Gen.java revision 2813:2d2baba27992
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.jvm;
27
28import java.util.*;
29
30import com.sun.tools.javac.util.*;
31import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
32import com.sun.tools.javac.util.List;
33import com.sun.tools.javac.code.*;
34import com.sun.tools.javac.code.Attribute.TypeCompound;
35import com.sun.tools.javac.code.Symbol.VarSymbol;
36import com.sun.tools.javac.comp.*;
37import com.sun.tools.javac.tree.*;
38
39import com.sun.tools.javac.code.Symbol.*;
40import com.sun.tools.javac.code.Type.*;
41import com.sun.tools.javac.jvm.Code.*;
42import com.sun.tools.javac.jvm.Items.*;
43import com.sun.tools.javac.tree.EndPosTable;
44import com.sun.tools.javac.tree.JCTree.*;
45
46import static com.sun.tools.javac.code.Flags.*;
47import static com.sun.tools.javac.code.Kinds.Kind.*;
48import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
49import static com.sun.tools.javac.code.TypeTag.*;
50import static com.sun.tools.javac.jvm.ByteCodes.*;
51import static com.sun.tools.javac.jvm.CRTFlags.*;
52import static com.sun.tools.javac.main.Option.*;
53import static com.sun.tools.javac.tree.JCTree.Tag.*;
54
55/** This pass maps flat Java (i.e. without inner classes) to bytecodes.
56 *
57 *  <p><b>This is NOT part of any supported API.
58 *  If you write code that depends on this, you do so at your own risk.
59 *  This code and its internal interfaces are subject to change or
60 *  deletion without notice.</b>
61 */
62public class Gen extends JCTree.Visitor {
63    protected static final Context.Key<Gen> genKey = new Context.Key<>();
64
65    private final Log log;
66    private final Symtab syms;
67    private final Check chk;
68    private final Resolve rs;
69    private final TreeMaker make;
70    private final Names names;
71    private final Target target;
72    private final Type stringBufferType;
73    private final Map<Type,Symbol> stringBufferAppend;
74    private Name accessDollar;
75    private final Types types;
76    private final Lower lower;
77    private final Flow flow;
78
79    /** Format of stackmap tables to be generated. */
80    private final Code.StackMapFormat stackMap;
81
82    /** A type that serves as the expected type for all method expressions.
83     */
84    private final Type methodType;
85
86    public static Gen instance(Context context) {
87        Gen instance = context.get(genKey);
88        if (instance == null)
89            instance = new Gen(context);
90        return instance;
91    }
92
93    /** Constant pool, reset by genClass.
94     */
95    private Pool pool;
96
97    protected Gen(Context context) {
98        context.put(genKey, this);
99
100        names = Names.instance(context);
101        log = Log.instance(context);
102        syms = Symtab.instance(context);
103        chk = Check.instance(context);
104        rs = Resolve.instance(context);
105        make = TreeMaker.instance(context);
106        target = Target.instance(context);
107        types = Types.instance(context);
108        methodType = new MethodType(null, null, null, syms.methodClass);
109        stringBufferType = syms.stringBuilderType;
110        stringBufferAppend = new HashMap<>();
111        accessDollar = names.
112            fromString("access" + target.syntheticNameChar());
113        flow = Flow.instance(context);
114        lower = Lower.instance(context);
115
116        Options options = Options.instance(context);
117        lineDebugInfo =
118            options.isUnset(G_CUSTOM) ||
119            options.isSet(G_CUSTOM, "lines");
120        varDebugInfo =
121            options.isUnset(G_CUSTOM)
122            ? options.isSet(G)
123            : options.isSet(G_CUSTOM, "vars");
124        genCrt = options.isSet(XJCOV);
125        debugCode = options.isSet("debugcode");
126        allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
127        pool = new Pool(types);
128
129        // ignore cldc because we cannot have both stackmap formats
130        this.stackMap = StackMapFormat.JSR202;
131
132        // by default, avoid jsr's for simple finalizers
133        int setjsrlimit = 50;
134        String jsrlimitString = options.get("jsrlimit");
135        if (jsrlimitString != null) {
136            try {
137                setjsrlimit = Integer.parseInt(jsrlimitString);
138            } catch (NumberFormatException ex) {
139                // ignore ill-formed numbers for jsrlimit
140            }
141        }
142        this.jsrlimit = setjsrlimit;
143        this.useJsrLocally = false; // reset in visitTry
144    }
145
146    /** Switches
147     */
148    private final boolean lineDebugInfo;
149    private final boolean varDebugInfo;
150    private final boolean genCrt;
151    private final boolean debugCode;
152    private final boolean allowInvokedynamic;
153
154    /** Default limit of (approximate) size of finalizer to inline.
155     *  Zero means always use jsr.  100 or greater means never use
156     *  jsr.
157     */
158    private final int jsrlimit;
159
160    /** True if jsr is used.
161     */
162    private boolean useJsrLocally;
163
164    /** Code buffer, set by genMethod.
165     */
166    private Code code;
167
168    /** Items structure, set by genMethod.
169     */
170    private Items items;
171
172    /** Environment for symbol lookup, set by genClass
173     */
174    private Env<AttrContext> attrEnv;
175
176    /** The top level tree.
177     */
178    private JCCompilationUnit toplevel;
179
180    /** The number of code-gen errors in this class.
181     */
182    private int nerrs = 0;
183
184    /** An object containing mappings of syntax trees to their
185     *  ending source positions.
186     */
187    EndPosTable endPosTable;
188
189    /** Generate code to load an integer constant.
190     *  @param n     The integer to be loaded.
191     */
192    void loadIntConst(int n) {
193        items.makeImmediateItem(syms.intType, n).load();
194    }
195
196    /** The opcode that loads a zero constant of a given type code.
197     *  @param tc   The given type code (@see ByteCode).
198     */
199    public static int zero(int tc) {
200        switch(tc) {
201        case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
202            return iconst_0;
203        case LONGcode:
204            return lconst_0;
205        case FLOATcode:
206            return fconst_0;
207        case DOUBLEcode:
208            return dconst_0;
209        default:
210            throw new AssertionError("zero");
211        }
212    }
213
214    /** The opcode that loads a one constant of a given type code.
215     *  @param tc   The given type code (@see ByteCode).
216     */
217    public static int one(int tc) {
218        return zero(tc) + 1;
219    }
220
221    /** Generate code to load -1 of the given type code (either int or long).
222     *  @param tc   The given type code (@see ByteCode).
223     */
224    void emitMinusOne(int tc) {
225        if (tc == LONGcode) {
226            items.makeImmediateItem(syms.longType, new Long(-1)).load();
227        } else {
228            code.emitop0(iconst_m1);
229        }
230    }
231
232    /** Construct a symbol to reflect the qualifying type that should
233     *  appear in the byte code as per JLS 13.1.
234     *
235     *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
236     *  for those cases where we need to work around VM bugs).
237     *
238     *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
239     *  non-accessible class, clone it with the qualifier class as owner.
240     *
241     *  @param sym    The accessed symbol
242     *  @param site   The qualifier's type.
243     */
244    Symbol binaryQualifier(Symbol sym, Type site) {
245
246        if (site.hasTag(ARRAY)) {
247            if (sym == syms.lengthVar ||
248                sym.owner != syms.arrayClass)
249                return sym;
250            // array clone can be qualified by the array type in later targets
251            Symbol qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name,
252                                               site, syms.noSymbol);
253            return sym.clone(qualifier);
254        }
255
256        if (sym.owner == site.tsym ||
257            (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
258            return sym;
259        }
260
261        // leave alone methods inherited from Object
262        // JLS 13.1.
263        if (sym.owner == syms.objectType.tsym)
264            return sym;
265
266        return sym.clone(site.tsym);
267    }
268
269    /** Insert a reference to given type in the constant pool,
270     *  checking for an array with too many dimensions;
271     *  return the reference's index.
272     *  @param type   The type for which a reference is inserted.
273     */
274    int makeRef(DiagnosticPosition pos, Type type) {
275        checkDimension(pos, type);
276        if (type.isAnnotated()) {
277            return pool.put((Object)type);
278        } else {
279            return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
280        }
281    }
282
283    /** Check if the given type is an array with too many dimensions.
284     */
285    private void checkDimension(DiagnosticPosition pos, Type t) {
286        switch (t.getTag()) {
287        case METHOD:
288            checkDimension(pos, t.getReturnType());
289            for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
290                checkDimension(pos, args.head);
291            break;
292        case ARRAY:
293            if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
294                log.error(pos, "limit.dimensions");
295                nerrs++;
296            }
297            break;
298        default:
299            break;
300        }
301    }
302
303    /** Create a tempory variable.
304     *  @param type   The variable's type.
305     */
306    LocalItem makeTemp(Type type) {
307        VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
308                                    names.empty,
309                                    type,
310                                    env.enclMethod.sym);
311        code.newLocal(v);
312        return items.makeLocalItem(v);
313    }
314
315    /** Generate code to call a non-private method or constructor.
316     *  @param pos         Position to be used for error reporting.
317     *  @param site        The type of which the method is a member.
318     *  @param name        The method's name.
319     *  @param argtypes    The method's argument types.
320     *  @param isStatic    A flag that indicates whether we call a
321     *                     static or instance method.
322     */
323    void callMethod(DiagnosticPosition pos,
324                    Type site, Name name, List<Type> argtypes,
325                    boolean isStatic) {
326        Symbol msym = rs.
327            resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
328        if (isStatic) items.makeStaticItem(msym).invoke();
329        else items.makeMemberItem(msym, name == names.init).invoke();
330    }
331
332    /** Is the given method definition an access method
333     *  resulting from a qualified super? This is signified by an odd
334     *  access code.
335     */
336    private boolean isAccessSuper(JCMethodDecl enclMethod) {
337        return
338            (enclMethod.mods.flags & SYNTHETIC) != 0 &&
339            isOddAccessName(enclMethod.name);
340    }
341
342    /** Does given name start with "access$" and end in an odd digit?
343     */
344    private boolean isOddAccessName(Name name) {
345        return
346            name.startsWith(accessDollar) &&
347            (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
348    }
349
350/* ************************************************************************
351 * Non-local exits
352 *************************************************************************/
353
354    /** Generate code to invoke the finalizer associated with given
355     *  environment.
356     *  Any calls to finalizers are appended to the environments `cont' chain.
357     *  Mark beginning of gap in catch all range for finalizer.
358     */
359    void genFinalizer(Env<GenContext> env) {
360        if (code.isAlive() && env.info.finalize != null)
361            env.info.finalize.gen();
362    }
363
364    /** Generate code to call all finalizers of structures aborted by
365     *  a non-local
366     *  exit.  Return target environment of the non-local exit.
367     *  @param target      The tree representing the structure that's aborted
368     *  @param env         The environment current at the non-local exit.
369     */
370    Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
371        Env<GenContext> env1 = env;
372        while (true) {
373            genFinalizer(env1);
374            if (env1.tree == target) break;
375            env1 = env1.next;
376        }
377        return env1;
378    }
379
380    /** Mark end of gap in catch-all range for finalizer.
381     *  @param env   the environment which might contain the finalizer
382     *               (if it does, env.info.gaps != null).
383     */
384    void endFinalizerGap(Env<GenContext> env) {
385        if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
386            env.info.gaps.append(code.curCP());
387    }
388
389    /** Mark end of all gaps in catch-all ranges for finalizers of environments
390     *  lying between, and including to two environments.
391     *  @param from    the most deeply nested environment to mark
392     *  @param to      the least deeply nested environment to mark
393     */
394    void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
395        Env<GenContext> last = null;
396        while (last != to) {
397            endFinalizerGap(from);
398            last = from;
399            from = from.next;
400        }
401    }
402
403    /** Do any of the structures aborted by a non-local exit have
404     *  finalizers that require an empty stack?
405     *  @param target      The tree representing the structure that's aborted
406     *  @param env         The environment current at the non-local exit.
407     */
408    boolean hasFinally(JCTree target, Env<GenContext> env) {
409        while (env.tree != target) {
410            if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
411                return true;
412            env = env.next;
413        }
414        return false;
415    }
416
417/* ************************************************************************
418 * Normalizing class-members.
419 *************************************************************************/
420
421    /** Distribute member initializer code into constructors and {@code <clinit>}
422     *  method.
423     *  @param defs         The list of class member declarations.
424     *  @param c            The enclosing class.
425     */
426    List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
427        ListBuffer<JCStatement> initCode = new ListBuffer<>();
428        ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
429        ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
430        ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
431        ListBuffer<JCTree> methodDefs = new ListBuffer<>();
432        // Sort definitions into three listbuffers:
433        //  - initCode for instance initializers
434        //  - clinitCode for class initializers
435        //  - methodDefs for method definitions
436        for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
437            JCTree def = l.head;
438            switch (def.getTag()) {
439            case BLOCK:
440                JCBlock block = (JCBlock)def;
441                if ((block.flags & STATIC) != 0)
442                    clinitCode.append(block);
443                else if ((block.flags & SYNTHETIC) == 0)
444                    initCode.append(block);
445                break;
446            case METHODDEF:
447                methodDefs.append(def);
448                break;
449            case VARDEF:
450                JCVariableDecl vdef = (JCVariableDecl) def;
451                VarSymbol sym = vdef.sym;
452                checkDimension(vdef.pos(), sym.type);
453                if (vdef.init != null) {
454                    if ((sym.flags() & STATIC) == 0) {
455                        // Always initialize instance variables.
456                        JCStatement init = make.at(vdef.pos()).
457                            Assignment(sym, vdef.init);
458                        initCode.append(init);
459                        endPosTable.replaceTree(vdef, init);
460                        initTAs.addAll(getAndRemoveNonFieldTAs(sym));
461                    } else if (sym.getConstValue() == null) {
462                        // Initialize class (static) variables only if
463                        // they are not compile-time constants.
464                        JCStatement init = make.at(vdef.pos).
465                            Assignment(sym, vdef.init);
466                        clinitCode.append(init);
467                        endPosTable.replaceTree(vdef, init);
468                        clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
469                    } else {
470                        checkStringConstant(vdef.init.pos(), sym.getConstValue());
471                    }
472                }
473                break;
474            default:
475                Assert.error();
476            }
477        }
478        // Insert any instance initializers into all constructors.
479        if (initCode.length() != 0) {
480            List<JCStatement> inits = initCode.toList();
481            initTAs.addAll(c.getInitTypeAttributes());
482            List<Attribute.TypeCompound> initTAlist = initTAs.toList();
483            for (JCTree t : methodDefs) {
484                normalizeMethod((JCMethodDecl)t, inits, initTAlist);
485            }
486        }
487        // If there are class initializers, create a <clinit> method
488        // that contains them as its body.
489        if (clinitCode.length() != 0) {
490            MethodSymbol clinit = new MethodSymbol(
491                STATIC | (c.flags() & STRICTFP),
492                names.clinit,
493                new MethodType(
494                    List.<Type>nil(), syms.voidType,
495                    List.<Type>nil(), syms.methodClass),
496                c);
497            c.members().enter(clinit);
498            List<JCStatement> clinitStats = clinitCode.toList();
499            JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
500            block.endpos = TreeInfo.endPos(clinitStats.last());
501            methodDefs.append(make.MethodDef(clinit, block));
502
503            if (!clinitTAs.isEmpty())
504                clinit.appendUniqueTypeAttributes(clinitTAs.toList());
505            if (!c.getClassInitTypeAttributes().isEmpty())
506                clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
507        }
508        // Return all method definitions.
509        return methodDefs.toList();
510    }
511
512    private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
513        List<TypeCompound> tas = sym.getRawTypeAttributes();
514        ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
515        ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
516        for (TypeCompound ta : tas) {
517            Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
518            if (ta.getPosition().type == TargetType.FIELD) {
519                fieldTAs.add(ta);
520            } else {
521                nonfieldTAs.add(ta);
522            }
523        }
524        sym.setTypeAttributes(fieldTAs.toList());
525        return nonfieldTAs.toList();
526    }
527
528    /** Check a constant value and report if it is a string that is
529     *  too large.
530     */
531    private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
532        if (nerrs != 0 || // only complain about a long string once
533            constValue == null ||
534            !(constValue instanceof String) ||
535            ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
536            return;
537        log.error(pos, "limit.string");
538        nerrs++;
539    }
540
541    /** Insert instance initializer code into initial constructor.
542     *  @param md        The tree potentially representing a
543     *                   constructor's definition.
544     *  @param initCode  The list of instance initializer statements.
545     *  @param initTAs  Type annotations from the initializer expression.
546     */
547    void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
548        if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
549            // We are seeing a constructor that does not call another
550            // constructor of the same class.
551            List<JCStatement> stats = md.body.stats;
552            ListBuffer<JCStatement> newstats = new ListBuffer<>();
553
554            if (stats.nonEmpty()) {
555                // Copy initializers of synthetic variables generated in
556                // the translation of inner classes.
557                while (TreeInfo.isSyntheticInit(stats.head)) {
558                    newstats.append(stats.head);
559                    stats = stats.tail;
560                }
561                // Copy superclass constructor call
562                newstats.append(stats.head);
563                stats = stats.tail;
564                // Copy remaining synthetic initializers.
565                while (stats.nonEmpty() &&
566                       TreeInfo.isSyntheticInit(stats.head)) {
567                    newstats.append(stats.head);
568                    stats = stats.tail;
569                }
570                // Now insert the initializer code.
571                newstats.appendList(initCode);
572                // And copy all remaining statements.
573                while (stats.nonEmpty()) {
574                    newstats.append(stats.head);
575                    stats = stats.tail;
576                }
577            }
578            md.body.stats = newstats.toList();
579            if (md.body.endpos == Position.NOPOS)
580                md.body.endpos = TreeInfo.endPos(md.body.stats.last());
581
582            md.sym.appendUniqueTypeAttributes(initTAs);
583        }
584    }
585
586/* ************************************************************************
587 * Traversal methods
588 *************************************************************************/
589
590    /** Visitor argument: The current environment.
591     */
592    Env<GenContext> env;
593
594    /** Visitor argument: The expected type (prototype).
595     */
596    Type pt;
597
598    /** Visitor result: The item representing the computed value.
599     */
600    Item result;
601
602    /** Visitor method: generate code for a definition, catching and reporting
603     *  any completion failures.
604     *  @param tree    The definition to be visited.
605     *  @param env     The environment current at the definition.
606     */
607    public void genDef(JCTree tree, Env<GenContext> env) {
608        Env<GenContext> prevEnv = this.env;
609        try {
610            this.env = env;
611            tree.accept(this);
612        } catch (CompletionFailure ex) {
613            chk.completionError(tree.pos(), ex);
614        } finally {
615            this.env = prevEnv;
616        }
617    }
618
619    /** Derived visitor method: check whether CharacterRangeTable
620     *  should be emitted, if so, put a new entry into CRTable
621     *  and call method to generate bytecode.
622     *  If not, just call method to generate bytecode.
623     *  @see    #genStat(JCTree, Env)
624     *
625     *  @param  tree     The tree to be visited.
626     *  @param  env      The environment to use.
627     *  @param  crtFlags The CharacterRangeTable flags
628     *                   indicating type of the entry.
629     */
630    public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
631        if (!genCrt) {
632            genStat(tree, env);
633            return;
634        }
635        int startpc = code.curCP();
636        genStat(tree, env);
637        if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
638        code.crt.put(tree, crtFlags, startpc, code.curCP());
639    }
640
641    /** Derived visitor method: generate code for a statement.
642     */
643    public void genStat(JCTree tree, Env<GenContext> env) {
644        if (code.isAlive()) {
645            code.statBegin(tree.pos);
646            genDef(tree, env);
647        } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
648            // variables whose declarations are in a switch
649            // can be used even if the decl is unreachable.
650            code.newLocal(((JCVariableDecl) tree).sym);
651        }
652    }
653
654    /** Derived visitor method: check whether CharacterRangeTable
655     *  should be emitted, if so, put a new entry into CRTable
656     *  and call method to generate bytecode.
657     *  If not, just call method to generate bytecode.
658     *  @see    #genStats(List, Env)
659     *
660     *  @param  trees    The list of trees to be visited.
661     *  @param  env      The environment to use.
662     *  @param  crtFlags The CharacterRangeTable flags
663     *                   indicating type of the entry.
664     */
665    public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
666        if (!genCrt) {
667            genStats(trees, env);
668            return;
669        }
670        if (trees.length() == 1) {        // mark one statement with the flags
671            genStat(trees.head, env, crtFlags | CRT_STATEMENT);
672        } else {
673            int startpc = code.curCP();
674            genStats(trees, env);
675            code.crt.put(trees, crtFlags, startpc, code.curCP());
676        }
677    }
678
679    /** Derived visitor method: generate code for a list of statements.
680     */
681    public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
682        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
683            genStat(l.head, env, CRT_STATEMENT);
684    }
685
686    /** Derived visitor method: check whether CharacterRangeTable
687     *  should be emitted, if so, put a new entry into CRTable
688     *  and call method to generate bytecode.
689     *  If not, just call method to generate bytecode.
690     *  @see    #genCond(JCTree,boolean)
691     *
692     *  @param  tree     The tree to be visited.
693     *  @param  crtFlags The CharacterRangeTable flags
694     *                   indicating type of the entry.
695     */
696    public CondItem genCond(JCTree tree, int crtFlags) {
697        if (!genCrt) return genCond(tree, false);
698        int startpc = code.curCP();
699        CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
700        code.crt.put(tree, crtFlags, startpc, code.curCP());
701        return item;
702    }
703
704    /** Derived visitor method: generate code for a boolean
705     *  expression in a control-flow context.
706     *  @param _tree         The expression to be visited.
707     *  @param markBranches The flag to indicate that the condition is
708     *                      a flow controller so produced conditions
709     *                      should contain a proper tree to generate
710     *                      CharacterRangeTable branches for them.
711     */
712    public CondItem genCond(JCTree _tree, boolean markBranches) {
713        JCTree inner_tree = TreeInfo.skipParens(_tree);
714        if (inner_tree.hasTag(CONDEXPR)) {
715            JCConditional tree = (JCConditional)inner_tree;
716            CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
717            if (cond.isTrue()) {
718                code.resolve(cond.trueJumps);
719                CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
720                if (markBranches) result.tree = tree.truepart;
721                return result;
722            }
723            if (cond.isFalse()) {
724                code.resolve(cond.falseJumps);
725                CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
726                if (markBranches) result.tree = tree.falsepart;
727                return result;
728            }
729            Chain secondJumps = cond.jumpFalse();
730            code.resolve(cond.trueJumps);
731            CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
732            if (markBranches) first.tree = tree.truepart;
733            Chain falseJumps = first.jumpFalse();
734            code.resolve(first.trueJumps);
735            Chain trueJumps = code.branch(goto_);
736            code.resolve(secondJumps);
737            CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
738            CondItem result = items.makeCondItem(second.opcode,
739                                      Code.mergeChains(trueJumps, second.trueJumps),
740                                      Code.mergeChains(falseJumps, second.falseJumps));
741            if (markBranches) result.tree = tree.falsepart;
742            return result;
743        } else {
744            CondItem result = genExpr(_tree, syms.booleanType).mkCond();
745            if (markBranches) result.tree = _tree;
746            return result;
747        }
748    }
749
750    /** Visitor class for expressions which might be constant expressions.
751     *  This class is a subset of TreeScanner. Intended to visit trees pruned by
752     *  Lower as long as constant expressions looking for references to any
753     *  ClassSymbol. Any such reference will be added to the constant pool so
754     *  automated tools can detect class dependencies better.
755     */
756    class ClassReferenceVisitor extends JCTree.Visitor {
757
758        @Override
759        public void visitTree(JCTree tree) {}
760
761        @Override
762        public void visitBinary(JCBinary tree) {
763            tree.lhs.accept(this);
764            tree.rhs.accept(this);
765        }
766
767        @Override
768        public void visitSelect(JCFieldAccess tree) {
769            if (tree.selected.type.hasTag(CLASS)) {
770                makeRef(tree.selected.pos(), tree.selected.type);
771            }
772        }
773
774        @Override
775        public void visitIdent(JCIdent tree) {
776            if (tree.sym.owner instanceof ClassSymbol) {
777                pool.put(tree.sym.owner);
778            }
779        }
780
781        @Override
782        public void visitConditional(JCConditional tree) {
783            tree.cond.accept(this);
784            tree.truepart.accept(this);
785            tree.falsepart.accept(this);
786        }
787
788        @Override
789        public void visitUnary(JCUnary tree) {
790            tree.arg.accept(this);
791        }
792
793        @Override
794        public void visitParens(JCParens tree) {
795            tree.expr.accept(this);
796        }
797
798        @Override
799        public void visitTypeCast(JCTypeCast tree) {
800            tree.expr.accept(this);
801        }
802    }
803
804    private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
805
806    /** Visitor method: generate code for an expression, catching and reporting
807     *  any completion failures.
808     *  @param tree    The expression to be visited.
809     *  @param pt      The expression's expected type (proto-type).
810     */
811    public Item genExpr(JCTree tree, Type pt) {
812        Type prevPt = this.pt;
813        try {
814            if (tree.type.constValue() != null) {
815                // Short circuit any expressions which are constants
816                tree.accept(classReferenceVisitor);
817                checkStringConstant(tree.pos(), tree.type.constValue());
818                result = items.makeImmediateItem(tree.type, tree.type.constValue());
819            } else {
820                this.pt = pt;
821                tree.accept(this);
822            }
823            return result.coerce(pt);
824        } catch (CompletionFailure ex) {
825            chk.completionError(tree.pos(), ex);
826            code.state.stacksize = 1;
827            return items.makeStackItem(pt);
828        } finally {
829            this.pt = prevPt;
830        }
831    }
832
833    /** Derived visitor method: generate code for a list of method arguments.
834     *  @param trees    The argument expressions to be visited.
835     *  @param pts      The expression's expected types (i.e. the formal parameter
836     *                  types of the invoked method).
837     */
838    public void genArgs(List<JCExpression> trees, List<Type> pts) {
839        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
840            genExpr(l.head, pts.head).load();
841            pts = pts.tail;
842        }
843        // require lists be of same length
844        Assert.check(pts.isEmpty());
845    }
846
847/* ************************************************************************
848 * Visitor methods for statements and definitions
849 *************************************************************************/
850
851    /** Thrown when the byte code size exceeds limit.
852     */
853    public static class CodeSizeOverflow extends RuntimeException {
854        private static final long serialVersionUID = 0;
855        public CodeSizeOverflow() {}
856    }
857
858    public void visitMethodDef(JCMethodDecl tree) {
859        // Create a new local environment that points pack at method
860        // definition.
861        Env<GenContext> localEnv = env.dup(tree);
862        localEnv.enclMethod = tree;
863        // The expected type of every return statement in this method
864        // is the method's return type.
865        this.pt = tree.sym.erasure(types).getReturnType();
866
867        checkDimension(tree.pos(), tree.sym.erasure(types));
868        genMethod(tree, localEnv, false);
869    }
870//where
871        /** Generate code for a method.
872         *  @param tree     The tree representing the method definition.
873         *  @param env      The environment current for the method body.
874         *  @param fatcode  A flag that indicates whether all jumps are
875         *                  within 32K.  We first invoke this method under
876         *                  the assumption that fatcode == false, i.e. all
877         *                  jumps are within 32K.  If this fails, fatcode
878         *                  is set to true and we try again.
879         */
880        void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
881            MethodSymbol meth = tree.sym;
882            int extras = 0;
883            // Count up extra parameters
884            if (meth.isConstructor()) {
885                extras++;
886                if (meth.enclClass().isInner() &&
887                    !meth.enclClass().isStatic()) {
888                    extras++;
889                }
890            } else if ((tree.mods.flags & STATIC) == 0) {
891                extras++;
892            }
893            //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
894            if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
895                ClassFile.MAX_PARAMETERS) {
896                log.error(tree.pos(), "limit.parameters");
897                nerrs++;
898            }
899
900            else if (tree.body != null) {
901                // Create a new code structure and initialize it.
902                int startpcCrt = initCode(tree, env, fatcode);
903
904                try {
905                    genStat(tree.body, env);
906                } catch (CodeSizeOverflow e) {
907                    // Failed due to code limit, try again with jsr/ret
908                    startpcCrt = initCode(tree, env, fatcode);
909                    genStat(tree.body, env);
910                }
911
912                if (code.state.stacksize != 0) {
913                    log.error(tree.body.pos(), "stack.sim.error", tree);
914                    throw new AssertionError();
915                }
916
917                // If last statement could complete normally, insert a
918                // return at the end.
919                if (code.isAlive()) {
920                    code.statBegin(TreeInfo.endPos(tree.body));
921                    if (env.enclMethod == null ||
922                        env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
923                        code.emitop0(return_);
924                    } else {
925                        // sometime dead code seems alive (4415991);
926                        // generate a small loop instead
927                        int startpc = code.entryPoint();
928                        CondItem c = items.makeCondItem(goto_);
929                        code.resolve(c.jumpTrue(), startpc);
930                    }
931                }
932                if (genCrt)
933                    code.crt.put(tree.body,
934                                 CRT_BLOCK,
935                                 startpcCrt,
936                                 code.curCP());
937
938                code.endScopes(0);
939
940                // If we exceeded limits, panic
941                if (code.checkLimits(tree.pos(), log)) {
942                    nerrs++;
943                    return;
944                }
945
946                // If we generated short code but got a long jump, do it again
947                // with fatCode = true.
948                if (!fatcode && code.fatcode) genMethod(tree, env, true);
949
950                // Clean up
951                if(stackMap == StackMapFormat.JSR202) {
952                    code.lastFrame = null;
953                    code.frameBeforeLast = null;
954                }
955
956                // Compress exception table
957                code.compressCatchTable();
958
959                // Fill in type annotation positions for exception parameters
960                code.fillExceptionParameterPositions();
961            }
962        }
963
964        private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
965            MethodSymbol meth = tree.sym;
966
967            // Create a new code structure.
968            meth.code = code = new Code(meth,
969                                        fatcode,
970                                        lineDebugInfo ? toplevel.lineMap : null,
971                                        varDebugInfo,
972                                        stackMap,
973                                        debugCode,
974                                        genCrt ? new CRTable(tree, env.toplevel.endPositions)
975                                               : null,
976                                        syms,
977                                        types,
978                                        pool);
979            items = new Items(pool, code, syms, types);
980            if (code.debugCode) {
981                System.err.println(meth + " for body " + tree);
982            }
983
984            // If method is not static, create a new local variable address
985            // for `this'.
986            if ((tree.mods.flags & STATIC) == 0) {
987                Type selfType = meth.owner.type;
988                if (meth.isConstructor() && selfType != syms.objectType)
989                    selfType = UninitializedType.uninitializedThis(selfType);
990                code.setDefined(
991                        code.newLocal(
992                            new VarSymbol(FINAL, names._this, selfType, meth.owner)));
993            }
994
995            // Mark all parameters as defined from the beginning of
996            // the method.
997            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
998                checkDimension(l.head.pos(), l.head.sym.type);
999                code.setDefined(code.newLocal(l.head.sym));
1000            }
1001
1002            // Get ready to generate code for method body.
1003            int startpcCrt = genCrt ? code.curCP() : 0;
1004            code.entryPoint();
1005
1006            // Suppress initial stackmap
1007            code.pendingStackMap = false;
1008
1009            return startpcCrt;
1010        }
1011
1012    public void visitVarDef(JCVariableDecl tree) {
1013        VarSymbol v = tree.sym;
1014        code.newLocal(v);
1015        if (tree.init != null) {
1016            checkStringConstant(tree.init.pos(), v.getConstValue());
1017            if (v.getConstValue() == null || varDebugInfo) {
1018                genExpr(tree.init, v.erasure(types)).load();
1019                items.makeLocalItem(v).store();
1020            }
1021        }
1022        checkDimension(tree.pos(), v.type);
1023    }
1024
1025    public void visitSkip(JCSkip tree) {
1026    }
1027
1028    public void visitBlock(JCBlock tree) {
1029        int limit = code.nextreg;
1030        Env<GenContext> localEnv = env.dup(tree, new GenContext());
1031        genStats(tree.stats, localEnv);
1032        // End the scope of all block-local variables in variable info.
1033        if (!env.tree.hasTag(METHODDEF)) {
1034            code.statBegin(tree.endpos);
1035            code.endScopes(limit);
1036            code.pendingStatPos = Position.NOPOS;
1037        }
1038    }
1039
1040    public void visitDoLoop(JCDoWhileLoop tree) {
1041        genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
1042    }
1043
1044    public void visitWhileLoop(JCWhileLoop tree) {
1045        genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
1046    }
1047
1048    public void visitForLoop(JCForLoop tree) {
1049        int limit = code.nextreg;
1050        genStats(tree.init, env);
1051        genLoop(tree, tree.body, tree.cond, tree.step, true);
1052        code.endScopes(limit);
1053    }
1054    //where
1055        /** Generate code for a loop.
1056         *  @param loop       The tree representing the loop.
1057         *  @param body       The loop's body.
1058         *  @param cond       The loop's controling condition.
1059         *  @param step       "Step" statements to be inserted at end of
1060         *                    each iteration.
1061         *  @param testFirst  True if the loop test belongs before the body.
1062         */
1063        private void genLoop(JCStatement loop,
1064                             JCStatement body,
1065                             JCExpression cond,
1066                             List<JCExpressionStatement> step,
1067                             boolean testFirst) {
1068            Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1069            int startpc = code.entryPoint();
1070            if (testFirst) { //while or for loop
1071                CondItem c;
1072                if (cond != null) {
1073                    code.statBegin(cond.pos);
1074                    c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1075                } else {
1076                    c = items.makeCondItem(goto_);
1077                }
1078                Chain loopDone = c.jumpFalse();
1079                code.resolve(c.trueJumps);
1080                genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1081                code.resolve(loopEnv.info.cont);
1082                genStats(step, loopEnv);
1083                code.resolve(code.branch(goto_), startpc);
1084                code.resolve(loopDone);
1085            } else {
1086                genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1087                code.resolve(loopEnv.info.cont);
1088                genStats(step, loopEnv);
1089                CondItem c;
1090                if (cond != null) {
1091                    code.statBegin(cond.pos);
1092                    c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1093                } else {
1094                    c = items.makeCondItem(goto_);
1095                }
1096                code.resolve(c.jumpTrue(), startpc);
1097                code.resolve(c.falseJumps);
1098            }
1099            Chain exit = loopEnv.info.exit;
1100            if (exit != null) {
1101                code.resolve(exit);
1102                exit.state.defined.excludeFrom(code.nextreg);
1103            }
1104        }
1105
1106    public void visitForeachLoop(JCEnhancedForLoop tree) {
1107        throw new AssertionError(); // should have been removed by Lower.
1108    }
1109
1110    public void visitLabelled(JCLabeledStatement tree) {
1111        Env<GenContext> localEnv = env.dup(tree, new GenContext());
1112        genStat(tree.body, localEnv, CRT_STATEMENT);
1113        Chain exit = localEnv.info.exit;
1114        if (exit != null) {
1115            code.resolve(exit);
1116            exit.state.defined.excludeFrom(code.nextreg);
1117        }
1118    }
1119
1120    public void visitSwitch(JCSwitch tree) {
1121        int limit = code.nextreg;
1122        Assert.check(!tree.selector.type.hasTag(CLASS));
1123        int startpcCrt = genCrt ? code.curCP() : 0;
1124        Item sel = genExpr(tree.selector, syms.intType);
1125        List<JCCase> cases = tree.cases;
1126        if (cases.isEmpty()) {
1127            // We are seeing:  switch <sel> {}
1128            sel.load().drop();
1129            if (genCrt)
1130                code.crt.put(TreeInfo.skipParens(tree.selector),
1131                             CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1132        } else {
1133            // We are seeing a nonempty switch.
1134            sel.load();
1135            if (genCrt)
1136                code.crt.put(TreeInfo.skipParens(tree.selector),
1137                             CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1138            Env<GenContext> switchEnv = env.dup(tree, new GenContext());
1139            switchEnv.info.isSwitch = true;
1140
1141            // Compute number of labels and minimum and maximum label values.
1142            // For each case, store its label in an array.
1143            int lo = Integer.MAX_VALUE;  // minimum label.
1144            int hi = Integer.MIN_VALUE;  // maximum label.
1145            int nlabels = 0;               // number of labels.
1146
1147            int[] labels = new int[cases.length()];  // the label array.
1148            int defaultIndex = -1;     // the index of the default clause.
1149
1150            List<JCCase> l = cases;
1151            for (int i = 0; i < labels.length; i++) {
1152                if (l.head.pat != null) {
1153                    int val = ((Number)l.head.pat.type.constValue()).intValue();
1154                    labels[i] = val;
1155                    if (val < lo) lo = val;
1156                    if (hi < val) hi = val;
1157                    nlabels++;
1158                } else {
1159                    Assert.check(defaultIndex == -1);
1160                    defaultIndex = i;
1161                }
1162                l = l.tail;
1163            }
1164
1165            // Determine whether to issue a tableswitch or a lookupswitch
1166            // instruction.
1167            long table_space_cost = 4 + ((long) hi - lo + 1); // words
1168            long table_time_cost = 3; // comparisons
1169            long lookup_space_cost = 3 + 2 * (long) nlabels;
1170            long lookup_time_cost = nlabels;
1171            int opcode =
1172                nlabels > 0 &&
1173                table_space_cost + 3 * table_time_cost <=
1174                lookup_space_cost + 3 * lookup_time_cost
1175                ?
1176                tableswitch : lookupswitch;
1177
1178            int startpc = code.curCP();    // the position of the selector operation
1179            code.emitop0(opcode);
1180            code.align(4);
1181            int tableBase = code.curCP();  // the start of the jump table
1182            int[] offsets = null;          // a table of offsets for a lookupswitch
1183            code.emit4(-1);                // leave space for default offset
1184            if (opcode == tableswitch) {
1185                code.emit4(lo);            // minimum label
1186                code.emit4(hi);            // maximum label
1187                for (long i = lo; i <= hi; i++) {  // leave space for jump table
1188                    code.emit4(-1);
1189                }
1190            } else {
1191                code.emit4(nlabels);    // number of labels
1192                for (int i = 0; i < nlabels; i++) {
1193                    code.emit4(-1); code.emit4(-1); // leave space for lookup table
1194                }
1195                offsets = new int[labels.length];
1196            }
1197            Code.State stateSwitch = code.state.dup();
1198            code.markDead();
1199
1200            // For each case do:
1201            l = cases;
1202            for (int i = 0; i < labels.length; i++) {
1203                JCCase c = l.head;
1204                l = l.tail;
1205
1206                int pc = code.entryPoint(stateSwitch);
1207                // Insert offset directly into code or else into the
1208                // offsets table.
1209                if (i != defaultIndex) {
1210                    if (opcode == tableswitch) {
1211                        code.put4(
1212                            tableBase + 4 * (labels[i] - lo + 3),
1213                            pc - startpc);
1214                    } else {
1215                        offsets[i] = pc - startpc;
1216                    }
1217                } else {
1218                    code.put4(tableBase, pc - startpc);
1219                }
1220
1221                // Generate code for the statements in this case.
1222                genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1223            }
1224
1225            // Resolve all breaks.
1226            Chain exit = switchEnv.info.exit;
1227            if  (exit != null) {
1228                code.resolve(exit);
1229                exit.state.defined.excludeFrom(code.nextreg);
1230            }
1231
1232            // If we have not set the default offset, we do so now.
1233            if (code.get4(tableBase) == -1) {
1234                code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1235            }
1236
1237            if (opcode == tableswitch) {
1238                // Let any unfilled slots point to the default case.
1239                int defaultOffset = code.get4(tableBase);
1240                for (long i = lo; i <= hi; i++) {
1241                    int t = (int)(tableBase + 4 * (i - lo + 3));
1242                    if (code.get4(t) == -1)
1243                        code.put4(t, defaultOffset);
1244                }
1245            } else {
1246                // Sort non-default offsets and copy into lookup table.
1247                if (defaultIndex >= 0)
1248                    for (int i = defaultIndex; i < labels.length - 1; i++) {
1249                        labels[i] = labels[i+1];
1250                        offsets[i] = offsets[i+1];
1251                    }
1252                if (nlabels > 0)
1253                    qsort2(labels, offsets, 0, nlabels - 1);
1254                for (int i = 0; i < nlabels; i++) {
1255                    int caseidx = tableBase + 8 * (i + 1);
1256                    code.put4(caseidx, labels[i]);
1257                    code.put4(caseidx + 4, offsets[i]);
1258                }
1259            }
1260        }
1261        code.endScopes(limit);
1262    }
1263//where
1264        /** Sort (int) arrays of keys and values
1265         */
1266       static void qsort2(int[] keys, int[] values, int lo, int hi) {
1267            int i = lo;
1268            int j = hi;
1269            int pivot = keys[(i+j)/2];
1270            do {
1271                while (keys[i] < pivot) i++;
1272                while (pivot < keys[j]) j--;
1273                if (i <= j) {
1274                    int temp1 = keys[i];
1275                    keys[i] = keys[j];
1276                    keys[j] = temp1;
1277                    int temp2 = values[i];
1278                    values[i] = values[j];
1279                    values[j] = temp2;
1280                    i++;
1281                    j--;
1282                }
1283            } while (i <= j);
1284            if (lo < j) qsort2(keys, values, lo, j);
1285            if (i < hi) qsort2(keys, values, i, hi);
1286        }
1287
1288    public void visitSynchronized(JCSynchronized tree) {
1289        int limit = code.nextreg;
1290        // Generate code to evaluate lock and save in temporary variable.
1291        final LocalItem lockVar = makeTemp(syms.objectType);
1292        genExpr(tree.lock, tree.lock.type).load().duplicate();
1293        lockVar.store();
1294
1295        // Generate code to enter monitor.
1296        code.emitop0(monitorenter);
1297        code.state.lock(lockVar.reg);
1298
1299        // Generate code for a try statement with given body, no catch clauses
1300        // in a new environment with the "exit-monitor" operation as finalizer.
1301        final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1302        syncEnv.info.finalize = new GenFinalizer() {
1303            void gen() {
1304                genLast();
1305                Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1306                syncEnv.info.gaps.append(code.curCP());
1307            }
1308            void genLast() {
1309                if (code.isAlive()) {
1310                    lockVar.load();
1311                    code.emitop0(monitorexit);
1312                    code.state.unlock(lockVar.reg);
1313                }
1314            }
1315        };
1316        syncEnv.info.gaps = new ListBuffer<>();
1317        genTry(tree.body, List.<JCCatch>nil(), syncEnv);
1318        code.endScopes(limit);
1319    }
1320
1321    public void visitTry(final JCTry tree) {
1322        // Generate code for a try statement with given body and catch clauses,
1323        // in a new environment which calls the finally block if there is one.
1324        final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1325        final Env<GenContext> oldEnv = env;
1326        if (!useJsrLocally) {
1327            useJsrLocally =
1328                (stackMap == StackMapFormat.NONE) &&
1329                (jsrlimit <= 0 ||
1330                jsrlimit < 100 &&
1331                estimateCodeComplexity(tree.finalizer)>jsrlimit);
1332        }
1333        tryEnv.info.finalize = new GenFinalizer() {
1334            void gen() {
1335                if (useJsrLocally) {
1336                    if (tree.finalizer != null) {
1337                        Code.State jsrState = code.state.dup();
1338                        jsrState.push(Code.jsrReturnValue);
1339                        tryEnv.info.cont =
1340                            new Chain(code.emitJump(jsr),
1341                                      tryEnv.info.cont,
1342                                      jsrState);
1343                    }
1344                    Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1345                    tryEnv.info.gaps.append(code.curCP());
1346                } else {
1347                    Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1348                    tryEnv.info.gaps.append(code.curCP());
1349                    genLast();
1350                }
1351            }
1352            void genLast() {
1353                if (tree.finalizer != null)
1354                    genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1355            }
1356            boolean hasFinalizer() {
1357                return tree.finalizer != null;
1358            }
1359        };
1360        tryEnv.info.gaps = new ListBuffer<>();
1361        genTry(tree.body, tree.catchers, tryEnv);
1362    }
1363    //where
1364        /** Generate code for a try or synchronized statement
1365         *  @param body      The body of the try or synchronized statement.
1366         *  @param catchers  The lis of catch clauses.
1367         *  @param env       the environment current for the body.
1368         */
1369        void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1370            int limit = code.nextreg;
1371            int startpc = code.curCP();
1372            Code.State stateTry = code.state.dup();
1373            genStat(body, env, CRT_BLOCK);
1374            int endpc = code.curCP();
1375            boolean hasFinalizer =
1376                env.info.finalize != null &&
1377                env.info.finalize.hasFinalizer();
1378            List<Integer> gaps = env.info.gaps.toList();
1379            code.statBegin(TreeInfo.endPos(body));
1380            genFinalizer(env);
1381            code.statBegin(TreeInfo.endPos(env.tree));
1382            Chain exitChain = code.branch(goto_);
1383            endFinalizerGap(env);
1384            if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1385                // start off with exception on stack
1386                code.entryPoint(stateTry, l.head.param.sym.type);
1387                genCatch(l.head, env, startpc, endpc, gaps);
1388                genFinalizer(env);
1389                if (hasFinalizer || l.tail.nonEmpty()) {
1390                    code.statBegin(TreeInfo.endPos(env.tree));
1391                    exitChain = Code.mergeChains(exitChain,
1392                                                 code.branch(goto_));
1393                }
1394                endFinalizerGap(env);
1395            }
1396            if (hasFinalizer) {
1397                // Create a new register segement to avoid allocating
1398                // the same variables in finalizers and other statements.
1399                code.newRegSegment();
1400
1401                // Add a catch-all clause.
1402
1403                // start off with exception on stack
1404                int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1405
1406                // Register all exception ranges for catch all clause.
1407                // The range of the catch all clause is from the beginning
1408                // of the try or synchronized block until the present
1409                // code pointer excluding all gaps in the current
1410                // environment's GenContext.
1411                int startseg = startpc;
1412                while (env.info.gaps.nonEmpty()) {
1413                    int endseg = env.info.gaps.next().intValue();
1414                    registerCatch(body.pos(), startseg, endseg,
1415                                  catchallpc, 0);
1416                    startseg = env.info.gaps.next().intValue();
1417                }
1418                code.statBegin(TreeInfo.finalizerPos(env.tree));
1419                code.markStatBegin();
1420
1421                Item excVar = makeTemp(syms.throwableType);
1422                excVar.store();
1423                genFinalizer(env);
1424                excVar.load();
1425                registerCatch(body.pos(), startseg,
1426                              env.info.gaps.next().intValue(),
1427                              catchallpc, 0);
1428                code.emitop0(athrow);
1429                code.markDead();
1430
1431                // If there are jsr's to this finalizer, ...
1432                if (env.info.cont != null) {
1433                    // Resolve all jsr's.
1434                    code.resolve(env.info.cont);
1435
1436                    // Mark statement line number
1437                    code.statBegin(TreeInfo.finalizerPos(env.tree));
1438                    code.markStatBegin();
1439
1440                    // Save return address.
1441                    LocalItem retVar = makeTemp(syms.throwableType);
1442                    retVar.store();
1443
1444                    // Generate finalizer code.
1445                    env.info.finalize.genLast();
1446
1447                    // Return.
1448                    code.emitop1w(ret, retVar.reg);
1449                    code.markDead();
1450                }
1451            }
1452            // Resolve all breaks.
1453            code.resolve(exitChain);
1454
1455            code.endScopes(limit);
1456        }
1457
1458        /** Generate code for a catch clause.
1459         *  @param tree     The catch clause.
1460         *  @param env      The environment current in the enclosing try.
1461         *  @param startpc  Start pc of try-block.
1462         *  @param endpc    End pc of try-block.
1463         */
1464        void genCatch(JCCatch tree,
1465                      Env<GenContext> env,
1466                      int startpc, int endpc,
1467                      List<Integer> gaps) {
1468            if (startpc != endpc) {
1469                List<JCExpression> subClauses = TreeInfo.isMultiCatch(tree) ?
1470                        ((JCTypeUnion)tree.param.vartype).alternatives :
1471                        List.of(tree.param.vartype);
1472                while (gaps.nonEmpty()) {
1473                    for (JCExpression subCatch : subClauses) {
1474                        int catchType = makeRef(tree.pos(), subCatch.type);
1475                        int end = gaps.head.intValue();
1476                        registerCatch(tree.pos(),
1477                                      startpc,  end, code.curCP(),
1478                                      catchType);
1479                        if (subCatch.type.isAnnotated()) {
1480                            for (Attribute.TypeCompound tc :
1481                                     subCatch.type.getAnnotationMirrors()) {
1482                                tc.position.setCatchInfo(catchType, startpc);
1483                            }
1484                        }
1485                    }
1486                    gaps = gaps.tail;
1487                    startpc = gaps.head.intValue();
1488                    gaps = gaps.tail;
1489                }
1490                if (startpc < endpc) {
1491                    for (JCExpression subCatch : subClauses) {
1492                        int catchType = makeRef(tree.pos(), subCatch.type);
1493                        registerCatch(tree.pos(),
1494                                      startpc, endpc, code.curCP(),
1495                                      catchType);
1496                        if (subCatch.type.isAnnotated()) {
1497                            for (Attribute.TypeCompound tc :
1498                                     subCatch.type.getAnnotationMirrors()) {
1499                                tc.position.setCatchInfo(catchType, startpc);
1500                            }
1501                        }
1502                    }
1503                }
1504                VarSymbol exparam = tree.param.sym;
1505                code.statBegin(tree.pos);
1506                code.markStatBegin();
1507                int limit = code.nextreg;
1508                int exlocal = code.newLocal(exparam);
1509                items.makeLocalItem(exparam).store();
1510                code.statBegin(TreeInfo.firstStatPos(tree.body));
1511                genStat(tree.body, env, CRT_BLOCK);
1512                code.endScopes(limit);
1513                code.statBegin(TreeInfo.endPos(tree.body));
1514            }
1515        }
1516
1517        /** Register a catch clause in the "Exceptions" code-attribute.
1518         */
1519        void registerCatch(DiagnosticPosition pos,
1520                           int startpc, int endpc,
1521                           int handler_pc, int catch_type) {
1522            char startpc1 = (char)startpc;
1523            char endpc1 = (char)endpc;
1524            char handler_pc1 = (char)handler_pc;
1525            if (startpc1 == startpc &&
1526                endpc1 == endpc &&
1527                handler_pc1 == handler_pc) {
1528                code.addCatch(startpc1, endpc1, handler_pc1,
1529                              (char)catch_type);
1530            } else {
1531                log.error(pos, "limit.code.too.large.for.try.stmt");
1532                nerrs++;
1533            }
1534        }
1535
1536    /** Very roughly estimate the number of instructions needed for
1537     *  the given tree.
1538     */
1539    int estimateCodeComplexity(JCTree tree) {
1540        if (tree == null) return 0;
1541        class ComplexityScanner extends TreeScanner {
1542            int complexity = 0;
1543            public void scan(JCTree tree) {
1544                if (complexity > jsrlimit) return;
1545                super.scan(tree);
1546            }
1547            public void visitClassDef(JCClassDecl tree) {}
1548            public void visitDoLoop(JCDoWhileLoop tree)
1549                { super.visitDoLoop(tree); complexity++; }
1550            public void visitWhileLoop(JCWhileLoop tree)
1551                { super.visitWhileLoop(tree); complexity++; }
1552            public void visitForLoop(JCForLoop tree)
1553                { super.visitForLoop(tree); complexity++; }
1554            public void visitSwitch(JCSwitch tree)
1555                { super.visitSwitch(tree); complexity+=5; }
1556            public void visitCase(JCCase tree)
1557                { super.visitCase(tree); complexity++; }
1558            public void visitSynchronized(JCSynchronized tree)
1559                { super.visitSynchronized(tree); complexity+=6; }
1560            public void visitTry(JCTry tree)
1561                { super.visitTry(tree);
1562                  if (tree.finalizer != null) complexity+=6; }
1563            public void visitCatch(JCCatch tree)
1564                { super.visitCatch(tree); complexity+=2; }
1565            public void visitConditional(JCConditional tree)
1566                { super.visitConditional(tree); complexity+=2; }
1567            public void visitIf(JCIf tree)
1568                { super.visitIf(tree); complexity+=2; }
1569            // note: for break, continue, and return we don't take unwind() into account.
1570            public void visitBreak(JCBreak tree)
1571                { super.visitBreak(tree); complexity+=1; }
1572            public void visitContinue(JCContinue tree)
1573                { super.visitContinue(tree); complexity+=1; }
1574            public void visitReturn(JCReturn tree)
1575                { super.visitReturn(tree); complexity+=1; }
1576            public void visitThrow(JCThrow tree)
1577                { super.visitThrow(tree); complexity+=1; }
1578            public void visitAssert(JCAssert tree)
1579                { super.visitAssert(tree); complexity+=5; }
1580            public void visitApply(JCMethodInvocation tree)
1581                { super.visitApply(tree); complexity+=2; }
1582            public void visitNewClass(JCNewClass tree)
1583                { scan(tree.encl); scan(tree.args); complexity+=2; }
1584            public void visitNewArray(JCNewArray tree)
1585                { super.visitNewArray(tree); complexity+=5; }
1586            public void visitAssign(JCAssign tree)
1587                { super.visitAssign(tree); complexity+=1; }
1588            public void visitAssignop(JCAssignOp tree)
1589                { super.visitAssignop(tree); complexity+=2; }
1590            public void visitUnary(JCUnary tree)
1591                { complexity+=1;
1592                  if (tree.type.constValue() == null) super.visitUnary(tree); }
1593            public void visitBinary(JCBinary tree)
1594                { complexity+=1;
1595                  if (tree.type.constValue() == null) super.visitBinary(tree); }
1596            public void visitTypeTest(JCInstanceOf tree)
1597                { super.visitTypeTest(tree); complexity+=1; }
1598            public void visitIndexed(JCArrayAccess tree)
1599                { super.visitIndexed(tree); complexity+=1; }
1600            public void visitSelect(JCFieldAccess tree)
1601                { super.visitSelect(tree);
1602                  if (tree.sym.kind == VAR) complexity+=1; }
1603            public void visitIdent(JCIdent tree) {
1604                if (tree.sym.kind == VAR) {
1605                    complexity+=1;
1606                    if (tree.type.constValue() == null &&
1607                        tree.sym.owner.kind == TYP)
1608                        complexity+=1;
1609                }
1610            }
1611            public void visitLiteral(JCLiteral tree)
1612                { complexity+=1; }
1613            public void visitTree(JCTree tree) {}
1614            public void visitWildcard(JCWildcard tree) {
1615                throw new AssertionError(this.getClass().getName());
1616            }
1617        }
1618        ComplexityScanner scanner = new ComplexityScanner();
1619        tree.accept(scanner);
1620        return scanner.complexity;
1621    }
1622
1623    public void visitIf(JCIf tree) {
1624        int limit = code.nextreg;
1625        Chain thenExit = null;
1626        CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1627                             CRT_FLOW_CONTROLLER);
1628        Chain elseChain = c.jumpFalse();
1629        if (!c.isFalse()) {
1630            code.resolve(c.trueJumps);
1631            genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1632            thenExit = code.branch(goto_);
1633        }
1634        if (elseChain != null) {
1635            code.resolve(elseChain);
1636            if (tree.elsepart != null) {
1637                genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1638            }
1639        }
1640        code.resolve(thenExit);
1641        code.endScopes(limit);
1642    }
1643
1644    public void visitExec(JCExpressionStatement tree) {
1645        // Optimize x++ to ++x and x-- to --x.
1646        JCExpression e = tree.expr;
1647        switch (e.getTag()) {
1648            case POSTINC:
1649                ((JCUnary) e).setTag(PREINC);
1650                break;
1651            case POSTDEC:
1652                ((JCUnary) e).setTag(PREDEC);
1653                break;
1654        }
1655        genExpr(tree.expr, tree.expr.type).drop();
1656    }
1657
1658    public void visitBreak(JCBreak tree) {
1659        Env<GenContext> targetEnv = unwind(tree.target, env);
1660        Assert.check(code.state.stacksize == 0);
1661        targetEnv.info.addExit(code.branch(goto_));
1662        endFinalizerGaps(env, targetEnv);
1663    }
1664
1665    public void visitContinue(JCContinue tree) {
1666        Env<GenContext> targetEnv = unwind(tree.target, env);
1667        Assert.check(code.state.stacksize == 0);
1668        targetEnv.info.addCont(code.branch(goto_));
1669        endFinalizerGaps(env, targetEnv);
1670    }
1671
1672    public void visitReturn(JCReturn tree) {
1673        int limit = code.nextreg;
1674        final Env<GenContext> targetEnv;
1675        if (tree.expr != null) {
1676            Item r = genExpr(tree.expr, pt).load();
1677            if (hasFinally(env.enclMethod, env)) {
1678                r = makeTemp(pt);
1679                r.store();
1680            }
1681            targetEnv = unwind(env.enclMethod, env);
1682            r.load();
1683            code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1684        } else {
1685            /*  If we have a statement like:
1686             *
1687             *  return;
1688             *
1689             *  we need to store the code.pendingStatPos value before generating
1690             *  the finalizer.
1691             */
1692            int tmpPos = code.pendingStatPos;
1693            targetEnv = unwind(env.enclMethod, env);
1694            code.pendingStatPos = tmpPos;
1695            code.emitop0(return_);
1696        }
1697        endFinalizerGaps(env, targetEnv);
1698        code.endScopes(limit);
1699    }
1700
1701    public void visitThrow(JCThrow tree) {
1702        genExpr(tree.expr, tree.expr.type).load();
1703        code.emitop0(athrow);
1704    }
1705
1706/* ************************************************************************
1707 * Visitor methods for expressions
1708 *************************************************************************/
1709
1710    public void visitApply(JCMethodInvocation tree) {
1711        setTypeAnnotationPositions(tree.pos);
1712        // Generate code for method.
1713        Item m = genExpr(tree.meth, methodType);
1714        // Generate code for all arguments, where the expected types are
1715        // the parameters of the method's external type (that is, any implicit
1716        // outer instance of a super(...) call appears as first parameter).
1717        MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1718        genArgs(tree.args,
1719                msym.externalType(types).getParameterTypes());
1720        if (!msym.isDynamic()) {
1721            code.statBegin(tree.pos);
1722        }
1723        result = m.invoke();
1724    }
1725
1726    public void visitConditional(JCConditional tree) {
1727        Chain thenExit = null;
1728        CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1729        Chain elseChain = c.jumpFalse();
1730        if (!c.isFalse()) {
1731            code.resolve(c.trueJumps);
1732            int startpc = genCrt ? code.curCP() : 0;
1733            code.statBegin(tree.truepart.pos);
1734            genExpr(tree.truepart, pt).load();
1735            code.state.forceStackTop(tree.type);
1736            if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1737                                     startpc, code.curCP());
1738            thenExit = code.branch(goto_);
1739        }
1740        if (elseChain != null) {
1741            code.resolve(elseChain);
1742            int startpc = genCrt ? code.curCP() : 0;
1743            code.statBegin(tree.falsepart.pos);
1744            genExpr(tree.falsepart, pt).load();
1745            code.state.forceStackTop(tree.type);
1746            if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1747                                     startpc, code.curCP());
1748        }
1749        code.resolve(thenExit);
1750        result = items.makeStackItem(pt);
1751    }
1752
1753    private void setTypeAnnotationPositions(int treePos) {
1754        MethodSymbol meth = code.meth;
1755        boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1756                || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1757
1758        for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1759            if (ta.hasUnknownPosition())
1760                ta.tryFixPosition();
1761
1762            if (ta.position.matchesPos(treePos))
1763                ta.position.updatePosOffset(code.cp);
1764        }
1765
1766        if (!initOrClinit)
1767            return;
1768
1769        for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1770            if (ta.hasUnknownPosition())
1771                ta.tryFixPosition();
1772
1773            if (ta.position.matchesPos(treePos))
1774                ta.position.updatePosOffset(code.cp);
1775        }
1776
1777        ClassSymbol clazz = meth.enclClass();
1778        for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1779            if (!s.getKind().isField())
1780                continue;
1781
1782            for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1783                if (ta.hasUnknownPosition())
1784                    ta.tryFixPosition();
1785
1786                if (ta.position.matchesPos(treePos))
1787                    ta.position.updatePosOffset(code.cp);
1788            }
1789        }
1790    }
1791
1792    public void visitNewClass(JCNewClass tree) {
1793        // Enclosing instances or anonymous classes should have been eliminated
1794        // by now.
1795        Assert.check(tree.encl == null && tree.def == null);
1796        setTypeAnnotationPositions(tree.pos);
1797
1798        code.emitop2(new_, makeRef(tree.pos(), tree.type));
1799        code.emitop0(dup);
1800
1801        // Generate code for all arguments, where the expected types are
1802        // the parameters of the constructor's external type (that is,
1803        // any implicit outer instance appears as first parameter).
1804        genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
1805
1806        items.makeMemberItem(tree.constructor, true).invoke();
1807        result = items.makeStackItem(tree.type);
1808    }
1809
1810    public void visitNewArray(JCNewArray tree) {
1811        setTypeAnnotationPositions(tree.pos);
1812
1813        if (tree.elems != null) {
1814            Type elemtype = types.elemtype(tree.type);
1815            loadIntConst(tree.elems.length());
1816            Item arr = makeNewArray(tree.pos(), tree.type, 1);
1817            int i = 0;
1818            for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
1819                arr.duplicate();
1820                loadIntConst(i);
1821                i++;
1822                genExpr(l.head, elemtype).load();
1823                items.makeIndexedItem(elemtype).store();
1824            }
1825            result = arr;
1826        } else {
1827            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1828                genExpr(l.head, syms.intType).load();
1829            }
1830            result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
1831        }
1832    }
1833//where
1834        /** Generate code to create an array with given element type and number
1835         *  of dimensions.
1836         */
1837        Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
1838            Type elemtype = types.elemtype(type);
1839            if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
1840                log.error(pos, "limit.dimensions");
1841                nerrs++;
1842            }
1843            int elemcode = Code.arraycode(elemtype);
1844            if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
1845                code.emitAnewarray(makeRef(pos, elemtype), type);
1846            } else if (elemcode == 1) {
1847                code.emitMultianewarray(ndims, makeRef(pos, type), type);
1848            } else {
1849                code.emitNewarray(elemcode, type);
1850            }
1851            return items.makeStackItem(type);
1852        }
1853
1854    public void visitParens(JCParens tree) {
1855        result = genExpr(tree.expr, tree.expr.type);
1856    }
1857
1858    public void visitAssign(JCAssign tree) {
1859        Item l = genExpr(tree.lhs, tree.lhs.type);
1860        genExpr(tree.rhs, tree.lhs.type).load();
1861        result = items.makeAssignItem(l);
1862    }
1863
1864    public void visitAssignop(JCAssignOp tree) {
1865        OperatorSymbol operator = (OperatorSymbol) tree.operator;
1866        Item l;
1867        if (operator.opcode == string_add) {
1868            // Generate code to make a string buffer
1869            makeStringBuffer(tree.pos());
1870
1871            // Generate code for first string, possibly save one
1872            // copy under buffer
1873            l = genExpr(tree.lhs, tree.lhs.type);
1874            if (l.width() > 0) {
1875                code.emitop0(dup_x1 + 3 * (l.width() - 1));
1876            }
1877
1878            // Load first string and append to buffer.
1879            l.load();
1880            appendString(tree.lhs);
1881
1882            // Append all other strings to buffer.
1883            appendStrings(tree.rhs);
1884
1885            // Convert buffer to string.
1886            bufferToString(tree.pos());
1887        } else {
1888            // Generate code for first expression
1889            l = genExpr(tree.lhs, tree.lhs.type);
1890
1891            // If we have an increment of -32768 to +32767 of a local
1892            // int variable we can use an incr instruction instead of
1893            // proceeding further.
1894            if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
1895                l instanceof LocalItem &&
1896                tree.lhs.type.getTag().isSubRangeOf(INT) &&
1897                tree.rhs.type.getTag().isSubRangeOf(INT) &&
1898                tree.rhs.type.constValue() != null) {
1899                int ival = ((Number) tree.rhs.type.constValue()).intValue();
1900                if (tree.hasTag(MINUS_ASG)) ival = -ival;
1901                ((LocalItem)l).incr(ival);
1902                result = l;
1903                return;
1904            }
1905            // Otherwise, duplicate expression, load one copy
1906            // and complete binary operation.
1907            l.duplicate();
1908            l.coerce(operator.type.getParameterTypes().head).load();
1909            completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
1910        }
1911        result = items.makeAssignItem(l);
1912    }
1913
1914    public void visitUnary(JCUnary tree) {
1915        OperatorSymbol operator = (OperatorSymbol)tree.operator;
1916        if (tree.hasTag(NOT)) {
1917            CondItem od = genCond(tree.arg, false);
1918            result = od.negate();
1919        } else {
1920            Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
1921            switch (tree.getTag()) {
1922            case POS:
1923                result = od.load();
1924                break;
1925            case NEG:
1926                result = od.load();
1927                code.emitop0(operator.opcode);
1928                break;
1929            case COMPL:
1930                result = od.load();
1931                emitMinusOne(od.typecode);
1932                code.emitop0(operator.opcode);
1933                break;
1934            case PREINC: case PREDEC:
1935                od.duplicate();
1936                if (od instanceof LocalItem &&
1937                    (operator.opcode == iadd || operator.opcode == isub)) {
1938                    ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
1939                    result = od;
1940                } else {
1941                    od.load();
1942                    code.emitop0(one(od.typecode));
1943                    code.emitop0(operator.opcode);
1944                    // Perform narrowing primitive conversion if byte,
1945                    // char, or short.  Fix for 4304655.
1946                    if (od.typecode != INTcode &&
1947                        Code.truncate(od.typecode) == INTcode)
1948                      code.emitop0(int2byte + od.typecode - BYTEcode);
1949                    result = items.makeAssignItem(od);
1950                }
1951                break;
1952            case POSTINC: case POSTDEC:
1953                od.duplicate();
1954                if (od instanceof LocalItem &&
1955                    (operator.opcode == iadd || operator.opcode == isub)) {
1956                    Item res = od.load();
1957                    ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
1958                    result = res;
1959                } else {
1960                    Item res = od.load();
1961                    od.stash(od.typecode);
1962                    code.emitop0(one(od.typecode));
1963                    code.emitop0(operator.opcode);
1964                    // Perform narrowing primitive conversion if byte,
1965                    // char, or short.  Fix for 4304655.
1966                    if (od.typecode != INTcode &&
1967                        Code.truncate(od.typecode) == INTcode)
1968                      code.emitop0(int2byte + od.typecode - BYTEcode);
1969                    od.store();
1970                    result = res;
1971                }
1972                break;
1973            case NULLCHK:
1974                result = od.load();
1975                code.emitop0(dup);
1976                genNullCheck(tree.pos());
1977                break;
1978            default:
1979                Assert.error();
1980            }
1981        }
1982    }
1983
1984    /** Generate a null check from the object value at stack top. */
1985    private void genNullCheck(DiagnosticPosition pos) {
1986        callMethod(pos, syms.objectType, names.getClass,
1987                   List.<Type>nil(), false);
1988        code.emitop0(pop);
1989    }
1990
1991    public void visitBinary(JCBinary tree) {
1992        OperatorSymbol operator = (OperatorSymbol)tree.operator;
1993        if (operator.opcode == string_add) {
1994            // Create a string buffer.
1995            makeStringBuffer(tree.pos());
1996            // Append all strings to buffer.
1997            appendStrings(tree);
1998            // Convert buffer to string.
1999            bufferToString(tree.pos());
2000            result = items.makeStackItem(syms.stringType);
2001        } else if (tree.hasTag(AND)) {
2002            CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2003            if (!lcond.isFalse()) {
2004                Chain falseJumps = lcond.jumpFalse();
2005                code.resolve(lcond.trueJumps);
2006                CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2007                result = items.
2008                    makeCondItem(rcond.opcode,
2009                                 rcond.trueJumps,
2010                                 Code.mergeChains(falseJumps,
2011                                                  rcond.falseJumps));
2012            } else {
2013                result = lcond;
2014            }
2015        } else if (tree.hasTag(OR)) {
2016            CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2017            if (!lcond.isTrue()) {
2018                Chain trueJumps = lcond.jumpTrue();
2019                code.resolve(lcond.falseJumps);
2020                CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2021                result = items.
2022                    makeCondItem(rcond.opcode,
2023                                 Code.mergeChains(trueJumps, rcond.trueJumps),
2024                                 rcond.falseJumps);
2025            } else {
2026                result = lcond;
2027            }
2028        } else {
2029            Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2030            od.load();
2031            result = completeBinop(tree.lhs, tree.rhs, operator);
2032        }
2033    }
2034//where
2035        /** Make a new string buffer.
2036         */
2037        void makeStringBuffer(DiagnosticPosition pos) {
2038            code.emitop2(new_, makeRef(pos, stringBufferType));
2039            code.emitop0(dup);
2040            callMethod(
2041                pos, stringBufferType, names.init, List.<Type>nil(), false);
2042        }
2043
2044        /** Append value (on tos) to string buffer (on tos - 1).
2045         */
2046        void appendString(JCTree tree) {
2047            Type t = tree.type.baseType();
2048            if (!t.isPrimitive() && t.tsym != syms.stringType.tsym) {
2049                t = syms.objectType;
2050            }
2051            items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
2052        }
2053        Symbol getStringBufferAppend(JCTree tree, Type t) {
2054            Assert.checkNull(t.constValue());
2055            Symbol method = stringBufferAppend.get(t);
2056            if (method == null) {
2057                method = rs.resolveInternalMethod(tree.pos(),
2058                                                  attrEnv,
2059                                                  stringBufferType,
2060                                                  names.append,
2061                                                  List.of(t),
2062                                                  null);
2063                stringBufferAppend.put(t, method);
2064            }
2065            return method;
2066        }
2067
2068        /** Add all strings in tree to string buffer.
2069         */
2070        void appendStrings(JCTree tree) {
2071            tree = TreeInfo.skipParens(tree);
2072            if (tree.hasTag(PLUS) && tree.type.constValue() == null) {
2073                JCBinary op = (JCBinary) tree;
2074                if (op.operator.kind == MTH &&
2075                    ((OperatorSymbol) op.operator).opcode == string_add) {
2076                    appendStrings(op.lhs);
2077                    appendStrings(op.rhs);
2078                    return;
2079                }
2080            }
2081            genExpr(tree, tree.type).load();
2082            appendString(tree);
2083        }
2084
2085        /** Convert string buffer on tos to string.
2086         */
2087        void bufferToString(DiagnosticPosition pos) {
2088            callMethod(
2089                pos,
2090                stringBufferType,
2091                names.toString,
2092                List.<Type>nil(),
2093                false);
2094        }
2095
2096        /** Complete generating code for operation, with left operand
2097         *  already on stack.
2098         *  @param lhs       The tree representing the left operand.
2099         *  @param rhs       The tree representing the right operand.
2100         *  @param operator  The operator symbol.
2101         */
2102        Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2103            MethodType optype = (MethodType)operator.type;
2104            int opcode = operator.opcode;
2105            if (opcode >= if_icmpeq && opcode <= if_icmple &&
2106                rhs.type.constValue() instanceof Number &&
2107                ((Number) rhs.type.constValue()).intValue() == 0) {
2108                opcode = opcode + (ifeq - if_icmpeq);
2109            } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2110                       TreeInfo.isNull(rhs)) {
2111                opcode = opcode + (if_acmp_null - if_acmpeq);
2112            } else {
2113                // The expected type of the right operand is
2114                // the second parameter type of the operator, except for
2115                // shifts with long shiftcount, where we convert the opcode
2116                // to a short shift and the expected type to int.
2117                Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2118                if (opcode >= ishll && opcode <= lushrl) {
2119                    opcode = opcode + (ishl - ishll);
2120                    rtype = syms.intType;
2121                }
2122                // Generate code for right operand and load.
2123                genExpr(rhs, rtype).load();
2124                // If there are two consecutive opcode instructions,
2125                // emit the first now.
2126                if (opcode >= (1 << preShift)) {
2127                    code.emitop0(opcode >> preShift);
2128                    opcode = opcode & 0xFF;
2129                }
2130            }
2131            if (opcode >= ifeq && opcode <= if_acmpne ||
2132                opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2133                return items.makeCondItem(opcode);
2134            } else {
2135                code.emitop0(opcode);
2136                return items.makeStackItem(optype.restype);
2137            }
2138        }
2139
2140    public void visitTypeCast(JCTypeCast tree) {
2141        setTypeAnnotationPositions(tree.pos);
2142        result = genExpr(tree.expr, tree.clazz.type).load();
2143        // Additional code is only needed if we cast to a reference type
2144        // which is not statically a supertype of the expression's type.
2145        // For basic types, the coerce(...) in genExpr(...) will do
2146        // the conversion.
2147        if (!tree.clazz.type.isPrimitive() &&
2148           !types.isSameType(tree.expr.type, tree.clazz.type) &&
2149           types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2150            code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
2151        }
2152    }
2153
2154    public void visitWildcard(JCWildcard tree) {
2155        throw new AssertionError(this.getClass().getName());
2156    }
2157
2158    public void visitTypeTest(JCInstanceOf tree) {
2159        setTypeAnnotationPositions(tree.pos);
2160        genExpr(tree.expr, tree.expr.type).load();
2161        code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
2162        result = items.makeStackItem(syms.booleanType);
2163    }
2164
2165    public void visitIndexed(JCArrayAccess tree) {
2166        genExpr(tree.indexed, tree.indexed.type).load();
2167        genExpr(tree.index, syms.intType).load();
2168        result = items.makeIndexedItem(tree.type);
2169    }
2170
2171    public void visitIdent(JCIdent tree) {
2172        Symbol sym = tree.sym;
2173        if (tree.name == names._this || tree.name == names._super) {
2174            Item res = tree.name == names._this
2175                ? items.makeThisItem()
2176                : items.makeSuperItem();
2177            if (sym.kind == MTH) {
2178                // Generate code to address the constructor.
2179                res.load();
2180                res = items.makeMemberItem(sym, true);
2181            }
2182            result = res;
2183        } else if (sym.kind == VAR && sym.owner.kind == MTH) {
2184            result = items.makeLocalItem((VarSymbol)sym);
2185        } else if (isInvokeDynamic(sym)) {
2186            result = items.makeDynamicItem(sym);
2187        } else if ((sym.flags() & STATIC) != 0) {
2188            if (!isAccessSuper(env.enclMethod))
2189                sym = binaryQualifier(sym, env.enclClass.type);
2190            result = items.makeStaticItem(sym);
2191        } else {
2192            items.makeThisItem().load();
2193            sym = binaryQualifier(sym, env.enclClass.type);
2194            result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
2195        }
2196    }
2197
2198    public void visitSelect(JCFieldAccess tree) {
2199        Symbol sym = tree.sym;
2200
2201        if (tree.name == names._class) {
2202            code.emitLdc(makeRef(tree.pos(), tree.selected.type));
2203            result = items.makeStackItem(pt);
2204            return;
2205       }
2206
2207        Symbol ssym = TreeInfo.symbol(tree.selected);
2208
2209        // Are we selecting via super?
2210        boolean selectSuper =
2211            ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2212
2213        // Are we accessing a member of the superclass in an access method
2214        // resulting from a qualified super?
2215        boolean accessSuper = isAccessSuper(env.enclMethod);
2216
2217        Item base = (selectSuper)
2218            ? items.makeSuperItem()
2219            : genExpr(tree.selected, tree.selected.type);
2220
2221        if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2222            // We are seeing a variable that is constant but its selecting
2223            // expression is not.
2224            if ((sym.flags() & STATIC) != 0) {
2225                if (!selectSuper && (ssym == null || ssym.kind != TYP))
2226                    base = base.load();
2227                base.drop();
2228            } else {
2229                base.load();
2230                genNullCheck(tree.selected.pos());
2231            }
2232            result = items.
2233                makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2234        } else {
2235            if (isInvokeDynamic(sym)) {
2236                result = items.makeDynamicItem(sym);
2237                return;
2238            } else {
2239                sym = binaryQualifier(sym, tree.selected.type);
2240            }
2241            if ((sym.flags() & STATIC) != 0) {
2242                if (!selectSuper && (ssym == null || ssym.kind != TYP))
2243                    base = base.load();
2244                base.drop();
2245                result = items.makeStaticItem(sym);
2246            } else {
2247                base.load();
2248                if (sym == syms.lengthVar) {
2249                    code.emitop0(arraylength);
2250                    result = items.makeStackItem(syms.intType);
2251                } else {
2252                    result = items.
2253                        makeMemberItem(sym,
2254                                       (sym.flags() & PRIVATE) != 0 ||
2255                                       selectSuper || accessSuper);
2256                }
2257            }
2258        }
2259    }
2260
2261    public boolean isInvokeDynamic(Symbol sym) {
2262        return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2263    }
2264
2265    public void visitLiteral(JCLiteral tree) {
2266        if (tree.type.hasTag(BOT)) {
2267            code.emitop0(aconst_null);
2268            if (types.dimensions(pt) > 1) {
2269                code.emitop2(checkcast, makeRef(tree.pos(), pt));
2270                result = items.makeStackItem(pt);
2271            } else {
2272                result = items.makeStackItem(tree.type);
2273            }
2274        }
2275        else
2276            result = items.makeImmediateItem(tree.type, tree.value);
2277    }
2278
2279    public void visitLetExpr(LetExpr tree) {
2280        int limit = code.nextreg;
2281        genStats(tree.defs, env);
2282        result = genExpr(tree.expr, tree.expr.type).load();
2283        code.endScopes(limit);
2284    }
2285
2286    private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
2287        List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2288        if (prunedInfo != null) {
2289            for (JCTree prunedTree: prunedInfo) {
2290                prunedTree.accept(classReferenceVisitor);
2291            }
2292        }
2293    }
2294
2295/* ************************************************************************
2296 * main method
2297 *************************************************************************/
2298
2299    /** Generate code for a class definition.
2300     *  @param env   The attribution environment that belongs to the
2301     *               outermost class containing this class definition.
2302     *               We need this for resolving some additional symbols.
2303     *  @param cdef  The tree representing the class definition.
2304     *  @return      True if code is generated with no errors.
2305     */
2306    public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2307        try {
2308            attrEnv = env;
2309            ClassSymbol c = cdef.sym;
2310            this.toplevel = env.toplevel;
2311            this.endPosTable = toplevel.endPositions;
2312            cdef.defs = normalizeDefs(cdef.defs, c);
2313            c.pool = pool;
2314            pool.reset();
2315            generateReferencesToPrunedTree(c, pool);
2316            Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2317            localEnv.toplevel = env.toplevel;
2318            localEnv.enclClass = cdef;
2319
2320            for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2321                genDef(l.head, localEnv);
2322            }
2323            if (pool.numEntries() > Pool.MAX_ENTRIES) {
2324                log.error(cdef.pos(), "limit.pool");
2325                nerrs++;
2326            }
2327            if (nerrs != 0) {
2328                // if errors, discard code
2329                for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2330                    if (l.head.hasTag(METHODDEF))
2331                        ((JCMethodDecl) l.head).sym.code = null;
2332                }
2333            }
2334            cdef.defs = List.nil(); // discard trees
2335            return nerrs == 0;
2336        } finally {
2337            // note: this method does NOT support recursion.
2338            attrEnv = null;
2339            this.env = null;
2340            toplevel = null;
2341            endPosTable = null;
2342            nerrs = 0;
2343        }
2344    }
2345
2346/* ************************************************************************
2347 * Auxiliary classes
2348 *************************************************************************/
2349
2350    /** An abstract class for finalizer generation.
2351     */
2352    abstract class GenFinalizer {
2353        /** Generate code to clean up when unwinding. */
2354        abstract void gen();
2355
2356        /** Generate code to clean up at last. */
2357        abstract void genLast();
2358
2359        /** Does this finalizer have some nontrivial cleanup to perform? */
2360        boolean hasFinalizer() { return true; }
2361    }
2362
2363    /** code generation contexts,
2364     *  to be used as type parameter for environments.
2365     */
2366    static class GenContext {
2367
2368        /** A chain for all unresolved jumps that exit the current environment.
2369         */
2370        Chain exit = null;
2371
2372        /** A chain for all unresolved jumps that continue in the
2373         *  current environment.
2374         */
2375        Chain cont = null;
2376
2377        /** A closure that generates the finalizer of the current environment.
2378         *  Only set for Synchronized and Try contexts.
2379         */
2380        GenFinalizer finalize = null;
2381
2382        /** Is this a switch statement?  If so, allocate registers
2383         * even when the variable declaration is unreachable.
2384         */
2385        boolean isSwitch = false;
2386
2387        /** A list buffer containing all gaps in the finalizer range,
2388         *  where a catch all exception should not apply.
2389         */
2390        ListBuffer<Integer> gaps = null;
2391
2392        /** Add given chain to exit chain.
2393         */
2394        void addExit(Chain c)  {
2395            exit = Code.mergeChains(c, exit);
2396        }
2397
2398        /** Add given chain to cont chain.
2399         */
2400        void addCont(Chain c) {
2401            cont = Code.mergeChains(c, cont);
2402        }
2403    }
2404
2405}
2406