Gen.java revision 3225:3a9a4b5eabe4
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.jvm;
27
28import java.util.*;
29
30import com.sun.tools.javac.util.*;
31import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
32import com.sun.tools.javac.util.List;
33import com.sun.tools.javac.code.*;
34import com.sun.tools.javac.code.Attribute.TypeCompound;
35import com.sun.tools.javac.code.Symbol.VarSymbol;
36import com.sun.tools.javac.comp.*;
37import com.sun.tools.javac.tree.*;
38
39import com.sun.tools.javac.code.Symbol.*;
40import com.sun.tools.javac.code.Type.*;
41import com.sun.tools.javac.jvm.Code.*;
42import com.sun.tools.javac.jvm.Items.*;
43import com.sun.tools.javac.tree.EndPosTable;
44import com.sun.tools.javac.tree.JCTree.*;
45
46import static com.sun.tools.javac.code.Flags.*;
47import static com.sun.tools.javac.code.Kinds.Kind.*;
48import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
49import static com.sun.tools.javac.code.TypeTag.*;
50import static com.sun.tools.javac.jvm.ByteCodes.*;
51import static com.sun.tools.javac.jvm.CRTFlags.*;
52import static com.sun.tools.javac.main.Option.*;
53import static com.sun.tools.javac.tree.JCTree.Tag.*;
54
55/** This pass maps flat Java (i.e. without inner classes) to bytecodes.
56 *
57 *  <p><b>This is NOT part of any supported API.
58 *  If you write code that depends on this, you do so at your own risk.
59 *  This code and its internal interfaces are subject to change or
60 *  deletion without notice.</b>
61 */
62public class Gen extends JCTree.Visitor {
63    protected static final Context.Key<Gen> genKey = new Context.Key<>();
64
65    private final Log log;
66    private final Symtab syms;
67    private final Check chk;
68    private final Resolve rs;
69    private final TreeMaker make;
70    private final Names names;
71    private final Target target;
72    private final Map<Type,Symbol> stringBufferAppend;
73    private Name accessDollar;
74    private final Types types;
75    private final Lower lower;
76    private final Flow flow;
77    private final Annotate annotate;
78
79    /** Format of stackmap tables to be generated. */
80    private final Code.StackMapFormat stackMap;
81
82    /** A type that serves as the expected type for all method expressions.
83     */
84    private final Type methodType;
85
86    public static Gen instance(Context context) {
87        Gen instance = context.get(genKey);
88        if (instance == null)
89            instance = new Gen(context);
90        return instance;
91    }
92
93    /** Constant pool, reset by genClass.
94     */
95    private Pool pool;
96
97    protected Gen(Context context) {
98        context.put(genKey, this);
99
100        names = Names.instance(context);
101        log = Log.instance(context);
102        syms = Symtab.instance(context);
103        chk = Check.instance(context);
104        rs = Resolve.instance(context);
105        make = TreeMaker.instance(context);
106        target = Target.instance(context);
107        types = Types.instance(context);
108        methodType = new MethodType(null, null, null, syms.methodClass);
109        stringBufferAppend = new HashMap<>();
110        accessDollar = names.
111            fromString("access" + target.syntheticNameChar());
112        flow = Flow.instance(context);
113        lower = Lower.instance(context);
114
115        Options options = Options.instance(context);
116        lineDebugInfo =
117            options.isUnset(G_CUSTOM) ||
118            options.isSet(G_CUSTOM, "lines");
119        varDebugInfo =
120            options.isUnset(G_CUSTOM)
121            ? options.isSet(G)
122            : options.isSet(G_CUSTOM, "vars");
123        genCrt = options.isSet(XJCOV);
124        debugCode = options.isSet("debugcode");
125        allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
126        allowBetterNullChecks = target.hasObjects();
127        pool = new Pool(types);
128
129        // ignore cldc because we cannot have both stackmap formats
130        this.stackMap = StackMapFormat.JSR202;
131
132        // by default, avoid jsr's for simple finalizers
133        int setjsrlimit = 50;
134        String jsrlimitString = options.get("jsrlimit");
135        if (jsrlimitString != null) {
136            try {
137                setjsrlimit = Integer.parseInt(jsrlimitString);
138            } catch (NumberFormatException ex) {
139                // ignore ill-formed numbers for jsrlimit
140            }
141        }
142        this.jsrlimit = setjsrlimit;
143        this.useJsrLocally = false; // reset in visitTry
144        annotate = Annotate.instance(context);
145    }
146
147    /** Switches
148     */
149    private final boolean lineDebugInfo;
150    private final boolean varDebugInfo;
151    private final boolean genCrt;
152    private final boolean debugCode;
153    private final boolean allowInvokedynamic;
154    private final boolean allowBetterNullChecks;
155
156    /** Default limit of (approximate) size of finalizer to inline.
157     *  Zero means always use jsr.  100 or greater means never use
158     *  jsr.
159     */
160    private final int jsrlimit;
161
162    /** True if jsr is used.
163     */
164    private boolean useJsrLocally;
165
166    /** Code buffer, set by genMethod.
167     */
168    private Code code;
169
170    /** Items structure, set by genMethod.
171     */
172    private Items items;
173
174    /** Environment for symbol lookup, set by genClass
175     */
176    private Env<AttrContext> attrEnv;
177
178    /** The top level tree.
179     */
180    private JCCompilationUnit toplevel;
181
182    /** The number of code-gen errors in this class.
183     */
184    private int nerrs = 0;
185
186    /** An object containing mappings of syntax trees to their
187     *  ending source positions.
188     */
189    EndPosTable endPosTable;
190
191    /** Generate code to load an integer constant.
192     *  @param n     The integer to be loaded.
193     */
194    void loadIntConst(int n) {
195        items.makeImmediateItem(syms.intType, n).load();
196    }
197
198    /** The opcode that loads a zero constant of a given type code.
199     *  @param tc   The given type code (@see ByteCode).
200     */
201    public static int zero(int tc) {
202        switch(tc) {
203        case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
204            return iconst_0;
205        case LONGcode:
206            return lconst_0;
207        case FLOATcode:
208            return fconst_0;
209        case DOUBLEcode:
210            return dconst_0;
211        default:
212            throw new AssertionError("zero");
213        }
214    }
215
216    /** The opcode that loads a one constant of a given type code.
217     *  @param tc   The given type code (@see ByteCode).
218     */
219    public static int one(int tc) {
220        return zero(tc) + 1;
221    }
222
223    /** Generate code to load -1 of the given type code (either int or long).
224     *  @param tc   The given type code (@see ByteCode).
225     */
226    void emitMinusOne(int tc) {
227        if (tc == LONGcode) {
228            items.makeImmediateItem(syms.longType, new Long(-1)).load();
229        } else {
230            code.emitop0(iconst_m1);
231        }
232    }
233
234    /** Construct a symbol to reflect the qualifying type that should
235     *  appear in the byte code as per JLS 13.1.
236     *
237     *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
238     *  for those cases where we need to work around VM bugs).
239     *
240     *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
241     *  non-accessible class, clone it with the qualifier class as owner.
242     *
243     *  @param sym    The accessed symbol
244     *  @param site   The qualifier's type.
245     */
246    Symbol binaryQualifier(Symbol sym, Type site) {
247
248        if (site.hasTag(ARRAY)) {
249            if (sym == syms.lengthVar ||
250                sym.owner != syms.arrayClass)
251                return sym;
252            // array clone can be qualified by the array type in later targets
253            Symbol qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name,
254                                               site, syms.noSymbol);
255            return sym.clone(qualifier);
256        }
257
258        if (sym.owner == site.tsym ||
259            (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
260            return sym;
261        }
262
263        // leave alone methods inherited from Object
264        // JLS 13.1.
265        if (sym.owner == syms.objectType.tsym)
266            return sym;
267
268        return sym.clone(site.tsym);
269    }
270
271    /** Insert a reference to given type in the constant pool,
272     *  checking for an array with too many dimensions;
273     *  return the reference's index.
274     *  @param type   The type for which a reference is inserted.
275     */
276    int makeRef(DiagnosticPosition pos, Type type) {
277        checkDimension(pos, type);
278        if (type.isAnnotated()) {
279            return pool.put((Object)type);
280        } else {
281            return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
282        }
283    }
284
285    /** Check if the given type is an array with too many dimensions.
286     */
287    private void checkDimension(DiagnosticPosition pos, Type t) {
288        switch (t.getTag()) {
289        case METHOD:
290            checkDimension(pos, t.getReturnType());
291            for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
292                checkDimension(pos, args.head);
293            break;
294        case ARRAY:
295            if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
296                log.error(pos, "limit.dimensions");
297                nerrs++;
298            }
299            break;
300        default:
301            break;
302        }
303    }
304
305    /** Create a tempory variable.
306     *  @param type   The variable's type.
307     */
308    LocalItem makeTemp(Type type) {
309        VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
310                                    names.empty,
311                                    type,
312                                    env.enclMethod.sym);
313        code.newLocal(v);
314        return items.makeLocalItem(v);
315    }
316
317    /** Generate code to call a non-private method or constructor.
318     *  @param pos         Position to be used for error reporting.
319     *  @param site        The type of which the method is a member.
320     *  @param name        The method's name.
321     *  @param argtypes    The method's argument types.
322     *  @param isStatic    A flag that indicates whether we call a
323     *                     static or instance method.
324     */
325    void callMethod(DiagnosticPosition pos,
326                    Type site, Name name, List<Type> argtypes,
327                    boolean isStatic) {
328        Symbol msym = rs.
329            resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
330        if (isStatic) items.makeStaticItem(msym).invoke();
331        else items.makeMemberItem(msym, name == names.init).invoke();
332    }
333
334    /** Is the given method definition an access method
335     *  resulting from a qualified super? This is signified by an odd
336     *  access code.
337     */
338    private boolean isAccessSuper(JCMethodDecl enclMethod) {
339        return
340            (enclMethod.mods.flags & SYNTHETIC) != 0 &&
341            isOddAccessName(enclMethod.name);
342    }
343
344    /** Does given name start with "access$" and end in an odd digit?
345     */
346    private boolean isOddAccessName(Name name) {
347        return
348            name.startsWith(accessDollar) &&
349            (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
350    }
351
352/* ************************************************************************
353 * Non-local exits
354 *************************************************************************/
355
356    /** Generate code to invoke the finalizer associated with given
357     *  environment.
358     *  Any calls to finalizers are appended to the environments `cont' chain.
359     *  Mark beginning of gap in catch all range for finalizer.
360     */
361    void genFinalizer(Env<GenContext> env) {
362        if (code.isAlive() && env.info.finalize != null)
363            env.info.finalize.gen();
364    }
365
366    /** Generate code to call all finalizers of structures aborted by
367     *  a non-local
368     *  exit.  Return target environment of the non-local exit.
369     *  @param target      The tree representing the structure that's aborted
370     *  @param env         The environment current at the non-local exit.
371     */
372    Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
373        Env<GenContext> env1 = env;
374        while (true) {
375            genFinalizer(env1);
376            if (env1.tree == target) break;
377            env1 = env1.next;
378        }
379        return env1;
380    }
381
382    /** Mark end of gap in catch-all range for finalizer.
383     *  @param env   the environment which might contain the finalizer
384     *               (if it does, env.info.gaps != null).
385     */
386    void endFinalizerGap(Env<GenContext> env) {
387        if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
388            env.info.gaps.append(code.curCP());
389    }
390
391    /** Mark end of all gaps in catch-all ranges for finalizers of environments
392     *  lying between, and including to two environments.
393     *  @param from    the most deeply nested environment to mark
394     *  @param to      the least deeply nested environment to mark
395     */
396    void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
397        Env<GenContext> last = null;
398        while (last != to) {
399            endFinalizerGap(from);
400            last = from;
401            from = from.next;
402        }
403    }
404
405    /** Do any of the structures aborted by a non-local exit have
406     *  finalizers that require an empty stack?
407     *  @param target      The tree representing the structure that's aborted
408     *  @param env         The environment current at the non-local exit.
409     */
410    boolean hasFinally(JCTree target, Env<GenContext> env) {
411        while (env.tree != target) {
412            if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
413                return true;
414            env = env.next;
415        }
416        return false;
417    }
418
419/* ************************************************************************
420 * Normalizing class-members.
421 *************************************************************************/
422
423    /** Distribute member initializer code into constructors and {@code <clinit>}
424     *  method.
425     *  @param defs         The list of class member declarations.
426     *  @param c            The enclosing class.
427     */
428    List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
429        ListBuffer<JCStatement> initCode = new ListBuffer<>();
430        ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
431        ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
432        ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
433        ListBuffer<JCTree> methodDefs = new ListBuffer<>();
434        // Sort definitions into three listbuffers:
435        //  - initCode for instance initializers
436        //  - clinitCode for class initializers
437        //  - methodDefs for method definitions
438        for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
439            JCTree def = l.head;
440            switch (def.getTag()) {
441            case BLOCK:
442                JCBlock block = (JCBlock)def;
443                if ((block.flags & STATIC) != 0)
444                    clinitCode.append(block);
445                else if ((block.flags & SYNTHETIC) == 0)
446                    initCode.append(block);
447                break;
448            case METHODDEF:
449                methodDefs.append(def);
450                break;
451            case VARDEF:
452                JCVariableDecl vdef = (JCVariableDecl) def;
453                VarSymbol sym = vdef.sym;
454                checkDimension(vdef.pos(), sym.type);
455                if (vdef.init != null) {
456                    if ((sym.flags() & STATIC) == 0) {
457                        // Always initialize instance variables.
458                        JCStatement init = make.at(vdef.pos()).
459                            Assignment(sym, vdef.init);
460                        initCode.append(init);
461                        endPosTable.replaceTree(vdef, init);
462                        initTAs.addAll(getAndRemoveNonFieldTAs(sym));
463                    } else if (sym.getConstValue() == null) {
464                        // Initialize class (static) variables only if
465                        // they are not compile-time constants.
466                        JCStatement init = make.at(vdef.pos).
467                            Assignment(sym, vdef.init);
468                        clinitCode.append(init);
469                        endPosTable.replaceTree(vdef, init);
470                        clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
471                    } else {
472                        checkStringConstant(vdef.init.pos(), sym.getConstValue());
473                        /* if the init contains a reference to an external class, add it to the
474                         * constant's pool
475                         */
476                        vdef.init.accept(classReferenceVisitor);
477                    }
478                }
479                break;
480            default:
481                Assert.error();
482            }
483        }
484        // Insert any instance initializers into all constructors.
485        if (initCode.length() != 0) {
486            List<JCStatement> inits = initCode.toList();
487            initTAs.addAll(c.getInitTypeAttributes());
488            List<Attribute.TypeCompound> initTAlist = initTAs.toList();
489            for (JCTree t : methodDefs) {
490                normalizeMethod((JCMethodDecl)t, inits, initTAlist);
491            }
492        }
493        // If there are class initializers, create a <clinit> method
494        // that contains them as its body.
495        if (clinitCode.length() != 0) {
496            MethodSymbol clinit = new MethodSymbol(
497                STATIC | (c.flags() & STRICTFP),
498                names.clinit,
499                new MethodType(
500                    List.<Type>nil(), syms.voidType,
501                    List.<Type>nil(), syms.methodClass),
502                c);
503            c.members().enter(clinit);
504            List<JCStatement> clinitStats = clinitCode.toList();
505            JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
506            block.endpos = TreeInfo.endPos(clinitStats.last());
507            methodDefs.append(make.MethodDef(clinit, block));
508
509            if (!clinitTAs.isEmpty())
510                clinit.appendUniqueTypeAttributes(clinitTAs.toList());
511            if (!c.getClassInitTypeAttributes().isEmpty())
512                clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
513        }
514        // Return all method definitions.
515        return methodDefs.toList();
516    }
517
518    private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
519        List<TypeCompound> tas = sym.getRawTypeAttributes();
520        ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
521        ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
522        for (TypeCompound ta : tas) {
523            Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
524            if (ta.getPosition().type == TargetType.FIELD) {
525                fieldTAs.add(ta);
526            } else {
527                nonfieldTAs.add(ta);
528            }
529        }
530        sym.setTypeAttributes(fieldTAs.toList());
531        return nonfieldTAs.toList();
532    }
533
534    /** Check a constant value and report if it is a string that is
535     *  too large.
536     */
537    private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
538        if (nerrs != 0 || // only complain about a long string once
539            constValue == null ||
540            !(constValue instanceof String) ||
541            ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
542            return;
543        log.error(pos, "limit.string");
544        nerrs++;
545    }
546
547    /** Insert instance initializer code into initial constructor.
548     *  @param md        The tree potentially representing a
549     *                   constructor's definition.
550     *  @param initCode  The list of instance initializer statements.
551     *  @param initTAs  Type annotations from the initializer expression.
552     */
553    void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
554        if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
555            // We are seeing a constructor that does not call another
556            // constructor of the same class.
557            List<JCStatement> stats = md.body.stats;
558            ListBuffer<JCStatement> newstats = new ListBuffer<>();
559
560            if (stats.nonEmpty()) {
561                // Copy initializers of synthetic variables generated in
562                // the translation of inner classes.
563                while (TreeInfo.isSyntheticInit(stats.head)) {
564                    newstats.append(stats.head);
565                    stats = stats.tail;
566                }
567                // Copy superclass constructor call
568                newstats.append(stats.head);
569                stats = stats.tail;
570                // Copy remaining synthetic initializers.
571                while (stats.nonEmpty() &&
572                       TreeInfo.isSyntheticInit(stats.head)) {
573                    newstats.append(stats.head);
574                    stats = stats.tail;
575                }
576                // Now insert the initializer code.
577                newstats.appendList(initCode);
578                // And copy all remaining statements.
579                while (stats.nonEmpty()) {
580                    newstats.append(stats.head);
581                    stats = stats.tail;
582                }
583            }
584            md.body.stats = newstats.toList();
585            if (md.body.endpos == Position.NOPOS)
586                md.body.endpos = TreeInfo.endPos(md.body.stats.last());
587
588            md.sym.appendUniqueTypeAttributes(initTAs);
589        }
590    }
591
592/* ************************************************************************
593 * Traversal methods
594 *************************************************************************/
595
596    /** Visitor argument: The current environment.
597     */
598    Env<GenContext> env;
599
600    /** Visitor argument: The expected type (prototype).
601     */
602    Type pt;
603
604    /** Visitor result: The item representing the computed value.
605     */
606    Item result;
607
608    /** Visitor method: generate code for a definition, catching and reporting
609     *  any completion failures.
610     *  @param tree    The definition to be visited.
611     *  @param env     The environment current at the definition.
612     */
613    public void genDef(JCTree tree, Env<GenContext> env) {
614        Env<GenContext> prevEnv = this.env;
615        try {
616            this.env = env;
617            tree.accept(this);
618        } catch (CompletionFailure ex) {
619            chk.completionError(tree.pos(), ex);
620        } finally {
621            this.env = prevEnv;
622        }
623    }
624
625    /** Derived visitor method: check whether CharacterRangeTable
626     *  should be emitted, if so, put a new entry into CRTable
627     *  and call method to generate bytecode.
628     *  If not, just call method to generate bytecode.
629     *  @see    #genStat(JCTree, Env)
630     *
631     *  @param  tree     The tree to be visited.
632     *  @param  env      The environment to use.
633     *  @param  crtFlags The CharacterRangeTable flags
634     *                   indicating type of the entry.
635     */
636    public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
637        if (!genCrt) {
638            genStat(tree, env);
639            return;
640        }
641        int startpc = code.curCP();
642        genStat(tree, env);
643        if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
644        code.crt.put(tree, crtFlags, startpc, code.curCP());
645    }
646
647    /** Derived visitor method: generate code for a statement.
648     */
649    public void genStat(JCTree tree, Env<GenContext> env) {
650        if (code.isAlive()) {
651            code.statBegin(tree.pos);
652            genDef(tree, env);
653        } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
654            // variables whose declarations are in a switch
655            // can be used even if the decl is unreachable.
656            code.newLocal(((JCVariableDecl) tree).sym);
657        }
658    }
659
660    /** Derived visitor method: check whether CharacterRangeTable
661     *  should be emitted, if so, put a new entry into CRTable
662     *  and call method to generate bytecode.
663     *  If not, just call method to generate bytecode.
664     *  @see    #genStats(List, Env)
665     *
666     *  @param  trees    The list of trees to be visited.
667     *  @param  env      The environment to use.
668     *  @param  crtFlags The CharacterRangeTable flags
669     *                   indicating type of the entry.
670     */
671    public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
672        if (!genCrt) {
673            genStats(trees, env);
674            return;
675        }
676        if (trees.length() == 1) {        // mark one statement with the flags
677            genStat(trees.head, env, crtFlags | CRT_STATEMENT);
678        } else {
679            int startpc = code.curCP();
680            genStats(trees, env);
681            code.crt.put(trees, crtFlags, startpc, code.curCP());
682        }
683    }
684
685    /** Derived visitor method: generate code for a list of statements.
686     */
687    public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
688        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
689            genStat(l.head, env, CRT_STATEMENT);
690    }
691
692    /** Derived visitor method: check whether CharacterRangeTable
693     *  should be emitted, if so, put a new entry into CRTable
694     *  and call method to generate bytecode.
695     *  If not, just call method to generate bytecode.
696     *  @see    #genCond(JCTree,boolean)
697     *
698     *  @param  tree     The tree to be visited.
699     *  @param  crtFlags The CharacterRangeTable flags
700     *                   indicating type of the entry.
701     */
702    public CondItem genCond(JCTree tree, int crtFlags) {
703        if (!genCrt) return genCond(tree, false);
704        int startpc = code.curCP();
705        CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
706        code.crt.put(tree, crtFlags, startpc, code.curCP());
707        return item;
708    }
709
710    /** Derived visitor method: generate code for a boolean
711     *  expression in a control-flow context.
712     *  @param _tree         The expression to be visited.
713     *  @param markBranches The flag to indicate that the condition is
714     *                      a flow controller so produced conditions
715     *                      should contain a proper tree to generate
716     *                      CharacterRangeTable branches for them.
717     */
718    public CondItem genCond(JCTree _tree, boolean markBranches) {
719        JCTree inner_tree = TreeInfo.skipParens(_tree);
720        if (inner_tree.hasTag(CONDEXPR)) {
721            JCConditional tree = (JCConditional)inner_tree;
722            CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
723            if (cond.isTrue()) {
724                code.resolve(cond.trueJumps);
725                CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
726                if (markBranches) result.tree = tree.truepart;
727                return result;
728            }
729            if (cond.isFalse()) {
730                code.resolve(cond.falseJumps);
731                CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
732                if (markBranches) result.tree = tree.falsepart;
733                return result;
734            }
735            Chain secondJumps = cond.jumpFalse();
736            code.resolve(cond.trueJumps);
737            CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
738            if (markBranches) first.tree = tree.truepart;
739            Chain falseJumps = first.jumpFalse();
740            code.resolve(first.trueJumps);
741            Chain trueJumps = code.branch(goto_);
742            code.resolve(secondJumps);
743            CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
744            CondItem result = items.makeCondItem(second.opcode,
745                                      Code.mergeChains(trueJumps, second.trueJumps),
746                                      Code.mergeChains(falseJumps, second.falseJumps));
747            if (markBranches) result.tree = tree.falsepart;
748            return result;
749        } else {
750            CondItem result = genExpr(_tree, syms.booleanType).mkCond();
751            if (markBranches) result.tree = _tree;
752            return result;
753        }
754    }
755
756    /** Visitor class for expressions which might be constant expressions.
757     *  This class is a subset of TreeScanner. Intended to visit trees pruned by
758     *  Lower as long as constant expressions looking for references to any
759     *  ClassSymbol. Any such reference will be added to the constant pool so
760     *  automated tools can detect class dependencies better.
761     */
762    class ClassReferenceVisitor extends JCTree.Visitor {
763
764        @Override
765        public void visitTree(JCTree tree) {}
766
767        @Override
768        public void visitBinary(JCBinary tree) {
769            tree.lhs.accept(this);
770            tree.rhs.accept(this);
771        }
772
773        @Override
774        public void visitSelect(JCFieldAccess tree) {
775            if (tree.selected.type.hasTag(CLASS)) {
776                makeRef(tree.selected.pos(), tree.selected.type);
777            }
778        }
779
780        @Override
781        public void visitIdent(JCIdent tree) {
782            if (tree.sym.owner instanceof ClassSymbol) {
783                pool.put(tree.sym.owner);
784            }
785        }
786
787        @Override
788        public void visitConditional(JCConditional tree) {
789            tree.cond.accept(this);
790            tree.truepart.accept(this);
791            tree.falsepart.accept(this);
792        }
793
794        @Override
795        public void visitUnary(JCUnary tree) {
796            tree.arg.accept(this);
797        }
798
799        @Override
800        public void visitParens(JCParens tree) {
801            tree.expr.accept(this);
802        }
803
804        @Override
805        public void visitTypeCast(JCTypeCast tree) {
806            tree.expr.accept(this);
807        }
808    }
809
810    private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
811
812    /** Visitor method: generate code for an expression, catching and reporting
813     *  any completion failures.
814     *  @param tree    The expression to be visited.
815     *  @param pt      The expression's expected type (proto-type).
816     */
817    public Item genExpr(JCTree tree, Type pt) {
818        Type prevPt = this.pt;
819        try {
820            if (tree.type.constValue() != null) {
821                // Short circuit any expressions which are constants
822                tree.accept(classReferenceVisitor);
823                checkStringConstant(tree.pos(), tree.type.constValue());
824                result = items.makeImmediateItem(tree.type, tree.type.constValue());
825            } else {
826                this.pt = pt;
827                tree.accept(this);
828            }
829            return result.coerce(pt);
830        } catch (CompletionFailure ex) {
831            chk.completionError(tree.pos(), ex);
832            code.state.stacksize = 1;
833            return items.makeStackItem(pt);
834        } finally {
835            this.pt = prevPt;
836        }
837    }
838
839    /** Derived visitor method: generate code for a list of method arguments.
840     *  @param trees    The argument expressions to be visited.
841     *  @param pts      The expression's expected types (i.e. the formal parameter
842     *                  types of the invoked method).
843     */
844    public void genArgs(List<JCExpression> trees, List<Type> pts) {
845        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
846            genExpr(l.head, pts.head).load();
847            pts = pts.tail;
848        }
849        // require lists be of same length
850        Assert.check(pts.isEmpty());
851    }
852
853/* ************************************************************************
854 * Visitor methods for statements and definitions
855 *************************************************************************/
856
857    /** Thrown when the byte code size exceeds limit.
858     */
859    public static class CodeSizeOverflow extends RuntimeException {
860        private static final long serialVersionUID = 0;
861        public CodeSizeOverflow() {}
862    }
863
864    public void visitMethodDef(JCMethodDecl tree) {
865        // Create a new local environment that points pack at method
866        // definition.
867        Env<GenContext> localEnv = env.dup(tree);
868        localEnv.enclMethod = tree;
869        // The expected type of every return statement in this method
870        // is the method's return type.
871        this.pt = tree.sym.erasure(types).getReturnType();
872
873        checkDimension(tree.pos(), tree.sym.erasure(types));
874        genMethod(tree, localEnv, false);
875    }
876//where
877        /** Generate code for a method.
878         *  @param tree     The tree representing the method definition.
879         *  @param env      The environment current for the method body.
880         *  @param fatcode  A flag that indicates whether all jumps are
881         *                  within 32K.  We first invoke this method under
882         *                  the assumption that fatcode == false, i.e. all
883         *                  jumps are within 32K.  If this fails, fatcode
884         *                  is set to true and we try again.
885         */
886        void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
887            MethodSymbol meth = tree.sym;
888            int extras = 0;
889            // Count up extra parameters
890            if (meth.isConstructor()) {
891                extras++;
892                if (meth.enclClass().isInner() &&
893                    !meth.enclClass().isStatic()) {
894                    extras++;
895                }
896            } else if ((tree.mods.flags & STATIC) == 0) {
897                extras++;
898            }
899            //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
900            if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
901                ClassFile.MAX_PARAMETERS) {
902                log.error(tree.pos(), "limit.parameters");
903                nerrs++;
904            }
905
906            else if (tree.body != null) {
907                // Create a new code structure and initialize it.
908                int startpcCrt = initCode(tree, env, fatcode);
909
910                try {
911                    genStat(tree.body, env);
912                } catch (CodeSizeOverflow e) {
913                    // Failed due to code limit, try again with jsr/ret
914                    startpcCrt = initCode(tree, env, fatcode);
915                    genStat(tree.body, env);
916                }
917
918                if (code.state.stacksize != 0) {
919                    log.error(tree.body.pos(), "stack.sim.error", tree);
920                    throw new AssertionError();
921                }
922
923                // If last statement could complete normally, insert a
924                // return at the end.
925                if (code.isAlive()) {
926                    code.statBegin(TreeInfo.endPos(tree.body));
927                    if (env.enclMethod == null ||
928                        env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
929                        code.emitop0(return_);
930                    } else {
931                        // sometime dead code seems alive (4415991);
932                        // generate a small loop instead
933                        int startpc = code.entryPoint();
934                        CondItem c = items.makeCondItem(goto_);
935                        code.resolve(c.jumpTrue(), startpc);
936                    }
937                }
938                if (genCrt)
939                    code.crt.put(tree.body,
940                                 CRT_BLOCK,
941                                 startpcCrt,
942                                 code.curCP());
943
944                code.endScopes(0);
945
946                // If we exceeded limits, panic
947                if (code.checkLimits(tree.pos(), log)) {
948                    nerrs++;
949                    return;
950                }
951
952                // If we generated short code but got a long jump, do it again
953                // with fatCode = true.
954                if (!fatcode && code.fatcode) genMethod(tree, env, true);
955
956                // Clean up
957                if(stackMap == StackMapFormat.JSR202) {
958                    code.lastFrame = null;
959                    code.frameBeforeLast = null;
960                }
961
962                // Compress exception table
963                code.compressCatchTable();
964
965                // Fill in type annotation positions for exception parameters
966                code.fillExceptionParameterPositions();
967            }
968        }
969
970        private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
971            MethodSymbol meth = tree.sym;
972
973            // Create a new code structure.
974            meth.code = code = new Code(meth,
975                                        fatcode,
976                                        lineDebugInfo ? toplevel.lineMap : null,
977                                        varDebugInfo,
978                                        stackMap,
979                                        debugCode,
980                                        genCrt ? new CRTable(tree, env.toplevel.endPositions)
981                                               : null,
982                                        syms,
983                                        types,
984                                        pool);
985            items = new Items(pool, code, syms, types);
986            if (code.debugCode) {
987                System.err.println(meth + " for body " + tree);
988            }
989
990            // If method is not static, create a new local variable address
991            // for `this'.
992            if ((tree.mods.flags & STATIC) == 0) {
993                Type selfType = meth.owner.type;
994                if (meth.isConstructor() && selfType != syms.objectType)
995                    selfType = UninitializedType.uninitializedThis(selfType);
996                code.setDefined(
997                        code.newLocal(
998                            new VarSymbol(FINAL, names._this, selfType, meth.owner)));
999            }
1000
1001            // Mark all parameters as defined from the beginning of
1002            // the method.
1003            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1004                checkDimension(l.head.pos(), l.head.sym.type);
1005                code.setDefined(code.newLocal(l.head.sym));
1006            }
1007
1008            // Get ready to generate code for method body.
1009            int startpcCrt = genCrt ? code.curCP() : 0;
1010            code.entryPoint();
1011
1012            // Suppress initial stackmap
1013            code.pendingStackMap = false;
1014
1015            return startpcCrt;
1016        }
1017
1018    public void visitVarDef(JCVariableDecl tree) {
1019        VarSymbol v = tree.sym;
1020        code.newLocal(v);
1021        if (tree.init != null) {
1022            checkStringConstant(tree.init.pos(), v.getConstValue());
1023            if (v.getConstValue() == null || varDebugInfo) {
1024                genExpr(tree.init, v.erasure(types)).load();
1025                items.makeLocalItem(v).store();
1026            }
1027        }
1028        checkDimension(tree.pos(), v.type);
1029    }
1030
1031    public void visitSkip(JCSkip tree) {
1032    }
1033
1034    public void visitBlock(JCBlock tree) {
1035        int limit = code.nextreg;
1036        Env<GenContext> localEnv = env.dup(tree, new GenContext());
1037        genStats(tree.stats, localEnv);
1038        // End the scope of all block-local variables in variable info.
1039        if (!env.tree.hasTag(METHODDEF)) {
1040            code.statBegin(tree.endpos);
1041            code.endScopes(limit);
1042            code.pendingStatPos = Position.NOPOS;
1043        }
1044    }
1045
1046    public void visitDoLoop(JCDoWhileLoop tree) {
1047        genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
1048    }
1049
1050    public void visitWhileLoop(JCWhileLoop tree) {
1051        genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
1052    }
1053
1054    public void visitForLoop(JCForLoop tree) {
1055        int limit = code.nextreg;
1056        genStats(tree.init, env);
1057        genLoop(tree, tree.body, tree.cond, tree.step, true);
1058        code.endScopes(limit);
1059    }
1060    //where
1061        /** Generate code for a loop.
1062         *  @param loop       The tree representing the loop.
1063         *  @param body       The loop's body.
1064         *  @param cond       The loop's controling condition.
1065         *  @param step       "Step" statements to be inserted at end of
1066         *                    each iteration.
1067         *  @param testFirst  True if the loop test belongs before the body.
1068         */
1069        private void genLoop(JCStatement loop,
1070                             JCStatement body,
1071                             JCExpression cond,
1072                             List<JCExpressionStatement> step,
1073                             boolean testFirst) {
1074            Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1075            int startpc = code.entryPoint();
1076            if (testFirst) { //while or for loop
1077                CondItem c;
1078                if (cond != null) {
1079                    code.statBegin(cond.pos);
1080                    c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1081                } else {
1082                    c = items.makeCondItem(goto_);
1083                }
1084                Chain loopDone = c.jumpFalse();
1085                code.resolve(c.trueJumps);
1086                genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1087                code.resolve(loopEnv.info.cont);
1088                genStats(step, loopEnv);
1089                code.resolve(code.branch(goto_), startpc);
1090                code.resolve(loopDone);
1091            } else {
1092                genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1093                code.resolve(loopEnv.info.cont);
1094                genStats(step, loopEnv);
1095                CondItem c;
1096                if (cond != null) {
1097                    code.statBegin(cond.pos);
1098                    c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1099                } else {
1100                    c = items.makeCondItem(goto_);
1101                }
1102                code.resolve(c.jumpTrue(), startpc);
1103                code.resolve(c.falseJumps);
1104            }
1105            Chain exit = loopEnv.info.exit;
1106            if (exit != null) {
1107                code.resolve(exit);
1108                exit.state.defined.excludeFrom(code.nextreg);
1109            }
1110        }
1111
1112    public void visitForeachLoop(JCEnhancedForLoop tree) {
1113        throw new AssertionError(); // should have been removed by Lower.
1114    }
1115
1116    public void visitLabelled(JCLabeledStatement tree) {
1117        Env<GenContext> localEnv = env.dup(tree, new GenContext());
1118        genStat(tree.body, localEnv, CRT_STATEMENT);
1119        Chain exit = localEnv.info.exit;
1120        if (exit != null) {
1121            code.resolve(exit);
1122            exit.state.defined.excludeFrom(code.nextreg);
1123        }
1124    }
1125
1126    public void visitSwitch(JCSwitch tree) {
1127        int limit = code.nextreg;
1128        Assert.check(!tree.selector.type.hasTag(CLASS));
1129        int startpcCrt = genCrt ? code.curCP() : 0;
1130        Item sel = genExpr(tree.selector, syms.intType);
1131        List<JCCase> cases = tree.cases;
1132        if (cases.isEmpty()) {
1133            // We are seeing:  switch <sel> {}
1134            sel.load().drop();
1135            if (genCrt)
1136                code.crt.put(TreeInfo.skipParens(tree.selector),
1137                             CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1138        } else {
1139            // We are seeing a nonempty switch.
1140            sel.load();
1141            if (genCrt)
1142                code.crt.put(TreeInfo.skipParens(tree.selector),
1143                             CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1144            Env<GenContext> switchEnv = env.dup(tree, new GenContext());
1145            switchEnv.info.isSwitch = true;
1146
1147            // Compute number of labels and minimum and maximum label values.
1148            // For each case, store its label in an array.
1149            int lo = Integer.MAX_VALUE;  // minimum label.
1150            int hi = Integer.MIN_VALUE;  // maximum label.
1151            int nlabels = 0;               // number of labels.
1152
1153            int[] labels = new int[cases.length()];  // the label array.
1154            int defaultIndex = -1;     // the index of the default clause.
1155
1156            List<JCCase> l = cases;
1157            for (int i = 0; i < labels.length; i++) {
1158                if (l.head.pat != null) {
1159                    int val = ((Number)l.head.pat.type.constValue()).intValue();
1160                    labels[i] = val;
1161                    if (val < lo) lo = val;
1162                    if (hi < val) hi = val;
1163                    nlabels++;
1164                } else {
1165                    Assert.check(defaultIndex == -1);
1166                    defaultIndex = i;
1167                }
1168                l = l.tail;
1169            }
1170
1171            // Determine whether to issue a tableswitch or a lookupswitch
1172            // instruction.
1173            long table_space_cost = 4 + ((long) hi - lo + 1); // words
1174            long table_time_cost = 3; // comparisons
1175            long lookup_space_cost = 3 + 2 * (long) nlabels;
1176            long lookup_time_cost = nlabels;
1177            int opcode =
1178                nlabels > 0 &&
1179                table_space_cost + 3 * table_time_cost <=
1180                lookup_space_cost + 3 * lookup_time_cost
1181                ?
1182                tableswitch : lookupswitch;
1183
1184            int startpc = code.curCP();    // the position of the selector operation
1185            code.emitop0(opcode);
1186            code.align(4);
1187            int tableBase = code.curCP();  // the start of the jump table
1188            int[] offsets = null;          // a table of offsets for a lookupswitch
1189            code.emit4(-1);                // leave space for default offset
1190            if (opcode == tableswitch) {
1191                code.emit4(lo);            // minimum label
1192                code.emit4(hi);            // maximum label
1193                for (long i = lo; i <= hi; i++) {  // leave space for jump table
1194                    code.emit4(-1);
1195                }
1196            } else {
1197                code.emit4(nlabels);    // number of labels
1198                for (int i = 0; i < nlabels; i++) {
1199                    code.emit4(-1); code.emit4(-1); // leave space for lookup table
1200                }
1201                offsets = new int[labels.length];
1202            }
1203            Code.State stateSwitch = code.state.dup();
1204            code.markDead();
1205
1206            // For each case do:
1207            l = cases;
1208            for (int i = 0; i < labels.length; i++) {
1209                JCCase c = l.head;
1210                l = l.tail;
1211
1212                int pc = code.entryPoint(stateSwitch);
1213                // Insert offset directly into code or else into the
1214                // offsets table.
1215                if (i != defaultIndex) {
1216                    if (opcode == tableswitch) {
1217                        code.put4(
1218                            tableBase + 4 * (labels[i] - lo + 3),
1219                            pc - startpc);
1220                    } else {
1221                        offsets[i] = pc - startpc;
1222                    }
1223                } else {
1224                    code.put4(tableBase, pc - startpc);
1225                }
1226
1227                // Generate code for the statements in this case.
1228                genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1229            }
1230
1231            // Resolve all breaks.
1232            Chain exit = switchEnv.info.exit;
1233            if  (exit != null) {
1234                code.resolve(exit);
1235                exit.state.defined.excludeFrom(code.nextreg);
1236            }
1237
1238            // If we have not set the default offset, we do so now.
1239            if (code.get4(tableBase) == -1) {
1240                code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1241            }
1242
1243            if (opcode == tableswitch) {
1244                // Let any unfilled slots point to the default case.
1245                int defaultOffset = code.get4(tableBase);
1246                for (long i = lo; i <= hi; i++) {
1247                    int t = (int)(tableBase + 4 * (i - lo + 3));
1248                    if (code.get4(t) == -1)
1249                        code.put4(t, defaultOffset);
1250                }
1251            } else {
1252                // Sort non-default offsets and copy into lookup table.
1253                if (defaultIndex >= 0)
1254                    for (int i = defaultIndex; i < labels.length - 1; i++) {
1255                        labels[i] = labels[i+1];
1256                        offsets[i] = offsets[i+1];
1257                    }
1258                if (nlabels > 0)
1259                    qsort2(labels, offsets, 0, nlabels - 1);
1260                for (int i = 0; i < nlabels; i++) {
1261                    int caseidx = tableBase + 8 * (i + 1);
1262                    code.put4(caseidx, labels[i]);
1263                    code.put4(caseidx + 4, offsets[i]);
1264                }
1265            }
1266        }
1267        code.endScopes(limit);
1268    }
1269//where
1270        /** Sort (int) arrays of keys and values
1271         */
1272       static void qsort2(int[] keys, int[] values, int lo, int hi) {
1273            int i = lo;
1274            int j = hi;
1275            int pivot = keys[(i+j)/2];
1276            do {
1277                while (keys[i] < pivot) i++;
1278                while (pivot < keys[j]) j--;
1279                if (i <= j) {
1280                    int temp1 = keys[i];
1281                    keys[i] = keys[j];
1282                    keys[j] = temp1;
1283                    int temp2 = values[i];
1284                    values[i] = values[j];
1285                    values[j] = temp2;
1286                    i++;
1287                    j--;
1288                }
1289            } while (i <= j);
1290            if (lo < j) qsort2(keys, values, lo, j);
1291            if (i < hi) qsort2(keys, values, i, hi);
1292        }
1293
1294    public void visitSynchronized(JCSynchronized tree) {
1295        int limit = code.nextreg;
1296        // Generate code to evaluate lock and save in temporary variable.
1297        final LocalItem lockVar = makeTemp(syms.objectType);
1298        genExpr(tree.lock, tree.lock.type).load().duplicate();
1299        lockVar.store();
1300
1301        // Generate code to enter monitor.
1302        code.emitop0(monitorenter);
1303        code.state.lock(lockVar.reg);
1304
1305        // Generate code for a try statement with given body, no catch clauses
1306        // in a new environment with the "exit-monitor" operation as finalizer.
1307        final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1308        syncEnv.info.finalize = new GenFinalizer() {
1309            void gen() {
1310                genLast();
1311                Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1312                syncEnv.info.gaps.append(code.curCP());
1313            }
1314            void genLast() {
1315                if (code.isAlive()) {
1316                    lockVar.load();
1317                    code.emitop0(monitorexit);
1318                    code.state.unlock(lockVar.reg);
1319                }
1320            }
1321        };
1322        syncEnv.info.gaps = new ListBuffer<>();
1323        genTry(tree.body, List.<JCCatch>nil(), syncEnv);
1324        code.endScopes(limit);
1325    }
1326
1327    public void visitTry(final JCTry tree) {
1328        // Generate code for a try statement with given body and catch clauses,
1329        // in a new environment which calls the finally block if there is one.
1330        final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1331        final Env<GenContext> oldEnv = env;
1332        if (!useJsrLocally) {
1333            useJsrLocally =
1334                (stackMap == StackMapFormat.NONE) &&
1335                (jsrlimit <= 0 ||
1336                jsrlimit < 100 &&
1337                estimateCodeComplexity(tree.finalizer)>jsrlimit);
1338        }
1339        tryEnv.info.finalize = new GenFinalizer() {
1340            void gen() {
1341                if (useJsrLocally) {
1342                    if (tree.finalizer != null) {
1343                        Code.State jsrState = code.state.dup();
1344                        jsrState.push(Code.jsrReturnValue);
1345                        tryEnv.info.cont =
1346                            new Chain(code.emitJump(jsr),
1347                                      tryEnv.info.cont,
1348                                      jsrState);
1349                    }
1350                    Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1351                    tryEnv.info.gaps.append(code.curCP());
1352                } else {
1353                    Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1354                    tryEnv.info.gaps.append(code.curCP());
1355                    genLast();
1356                }
1357            }
1358            void genLast() {
1359                if (tree.finalizer != null)
1360                    genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1361            }
1362            boolean hasFinalizer() {
1363                return tree.finalizer != null;
1364            }
1365        };
1366        tryEnv.info.gaps = new ListBuffer<>();
1367        genTry(tree.body, tree.catchers, tryEnv);
1368    }
1369    //where
1370        /** Generate code for a try or synchronized statement
1371         *  @param body      The body of the try or synchronized statement.
1372         *  @param catchers  The lis of catch clauses.
1373         *  @param env       the environment current for the body.
1374         */
1375        void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1376            int limit = code.nextreg;
1377            int startpc = code.curCP();
1378            Code.State stateTry = code.state.dup();
1379            genStat(body, env, CRT_BLOCK);
1380            int endpc = code.curCP();
1381            boolean hasFinalizer =
1382                env.info.finalize != null &&
1383                env.info.finalize.hasFinalizer();
1384            List<Integer> gaps = env.info.gaps.toList();
1385            code.statBegin(TreeInfo.endPos(body));
1386            genFinalizer(env);
1387            code.statBegin(TreeInfo.endPos(env.tree));
1388            Chain exitChain = code.branch(goto_);
1389            endFinalizerGap(env);
1390            if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1391                // start off with exception on stack
1392                code.entryPoint(stateTry, l.head.param.sym.type);
1393                genCatch(l.head, env, startpc, endpc, gaps);
1394                genFinalizer(env);
1395                if (hasFinalizer || l.tail.nonEmpty()) {
1396                    code.statBegin(TreeInfo.endPos(env.tree));
1397                    exitChain = Code.mergeChains(exitChain,
1398                                                 code.branch(goto_));
1399                }
1400                endFinalizerGap(env);
1401            }
1402            if (hasFinalizer) {
1403                // Create a new register segement to avoid allocating
1404                // the same variables in finalizers and other statements.
1405                code.newRegSegment();
1406
1407                // Add a catch-all clause.
1408
1409                // start off with exception on stack
1410                int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1411
1412                // Register all exception ranges for catch all clause.
1413                // The range of the catch all clause is from the beginning
1414                // of the try or synchronized block until the present
1415                // code pointer excluding all gaps in the current
1416                // environment's GenContext.
1417                int startseg = startpc;
1418                while (env.info.gaps.nonEmpty()) {
1419                    int endseg = env.info.gaps.next().intValue();
1420                    registerCatch(body.pos(), startseg, endseg,
1421                                  catchallpc, 0);
1422                    startseg = env.info.gaps.next().intValue();
1423                }
1424                code.statBegin(TreeInfo.finalizerPos(env.tree));
1425                code.markStatBegin();
1426
1427                Item excVar = makeTemp(syms.throwableType);
1428                excVar.store();
1429                genFinalizer(env);
1430                excVar.load();
1431                registerCatch(body.pos(), startseg,
1432                              env.info.gaps.next().intValue(),
1433                              catchallpc, 0);
1434                code.emitop0(athrow);
1435                code.markDead();
1436
1437                // If there are jsr's to this finalizer, ...
1438                if (env.info.cont != null) {
1439                    // Resolve all jsr's.
1440                    code.resolve(env.info.cont);
1441
1442                    // Mark statement line number
1443                    code.statBegin(TreeInfo.finalizerPos(env.tree));
1444                    code.markStatBegin();
1445
1446                    // Save return address.
1447                    LocalItem retVar = makeTemp(syms.throwableType);
1448                    retVar.store();
1449
1450                    // Generate finalizer code.
1451                    env.info.finalize.genLast();
1452
1453                    // Return.
1454                    code.emitop1w(ret, retVar.reg);
1455                    code.markDead();
1456                }
1457            }
1458            // Resolve all breaks.
1459            code.resolve(exitChain);
1460
1461            code.endScopes(limit);
1462        }
1463
1464        /** Generate code for a catch clause.
1465         *  @param tree     The catch clause.
1466         *  @param env      The environment current in the enclosing try.
1467         *  @param startpc  Start pc of try-block.
1468         *  @param endpc    End pc of try-block.
1469         */
1470        void genCatch(JCCatch tree,
1471                      Env<GenContext> env,
1472                      int startpc, int endpc,
1473                      List<Integer> gaps) {
1474            if (startpc != endpc) {
1475                List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypeExprs
1476                        = catchTypesWithAnnotations(tree);
1477                while (gaps.nonEmpty()) {
1478                    for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1479                        JCExpression subCatch = subCatch1.snd;
1480                        int catchType = makeRef(tree.pos(), subCatch.type);
1481                        int end = gaps.head.intValue();
1482                        registerCatch(tree.pos(),
1483                                      startpc,  end, code.curCP(),
1484                                      catchType);
1485                        for (Attribute.TypeCompound tc :  subCatch1.fst) {
1486                                tc.position.setCatchInfo(catchType, startpc);
1487                        }
1488                    }
1489                    gaps = gaps.tail;
1490                    startpc = gaps.head.intValue();
1491                    gaps = gaps.tail;
1492                }
1493                if (startpc < endpc) {
1494                    for (Pair<List<Attribute.TypeCompound>, JCExpression> subCatch1 : catchTypeExprs) {
1495                        JCExpression subCatch = subCatch1.snd;
1496                        int catchType = makeRef(tree.pos(), subCatch.type);
1497                        registerCatch(tree.pos(),
1498                                      startpc, endpc, code.curCP(),
1499                                      catchType);
1500                        for (Attribute.TypeCompound tc :  subCatch1.fst) {
1501                            tc.position.setCatchInfo(catchType, startpc);
1502                        }
1503                    }
1504                }
1505                VarSymbol exparam = tree.param.sym;
1506                code.statBegin(tree.pos);
1507                code.markStatBegin();
1508                int limit = code.nextreg;
1509                code.newLocal(exparam);
1510                items.makeLocalItem(exparam).store();
1511                code.statBegin(TreeInfo.firstStatPos(tree.body));
1512                genStat(tree.body, env, CRT_BLOCK);
1513                code.endScopes(limit);
1514                code.statBegin(TreeInfo.endPos(tree.body));
1515            }
1516        }
1517        // where
1518        List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotations(JCCatch tree) {
1519            return TreeInfo.isMultiCatch(tree) ?
1520                    catchTypesWithAnnotationsFromMulticatch((JCTypeUnion)tree.param.vartype, tree.param.sym.getRawTypeAttributes()) :
1521                    List.of(new Pair<>(tree.param.sym.getRawTypeAttributes(), tree.param.vartype));
1522        }
1523        // where
1524        List<Pair<List<Attribute.TypeCompound>, JCExpression>> catchTypesWithAnnotationsFromMulticatch(JCTypeUnion tree, List<TypeCompound> first) {
1525            List<JCExpression> alts = tree.alternatives;
1526            List<Pair<List<TypeCompound>, JCExpression>> res = List.of(new Pair<>(first, alts.head));
1527            alts = alts.tail;
1528
1529            while(alts != null && alts.head != null) {
1530                JCExpression alt = alts.head;
1531                if (alt instanceof JCAnnotatedType) {
1532                    JCAnnotatedType a = (JCAnnotatedType)alt;
1533                    res = res.prepend(new Pair<>(annotate.fromAnnotations(a.annotations), alt));
1534                } else {
1535                    res = res.prepend(new Pair<>(List.nil(), alt));
1536                }
1537                alts = alts.tail;
1538            }
1539            return res.reverse();
1540        }
1541
1542        /** Register a catch clause in the "Exceptions" code-attribute.
1543         */
1544        void registerCatch(DiagnosticPosition pos,
1545                           int startpc, int endpc,
1546                           int handler_pc, int catch_type) {
1547            char startpc1 = (char)startpc;
1548            char endpc1 = (char)endpc;
1549            char handler_pc1 = (char)handler_pc;
1550            if (startpc1 == startpc &&
1551                endpc1 == endpc &&
1552                handler_pc1 == handler_pc) {
1553                code.addCatch(startpc1, endpc1, handler_pc1,
1554                              (char)catch_type);
1555            } else {
1556                log.error(pos, "limit.code.too.large.for.try.stmt");
1557                nerrs++;
1558            }
1559        }
1560
1561    /** Very roughly estimate the number of instructions needed for
1562     *  the given tree.
1563     */
1564    int estimateCodeComplexity(JCTree tree) {
1565        if (tree == null) return 0;
1566        class ComplexityScanner extends TreeScanner {
1567            int complexity = 0;
1568            public void scan(JCTree tree) {
1569                if (complexity > jsrlimit) return;
1570                super.scan(tree);
1571            }
1572            public void visitClassDef(JCClassDecl tree) {}
1573            public void visitDoLoop(JCDoWhileLoop tree)
1574                { super.visitDoLoop(tree); complexity++; }
1575            public void visitWhileLoop(JCWhileLoop tree)
1576                { super.visitWhileLoop(tree); complexity++; }
1577            public void visitForLoop(JCForLoop tree)
1578                { super.visitForLoop(tree); complexity++; }
1579            public void visitSwitch(JCSwitch tree)
1580                { super.visitSwitch(tree); complexity+=5; }
1581            public void visitCase(JCCase tree)
1582                { super.visitCase(tree); complexity++; }
1583            public void visitSynchronized(JCSynchronized tree)
1584                { super.visitSynchronized(tree); complexity+=6; }
1585            public void visitTry(JCTry tree)
1586                { super.visitTry(tree);
1587                  if (tree.finalizer != null) complexity+=6; }
1588            public void visitCatch(JCCatch tree)
1589                { super.visitCatch(tree); complexity+=2; }
1590            public void visitConditional(JCConditional tree)
1591                { super.visitConditional(tree); complexity+=2; }
1592            public void visitIf(JCIf tree)
1593                { super.visitIf(tree); complexity+=2; }
1594            // note: for break, continue, and return we don't take unwind() into account.
1595            public void visitBreak(JCBreak tree)
1596                { super.visitBreak(tree); complexity+=1; }
1597            public void visitContinue(JCContinue tree)
1598                { super.visitContinue(tree); complexity+=1; }
1599            public void visitReturn(JCReturn tree)
1600                { super.visitReturn(tree); complexity+=1; }
1601            public void visitThrow(JCThrow tree)
1602                { super.visitThrow(tree); complexity+=1; }
1603            public void visitAssert(JCAssert tree)
1604                { super.visitAssert(tree); complexity+=5; }
1605            public void visitApply(JCMethodInvocation tree)
1606                { super.visitApply(tree); complexity+=2; }
1607            public void visitNewClass(JCNewClass tree)
1608                { scan(tree.encl); scan(tree.args); complexity+=2; }
1609            public void visitNewArray(JCNewArray tree)
1610                { super.visitNewArray(tree); complexity+=5; }
1611            public void visitAssign(JCAssign tree)
1612                { super.visitAssign(tree); complexity+=1; }
1613            public void visitAssignop(JCAssignOp tree)
1614                { super.visitAssignop(tree); complexity+=2; }
1615            public void visitUnary(JCUnary tree)
1616                { complexity+=1;
1617                  if (tree.type.constValue() == null) super.visitUnary(tree); }
1618            public void visitBinary(JCBinary tree)
1619                { complexity+=1;
1620                  if (tree.type.constValue() == null) super.visitBinary(tree); }
1621            public void visitTypeTest(JCInstanceOf tree)
1622                { super.visitTypeTest(tree); complexity+=1; }
1623            public void visitIndexed(JCArrayAccess tree)
1624                { super.visitIndexed(tree); complexity+=1; }
1625            public void visitSelect(JCFieldAccess tree)
1626                { super.visitSelect(tree);
1627                  if (tree.sym.kind == VAR) complexity+=1; }
1628            public void visitIdent(JCIdent tree) {
1629                if (tree.sym.kind == VAR) {
1630                    complexity+=1;
1631                    if (tree.type.constValue() == null &&
1632                        tree.sym.owner.kind == TYP)
1633                        complexity+=1;
1634                }
1635            }
1636            public void visitLiteral(JCLiteral tree)
1637                { complexity+=1; }
1638            public void visitTree(JCTree tree) {}
1639            public void visitWildcard(JCWildcard tree) {
1640                throw new AssertionError(this.getClass().getName());
1641            }
1642        }
1643        ComplexityScanner scanner = new ComplexityScanner();
1644        tree.accept(scanner);
1645        return scanner.complexity;
1646    }
1647
1648    public void visitIf(JCIf tree) {
1649        int limit = code.nextreg;
1650        Chain thenExit = null;
1651        CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1652                             CRT_FLOW_CONTROLLER);
1653        Chain elseChain = c.jumpFalse();
1654        if (!c.isFalse()) {
1655            code.resolve(c.trueJumps);
1656            genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1657            thenExit = code.branch(goto_);
1658        }
1659        if (elseChain != null) {
1660            code.resolve(elseChain);
1661            if (tree.elsepart != null) {
1662                genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1663            }
1664        }
1665        code.resolve(thenExit);
1666        code.endScopes(limit);
1667    }
1668
1669    public void visitExec(JCExpressionStatement tree) {
1670        // Optimize x++ to ++x and x-- to --x.
1671        JCExpression e = tree.expr;
1672        switch (e.getTag()) {
1673            case POSTINC:
1674                ((JCUnary) e).setTag(PREINC);
1675                break;
1676            case POSTDEC:
1677                ((JCUnary) e).setTag(PREDEC);
1678                break;
1679        }
1680        genExpr(tree.expr, tree.expr.type).drop();
1681    }
1682
1683    public void visitBreak(JCBreak tree) {
1684        Env<GenContext> targetEnv = unwind(tree.target, env);
1685        Assert.check(code.state.stacksize == 0);
1686        targetEnv.info.addExit(code.branch(goto_));
1687        endFinalizerGaps(env, targetEnv);
1688    }
1689
1690    public void visitContinue(JCContinue tree) {
1691        Env<GenContext> targetEnv = unwind(tree.target, env);
1692        Assert.check(code.state.stacksize == 0);
1693        targetEnv.info.addCont(code.branch(goto_));
1694        endFinalizerGaps(env, targetEnv);
1695    }
1696
1697    public void visitReturn(JCReturn tree) {
1698        int limit = code.nextreg;
1699        final Env<GenContext> targetEnv;
1700
1701        /* Save and then restore the location of the return in case a finally
1702         * is expanded (with unwind()) in the middle of our bytecodes.
1703         */
1704        int tmpPos = code.pendingStatPos;
1705        if (tree.expr != null) {
1706            Item r = genExpr(tree.expr, pt).load();
1707            if (hasFinally(env.enclMethod, env)) {
1708                r = makeTemp(pt);
1709                r.store();
1710            }
1711            targetEnv = unwind(env.enclMethod, env);
1712            code.pendingStatPos = tmpPos;
1713            r.load();
1714            code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1715        } else {
1716            targetEnv = unwind(env.enclMethod, env);
1717            code.pendingStatPos = tmpPos;
1718            code.emitop0(return_);
1719        }
1720        endFinalizerGaps(env, targetEnv);
1721        code.endScopes(limit);
1722    }
1723
1724    public void visitThrow(JCThrow tree) {
1725        genExpr(tree.expr, tree.expr.type).load();
1726        code.emitop0(athrow);
1727    }
1728
1729/* ************************************************************************
1730 * Visitor methods for expressions
1731 *************************************************************************/
1732
1733    public void visitApply(JCMethodInvocation tree) {
1734        setTypeAnnotationPositions(tree.pos);
1735        // Generate code for method.
1736        Item m = genExpr(tree.meth, methodType);
1737        // Generate code for all arguments, where the expected types are
1738        // the parameters of the method's external type (that is, any implicit
1739        // outer instance of a super(...) call appears as first parameter).
1740        MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1741        genArgs(tree.args,
1742                msym.externalType(types).getParameterTypes());
1743        if (!msym.isDynamic()) {
1744            code.statBegin(tree.pos);
1745        }
1746        result = m.invoke();
1747    }
1748
1749    public void visitConditional(JCConditional tree) {
1750        Chain thenExit = null;
1751        CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1752        Chain elseChain = c.jumpFalse();
1753        if (!c.isFalse()) {
1754            code.resolve(c.trueJumps);
1755            int startpc = genCrt ? code.curCP() : 0;
1756            code.statBegin(tree.truepart.pos);
1757            genExpr(tree.truepart, pt).load();
1758            code.state.forceStackTop(tree.type);
1759            if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1760                                     startpc, code.curCP());
1761            thenExit = code.branch(goto_);
1762        }
1763        if (elseChain != null) {
1764            code.resolve(elseChain);
1765            int startpc = genCrt ? code.curCP() : 0;
1766            code.statBegin(tree.falsepart.pos);
1767            genExpr(tree.falsepart, pt).load();
1768            code.state.forceStackTop(tree.type);
1769            if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1770                                     startpc, code.curCP());
1771        }
1772        code.resolve(thenExit);
1773        result = items.makeStackItem(pt);
1774    }
1775
1776    private void setTypeAnnotationPositions(int treePos) {
1777        MethodSymbol meth = code.meth;
1778        boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1779                || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1780
1781        for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1782            if (ta.hasUnknownPosition())
1783                ta.tryFixPosition();
1784
1785            if (ta.position.matchesPos(treePos))
1786                ta.position.updatePosOffset(code.cp);
1787        }
1788
1789        if (!initOrClinit)
1790            return;
1791
1792        for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1793            if (ta.hasUnknownPosition())
1794                ta.tryFixPosition();
1795
1796            if (ta.position.matchesPos(treePos))
1797                ta.position.updatePosOffset(code.cp);
1798        }
1799
1800        ClassSymbol clazz = meth.enclClass();
1801        for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1802            if (!s.getKind().isField())
1803                continue;
1804
1805            for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1806                if (ta.hasUnknownPosition())
1807                    ta.tryFixPosition();
1808
1809                if (ta.position.matchesPos(treePos))
1810                    ta.position.updatePosOffset(code.cp);
1811            }
1812        }
1813    }
1814
1815    public void visitNewClass(JCNewClass tree) {
1816        // Enclosing instances or anonymous classes should have been eliminated
1817        // by now.
1818        Assert.check(tree.encl == null && tree.def == null);
1819        setTypeAnnotationPositions(tree.pos);
1820
1821        code.emitop2(new_, makeRef(tree.pos(), tree.type));
1822        code.emitop0(dup);
1823
1824        // Generate code for all arguments, where the expected types are
1825        // the parameters of the constructor's external type (that is,
1826        // any implicit outer instance appears as first parameter).
1827        genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
1828
1829        items.makeMemberItem(tree.constructor, true).invoke();
1830        result = items.makeStackItem(tree.type);
1831    }
1832
1833    public void visitNewArray(JCNewArray tree) {
1834        setTypeAnnotationPositions(tree.pos);
1835
1836        if (tree.elems != null) {
1837            Type elemtype = types.elemtype(tree.type);
1838            loadIntConst(tree.elems.length());
1839            Item arr = makeNewArray(tree.pos(), tree.type, 1);
1840            int i = 0;
1841            for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
1842                arr.duplicate();
1843                loadIntConst(i);
1844                i++;
1845                genExpr(l.head, elemtype).load();
1846                items.makeIndexedItem(elemtype).store();
1847            }
1848            result = arr;
1849        } else {
1850            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1851                genExpr(l.head, syms.intType).load();
1852            }
1853            result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
1854        }
1855    }
1856//where
1857        /** Generate code to create an array with given element type and number
1858         *  of dimensions.
1859         */
1860        Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
1861            Type elemtype = types.elemtype(type);
1862            if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
1863                log.error(pos, "limit.dimensions");
1864                nerrs++;
1865            }
1866            int elemcode = Code.arraycode(elemtype);
1867            if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
1868                code.emitAnewarray(makeRef(pos, elemtype), type);
1869            } else if (elemcode == 1) {
1870                code.emitMultianewarray(ndims, makeRef(pos, type), type);
1871            } else {
1872                code.emitNewarray(elemcode, type);
1873            }
1874            return items.makeStackItem(type);
1875        }
1876
1877    public void visitParens(JCParens tree) {
1878        result = genExpr(tree.expr, tree.expr.type);
1879    }
1880
1881    public void visitAssign(JCAssign tree) {
1882        Item l = genExpr(tree.lhs, tree.lhs.type);
1883        genExpr(tree.rhs, tree.lhs.type).load();
1884        if (tree.rhs.type.hasTag(BOT)) {
1885            /* This is just a case of widening reference conversion that per 5.1.5 simply calls
1886               for "regarding a reference as having some other type in a manner that can be proved
1887               correct at compile time."
1888            */
1889            code.state.forceStackTop(tree.lhs.type);
1890        }
1891        result = items.makeAssignItem(l);
1892    }
1893
1894    public void visitAssignop(JCAssignOp tree) {
1895        OperatorSymbol operator = (OperatorSymbol) tree.operator;
1896        Item l;
1897        if (operator.opcode == string_add) {
1898            // Generate code to make a string buffer
1899            makeStringBuffer(tree.pos());
1900
1901            // Generate code for first string, possibly save one
1902            // copy under buffer
1903            l = genExpr(tree.lhs, tree.lhs.type);
1904            if (l.width() > 0) {
1905                code.emitop0(dup_x1 + 3 * (l.width() - 1));
1906            }
1907
1908            // Load first string and append to buffer.
1909            l.load();
1910            appendString(tree.lhs);
1911
1912            // Append all other strings to buffer.
1913            appendStrings(tree.rhs);
1914
1915            // Convert buffer to string.
1916            bufferToString(tree.pos());
1917        } else {
1918            // Generate code for first expression
1919            l = genExpr(tree.lhs, tree.lhs.type);
1920
1921            // If we have an increment of -32768 to +32767 of a local
1922            // int variable we can use an incr instruction instead of
1923            // proceeding further.
1924            if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
1925                l instanceof LocalItem &&
1926                tree.lhs.type.getTag().isSubRangeOf(INT) &&
1927                tree.rhs.type.getTag().isSubRangeOf(INT) &&
1928                tree.rhs.type.constValue() != null) {
1929                int ival = ((Number) tree.rhs.type.constValue()).intValue();
1930                if (tree.hasTag(MINUS_ASG)) ival = -ival;
1931                ((LocalItem)l).incr(ival);
1932                result = l;
1933                return;
1934            }
1935            // Otherwise, duplicate expression, load one copy
1936            // and complete binary operation.
1937            l.duplicate();
1938            l.coerce(operator.type.getParameterTypes().head).load();
1939            completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
1940        }
1941        result = items.makeAssignItem(l);
1942    }
1943
1944    public void visitUnary(JCUnary tree) {
1945        OperatorSymbol operator = (OperatorSymbol)tree.operator;
1946        if (tree.hasTag(NOT)) {
1947            CondItem od = genCond(tree.arg, false);
1948            result = od.negate();
1949        } else {
1950            Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
1951            switch (tree.getTag()) {
1952            case POS:
1953                result = od.load();
1954                break;
1955            case NEG:
1956                result = od.load();
1957                code.emitop0(operator.opcode);
1958                break;
1959            case COMPL:
1960                result = od.load();
1961                emitMinusOne(od.typecode);
1962                code.emitop0(operator.opcode);
1963                break;
1964            case PREINC: case PREDEC:
1965                od.duplicate();
1966                if (od instanceof LocalItem &&
1967                    (operator.opcode == iadd || operator.opcode == isub)) {
1968                    ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
1969                    result = od;
1970                } else {
1971                    od.load();
1972                    code.emitop0(one(od.typecode));
1973                    code.emitop0(operator.opcode);
1974                    // Perform narrowing primitive conversion if byte,
1975                    // char, or short.  Fix for 4304655.
1976                    if (od.typecode != INTcode &&
1977                        Code.truncate(od.typecode) == INTcode)
1978                      code.emitop0(int2byte + od.typecode - BYTEcode);
1979                    result = items.makeAssignItem(od);
1980                }
1981                break;
1982            case POSTINC: case POSTDEC:
1983                od.duplicate();
1984                if (od instanceof LocalItem &&
1985                    (operator.opcode == iadd || operator.opcode == isub)) {
1986                    Item res = od.load();
1987                    ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
1988                    result = res;
1989                } else {
1990                    Item res = od.load();
1991                    od.stash(od.typecode);
1992                    code.emitop0(one(od.typecode));
1993                    code.emitop0(operator.opcode);
1994                    // Perform narrowing primitive conversion if byte,
1995                    // char, or short.  Fix for 4304655.
1996                    if (od.typecode != INTcode &&
1997                        Code.truncate(od.typecode) == INTcode)
1998                      code.emitop0(int2byte + od.typecode - BYTEcode);
1999                    od.store();
2000                    result = res;
2001                }
2002                break;
2003            case NULLCHK:
2004                result = od.load();
2005                code.emitop0(dup);
2006                genNullCheck(tree.pos());
2007                break;
2008            default:
2009                Assert.error();
2010            }
2011        }
2012    }
2013
2014    /** Generate a null check from the object value at stack top. */
2015    private void genNullCheck(DiagnosticPosition pos) {
2016        if (allowBetterNullChecks) {
2017            callMethod(pos, syms.objectsType, names.requireNonNull,
2018                    List.of(syms.objectType), true);
2019        } else {
2020            callMethod(pos, syms.objectType, names.getClass,
2021                    List.<Type>nil(), false);
2022        }
2023        code.emitop0(pop);
2024    }
2025
2026    public void visitBinary(JCBinary tree) {
2027        OperatorSymbol operator = (OperatorSymbol)tree.operator;
2028        if (operator.opcode == string_add) {
2029            // Create a string buffer.
2030            makeStringBuffer(tree.pos());
2031            // Append all strings to buffer.
2032            appendStrings(tree);
2033            // Convert buffer to string.
2034            bufferToString(tree.pos());
2035            result = items.makeStackItem(syms.stringType);
2036        } else if (tree.hasTag(AND)) {
2037            CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2038            if (!lcond.isFalse()) {
2039                Chain falseJumps = lcond.jumpFalse();
2040                code.resolve(lcond.trueJumps);
2041                CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2042                result = items.
2043                    makeCondItem(rcond.opcode,
2044                                 rcond.trueJumps,
2045                                 Code.mergeChains(falseJumps,
2046                                                  rcond.falseJumps));
2047            } else {
2048                result = lcond;
2049            }
2050        } else if (tree.hasTag(OR)) {
2051            CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2052            if (!lcond.isTrue()) {
2053                Chain trueJumps = lcond.jumpTrue();
2054                code.resolve(lcond.falseJumps);
2055                CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2056                result = items.
2057                    makeCondItem(rcond.opcode,
2058                                 Code.mergeChains(trueJumps, rcond.trueJumps),
2059                                 rcond.falseJumps);
2060            } else {
2061                result = lcond;
2062            }
2063        } else {
2064            Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2065            od.load();
2066            result = completeBinop(tree.lhs, tree.rhs, operator);
2067        }
2068    }
2069//where
2070        /** Make a new string buffer.
2071         */
2072        void makeStringBuffer(DiagnosticPosition pos) {
2073            code.emitop2(new_, makeRef(pos, syms.stringBuilderType));
2074            code.emitop0(dup);
2075            callMethod(
2076                    pos, syms.stringBuilderType, names.init, List.<Type>nil(), false);
2077        }
2078
2079        /** Append value (on tos) to string buffer (on tos - 1).
2080         */
2081        void appendString(JCTree tree) {
2082            Type t = tree.type.baseType();
2083            if (!t.isPrimitive() && t.tsym != syms.stringType.tsym) {
2084                t = syms.objectType;
2085            }
2086            items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
2087        }
2088        Symbol getStringBufferAppend(JCTree tree, Type t) {
2089            Assert.checkNull(t.constValue());
2090            Symbol method = stringBufferAppend.get(t);
2091            if (method == null) {
2092                method = rs.resolveInternalMethod(tree.pos(),
2093                                                  attrEnv,
2094                                                  syms.stringBuilderType,
2095                                                  names.append,
2096                                                  List.of(t),
2097                                                  null);
2098                stringBufferAppend.put(t, method);
2099            }
2100            return method;
2101        }
2102
2103        /** Add all strings in tree to string buffer.
2104         */
2105        void appendStrings(JCTree tree) {
2106            tree = TreeInfo.skipParens(tree);
2107            if (tree.hasTag(PLUS) && tree.type.constValue() == null) {
2108                JCBinary op = (JCBinary) tree;
2109                if (op.operator.kind == MTH &&
2110                    ((OperatorSymbol) op.operator).opcode == string_add) {
2111                    appendStrings(op.lhs);
2112                    appendStrings(op.rhs);
2113                    return;
2114                }
2115            }
2116            genExpr(tree, tree.type).load();
2117            appendString(tree);
2118        }
2119
2120        /** Convert string buffer on tos to string.
2121         */
2122        void bufferToString(DiagnosticPosition pos) {
2123            callMethod(
2124                    pos,
2125                    syms.stringBuilderType,
2126                    names.toString,
2127                    List.<Type>nil(),
2128                    false);
2129        }
2130
2131        /** Complete generating code for operation, with left operand
2132         *  already on stack.
2133         *  @param lhs       The tree representing the left operand.
2134         *  @param rhs       The tree representing the right operand.
2135         *  @param operator  The operator symbol.
2136         */
2137        Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2138            MethodType optype = (MethodType)operator.type;
2139            int opcode = operator.opcode;
2140            if (opcode >= if_icmpeq && opcode <= if_icmple &&
2141                rhs.type.constValue() instanceof Number &&
2142                ((Number) rhs.type.constValue()).intValue() == 0) {
2143                opcode = opcode + (ifeq - if_icmpeq);
2144            } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2145                       TreeInfo.isNull(rhs)) {
2146                opcode = opcode + (if_acmp_null - if_acmpeq);
2147            } else {
2148                // The expected type of the right operand is
2149                // the second parameter type of the operator, except for
2150                // shifts with long shiftcount, where we convert the opcode
2151                // to a short shift and the expected type to int.
2152                Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2153                if (opcode >= ishll && opcode <= lushrl) {
2154                    opcode = opcode + (ishl - ishll);
2155                    rtype = syms.intType;
2156                }
2157                // Generate code for right operand and load.
2158                genExpr(rhs, rtype).load();
2159                // If there are two consecutive opcode instructions,
2160                // emit the first now.
2161                if (opcode >= (1 << preShift)) {
2162                    code.emitop0(opcode >> preShift);
2163                    opcode = opcode & 0xFF;
2164                }
2165            }
2166            if (opcode >= ifeq && opcode <= if_acmpne ||
2167                opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2168                return items.makeCondItem(opcode);
2169            } else {
2170                code.emitop0(opcode);
2171                return items.makeStackItem(optype.restype);
2172            }
2173        }
2174
2175    public void visitTypeCast(JCTypeCast tree) {
2176        result = genExpr(tree.expr, tree.clazz.type).load();
2177        setTypeAnnotationPositions(tree.pos);
2178        // Additional code is only needed if we cast to a reference type
2179        // which is not statically a supertype of the expression's type.
2180        // For basic types, the coerce(...) in genExpr(...) will do
2181        // the conversion.
2182        if (!tree.clazz.type.isPrimitive() &&
2183           !types.isSameType(tree.expr.type, tree.clazz.type) &&
2184           types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2185            code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
2186        }
2187    }
2188
2189    public void visitWildcard(JCWildcard tree) {
2190        throw new AssertionError(this.getClass().getName());
2191    }
2192
2193    public void visitTypeTest(JCInstanceOf tree) {
2194        genExpr(tree.expr, tree.expr.type).load();
2195        setTypeAnnotationPositions(tree.pos);
2196        code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
2197        result = items.makeStackItem(syms.booleanType);
2198    }
2199
2200    public void visitIndexed(JCArrayAccess tree) {
2201        genExpr(tree.indexed, tree.indexed.type).load();
2202        genExpr(tree.index, syms.intType).load();
2203        result = items.makeIndexedItem(tree.type);
2204    }
2205
2206    public void visitIdent(JCIdent tree) {
2207        Symbol sym = tree.sym;
2208        if (tree.name == names._this || tree.name == names._super) {
2209            Item res = tree.name == names._this
2210                ? items.makeThisItem()
2211                : items.makeSuperItem();
2212            if (sym.kind == MTH) {
2213                // Generate code to address the constructor.
2214                res.load();
2215                res = items.makeMemberItem(sym, true);
2216            }
2217            result = res;
2218        } else if (sym.kind == VAR && sym.owner.kind == MTH) {
2219            result = items.makeLocalItem((VarSymbol)sym);
2220        } else if (isInvokeDynamic(sym)) {
2221            result = items.makeDynamicItem(sym);
2222        } else if ((sym.flags() & STATIC) != 0) {
2223            if (!isAccessSuper(env.enclMethod))
2224                sym = binaryQualifier(sym, env.enclClass.type);
2225            result = items.makeStaticItem(sym);
2226        } else {
2227            items.makeThisItem().load();
2228            sym = binaryQualifier(sym, env.enclClass.type);
2229            result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
2230        }
2231    }
2232
2233    public void visitSelect(JCFieldAccess tree) {
2234        Symbol sym = tree.sym;
2235
2236        if (tree.name == names._class) {
2237            code.emitLdc(makeRef(tree.pos(), tree.selected.type));
2238            result = items.makeStackItem(pt);
2239            return;
2240       }
2241
2242        Symbol ssym = TreeInfo.symbol(tree.selected);
2243
2244        // Are we selecting via super?
2245        boolean selectSuper =
2246            ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2247
2248        // Are we accessing a member of the superclass in an access method
2249        // resulting from a qualified super?
2250        boolean accessSuper = isAccessSuper(env.enclMethod);
2251
2252        Item base = (selectSuper)
2253            ? items.makeSuperItem()
2254            : genExpr(tree.selected, tree.selected.type);
2255
2256        if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2257            // We are seeing a variable that is constant but its selecting
2258            // expression is not.
2259            if ((sym.flags() & STATIC) != 0) {
2260                if (!selectSuper && (ssym == null || ssym.kind != TYP))
2261                    base = base.load();
2262                base.drop();
2263            } else {
2264                base.load();
2265                genNullCheck(tree.selected.pos());
2266            }
2267            result = items.
2268                makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2269        } else {
2270            if (isInvokeDynamic(sym)) {
2271                result = items.makeDynamicItem(sym);
2272                return;
2273            } else {
2274                sym = binaryQualifier(sym, tree.selected.type);
2275            }
2276            if ((sym.flags() & STATIC) != 0) {
2277                if (!selectSuper && (ssym == null || ssym.kind != TYP))
2278                    base = base.load();
2279                base.drop();
2280                result = items.makeStaticItem(sym);
2281            } else {
2282                base.load();
2283                if (sym == syms.lengthVar) {
2284                    code.emitop0(arraylength);
2285                    result = items.makeStackItem(syms.intType);
2286                } else {
2287                    result = items.
2288                        makeMemberItem(sym,
2289                                       (sym.flags() & PRIVATE) != 0 ||
2290                                       selectSuper || accessSuper);
2291                }
2292            }
2293        }
2294    }
2295
2296    public boolean isInvokeDynamic(Symbol sym) {
2297        return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2298    }
2299
2300    public void visitLiteral(JCLiteral tree) {
2301        if (tree.type.hasTag(BOT)) {
2302            code.emitop0(aconst_null);
2303            result = items.makeStackItem(tree.type);
2304        }
2305        else
2306            result = items.makeImmediateItem(tree.type, tree.value);
2307    }
2308
2309    public void visitLetExpr(LetExpr tree) {
2310        int limit = code.nextreg;
2311        genStats(tree.defs, env);
2312        result = genExpr(tree.expr, tree.expr.type).load();
2313        code.endScopes(limit);
2314    }
2315
2316    private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
2317        List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2318        if (prunedInfo != null) {
2319            for (JCTree prunedTree: prunedInfo) {
2320                prunedTree.accept(classReferenceVisitor);
2321            }
2322        }
2323    }
2324
2325/* ************************************************************************
2326 * main method
2327 *************************************************************************/
2328
2329    /** Generate code for a class definition.
2330     *  @param env   The attribution environment that belongs to the
2331     *               outermost class containing this class definition.
2332     *               We need this for resolving some additional symbols.
2333     *  @param cdef  The tree representing the class definition.
2334     *  @return      True if code is generated with no errors.
2335     */
2336    public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2337        try {
2338            attrEnv = env;
2339            ClassSymbol c = cdef.sym;
2340            this.toplevel = env.toplevel;
2341            this.endPosTable = toplevel.endPositions;
2342            c.pool = pool;
2343            pool.reset();
2344            /* method normalizeDefs() can add references to external classes into the constant pool
2345             */
2346            cdef.defs = normalizeDefs(cdef.defs, c);
2347            generateReferencesToPrunedTree(c, pool);
2348            Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2349            localEnv.toplevel = env.toplevel;
2350            localEnv.enclClass = cdef;
2351
2352            for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2353                genDef(l.head, localEnv);
2354            }
2355            if (pool.numEntries() > Pool.MAX_ENTRIES) {
2356                log.error(cdef.pos(), "limit.pool");
2357                nerrs++;
2358            }
2359            if (nerrs != 0) {
2360                // if errors, discard code
2361                for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2362                    if (l.head.hasTag(METHODDEF))
2363                        ((JCMethodDecl) l.head).sym.code = null;
2364                }
2365            }
2366            cdef.defs = List.nil(); // discard trees
2367            return nerrs == 0;
2368        } finally {
2369            // note: this method does NOT support recursion.
2370            attrEnv = null;
2371            this.env = null;
2372            toplevel = null;
2373            endPosTable = null;
2374            nerrs = 0;
2375        }
2376    }
2377
2378/* ************************************************************************
2379 * Auxiliary classes
2380 *************************************************************************/
2381
2382    /** An abstract class for finalizer generation.
2383     */
2384    abstract class GenFinalizer {
2385        /** Generate code to clean up when unwinding. */
2386        abstract void gen();
2387
2388        /** Generate code to clean up at last. */
2389        abstract void genLast();
2390
2391        /** Does this finalizer have some nontrivial cleanup to perform? */
2392        boolean hasFinalizer() { return true; }
2393    }
2394
2395    /** code generation contexts,
2396     *  to be used as type parameter for environments.
2397     */
2398    static class GenContext {
2399
2400        /** A chain for all unresolved jumps that exit the current environment.
2401         */
2402        Chain exit = null;
2403
2404        /** A chain for all unresolved jumps that continue in the
2405         *  current environment.
2406         */
2407        Chain cont = null;
2408
2409        /** A closure that generates the finalizer of the current environment.
2410         *  Only set for Synchronized and Try contexts.
2411         */
2412        GenFinalizer finalize = null;
2413
2414        /** Is this a switch statement?  If so, allocate registers
2415         * even when the variable declaration is unreachable.
2416         */
2417        boolean isSwitch = false;
2418
2419        /** A list buffer containing all gaps in the finalizer range,
2420         *  where a catch all exception should not apply.
2421         */
2422        ListBuffer<Integer> gaps = null;
2423
2424        /** Add given chain to exit chain.
2425         */
2426        void addExit(Chain c)  {
2427            exit = Code.mergeChains(c, exit);
2428        }
2429
2430        /** Add given chain to cont chain.
2431         */
2432        void addCont(Chain c) {
2433            cont = Code.mergeChains(c, cont);
2434        }
2435    }
2436
2437}
2438