Gen.java revision 2772:3bdbc3b8aa14
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.jvm;
27
28import java.util.*;
29
30import com.sun.tools.javac.util.*;
31import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
32import com.sun.tools.javac.util.List;
33import com.sun.tools.javac.code.*;
34import com.sun.tools.javac.code.Attribute.TypeCompound;
35import com.sun.tools.javac.code.Symbol.VarSymbol;
36import com.sun.tools.javac.comp.*;
37import com.sun.tools.javac.tree.*;
38
39import com.sun.tools.javac.code.Symbol.*;
40import com.sun.tools.javac.code.Type.*;
41import com.sun.tools.javac.jvm.Code.*;
42import com.sun.tools.javac.jvm.Items.*;
43import com.sun.tools.javac.tree.EndPosTable;
44import com.sun.tools.javac.tree.JCTree.*;
45
46import static com.sun.tools.javac.code.Flags.*;
47import static com.sun.tools.javac.code.Kinds.Kind.*;
48import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
49import static com.sun.tools.javac.code.TypeTag.*;
50import static com.sun.tools.javac.jvm.ByteCodes.*;
51import static com.sun.tools.javac.jvm.CRTFlags.*;
52import static com.sun.tools.javac.main.Option.*;
53import static com.sun.tools.javac.tree.JCTree.Tag.*;
54
55/** This pass maps flat Java (i.e. without inner classes) to bytecodes.
56 *
57 *  <p><b>This is NOT part of any supported API.
58 *  If you write code that depends on this, you do so at your own risk.
59 *  This code and its internal interfaces are subject to change or
60 *  deletion without notice.</b>
61 */
62public class Gen extends JCTree.Visitor {
63    protected static final Context.Key<Gen> genKey = new Context.Key<>();
64
65    private final Log log;
66    private final Symtab syms;
67    private final Check chk;
68    private final Resolve rs;
69    private final TreeMaker make;
70    private final Names names;
71    private final Target target;
72    private final Type stringBufferType;
73    private final Map<Type,Symbol> stringBufferAppend;
74    private Name accessDollar;
75    private final Types types;
76    private final Lower lower;
77    private final Flow flow;
78
79    /** Format of stackmap tables to be generated. */
80    private final Code.StackMapFormat stackMap;
81
82    /** A type that serves as the expected type for all method expressions.
83     */
84    private final Type methodType;
85
86    public static Gen instance(Context context) {
87        Gen instance = context.get(genKey);
88        if (instance == null)
89            instance = new Gen(context);
90        return instance;
91    }
92
93    /** Constant pool, reset by genClass.
94     */
95    private Pool pool;
96
97    protected Gen(Context context) {
98        context.put(genKey, this);
99
100        names = Names.instance(context);
101        log = Log.instance(context);
102        syms = Symtab.instance(context);
103        chk = Check.instance(context);
104        rs = Resolve.instance(context);
105        make = TreeMaker.instance(context);
106        target = Target.instance(context);
107        types = Types.instance(context);
108        methodType = new MethodType(null, null, null, syms.methodClass);
109        stringBufferType = syms.stringBuilderType;
110        stringBufferAppend = new HashMap<>();
111        accessDollar = names.
112            fromString("access" + target.syntheticNameChar());
113        flow = Flow.instance(context);
114        lower = Lower.instance(context);
115
116        Options options = Options.instance(context);
117        lineDebugInfo =
118            options.isUnset(G_CUSTOM) ||
119            options.isSet(G_CUSTOM, "lines");
120        varDebugInfo =
121            options.isUnset(G_CUSTOM)
122            ? options.isSet(G)
123            : options.isSet(G_CUSTOM, "vars");
124        genCrt = options.isSet(XJCOV);
125        debugCode = options.isSet("debugcode");
126        allowInvokedynamic = target.hasInvokedynamic() || options.isSet("invokedynamic");
127        pool = new Pool(types);
128
129        // ignore cldc because we cannot have both stackmap formats
130        this.stackMap = StackMapFormat.JSR202;
131
132        // by default, avoid jsr's for simple finalizers
133        int setjsrlimit = 50;
134        String jsrlimitString = options.get("jsrlimit");
135        if (jsrlimitString != null) {
136            try {
137                setjsrlimit = Integer.parseInt(jsrlimitString);
138            } catch (NumberFormatException ex) {
139                // ignore ill-formed numbers for jsrlimit
140            }
141        }
142        this.jsrlimit = setjsrlimit;
143        this.useJsrLocally = false; // reset in visitTry
144    }
145
146    /** Switches
147     */
148    private final boolean lineDebugInfo;
149    private final boolean varDebugInfo;
150    private final boolean genCrt;
151    private final boolean debugCode;
152    private final boolean allowInvokedynamic;
153
154    /** Default limit of (approximate) size of finalizer to inline.
155     *  Zero means always use jsr.  100 or greater means never use
156     *  jsr.
157     */
158    private final int jsrlimit;
159
160    /** True if jsr is used.
161     */
162    private boolean useJsrLocally;
163
164    /** Code buffer, set by genMethod.
165     */
166    private Code code;
167
168    /** Items structure, set by genMethod.
169     */
170    private Items items;
171
172    /** Environment for symbol lookup, set by genClass
173     */
174    private Env<AttrContext> attrEnv;
175
176    /** The top level tree.
177     */
178    private JCCompilationUnit toplevel;
179
180    /** The number of code-gen errors in this class.
181     */
182    private int nerrs = 0;
183
184    /** An object containing mappings of syntax trees to their
185     *  ending source positions.
186     */
187    EndPosTable endPosTable;
188
189    /** Generate code to load an integer constant.
190     *  @param n     The integer to be loaded.
191     */
192    void loadIntConst(int n) {
193        items.makeImmediateItem(syms.intType, n).load();
194    }
195
196    /** The opcode that loads a zero constant of a given type code.
197     *  @param tc   The given type code (@see ByteCode).
198     */
199    public static int zero(int tc) {
200        switch(tc) {
201        case INTcode: case BYTEcode: case SHORTcode: case CHARcode:
202            return iconst_0;
203        case LONGcode:
204            return lconst_0;
205        case FLOATcode:
206            return fconst_0;
207        case DOUBLEcode:
208            return dconst_0;
209        default:
210            throw new AssertionError("zero");
211        }
212    }
213
214    /** The opcode that loads a one constant of a given type code.
215     *  @param tc   The given type code (@see ByteCode).
216     */
217    public static int one(int tc) {
218        return zero(tc) + 1;
219    }
220
221    /** Generate code to load -1 of the given type code (either int or long).
222     *  @param tc   The given type code (@see ByteCode).
223     */
224    void emitMinusOne(int tc) {
225        if (tc == LONGcode) {
226            items.makeImmediateItem(syms.longType, new Long(-1)).load();
227        } else {
228            code.emitop0(iconst_m1);
229        }
230    }
231
232    /** Construct a symbol to reflect the qualifying type that should
233     *  appear in the byte code as per JLS 13.1.
234     *
235     *  For {@literal target >= 1.2}: Clone a method with the qualifier as owner (except
236     *  for those cases where we need to work around VM bugs).
237     *
238     *  For {@literal target <= 1.1}: If qualified variable or method is defined in a
239     *  non-accessible class, clone it with the qualifier class as owner.
240     *
241     *  @param sym    The accessed symbol
242     *  @param site   The qualifier's type.
243     */
244    Symbol binaryQualifier(Symbol sym, Type site) {
245
246        if (site.hasTag(ARRAY)) {
247            if (sym == syms.lengthVar ||
248                sym.owner != syms.arrayClass)
249                return sym;
250            // array clone can be qualified by the array type in later targets
251            Symbol qualifier = new ClassSymbol(Flags.PUBLIC, site.tsym.name,
252                                               site, syms.noSymbol);
253            return sym.clone(qualifier);
254        }
255
256        if (sym.owner == site.tsym ||
257            (sym.flags() & (STATIC | SYNTHETIC)) == (STATIC | SYNTHETIC)) {
258            return sym;
259        }
260
261        // leave alone methods inherited from Object
262        // JLS 13.1.
263        if (sym.owner == syms.objectType.tsym)
264            return sym;
265
266        return sym.clone(site.tsym);
267    }
268
269    /** Insert a reference to given type in the constant pool,
270     *  checking for an array with too many dimensions;
271     *  return the reference's index.
272     *  @param type   The type for which a reference is inserted.
273     */
274    int makeRef(DiagnosticPosition pos, Type type) {
275        checkDimension(pos, type);
276        if (type.isAnnotated()) {
277            return pool.put((Object)type);
278        } else {
279            return pool.put(type.hasTag(CLASS) ? (Object)type.tsym : (Object)type);
280        }
281    }
282
283    /** Check if the given type is an array with too many dimensions.
284     */
285    private void checkDimension(DiagnosticPosition pos, Type t) {
286        switch (t.getTag()) {
287        case METHOD:
288            checkDimension(pos, t.getReturnType());
289            for (List<Type> args = t.getParameterTypes(); args.nonEmpty(); args = args.tail)
290                checkDimension(pos, args.head);
291            break;
292        case ARRAY:
293            if (types.dimensions(t) > ClassFile.MAX_DIMENSIONS) {
294                log.error(pos, "limit.dimensions");
295                nerrs++;
296            }
297            break;
298        default:
299            break;
300        }
301    }
302
303    /** Create a tempory variable.
304     *  @param type   The variable's type.
305     */
306    LocalItem makeTemp(Type type) {
307        VarSymbol v = new VarSymbol(Flags.SYNTHETIC,
308                                    names.empty,
309                                    type,
310                                    env.enclMethod.sym);
311        code.newLocal(v);
312        return items.makeLocalItem(v);
313    }
314
315    /** Generate code to call a non-private method or constructor.
316     *  @param pos         Position to be used for error reporting.
317     *  @param site        The type of which the method is a member.
318     *  @param name        The method's name.
319     *  @param argtypes    The method's argument types.
320     *  @param isStatic    A flag that indicates whether we call a
321     *                     static or instance method.
322     */
323    void callMethod(DiagnosticPosition pos,
324                    Type site, Name name, List<Type> argtypes,
325                    boolean isStatic) {
326        Symbol msym = rs.
327            resolveInternalMethod(pos, attrEnv, site, name, argtypes, null);
328        if (isStatic) items.makeStaticItem(msym).invoke();
329        else items.makeMemberItem(msym, name == names.init).invoke();
330    }
331
332    /** Is the given method definition an access method
333     *  resulting from a qualified super? This is signified by an odd
334     *  access code.
335     */
336    private boolean isAccessSuper(JCMethodDecl enclMethod) {
337        return
338            (enclMethod.mods.flags & SYNTHETIC) != 0 &&
339            isOddAccessName(enclMethod.name);
340    }
341
342    /** Does given name start with "access$" and end in an odd digit?
343     */
344    private boolean isOddAccessName(Name name) {
345        return
346            name.startsWith(accessDollar) &&
347            (name.getByteAt(name.getByteLength() - 1) & 1) == 1;
348    }
349
350/* ************************************************************************
351 * Non-local exits
352 *************************************************************************/
353
354    /** Generate code to invoke the finalizer associated with given
355     *  environment.
356     *  Any calls to finalizers are appended to the environments `cont' chain.
357     *  Mark beginning of gap in catch all range for finalizer.
358     */
359    void genFinalizer(Env<GenContext> env) {
360        if (code.isAlive() && env.info.finalize != null)
361            env.info.finalize.gen();
362    }
363
364    /** Generate code to call all finalizers of structures aborted by
365     *  a non-local
366     *  exit.  Return target environment of the non-local exit.
367     *  @param target      The tree representing the structure that's aborted
368     *  @param env         The environment current at the non-local exit.
369     */
370    Env<GenContext> unwind(JCTree target, Env<GenContext> env) {
371        Env<GenContext> env1 = env;
372        while (true) {
373            genFinalizer(env1);
374            if (env1.tree == target) break;
375            env1 = env1.next;
376        }
377        return env1;
378    }
379
380    /** Mark end of gap in catch-all range for finalizer.
381     *  @param env   the environment which might contain the finalizer
382     *               (if it does, env.info.gaps != null).
383     */
384    void endFinalizerGap(Env<GenContext> env) {
385        if (env.info.gaps != null && env.info.gaps.length() % 2 == 1)
386            env.info.gaps.append(code.curCP());
387    }
388
389    /** Mark end of all gaps in catch-all ranges for finalizers of environments
390     *  lying between, and including to two environments.
391     *  @param from    the most deeply nested environment to mark
392     *  @param to      the least deeply nested environment to mark
393     */
394    void endFinalizerGaps(Env<GenContext> from, Env<GenContext> to) {
395        Env<GenContext> last = null;
396        while (last != to) {
397            endFinalizerGap(from);
398            last = from;
399            from = from.next;
400        }
401    }
402
403    /** Do any of the structures aborted by a non-local exit have
404     *  finalizers that require an empty stack?
405     *  @param target      The tree representing the structure that's aborted
406     *  @param env         The environment current at the non-local exit.
407     */
408    boolean hasFinally(JCTree target, Env<GenContext> env) {
409        while (env.tree != target) {
410            if (env.tree.hasTag(TRY) && env.info.finalize.hasFinalizer())
411                return true;
412            env = env.next;
413        }
414        return false;
415    }
416
417/* ************************************************************************
418 * Normalizing class-members.
419 *************************************************************************/
420
421    /** Distribute member initializer code into constructors and {@code <clinit>}
422     *  method.
423     *  @param defs         The list of class member declarations.
424     *  @param c            The enclosing class.
425     */
426    List<JCTree> normalizeDefs(List<JCTree> defs, ClassSymbol c) {
427        ListBuffer<JCStatement> initCode = new ListBuffer<>();
428        ListBuffer<Attribute.TypeCompound> initTAs = new ListBuffer<>();
429        ListBuffer<JCStatement> clinitCode = new ListBuffer<>();
430        ListBuffer<Attribute.TypeCompound> clinitTAs = new ListBuffer<>();
431        ListBuffer<JCTree> methodDefs = new ListBuffer<>();
432        // Sort definitions into three listbuffers:
433        //  - initCode for instance initializers
434        //  - clinitCode for class initializers
435        //  - methodDefs for method definitions
436        for (List<JCTree> l = defs; l.nonEmpty(); l = l.tail) {
437            JCTree def = l.head;
438            switch (def.getTag()) {
439            case BLOCK:
440                JCBlock block = (JCBlock)def;
441                if ((block.flags & STATIC) != 0)
442                    clinitCode.append(block);
443                else if ((block.flags & SYNTHETIC) == 0)
444                    initCode.append(block);
445                break;
446            case METHODDEF:
447                methodDefs.append(def);
448                break;
449            case VARDEF:
450                JCVariableDecl vdef = (JCVariableDecl) def;
451                VarSymbol sym = vdef.sym;
452                checkDimension(vdef.pos(), sym.type);
453                if (vdef.init != null) {
454                    if ((sym.flags() & STATIC) == 0) {
455                        // Always initialize instance variables.
456                        JCStatement init = make.at(vdef.pos()).
457                            Assignment(sym, vdef.init);
458                        initCode.append(init);
459                        endPosTable.replaceTree(vdef, init);
460                        initTAs.addAll(getAndRemoveNonFieldTAs(sym));
461                    } else if (sym.getConstValue() == null) {
462                        // Initialize class (static) variables only if
463                        // they are not compile-time constants.
464                        JCStatement init = make.at(vdef.pos).
465                            Assignment(sym, vdef.init);
466                        clinitCode.append(init);
467                        endPosTable.replaceTree(vdef, init);
468                        clinitTAs.addAll(getAndRemoveNonFieldTAs(sym));
469                    } else {
470                        checkStringConstant(vdef.init.pos(), sym.getConstValue());
471                    }
472                }
473                break;
474            default:
475                Assert.error();
476            }
477        }
478        // Insert any instance initializers into all constructors.
479        if (initCode.length() != 0) {
480            List<JCStatement> inits = initCode.toList();
481            initTAs.addAll(c.getInitTypeAttributes());
482            List<Attribute.TypeCompound> initTAlist = initTAs.toList();
483            for (JCTree t : methodDefs) {
484                normalizeMethod((JCMethodDecl)t, inits, initTAlist);
485            }
486        }
487        // If there are class initializers, create a <clinit> method
488        // that contains them as its body.
489        if (clinitCode.length() != 0) {
490            MethodSymbol clinit = new MethodSymbol(
491                STATIC | (c.flags() & STRICTFP),
492                names.clinit,
493                new MethodType(
494                    List.<Type>nil(), syms.voidType,
495                    List.<Type>nil(), syms.methodClass),
496                c);
497            c.members().enter(clinit);
498            List<JCStatement> clinitStats = clinitCode.toList();
499            JCBlock block = make.at(clinitStats.head.pos()).Block(0, clinitStats);
500            block.endpos = TreeInfo.endPos(clinitStats.last());
501            methodDefs.append(make.MethodDef(clinit, block));
502
503            if (!clinitTAs.isEmpty())
504                clinit.appendUniqueTypeAttributes(clinitTAs.toList());
505            if (!c.getClassInitTypeAttributes().isEmpty())
506                clinit.appendUniqueTypeAttributes(c.getClassInitTypeAttributes());
507        }
508        // Return all method definitions.
509        return methodDefs.toList();
510    }
511
512    private List<Attribute.TypeCompound> getAndRemoveNonFieldTAs(VarSymbol sym) {
513        List<TypeCompound> tas = sym.getRawTypeAttributes();
514        ListBuffer<Attribute.TypeCompound> fieldTAs = new ListBuffer<>();
515        ListBuffer<Attribute.TypeCompound> nonfieldTAs = new ListBuffer<>();
516        for (TypeCompound ta : tas) {
517            Assert.check(ta.getPosition().type != TargetType.UNKNOWN);
518            if (ta.getPosition().type == TargetType.FIELD) {
519                fieldTAs.add(ta);
520            } else {
521                nonfieldTAs.add(ta);
522            }
523        }
524        sym.setTypeAttributes(fieldTAs.toList());
525        return nonfieldTAs.toList();
526    }
527
528    /** Check a constant value and report if it is a string that is
529     *  too large.
530     */
531    private void checkStringConstant(DiagnosticPosition pos, Object constValue) {
532        if (nerrs != 0 || // only complain about a long string once
533            constValue == null ||
534            !(constValue instanceof String) ||
535            ((String)constValue).length() < Pool.MAX_STRING_LENGTH)
536            return;
537        log.error(pos, "limit.string");
538        nerrs++;
539    }
540
541    /** Insert instance initializer code into initial constructor.
542     *  @param md        The tree potentially representing a
543     *                   constructor's definition.
544     *  @param initCode  The list of instance initializer statements.
545     *  @param initTAs  Type annotations from the initializer expression.
546     */
547    void normalizeMethod(JCMethodDecl md, List<JCStatement> initCode, List<TypeCompound> initTAs) {
548        if (md.name == names.init && TreeInfo.isInitialConstructor(md)) {
549            // We are seeing a constructor that does not call another
550            // constructor of the same class.
551            List<JCStatement> stats = md.body.stats;
552            ListBuffer<JCStatement> newstats = new ListBuffer<>();
553
554            if (stats.nonEmpty()) {
555                // Copy initializers of synthetic variables generated in
556                // the translation of inner classes.
557                while (TreeInfo.isSyntheticInit(stats.head)) {
558                    newstats.append(stats.head);
559                    stats = stats.tail;
560                }
561                // Copy superclass constructor call
562                newstats.append(stats.head);
563                stats = stats.tail;
564                // Copy remaining synthetic initializers.
565                while (stats.nonEmpty() &&
566                       TreeInfo.isSyntheticInit(stats.head)) {
567                    newstats.append(stats.head);
568                    stats = stats.tail;
569                }
570                // Now insert the initializer code.
571                newstats.appendList(initCode);
572                // And copy all remaining statements.
573                while (stats.nonEmpty()) {
574                    newstats.append(stats.head);
575                    stats = stats.tail;
576                }
577            }
578            md.body.stats = newstats.toList();
579            if (md.body.endpos == Position.NOPOS)
580                md.body.endpos = TreeInfo.endPos(md.body.stats.last());
581
582            md.sym.appendUniqueTypeAttributes(initTAs);
583        }
584    }
585
586/* ************************************************************************
587 * Traversal methods
588 *************************************************************************/
589
590    /** Visitor argument: The current environment.
591     */
592    Env<GenContext> env;
593
594    /** Visitor argument: The expected type (prototype).
595     */
596    Type pt;
597
598    /** Visitor result: The item representing the computed value.
599     */
600    Item result;
601
602    /** Visitor method: generate code for a definition, catching and reporting
603     *  any completion failures.
604     *  @param tree    The definition to be visited.
605     *  @param env     The environment current at the definition.
606     */
607    public void genDef(JCTree tree, Env<GenContext> env) {
608        Env<GenContext> prevEnv = this.env;
609        try {
610            this.env = env;
611            tree.accept(this);
612        } catch (CompletionFailure ex) {
613            chk.completionError(tree.pos(), ex);
614        } finally {
615            this.env = prevEnv;
616        }
617    }
618
619    /** Derived visitor method: check whether CharacterRangeTable
620     *  should be emitted, if so, put a new entry into CRTable
621     *  and call method to generate bytecode.
622     *  If not, just call method to generate bytecode.
623     *  @see    #genStat(JCTree, Env)
624     *
625     *  @param  tree     The tree to be visited.
626     *  @param  env      The environment to use.
627     *  @param  crtFlags The CharacterRangeTable flags
628     *                   indicating type of the entry.
629     */
630    public void genStat(JCTree tree, Env<GenContext> env, int crtFlags) {
631        if (!genCrt) {
632            genStat(tree, env);
633            return;
634        }
635        int startpc = code.curCP();
636        genStat(tree, env);
637        if (tree.hasTag(Tag.BLOCK)) crtFlags |= CRT_BLOCK;
638        code.crt.put(tree, crtFlags, startpc, code.curCP());
639    }
640
641    /** Derived visitor method: generate code for a statement.
642     */
643    public void genStat(JCTree tree, Env<GenContext> env) {
644        if (code.isAlive()) {
645            code.statBegin(tree.pos);
646            genDef(tree, env);
647        } else if (env.info.isSwitch && tree.hasTag(VARDEF)) {
648            // variables whose declarations are in a switch
649            // can be used even if the decl is unreachable.
650            code.newLocal(((JCVariableDecl) tree).sym);
651        }
652    }
653
654    /** Derived visitor method: check whether CharacterRangeTable
655     *  should be emitted, if so, put a new entry into CRTable
656     *  and call method to generate bytecode.
657     *  If not, just call method to generate bytecode.
658     *  @see    #genStats(List, Env)
659     *
660     *  @param  trees    The list of trees to be visited.
661     *  @param  env      The environment to use.
662     *  @param  crtFlags The CharacterRangeTable flags
663     *                   indicating type of the entry.
664     */
665    public void genStats(List<JCStatement> trees, Env<GenContext> env, int crtFlags) {
666        if (!genCrt) {
667            genStats(trees, env);
668            return;
669        }
670        if (trees.length() == 1) {        // mark one statement with the flags
671            genStat(trees.head, env, crtFlags | CRT_STATEMENT);
672        } else {
673            int startpc = code.curCP();
674            genStats(trees, env);
675            code.crt.put(trees, crtFlags, startpc, code.curCP());
676        }
677    }
678
679    /** Derived visitor method: generate code for a list of statements.
680     */
681    public void genStats(List<? extends JCTree> trees, Env<GenContext> env) {
682        for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
683            genStat(l.head, env, CRT_STATEMENT);
684    }
685
686    /** Derived visitor method: check whether CharacterRangeTable
687     *  should be emitted, if so, put a new entry into CRTable
688     *  and call method to generate bytecode.
689     *  If not, just call method to generate bytecode.
690     *  @see    #genCond(JCTree,boolean)
691     *
692     *  @param  tree     The tree to be visited.
693     *  @param  crtFlags The CharacterRangeTable flags
694     *                   indicating type of the entry.
695     */
696    public CondItem genCond(JCTree tree, int crtFlags) {
697        if (!genCrt) return genCond(tree, false);
698        int startpc = code.curCP();
699        CondItem item = genCond(tree, (crtFlags & CRT_FLOW_CONTROLLER) != 0);
700        code.crt.put(tree, crtFlags, startpc, code.curCP());
701        return item;
702    }
703
704    /** Derived visitor method: generate code for a boolean
705     *  expression in a control-flow context.
706     *  @param _tree         The expression to be visited.
707     *  @param markBranches The flag to indicate that the condition is
708     *                      a flow controller so produced conditions
709     *                      should contain a proper tree to generate
710     *                      CharacterRangeTable branches for them.
711     */
712    public CondItem genCond(JCTree _tree, boolean markBranches) {
713        JCTree inner_tree = TreeInfo.skipParens(_tree);
714        if (inner_tree.hasTag(CONDEXPR)) {
715            JCConditional tree = (JCConditional)inner_tree;
716            CondItem cond = genCond(tree.cond, CRT_FLOW_CONTROLLER);
717            if (cond.isTrue()) {
718                code.resolve(cond.trueJumps);
719                CondItem result = genCond(tree.truepart, CRT_FLOW_TARGET);
720                if (markBranches) result.tree = tree.truepart;
721                return result;
722            }
723            if (cond.isFalse()) {
724                code.resolve(cond.falseJumps);
725                CondItem result = genCond(tree.falsepart, CRT_FLOW_TARGET);
726                if (markBranches) result.tree = tree.falsepart;
727                return result;
728            }
729            Chain secondJumps = cond.jumpFalse();
730            code.resolve(cond.trueJumps);
731            CondItem first = genCond(tree.truepart, CRT_FLOW_TARGET);
732            if (markBranches) first.tree = tree.truepart;
733            Chain falseJumps = first.jumpFalse();
734            code.resolve(first.trueJumps);
735            Chain trueJumps = code.branch(goto_);
736            code.resolve(secondJumps);
737            CondItem second = genCond(tree.falsepart, CRT_FLOW_TARGET);
738            CondItem result = items.makeCondItem(second.opcode,
739                                      Code.mergeChains(trueJumps, second.trueJumps),
740                                      Code.mergeChains(falseJumps, second.falseJumps));
741            if (markBranches) result.tree = tree.falsepart;
742            return result;
743        } else {
744            CondItem result = genExpr(_tree, syms.booleanType).mkCond();
745            if (markBranches) result.tree = _tree;
746            return result;
747        }
748    }
749
750    /** Visitor class for expressions which might be constant expressions.
751     *  This class is a subset of TreeScanner. Intended to visit trees pruned by
752     *  Lower as long as constant expressions looking for references to any
753     *  ClassSymbol. Any such reference will be added to the constant pool so
754     *  automated tools can detect class dependencies better.
755     */
756    class ClassReferenceVisitor extends JCTree.Visitor {
757
758        @Override
759        public void visitTree(JCTree tree) {}
760
761        @Override
762        public void visitBinary(JCBinary tree) {
763            tree.lhs.accept(this);
764            tree.rhs.accept(this);
765        }
766
767        @Override
768        public void visitSelect(JCFieldAccess tree) {
769            if (tree.selected.type.hasTag(CLASS)) {
770                makeRef(tree.selected.pos(), tree.selected.type);
771            }
772        }
773
774        @Override
775        public void visitIdent(JCIdent tree) {
776            if (tree.sym.owner instanceof ClassSymbol) {
777                pool.put(tree.sym.owner);
778            }
779        }
780
781        @Override
782        public void visitConditional(JCConditional tree) {
783            tree.cond.accept(this);
784            tree.truepart.accept(this);
785            tree.falsepart.accept(this);
786        }
787
788        @Override
789        public void visitUnary(JCUnary tree) {
790            tree.arg.accept(this);
791        }
792
793        @Override
794        public void visitParens(JCParens tree) {
795            tree.expr.accept(this);
796        }
797
798        @Override
799        public void visitTypeCast(JCTypeCast tree) {
800            tree.expr.accept(this);
801        }
802    }
803
804    private ClassReferenceVisitor classReferenceVisitor = new ClassReferenceVisitor();
805
806    /** Visitor method: generate code for an expression, catching and reporting
807     *  any completion failures.
808     *  @param tree    The expression to be visited.
809     *  @param pt      The expression's expected type (proto-type).
810     */
811    public Item genExpr(JCTree tree, Type pt) {
812        Type prevPt = this.pt;
813        try {
814            if (tree.type.constValue() != null) {
815                // Short circuit any expressions which are constants
816                tree.accept(classReferenceVisitor);
817                checkStringConstant(tree.pos(), tree.type.constValue());
818                result = items.makeImmediateItem(tree.type, tree.type.constValue());
819            } else {
820                this.pt = pt;
821                tree.accept(this);
822            }
823            return result.coerce(pt);
824        } catch (CompletionFailure ex) {
825            chk.completionError(tree.pos(), ex);
826            code.state.stacksize = 1;
827            return items.makeStackItem(pt);
828        } finally {
829            this.pt = prevPt;
830        }
831    }
832
833    /** Derived visitor method: generate code for a list of method arguments.
834     *  @param trees    The argument expressions to be visited.
835     *  @param pts      The expression's expected types (i.e. the formal parameter
836     *                  types of the invoked method).
837     */
838    public void genArgs(List<JCExpression> trees, List<Type> pts) {
839        for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail) {
840            genExpr(l.head, pts.head).load();
841            pts = pts.tail;
842        }
843        // require lists be of same length
844        Assert.check(pts.isEmpty());
845    }
846
847/* ************************************************************************
848 * Visitor methods for statements and definitions
849 *************************************************************************/
850
851    /** Thrown when the byte code size exceeds limit.
852     */
853    public static class CodeSizeOverflow extends RuntimeException {
854        private static final long serialVersionUID = 0;
855        public CodeSizeOverflow() {}
856    }
857
858    public void visitMethodDef(JCMethodDecl tree) {
859        // Create a new local environment that points pack at method
860        // definition.
861        Env<GenContext> localEnv = env.dup(tree);
862        localEnv.enclMethod = tree;
863        // The expected type of every return statement in this method
864        // is the method's return type.
865        this.pt = tree.sym.erasure(types).getReturnType();
866
867        checkDimension(tree.pos(), tree.sym.erasure(types));
868        genMethod(tree, localEnv, false);
869    }
870//where
871        /** Generate code for a method.
872         *  @param tree     The tree representing the method definition.
873         *  @param env      The environment current for the method body.
874         *  @param fatcode  A flag that indicates whether all jumps are
875         *                  within 32K.  We first invoke this method under
876         *                  the assumption that fatcode == false, i.e. all
877         *                  jumps are within 32K.  If this fails, fatcode
878         *                  is set to true and we try again.
879         */
880        void genMethod(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
881            MethodSymbol meth = tree.sym;
882            int extras = 0;
883            // Count up extra parameters
884            if (meth.isConstructor()) {
885                extras++;
886                if (meth.enclClass().isInner() &&
887                    !meth.enclClass().isStatic()) {
888                    extras++;
889                }
890            } else if ((tree.mods.flags & STATIC) == 0) {
891                extras++;
892            }
893            //      System.err.println("Generating " + meth + " in " + meth.owner); //DEBUG
894            if (Code.width(types.erasure(env.enclMethod.sym.type).getParameterTypes()) + extras >
895                ClassFile.MAX_PARAMETERS) {
896                log.error(tree.pos(), "limit.parameters");
897                nerrs++;
898            }
899
900            else if (tree.body != null) {
901                // Create a new code structure and initialize it.
902                int startpcCrt = initCode(tree, env, fatcode);
903
904                try {
905                    genStat(tree.body, env);
906                } catch (CodeSizeOverflow e) {
907                    // Failed due to code limit, try again with jsr/ret
908                    startpcCrt = initCode(tree, env, fatcode);
909                    genStat(tree.body, env);
910                }
911
912                if (code.state.stacksize != 0) {
913                    log.error(tree.body.pos(), "stack.sim.error", tree);
914                    throw new AssertionError();
915                }
916
917                // If last statement could complete normally, insert a
918                // return at the end.
919                if (code.isAlive()) {
920                    code.statBegin(TreeInfo.endPos(tree.body));
921                    if (env.enclMethod == null ||
922                        env.enclMethod.sym.type.getReturnType().hasTag(VOID)) {
923                        code.emitop0(return_);
924                    } else {
925                        // sometime dead code seems alive (4415991);
926                        // generate a small loop instead
927                        int startpc = code.entryPoint();
928                        CondItem c = items.makeCondItem(goto_);
929                        code.resolve(c.jumpTrue(), startpc);
930                    }
931                }
932                if (genCrt)
933                    code.crt.put(tree.body,
934                                 CRT_BLOCK,
935                                 startpcCrt,
936                                 code.curCP());
937
938                code.endScopes(0);
939
940                // If we exceeded limits, panic
941                if (code.checkLimits(tree.pos(), log)) {
942                    nerrs++;
943                    return;
944                }
945
946                // If we generated short code but got a long jump, do it again
947                // with fatCode = true.
948                if (!fatcode && code.fatcode) genMethod(tree, env, true);
949
950                // Clean up
951                if(stackMap == StackMapFormat.JSR202) {
952                    code.lastFrame = null;
953                    code.frameBeforeLast = null;
954                }
955
956                // Compress exception table
957                code.compressCatchTable();
958
959                // Fill in type annotation positions for exception parameters
960                code.fillExceptionParameterPositions();
961            }
962        }
963
964        private int initCode(JCMethodDecl tree, Env<GenContext> env, boolean fatcode) {
965            MethodSymbol meth = tree.sym;
966
967            // Create a new code structure.
968            meth.code = code = new Code(meth,
969                                        fatcode,
970                                        lineDebugInfo ? toplevel.lineMap : null,
971                                        varDebugInfo,
972                                        stackMap,
973                                        debugCode,
974                                        genCrt ? new CRTable(tree, env.toplevel.endPositions)
975                                               : null,
976                                        syms,
977                                        types,
978                                        pool);
979            items = new Items(pool, code, syms, types);
980            if (code.debugCode) {
981                System.err.println(meth + " for body " + tree);
982            }
983
984            // If method is not static, create a new local variable address
985            // for `this'.
986            if ((tree.mods.flags & STATIC) == 0) {
987                Type selfType = meth.owner.type;
988                if (meth.isConstructor() && selfType != syms.objectType)
989                    selfType = UninitializedType.uninitializedThis(selfType);
990                code.setDefined(
991                        code.newLocal(
992                            new VarSymbol(FINAL, names._this, selfType, meth.owner)));
993            }
994
995            // Mark all parameters as defined from the beginning of
996            // the method.
997            for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
998                checkDimension(l.head.pos(), l.head.sym.type);
999                code.setDefined(code.newLocal(l.head.sym));
1000            }
1001
1002            // Get ready to generate code for method body.
1003            int startpcCrt = genCrt ? code.curCP() : 0;
1004            code.entryPoint();
1005
1006            // Suppress initial stackmap
1007            code.pendingStackMap = false;
1008
1009            return startpcCrt;
1010        }
1011
1012    public void visitVarDef(JCVariableDecl tree) {
1013        VarSymbol v = tree.sym;
1014        code.newLocal(v);
1015        if (tree.init != null) {
1016            checkStringConstant(tree.init.pos(), v.getConstValue());
1017            if (v.getConstValue() == null || varDebugInfo) {
1018                genExpr(tree.init, v.erasure(types)).load();
1019                items.makeLocalItem(v).store();
1020            }
1021        }
1022        checkDimension(tree.pos(), v.type);
1023    }
1024
1025    public void visitSkip(JCSkip tree) {
1026    }
1027
1028    public void visitBlock(JCBlock tree) {
1029        int limit = code.nextreg;
1030        Env<GenContext> localEnv = env.dup(tree, new GenContext());
1031        genStats(tree.stats, localEnv);
1032        // End the scope of all block-local variables in variable info.
1033        if (!env.tree.hasTag(METHODDEF)) {
1034            code.statBegin(tree.endpos);
1035            code.endScopes(limit);
1036            code.pendingStatPos = Position.NOPOS;
1037        }
1038    }
1039
1040    public void visitDoLoop(JCDoWhileLoop tree) {
1041        genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), false);
1042    }
1043
1044    public void visitWhileLoop(JCWhileLoop tree) {
1045        genLoop(tree, tree.body, tree.cond, List.<JCExpressionStatement>nil(), true);
1046    }
1047
1048    public void visitForLoop(JCForLoop tree) {
1049        int limit = code.nextreg;
1050        genStats(tree.init, env);
1051        genLoop(tree, tree.body, tree.cond, tree.step, true);
1052        code.endScopes(limit);
1053    }
1054    //where
1055        /** Generate code for a loop.
1056         *  @param loop       The tree representing the loop.
1057         *  @param body       The loop's body.
1058         *  @param cond       The loop's controling condition.
1059         *  @param step       "Step" statements to be inserted at end of
1060         *                    each iteration.
1061         *  @param testFirst  True if the loop test belongs before the body.
1062         */
1063        private void genLoop(JCStatement loop,
1064                             JCStatement body,
1065                             JCExpression cond,
1066                             List<JCExpressionStatement> step,
1067                             boolean testFirst) {
1068            Env<GenContext> loopEnv = env.dup(loop, new GenContext());
1069            int startpc = code.entryPoint();
1070            if (testFirst) { //while or for loop
1071                CondItem c;
1072                if (cond != null) {
1073                    code.statBegin(cond.pos);
1074                    c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1075                } else {
1076                    c = items.makeCondItem(goto_);
1077                }
1078                Chain loopDone = c.jumpFalse();
1079                code.resolve(c.trueJumps);
1080                genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1081                code.resolve(loopEnv.info.cont);
1082                genStats(step, loopEnv);
1083                code.resolve(code.branch(goto_), startpc);
1084                code.resolve(loopDone);
1085            } else {
1086                genStat(body, loopEnv, CRT_STATEMENT | CRT_FLOW_TARGET);
1087                code.resolve(loopEnv.info.cont);
1088                genStats(step, loopEnv);
1089                CondItem c;
1090                if (cond != null) {
1091                    code.statBegin(cond.pos);
1092                    c = genCond(TreeInfo.skipParens(cond), CRT_FLOW_CONTROLLER);
1093                } else {
1094                    c = items.makeCondItem(goto_);
1095                }
1096                code.resolve(c.jumpTrue(), startpc);
1097                code.resolve(c.falseJumps);
1098            }
1099            code.resolve(loopEnv.info.exit);
1100            if (loopEnv.info.exit != null) {
1101                loopEnv.info.exit.state.defined.excludeFrom(code.nextreg);
1102            }
1103        }
1104
1105    public void visitForeachLoop(JCEnhancedForLoop tree) {
1106        throw new AssertionError(); // should have been removed by Lower.
1107    }
1108
1109    public void visitLabelled(JCLabeledStatement tree) {
1110        Env<GenContext> localEnv = env.dup(tree, new GenContext());
1111        genStat(tree.body, localEnv, CRT_STATEMENT);
1112        code.resolve(localEnv.info.exit);
1113    }
1114
1115    public void visitSwitch(JCSwitch tree) {
1116        int limit = code.nextreg;
1117        Assert.check(!tree.selector.type.hasTag(CLASS));
1118        int startpcCrt = genCrt ? code.curCP() : 0;
1119        Item sel = genExpr(tree.selector, syms.intType);
1120        List<JCCase> cases = tree.cases;
1121        if (cases.isEmpty()) {
1122            // We are seeing:  switch <sel> {}
1123            sel.load().drop();
1124            if (genCrt)
1125                code.crt.put(TreeInfo.skipParens(tree.selector),
1126                             CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1127        } else {
1128            // We are seeing a nonempty switch.
1129            sel.load();
1130            if (genCrt)
1131                code.crt.put(TreeInfo.skipParens(tree.selector),
1132                             CRT_FLOW_CONTROLLER, startpcCrt, code.curCP());
1133            Env<GenContext> switchEnv = env.dup(tree, new GenContext());
1134            switchEnv.info.isSwitch = true;
1135
1136            // Compute number of labels and minimum and maximum label values.
1137            // For each case, store its label in an array.
1138            int lo = Integer.MAX_VALUE;  // minimum label.
1139            int hi = Integer.MIN_VALUE;  // maximum label.
1140            int nlabels = 0;               // number of labels.
1141
1142            int[] labels = new int[cases.length()];  // the label array.
1143            int defaultIndex = -1;     // the index of the default clause.
1144
1145            List<JCCase> l = cases;
1146            for (int i = 0; i < labels.length; i++) {
1147                if (l.head.pat != null) {
1148                    int val = ((Number)l.head.pat.type.constValue()).intValue();
1149                    labels[i] = val;
1150                    if (val < lo) lo = val;
1151                    if (hi < val) hi = val;
1152                    nlabels++;
1153                } else {
1154                    Assert.check(defaultIndex == -1);
1155                    defaultIndex = i;
1156                }
1157                l = l.tail;
1158            }
1159
1160            // Determine whether to issue a tableswitch or a lookupswitch
1161            // instruction.
1162            long table_space_cost = 4 + ((long) hi - lo + 1); // words
1163            long table_time_cost = 3; // comparisons
1164            long lookup_space_cost = 3 + 2 * (long) nlabels;
1165            long lookup_time_cost = nlabels;
1166            int opcode =
1167                nlabels > 0 &&
1168                table_space_cost + 3 * table_time_cost <=
1169                lookup_space_cost + 3 * lookup_time_cost
1170                ?
1171                tableswitch : lookupswitch;
1172
1173            int startpc = code.curCP();    // the position of the selector operation
1174            code.emitop0(opcode);
1175            code.align(4);
1176            int tableBase = code.curCP();  // the start of the jump table
1177            int[] offsets = null;          // a table of offsets for a lookupswitch
1178            code.emit4(-1);                // leave space for default offset
1179            if (opcode == tableswitch) {
1180                code.emit4(lo);            // minimum label
1181                code.emit4(hi);            // maximum label
1182                for (long i = lo; i <= hi; i++) {  // leave space for jump table
1183                    code.emit4(-1);
1184                }
1185            } else {
1186                code.emit4(nlabels);    // number of labels
1187                for (int i = 0; i < nlabels; i++) {
1188                    code.emit4(-1); code.emit4(-1); // leave space for lookup table
1189                }
1190                offsets = new int[labels.length];
1191            }
1192            Code.State stateSwitch = code.state.dup();
1193            code.markDead();
1194
1195            // For each case do:
1196            l = cases;
1197            for (int i = 0; i < labels.length; i++) {
1198                JCCase c = l.head;
1199                l = l.tail;
1200
1201                int pc = code.entryPoint(stateSwitch);
1202                // Insert offset directly into code or else into the
1203                // offsets table.
1204                if (i != defaultIndex) {
1205                    if (opcode == tableswitch) {
1206                        code.put4(
1207                            tableBase + 4 * (labels[i] - lo + 3),
1208                            pc - startpc);
1209                    } else {
1210                        offsets[i] = pc - startpc;
1211                    }
1212                } else {
1213                    code.put4(tableBase, pc - startpc);
1214                }
1215
1216                // Generate code for the statements in this case.
1217                genStats(c.stats, switchEnv, CRT_FLOW_TARGET);
1218            }
1219
1220            // Resolve all breaks.
1221            code.resolve(switchEnv.info.exit);
1222
1223            // If we have not set the default offset, we do so now.
1224            if (code.get4(tableBase) == -1) {
1225                code.put4(tableBase, code.entryPoint(stateSwitch) - startpc);
1226            }
1227
1228            if (opcode == tableswitch) {
1229                // Let any unfilled slots point to the default case.
1230                int defaultOffset = code.get4(tableBase);
1231                for (long i = lo; i <= hi; i++) {
1232                    int t = (int)(tableBase + 4 * (i - lo + 3));
1233                    if (code.get4(t) == -1)
1234                        code.put4(t, defaultOffset);
1235                }
1236            } else {
1237                // Sort non-default offsets and copy into lookup table.
1238                if (defaultIndex >= 0)
1239                    for (int i = defaultIndex; i < labels.length - 1; i++) {
1240                        labels[i] = labels[i+1];
1241                        offsets[i] = offsets[i+1];
1242                    }
1243                if (nlabels > 0)
1244                    qsort2(labels, offsets, 0, nlabels - 1);
1245                for (int i = 0; i < nlabels; i++) {
1246                    int caseidx = tableBase + 8 * (i + 1);
1247                    code.put4(caseidx, labels[i]);
1248                    code.put4(caseidx + 4, offsets[i]);
1249                }
1250            }
1251        }
1252        code.endScopes(limit);
1253    }
1254//where
1255        /** Sort (int) arrays of keys and values
1256         */
1257       static void qsort2(int[] keys, int[] values, int lo, int hi) {
1258            int i = lo;
1259            int j = hi;
1260            int pivot = keys[(i+j)/2];
1261            do {
1262                while (keys[i] < pivot) i++;
1263                while (pivot < keys[j]) j--;
1264                if (i <= j) {
1265                    int temp1 = keys[i];
1266                    keys[i] = keys[j];
1267                    keys[j] = temp1;
1268                    int temp2 = values[i];
1269                    values[i] = values[j];
1270                    values[j] = temp2;
1271                    i++;
1272                    j--;
1273                }
1274            } while (i <= j);
1275            if (lo < j) qsort2(keys, values, lo, j);
1276            if (i < hi) qsort2(keys, values, i, hi);
1277        }
1278
1279    public void visitSynchronized(JCSynchronized tree) {
1280        int limit = code.nextreg;
1281        // Generate code to evaluate lock and save in temporary variable.
1282        final LocalItem lockVar = makeTemp(syms.objectType);
1283        genExpr(tree.lock, tree.lock.type).load().duplicate();
1284        lockVar.store();
1285
1286        // Generate code to enter monitor.
1287        code.emitop0(monitorenter);
1288        code.state.lock(lockVar.reg);
1289
1290        // Generate code for a try statement with given body, no catch clauses
1291        // in a new environment with the "exit-monitor" operation as finalizer.
1292        final Env<GenContext> syncEnv = env.dup(tree, new GenContext());
1293        syncEnv.info.finalize = new GenFinalizer() {
1294            void gen() {
1295                genLast();
1296                Assert.check(syncEnv.info.gaps.length() % 2 == 0);
1297                syncEnv.info.gaps.append(code.curCP());
1298            }
1299            void genLast() {
1300                if (code.isAlive()) {
1301                    lockVar.load();
1302                    code.emitop0(monitorexit);
1303                    code.state.unlock(lockVar.reg);
1304                }
1305            }
1306        };
1307        syncEnv.info.gaps = new ListBuffer<>();
1308        genTry(tree.body, List.<JCCatch>nil(), syncEnv);
1309        code.endScopes(limit);
1310    }
1311
1312    public void visitTry(final JCTry tree) {
1313        // Generate code for a try statement with given body and catch clauses,
1314        // in a new environment which calls the finally block if there is one.
1315        final Env<GenContext> tryEnv = env.dup(tree, new GenContext());
1316        final Env<GenContext> oldEnv = env;
1317        if (!useJsrLocally) {
1318            useJsrLocally =
1319                (stackMap == StackMapFormat.NONE) &&
1320                (jsrlimit <= 0 ||
1321                jsrlimit < 100 &&
1322                estimateCodeComplexity(tree.finalizer)>jsrlimit);
1323        }
1324        tryEnv.info.finalize = new GenFinalizer() {
1325            void gen() {
1326                if (useJsrLocally) {
1327                    if (tree.finalizer != null) {
1328                        Code.State jsrState = code.state.dup();
1329                        jsrState.push(Code.jsrReturnValue);
1330                        tryEnv.info.cont =
1331                            new Chain(code.emitJump(jsr),
1332                                      tryEnv.info.cont,
1333                                      jsrState);
1334                    }
1335                    Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1336                    tryEnv.info.gaps.append(code.curCP());
1337                } else {
1338                    Assert.check(tryEnv.info.gaps.length() % 2 == 0);
1339                    tryEnv.info.gaps.append(code.curCP());
1340                    genLast();
1341                }
1342            }
1343            void genLast() {
1344                if (tree.finalizer != null)
1345                    genStat(tree.finalizer, oldEnv, CRT_BLOCK);
1346            }
1347            boolean hasFinalizer() {
1348                return tree.finalizer != null;
1349            }
1350        };
1351        tryEnv.info.gaps = new ListBuffer<>();
1352        genTry(tree.body, tree.catchers, tryEnv);
1353    }
1354    //where
1355        /** Generate code for a try or synchronized statement
1356         *  @param body      The body of the try or synchronized statement.
1357         *  @param catchers  The lis of catch clauses.
1358         *  @param env       the environment current for the body.
1359         */
1360        void genTry(JCTree body, List<JCCatch> catchers, Env<GenContext> env) {
1361            int limit = code.nextreg;
1362            int startpc = code.curCP();
1363            Code.State stateTry = code.state.dup();
1364            genStat(body, env, CRT_BLOCK);
1365            int endpc = code.curCP();
1366            boolean hasFinalizer =
1367                env.info.finalize != null &&
1368                env.info.finalize.hasFinalizer();
1369            List<Integer> gaps = env.info.gaps.toList();
1370            code.statBegin(TreeInfo.endPos(body));
1371            genFinalizer(env);
1372            code.statBegin(TreeInfo.endPos(env.tree));
1373            Chain exitChain = code.branch(goto_);
1374            endFinalizerGap(env);
1375            if (startpc != endpc) for (List<JCCatch> l = catchers; l.nonEmpty(); l = l.tail) {
1376                // start off with exception on stack
1377                code.entryPoint(stateTry, l.head.param.sym.type);
1378                genCatch(l.head, env, startpc, endpc, gaps);
1379                genFinalizer(env);
1380                if (hasFinalizer || l.tail.nonEmpty()) {
1381                    code.statBegin(TreeInfo.endPos(env.tree));
1382                    exitChain = Code.mergeChains(exitChain,
1383                                                 code.branch(goto_));
1384                }
1385                endFinalizerGap(env);
1386            }
1387            if (hasFinalizer) {
1388                // Create a new register segement to avoid allocating
1389                // the same variables in finalizers and other statements.
1390                code.newRegSegment();
1391
1392                // Add a catch-all clause.
1393
1394                // start off with exception on stack
1395                int catchallpc = code.entryPoint(stateTry, syms.throwableType);
1396
1397                // Register all exception ranges for catch all clause.
1398                // The range of the catch all clause is from the beginning
1399                // of the try or synchronized block until the present
1400                // code pointer excluding all gaps in the current
1401                // environment's GenContext.
1402                int startseg = startpc;
1403                while (env.info.gaps.nonEmpty()) {
1404                    int endseg = env.info.gaps.next().intValue();
1405                    registerCatch(body.pos(), startseg, endseg,
1406                                  catchallpc, 0);
1407                    startseg = env.info.gaps.next().intValue();
1408                }
1409                code.statBegin(TreeInfo.finalizerPos(env.tree));
1410                code.markStatBegin();
1411
1412                Item excVar = makeTemp(syms.throwableType);
1413                excVar.store();
1414                genFinalizer(env);
1415                excVar.load();
1416                registerCatch(body.pos(), startseg,
1417                              env.info.gaps.next().intValue(),
1418                              catchallpc, 0);
1419                code.emitop0(athrow);
1420                code.markDead();
1421
1422                // If there are jsr's to this finalizer, ...
1423                if (env.info.cont != null) {
1424                    // Resolve all jsr's.
1425                    code.resolve(env.info.cont);
1426
1427                    // Mark statement line number
1428                    code.statBegin(TreeInfo.finalizerPos(env.tree));
1429                    code.markStatBegin();
1430
1431                    // Save return address.
1432                    LocalItem retVar = makeTemp(syms.throwableType);
1433                    retVar.store();
1434
1435                    // Generate finalizer code.
1436                    env.info.finalize.genLast();
1437
1438                    // Return.
1439                    code.emitop1w(ret, retVar.reg);
1440                    code.markDead();
1441                }
1442            }
1443            // Resolve all breaks.
1444            code.resolve(exitChain);
1445
1446            code.endScopes(limit);
1447        }
1448
1449        /** Generate code for a catch clause.
1450         *  @param tree     The catch clause.
1451         *  @param env      The environment current in the enclosing try.
1452         *  @param startpc  Start pc of try-block.
1453         *  @param endpc    End pc of try-block.
1454         */
1455        void genCatch(JCCatch tree,
1456                      Env<GenContext> env,
1457                      int startpc, int endpc,
1458                      List<Integer> gaps) {
1459            if (startpc != endpc) {
1460                List<JCExpression> subClauses = TreeInfo.isMultiCatch(tree) ?
1461                        ((JCTypeUnion)tree.param.vartype).alternatives :
1462                        List.of(tree.param.vartype);
1463                while (gaps.nonEmpty()) {
1464                    for (JCExpression subCatch : subClauses) {
1465                        int catchType = makeRef(tree.pos(), subCatch.type);
1466                        int end = gaps.head.intValue();
1467                        registerCatch(tree.pos(),
1468                                      startpc,  end, code.curCP(),
1469                                      catchType);
1470                        if (subCatch.type.isAnnotated()) {
1471                            for (Attribute.TypeCompound tc :
1472                                     subCatch.type.getAnnotationMirrors()) {
1473                                tc.position.setCatchInfo(catchType, startpc);
1474                            }
1475                        }
1476                    }
1477                    gaps = gaps.tail;
1478                    startpc = gaps.head.intValue();
1479                    gaps = gaps.tail;
1480                }
1481                if (startpc < endpc) {
1482                    for (JCExpression subCatch : subClauses) {
1483                        int catchType = makeRef(tree.pos(), subCatch.type);
1484                        registerCatch(tree.pos(),
1485                                      startpc, endpc, code.curCP(),
1486                                      catchType);
1487                        if (subCatch.type.isAnnotated()) {
1488                            for (Attribute.TypeCompound tc :
1489                                     subCatch.type.getAnnotationMirrors()) {
1490                                tc.position.setCatchInfo(catchType, startpc);
1491                            }
1492                        }
1493                    }
1494                }
1495                VarSymbol exparam = tree.param.sym;
1496                code.statBegin(tree.pos);
1497                code.markStatBegin();
1498                int limit = code.nextreg;
1499                int exlocal = code.newLocal(exparam);
1500                items.makeLocalItem(exparam).store();
1501                code.statBegin(TreeInfo.firstStatPos(tree.body));
1502                genStat(tree.body, env, CRT_BLOCK);
1503                code.endScopes(limit);
1504                code.statBegin(TreeInfo.endPos(tree.body));
1505            }
1506        }
1507
1508        /** Register a catch clause in the "Exceptions" code-attribute.
1509         */
1510        void registerCatch(DiagnosticPosition pos,
1511                           int startpc, int endpc,
1512                           int handler_pc, int catch_type) {
1513            char startpc1 = (char)startpc;
1514            char endpc1 = (char)endpc;
1515            char handler_pc1 = (char)handler_pc;
1516            if (startpc1 == startpc &&
1517                endpc1 == endpc &&
1518                handler_pc1 == handler_pc) {
1519                code.addCatch(startpc1, endpc1, handler_pc1,
1520                              (char)catch_type);
1521            } else {
1522                log.error(pos, "limit.code.too.large.for.try.stmt");
1523                nerrs++;
1524            }
1525        }
1526
1527    /** Very roughly estimate the number of instructions needed for
1528     *  the given tree.
1529     */
1530    int estimateCodeComplexity(JCTree tree) {
1531        if (tree == null) return 0;
1532        class ComplexityScanner extends TreeScanner {
1533            int complexity = 0;
1534            public void scan(JCTree tree) {
1535                if (complexity > jsrlimit) return;
1536                super.scan(tree);
1537            }
1538            public void visitClassDef(JCClassDecl tree) {}
1539            public void visitDoLoop(JCDoWhileLoop tree)
1540                { super.visitDoLoop(tree); complexity++; }
1541            public void visitWhileLoop(JCWhileLoop tree)
1542                { super.visitWhileLoop(tree); complexity++; }
1543            public void visitForLoop(JCForLoop tree)
1544                { super.visitForLoop(tree); complexity++; }
1545            public void visitSwitch(JCSwitch tree)
1546                { super.visitSwitch(tree); complexity+=5; }
1547            public void visitCase(JCCase tree)
1548                { super.visitCase(tree); complexity++; }
1549            public void visitSynchronized(JCSynchronized tree)
1550                { super.visitSynchronized(tree); complexity+=6; }
1551            public void visitTry(JCTry tree)
1552                { super.visitTry(tree);
1553                  if (tree.finalizer != null) complexity+=6; }
1554            public void visitCatch(JCCatch tree)
1555                { super.visitCatch(tree); complexity+=2; }
1556            public void visitConditional(JCConditional tree)
1557                { super.visitConditional(tree); complexity+=2; }
1558            public void visitIf(JCIf tree)
1559                { super.visitIf(tree); complexity+=2; }
1560            // note: for break, continue, and return we don't take unwind() into account.
1561            public void visitBreak(JCBreak tree)
1562                { super.visitBreak(tree); complexity+=1; }
1563            public void visitContinue(JCContinue tree)
1564                { super.visitContinue(tree); complexity+=1; }
1565            public void visitReturn(JCReturn tree)
1566                { super.visitReturn(tree); complexity+=1; }
1567            public void visitThrow(JCThrow tree)
1568                { super.visitThrow(tree); complexity+=1; }
1569            public void visitAssert(JCAssert tree)
1570                { super.visitAssert(tree); complexity+=5; }
1571            public void visitApply(JCMethodInvocation tree)
1572                { super.visitApply(tree); complexity+=2; }
1573            public void visitNewClass(JCNewClass tree)
1574                { scan(tree.encl); scan(tree.args); complexity+=2; }
1575            public void visitNewArray(JCNewArray tree)
1576                { super.visitNewArray(tree); complexity+=5; }
1577            public void visitAssign(JCAssign tree)
1578                { super.visitAssign(tree); complexity+=1; }
1579            public void visitAssignop(JCAssignOp tree)
1580                { super.visitAssignop(tree); complexity+=2; }
1581            public void visitUnary(JCUnary tree)
1582                { complexity+=1;
1583                  if (tree.type.constValue() == null) super.visitUnary(tree); }
1584            public void visitBinary(JCBinary tree)
1585                { complexity+=1;
1586                  if (tree.type.constValue() == null) super.visitBinary(tree); }
1587            public void visitTypeTest(JCInstanceOf tree)
1588                { super.visitTypeTest(tree); complexity+=1; }
1589            public void visitIndexed(JCArrayAccess tree)
1590                { super.visitIndexed(tree); complexity+=1; }
1591            public void visitSelect(JCFieldAccess tree)
1592                { super.visitSelect(tree);
1593                  if (tree.sym.kind == VAR) complexity+=1; }
1594            public void visitIdent(JCIdent tree) {
1595                if (tree.sym.kind == VAR) {
1596                    complexity+=1;
1597                    if (tree.type.constValue() == null &&
1598                        tree.sym.owner.kind == TYP)
1599                        complexity+=1;
1600                }
1601            }
1602            public void visitLiteral(JCLiteral tree)
1603                { complexity+=1; }
1604            public void visitTree(JCTree tree) {}
1605            public void visitWildcard(JCWildcard tree) {
1606                throw new AssertionError(this.getClass().getName());
1607            }
1608        }
1609        ComplexityScanner scanner = new ComplexityScanner();
1610        tree.accept(scanner);
1611        return scanner.complexity;
1612    }
1613
1614    public void visitIf(JCIf tree) {
1615        int limit = code.nextreg;
1616        Chain thenExit = null;
1617        CondItem c = genCond(TreeInfo.skipParens(tree.cond),
1618                             CRT_FLOW_CONTROLLER);
1619        Chain elseChain = c.jumpFalse();
1620        if (!c.isFalse()) {
1621            code.resolve(c.trueJumps);
1622            genStat(tree.thenpart, env, CRT_STATEMENT | CRT_FLOW_TARGET);
1623            thenExit = code.branch(goto_);
1624        }
1625        if (elseChain != null) {
1626            code.resolve(elseChain);
1627            if (tree.elsepart != null) {
1628                genStat(tree.elsepart, env,CRT_STATEMENT | CRT_FLOW_TARGET);
1629            }
1630        }
1631        code.resolve(thenExit);
1632        code.endScopes(limit);
1633    }
1634
1635    public void visitExec(JCExpressionStatement tree) {
1636        // Optimize x++ to ++x and x-- to --x.
1637        JCExpression e = tree.expr;
1638        switch (e.getTag()) {
1639            case POSTINC:
1640                ((JCUnary) e).setTag(PREINC);
1641                break;
1642            case POSTDEC:
1643                ((JCUnary) e).setTag(PREDEC);
1644                break;
1645        }
1646        genExpr(tree.expr, tree.expr.type).drop();
1647    }
1648
1649    public void visitBreak(JCBreak tree) {
1650        Env<GenContext> targetEnv = unwind(tree.target, env);
1651        Assert.check(code.state.stacksize == 0);
1652        targetEnv.info.addExit(code.branch(goto_));
1653        endFinalizerGaps(env, targetEnv);
1654    }
1655
1656    public void visitContinue(JCContinue tree) {
1657        Env<GenContext> targetEnv = unwind(tree.target, env);
1658        Assert.check(code.state.stacksize == 0);
1659        targetEnv.info.addCont(code.branch(goto_));
1660        endFinalizerGaps(env, targetEnv);
1661    }
1662
1663    public void visitReturn(JCReturn tree) {
1664        int limit = code.nextreg;
1665        final Env<GenContext> targetEnv;
1666        if (tree.expr != null) {
1667            Item r = genExpr(tree.expr, pt).load();
1668            if (hasFinally(env.enclMethod, env)) {
1669                r = makeTemp(pt);
1670                r.store();
1671            }
1672            targetEnv = unwind(env.enclMethod, env);
1673            r.load();
1674            code.emitop0(ireturn + Code.truncate(Code.typecode(pt)));
1675        } else {
1676            /*  If we have a statement like:
1677             *
1678             *  return;
1679             *
1680             *  we need to store the code.pendingStatPos value before generating
1681             *  the finalizer.
1682             */
1683            int tmpPos = code.pendingStatPos;
1684            targetEnv = unwind(env.enclMethod, env);
1685            code.pendingStatPos = tmpPos;
1686            code.emitop0(return_);
1687        }
1688        endFinalizerGaps(env, targetEnv);
1689        code.endScopes(limit);
1690    }
1691
1692    public void visitThrow(JCThrow tree) {
1693        genExpr(tree.expr, tree.expr.type).load();
1694        code.emitop0(athrow);
1695    }
1696
1697/* ************************************************************************
1698 * Visitor methods for expressions
1699 *************************************************************************/
1700
1701    public void visitApply(JCMethodInvocation tree) {
1702        setTypeAnnotationPositions(tree.pos);
1703        // Generate code for method.
1704        Item m = genExpr(tree.meth, methodType);
1705        // Generate code for all arguments, where the expected types are
1706        // the parameters of the method's external type (that is, any implicit
1707        // outer instance of a super(...) call appears as first parameter).
1708        MethodSymbol msym = (MethodSymbol)TreeInfo.symbol(tree.meth);
1709        genArgs(tree.args,
1710                msym.externalType(types).getParameterTypes());
1711        if (!msym.isDynamic()) {
1712            code.statBegin(tree.pos);
1713        }
1714        result = m.invoke();
1715    }
1716
1717    public void visitConditional(JCConditional tree) {
1718        Chain thenExit = null;
1719        CondItem c = genCond(tree.cond, CRT_FLOW_CONTROLLER);
1720        Chain elseChain = c.jumpFalse();
1721        if (!c.isFalse()) {
1722            code.resolve(c.trueJumps);
1723            int startpc = genCrt ? code.curCP() : 0;
1724            code.statBegin(tree.truepart.pos);
1725            genExpr(tree.truepart, pt).load();
1726            code.state.forceStackTop(tree.type);
1727            if (genCrt) code.crt.put(tree.truepart, CRT_FLOW_TARGET,
1728                                     startpc, code.curCP());
1729            thenExit = code.branch(goto_);
1730        }
1731        if (elseChain != null) {
1732            code.resolve(elseChain);
1733            int startpc = genCrt ? code.curCP() : 0;
1734            code.statBegin(tree.falsepart.pos);
1735            genExpr(tree.falsepart, pt).load();
1736            code.state.forceStackTop(tree.type);
1737            if (genCrt) code.crt.put(tree.falsepart, CRT_FLOW_TARGET,
1738                                     startpc, code.curCP());
1739        }
1740        code.resolve(thenExit);
1741        result = items.makeStackItem(pt);
1742    }
1743
1744    private void setTypeAnnotationPositions(int treePos) {
1745        MethodSymbol meth = code.meth;
1746        boolean initOrClinit = code.meth.getKind() == javax.lang.model.element.ElementKind.CONSTRUCTOR
1747                || code.meth.getKind() == javax.lang.model.element.ElementKind.STATIC_INIT;
1748
1749        for (Attribute.TypeCompound ta : meth.getRawTypeAttributes()) {
1750            if (ta.hasUnknownPosition())
1751                ta.tryFixPosition();
1752
1753            if (ta.position.matchesPos(treePos))
1754                ta.position.updatePosOffset(code.cp);
1755        }
1756
1757        if (!initOrClinit)
1758            return;
1759
1760        for (Attribute.TypeCompound ta : meth.owner.getRawTypeAttributes()) {
1761            if (ta.hasUnknownPosition())
1762                ta.tryFixPosition();
1763
1764            if (ta.position.matchesPos(treePos))
1765                ta.position.updatePosOffset(code.cp);
1766        }
1767
1768        ClassSymbol clazz = meth.enclClass();
1769        for (Symbol s : new com.sun.tools.javac.model.FilteredMemberList(clazz.members())) {
1770            if (!s.getKind().isField())
1771                continue;
1772
1773            for (Attribute.TypeCompound ta : s.getRawTypeAttributes()) {
1774                if (ta.hasUnknownPosition())
1775                    ta.tryFixPosition();
1776
1777                if (ta.position.matchesPos(treePos))
1778                    ta.position.updatePosOffset(code.cp);
1779            }
1780        }
1781    }
1782
1783    public void visitNewClass(JCNewClass tree) {
1784        // Enclosing instances or anonymous classes should have been eliminated
1785        // by now.
1786        Assert.check(tree.encl == null && tree.def == null);
1787        setTypeAnnotationPositions(tree.pos);
1788
1789        code.emitop2(new_, makeRef(tree.pos(), tree.type));
1790        code.emitop0(dup);
1791
1792        // Generate code for all arguments, where the expected types are
1793        // the parameters of the constructor's external type (that is,
1794        // any implicit outer instance appears as first parameter).
1795        genArgs(tree.args, tree.constructor.externalType(types).getParameterTypes());
1796
1797        items.makeMemberItem(tree.constructor, true).invoke();
1798        result = items.makeStackItem(tree.type);
1799    }
1800
1801    public void visitNewArray(JCNewArray tree) {
1802        setTypeAnnotationPositions(tree.pos);
1803
1804        if (tree.elems != null) {
1805            Type elemtype = types.elemtype(tree.type);
1806            loadIntConst(tree.elems.length());
1807            Item arr = makeNewArray(tree.pos(), tree.type, 1);
1808            int i = 0;
1809            for (List<JCExpression> l = tree.elems; l.nonEmpty(); l = l.tail) {
1810                arr.duplicate();
1811                loadIntConst(i);
1812                i++;
1813                genExpr(l.head, elemtype).load();
1814                items.makeIndexedItem(elemtype).store();
1815            }
1816            result = arr;
1817        } else {
1818            for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1819                genExpr(l.head, syms.intType).load();
1820            }
1821            result = makeNewArray(tree.pos(), tree.type, tree.dims.length());
1822        }
1823    }
1824//where
1825        /** Generate code to create an array with given element type and number
1826         *  of dimensions.
1827         */
1828        Item makeNewArray(DiagnosticPosition pos, Type type, int ndims) {
1829            Type elemtype = types.elemtype(type);
1830            if (types.dimensions(type) > ClassFile.MAX_DIMENSIONS) {
1831                log.error(pos, "limit.dimensions");
1832                nerrs++;
1833            }
1834            int elemcode = Code.arraycode(elemtype);
1835            if (elemcode == 0 || (elemcode == 1 && ndims == 1)) {
1836                code.emitAnewarray(makeRef(pos, elemtype), type);
1837            } else if (elemcode == 1) {
1838                code.emitMultianewarray(ndims, makeRef(pos, type), type);
1839            } else {
1840                code.emitNewarray(elemcode, type);
1841            }
1842            return items.makeStackItem(type);
1843        }
1844
1845    public void visitParens(JCParens tree) {
1846        result = genExpr(tree.expr, tree.expr.type);
1847    }
1848
1849    public void visitAssign(JCAssign tree) {
1850        Item l = genExpr(tree.lhs, tree.lhs.type);
1851        genExpr(tree.rhs, tree.lhs.type).load();
1852        result = items.makeAssignItem(l);
1853    }
1854
1855    public void visitAssignop(JCAssignOp tree) {
1856        OperatorSymbol operator = (OperatorSymbol) tree.operator;
1857        Item l;
1858        if (operator.opcode == string_add) {
1859            // Generate code to make a string buffer
1860            makeStringBuffer(tree.pos());
1861
1862            // Generate code for first string, possibly save one
1863            // copy under buffer
1864            l = genExpr(tree.lhs, tree.lhs.type);
1865            if (l.width() > 0) {
1866                code.emitop0(dup_x1 + 3 * (l.width() - 1));
1867            }
1868
1869            // Load first string and append to buffer.
1870            l.load();
1871            appendString(tree.lhs);
1872
1873            // Append all other strings to buffer.
1874            appendStrings(tree.rhs);
1875
1876            // Convert buffer to string.
1877            bufferToString(tree.pos());
1878        } else {
1879            // Generate code for first expression
1880            l = genExpr(tree.lhs, tree.lhs.type);
1881
1882            // If we have an increment of -32768 to +32767 of a local
1883            // int variable we can use an incr instruction instead of
1884            // proceeding further.
1885            if ((tree.hasTag(PLUS_ASG) || tree.hasTag(MINUS_ASG)) &&
1886                l instanceof LocalItem &&
1887                tree.lhs.type.getTag().isSubRangeOf(INT) &&
1888                tree.rhs.type.getTag().isSubRangeOf(INT) &&
1889                tree.rhs.type.constValue() != null) {
1890                int ival = ((Number) tree.rhs.type.constValue()).intValue();
1891                if (tree.hasTag(MINUS_ASG)) ival = -ival;
1892                ((LocalItem)l).incr(ival);
1893                result = l;
1894                return;
1895            }
1896            // Otherwise, duplicate expression, load one copy
1897            // and complete binary operation.
1898            l.duplicate();
1899            l.coerce(operator.type.getParameterTypes().head).load();
1900            completeBinop(tree.lhs, tree.rhs, operator).coerce(tree.lhs.type);
1901        }
1902        result = items.makeAssignItem(l);
1903    }
1904
1905    public void visitUnary(JCUnary tree) {
1906        OperatorSymbol operator = (OperatorSymbol)tree.operator;
1907        if (tree.hasTag(NOT)) {
1908            CondItem od = genCond(tree.arg, false);
1909            result = od.negate();
1910        } else {
1911            Item od = genExpr(tree.arg, operator.type.getParameterTypes().head);
1912            switch (tree.getTag()) {
1913            case POS:
1914                result = od.load();
1915                break;
1916            case NEG:
1917                result = od.load();
1918                code.emitop0(operator.opcode);
1919                break;
1920            case COMPL:
1921                result = od.load();
1922                emitMinusOne(od.typecode);
1923                code.emitop0(operator.opcode);
1924                break;
1925            case PREINC: case PREDEC:
1926                od.duplicate();
1927                if (od instanceof LocalItem &&
1928                    (operator.opcode == iadd || operator.opcode == isub)) {
1929                    ((LocalItem)od).incr(tree.hasTag(PREINC) ? 1 : -1);
1930                    result = od;
1931                } else {
1932                    od.load();
1933                    code.emitop0(one(od.typecode));
1934                    code.emitop0(operator.opcode);
1935                    // Perform narrowing primitive conversion if byte,
1936                    // char, or short.  Fix for 4304655.
1937                    if (od.typecode != INTcode &&
1938                        Code.truncate(od.typecode) == INTcode)
1939                      code.emitop0(int2byte + od.typecode - BYTEcode);
1940                    result = items.makeAssignItem(od);
1941                }
1942                break;
1943            case POSTINC: case POSTDEC:
1944                od.duplicate();
1945                if (od instanceof LocalItem &&
1946                    (operator.opcode == iadd || operator.opcode == isub)) {
1947                    Item res = od.load();
1948                    ((LocalItem)od).incr(tree.hasTag(POSTINC) ? 1 : -1);
1949                    result = res;
1950                } else {
1951                    Item res = od.load();
1952                    od.stash(od.typecode);
1953                    code.emitop0(one(od.typecode));
1954                    code.emitop0(operator.opcode);
1955                    // Perform narrowing primitive conversion if byte,
1956                    // char, or short.  Fix for 4304655.
1957                    if (od.typecode != INTcode &&
1958                        Code.truncate(od.typecode) == INTcode)
1959                      code.emitop0(int2byte + od.typecode - BYTEcode);
1960                    od.store();
1961                    result = res;
1962                }
1963                break;
1964            case NULLCHK:
1965                result = od.load();
1966                code.emitop0(dup);
1967                genNullCheck(tree.pos());
1968                break;
1969            default:
1970                Assert.error();
1971            }
1972        }
1973    }
1974
1975    /** Generate a null check from the object value at stack top. */
1976    private void genNullCheck(DiagnosticPosition pos) {
1977        callMethod(pos, syms.objectType, names.getClass,
1978                   List.<Type>nil(), false);
1979        code.emitop0(pop);
1980    }
1981
1982    public void visitBinary(JCBinary tree) {
1983        OperatorSymbol operator = (OperatorSymbol)tree.operator;
1984        if (operator.opcode == string_add) {
1985            // Create a string buffer.
1986            makeStringBuffer(tree.pos());
1987            // Append all strings to buffer.
1988            appendStrings(tree);
1989            // Convert buffer to string.
1990            bufferToString(tree.pos());
1991            result = items.makeStackItem(syms.stringType);
1992        } else if (tree.hasTag(AND)) {
1993            CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
1994            if (!lcond.isFalse()) {
1995                Chain falseJumps = lcond.jumpFalse();
1996                code.resolve(lcond.trueJumps);
1997                CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
1998                result = items.
1999                    makeCondItem(rcond.opcode,
2000                                 rcond.trueJumps,
2001                                 Code.mergeChains(falseJumps,
2002                                                  rcond.falseJumps));
2003            } else {
2004                result = lcond;
2005            }
2006        } else if (tree.hasTag(OR)) {
2007            CondItem lcond = genCond(tree.lhs, CRT_FLOW_CONTROLLER);
2008            if (!lcond.isTrue()) {
2009                Chain trueJumps = lcond.jumpTrue();
2010                code.resolve(lcond.falseJumps);
2011                CondItem rcond = genCond(tree.rhs, CRT_FLOW_TARGET);
2012                result = items.
2013                    makeCondItem(rcond.opcode,
2014                                 Code.mergeChains(trueJumps, rcond.trueJumps),
2015                                 rcond.falseJumps);
2016            } else {
2017                result = lcond;
2018            }
2019        } else {
2020            Item od = genExpr(tree.lhs, operator.type.getParameterTypes().head);
2021            od.load();
2022            result = completeBinop(tree.lhs, tree.rhs, operator);
2023        }
2024    }
2025//where
2026        /** Make a new string buffer.
2027         */
2028        void makeStringBuffer(DiagnosticPosition pos) {
2029            code.emitop2(new_, makeRef(pos, stringBufferType));
2030            code.emitop0(dup);
2031            callMethod(
2032                pos, stringBufferType, names.init, List.<Type>nil(), false);
2033        }
2034
2035        /** Append value (on tos) to string buffer (on tos - 1).
2036         */
2037        void appendString(JCTree tree) {
2038            Type t = tree.type.baseType();
2039            if (!t.isPrimitive() && t.tsym != syms.stringType.tsym) {
2040                t = syms.objectType;
2041            }
2042            items.makeMemberItem(getStringBufferAppend(tree, t), false).invoke();
2043        }
2044        Symbol getStringBufferAppend(JCTree tree, Type t) {
2045            Assert.checkNull(t.constValue());
2046            Symbol method = stringBufferAppend.get(t);
2047            if (method == null) {
2048                method = rs.resolveInternalMethod(tree.pos(),
2049                                                  attrEnv,
2050                                                  stringBufferType,
2051                                                  names.append,
2052                                                  List.of(t),
2053                                                  null);
2054                stringBufferAppend.put(t, method);
2055            }
2056            return method;
2057        }
2058
2059        /** Add all strings in tree to string buffer.
2060         */
2061        void appendStrings(JCTree tree) {
2062            tree = TreeInfo.skipParens(tree);
2063            if (tree.hasTag(PLUS) && tree.type.constValue() == null) {
2064                JCBinary op = (JCBinary) tree;
2065                if (op.operator.kind == MTH &&
2066                    ((OperatorSymbol) op.operator).opcode == string_add) {
2067                    appendStrings(op.lhs);
2068                    appendStrings(op.rhs);
2069                    return;
2070                }
2071            }
2072            genExpr(tree, tree.type).load();
2073            appendString(tree);
2074        }
2075
2076        /** Convert string buffer on tos to string.
2077         */
2078        void bufferToString(DiagnosticPosition pos) {
2079            callMethod(
2080                pos,
2081                stringBufferType,
2082                names.toString,
2083                List.<Type>nil(),
2084                false);
2085        }
2086
2087        /** Complete generating code for operation, with left operand
2088         *  already on stack.
2089         *  @param lhs       The tree representing the left operand.
2090         *  @param rhs       The tree representing the right operand.
2091         *  @param operator  The operator symbol.
2092         */
2093        Item completeBinop(JCTree lhs, JCTree rhs, OperatorSymbol operator) {
2094            MethodType optype = (MethodType)operator.type;
2095            int opcode = operator.opcode;
2096            if (opcode >= if_icmpeq && opcode <= if_icmple &&
2097                rhs.type.constValue() instanceof Number &&
2098                ((Number) rhs.type.constValue()).intValue() == 0) {
2099                opcode = opcode + (ifeq - if_icmpeq);
2100            } else if (opcode >= if_acmpeq && opcode <= if_acmpne &&
2101                       TreeInfo.isNull(rhs)) {
2102                opcode = opcode + (if_acmp_null - if_acmpeq);
2103            } else {
2104                // The expected type of the right operand is
2105                // the second parameter type of the operator, except for
2106                // shifts with long shiftcount, where we convert the opcode
2107                // to a short shift and the expected type to int.
2108                Type rtype = operator.erasure(types).getParameterTypes().tail.head;
2109                if (opcode >= ishll && opcode <= lushrl) {
2110                    opcode = opcode + (ishl - ishll);
2111                    rtype = syms.intType;
2112                }
2113                // Generate code for right operand and load.
2114                genExpr(rhs, rtype).load();
2115                // If there are two consecutive opcode instructions,
2116                // emit the first now.
2117                if (opcode >= (1 << preShift)) {
2118                    code.emitop0(opcode >> preShift);
2119                    opcode = opcode & 0xFF;
2120                }
2121            }
2122            if (opcode >= ifeq && opcode <= if_acmpne ||
2123                opcode == if_acmp_null || opcode == if_acmp_nonnull) {
2124                return items.makeCondItem(opcode);
2125            } else {
2126                code.emitop0(opcode);
2127                return items.makeStackItem(optype.restype);
2128            }
2129        }
2130
2131    public void visitTypeCast(JCTypeCast tree) {
2132        setTypeAnnotationPositions(tree.pos);
2133        result = genExpr(tree.expr, tree.clazz.type).load();
2134        // Additional code is only needed if we cast to a reference type
2135        // which is not statically a supertype of the expression's type.
2136        // For basic types, the coerce(...) in genExpr(...) will do
2137        // the conversion.
2138        if (!tree.clazz.type.isPrimitive() &&
2139            types.asSuper(tree.expr.type, tree.clazz.type.tsym) == null) {
2140            code.emitop2(checkcast, makeRef(tree.pos(), tree.clazz.type));
2141        }
2142    }
2143
2144    public void visitWildcard(JCWildcard tree) {
2145        throw new AssertionError(this.getClass().getName());
2146    }
2147
2148    public void visitTypeTest(JCInstanceOf tree) {
2149        setTypeAnnotationPositions(tree.pos);
2150        genExpr(tree.expr, tree.expr.type).load();
2151        code.emitop2(instanceof_, makeRef(tree.pos(), tree.clazz.type));
2152        result = items.makeStackItem(syms.booleanType);
2153    }
2154
2155    public void visitIndexed(JCArrayAccess tree) {
2156        genExpr(tree.indexed, tree.indexed.type).load();
2157        genExpr(tree.index, syms.intType).load();
2158        result = items.makeIndexedItem(tree.type);
2159    }
2160
2161    public void visitIdent(JCIdent tree) {
2162        Symbol sym = tree.sym;
2163        if (tree.name == names._this || tree.name == names._super) {
2164            Item res = tree.name == names._this
2165                ? items.makeThisItem()
2166                : items.makeSuperItem();
2167            if (sym.kind == MTH) {
2168                // Generate code to address the constructor.
2169                res.load();
2170                res = items.makeMemberItem(sym, true);
2171            }
2172            result = res;
2173        } else if (sym.kind == VAR && sym.owner.kind == MTH) {
2174            result = items.makeLocalItem((VarSymbol)sym);
2175        } else if (isInvokeDynamic(sym)) {
2176            result = items.makeDynamicItem(sym);
2177        } else if ((sym.flags() & STATIC) != 0) {
2178            if (!isAccessSuper(env.enclMethod))
2179                sym = binaryQualifier(sym, env.enclClass.type);
2180            result = items.makeStaticItem(sym);
2181        } else {
2182            items.makeThisItem().load();
2183            sym = binaryQualifier(sym, env.enclClass.type);
2184            result = items.makeMemberItem(sym, (sym.flags() & PRIVATE) != 0);
2185        }
2186    }
2187
2188    public void visitSelect(JCFieldAccess tree) {
2189        Symbol sym = tree.sym;
2190
2191        if (tree.name == names._class) {
2192            code.emitLdc(makeRef(tree.pos(), tree.selected.type));
2193            result = items.makeStackItem(pt);
2194            return;
2195       }
2196
2197        Symbol ssym = TreeInfo.symbol(tree.selected);
2198
2199        // Are we selecting via super?
2200        boolean selectSuper =
2201            ssym != null && (ssym.kind == TYP || ssym.name == names._super);
2202
2203        // Are we accessing a member of the superclass in an access method
2204        // resulting from a qualified super?
2205        boolean accessSuper = isAccessSuper(env.enclMethod);
2206
2207        Item base = (selectSuper)
2208            ? items.makeSuperItem()
2209            : genExpr(tree.selected, tree.selected.type);
2210
2211        if (sym.kind == VAR && ((VarSymbol) sym).getConstValue() != null) {
2212            // We are seeing a variable that is constant but its selecting
2213            // expression is not.
2214            if ((sym.flags() & STATIC) != 0) {
2215                if (!selectSuper && (ssym == null || ssym.kind != TYP))
2216                    base = base.load();
2217                base.drop();
2218            } else {
2219                base.load();
2220                genNullCheck(tree.selected.pos());
2221            }
2222            result = items.
2223                makeImmediateItem(sym.type, ((VarSymbol) sym).getConstValue());
2224        } else {
2225            if (isInvokeDynamic(sym)) {
2226                result = items.makeDynamicItem(sym);
2227                return;
2228            } else {
2229                sym = binaryQualifier(sym, tree.selected.type);
2230            }
2231            if ((sym.flags() & STATIC) != 0) {
2232                if (!selectSuper && (ssym == null || ssym.kind != TYP))
2233                    base = base.load();
2234                base.drop();
2235                result = items.makeStaticItem(sym);
2236            } else {
2237                base.load();
2238                if (sym == syms.lengthVar) {
2239                    code.emitop0(arraylength);
2240                    result = items.makeStackItem(syms.intType);
2241                } else {
2242                    result = items.
2243                        makeMemberItem(sym,
2244                                       (sym.flags() & PRIVATE) != 0 ||
2245                                       selectSuper || accessSuper);
2246                }
2247            }
2248        }
2249    }
2250
2251    public boolean isInvokeDynamic(Symbol sym) {
2252        return sym.kind == MTH && ((MethodSymbol)sym).isDynamic();
2253    }
2254
2255    public void visitLiteral(JCLiteral tree) {
2256        if (tree.type.hasTag(BOT)) {
2257            code.emitop0(aconst_null);
2258            if (types.dimensions(pt) > 1) {
2259                code.emitop2(checkcast, makeRef(tree.pos(), pt));
2260                result = items.makeStackItem(pt);
2261            } else {
2262                result = items.makeStackItem(tree.type);
2263            }
2264        }
2265        else
2266            result = items.makeImmediateItem(tree.type, tree.value);
2267    }
2268
2269    public void visitLetExpr(LetExpr tree) {
2270        int limit = code.nextreg;
2271        genStats(tree.defs, env);
2272        result = genExpr(tree.expr, tree.expr.type).load();
2273        code.endScopes(limit);
2274    }
2275
2276    private void generateReferencesToPrunedTree(ClassSymbol classSymbol, Pool pool) {
2277        List<JCTree> prunedInfo = lower.prunedTree.get(classSymbol);
2278        if (prunedInfo != null) {
2279            for (JCTree prunedTree: prunedInfo) {
2280                prunedTree.accept(classReferenceVisitor);
2281            }
2282        }
2283    }
2284
2285/* ************************************************************************
2286 * main method
2287 *************************************************************************/
2288
2289    /** Generate code for a class definition.
2290     *  @param env   The attribution environment that belongs to the
2291     *               outermost class containing this class definition.
2292     *               We need this for resolving some additional symbols.
2293     *  @param cdef  The tree representing the class definition.
2294     *  @return      True if code is generated with no errors.
2295     */
2296    public boolean genClass(Env<AttrContext> env, JCClassDecl cdef) {
2297        try {
2298            attrEnv = env;
2299            ClassSymbol c = cdef.sym;
2300            this.toplevel = env.toplevel;
2301            this.endPosTable = toplevel.endPositions;
2302            cdef.defs = normalizeDefs(cdef.defs, c);
2303            c.pool = pool;
2304            pool.reset();
2305            generateReferencesToPrunedTree(c, pool);
2306            Env<GenContext> localEnv = new Env<>(cdef, new GenContext());
2307            localEnv.toplevel = env.toplevel;
2308            localEnv.enclClass = cdef;
2309
2310            for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2311                genDef(l.head, localEnv);
2312            }
2313            if (pool.numEntries() > Pool.MAX_ENTRIES) {
2314                log.error(cdef.pos(), "limit.pool");
2315                nerrs++;
2316            }
2317            if (nerrs != 0) {
2318                // if errors, discard code
2319                for (List<JCTree> l = cdef.defs; l.nonEmpty(); l = l.tail) {
2320                    if (l.head.hasTag(METHODDEF))
2321                        ((JCMethodDecl) l.head).sym.code = null;
2322                }
2323            }
2324            cdef.defs = List.nil(); // discard trees
2325            return nerrs == 0;
2326        } finally {
2327            // note: this method does NOT support recursion.
2328            attrEnv = null;
2329            this.env = null;
2330            toplevel = null;
2331            endPosTable = null;
2332            nerrs = 0;
2333        }
2334    }
2335
2336/* ************************************************************************
2337 * Auxiliary classes
2338 *************************************************************************/
2339
2340    /** An abstract class for finalizer generation.
2341     */
2342    abstract class GenFinalizer {
2343        /** Generate code to clean up when unwinding. */
2344        abstract void gen();
2345
2346        /** Generate code to clean up at last. */
2347        abstract void genLast();
2348
2349        /** Does this finalizer have some nontrivial cleanup to perform? */
2350        boolean hasFinalizer() { return true; }
2351    }
2352
2353    /** code generation contexts,
2354     *  to be used as type parameter for environments.
2355     */
2356    static class GenContext {
2357
2358        /** A chain for all unresolved jumps that exit the current environment.
2359         */
2360        Chain exit = null;
2361
2362        /** A chain for all unresolved jumps that continue in the
2363         *  current environment.
2364         */
2365        Chain cont = null;
2366
2367        /** A closure that generates the finalizer of the current environment.
2368         *  Only set for Synchronized and Try contexts.
2369         */
2370        GenFinalizer finalize = null;
2371
2372        /** Is this a switch statement?  If so, allocate registers
2373         * even when the variable declaration is unreachable.
2374         */
2375        boolean isSwitch = false;
2376
2377        /** A list buffer containing all gaps in the finalizer range,
2378         *  where a catch all exception should not apply.
2379         */
2380        ListBuffer<Integer> gaps = null;
2381
2382        /** Add given chain to exit chain.
2383         */
2384        void addExit(Chain c)  {
2385            exit = Code.mergeChains(c, exit);
2386        }
2387
2388        /** Add given chain to cont chain.
2389         */
2390        void addCont(Chain c) {
2391            cont = Code.mergeChains(c, cont);
2392        }
2393    }
2394
2395}
2396