            loadExpressionAsObject(node.getIndex()); //TODO boolean
1502                        } else {
1503                            loadExpressionUnbounded(node.getIndex());
1504                        }
1505                        // NOTE: not using a nested OptimisticOperation on this dynamicGetIndex, as we expect to get
1506                        // back a callable object. Nobody in their right mind would optimistically type this call site.
1507                        assert !node.isOptimistic();
1508                        method.dynamicGetIndex(node.getType(), getCallSiteFlags(), true);
1509                        method.swap();
1510                        argsCount = loadArgs(args);
1511                    }
1512                    @Override
1513                    void consumeStack() {
1514                        final int flags = getCallSiteFlags();
1515                        dynamicCall(2 + argsCount, flags);
1516                    }
1517                }.emit();
1518                return false;
1519            }
1520
1521            @Override
1522            protected boolean enterDefault(final Node node) {
1523                new OptimisticOperation(callNode, resultBounds) {
1524                    int argsCount;
1525                    @Override
1526                    void loadStack() {
1527                        // Load up function.
1528                        loadExpressionAsObject(function); //TODO, e.g. booleans can be used as functions
1529                        method.loadUndefined(Type.OBJECT); // ScriptFunction will figure out the correct this when it sees CALLSITE_SCOPE
1530                        argsCount = loadArgs(args);
1531                        }
1532                        @Override
1533                        void consumeStack() {
1534                            final int flags = getCallSiteFlags() | CALLSITE_SCOPE;
1535                            dynamicCall(2 + argsCount, flags);
1536                        }
1537                }.emit();
1538                return false;
1539            }
1540        });
1541
1542        return false;
1543    }
1544
1545    /**
1546     * Returns the flags with optimistic flag and program point removed.
1547     * @param flags the flags that need optimism stripped from them.
1548     * @return flags without optimism
1549     */
1550    static int nonOptimisticFlags(final int flags) {
1551        return flags & ~(CALLSITE_OPTIMISTIC | -1 << CALLSITE_PROGRAM_POINT_SHIFT);
1552    }
1553
1554    @Override
1555    public boolean enterContinueNode(final ContinueNode continueNode) {
1556        return enterJumpStatement(continueNode);
1557    }
1558
1559    @Override
1560    public boolean enterEmptyNode(final EmptyNode emptyNode) {
1561        if(!method.isReachable()) {
1562            return false;
1563        }
1564        enterStatement(emptyNode);
1565
1566        return false;
1567    }
1568
1569    @Override
1570    public boolean enterExpressionStatement(final ExpressionStatement expressionStatement) {
1571        if(!method.isReachable()) {
1572            return false;
1573        }
1574        enterStatement(expressionStatement);
1575
1576        loadAndDiscard(expressionStatement.getExpression());
1577        assert method.getStackSize() == 0;
1578
1579        return false;
1580    }
1581
1582    @Override
1583    public boolean enterBlockStatement(final BlockStatement blockStatement) {
1584        if(!method.isReachable()) {
1585            return false;
1586        }
1587        enterStatement(blockStatement);
1588
1589        blockStatement.getBlock().accept(this);
1590
1591        return false;
1592    }
1593
1594    @Override
1595    public boolean enterForNode(final ForNode forNode) {
1596        if(!method.isReachable()) {
1597            return false;
1598        }
1599        enterStatement(forNode);
1600        if (forNode.isForIn()) {
1601            enterForIn(forNode);
1602        } else {
1603            final Expression init = forNode.getInit();
1604            if (init != null) {
1605                loadAndDiscard(init);
1606            }
1607            enterForOrWhile(forNode, forNode.getModify());
1608        }
1609
1610        return false;
1611    }
1612
1613    private void enterForIn(final ForNode forNode) {
1614        loadExpression(forNode.getModify(), TypeBounds.OBJECT);
1615        method.invoke(forNode.isForEach() ? ScriptRuntime.TO_VALUE_ITERATOR : ScriptRuntime.TO_PROPERTY_ITERATOR);
1616        final Symbol iterSymbol = forNode.getIterator();
1617        final int iterSlot = iterSymbol.getSlot(Type.OBJECT);
1618        method.store(iterSymbol, ITERATOR_TYPE);
1619
1620        method.beforeJoinPoint(forNode);
1621
1622        final Label continueLabel = forNode.getContinueLabel();
1623        final Label breakLabel    = forNode.getBreakLabel();
1624
1625        method.label(continueLabel);
1626        method.load(ITERATOR_TYPE, iterSlot);
1627        method.invoke(interfaceCallNoLookup(ITERATOR_CLASS, "hasNext", boolean.class));
1628        final JoinPredecessorExpression test = forNode.getTest();
1629        final Block body = forNode.getBody();
1630        if(LocalVariableConversion.hasLiveConversion(test)) {
1631            final Label afterConversion = new Label("for_in_after_test_conv");
1632            method.ifne(afterConversion);
1633            method.beforeJoinPoint(test);
1634            method._goto(breakLabel);
1635            method.label(afterConversion);
1636        } else {
1637            method.ifeq(breakLabel);
1638        }
1639
1640        new Store<Expression>(forNode.getInit()) {
1641            @Override
1642            protected void storeNonDiscard() {
1643                // This expression is neither part of a discard, nor needs to be left on the stack after it was
1644                // stored, so we override storeNonDiscard to be a no-op.
1645            }
1646
1647            @Override
1648            protected void evaluate() {
1649                new OptimisticOperation((Optimistic)forNode.getInit(), TypeBounds.UNBOUNDED) {
1650                    @Override
1651                    void loadStack() {
1652                        method.load(ITERATOR_TYPE, iterSlot);
1653                    }
1654
1655                    @Override
1656                    void consumeStack() {
1657                        method.invoke(interfaceCallNoLookup(ITERATOR_CLASS, "next", Object.class));
1658                        convertOptimisticReturnValue();
1659                    }
1660                }.emit();
1661            }
1662        }.store();
1663        body.accept(this);
1664
1665        if(method.isReachable()) {
1666            method._goto(continueLabel);
1667        }
1668        method.label(breakLabel);
1669    }
1670
1671    /**
1672     * Initialize the slots in a frame to undefined.
1673     *
1674     * @param block block with local vars.
1675     */
1676    private void initLocals(final Block block) {
1677        lc.onEnterBlock(block);
1678
1679        final boolean isFunctionBody = lc.isFunctionBody();
1680        final FunctionNode function = lc.getCurrentFunction();
1681        if (isFunctionBody) {
1682            initializeMethodParameters(function);
1683            if(!function.isVarArg()) {
1684                expandParameterSlots(function);
1685            }
1686            if (method.hasScope()) {
1687                if (function.needsParentScope()) {
1688                    method.loadCompilerConstant(CALLEE);
1689                    method.invoke(ScriptFunction.GET_SCOPE);
1690                } else {
1691                    assert function.hasScopeBlock();
1692                    method.loadNull();
1693                }
1694                method.storeCompilerConstant(SCOPE);
1695            }
1696            if (function.needsArguments()) {
1697                initArguments(function);
1698            }
1699        }
1700
1701        /*
1702         * Determine if block needs scope, if not, just do initSymbols for this block.
1703         */
1704        if (block.needsScope()) {
1705            /*
1706             * Determine if function is varargs and consequently variables have to
1707             * be in the scope.
1708             */
1709            final boolean varsInScope = function.allVarsInScope();
1710
1711            // TODO for LET we can do better: if *block* does not contain any eval/with, we don't need its vars in scope.
1712
1713            final boolean hasArguments = function.needsArguments();
1714            final List<MapTuple<Symbol>> tuples = new ArrayList<>();
1715            final Iterator<IdentNode> paramIter = function.getParameters().iterator();
1716            for (final Symbol symbol : block.getSymbols()) {
1717                if (symbol.isInternal() || symbol.isThis()) {
1718                    continue;
1719                }
1720
1721                if (symbol.isVar()) {
1722                    assert !varsInScope || symbol.isScope();
1723                    if (varsInScope || symbol.isScope()) {
1724                        assert symbol.isScope()   : "scope for " + symbol + " should have been set in Lower already " + function.getName();
1725                        assert !symbol.hasSlot()  : "slot for " + symbol + " should have been removed in Lower already" + function.getName();
1726
1727                        //this tuple will not be put fielded, as it has no value, just a symbol
1728                        tuples.add(new MapTuple<Symbol>(symbol.getName(), symbol, null));
1729                    } else {
1730                        assert symbol.hasSlot() || symbol.slotCount() == 0 : symbol + " should have a slot only, no scope";
1731                    }
1732                } else if (symbol.isParam() && (varsInScope || hasArguments || symbol.isScope())) {
1733                    assert symbol.isScope()   : "scope for " + symbol + " should have been set in AssignSymbols already " + function.getName() + " varsInScope="+varsInScope+" hasArguments="+hasArguments+" symbol.isScope()=" + symbol.isScope();
1734                    assert !(hasArguments && symbol.hasSlot())  : "slot for " + symbol + " should have been removed in Lower already " + function.getName();
1735
1736                    final Type   paramType;
1737                    final Symbol paramSymbol;
1738
1739                    if (hasArguments) {
1740                        assert !symbol.hasSlot()  : "slot for " + symbol + " should have been removed in Lower already ";
1741                        paramSymbol = null;
1742                        paramType   = null;
1743                    } else {
1744                        paramSymbol = symbol;
1745                        // NOTE: We're relying on the fact here that Block.symbols is a LinkedHashMap, hence it will
1746                        // return symbols in the order they were defined, and parameters are defined in the same order
1747                        // they appear in the function. That's why we can have a single pass over the parameter list
1748                        // with an iterator, always just scanning forward for the next parameter that matches the symbol
1749                        // name.
1750                        for(;;) {
1751                            final IdentNode nextParam = paramIter.next();
1752                            if(nextParam.getName().equals(symbol.getName())) {
1753                                paramType = nextParam.getType();
1754                                break;
1755                            }
1756                        }
1757                    }
1758
1759                    tuples.add(new MapTuple<Symbol>(symbol.getName(), symbol, paramType, paramSymbol) {
1760                        //this symbol will be put fielded, we can't initialize it as undefined with a known type
1761                        @Override
1762                        public Class<?> getValueType() {
1763                            if (OBJECT_FIELDS_ONLY || value == null || paramType == null) {
1764                                return Object.class;
1765                            }
1766                            return paramType.isBoolean() ? Object.class : paramType.getTypeClass();
1767                        }
1768                    });
1769                }
1770            }
1771
1772            /*
1773             * Create a new object based on the symbols and values, generate
1774             * bootstrap code for object
1775             */
1776            new FieldObjectCreator<Symbol>(this, tuples, true, hasArguments) {
1777                @Override
1778                protected void loadValue(final Symbol value, final Type type) {
1779                    method.load(value, type);
1780                }
1781            }.makeObject(method);
1782            // program function: merge scope into global
1783            if (isFunctionBody && function.isProgram()) {
1784                method.invoke(ScriptRuntime.MERGE_SCOPE);
1785            }
1786
1787            method.storeCompilerConstant(SCOPE);
1788            if(!isFunctionBody) {
1789                // Function body doesn't need a try/catch to restore scope, as it'd be a dead store anyway. Allowing it
1790                // actually causes issues with UnwarrantedOptimismException handlers as ASM will sort this handler to
1791                // the top of the exception handler table, so it'll be triggered instead of the UOE handlers.
1792                final Label scopeEntryLabel = new Label("scope_entry");
1793                scopeEntryLabels.push(scopeEntryLabel);
1794                method.label(scopeEntryLabel);
1795            }
1796        } else if (isFunctionBody && function.isVarArg()) {
1797            // Since we don't have a scope, parameters didn't get assigned array indices by the FieldObjectCreator, so
1798            // we need to assign them separately here.
1799            int nextParam = 0;
1800            for (final IdentNode param : function.getParameters()) {
1801                param.getSymbol().setFieldIndex(nextParam++);
1802            }
1803        }
1804
1805        // Debugging: print symbols? @see --print-symbols flag
1806        printSymbols(block, function, (isFunctionBody ? "Function " : "Block in ") + (function.getIdent() == null ? "<anonymous>" : function.getIdent().getName()));
1807    }
1808
1809    /**
1810     * Incoming method parameters are always declared on method entry; declare them in the local variable table.
1811     * @param function function for which code is being generated.
1812     */
1813    private void initializeMethodParameters(final FunctionNode function) {
1814        final Label functionStart = new Label("fn_start");
1815        method.label(functionStart);
1816        int nextSlot = 0;
1817        if(function.needsCallee()) {
1818            initializeInternalFunctionParameter(CALLEE, function, functionStart, nextSlot++);
1819        }
1820        initializeInternalFunctionParameter(THIS, function, functionStart, nextSlot++);
1821        if(function.isVarArg()) {
1822            initializeInternalFunctionParameter(VARARGS, function, functionStart, nextSlot++);
1823        } else {
1824            for(final IdentNode param: function.getParameters()) {
1825                final Symbol symbol = param.getSymbol();
1826                if(symbol.isBytecodeLocal()) {
1827                    method.initializeMethodParameter(symbol, param.getType(), functionStart);
1828                }
1829            }
1830        }
1831    }
1832
1833    private void initializeInternalFunctionParameter(final CompilerConstants cc, final FunctionNode fn, final Label functionStart, final int slot) {
1834        final Symbol symbol = initializeInternalFunctionOrSplitParameter(cc, fn, functionStart, slot);
1835        // Internal function params (:callee, this, and :varargs) are never expanded to multiple slots
1836        assert symbol.getFirstSlot() == slot;
1837    }
1838
1839    private Symbol initializeInternalFunctionOrSplitParameter(final CompilerConstants cc, final FunctionNode fn, final Label functionStart, final int slot) {
1840        final Symbol symbol = fn.getBody().getExistingSymbol(cc.symbolName());
1841        final Type type = Type.typeFor(cc.type());
1842        method.initializeMethodParameter(symbol, type, functionStart);
1843        method.onLocalStore(type, slot);
1844        return symbol;
1845    }
1846
1847    /**
1848     * Parameters come into the method packed into local variable slots next to each other. Nashorn on the other hand
1849     * can use 1-6 slots for a local variable depending on all the types it needs to store. When this method is invoked,
1850     * the symbols are already allocated such wider slots, but the values are still in tightly packed incoming slots,
1851     * and we need to spread them into their new locations.
1852     * @param function the function for which parameter-spreading code needs to be emitted
1853     */
1854    private void expandParameterSlots(final FunctionNode function) {
1855        final List<IdentNode> parameters = function.getParameters();
1856        // Calculate the total number of incoming parameter slots
1857        int currentIncomingSlot = function.needsCallee() ? 2 : 1;
1858        for(final IdentNode parameter: parameters) {
1859            currentIncomingSlot += parameter.getType().getSlots();
1860        }
1861        // Starting from last parameter going backwards, move the parameter values into their new slots.
1862        for(int i = parameters.size(); i-- > 0;) {
1863            final IdentNode parameter = parameters.get(i);
1864            final Type parameterType = parameter.getType();
1865            final int typeWidth = parameterType.getSlots();
1866            currentIncomingSlot -= typeWidth;
1867            final Symbol symbol = parameter.getSymbol();
1868            final int slotCount = symbol.slotCount();
1869            assert slotCount > 0;
1870            // Scoped parameters must not hold more than one value
1871            assert symbol.isBytecodeLocal() || slotCount == typeWidth;
1872
1873            // Mark it as having its value stored into it by the method invocation.
1874            method.onLocalStore(parameterType, currentIncomingSlot);
1875            if(currentIncomingSlot != symbol.getSlot(parameterType)) {
1876                method.load(parameterType, currentIncomingSlot);
1877                method.store(symbol, parameterType);
1878            }
1879        }
1880    }
1881
1882    private void initArguments(final FunctionNode function) {
1883        method.loadCompilerConstant(VARARGS);
1884        if (function.needsCallee()) {
1885            method.loadCompilerConstant(CALLEE);
1886        } else {
1887            // If function is strict mode, "arguments.callee" is not populated, so we don't necessarily need the
1888            // caller.
1889            assert function.isStrict();
1890            method.loadNull();
1891        }
1892        method.load(function.getParameters().size());
1893        globalAllocateArguments();
1894        method.storeCompilerConstant(ARGUMENTS);
1895    }
1896
1897    private boolean skipFunction(final FunctionNode functionNode) {
1898        final ScriptEnvironment env = compiler.getScriptEnvironment();
1899        final boolean lazy = env._lazy_compilation;
1900        final boolean onDemand = compiler.isOnDemandCompilation();
1901
1902        // If this is on-demand or lazy compilation, don't compile a nested (not topmost) function.
1903        if((onDemand || lazy) && lc.getOutermostFunction() != functionNode) {
1904            return true;
1905        }
1906
1907        // If lazy compiling with optimistic types, don't compile the program eagerly either. It will soon be
1908        // invalidated anyway. In presence of a class cache, this further means that an obsoleted program version
1909        // lingers around. Also, currently loading previously persisted optimistic types information only works if
1910        // we're on-demand compiling a function, so with this strategy the :program method can also have the warmup
1911        // benefit of using previously persisted types.
1912        //
1913        // NOTE that this means the first compiled class will effectively just have a :createProgramFunction method, and
1914        // the RecompilableScriptFunctionData (RSFD) object in its constants array. It won't even have the :program
1915        // method. This is by design. It does mean that we're wasting one compiler execution (and we could minimize this
1916        // by just running it up to scope depth calculation, which creates the RSFDs and then this limited codegen).
1917        // We could emit an initial separate compile unit with the initial version of :program in it to better utilize
1918        // the compilation pipeline, but that would need more invasive changes, as currently the assumption that
1919        // :program is emitted into the first compilation unit of the function lives in many places.
1920        return !onDemand && lazy && env._optimistic_types && functionNode.isProgram();
1921    }
1922
1923    @Override
1924    public boolean enterFunctionNode(final FunctionNode functionNode) {
1925        final int fnId = functionNode.getId();
1926
1927        if (skipFunction(functionNode)) {
1928            // In case we are not generating code for the function, we must create or retrieve the function object and
1929            // load it on the stack here.
1930            newFunctionObject(functionNode, false);
1931            return false;
1932        }
1933
1934        final String fnName = functionNode.getName();
1935
1936        // NOTE: we only emit the method for a function with the given name once. We can have multiple functions with
1937        // the same name as a result of inlining finally blocks. However, in the future -- with type specialization,
1938        // notably -- we might need to check for both name *and* signature. Of course, even that might not be
1939        // sufficient; the function might have a code dependency on the type of the variables in its enclosing scopes,
1940        // and the type of such a variable can be different in catch and finally blocks. So, in the future we will have
1941        // to decide to either generate a unique method for each inlined copy of the function, maybe figure out its
1942        // exact type closure and deduplicate based on that, or just decide that functions in finally blocks aren't
1943        // worth it, and generate one method with most generic type closure.
1944        if (!emittedMethods.contains(fnName)) {
1945            log.info("=== BEGIN ", fnName);
1946
1947            assert functionNode.getCompileUnit() != null : "no compile unit for " + fnName + " " + Debug.id(functionNode);
1948            unit = lc.pushCompileUnit(functionNode.getCompileUnit());
1949            assert lc.hasCompileUnits();
1950
1951            final ClassEmitter classEmitter = unit.getClassEmitter();
1952            pushMethodEmitter(isRestOf() ? classEmitter.restOfMethod(functionNode) : classEmitter.method(functionNode));
1953            method.setPreventUndefinedLoad();
1954            if(useOptimisticTypes()) {
1955                lc.pushUnwarrantedOptimismHandlers();
1956            }
1957
1958            // new method - reset last line number
1959            lastLineNumber = -1;
1960
1961            method.begin();
1962
1963            if (isRestOf()) {
1964                final ContinuationInfo ci = new ContinuationInfo();
1965                fnIdToContinuationInfo.put(fnId, ci);
1966                method.gotoLoopStart(ci.getHandlerLabel());
1967            }
1968        }
1969
1970        return true;
1971    }
1972
1973    private void pushMethodEmitter(final MethodEmitter newMethod) {
1974        method = lc.pushMethodEmitter(newMethod);
1975        catchLabels.push(METHOD_BOUNDARY);
1976    }
1977
1978    private void popMethodEmitter() {
1979        method = lc.popMethodEmitter(method);
1980        assert catchLabels.peek() == METHOD_BOUNDARY;
1981        catchLabels.pop();
1982    }
1983
1984    @Override
1985    public Node leaveFunctionNode(final FunctionNode functionNode) {
1986        try {
1987            final boolean markOptimistic;
1988            if (emittedMethods.add(functionNode.getName())) {
1989                markOptimistic = generateUnwarrantedOptimismExceptionHandlers(functionNode);
1990                generateContinuationHandler();
1991                method.end(); // wrap up this method
1992                unit   = lc.popCompileUnit(functionNode.getCompileUnit());
1993                popMethodEmitter();
1994                log.info("=== END ", functionNode.getName());
1995            } else {
1996                markOptimistic = false;
1997            }
1998
1999            FunctionNode newFunctionNode = functionNode.setState(lc, CompilationState.BYTECODE_GENERATED);
2000            if (markOptimistic) {
2001                newFunctionNode = newFunctionNode.setFlag(lc, FunctionNode.IS_DEOPTIMIZABLE);
2002            }
2003
2004            newFunctionObject(newFunctionNode, true);
2005            return newFunctionNode;
2006        } catch (final Throwable t) {
2007            Context.printStackTrace(t);
2008            final VerifyError e = new VerifyError("Code generation bug in \"" + functionNode.getName() + "\": likely stack misaligned: " + t + " " + functionNode.getSource().getName());
2009            e.initCause(t);
2010            throw e;
2011        }
2012    }
2013
2014    @Override
2015    public boolean enterIfNode(final IfNode ifNode) {
2016        if(!method.isReachable()) {
2017            return false;
2018        }
2019        enterStatement(ifNode);
2020
2021        final Expression test = ifNode.getTest();
2022        final Block pass = ifNode.getPass();
2023        final Block fail = ifNode.getFail();
2024        final boolean hasFailConversion = LocalVariableConversion.hasLiveConversion(ifNode);
2025
2026        final Label failLabel  = new Label("if_fail");
2027        final Label afterLabel = (fail == null && !hasFailConversion) ? null : new Label("if_done");
2028
2029        emitBranch(test, failLabel, false);
2030
2031        pass.accept(this);
2032        if(method.isReachable() && afterLabel != null) {
2033            method._goto(afterLabel); //don't fallthru to fail block
2034        }
2035        method.label(failLabel);
2036
2037        if (fail != null) {
2038            fail.accept(this);
2039        } else if(hasFailConversion) {
2040            method.beforeJoinPoint(ifNode);
2041        }
2042
2043        if(afterLabel != null) {
2044            method.label(afterLabel);
2045        }
2046
2047        return false;
2048    }
2049
2050    private void emitBranch(final Expression test, final Label label, final boolean jumpWhenTrue) {
2051        new BranchOptimizer(this, method).execute(test, label, jumpWhenTrue);
2052    }
2053
2054    private void enterStatement(final Statement statement) {
2055        lineNumber(statement);
2056    }
2057
2058    private void lineNumber(final Statement statement) {
2059        lineNumber(statement.getLineNumber());
2060    }
2061
2062    private void lineNumber(final int lineNumber) {
2063        if (lineNumber != lastLineNumber && lineNumber != Node.NO_LINE_NUMBER) {
2064            method.lineNumber(lineNumber);
2065            lastLineNumber = lineNumber;
2066        }
2067    }
2068
2069    int getLastLineNumber() {
2070        return lastLineNumber;
2071    }
2072
2073    /**
2074     * Load a list of nodes as an array of a specific type
2075     * The array will contain the visited nodes.
2076     *
2077     * @param arrayLiteralNode the array of contents
2078     * @param arrayType        the type of the array, e.g. ARRAY_NUMBER or ARRAY_OBJECT
2079     *
2080     * @return the method generator that was used
2081     */
2082    private MethodEmitter loadArray(final ArrayLiteralNode arrayLiteralNode, final ArrayType arrayType) {
2083        assert arrayType == Type.INT_ARRAY || arrayType == Type.LONG_ARRAY || arrayType == Type.NUMBER_ARRAY || arrayType == Type.OBJECT_ARRAY;
2084
2085        final Expression[]    nodes    = arrayLiteralNode.getValue();
2086        final Object          presets  = arrayLiteralNode.getPresets();
2087        final int[]           postsets = arrayLiteralNode.getPostsets();
2088        final Class<?>        type     = arrayType.getTypeClass();
2089        final List<ArrayUnit> units    = arrayLiteralNode.getUnits();
2090
2091        loadConstant(presets);
2092
2093        final Type elementType = arrayType.getElementType();
2094
2095        if (units != null) {
2096            final MethodEmitter savedMethod     = method;
2097            final FunctionNode  currentFunction = lc.getCurrentFunction();
2098
2099            for (final ArrayUnit arrayUnit : units) {
2100                unit = lc.pushCompileUnit(arrayUnit.getCompileUnit());
2101
2102                final String className = unit.getUnitClassName();
2103                assert unit != null;
2104                final String name      = currentFunction.uniqueName(SPLIT_PREFIX.symbolName());
2105                final String signature = methodDescriptor(type, ScriptFunction.class, Object.class, ScriptObject.class, type);
2106
2107                pushMethodEmitter(unit.getClassEmitter().method(EnumSet.of(Flag.PUBLIC, Flag.STATIC), name, signature));
2108
2109                method.setFunctionNode(currentFunction);
2110                method.begin();
2111
2112                defineCommonSplitMethodParameters();
2113                defineSplitMethodParameter(CompilerConstants.SPLIT_ARRAY_ARG.slot(), arrayType);
2114
2115                // NOTE: when this is no longer needed, SplitIntoFunctions will no longer have to add IS_SPLIT
2116                // to synthetic functions, and FunctionNode.needsCallee() will no longer need to test for isSplit().
2117                final int arraySlot = fixScopeSlot(currentFunction, 3);
2118
2119                lc.enterSplitNode();
2120
2121                for (int i = arrayUnit.getLo(); i < arrayUnit.getHi(); i++) {
2122                    method.load(arrayType, arraySlot);
2123                    storeElement(nodes, elementType, postsets[i]);
2124                }
2125
2126                method.load(arrayType, arraySlot);
2127                method._return();
2128                lc.exitSplitNode();
2129                method.end();
2130                lc.releaseSlots();
2131                popMethodEmitter();
2132
2133                assert method == savedMethod;
2134                method.loadCompilerConstant(CALLEE);
2135                method.swap();
2136                method.loadCompilerConstant(THIS);
2137                method.swap();
2138                method.loadCompilerConstant(SCOPE);
2139                method.swap();
2140                method.invokestatic(className, name, signature);
2141
2142                unit = lc.popCompileUnit(unit);
2143            }
2144
2145            return method;
2146        }
2147
2148        if(postsets.length > 0) {
2149            final int arraySlot = method.getUsedSlotsWithLiveTemporaries();
2150            method.storeTemp(arrayType, arraySlot);
2151            for (final int postset : postsets) {
2152                method.load(arrayType, arraySlot);
2153                storeElement(nodes, elementType, postset);
2154            }
2155            method.load(arrayType, arraySlot);
2156        }
2157        return method;
2158    }
2159
2160    private void storeElement(final Expression[] nodes, final Type elementType, final int index) {
2161        method.load(index);
2162
2163        final Expression element = nodes[index];
2164
2165        if (element == null) {
2166            method.loadEmpty(elementType);
2167        } else {
2168            loadExpressionAsType(element, elementType);
2169        }
2170
2171        method.arraystore();
2172    }
2173
2174    private MethodEmitter loadArgsArray(final List<Expression> args) {
2175        final Object[] array = new Object[args.size()];
2176        loadConstant(array);
2177
2178        for (int i = 0; i < args.size(); i++) {
2179            method.dup();
2180            method.load(i);
2181            loadExpression(args.get(i), TypeBounds.OBJECT); // variable arity methods always take objects
2182            method.arraystore();
2183        }
2184
2185        return method;
2186    }
2187
2188    /**
2189     * Load a constant from the constant array. This is only public to be callable from the objects
2190     * subpackage. Do not call directly.
2191     *
2192     * @param string string to load
2193     */
2194    void loadConstant(final String string) {
2195        final String       unitClassName = unit.getUnitClassName();
2196        final ClassEmitter classEmitter  = unit.getClassEmitter();
2197        final int          index         = compiler.getConstantData().add(string);
2198
2199        method.load(index);
2200        method.invokestatic(unitClassName, GET_STRING.symbolName(), methodDescriptor(String.class, int.class));
2201        classEmitter.needGetConstantMethod(String.class);
2202    }
2203
2204    /**
2205     * Load a constant from the constant array. This is only public to be callable from the objects
2206     * subpackage. Do not call directly.
2207     *
2208     * @param object object to load
2209     */
2210    void loadConstant(final Object object) {
2211        loadConstant(object, unit, method);
2212    }
2213
2214    private void loadConstant(final Object object, final CompileUnit compileUnit, final MethodEmitter methodEmitter) {
2215        final String       unitClassName = compileUnit.getUnitClassName();
2216        final ClassEmitter classEmitter  = compileUnit.getClassEmitter();
2217        final int          index         = compiler.getConstantData().add(object);
2218        final Class<?>     cls           = object.getClass();
2219
2220        if (cls == PropertyMap.class) {
2221            methodEmitter.load(index);
2222            methodEmitter.invokestatic(unitClassName, GET_MAP.symbolName(), methodDescriptor(PropertyMap.class, int.class));
2223            classEmitter.needGetConstantMethod(PropertyMap.class);
2224        } else if (cls.isArray()) {
2225            methodEmitter.load(index);
2226            final String methodName = ClassEmitter.getArrayMethodName(cls);
2227            methodEmitter.invokestatic(unitClassName, methodName, methodDescriptor(cls, int.class));
2228            classEmitter.needGetConstantMethod(cls);
2229        } else {
2230            methodEmitter.loadConstants().load(index).arrayload();
2231            if (object instanceof ArrayData) {
2232                // avoid cast to non-public ArrayData subclass
2233                methodEmitter.checkcast(ArrayData.class);
2234                methodEmitter.invoke(virtualCallNoLookup(ArrayData.class, "copy", ArrayData.class));
2235            } else if (cls != Object.class) {
2236                methodEmitter.checkcast(cls);
2237            }
2238        }
2239    }
2240
2241    // literal values
2242    private void loadLiteral(final LiteralNode<?> node, final TypeBounds resultBounds) {
2243        final Object value = node.getValue();
2244
2245        if (value == null) {
2246            method.loadNull();
2247        } else if (value instanceof Undefined) {
2248            method.loadUndefined(resultBounds.within(Type.OBJECT));
2249        } else if (value instanceof String) {
2250            final String string = (String)value;
2251
2252            if (string.length() > MethodEmitter.LARGE_STRING_THRESHOLD / 3) { // 3 == max bytes per encoded char
2253                loadConstant(string);
2254            } else {
2255                method.load(string);
2256            }
2257        } else if (value instanceof RegexToken) {
2258            loadRegex((RegexToken)value);
2259        } else if (value instanceof Boolean) {
2260            method.load((Boolean)value);
2261        } else if (value instanceof Integer) {
2262            if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2263                method.load((Integer)value);
2264                method.convert(Type.OBJECT);
2265            } else if(!resultBounds.canBeNarrowerThan(Type.NUMBER)) {
2266                method.load(((Integer)value).doubleValue());
2267            } else if(!resultBounds.canBeNarrowerThan(Type.LONG)) {
2268                method.load(((Integer)value).longValue());
2269            } else {
2270                method.load((Integer)value);
2271            }
2272        } else if (value instanceof Long) {
2273            if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2274                method.load((Long)value);
2275                method.convert(Type.OBJECT);
2276            } else if(!resultBounds.canBeNarrowerThan(Type.NUMBER)) {
2277                method.load(((Long)value).doubleValue());
2278            } else {
2279                method.load((Long)value);
2280            }
2281        } else if (value instanceof Double) {
2282            if(!resultBounds.canBeNarrowerThan(Type.OBJECT)) {
2283                method.load((Double)value);
2284                method.convert(Type.OBJECT);
2285            } else {
2286                method.load((Double)value);
2287            }
2288        } else if (node instanceof ArrayLiteralNode) {
2289            final ArrayLiteralNode arrayLiteral = (ArrayLiteralNode)node;
2290            final ArrayType atype = arrayLiteral.getArrayType();
2291            loadArray(arrayLiteral, atype);
2292            globalAllocateArray(atype);
2293        } else {
2294            throw new UnsupportedOperationException("Unknown literal for " + node.getClass() + " " + value.getClass() + " " + value);
2295        }
2296    }
2297
2298    private MethodEmitter loadRegexToken(final RegexToken value) {
2299        method.load(value.getExpression());
2300        method.load(value.getOptions());
2301        return globalNewRegExp();
2302    }
2303
2304    private MethodEmitter loadRegex(final RegexToken regexToken) {
2305        if (regexFieldCount > MAX_REGEX_FIELDS) {
2306            return loadRegexToken(regexToken);
2307        }
2308        // emit field
2309        final String       regexName    = lc.getCurrentFunction().uniqueName(REGEX_PREFIX.symbolName());
2310        final ClassEmitter classEmitter = unit.getClassEmitter();
2311
2312        classEmitter.field(EnumSet.of(PRIVATE, STATIC), regexName, Object.class);
2313        regexFieldCount++;
2314
2315        // get field, if null create new regex, finally clone regex object
2316        method.getStatic(unit.getUnitClassName(), regexName, typeDescriptor(Object.class));
2317        method.dup();
2318        final Label cachedLabel = new Label("cached");
2319        method.ifnonnull(cachedLabel);
2320
2321        method.pop();
2322        loadRegexToken(regexToken);
2323        method.dup();
2324        method.putStatic(unit.getUnitClassName(), regexName, typeDescriptor(Object.class));
2325
2326        method.label(cachedLabel);
2327        globalRegExpCopy();
2328
2329        return method;
2330    }
2331
2332    /**
2333     * Check if a property value contains a particular program point
2334     * @param value value
2335     * @param pp    program point
2336     * @return true if it's there.
2337     */
2338    private static boolean propertyValueContains(final Expression value, final int pp) {
2339        return new Supplier<Boolean>() {
2340            boolean contains;
2341
2342            @Override
2343            public Boolean get() {
2344                value.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
2345                    @Override
2346                    public boolean enterFunctionNode(final FunctionNode functionNode) {
2347                        return false;
2348                    }
2349
2350                    @Override
2351                    public boolean enterObjectNode(final ObjectNode objectNode) {
2352                        return false;
2353                    }
2354
2355                    @Override
2356                    public boolean enterDefault(final Node node) {
2357                        if (contains) {
2358                            return false;
2359                        }
2360                        if (node instanceof Optimistic && ((Optimistic)node).getProgramPoint() == pp) {
2361                            contains = true;
2362                            return false;
2363                        }
2364                        return true;
2365                    }
2366                });
2367
2368                return contains;
2369            }
2370        }.get();
2371    }
2372
2373    private void loadObjectNode(final ObjectNode objectNode) {
2374        final List<PropertyNode> elements = objectNode.getElements();
2375
2376        final List<MapTuple<Expression>> tuples = new ArrayList<>();
2377        final List<PropertyNode> gettersSetters = new ArrayList<>();
2378        final int ccp = getCurrentContinuationEntryPoint();
2379
2380        Expression protoNode = null;
2381        boolean restOfProperty = false;
2382
2383        for (final PropertyNode propertyNode : elements) {
2384            final Expression value = propertyNode.getValue();
2385            final String key = propertyNode.getKeyName();
2386            // Just use a pseudo-symbol. We just need something non null; use the name and zero flags.
2387            final Symbol symbol = value == null ? null : new Symbol(key, 0);
2388
2389            if (value == null) {
2390                gettersSetters.add(propertyNode);
2391            } else if (propertyNode.getKey() instanceof IdentNode &&
2392                       key.equals(ScriptObject.PROTO_PROPERTY_NAME)) {
2393                // ES6 draft compliant __proto__ inside object literal
2394                // Identifier key and name is __proto__
2395                protoNode = value;
2396                continue;
2397            }
2398
2399            restOfProperty |=
2400                value != null &&
2401                isValid(ccp) &&
2402                propertyValueContains(value, ccp);
2403
2404            //for literals, a value of null means object type, i.e. the value null or getter setter function
2405            //(I think)
2406            final Class<?> valueType = (OBJECT_FIELDS_ONLY || value == null || value.getType().isBoolean()) ? Object.class : value.getType().getTypeClass();
2407            tuples.add(new MapTuple<Expression>(key, symbol, Type.typeFor(valueType), value) {
2408                @Override
2409                public Class<?> getValueType() {
2410                    return type.getTypeClass();
2411                }
2412            });
2413        }
2414
2415        final ObjectCreator<?> oc;
2416        if (elements.size() > OBJECT_SPILL_THRESHOLD) {
2417            oc = new SpillObjectCreator(this, tuples);
2418        } else {
2419            oc = new FieldObjectCreator<Expression>(this, tuples) {
2420                @Override
2421                protected void loadValue(final Expression node, final Type type) {
2422                    loadExpressionAsType(node, type);
2423                }};
2424        }
2425        oc.makeObject(method);
2426
2427        //if this is a rest of method and our continuation point was found as one of the values
2428        //in the properties above, we need to reset the map to oc.getMap() in the continuation
2429        //handler
2430        if (restOfProperty) {
2431            final ContinuationInfo ci = getContinuationInfo();
2432            // Can be set at most once for a single rest-of method
2433            assert ci.getObjectLiteralMap() == null;
2434            ci.setObjectLiteralMap(oc.getMap());
2435            ci.setObjectLiteralStackDepth(method.getStackSize());
2436        }
2437
2438        method.dup();
2439        if (protoNode != null) {
2440            loadExpressionAsObject(protoNode);
2441            // take care of { __proto__: 34 } or some such!
2442            method.convert(Type.OBJECT);
2443            method.invoke(ScriptObject.SET_PROTO_FROM_LITERAL);
2444        } else {
2445            method.invoke(ScriptObject.SET_GLOBAL_OBJECT_PROTO);
2446        }
2447
2448        for (final PropertyNode propertyNode : gettersSetters) {
2449            final FunctionNode getter = propertyNode.getGetter();
2450            final FunctionNode setter = propertyNode.getSetter();
2451
2452            assert getter != null || setter != null;
2453
2454            method.dup().loadKey(propertyNode.getKey());
2455            if (getter == null) {
2456                method.loadNull();
2457            } else {
2458                getter.accept(this);
2459            }
2460
2461            if (setter == null) {
2462                method.loadNull();
2463            } else {
2464                setter.accept(this);
2465            }
2466
2467            method.invoke(ScriptObject.SET_USER_ACCESSORS);
2468        }
2469    }
2470
2471    @Override
2472    public boolean enterReturnNode(final ReturnNode returnNode) {
2473        if(!method.isReachable()) {
2474            return false;
2475        }
2476        enterStatement(returnNode);
2477
2478        method.registerReturn();
2479
2480        final Type returnType = lc.getCurrentFunction().getReturnType();
2481
2482        final Expression expression = returnNode.getExpression();
2483        if (expression != null) {
2484            loadExpressionUnbounded(expression);
2485        } else {
2486            method.loadUndefined(returnType);
2487        }
2488
2489        method._return(returnType);
2490
2491        return false;
2492    }
2493
2494    private boolean undefinedCheck(final RuntimeNode runtimeNode, final List<Expression> args) {
2495        final Request request = runtimeNode.getRequest();
2496
2497        if (!Request.isUndefinedCheck(request)) {
2498            return false;
2499        }
2500
2501        final Expression lhs = args.get(0);
2502        final Expression rhs = args.get(1);
2503
2504        final Symbol lhsSymbol = lhs instanceof IdentNode ? ((IdentNode)lhs).getSymbol() : null;
2505        final Symbol rhsSymbol = rhs instanceof IdentNode ? ((IdentNode)rhs).getSymbol() : null;
2506        // One must be a "undefined" identifier, otherwise we can't get here
2507        assert lhsSymbol != null || rhsSymbol != null;
2508
2509        final Symbol undefinedSymbol;
2510        if (isUndefinedSymbol(lhsSymbol)) {
2511            undefinedSymbol = lhsSymbol;
2512        } else {
2513            assert isUndefinedSymbol(rhsSymbol);
2514            undefinedSymbol = rhsSymbol;
2515        }
2516
2517        assert undefinedSymbol != null; //remove warning
2518        if (!undefinedSymbol.isScope()) {
2519            return false; //disallow undefined as local var or parameter
2520        }
2521
2522        if (lhsSymbol == undefinedSymbol && lhs.getType().isPrimitive()) {
2523            //we load the undefined first. never mind, because this will deoptimize anyway
2524            return false;
2525        }
2526
2527        if(isDeoptimizedExpression(lhs)) {
2528            // This is actually related to "lhs.getType().isPrimitive()" above: any expression being deoptimized in
2529            // the current chain of rest-of compilations used to have a type narrower than Object (so it was primitive).
2530            // We must not perform undefined check specialization for them, as then we'd violate the basic rule of
2531            // "Thou shalt not alter the stack shape between a deoptimized method and any of its (transitive) rest-ofs."
2532            return false;
2533        }
2534
2535        //make sure that undefined has not been overridden or scoped as a local var
2536        //between us and global
2537        if (!compiler.isGlobalSymbol(lc.getCurrentFunction(), "undefined")) {
2538            return false;
2539        }
2540
2541        final boolean isUndefinedCheck = request == Request.IS_UNDEFINED;
2542        final Expression expr = undefinedSymbol == lhsSymbol ? rhs : lhs;
2543        if (expr.getType().isPrimitive()) {
2544            loadAndDiscard(expr); //throw away lhs, but it still needs to be evaluated for side effects, even if not in scope, as it can be optimistic
2545            method.load(!isUndefinedCheck);
2546        } else {
2547            final Label checkTrue  = new Label("ud_check_true");
2548            final Label end        = new Label("end");
2549            loadExpressionAsObject(expr);
2550            method.loadUndefined(Type.OBJECT);
2551            method.if_acmpeq(checkTrue);
2552            method.load(!isUndefinedCheck);
2553            method._goto(end);
2554            method.label(checkTrue);
2555            method.load(isUndefinedCheck);
2556            method.label(end);
2557        }
2558
2559        return true;
2560    }
2561
2562    private static boolean isUndefinedSymbol(final Symbol symbol) {
2563        return symbol != null && "undefined".equals(symbol.getName());
2564    }
2565
2566    private static boolean isNullLiteral(final Node node) {
2567        return node instanceof LiteralNode<?> && ((LiteralNode<?>) node).isNull();
2568    }
2569
2570    private boolean nullCheck(final RuntimeNode runtimeNode, final List<Expression> args) {
2571        final Request request = runtimeNode.getRequest();
2572
2573        if (!Request.isEQ(request) && !Request.isNE(request)) {
2574            return false;
2575        }
2576
2577        assert args.size() == 2 : "EQ or NE or TYPEOF need two args";
2578
2579        Expression lhs = args.get(0);
2580        Expression rhs = args.get(1);
2581
2582        if (isNullLiteral(lhs)) {
2583            final Expression tmp = lhs;
2584            lhs = rhs;
2585            rhs = tmp;
2586        }
2587
2588        if (!isNullLiteral(rhs)) {
2589            return false;
2590        }
2591
2592        if (!lhs.getType().isObject()) {
2593            return false;
2594        }
2595
2596        if(isDeoptimizedExpression(lhs)) {
2597            // This is actually related to "!lhs.getType().isObject()" above: any expression being deoptimized in
2598            // the current chain of rest-of compilations used to have a type narrower than Object. We must not
2599            // perform null check specialization for them, as then we'd no longer be loading aconst_null on stack
2600            // and thus violate the basic rule of "Thou shalt not alter the stack shape between a deoptimized
2601            // method and any of its (transitive) rest-ofs."
2602            // NOTE also that if we had a representation for well-known constants (e.g. null, 0, 1, -1, etc.) in
2603            // Label$Stack.localLoads then this wouldn't be an issue, as we would never (somewhat ridiculously)
2604            // allocate a temporary local to hold the result of aconst_null before attempting an optimistic
2605            // operation.
2606            return false;
2607        }
2608
2609        // this is a null literal check, so if there is implicit coercion
2610        // involved like {D}x=null, we will fail - this is very rare
2611        final Label trueLabel  = new Label("trueLabel");
2612        final Label falseLabel = new Label("falseLabel");
2613        final Label endLabel   = new Label("end");
2614
2615        loadExpressionUnbounded(lhs);    //lhs
2616        final Label popLabel;
2617        if (!Request.isStrict(request)) {
2618            method.dup(); //lhs lhs
2619            popLabel = new Label("pop");
2620        } else {
2621            popLabel = null;
2622        }
2623
2624        if (Request.isEQ(request)) {
2625            method.ifnull(!Request.isStrict(request) ? popLabel : trueLabel);
2626            if (!Request.isStrict(request)) {
2627                method.loadUndefined(Type.OBJECT);
2628                method.if_acmpeq(trueLabel);
2629            }
2630            method.label(falseLabel);
2631            method.load(false);
2632            method._goto(endLabel);
2633            if (!Request.isStrict(request)) {
2634                method.label(popLabel);
2635                method.pop();
2636            }
2637            method.label(trueLabel);
2638            method.load(true);
2639            method.label(endLabel);
2640        } else if (Request.isNE(request)) {
2641            method.ifnull(!Request.isStrict(request) ? popLabel : falseLabel);
2642            if (!Request.isStrict(request)) {
2643                method.loadUndefined(Type.OBJECT);
2644                method.if_acmpeq(falseLabel);
2645            }
2646            method.label(trueLabel);
2647            method.load(true);
2648            method._goto(endLabel);
2649            if (!Request.isStrict(request)) {
2650                method.label(popLabel);
2651                method.pop();
2652            }
2653            method.label(falseLabel);
2654            method.load(false);
2655            method.label(endLabel);
2656        }
2657
2658        assert runtimeNode.getType().isBoolean();
2659        method.convert(runtimeNode.getType());
2660
2661        return true;
2662    }
2663
2664    /**
2665     * Was this expression or any of its subexpressions deoptimized in the current recompilation chain of rest-of methods?
2666     * @param rootExpr the expression being tested
2667     * @return true if the expression or any of its subexpressions was deoptimized in the current recompilation chain.
2668     */
2669    private boolean isDeoptimizedExpression(final Expression rootExpr) {
2670        if(!isRestOf()) {
2671            return false;
2672        }
2673        return new Supplier<Boolean>() {
2674            boolean contains;
2675            @Override
2676            public Boolean get() {
2677                rootExpr.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
2678                    @Override
2679                    public boolean enterFunctionNode(final FunctionNode functionNode) {
2680                        return false;
2681                    }
2682                    @Override
2683                    public boolean enterDefault(final Node node) {
2684                        if(!contains && node instanceof Optimistic) {
2685                            final int pp = ((Optimistic)node).getProgramPoint();
2686                            contains = isValid(pp) && isContinuationEntryPoint(pp);
2687                        }
2688                        return !contains;
2689                    }
2690                });
2691                return contains;
2692            }
2693        }.get();
2694    }
2695
2696    private void loadRuntimeNode(final RuntimeNode runtimeNode) {
2697        final List<Expression> args = new ArrayList<>(runtimeNode.getArgs());
2698        if (nullCheck(runtimeNode, args)) {
2699           return;
2700        } else if(undefinedCheck(runtimeNode, args)) {
2701            return;
2702        }
2703        // Revert a false undefined check to a strict equality check
2704        final RuntimeNode newRuntimeNode;
2705        final Request request = runtimeNode.getRequest();
2706        if (Request.isUndefinedCheck(request)) {
2707            newRuntimeNode = runtimeNode.setRequest(request == Request.IS_UNDEFINED ? Request.EQ_STRICT : Request.NE_STRICT);
2708        } else {
2709            newRuntimeNode = runtimeNode;
2710        }
2711
2712        new OptimisticOperation(newRuntimeNode, TypeBounds.UNBOUNDED) {
2713            @Override
2714            void loadStack() {
2715                for (final Expression arg : args) {
2716                    loadExpression(arg, TypeBounds.OBJECT);
2717                }
2718            }
2719            @Override
2720            void consumeStack() {
2721                method.invokestatic(
2722                        CompilerConstants.className(ScriptRuntime.class),
2723                        newRuntimeNode.getRequest().toString(),
2724                        new FunctionSignature(
2725                            false,
2726                            false,
2727                            newRuntimeNode.getType(),
2728                            args.size()).toString());
2729            }
2730        }.emit();
2731
2732        method.convert(newRuntimeNode.getType());
2733    }
2734
2735    private void defineCommonSplitMethodParameters() {
2736        defineSplitMethodParameter(0, CALLEE);
2737        defineSplitMethodParameter(1, THIS);
2738        defineSplitMethodParameter(2, SCOPE);
2739    }
2740
2741    private void defineSplitMethodParameter(final int slot, final CompilerConstants cc) {
2742        defineSplitMethodParameter(slot, Type.typeFor(cc.type()));
2743    }
2744
2745    private void defineSplitMethodParameter(final int slot, final Type type) {
2746        method.defineBlockLocalVariable(slot, slot + type.getSlots());
2747        method.onLocalStore(type, slot);
2748    }
2749
2750    private int fixScopeSlot(final FunctionNode functionNode, final int extraSlot) {
2751        // TODO hack to move the scope to the expected slot (needed because split methods reuse the same slots as the root method)
2752        final int actualScopeSlot = functionNode.compilerConstant(SCOPE).getSlot(SCOPE_TYPE);
2753        final int defaultScopeSlot = SCOPE.slot();
2754        int newExtraSlot = extraSlot;
2755        if (actualScopeSlot != defaultScopeSlot) {
2756            if (actualScopeSlot == extraSlot) {
2757                newExtraSlot = extraSlot + 1;
2758                method.defineBlockLocalVariable(newExtraSlot, newExtraSlot + 1);
2759                method.load(Type.OBJECT, extraSlot);
2760                method.storeHidden(Type.OBJECT, newExtraSlot);
2761            } else {
2762                method.defineBlockLocalVariable(actualScopeSlot, actualScopeSlot + 1);
2763            }
2764            method.load(SCOPE_TYPE, defaultScopeSlot);
2765            method.storeCompilerConstant(SCOPE);
2766        }
2767        return newExtraSlot;
2768    }
2769
2770    @Override
2771    public boolean enterSplitReturn(final SplitReturn splitReturn) {
2772        if (method.isReachable()) {
2773            method.loadUndefined(lc.getCurrentFunction().getReturnType())._return();
2774        }
2775        return false;
2776    }
2777
2778    @Override
2779    public boolean enterSetSplitState(final SetSplitState setSplitState) {
2780        if (method.isReachable()) {
2781            method.setSplitState(setSplitState.getState());
2782        }
2783        return false;
2784    }
2785
2786    @Override
2787    public boolean enterSwitchNode(final SwitchNode switchNode) {
2788        if(!method.isReachable()) {
2789            return false;
2790        }
2791        enterStatement(switchNode);
2792
2793        final Expression     expression  = switchNode.getExpression();
2794        final List<CaseNode> cases       = switchNode.getCases();
2795
2796        if (cases.isEmpty()) {
2797            // still evaluate expression for side-effects.
2798            loadAndDiscard(expression);
2799            return false;
2800        }
2801
2802        final CaseNode defaultCase       = switchNode.getDefaultCase();
2803        final Label    breakLabel        = switchNode.getBreakLabel();
2804        final int      liveLocalsOnBreak = method.getUsedSlotsWithLiveTemporaries();
2805
2806        if (defaultCase != null && cases.size() == 1) {
2807            // default case only
2808            assert cases.get(0) == defaultCase;
2809            loadAndDiscard(expression);
2810            defaultCase.getBody().accept(this);
2811            method.breakLabel(breakLabel, liveLocalsOnBreak);
2812            return false;
2813        }
2814
2815        // NOTE: it can still change in the tableswitch/lookupswitch case if there's no default case
2816        // but we need to add a synthetic default case for local variable conversions
2817        Label defaultLabel = defaultCase != null ? defaultCase.getEntry() : breakLabel;
2818        final boolean hasSkipConversion = LocalVariableConversion.hasLiveConversion(switchNode);
2819
2820        if (switchNode.isInteger()) {
2821            // Tree for sorting values.
2822            final TreeMap<Integer, Label> tree = new TreeMap<>();
2823
2824            // Build up sorted tree.
2825            for (final CaseNode caseNode : cases) {
2826                final Node test = caseNode.getTest();
2827
2828                if (test != null) {
2829                    final Integer value = (Integer)((LiteralNode<?>)test).getValue();
2830                    final Label   entry = caseNode.getEntry();
2831
2832                    // Take first duplicate.
2833                    if (!tree.containsKey(value)) {
2834                        tree.put(value, entry);
2835                    }
2836                }
2837            }
2838
2839            // Copy values and labels to arrays.
2840            final int       size   = tree.size();
2841            final Integer[] values = tree.keySet().toArray(new Integer[size]);
2842            final Label[]   labels = tree.values().toArray(new Label[size]);
2843
2844            // Discern low, high and range.
2845            final int lo    = values[0];
2846            final int hi    = values[size - 1];
2847            final long range = (long)hi - (long)lo + 1;
2848
2849            // Find an unused value for default.
2850            int deflt = Integer.MIN_VALUE;
2851            for (final int value : values) {
2852                if (deflt == value) {
2853                    deflt++;
2854                } else if (deflt < value) {
2855                    break;
2856                }
2857            }
2858
2859            // Load switch expression.
2860            loadExpressionUnbounded(expression);
2861            final Type type = expression.getType();
2862
2863            // If expression not int see if we can convert, if not use deflt to trigger default.
2864            if (!type.isInteger()) {
2865                method.load(deflt);
2866                final Class<?> exprClass = type.getTypeClass();
2867                method.invoke(staticCallNoLookup(ScriptRuntime.class, "switchTagAsInt", int.class, exprClass.isPrimitive()? exprClass : Object.class, int.class));
2868            }
2869
2870            if(hasSkipConversion) {
2871                assert defaultLabel == breakLabel;
2872                defaultLabel = new Label("switch_skip");
2873            }
2874            // TABLESWITCH needs (range + 3) 32-bit values; LOOKUPSWITCH needs ((size * 2) + 2). Choose the one with
2875            // smaller representation, favor TABLESWITCH when they're equal size.
2876            if (range + 1 <= (size * 2) && range <= Integer.MAX_VALUE) {
2877                final Label[] table = new Label[(int)range];
2878                Arrays.fill(table, defaultLabel);
2879                for (int i = 0; i < size; i++) {
2880                    final int value = values[i];
2881                    table[value - lo] = labels[i];
2882                }
2883
2884                method.tableswitch(lo, hi, defaultLabel, table);
2885            } else {
2886                final int[] ints = new int[size];
2887                for (int i = 0; i < size; i++) {
2888                    ints[i] = values[i];
2889                }
2890
2891                method.lookupswitch(defaultLabel, ints, labels);
2892            }
2893            // This is a synthetic "default case" used in absence of actual default case, created if we need to apply
2894            // local variable conversions if neither case is taken.
2895            if(hasSkipConversion) {
2896                method.label(defaultLabel);
2897                method.beforeJoinPoint(switchNode);
2898                method._goto(breakLabel);
2899            }
2900        } else {
2901            final Symbol tagSymbol = switchNode.getTag();
2902            // TODO: we could have non-object tag
2903            final int tagSlot = tagSymbol.getSlot(Type.OBJECT);
2904            loadExpressionAsObject(expression);
2905            method.store(tagSymbol, Type.OBJECT);
2906
2907            for (final CaseNode caseNode : cases) {
2908                final Expression test = caseNode.getTest();
2909
2910                if (test != null) {
2911                    method.load(Type.OBJECT, tagSlot);
2912                    loadExpressionAsObject(test);
2913                    method.invoke(ScriptRuntime.EQ_STRICT);
2914                    method.ifne(caseNode.getEntry());
2915                }
2916            }
2917
2918            if (defaultCase != null) {
2919                method._goto(defaultLabel);
2920            } else {
2921                method.beforeJoinPoint(switchNode);
2922                method._goto(breakLabel);
2923            }
2924        }
2925
2926        // First case is only reachable through jump
2927        assert !method.isReachable();
2928
2929        for (final CaseNode caseNode : cases) {
2930            final Label fallThroughLabel;
2931            if(caseNode.getLocalVariableConversion() != null && method.isReachable()) {
2932                fallThroughLabel = new Label("fallthrough");
2933                method._goto(fallThroughLabel);
2934            } else {
2935                fallThroughLabel = null;
2936            }
2937            method.label(caseNode.getEntry());
2938            method.beforeJoinPoint(caseNode);
2939            if(fallThroughLabel != null) {
2940                method.label(fallThroughLabel);
2941            }
2942            caseNode.getBody().accept(this);
2943        }
2944
2945        method.breakLabel(breakLabel, liveLocalsOnBreak);
2946
2947        return false;
2948    }
2949
2950    @Override
2951    public boolean enterThrowNode(final ThrowNode throwNode) {
2952        if(!method.isReachable()) {
2953            return false;
2954        }
2955        enterStatement(throwNode);
2956
2957        if (throwNode.isSyntheticRethrow()) {
2958            method.beforeJoinPoint(throwNode);
2959
2960            //do not wrap whatever this is in an ecma exception, just rethrow it
2961            final IdentNode exceptionExpr = (IdentNode)throwNode.getExpression();
2962            final Symbol exceptionSymbol = exceptionExpr.getSymbol();
2963            method.load(exceptionSymbol, EXCEPTION_TYPE);
2964            method.checkcast(EXCEPTION_TYPE.getTypeClass());
2965            method.athrow();
2966            return false;
2967        }
2968
2969        final Source     source     = getCurrentSource();
2970        final Expression expression = throwNode.getExpression();
2971        final int        position   = throwNode.position();
2972        final int        line       = throwNode.getLineNumber();
2973        final int        column     = source.getColumn(position);
2974
2975        // NOTE: we first evaluate the expression, and only after it was evaluated do we create the new ECMAException
2976        // object and then somewhat cumbersomely move it beneath the evaluated expression on the stack. The reason for
2977        // this is that if expression is optimistic (or contains an optimistic subexpression), we'd potentially access
2978        // the not-yet-<init>ialized object on the stack from the UnwarrantedOptimismException handler, and bytecode
2979        // verifier forbids that.
2980        loadExpressionAsObject(expression);
2981
2982        method.load(source.getName());
2983        method.load(line);
2984        method.load(column);
2985        method.invoke(ECMAException.CREATE);
2986
2987        method.beforeJoinPoint(throwNode);
2988        method.athrow();
2989
2990        return false;
2991    }
2992
2993    private Source getCurrentSource() {
2994        return lc.getCurrentFunction().getSource();
2995    }
2996
2997    @Override
2998    public boolean enterTryNode(final TryNode tryNode) {
2999        if(!method.isReachable()) {
3000            return false;
3001        }
3002        enterStatement(tryNode);
3003
3004        final Block       body        = tryNode.getBody();
3005        final List<Block> catchBlocks = tryNode.getCatchBlocks();
3006        final Symbol      vmException = tryNode.getException();
3007        final Label       entry       = new Label("try");
3008        final Label       recovery    = new Label("catch");
3009        final Label       exit        = new Label("end_try");
3010        final Label       skip        = new Label("skip");
3011
3012        method.canThrow(recovery);
3013        // Effect any conversions that might be observed at the entry of the catch node before entering the try node.
3014        // This is because even the first instruction in the try block must be presumed to be able to transfer control
3015        // to the catch block. Note that this doesn't kill the original values; in this regard it works a lot like
3016        // conversions of assignments within the try block.
3017        method.beforeTry(tryNode, recovery);
3018        method.label(entry);
3019        catchLabels.push(recovery);
3020        try {
3021            body.accept(this);
3022        } finally {
3023            assert catchLabels.peek() == recovery;
3024            catchLabels.pop();
3025        }
3026
3027        method.label(exit);
3028        final boolean bodyCanThrow = exit.isAfter(entry);
3029        if(!bodyCanThrow) {
3030            // The body can't throw an exception; don't even bother emitting the catch handlers, they're all dead code.
3031            return false;
3032        }
3033
3034        method._try(entry, exit, recovery, Throwable.class);
3035
3036        if (method.isReachable()) {
3037            method._goto(skip);
3038        }
3039        method._catch(recovery);
3040        method.store(vmException, EXCEPTION_TYPE);
3041
3042        final int catchBlockCount = catchBlocks.size();
3043        final Label afterCatch = new Label("after_catch");
3044        for (int i = 0; i < catchBlockCount; i++) {
3045            assert method.isReachable();
3046            final Block catchBlock = catchBlocks.get(i);
3047
3048            // Because of the peculiarities of the flow control, we need to use an explicit push/enterBlock/leaveBlock
3049            // here.
3050            lc.push(catchBlock);
3051            enterBlock(catchBlock);
3052
3053            final CatchNode  catchNode          = (CatchNode)catchBlocks.get(i).getStatements().get(0);
3054            final IdentNode  exception          = catchNode.getException();
3055            final Expression exceptionCondition = catchNode.getExceptionCondition();
3056            final Block      catchBody          = catchNode.getBody();
3057
3058            new Store<IdentNode>(exception) {
3059                @Override
3060                protected void storeNonDiscard() {
3061                    // This expression is neither part of a discard, nor needs to be left on the stack after it was
3062                    // stored, so we override storeNonDiscard to be a no-op.
3063                }
3064
3065                @Override
3066                protected void evaluate() {
3067                    if (catchNode.isSyntheticRethrow()) {
3068                        method.load(vmException, EXCEPTION_TYPE);
3069                        return;
3070                    }
3071                    /*
3072                     * If caught object is an instance of ECMAException, then
3073                     * bind obj.thrown to the script catch var. Or else bind the
3074                     * caught object itself to the script catch var.
3075                     */
3076                    final Label notEcmaException = new Label("no_ecma_exception");
3077                    method.load(vmException, EXCEPTION_TYPE).dup()._instanceof(ECMAException.class).ifeq(notEcmaException);
3078                    method.checkcast(ECMAException.class); //TODO is this necessary?
3079                    method.getField(ECMAException.THROWN);
3080                    method.label(notEcmaException);
3081                }
3082            }.store();
3083
3084            final boolean isConditionalCatch = exceptionCondition != null;
3085            final Label nextCatch;
3086            if (isConditionalCatch) {
3087                loadExpressionAsBoolean(exceptionCondition);
3088                nextCatch = new Label("next_catch");
3089                nextCatch.markAsBreakTarget();
3090                method.ifeq(nextCatch);
3091            } else {
3092                nextCatch = null;
3093            }
3094
3095            catchBody.accept(this);
3096            leaveBlock(catchBlock);
3097            lc.pop(catchBlock);
3098            if(method.isReachable()) {
3099                method._goto(afterCatch);
3100            }
3101            if(nextCatch != null) {
3102                method.breakLabel(nextCatch, lc.getUsedSlotCount());
3103            }
3104        }
3105
3106        assert !method.isReachable();
3107        // afterCatch could be the same as skip, except that we need to establish that the vmException is dead.
3108        method.label(afterCatch);
3109        if(method.isReachable()) {
3110            method.markDeadLocalVariable(vmException);
3111        }
3112        method.label(skip);
3113
3114        // Finally body is always inlined elsewhere so it doesn't need to be emitted
3115        return false;
3116    }
3117
3118    @Override
3119    public boolean enterVarNode(final VarNode varNode) {
3120        if(!method.isReachable()) {
3121            return false;
3122        }
3123        final Expression init = varNode.getInit();
3124        final IdentNode identNode = varNode.getName();
3125        final Symbol identSymbol = identNode.getSymbol();
3126        assert identSymbol != null : "variable node " + varNode + " requires a name with a symbol";
3127        final boolean needsScope = identSymbol.isScope();
3128
3129        if (init == null) {
3130            if (needsScope && varNode.isBlockScoped()) {
3131                // block scoped variables need a DECLARE flag to signal end of temporal dead zone (TDZ)
3132                method.loadCompilerConstant(SCOPE);
3133                method.loadUndefined(Type.OBJECT);
3134                final int flags = CALLSITE_SCOPE | getCallSiteFlags() | (varNode.isBlockScoped() ? CALLSITE_DECLARE : 0);
3135                assert isFastScope(identSymbol);
3136                storeFastScopeVar(identSymbol, flags);
3137            }
3138            return false;
3139        }
3140
3141        enterStatement(varNode);
3142        assert method != null;
3143
3144        if (needsScope) {
3145            method.loadCompilerConstant(SCOPE);
3146        }
3147
3148        if (needsScope) {
3149            loadExpressionUnbounded(init);
3150            // block scoped variables need a DECLARE flag to signal end of temporal dead zone (TDZ)
3151            final int flags = CALLSITE_SCOPE | getCallSiteFlags() | (varNode.isBlockScoped() ? CALLSITE_DECLARE : 0);
3152            if (isFastScope(identSymbol)) {
3153                storeFastScopeVar(identSymbol, flags);
3154            } else {
3155                method.dynamicSet(identNode.getName(), flags);
3156            }
3157        } else {
3158            final Type identType = identNode.getType();
3159            if(identType == Type.UNDEFINED) {
3160                // The initializer is either itself undefined (explicit assignment of undefined to undefined),
3161                // or the left hand side is a dead variable.
3162                assert init.getType() == Type.UNDEFINED || identNode.getSymbol().slotCount() == 0;
3163                loadAndDiscard(init);
3164                return false;
3165            }
3166            loadExpressionAsType(init, identType);
3167            storeIdentWithCatchConversion(identNode, identType);
3168        }
3169
3170        return false;
3171    }
3172
3173    private void storeIdentWithCatchConversion(final IdentNode identNode, final Type type) {
3174        // Assignments happening in try/catch blocks need to ensure that they also store a possibly wider typed value
3175        // that will be live at the exit from the try block
3176        final LocalVariableConversion conversion = identNode.getLocalVariableConversion();
3177        final Symbol symbol = identNode.getSymbol();
3178        if(conversion != null && conversion.isLive()) {
3179            assert symbol == conversion.getSymbol();
3180            assert symbol.isBytecodeLocal();
3181            // Only a single conversion from the target type to the join type is expected.
3182            assert conversion.getNext() == null;
3183            assert conversion.getFrom() == type;
3184            // We must propagate potential type change to the catch block
3185            final Label catchLabel = catchLabels.peek();
3186            assert catchLabel != METHOD_BOUNDARY; // ident conversion only exists in try blocks
3187            assert catchLabel.isReachable();
3188            final Type joinType = conversion.getTo();
3189            final Label.Stack catchStack = catchLabel.getStack();
3190            final int joinSlot = symbol.getSlot(joinType);
3191            // With nested try/catch blocks (incl. synthetic ones for finally), we can have a supposed conversion for
3192            // the exception symbol in the nested catch, but it isn't live in the outer catch block, so prevent doing
3193            // conversions for it. E.g. in "try { try { ... } catch(e) { e = 1; } } catch(e2) { ... }", we must not
3194            // introduce an I->O conversion on "e = 1" assignment as "e" is not live in "catch(e2)".
3195            if(catchStack.getUsedSlotsWithLiveTemporaries() > joinSlot) {
3196                method.dup();
3197                method.convert(joinType);
3198                method.store(symbol, joinType);
3199                catchLabel.getStack().onLocalStore(joinType, joinSlot, true);
3200                method.canThrow(catchLabel);
3201                // Store but keep the previous store live too.
3202                method.store(symbol, type, false);
3203                return;
3204            }
3205        }
3206
3207        method.store(symbol, type, true);
3208    }
3209
3210    @Override
3211    public boolean enterWhileNode(final WhileNode whileNode) {
3212        if(!method.isReachable()) {
3213            return false;
3214        }
3215        if(whileNode.isDoWhile()) {
3216            enterDoWhile(whileNode);
3217        } else {
3218            enterStatement(whileNode);
3219            enterForOrWhile(whileNode, null);
3220        }
3221        return false;
3222    }
3223
3224    private void enterForOrWhile(final LoopNode loopNode, final JoinPredecessorExpression modify) {
3225        // NOTE: the usual pattern for compiling test-first loops is "GOTO test; body; test; IFNE body". We use the less
3226        // conventional "test; IFEQ break; body; GOTO test; break;". It has one extra unconditional GOTO in each repeat
3227        // of the loop, but it's not a problem for modern JIT compilers. We do this because our local variable type
3228        // tracking is unfortunately not really prepared for out-of-order execution, e.g. compiling the following
3229        // contrived but legal JavaScript code snippet would fail because the test changes the type of "i" from object
3230        // to double: var i = {valueOf: function() { return 1} }; while(--i >= 0) { ... }
3231        // Instead of adding more complexity to the local variable type tracking, we instead choose to emit this
3232        // different code shape.
3233        final int liveLocalsOnBreak = method.getUsedSlotsWithLiveTemporaries();
3234        final JoinPredecessorExpression test = loopNode.getTest();
3235        if(Expression.isAlwaysFalse(test)) {
3236            loadAndDiscard(test);
3237            return;
3238        }
3239
3240        method.beforeJoinPoint(loopNode);
3241
3242        final Label continueLabel = loopNode.getContinueLabel();
3243        final Label repeatLabel = modify != null ? new Label("for_repeat") : continueLabel;
3244        method.label(repeatLabel);
3245        final int liveLocalsOnContinue = method.getUsedSlotsWithLiveTemporaries();
3246
3247        final Block   body                  = loopNode.getBody();
3248        final Label   breakLabel            = loopNode.getBreakLabel();
3249        final boolean testHasLiveConversion = test != null && LocalVariableConversion.hasLiveConversion(test);
3250
3251        if(Expression.isAlwaysTrue(test)) {
3252            if(test != null) {
3253                loadAndDiscard(test);
3254                if(testHasLiveConversion) {
3255                    method.beforeJoinPoint(test);
3256                }
3257            }
3258        } else if (test != null) {
3259            if (testHasLiveConversion) {
3260                emitBranch(test.getExpression(), body.getEntryLabel(), true);
3261                method.beforeJoinPoint(test);
3262                method._goto(breakLabel);
3263            } else {
3264                emitBranch(test.getExpression(), breakLabel, false);
3265            }
3266        }
3267
3268        body.accept(this);
3269        if(repeatLabel != continueLabel) {
3270            emitContinueLabel(continueLabel, liveLocalsOnContinue);
3271        }
3272
3273        if (loopNode.hasPerIterationScope() && lc.getParentBlock().needsScope()) {
3274            // ES6 for loops with LET init need a new scope for each iteration. We just create a shallow copy here.
3275            method.loadCompilerConstant(SCOPE);
3276            method.invoke(virtualCallNoLookup(ScriptObject.class, "copy", ScriptObject.class));
3277            method.storeCompilerConstant(SCOPE);
3278        }
3279
3280        if(method.isReachable()) {
3281            if(modify != null) {
3282                lineNumber(loopNode);
3283                loadAndDiscard(modify);
3284                method.beforeJoinPoint(modify);
3285            }
3286            method._goto(repeatLabel);
3287        }
3288
3289        method.breakLabel(breakLabel, liveLocalsOnBreak);
3290    }
3291
3292    private void emitContinueLabel(final Label continueLabel, final int liveLocals) {
3293        final boolean reachable = method.isReachable();
3294        method.breakLabel(continueLabel, liveLocals);
3295        // If we reach here only through a continue statement (e.g. body does not exit normally) then the
3296        // continueLabel can have extra non-temp symbols (e.g. exception from a try/catch contained in the body). We
3297        // must make sure those are thrown away.
3298        if(!reachable) {
3299            method.undefineLocalVariables(lc.getUsedSlotCount(), false);
3300        }
3301    }
3302
3303    private void enterDoWhile(final WhileNode whileNode) {
3304        final int liveLocalsOnContinueOrBreak = method.getUsedSlotsWithLiveTemporaries();
3305        method.beforeJoinPoint(whileNode);
3306
3307        final Block body = whileNode.getBody();
3308        body.accept(this);
3309
3310        emitContinueLabel(whileNode.getContinueLabel(), liveLocalsOnContinueOrBreak);
3311        if(method.isReachable()) {
3312            lineNumber(whileNode);
3313            final JoinPredecessorExpression test = whileNode.getTest();
3314            final Label bodyEntryLabel = body.getEntryLabel();
3315            final boolean testHasLiveConversion = LocalVariableConversion.hasLiveConversion(test);
3316            if(Expression.isAlwaysFalse(test)) {
3317                loadAndDiscard(test);
3318                if(testHasLiveConversion) {
3319                    method.beforeJoinPoint(test);
3320                }
3321            } else if(testHasLiveConversion) {
3322                // If we have conversions after the test in do-while, they need to be effected on both branches.
3323                final Label beforeExit = new Label("do_while_preexit");
3324                emitBranch(test.getExpression(), beforeExit, false);
3325                method.beforeJoinPoint(test);
3326                method._goto(bodyEntryLabel);
3327                method.label(beforeExit);
3328                method.beforeJoinPoint(test);
3329            } else {
3330                emitBranch(test.getExpression(), bodyEntryLabel, true);
3331            }
3332        }
3333        method.breakLabel(whileNode.getBreakLabel(), liveLocalsOnContinueOrBreak);
3334    }
3335
3336
3337    @Override
3338    public boolean enterWithNode(final WithNode withNode) {
3339        if(!method.isReachable()) {
3340            return false;
3341        }
3342        enterStatement(withNode);
3343        final Expression expression = withNode.getExpression();
3344        final Block      body       = withNode.getBody();
3345
3346        // It is possible to have a "pathological" case where the with block does not reference *any* identifiers. It's
3347        // pointless, but legal. In that case, if nothing else in the method forced the assignment of a slot to the
3348        // scope object, its' possible that it won't have a slot assigned. In this case we'll only evaluate expression
3349        // for its side effect and visit the body, and not bother opening and closing a WithObject.
3350        final boolean hasScope = method.hasScope();
3351
3352        if (hasScope) {
3353            method.loadCompilerConstant(SCOPE);
3354        }
3355
3356        loadExpressionAsObject(expression);
3357
3358        final Label tryLabel;
3359        if (hasScope) {
3360            // Construct a WithObject if we have a scope
3361            method.invoke(ScriptRuntime.OPEN_WITH);
3362            method.storeCompilerConstant(SCOPE);
3363            tryLabel = new Label("with_try");
3364            method.label(tryLabel);
3365        } else {
3366            // We just loaded the expression for its side effect and to check
3367            // for null or undefined value.
3368            globalCheckObjectCoercible();
3369            tryLabel = null;
3370        }
3371
3372        // Always process body
3373        body.accept(this);
3374
3375        if (hasScope) {
3376            // Ensure we always close the WithObject
3377            final Label endLabel   = new Label("with_end");
3378            final Label catchLabel = new Label("with_catch");
3379            final Label exitLabel  = new Label("with_exit");
3380
3381            method.label(endLabel);
3382            // Somewhat conservatively presume that if the body is not empty, it can throw an exception. In any case,
3383            // we must prevent trying to emit a try-catch for empty range, as it causes a verification error.
3384            final boolean bodyCanThrow = endLabel.isAfter(tryLabel);
3385            if(bodyCanThrow) {
3386                method._try(tryLabel, endLabel, catchLabel);
3387            }
3388
3389            final boolean reachable = method.isReachable();
3390            if(reachable) {
3391                popScope();
3392                if(bodyCanThrow) {
3393                    method._goto(exitLabel);
3394                }
3395            }
3396
3397            if(bodyCanThrow) {
3398                method._catch(catchLabel);
3399                popScopeException();
3400                method.athrow();
3401                if(reachable) {
3402                    method.label(exitLabel);
3403                }
3404            }
3405        }
3406        return false;
3407    }
3408
3409    private void loadADD(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3410        loadExpression(unaryNode.getExpression(), resultBounds.booleanToInt().notWiderThan(Type.NUMBER));
3411        if(method.peekType() == Type.BOOLEAN) {
3412            // It's a no-op in bytecode, but we must make sure it is treated as an int for purposes of type signatures
3413            method.convert(Type.INT);
3414        }
3415    }
3416
3417    private void loadBIT_NOT(final UnaryNode unaryNode) {
3418        loadExpression(unaryNode.getExpression(), TypeBounds.INT).load(-1).xor();
3419    }
3420
3421    private void loadDECINC(final UnaryNode unaryNode) {
3422        final Expression operand     = unaryNode.getExpression();
3423        final Type       type        = unaryNode.getType();
3424        final TypeBounds typeBounds  = new TypeBounds(type, Type.NUMBER);
3425        final TokenType  tokenType   = unaryNode.tokenType();
3426        final boolean    isPostfix   = tokenType == TokenType.DECPOSTFIX || tokenType == TokenType.INCPOSTFIX;
3427        final boolean    isIncrement = tokenType == TokenType.INCPREFIX || tokenType == TokenType.INCPOSTFIX;
3428
3429        assert !type.isObject();
3430
3431        new SelfModifyingStore<UnaryNode>(unaryNode, operand) {
3432
3433            private void loadRhs() {
3434                loadExpression(operand, typeBounds, true);
3435            }
3436
3437            @Override
3438            protected void evaluate() {
3439                if(isPostfix) {
3440                    loadRhs();
3441                } else {
3442                    new OptimisticOperation(unaryNode, typeBounds) {
3443                        @Override
3444                        void loadStack() {
3445                            loadRhs();
3446                            loadMinusOne();
3447                        }
3448                        @Override
3449                        void consumeStack() {
3450                            doDecInc(getProgramPoint());
3451                        }
3452                    }.emit(getOptimisticIgnoreCountForSelfModifyingExpression(operand));
3453                }
3454            }
3455
3456            @Override
3457            protected void storeNonDiscard() {
3458                super.storeNonDiscard();
3459                if (isPostfix) {
3460                    new OptimisticOperation(unaryNode, typeBounds) {
3461                        @Override
3462                        void loadStack() {
3463                            loadMinusOne();
3464                        }
3465                        @Override
3466                        void consumeStack() {
3467                            doDecInc(getProgramPoint());
3468                        }
3469                    }.emit(1); // 1 for non-incremented result on the top of the stack pushed in evaluate()
3470                }
3471            }
3472
3473            private void loadMinusOne() {
3474                if (type.isInteger()) {
3475                    method.load(isIncrement ? 1 : -1);
3476                } else if (type.isLong()) {
3477                    method.load(isIncrement ? 1L : -1L);
3478                } else {
3479                    method.load(isIncrement ? 1.0 : -1.0);
3480                }
3481            }
3482
3483            private void doDecInc(final int programPoint) {
3484                method.add(programPoint);
3485            }
3486        }.store();
3487    }
3488
3489    private static int getOptimisticIgnoreCountForSelfModifyingExpression(final Expression target) {
3490        return target instanceof AccessNode ? 1 : target instanceof IndexNode ? 2 : 0;
3491    }
3492
3493    private void loadAndDiscard(final Expression expr) {
3494        // TODO: move checks for discarding to actual expression load code (e.g. as we do with void). That way we might
3495        // be able to eliminate even more checks.
3496        if(expr instanceof PrimitiveLiteralNode | isLocalVariable(expr)) {
3497            assert lc.getCurrentDiscard() != expr;
3498            // Don't bother evaluating expressions without side effects. Typical usage is "void 0" for reliably generating
3499            // undefined.
3500            return;
3501        }
3502
3503        lc.pushDiscard(expr);
3504        loadExpression(expr, TypeBounds.UNBOUNDED);
3505        if (lc.getCurrentDiscard() == expr) {
3506            assert !expr.isAssignment();
3507            // NOTE: if we had a way to load with type void, we could avoid popping
3508            method.pop();
3509            lc.popDiscard();
3510        }
3511    }
3512
3513    private void loadNEW(final UnaryNode unaryNode) {
3514        final CallNode callNode = (CallNode)unaryNode.getExpression();
3515        final List<Expression> args   = callNode.getArgs();
3516
3517        // Load function reference.
3518        loadExpressionAsObject(callNode.getFunction()); // must detect type error
3519
3520        method.dynamicNew(1 + loadArgs(args), getCallSiteFlags());
3521    }
3522
3523    private void loadNOT(final UnaryNode unaryNode) {
3524        final Expression expr = unaryNode.getExpression();
3525        if(expr instanceof UnaryNode && expr.isTokenType(TokenType.NOT)) {
3526            // !!x is idiomatic boolean cast in JavaScript
3527            loadExpressionAsBoolean(((UnaryNode)expr).getExpression());
3528        } else {
3529            final Label trueLabel  = new Label("true");
3530            final Label afterLabel = new Label("after");
3531
3532            emitBranch(expr, trueLabel, true);
3533            method.load(true);
3534            method._goto(afterLabel);
3535            method.label(trueLabel);
3536            method.load(false);
3537            method.label(afterLabel);
3538        }
3539    }
3540
3541    private void loadSUB(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3542        final Type type = unaryNode.getType();
3543        assert type.isNumeric();
3544        final TypeBounds numericBounds = resultBounds.booleanToInt();
3545        new OptimisticOperation(unaryNode, numericBounds) {
3546            @Override
3547            void loadStack() {
3548                final Expression expr = unaryNode.getExpression();
3549                loadExpression(expr, numericBounds.notWiderThan(Type.NUMBER));
3550            }
3551            @Override
3552            void consumeStack() {
3553                // Must do an explicit conversion to the operation's type when it's double so that we correctly handle
3554                // negation of an int 0 to a double -0. With this, we get the correct negation of a local variable after
3555                // it deoptimized, e.g. "iload_2; i2d; dneg". Without this, we get "iload_2; ineg; i2d".
3556                if(type.isNumber()) {
3557                    method.convert(type);
3558                }
3559                method.neg(getProgramPoint());
3560            }
3561        }.emit();
3562    }
3563
3564    public void loadVOID(final UnaryNode unaryNode, final TypeBounds resultBounds) {
3565        loadAndDiscard(unaryNode.getExpression());
3566        if(lc.getCurrentDiscard() == unaryNode) {
3567            lc.popDiscard();
3568        } else {
3569            method.loadUndefined(resultBounds.widest);
3570        }
3571    }
3572
3573    public void loadADD(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3574        new OptimisticOperation(binaryNode, resultBounds) {
3575            @Override
3576            void loadStack() {
3577                final TypeBounds operandBounds;
3578                final boolean isOptimistic = isValid(getProgramPoint());
3579                boolean forceConversionSeparation = false;
3580                if(isOptimistic) {
3581                    operandBounds = new TypeBounds(binaryNode.getType(), Type.OBJECT);
3582                } else {
3583                    // Non-optimistic, non-FP +. Allow it to overflow.
3584                    final Type widestOperationType = binaryNode.getWidestOperationType();
3585                    operandBounds = new TypeBounds(Type.narrowest(binaryNode.getWidestOperandType(), resultBounds.widest), widestOperationType);
3586                    forceConversionSeparation = widestOperationType.narrowerThan(resultBounds.widest);
3587                }
3588                loadBinaryOperands(binaryNode.lhs(), binaryNode.rhs(), operandBounds, false, forceConversionSeparation);
3589            }
3590
3591            @Override
3592            void consumeStack() {
3593                method.add(getProgramPoint());
3594            }
3595        }.emit();
3596    }
3597
3598    private void loadAND_OR(final BinaryNode binaryNode, final TypeBounds resultBounds, final boolean isAnd) {
3599        final Type narrowestOperandType = Type.widestReturnType(binaryNode.lhs().getType(), binaryNode.rhs().getType());
3600
3601        final Label skip = new Label("skip");
3602        if(narrowestOperandType == Type.BOOLEAN) {
3603            // optimize all-boolean logical expressions
3604            final Label onTrue = new Label("andor_true");
3605            emitBranch(binaryNode, onTrue, true);
3606            method.load(false);
3607            method._goto(skip);
3608            method.label(onTrue);
3609            method.load(true);
3610            method.label(skip);
3611            return;
3612        }
3613
3614        final TypeBounds outBounds = resultBounds.notNarrowerThan(narrowestOperandType);
3615        final JoinPredecessorExpression lhs = (JoinPredecessorExpression)binaryNode.lhs();
3616        final boolean lhsConvert = LocalVariableConversion.hasLiveConversion(lhs);
3617        final Label evalRhs = lhsConvert ? new Label("eval_rhs") : null;
3618
3619        loadExpression(lhs, outBounds).dup().convert(Type.BOOLEAN);
3620        if (isAnd) {
3621            if(lhsConvert) {
3622                method.ifne(evalRhs);
3623            } else {
3624                method.ifeq(skip);
3625            }
3626        } else if(lhsConvert) {
3627            method.ifeq(evalRhs);
3628        } else {
3629            method.ifne(skip);
3630        }
3631
3632        if(lhsConvert) {
3633            method.beforeJoinPoint(lhs);
3634            method._goto(skip);
3635            method.label(evalRhs);
3636        }
3637
3638        method.pop();
3639        final JoinPredecessorExpression rhs = (JoinPredecessorExpression)binaryNode.rhs();
3640        loadExpression(rhs, outBounds);
3641        method.beforeJoinPoint(rhs);
3642        method.label(skip);
3643    }
3644
3645    private static boolean isLocalVariable(final Expression lhs) {
3646        return lhs instanceof IdentNode && isLocalVariable((IdentNode)lhs);
3647    }
3648
3649    private static boolean isLocalVariable(final IdentNode lhs) {
3650        return lhs.getSymbol().isBytecodeLocal();
3651    }
3652
3653    // NOTE: does not use resultBounds as the assignment is driven by the type of the RHS
3654    private void loadASSIGN(final BinaryNode binaryNode) {
3655        final Expression lhs = binaryNode.lhs();
3656        final Expression rhs = binaryNode.rhs();
3657
3658        final Type rhsType = rhs.getType();
3659        // Detect dead assignments
3660        if(lhs instanceof IdentNode) {
3661            final Symbol symbol = ((IdentNode)lhs).getSymbol();
3662            if(!symbol.isScope() && !symbol.hasSlotFor(rhsType) && lc.getCurrentDiscard() == binaryNode) {
3663                loadAndDiscard(rhs);
3664                lc.popDiscard();
3665                method.markDeadLocalVariable(symbol);
3666                return;
3667            }
3668        }
3669
3670        new Store<BinaryNode>(binaryNode, lhs) {
3671            @Override
3672            protected void evaluate() {
3673                // NOTE: we're loading with "at least as wide as" so optimistic operations on the right hand side
3674                // remain optimistic, and then explicitly convert to the required type if needed.
3675                loadExpressionAsType(rhs, rhsType);
3676            }
3677        }.store();
3678    }
3679
3680    /**
3681     * Binary self-assignment that can be optimistic: +=, -=, *=, and /=.
3682     */
3683    private abstract class BinaryOptimisticSelfAssignment extends SelfModifyingStore<BinaryNode> {
3684
3685        /**
3686         * Constructor
3687         *
3688         * @param node the assign op node
3689         */
3690        BinaryOptimisticSelfAssignment(final BinaryNode node) {
3691            super(node, node.lhs());
3692        }
3693
3694        protected abstract void op(OptimisticOperation oo);
3695
3696        @Override
3697        protected void evaluate() {
3698            final Expression lhs = assignNode.lhs();
3699            final Expression rhs = assignNode.rhs();
3700            final Type widestOperationType = assignNode.getWidestOperationType();
3701            final Type widest = assignNode.isTokenType(TokenType.ASSIGN_ADD) ? Type.OBJECT : widestOperationType;
3702            final TypeBounds bounds = new TypeBounds(assignNode.getType(), widest);
3703            new OptimisticOperation(assignNode, bounds) {
3704                @Override
3705                void loadStack() {
3706                    final boolean forceConversionSeparation;
3707                    if (isValid(getProgramPoint()) || widestOperationType == Type.NUMBER) {
3708                        forceConversionSeparation = false;
3709                    } else {
3710                        final Type operandType = Type.widest(booleanToInt(objectToNumber(lhs.getType())), booleanToInt(objectToNumber(rhs.getType())));
3711                        forceConversionSeparation = operandType.narrowerThan(widestOperationType);
3712                    }
3713                    loadBinaryOperands(lhs, rhs, bounds, true, forceConversionSeparation);
3714                }
3715                @Override
3716                void consumeStack() {
3717                    op(this);
3718                }
3719            }.emit(getOptimisticIgnoreCountForSelfModifyingExpression(lhs));
3720            method.convert(assignNode.getType());
3721        }
3722    }
3723
3724    /**
3725     * Non-optimistic binary self-assignment operation. Basically, everything except +=, -=, *=, and /=.
3726     */
3727    private abstract class BinarySelfAssignment extends SelfModifyingStore<BinaryNode> {
3728        BinarySelfAssignment(final BinaryNode node) {
3729            super(node, node.lhs());
3730        }
3731
3732        protected abstract void op();
3733
3734        @Override
3735        protected void evaluate() {
3736            loadBinaryOperands(assignNode.lhs(), assignNode.rhs(), TypeBounds.UNBOUNDED.notWiderThan(assignNode.getWidestOperandType()), true, false);
3737            op();
3738        }
3739    }
3740
3741    private void loadASSIGN_ADD(final BinaryNode binaryNode) {
3742        new BinaryOptimisticSelfAssignment(binaryNode) {
3743            @Override
3744            protected void op(final OptimisticOperation oo) {
3745                assert !(binaryNode.getType().isObject() && oo.isOptimistic);
3746                method.add(oo.getProgramPoint());
3747            }
3748        }.store();
3749    }
3750
3751    private void loadASSIGN_BIT_AND(final BinaryNode binaryNode) {
3752        new BinarySelfAssignment(binaryNode) {
3753            @Override
3754            protected void op() {
3755                method.and();
3756            }
3757        }.store();
3758    }
3759
3760    private void loadASSIGN_BIT_OR(final BinaryNode binaryNode) {
3761        new BinarySelfAssignment(binaryNode) {
3762            @Override
3763            protected void op() {
3764                method.or();
3765            }
3766        }.store();
3767    }
3768
3769    private void loadASSIGN_BIT_XOR(final BinaryNode binaryNode) {
3770        new BinarySelfAssignment(binaryNode) {
3771            @Override
3772            protected void op() {
3773                method.xor();
3774            }
3775        }.store();
3776    }
3777
3778    private void loadASSIGN_DIV(final BinaryNode binaryNode) {
3779        new BinaryOptimisticSelfAssignment(binaryNode) {
3780            @Override
3781            protected void op(final OptimisticOperation oo) {
3782                method.div(oo.getProgramPoint());
3783            }
3784        }.store();
3785    }
3786
3787    private void loadASSIGN_MOD(final BinaryNode binaryNode) {
3788        new BinaryOptimisticSelfAssignment(binaryNode) {
3789            @Override
3790            protected void op(final OptimisticOperation oo) {
3791                method.rem(oo.getProgramPoint());
3792            }
3793        }.store();
3794    }
3795
3796    private void loadASSIGN_MUL(final BinaryNode binaryNode) {
3797        new BinaryOptimisticSelfAssignment(binaryNode) {
3798            @Override
3799            protected void op(final OptimisticOperation oo) {
3800                method.mul(oo.getProgramPoint());
3801            }
3802        }.store();
3803    }
3804
3805    private void loadASSIGN_SAR(final BinaryNode binaryNode) {
3806        new BinarySelfAssignment(binaryNode) {
3807            @Override
3808            protected void op() {
3809                method.sar();
3810            }
3811        }.store();
3812    }
3813
3814    private void loadASSIGN_SHL(final BinaryNode binaryNode) {
3815        new BinarySelfAssignment(binaryNode) {
3816            @Override
3817            protected void op() {
3818                method.shl();
3819            }
3820        }.store();
3821    }
3822
3823    private void loadASSIGN_SHR(final BinaryNode binaryNode) {
3824        new BinarySelfAssignment(binaryNode) {
3825            @Override
3826            protected void op() {
3827                doSHR();
3828            }
3829
3830        }.store();
3831    }
3832
3833    private void doSHR() {
3834        // TODO: make SHR optimistic
3835        method.shr();
3836        toUint();
3837    }
3838
3839    private void toUint() {
3840        JSType.TO_UINT32_I.invoke(method);
3841    }
3842
3843    private void loadASSIGN_SUB(final BinaryNode binaryNode) {
3844        new BinaryOptimisticSelfAssignment(binaryNode) {
3845            @Override
3846            protected void op(final OptimisticOperation oo) {
3847                method.sub(oo.getProgramPoint());
3848            }
3849        }.store();
3850    }
3851
3852    /**
3853     * Helper class for binary arithmetic ops
3854     */
3855    private abstract class BinaryArith {
3856        protected abstract void op(int programPoint);
3857
3858        protected void evaluate(final BinaryNode node, final TypeBounds resultBounds) {
3859            final TypeBounds numericBounds = resultBounds.booleanToInt().objectToNumber();
3860            new OptimisticOperation(node, numericBounds) {
3861                @Override
3862                void loadStack() {
3863                    final TypeBounds operandBounds;
3864                    boolean forceConversionSeparation = false;
3865                    if(numericBounds.narrowest == Type.NUMBER) {
3866                        // Result should be double always. Propagate it into the operands so we don't have lots of I2D
3867                        // and L2D after operand evaluation.
3868                        assert numericBounds.widest == Type.NUMBER;
3869                        operandBounds = numericBounds;
3870                    } else {
3871                        final boolean isOptimistic = isValid(getProgramPoint());
3872                        if(isOptimistic || node.isTokenType(TokenType.DIV) || node.isTokenType(TokenType.MOD)) {
3873                            operandBounds = new TypeBounds(node.getType(), Type.NUMBER);
3874                        } else {
3875                            // Non-optimistic, non-FP subtraction or multiplication. Allow them to overflow.
3876                            operandBounds = new TypeBounds(Type.narrowest(node.getWidestOperandType(),
3877                                    numericBounds.widest), Type.NUMBER);
3878                            forceConversionSeparation = node.getWidestOperationType().narrowerThan(numericBounds.widest);
3879                        }
3880                    }
3881                    loadBinaryOperands(node.lhs(), node.rhs(), operandBounds, false, forceConversionSeparation);
3882                }
3883
3884                @Override
3885                void consumeStack() {
3886                    op(getProgramPoint());
3887                }
3888            }.emit();
3889        }
3890    }
3891
3892    private void loadBIT_AND(final BinaryNode binaryNode) {
3893        loadBinaryOperands(binaryNode);
3894        method.and();
3895    }
3896
3897    private void loadBIT_OR(final BinaryNode binaryNode) {
3898        // Optimize x|0 to (int)x
3899        if (isRhsZero(binaryNode)) {
3900            loadExpressionAsType(binaryNode.lhs(), Type.INT);
3901        } else {
3902            loadBinaryOperands(binaryNode);
3903            method.or();
3904        }
3905    }
3906
3907    private static boolean isRhsZero(final BinaryNode binaryNode) {
3908        final Expression rhs = binaryNode.rhs();
3909        return rhs instanceof LiteralNode && INT_ZERO.equals(((LiteralNode<?>)rhs).getValue());
3910    }
3911
3912    private void loadBIT_XOR(final BinaryNode binaryNode) {
3913        loadBinaryOperands(binaryNode);
3914        method.xor();
3915    }
3916
3917    private void loadCOMMARIGHT(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3918        loadAndDiscard(binaryNode.lhs());
3919        loadExpression(binaryNode.rhs(), resultBounds);
3920    }
3921
3922    private void loadCOMMALEFT(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3923        loadExpression(binaryNode.lhs(), resultBounds);
3924        loadAndDiscard(binaryNode.rhs());
3925    }
3926
3927    private void loadDIV(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3928        new BinaryArith() {
3929            @Override
3930            protected void op(final int programPoint) {
3931                method.div(programPoint);
3932            }
3933        }.evaluate(binaryNode, resultBounds);
3934    }
3935
3936    private void loadCmp(final BinaryNode binaryNode, final Condition cond) {
3937        assert comparisonOperandsArePrimitive(binaryNode) : binaryNode;
3938        loadBinaryOperands(binaryNode);
3939
3940        final Label trueLabel  = new Label("trueLabel");
3941        final Label afterLabel = new Label("skip");
3942
3943        method.conditionalJump(cond, trueLabel);
3944
3945        method.load(Boolean.FALSE);
3946        method._goto(afterLabel);
3947        method.label(trueLabel);
3948        method.load(Boolean.TRUE);
3949        method.label(afterLabel);
3950    }
3951
3952    private static boolean comparisonOperandsArePrimitive(final BinaryNode binaryNode) {
3953        final Type widest = Type.widest(binaryNode.lhs().getType(), binaryNode.rhs().getType());
3954        return widest.isNumeric() || widest.isBoolean();
3955    }
3956
3957    private void loadMOD(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3958        new BinaryArith() {
3959            @Override
3960            protected void op(final int programPoint) {
3961                method.rem(programPoint);
3962            }
3963        }.evaluate(binaryNode, resultBounds);
3964    }
3965
3966    private void loadMUL(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3967        new BinaryArith() {
3968            @Override
3969            protected void op(final int programPoint) {
3970                method.mul(programPoint);
3971            }
3972        }.evaluate(binaryNode, resultBounds);
3973    }
3974
3975    private void loadSAR(final BinaryNode binaryNode) {
3976        loadBinaryOperands(binaryNode);
3977        method.sar();
3978    }
3979
3980    private void loadSHL(final BinaryNode binaryNode) {
3981        loadBinaryOperands(binaryNode);
3982        method.shl();
3983    }
3984
3985    private void loadSHR(final BinaryNode binaryNode) {
3986        // Optimize x >>> 0 to (uint)x
3987        if (isRhsZero(binaryNode)) {
3988            loadExpressionAsType(binaryNode.lhs(), Type.INT);
3989            toUint();
3990        } else {
3991            loadBinaryOperands(binaryNode);
3992            doSHR();
3993        }
3994    }
3995
3996    private void loadSUB(final BinaryNode binaryNode, final TypeBounds resultBounds) {
3997        new BinaryArith() {
3998            @Override
3999            protected void op(final int programPoint) {
4000                method.sub(programPoint);
4001            }
4002        }.evaluate(binaryNode, resultBounds);
4003    }
4004
4005    @Override
4006    public boolean enterLabelNode(final LabelNode labelNode) {
4007        labeledBlockBreakLiveLocals.push(lc.getUsedSlotCount());
4008        return true;
4009    }
4010
4011    @Override
4012    protected boolean enterDefault(final Node node) {
4013        throw new AssertionError("Code generator entered node of type " + node.getClass().getName());
4014    }
4015
4016    private void loadTernaryNode(final TernaryNode ternaryNode, final TypeBounds resultBounds) {
4017        final Expression test = ternaryNode.getTest();
4018        final JoinPredecessorExpression trueExpr  = ternaryNode.getTrueExpression();
4019        final JoinPredecessorExpression falseExpr = ternaryNode.getFalseExpression();
4020
4021        final Label falseLabel = new Label("ternary_false");
4022        final Label exitLabel  = new Label("ternary_exit");
4023
4024        final Type outNarrowest = Type.narrowest(resultBounds.widest, Type.generic(Type.widestReturnType(trueExpr.getType(), falseExpr.getType())));
4025        final TypeBounds outBounds = resultBounds.notNarrowerThan(outNarrowest);
4026
4027        emitBranch(test, falseLabel, false);
4028
4029        loadExpression(trueExpr.getExpression(), outBounds);
4030        assert Type.generic(method.peekType()) == outBounds.narrowest;
4031        method.beforeJoinPoint(trueExpr);
4032        method._goto(exitLabel);
4033        method.label(falseLabel);
4034        loadExpression(falseExpr.getExpression(), outBounds);
4035        assert Type.generic(method.peekType()) == outBounds.narrowest;
4036        method.beforeJoinPoint(falseExpr);
4037        method.label(exitLabel);
4038    }
4039
4040    /**
4041     * Generate all shared scope calls generated during codegen.
4042     */
4043    void generateScopeCalls() {
4044        for (final SharedScopeCall scopeAccess : lc.getScopeCalls()) {
4045            scopeAccess.generateScopeCall();
4046        }
4047    }
4048
4049    /**
4050     * Debug code used to print symbols
4051     *
4052     * @param block the block we are in
4053     * @param function the function we are in
4054     * @param ident identifier for block or function where applicable
4055     */
4056    private void printSymbols(final Block block, final FunctionNode function, final String ident) {
4057        if (compiler.getScriptEnvironment()._print_symbols || function.getFlag(FunctionNode.IS_PRINT_SYMBOLS)) {
4058            final PrintWriter out = compiler.getScriptEnvironment().getErr();
4059            out.println("[BLOCK in '" + ident + "']");
4060            if (!block.printSymbols(out)) {
4061                out.println("<no symbols>");
4062            }
4063            out.println();
4064        }
4065    }
4066
4067
4068    /**
4069     * The difference between a store and a self modifying store is that
4070     * the latter may load part of the target on the stack, e.g. the base
4071     * of an AccessNode or the base and index of an IndexNode. These are used
4072     * both as target and as an extra source. Previously it was problematic
4073     * for self modifying stores if the target/lhs didn't belong to one
4074     * of three trivial categories: IdentNode, AcessNodes, IndexNodes. In that
4075     * case it was evaluated and tagged as "resolved", which meant at the second
4076     * time the lhs of this store was read (e.g. in a = a (second) + b for a += b,
4077     * it would be evaluated to a nop in the scope and cause stack underflow
4078     *
4079     * see NASHORN-703
4080     *
4081     * @param <T>
4082     */
4083    private abstract class SelfModifyingStore<T extends Expression> extends Store<T> {
4084        protected SelfModifyingStore(final T assignNode, final Expression target) {
4085            super(assignNode, target);
4086        }
4087
4088        @Override
4089        protected boolean isSelfModifying() {
4090            return true;
4091        }
4092    }
4093
4094    /**
4095     * Helper class to generate stores
4096     */
4097    private abstract class Store<T extends Expression> {
4098
4099        /** An assignment node, e.g. x += y */
4100        protected final T assignNode;
4101
4102        /** The target node to store to, e.g. x */
4103        private final Expression target;
4104
4105        /** How deep on the stack do the arguments go if this generates an indy call */
4106        private int depth;
4107
4108        /** If we have too many arguments, we need temporary storage, this is stored in 'quick' */
4109        private IdentNode quick;
4110
4111        /**
4112         * Constructor
4113         *
4114         * @param assignNode the node representing the whole assignment
4115         * @param target     the target node of the assignment (destination)
4116         */
4117        protected Store(final T assignNode, final Expression target) {
4118            this.assignNode = assignNode;
4119            this.target = target;
4120        }
4121
4122        /**
4123         * Constructor
4124         *
4125         * @param assignNode the node representing the whole assignment
4126         */
4127        protected Store(final T assignNode) {
4128            this(assignNode, assignNode);
4129        }
4130
4131        /**
4132         * Is this a self modifying store operation, e.g. *= or ++
4133         * @return true if self modifying store
4134         */
4135        protected boolean isSelfModifying() {
4136            return false;
4137        }
4138
4139        private void prologue() {
4140            /**
4141             * This loads the parts of the target, e.g base and index. they are kept
4142             * on the stack throughout the store and used at the end to execute it
4143             */
4144
4145            target.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
4146                @Override
4147                public boolean enterIdentNode(final IdentNode node) {
4148                    if (node.getSymbol().isScope()) {
4149                        method.loadCompilerConstant(SCOPE);
4150                        depth += Type.SCOPE.getSlots();
4151                        assert depth == 1;
4152                    }
4153                    return false;
4154                }
4155
4156                private void enterBaseNode() {
4157                    assert target instanceof BaseNode : "error - base node " + target + " must be instanceof BaseNode";
4158                    final BaseNode   baseNode = (BaseNode)target;
4159                    final Expression base     = baseNode.getBase();
4160
4161                    loadExpressionAsObject(base);
4162                    depth += Type.OBJECT.getSlots();
4163                    assert depth == 1;
4164
4165                    if (isSelfModifying()) {
4166                        method.dup();
4167                    }
4168                }
4169
4170                @Override
4171                public boolean enterAccessNode(final AccessNode node) {
4172                    enterBaseNode();
4173                    return false;
4174                }
4175
4176                @Override
4177                public boolean enterIndexNode(final IndexNode node) {
4178                    enterBaseNode();
4179
4180                    final Expression index = node.getIndex();
4181                    if (!index.getType().isNumeric()) {
4182                        // could be boolean here as well
4183                        loadExpressionAsObject(index);
4184                    } else {
4185                        loadExpressionUnbounded(index);
4186                    }
4187                    depth += index.getType().getSlots();
4188
4189                    if (isSelfModifying()) {
4190                        //convert "base base index" to "base index base index"
4191                        method.dup(1);
4192                    }
4193
4194                    return false;
4195                }
4196
4197            });
4198        }
4199
4200        /**
4201         * Generates an extra local variable, always using the same slot, one that is available after the end of the
4202         * frame.
4203         *
4204         * @param type the type of the variable
4205         *
4206         * @return the quick variable
4207         */
4208        private IdentNode quickLocalVariable(final Type type) {
4209            final String name = lc.getCurrentFunction().uniqueName(QUICK_PREFIX.symbolName());
4210            final Symbol symbol = new Symbol(name, IS_INTERNAL | HAS_SLOT);
4211            symbol.setHasSlotFor(type);
4212            symbol.setFirstSlot(lc.quickSlot(type));
4213
4214            final IdentNode quickIdent = IdentNode.createInternalIdentifier(symbol).setType(type);
4215
4216            return quickIdent;
4217        }
4218
4219        // store the result that "lives on" after the op, e.g. "i" in i++ postfix.
4220        protected void storeNonDiscard() {
4221            if (lc.getCurrentDiscard() == assignNode) {
4222                assert assignNode.isAssignment();
4223                lc.popDiscard();
4224                return;
4225            }
4226
4227            if (method.dup(depth) == null) {
4228                method.dup();
4229                final Type quickType = method.peekType();
4230                this.quick = quickLocalVariable(quickType);
4231                final Symbol quickSymbol = quick.getSymbol();
4232                method.storeTemp(quickType, quickSymbol.getFirstSlot());
4233            }
4234        }
4235
4236        private void epilogue() {
4237            /**
4238             * Take the original target args from the stack and use them
4239             * together with the value to be stored to emit the store code
4240             *
4241             * The case that targetSymbol is in scope (!hasSlot) and we actually
4242             * need to do a conversion on non-equivalent types exists, but is
4243             * very rare. See for example test/script/basic/access-specializer.js
4244             */
4245            target.accept(new NodeVisitor<LexicalContext>(new LexicalContext()) {
4246                @Override
4247                protected boolean enterDefault(final Node node) {
4248                    throw new AssertionError("Unexpected node " + node + " in store epilogue");
4249                }
4250
4251                @Override
4252                public boolean enterIdentNode(final IdentNode node) {
4253                    final Symbol symbol = node.getSymbol();
4254                    assert symbol != null;
4255                    if (symbol.isScope()) {
4256                        final int flags = CALLSITE_SCOPE | getCallSiteFlags();
4257                        if (isFastScope(symbol)) {
4258                            storeFastScopeVar(symbol, flags);
4259                        } else {
4260                            method.dynamicSet(node.getName(), flags);
4261                        }
4262                    } else {
4263                        final Type storeType = assignNode.getType();
4264                        if (symbol.hasSlotFor(storeType)) {
4265                            // Only emit a convert for a store known to be live; converts for dead stores can
4266                            // give us an unnecessary ClassCastException.
4267                            method.convert(storeType);
4268                        }
4269                        storeIdentWithCatchConversion(node, storeType);
4270                    }
4271                    return false;
4272
4273                }
4274
4275                @Override
4276                public boolean enterAccessNode(final AccessNode node) {
4277                    method.dynamicSet(node.getProperty(), getCallSiteFlags());
4278                    return false;
4279                }
4280
4281                @Override
4282                public boolean enterIndexNode(final IndexNode node) {
4283                    method.dynamicSetIndex(getCallSiteFlags());
4284                    return false;
4285                }
4286            });
4287
4288
4289            // whatever is on the stack now is the final answer
4290        }
4291
4292        protected abstract void evaluate();
4293
4294        void store() {
4295            if (target instanceof IdentNode) {
4296                checkTemporalDeadZone((IdentNode)target);
4297            }
4298            prologue();
4299            evaluate(); // leaves an operation of whatever the operationType was on the stack
4300            storeNonDiscard();
4301            epilogue();
4302            if (quick != null) {
4303                method.load(quick);
4304            }
4305        }
4306    }
4307
4308    private void newFunctionObject(final FunctionNode functionNode, final boolean addInitializer) {
4309        assert lc.peek() == functionNode;
4310
4311        final RecompilableScriptFunctionData data = compiler.getScriptFunctionData(functionNode.getId());
4312
4313        if (functionNode.isProgram() && !compiler.isOnDemandCompilation()) {
4314            final CompileUnit fnUnit = functionNode.getCompileUnit();
4315            final MethodEmitter createFunction = fnUnit.getClassEmitter().method(
4316                    EnumSet.of(Flag.PUBLIC, Flag.STATIC), CREATE_PROGRAM_FUNCTION.symbolName(),
4317                    ScriptFunction.class, ScriptObject.class);
4318            createFunction.begin();
4319            createFunction._new(SCRIPTFUNCTION_IMPL_NAME, SCRIPTFUNCTION_IMPL_TYPE).dup();
4320            loadConstant(data, fnUnit, createFunction);
4321            createFunction.load(SCOPE_TYPE, 0);
4322            createFunction.invoke(constructorNoLookup(SCRIPTFUNCTION_IMPL_NAME, RecompilableScriptFunctionData.class, ScriptObject.class));
4323            createFunction._return();
4324            createFunction.end();
4325        }
4326
4327        if (addInitializer && !compiler.isOnDemandCompilation()) {
4328            compiler.addFunctionInitializer(data, functionNode);
4329        }
4330
4331        // We don't emit a ScriptFunction on stack for the outermost compiled function (as there's no code being
4332        // generated in its outer context that'd need it as a callee).
4333        if (lc.getOutermostFunction() == functionNode) {
4334            return;
4335        }
4336
4337        method._new(SCRIPTFUNCTION_IMPL_NAME, SCRIPTFUNCTION_IMPL_TYPE).dup();
4338        loadConstant(data);
4339
4340        if (functionNode.needsParentScope()) {
4341            method.loadCompilerConstant(SCOPE);
4342        } else {
4343            method.loadNull();
4344        }
4345        method.invoke(constructorNoLookup(SCRIPTFUNCTION_IMPL_NAME, RecompilableScriptFunctionData.class, ScriptObject.class));
4346    }
4347
4348    // calls on Global class.
4349    private MethodEmitter globalInstance() {
4350        return method.invokestatic(GLOBAL_OBJECT, "instance", "()L" + GLOBAL_OBJECT + ';');
4351    }
4352
4353    private MethodEmitter globalAllocateArguments() {
4354        return method.invokestatic(GLOBAL_OBJECT, "allocateArguments", methodDescriptor(ScriptObject.class, Object[].class, Object.class, int.class));
4355    }
4356
4357    private MethodEmitter globalNewRegExp() {
4358        return method.invokestatic(GLOBAL_OBJECT, "newRegExp", methodDescriptor(Object.class, String.class, String.class));
4359    }
4360
4361    private MethodEmitter globalRegExpCopy() {
4362        return method.invokestatic(GLOBAL_OBJECT, "regExpCopy", methodDescriptor(Object.class, Object.class));
4363    }
4364
4365    private MethodEmitter globalAllocateArray(final ArrayType type) {
4366        //make sure the native array is treated as an array type
4367        return method.invokestatic(GLOBAL_OBJECT, "allocate", "(" + type.getDescriptor() + ")Ljdk/nashorn/internal/objects/NativeArray;");
4368    }
4369
4370    private MethodEmitter globalIsEval() {
4371        return method.invokestatic(GLOBAL_OBJECT, "isEval", methodDescriptor(boolean.class, Object.class));
4372    }
4373
4374    private MethodEmitter globalReplaceLocationPropertyPlaceholder() {
4375        return method.invokestatic(GLOBAL_OBJECT, "replaceLocationPropertyPlaceholder", methodDescriptor(Object.class, Object.class, Object.class));
4376    }
4377
4378    private MethodEmitter globalCheckObjectCoercible() {
4379        return method.invokestatic(GLOBAL_OBJECT, "checkObjectCoercible", methodDescriptor(void.class, Object.class));
4380    }
4381
4382    private MethodEmitter globalDirectEval() {
4383        return method.invokestatic(GLOBAL_OBJECT, "directEval",
4384                methodDescriptor(Object.class, Object.class, Object.class, Object.class, Object.class, boolean.class));
4385    }
4386
4387    private abstract class OptimisticOperation {
4388        private final boolean isOptimistic;
4389        // expression and optimistic are the same reference
4390        private final Expression expression;
4391        private final Optimistic optimistic;
4392        private final TypeBounds resultBounds;
4393
4394        OptimisticOperation(final Optimistic optimistic, final TypeBounds resultBounds) {
4395            this.optimistic = optimistic;
4396            this.expression = (Expression)optimistic;
4397            this.resultBounds = resultBounds;
4398            this.isOptimistic = isOptimistic(optimistic) && useOptimisticTypes() &&
4399                    // Operation is only effectively optimistic if its type, after being coerced into the result bounds
4400                    // is narrower than the upper bound.
4401                    resultBounds.within(Type.generic(((Expression)optimistic).getType())).narrowerThan(resultBounds.widest);
4402        }
4403
4404        MethodEmitter emit() {
4405            return emit(0);
4406        }
4407
4408        MethodEmitter emit(final int ignoredArgCount) {
4409            final int     programPoint                  = optimistic.getProgramPoint();
4410            final boolean optimisticOrContinuation      = isOptimistic || isContinuationEntryPoint(programPoint);
4411            final boolean currentContinuationEntryPoint = isCurrentContinuationEntryPoint(programPoint);
4412            final int     stackSizeOnEntry              = method.getStackSize() - ignoredArgCount;
4413
4414            // First store the values on the stack opportunistically into local variables. Doing it before loadStack()
4415            // allows us to not have to pop/load any arguments that are pushed onto it by loadStack() in the second
4416            // storeStack().
4417            storeStack(ignoredArgCount, optimisticOrContinuation);
4418
4419            // Now, load the stack
4420            loadStack();
4421
4422            // Now store the values on the stack ultimately into local variables. In vast majority of cases, this is
4423            // (aside from creating the local types map) a no-op, as the first opportunistic stack store will already
4424            // store all variables. However, there can be operations in the loadStack() that invalidate some of the
4425            // stack stores, e.g. in "x[i] = x[++i]", "++i" will invalidate the already stored value for "i". In such
4426            // unfortunate cases this second storeStack() will restore the invariant that everything on the stack is
4427            // stored into a local variable, although at the cost of doing a store/load on the loaded arguments as well.
4428            final int liveLocalsCount = storeStack(method.getStackSize() - stackSizeOnEntry, optimisticOrContinuation);
4429            assert optimisticOrContinuation == (liveLocalsCount != -1);
4430
4431            final Label beginTry;
4432            final Label catchLabel;
4433            final Label afterConsumeStack = isOptimistic || currentContinuationEntryPoint ? new Label("after_consume_stack") : null;
4434            if(isOptimistic) {
4435                beginTry = new Label("try_optimistic");
4436                final String catchLabelName = (afterConsumeStack == null ? "" : afterConsumeStack.toString()) + "_handler";
4437                catchLabel = new Label(catchLabelName);
4438                method.label(beginTry);
4439            } else {
4440                beginTry = catchLabel = null;
4441            }
4442
4443            consumeStack();
4444
4445            if(isOptimistic) {
4446                method._try(beginTry, afterConsumeStack, catchLabel, UnwarrantedOptimismException.class);
4447            }
4448
4449            if(isOptimistic || currentContinuationEntryPoint) {
4450                method.label(afterConsumeStack);
4451
4452                final int[] localLoads = method.getLocalLoadsOnStack(0, stackSizeOnEntry);
4453                assert everyStackValueIsLocalLoad(localLoads) : Arrays.toString(localLoads) + ", " + stackSizeOnEntry + ", " + ignoredArgCount;
4454                final List<Type> localTypesList = method.getLocalVariableTypes();
4455                final int usedLocals = method.getUsedSlotsWithLiveTemporaries();
4456                final List<Type> localTypes = method.getWidestLiveLocals(localTypesList.subList(0, usedLocals));
4457                assert everyLocalLoadIsValid(localLoads, usedLocals) : Arrays.toString(localLoads) + " ~ " + localTypes;
4458
4459                if(isOptimistic) {
4460                    addUnwarrantedOptimismHandlerLabel(localTypes, catchLabel);
4461                }
4462                if(currentContinuationEntryPoint) {
4463                    final ContinuationInfo ci = getContinuationInfo();
4464                    assert ci != null : "no continuation info found for " + lc.getCurrentFunction();
4465                    assert !ci.hasTargetLabel(); // No duplicate program points
4466                    ci.setTargetLabel(afterConsumeStack);
4467                    ci.getHandlerLabel().markAsOptimisticContinuationHandlerFor(afterConsumeStack);
4468                    // Can't rely on targetLabel.stack.localVariableTypes.length, as it can be higher due to effectively
4469                    // dead local variables.
4470                    ci.lvarCount = localTypes.size();
4471                    ci.setStackStoreSpec(localLoads);
4472                    ci.setStackTypes(Arrays.copyOf(method.getTypesFromStack(method.getStackSize()), stackSizeOnEntry));
4473                    assert ci.getStackStoreSpec().length == ci.getStackTypes().length;
4474                    ci.setReturnValueType(method.peekType());
4475                    ci.lineNumber = getLastLineNumber();
4476                    ci.catchLabel = catchLabels.peek();
4477                }
4478            }
4479            return method;
4480        }
4481
4482        /**
4483         * Stores the current contents of the stack into local variables so they are not lost before invoking something that
4484         * can result in an {@code UnwarantedOptimizationException}.
4485         * @param ignoreArgCount the number of topmost arguments on stack to ignore when deciding on the shape of the catch
4486         * block. Those are used in the situations when we could not place the call to {@code storeStack} early enough
4487         * (before emitting code for pushing the arguments that the optimistic call will pop). This is admittedly a
4488         * deficiency in the design of the code generator when it deals with self-assignments and we should probably look
4489         * into fixing it.
4490         * @return types of the significant local variables after the stack was stored (types for local variables used
4491         * for temporary storage of ignored arguments are not returned).
4492         * @param optimisticOrContinuation if false, this method should not execute
4493         * a label for a catch block for the {@code UnwarantedOptimizationException}, suitable for capturing the
4494         * currently live local variables, tailored to their types.
4495         */
4496        private int storeStack(final int ignoreArgCount, final boolean optimisticOrContinuation) {
4497            if(!optimisticOrContinuation) {
4498                return -1; // NOTE: correct value to return is lc.getUsedSlotCount(), but it wouldn't be used anyway
4499            }
4500
4501            final int stackSize = method.getStackSize();
4502            final Type[] stackTypes = method.getTypesFromStack(stackSize);
4503            final int[] localLoadsOnStack = method.getLocalLoadsOnStack(0, stackSize);
4504            final int usedSlots = method.getUsedSlotsWithLiveTemporaries();
4505
4506            final int firstIgnored = stackSize - ignoreArgCount;
4507            // Find the first value on the stack (from the bottom) that is not a load from a local variable.
4508            int firstNonLoad = 0;
4509            while(firstNonLoad < firstIgnored && localLoadsOnStack[firstNonLoad] != Label.Stack.NON_LOAD) {
4510                firstNonLoad++;
4511            }
4512
4513            // Only do the store/load if first non-load is not an ignored argument. Otherwise, do nothing and return
4514            // the number of used slots as the number of live local variables.
4515            if(firstNonLoad >= firstIgnored) {
4516                return usedSlots;
4517            }
4518
4519            // Find the number of new temporary local variables that we need; it's the number of values on the stack that
4520            // are not direct loads of existing local variables.
4521            int tempSlotsNeeded = 0;
4522            for(int i = firstNonLoad; i < stackSize; ++i) {
4523                if(localLoadsOnStack[i] == Label.Stack.NON_LOAD) {
4524                    tempSlotsNeeded += stackTypes[i].getSlots();
4525                }
4526            }
4527
4528            // Ensure all values on the stack that weren't directly loaded from a local variable are stored in a local
4529            // variable. We're starting from highest local variable index, so that in case ignoreArgCount > 0 the ignored
4530            // ones end up at the end of the local variable table.
4531            int lastTempSlot = usedSlots + tempSlotsNeeded;
4532            int ignoreSlotCount = 0;
4533            for(int i = stackSize; i -- > firstNonLoad;) {
4534                final int loadSlot = localLoadsOnStack[i];
4535                if(loadSlot == Label.Stack.NON_LOAD) {
4536                    final Type type = stackTypes[i];
4537                    final int slots = type.getSlots();
4538                    lastTempSlot -= slots;
4539                    if(i >= firstIgnored) {
4540                        ignoreSlotCount += slots;
4541                    }
4542                    method.storeTemp(type, lastTempSlot);
4543                } else {
4544                    method.pop();
4545                }
4546            }
4547            assert lastTempSlot == usedSlots; // used all temporary locals
4548
4549            final List<Type> localTypesList = method.getLocalVariableTypes();
4550
4551            // Load values back on stack.
4552            for(int i = firstNonLoad; i < stackSize; ++i) {
4553                final int loadSlot = localLoadsOnStack[i];
4554                final Type stackType = stackTypes[i];
4555                final boolean isLoad = loadSlot != Label.Stack.NON_LOAD;
4556                final int lvarSlot = isLoad ? loadSlot : lastTempSlot;
4557                final Type lvarType = localTypesList.get(lvarSlot);
4558                method.load(lvarType, lvarSlot);
4559                if(isLoad) {
4560                    // Conversion operators (I2L etc.) preserve "load"-ness of the value despite the fact that, in the
4561                    // strict sense they are creating a derived value from the loaded value. This special behavior of
4562                    // on-stack conversion operators is necessary to accommodate for differences in local variable types
4563                    // after deoptimization; having a conversion operator throw away "load"-ness would create different
4564                    // local variable table shapes between optimism-failed code and its deoptimized rest-of method).
4565                    // After we load the value back, we need to redo the conversion to the stack type if stack type is
4566                    // different.
4567                    // NOTE: this would only strictly be necessary for widening conversions (I2L, L2D, I2D), and not for
4568                    // narrowing ones (L2I, D2L, D2I) as only widening conversions are the ones that can get eliminated
4569                    // in a deoptimized method, as their original input argument got widened. Maybe experiment with
4570                    // throwing away "load"-ness for narrowing conversions in MethodEmitter.convert()?
4571                    method.convert(stackType);
4572                } else {
4573                    // temporary stores never needs a convert, as their type is always the same as the stack type.
4574                    assert lvarType == stackType;
4575                    lastTempSlot += lvarType.getSlots();
4576                }
4577            }
4578            // used all temporaries
4579            assert lastTempSlot == usedSlots + tempSlotsNeeded;
4580
4581            return lastTempSlot - ignoreSlotCount;
4582        }
4583
4584        private void addUnwarrantedOptimismHandlerLabel(final List<Type> localTypes, final Label label) {
4585            final String lvarTypesDescriptor = getLvarTypesDescriptor(localTypes);
4586            final Map<String, Collection<Label>> unwarrantedOptimismHandlers = lc.getUnwarrantedOptimismHandlers();
4587            Collection<Label> labels = unwarrantedOptimismHandlers.get(lvarTypesDescriptor);
4588            if(labels == null) {
4589                labels = new LinkedList<>();
4590                unwarrantedOptimismHandlers.put(lvarTypesDescriptor, labels);
4591            }
4592            method.markLabelAsOptimisticCatchHandler(label, localTypes.size());
4593            labels.add(label);
4594        }
4595
4596        abstract void loadStack();
4597
4598        // Make sure that whatever indy call site you emit from this method uses {@code getCallSiteFlagsOptimistic(node)}
4599        // or otherwise ensure optimistic flag is correctly set in the call site, otherwise it doesn't make much sense
4600        // to use OptimisticExpression for emitting it.
4601        abstract void consumeStack();
4602
4603        /**
4604         * Emits the correct dynamic getter code. Normally just delegates to method emitter, except when the target
4605         * expression is optimistic, and the desired type is narrower than the optimistic type. In that case, it'll emit a
4606         * dynamic getter with its original optimistic type, and explicitly insert a narrowing conversion. This way we can
4607         * preserve the optimism of the values even if they're subsequently immediately coerced into a narrower type. This
4608         * is beneficial because in this case we can still presume that since the original getter was optimistic, the
4609         * conversion has no side effects.
4610         * @param name the name of the property being get
4611         * @param flags call site flags
4612         * @param isMethod whether we're preferrably retrieving a function
4613         * @return the current method emitter
4614         */
4615        MethodEmitter dynamicGet(final String name, final int flags, final boolean isMethod) {
4616            if(isOptimistic) {
4617                return method.dynamicGet(getOptimisticCoercedType(), name, getOptimisticFlags(flags), isMethod);
4618            }
4619            return method.dynamicGet(resultBounds.within(expression.getType()), name, nonOptimisticFlags(flags), isMethod);
4620        }
4621
4622        MethodEmitter dynamicGetIndex(final int flags, final boolean isMethod) {
4623            if(isOptimistic) {
4624                return method.dynamicGetIndex(getOptimisticCoercedType(), getOptimisticFlags(flags), isMethod);
4625            }
4626            return method.dynamicGetIndex(resultBounds.within(expression.getType()), nonOptimisticFlags(flags), isMethod);
4627        }
4628
4629        MethodEmitter dynamicCall(final int argCount, final int flags) {
4630            if (isOptimistic) {
4631                return method.dynamicCall(getOptimisticCoercedType(), argCount, getOptimisticFlags(flags));
4632            }
4633            return method.dynamicCall(resultBounds.within(expression.getType()), argCount, nonOptimisticFlags(flags));
4634        }
4635
4636        int getOptimisticFlags(final int flags) {
4637            return flags | CALLSITE_OPTIMISTIC | (optimistic.getProgramPoint() << CALLSITE_PROGRAM_POINT_SHIFT); //encode program point in high bits
4638        }
4639
4640        int getProgramPoint() {
4641            return isOptimistic ? optimistic.getProgramPoint() : INVALID_PROGRAM_POINT;
4642        }
4643
4644        void convertOptimisticReturnValue() {
4645            if (isOptimistic) {
4646                final Type optimisticType = getOptimisticCoercedType();
4647                if(!optimisticType.isObject()) {
4648                    method.load(optimistic.getProgramPoint());
4649                    if(optimisticType.isInteger()) {
4650                        method.invoke(ENSURE_INT);
4651                    } else if(optimisticType.isLong()) {
4652                        method.invoke(ENSURE_LONG);
4653                    } else if(optimisticType.isNumber()) {
4654                        method.invoke(ENSURE_NUMBER);
4655                    } else {
4656                        throw new AssertionError(optimisticType);
4657                    }
4658                }
4659            }
4660        }
4661
4662        void replaceCompileTimeProperty() {
4663            final IdentNode identNode = (IdentNode)expression;
4664            final String name = identNode.getSymbol().getName();
4665            if (CompilerConstants.__FILE__.name().equals(name)) {
4666                replaceCompileTimeProperty(getCurrentSource().getName());
4667            } else if (CompilerConstants.__DIR__.name().equals(name)) {
4668                replaceCompileTimeProperty(getCurrentSource().getBase());
4669            } else if (CompilerConstants.__LINE__.name().equals(name)) {
4670                replaceCompileTimeProperty(getCurrentSource().getLine(identNode.position()));
4671            }
4672        }
4673
4674        /**
4675         * When an ident with name __FILE__, __DIR__, or __LINE__ is loaded, we'll try to look it up as any other
4676         * identifier. However, if it gets all the way up to the Global object, it will send back a special value that
4677         * represents a placeholder for these compile-time location properties. This method will generate code that loads
4678         * the value of the compile-time location property and then invokes a method in Global that will replace the
4679         * placeholder with the value. Effectively, if the symbol for these properties is defined anywhere in the lexical
4680         * scope, they take precedence, but if they aren't, then they resolve to the compile-time location property.
4681         * @param propertyValue the actual value of the property
4682         */
4683        private void replaceCompileTimeProperty(final Object propertyValue) {
4684            assert method.peekType().isObject();
4685            if(propertyValue instanceof String || propertyValue == null) {
4686                method.load((String)propertyValue);
4687            } else if(propertyValue instanceof Integer) {
4688                method.load(((Integer)propertyValue).intValue());
4689                method.convert(Type.OBJECT);
4690            } else {
4691                throw new AssertionError();
4692            }
4693            globalReplaceLocationPropertyPlaceholder();
4694            convertOptimisticReturnValue();
4695        }
4696
4697        /**
4698         * Returns the type that should be used as the return type of the dynamic invocation that is emitted as the code
4699         * for the current optimistic operation. If the type bounds is exact boolean or narrower than the expression's
4700         * optimistic type, then the optimistic type is returned, otherwise the coercing type. Effectively, this method
4701         * allows for moving the coercion into the optimistic type when it won't adversely affect the optimistic
4702         * evaluation semantics, and for preserving the optimistic type and doing a separate coercion when it would
4703         * affect it.
4704         * @return
4705         */
4706        private Type getOptimisticCoercedType() {
4707            final Type optimisticType = expression.getType();
4708            assert resultBounds.widest.widerThan(optimisticType);
4709            final Type narrowest = resultBounds.narrowest;
4710
4711            if(narrowest.isBoolean() || narrowest.narrowerThan(optimisticType)) {
4712                assert !optimisticType.isObject();
4713                return optimisticType;
4714            }
4715            assert !narrowest.isObject();
4716            return narrowest;
4717        }
4718    }
4719
4720    private static boolean isOptimistic(final Optimistic optimistic) {
4721        if(!optimistic.canBeOptimistic()) {
4722            return false;
4723        }
4724        final Expression expr = (Expression)optimistic;
4725        return expr.getType().narrowerThan(expr.getWidestOperationType());
4726    }
4727
4728    private static boolean everyLocalLoadIsValid(final int[] loads, final int localCount) {
4729        for (final int load : loads) {
4730            if(load < 0 || load >= localCount) {
4731                return false;
4732            }
4733        }
4734        return true;
4735    }
4736
4737    private static boolean everyStackValueIsLocalLoad(final int[] loads) {
4738        for (final int load : loads) {
4739            if(load == Label.Stack.NON_LOAD) {
4740                return false;
4741            }
4742        }
4743        return true;
4744    }
4745
4746    private String getLvarTypesDescriptor(final List<Type> localVarTypes) {
4747        final int count = localVarTypes.size();
4748        final StringBuilder desc = new StringBuilder(count);
4749        for(int i = 0; i < count;) {
4750            i += appendType(desc, localVarTypes.get(i));
4751        }
4752        return method.markSymbolBoundariesInLvarTypesDescriptor(desc.toString());
4753    }
4754
4755    private static int appendType(final StringBuilder b, final Type t) {
4756        b.append(t.getBytecodeStackType());
4757        return t.getSlots();
4758    }
4759
4760    private static int countSymbolsInLvarTypeDescriptor(final String lvarTypeDescriptor) {
4761        int count = 0;
4762        for(int i = 0; i < lvarTypeDescriptor.length(); ++i) {
4763            if(Character.isUpperCase(lvarTypeDescriptor.charAt(i))) {
4764                ++count;
4765            }
4766        }
4767        return count;
4768
4769    }
4770    /**
4771     * Generates all the required {@code UnwarrantedOptimismException} handlers for the current function. The employed
4772     * strategy strives to maximize code reuse. Every handler constructs an array to hold the local variables, then
4773     * fills in some trailing part of the local variables (those for which it has a unique suffix in the descriptor),
4774     * then jumps to a handler for a prefix that's shared with other handlers. A handler that fills up locals up to
4775     * position 0 will not jump to a prefix handler (as it has no prefix), but instead end with constructing and
4776     * throwing a {@code RewriteException}. Since we lexicographically sort the entries, we only need to check every
4777     * entry to its immediately preceding one for longest matching prefix.
4778     * @return true if there is at least one exception handler
4779     */
4780    private boolean generateUnwarrantedOptimismExceptionHandlers(final FunctionNode fn) {
4781        if(!useOptimisticTypes()) {
4782            return false;
4783        }
4784
4785        // Take the mapping of lvarSpecs -> labels, and turn them into a descending lexicographically sorted list of
4786        // handler specifications.
4787        final Map<String, Collection<Label>> unwarrantedOptimismHandlers = lc.popUnwarrantedOptimismHandlers();
4788        if(unwarrantedOptimismHandlers.isEmpty()) {
4789            return false;
4790        }
4791
4792        method.lineNumber(0);
4793
4794        final List<OptimismExceptionHandlerSpec> handlerSpecs = new ArrayList<>(unwarrantedOptimismHandlers.size() * 4/3);
4795        for(final String spec: unwarrantedOptimismHandlers.keySet()) {
4796            handlerSpecs.add(new OptimismExceptionHandlerSpec(spec, true));
4797        }
4798        Collections.sort(handlerSpecs, Collections.reverseOrder());
4799
4800        // Map of local variable specifications to labels for populating the array for that local variable spec.
4801        final Map<String, Label> delegationLabels = new HashMap<>();
4802
4803        // Do everything in a single pass over the handlerSpecs list. Note that the list can actually grow as we're
4804        // passing through it as we might add new prefix handlers into it, so can't hoist size() outside of the loop.
4805        for(int handlerIndex = 0; handlerIndex < handlerSpecs.size(); ++handlerIndex) {
4806            final OptimismExceptionHandlerSpec spec = handlerSpecs.get(handlerIndex);
4807            final String lvarSpec = spec.lvarSpec;
4808            if(spec.catchTarget) {
4809                assert !method.isReachable();
4810                // Start a catch block and assign the labels for this lvarSpec with it.
4811                method._catch(unwarrantedOptimismHandlers.get(lvarSpec));
4812                // This spec is a catch target, so emit array creation code. The length of the array is the number of
4813                // symbols - the number of uppercase characters.
4814                method.load(countSymbolsInLvarTypeDescriptor(lvarSpec));
4815                method.newarray(Type.OBJECT_ARRAY);
4816            }
4817            if(spec.delegationTarget) {
4818                // If another handler can delegate to this handler as its prefix, then put a jump target here for the
4819                // shared code (after the array creation code, which is never shared).
4820                method.label(delegationLabels.get(lvarSpec)); // label must exist
4821            }
4822
4823            final boolean lastHandler = handlerIndex == handlerSpecs.size() - 1;
4824
4825            int lvarIndex;
4826            final int firstArrayIndex;
4827            final int firstLvarIndex;
4828            Label delegationLabel;
4829            final String commonLvarSpec;
4830            if(lastHandler) {
4831                // Last handler block, doesn't delegate to anything.
4832                lvarIndex = 0;
4833                firstLvarIndex = 0;
4834                firstArrayIndex = 0;
4835                delegationLabel = null;
4836                commonLvarSpec = null;
4837            } else {
4838                // Not yet the last handler block, will definitely delegate to another handler; let's figure out which
4839                // one. It can be an already declared handler further down the list, or it might need to declare a new
4840                // prefix handler.
4841
4842                // Since we're lexicographically ordered, the common prefix handler is defined by the common prefix of
4843                // this handler and the next handler on the list.
4844                final int nextHandlerIndex = handlerIndex + 1;
4845                final String nextLvarSpec = handlerSpecs.get(nextHandlerIndex).lvarSpec;
4846                commonLvarSpec = commonPrefix(lvarSpec, nextLvarSpec);
4847                // We don't chop symbols in half
4848                assert Character.isUpperCase(commonLvarSpec.charAt(commonLvarSpec.length() - 1));
4849
4850                // Let's find if we already have a declaration for such handler, or we need to insert it.
4851                {
4852                    boolean addNewHandler = true;
4853                    int commonHandlerIndex = nextHandlerIndex;
4854                    for(; commonHandlerIndex < handlerSpecs.size(); ++commonHandlerIndex) {
4855                        final OptimismExceptionHandlerSpec forwardHandlerSpec = handlerSpecs.get(commonHandlerIndex);
4856                        final String forwardLvarSpec = forwardHandlerSpec.lvarSpec;
4857                        if(forwardLvarSpec.equals(commonLvarSpec)) {
4858                            // We already have a handler for the common prefix.
4859                            addNewHandler = false;
4860                            // Make sure we mark it as a delegation target.
4861                            forwardHandlerSpec.delegationTarget = true;
4862                            break;
4863                        } else if(!forwardLvarSpec.startsWith(commonLvarSpec)) {
4864                            break;
4865                        }
4866                    }
4867                    if(addNewHandler) {
4868                        // We need to insert a common prefix handler. Note handlers created with catchTarget == false
4869                        // will automatically have delegationTarget == true (because that's the only reason for their
4870                        // existence).
4871                        handlerSpecs.add(commonHandlerIndex, new OptimismExceptionHandlerSpec(commonLvarSpec, false));
4872                    }
4873                }
4874
4875                firstArrayIndex = countSymbolsInLvarTypeDescriptor(commonLvarSpec);
4876                lvarIndex = 0;
4877                for(int j = 0; j < commonLvarSpec.length(); ++j) {
4878                    lvarIndex += CodeGeneratorLexicalContext.getTypeForSlotDescriptor(commonLvarSpec.charAt(j)).getSlots();
4879                }
4880                firstLvarIndex = lvarIndex;
4881
4882                // Create a delegation label if not already present
4883                delegationLabel = delegationLabels.get(commonLvarSpec);
4884                if(delegationLabel == null) {
4885                    // uo_pa == "unwarranted optimism, populate array"
4886                    delegationLabel = new Label("uo_pa_" + commonLvarSpec);
4887                    delegationLabels.put(commonLvarSpec, delegationLabel);
4888                }
4889            }
4890
4891            // Load local variables handled by this handler on stack
4892            int args = 0;
4893            boolean symbolHadValue = false;
4894            for(int typeIndex = commonLvarSpec == null ? 0 : commonLvarSpec.length(); typeIndex < lvarSpec.length(); ++typeIndex) {
4895                final char typeDesc = lvarSpec.charAt(typeIndex);
4896                final Type lvarType = CodeGeneratorLexicalContext.getTypeForSlotDescriptor(typeDesc);
4897                if (!lvarType.isUnknown()) {
4898                    method.load(lvarType, lvarIndex);
4899                    symbolHadValue = true;
4900                    args++;
4901                } else if(typeDesc == 'U' && !symbolHadValue) {
4902                    // Symbol boundary with undefined last value. Check if all previous values for this symbol were also
4903                    // undefined; if so, emit one explicit Undefined. This serves to ensure that we're emiting exactly
4904                    // one value for every symbol that uses local slots. While we could in theory ignore symbols that
4905                    // are undefined (in other words, dead) at the point where this exception was thrown, unfortunately
4906                    // we can't do it in practice. The reason for this is that currently our liveness analysis is
4907                    // coarse (it can determine whether a symbol has not been read with a particular type anywhere in
4908                    // the function being compiled, but that's it), and a symbol being promoted to Object due to a
4909                    // deoptimization will suddenly show up as "live for Object type", and previously dead U->O
4910                    // conversions on loop entries will suddenly become alive in the deoptimized method which will then
4911                    // expect a value for that slot in its continuation handler. If we had precise liveness analysis, we
4912                    // could go back to excluding known dead symbols from the payload of the RewriteException.
4913                    if(method.peekType() == Type.UNDEFINED) {
4914                        method.dup();
4915                    } else {
4916                        method.loadUndefined(Type.OBJECT);
4917                    }
4918                    args++;
4919                }
4920                if(Character.isUpperCase(typeDesc)) {
4921                    // Reached symbol boundary; reset flag for the next symbol.
4922                    symbolHadValue = false;
4923                }
4924                lvarIndex += lvarType.getSlots();
4925            }
4926            assert args > 0;
4927            // Delegate actual storing into array to an array populator utility method.
4928            //on the stack:
4929            // object array to be populated
4930            // start index
4931            // a lot of types
4932            method.dynamicArrayPopulatorCall(args + 1, firstArrayIndex);
4933            if(delegationLabel != null) {
4934                // We cascade to a prefix handler to fill out the rest of the local variables and throw the
4935                // RewriteException.
4936                assert !lastHandler;
4937                assert commonLvarSpec != null;
4938                // Must undefine the local variables that we have already processed for the sake of correct join on the
4939                // delegate label
4940                method.undefineLocalVariables(firstLvarIndex, true);
4941                final OptimismExceptionHandlerSpec nextSpec = handlerSpecs.get(handlerIndex + 1);
4942                // If the delegate immediately follows, and it's not a catch target (so it doesn't have array setup
4943                // code) don't bother emitting a jump, as we'd just jump to the next instruction.
4944                if(!nextSpec.lvarSpec.equals(commonLvarSpec) || nextSpec.catchTarget) {
4945                    method._goto(delegationLabel);
4946                }
4947            } else {
4948                assert lastHandler;
4949                // Nothing to delegate to, so this handler must create and throw the RewriteException.
4950                // At this point we have the UnwarrantedOptimismException and the Object[] with local variables on
4951                // stack. We need to create a RewriteException, push two references to it below the constructor
4952                // arguments, invoke the constructor, and throw the exception.
4953                loadConstant(getByteCodeSymbolNames(fn));
4954                if (isRestOf()) {
4955                    loadConstant(getContinuationEntryPoints());
4956                    method.invoke(CREATE_REWRITE_EXCEPTION_REST_OF);
4957                } else {
4958                    method.invoke(CREATE_REWRITE_EXCEPTION);
4959                }
4960                method.athrow();
4961            }
4962        }
4963        return true;
4964    }
4965
4966    private static String[] getByteCodeSymbolNames(final FunctionNode fn) {
4967        // Only names of local variables on the function level are captured. This information is used to reduce
4968        // deoptimizations, so as much as we can capture will help. We rely on the fact that function wide variables are
4969        // all live all the time, so the array passed to rewrite exception contains one element for every slotted symbol
4970        // here.
4971        final List<String> names = new ArrayList<>();
4972        for (final Symbol symbol: fn.getBody().getSymbols()) {
4973            if (symbol.hasSlot()) {
4974                if (symbol.isScope()) {
4975                    // slot + scope can only be true for parameters
4976                    assert symbol.isParam();
4977                    names.add(null);
4978                } else {
4979                    names.add(symbol.getName());
4980                }
4981            }
4982        }
4983        return names.toArray(new String[names.size()]);
4984    }
4985
4986    private static String commonPrefix(final String s1, final String s2) {
4987        final int l1 = s1.length();
4988        final int l = Math.min(l1, s2.length());
4989        int lms = -1; // last matching symbol
4990        for(int i = 0; i < l; ++i) {
4991            final char c1 = s1.charAt(i);
4992            if(c1 != s2.charAt(i)) {
4993                return s1.substring(0, lms + 1);
4994            } else if(Character.isUpperCase(c1)) {
4995                lms = i;
4996            }
4997        }
4998        return l == l1 ? s1 : s2;
4999    }
5000
5001    private static class OptimismExceptionHandlerSpec implements Comparable<OptimismExceptionHandlerSpec> {
5002        private final String lvarSpec;
5003        private final boolean catchTarget;
5004        private boolean delegationTarget;
5005
5006        OptimismExceptionHandlerSpec(final String lvarSpec, final boolean catchTarget) {
5007            this.lvarSpec = lvarSpec;
5008            this.catchTarget = catchTarget;
5009            if(!catchTarget) {
5010                delegationTarget = true;
5011            }
5012        }
5013
5014        @Override
5015        public int compareTo(final OptimismExceptionHandlerSpec o) {
5016            return lvarSpec.compareTo(o.lvarSpec);
5017        }
5018
5019        @Override
5020        public String toString() {
5021            final StringBuilder b = new StringBuilder(64).append("[HandlerSpec ").append(lvarSpec);
5022            if(catchTarget) {
5023                b.append(", catchTarget");
5024            }
5025            if(delegationTarget) {
5026                b.append(", delegationTarget");
5027            }
5028            return b.append("]").toString();
5029        }
5030    }
5031
5032    private static class ContinuationInfo {
5033        private final Label handlerLabel;
5034        private Label targetLabel; // Label for the target instruction.
5035        int lvarCount;
5036        // Indices of local variables that need to be loaded on the stack when this node completes
5037        private int[] stackStoreSpec;
5038        // Types of values loaded on the stack
5039        private Type[] stackTypes;
5040        // If non-null, this node should perform the requisite type conversion
5041        private Type returnValueType;
5042        // If we are in the middle of an object literal initialization, we need to update the map
5043        private PropertyMap objectLiteralMap;
5044        // Object literal stack depth for object literal - not necessarly top if property is a tree
5045        private int objectLiteralStackDepth = -1;
5046        // The line number at the continuation point
5047        private int lineNumber;
5048        // The active catch label, in case the continuation point is in a try/catch block
5049        private Label catchLabel;
5050        // The number of scopes that need to be popped before control is transferred to the catch label.
5051        private int exceptionScopePops;
5052
5053        ContinuationInfo() {
5054            this.handlerLabel = new Label("continuation_handler");
5055        }
5056
5057        Label getHandlerLabel() {
5058            return handlerLabel;
5059        }
5060
5061        boolean hasTargetLabel() {
5062            return targetLabel != null;
5063        }
5064
5065        Label getTargetLabel() {
5066            return targetLabel;
5067        }
5068
5069        void setTargetLabel(final Label targetLabel) {
5070            this.targetLabel = targetLabel;
5071        }
5072
5073        int[] getStackStoreSpec() {
5074            return stackStoreSpec.clone();
5075        }
5076
5077        void setStackStoreSpec(final int[] stackStoreSpec) {
5078            this.stackStoreSpec = stackStoreSpec;
5079        }
5080
5081        Type[] getStackTypes() {
5082            return stackTypes.clone();
5083        }
5084
5085        void setStackTypes(final Type[] stackTypes) {
5086            this.stackTypes = stackTypes;
5087        }
5088
5089        Type getReturnValueType() {
5090            return returnValueType;
5091        }
5092
5093        void setReturnValueType(final Type returnValueType) {
5094            this.returnValueType = returnValueType;
5095        }
5096
5097        int getObjectLiteralStackDepth() {
5098            return objectLiteralStackDepth;
5099        }
5100
5101        void setObjectLiteralStackDepth(final int objectLiteralStackDepth) {
5102            this.objectLiteralStackDepth = objectLiteralStackDepth;
5103        }
5104
5105        PropertyMap getObjectLiteralMap() {
5106            return objectLiteralMap;
5107        }
5108
5109        void setObjectLiteralMap(final PropertyMap objectLiteralMap) {
5110            this.objectLiteralMap = objectLiteralMap;
5111        }
5112
5113        @Override
5114        public String toString() {
5115             return "[localVariableTypes=" + targetLabel.getStack().getLocalVariableTypesCopy() + ", stackStoreSpec=" +
5116                     Arrays.toString(stackStoreSpec) + ", returnValueType=" + returnValueType + "]";
5117        }
5118    }
5119
5120    private ContinuationInfo getContinuationInfo() {
5121        return fnIdToContinuationInfo.get(lc.getCurrentFunction().getId());
5122    }
5123
5124    private void generateContinuationHandler() {
5125        if (!isRestOf()) {
5126            return;
5127        }
5128
5129        final ContinuationInfo ci = getContinuationInfo();
5130        method.label(ci.getHandlerLabel());
5131
5132        // There should never be an exception thrown from the continuation handler, but in case there is (meaning,
5133        // Nashorn has a bug), then line number 0 will be an indication of where it came from (line numbers are Uint16).
5134        method.lineNumber(0);
5135
5136        final Label.Stack stack = ci.getTargetLabel().getStack();
5137        final List<Type> lvarTypes = stack.getLocalVariableTypesCopy();
5138        final BitSet symbolBoundary = stack.getSymbolBoundaryCopy();
5139        final int lvarCount = ci.lvarCount;
5140
5141        final Type rewriteExceptionType = Type.typeFor(RewriteException.class);
5142        // Store the RewriteException into an unused local variable slot.
5143        method.load(rewriteExceptionType, 0);
5144        method.storeTemp(rewriteExceptionType, lvarCount);
5145        // Get local variable array
5146        method.load(rewriteExceptionType, 0);
5147        method.invoke(RewriteException.GET_BYTECODE_SLOTS);
5148        // Store local variables. Note that deoptimization might introduce new value types for existing local variables,
5149        // so we must use both liveLocals and symbolBoundary, as in some cases (when the continuation is inside of a try
5150        // block) we need to store the incoming value into multiple slots. The optimism exception handlers will have
5151        // exactly one array element for every symbol that uses bytecode storage. If in the originating method the value
5152        // was undefined, there will be an explicit Undefined value in the array.
5153        int arrayIndex = 0;
5154        for(int lvarIndex = 0; lvarIndex < lvarCount;) {
5155            final Type lvarType = lvarTypes.get(lvarIndex);
5156            if(!lvarType.isUnknown()) {
5157                method.dup();
5158                method.load(arrayIndex).arrayload();
5159                final Class<?> typeClass = lvarType.getTypeClass();
5160                // Deoptimization in array initializers can cause arrays to undergo component type widening
5161                if(typeClass == long[].class) {
5162                    method.load(rewriteExceptionType, lvarCount);
5163                    method.invoke(RewriteException.TO_LONG_ARRAY);
5164                } else if(typeClass == double[].class) {
5165                    method.load(rewriteExceptionType, lvarCount);
5166                    method.invoke(RewriteException.TO_DOUBLE_ARRAY);
5167                } else if(typeClass == Object[].class) {
5168                    method.load(rewriteExceptionType, lvarCount);
5169                    method.invoke(RewriteException.TO_OBJECT_ARRAY);
5170                } else {
5171                    if(!(typeClass.isPrimitive() || typeClass == Object.class)) {
5172                        // NOTE: this can only happen with dead stores. E.g. for the program "1; []; f();" in which the
5173                        // call to f() will deoptimize the call site, but it'll expect :return to have the type
5174                        // NativeArray. However, in the more optimal version, :return's only live type is int, therefore
5175                        // "{O}:return = []" is a dead store, and the variable will be sent into the continuation as
5176                        // Undefined, however NativeArray can't hold Undefined instance.
5177                        method.loadType(Type.getInternalName(typeClass));
5178                        method.invoke(RewriteException.INSTANCE_OR_NULL);
5179                    }
5180                    method.convert(lvarType);
5181                }
5182                method.storeHidden(lvarType, lvarIndex, false);
5183            }
5184            final int nextLvarIndex = lvarIndex + lvarType.getSlots();
5185            if(symbolBoundary.get(nextLvarIndex - 1)) {
5186                ++arrayIndex;
5187            }
5188            lvarIndex = nextLvarIndex;
5189        }
5190        if (AssertsEnabled.assertsEnabled()) {
5191            method.load(arrayIndex);
5192            method.invoke(RewriteException.ASSERT_ARRAY_LENGTH);
5193        } else {
5194            method.pop();
5195        }
5196
5197        final int[]   stackStoreSpec = ci.getStackStoreSpec();
5198        final Type[]  stackTypes     = ci.getStackTypes();
5199        final boolean isStackEmpty   = stackStoreSpec.length == 0;
5200        boolean replacedObjectLiteralMap = false;
5201        if(!isStackEmpty) {
5202            // Load arguments on the stack
5203            final int objectLiteralStackDepth = ci.getObjectLiteralStackDepth();
5204            for(int i = 0; i < stackStoreSpec.length; ++i) {
5205                final int slot = stackStoreSpec[i];
5206                method.load(lvarTypes.get(slot), slot);
5207                method.convert(stackTypes[i]);
5208                // stack: s0=object literal being initialized
5209                // change map of s0 so that the property we are initilizing when we failed
5210                // is now ci.returnValueType
5211                if (i == objectLiteralStackDepth) {
5212                    method.dup();
5213                    assert ci.getObjectLiteralMap() != null;
5214                    assert ScriptObject.class.isAssignableFrom(method.peekType().getTypeClass()) : method.peekType().getTypeClass() + " is not a script object";
5215                    loadConstant(ci.getObjectLiteralMap());
5216                    method.invoke(ScriptObject.SET_MAP);
5217                    replacedObjectLiteralMap = true;
5218                }
5219            }
5220        }
5221        // Must have emitted the code for replacing the map of an object literal if we have a set object literal stack depth
5222        assert ci.getObjectLiteralStackDepth() == -1 || replacedObjectLiteralMap;
5223        // Load RewriteException back.
5224        method.load(rewriteExceptionType, lvarCount);
5225        // Get rid of the stored reference
5226        method.loadNull();
5227        method.storeHidden(Type.OBJECT, lvarCount);
5228        // Mark it dead
5229        method.markDeadSlots(lvarCount, Type.OBJECT.getSlots());
5230
5231        // Load return value on the stack
5232        method.invoke(RewriteException.GET_RETURN_VALUE);
5233
5234        final Type returnValueType = ci.getReturnValueType();
5235
5236        // Set up an exception handler for primitive type conversion of return value if needed
5237        boolean needsCatch = false;
5238        final Label targetCatchLabel = ci.catchLabel;
5239        Label _try = null;
5240        if(returnValueType.isPrimitive()) {
5241            // If the conversion throws an exception, we want to report the line number of the continuation point.
5242            method.lineNumber(ci.lineNumber);
5243
5244            if(targetCatchLabel != METHOD_BOUNDARY) {
5245                _try = new Label("");
5246                method.label(_try);
5247                needsCatch = true;
5248            }
5249        }
5250
5251        // Convert return value
5252        method.convert(returnValueType);
5253
5254        final int scopePopCount = needsCatch ? ci.exceptionScopePops : 0;
5255
5256        // Declare a try/catch for the conversion. If no scopes need to be popped until the target catch block, just
5257        // jump into it. Otherwise, we'll need to create a scope-popping catch block below.
5258        final Label catchLabel = scopePopCount > 0 ? new Label("") : targetCatchLabel;
5259        if(needsCatch) {
5260            final Label _end_try = new Label("");
5261            method.label(_end_try);
5262            method._try(_try, _end_try, catchLabel);
5263        }
5264
5265        // Jump to continuation point
5266        method._goto(ci.getTargetLabel());
5267
5268        // Make a scope-popping exception delegate if needed
5269        if(catchLabel != targetCatchLabel) {
5270            method.lineNumber(0);
5271            assert scopePopCount > 0;
5272            method._catch(catchLabel);
5273            popScopes(scopePopCount);
5274            method.uncheckedGoto(targetCatchLabel);
5275        }
5276    }
5277}
5278