Resolve.java revision 4091:d2020e584c10
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.tools.javac.api.Formattable.LocalizedString;
29import com.sun.tools.javac.code.*;
30import com.sun.tools.javac.code.Scope.WriteableScope;
31import com.sun.tools.javac.code.Symbol.*;
32import com.sun.tools.javac.code.Type.*;
33import com.sun.tools.javac.comp.Attr.ResultInfo;
34import com.sun.tools.javac.comp.Check.CheckContext;
35import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
36import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
37import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
38import com.sun.tools.javac.comp.Infer.FreeTypeListener;
39import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
40import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
41import com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind;
42import com.sun.tools.javac.jvm.*;
43import com.sun.tools.javac.main.Option;
44import com.sun.tools.javac.resources.CompilerProperties.Fragments;
45import com.sun.tools.javac.tree.*;
46import com.sun.tools.javac.tree.JCTree.*;
47import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
48import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
49import com.sun.tools.javac.util.*;
50import com.sun.tools.javac.util.DefinedBy.Api;
51import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
52import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
53import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
54
55import java.util.Arrays;
56import java.util.Collection;
57import java.util.EnumSet;
58import java.util.HashSet;
59import java.util.Iterator;
60import java.util.LinkedHashMap;
61import java.util.Map;
62import java.util.Set;
63import java.util.function.BiFunction;
64import java.util.function.BiPredicate;
65import java.util.function.Function;
66import java.util.function.Predicate;
67import java.util.stream.Stream;
68
69import javax.lang.model.element.ElementVisitor;
70
71import static com.sun.tools.javac.code.Flags.*;
72import static com.sun.tools.javac.code.Flags.BLOCK;
73import static com.sun.tools.javac.code.Flags.STATIC;
74import static com.sun.tools.javac.code.Kinds.*;
75import static com.sun.tools.javac.code.Kinds.Kind.*;
76import static com.sun.tools.javac.code.TypeTag.*;
77import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
78import static com.sun.tools.javac.tree.JCTree.Tag.*;
79import static com.sun.tools.javac.util.Iterators.createCompoundIterator;
80
81/** Helper class for name resolution, used mostly by the attribution phase.
82 *
83 *  <p><b>This is NOT part of any supported API.
84 *  If you write code that depends on this, you do so at your own risk.
85 *  This code and its internal interfaces are subject to change or
86 *  deletion without notice.</b>
87 */
88public class Resolve {
89    protected static final Context.Key<Resolve> resolveKey = new Context.Key<>();
90
91    Names names;
92    Log log;
93    Symtab syms;
94    Attr attr;
95    DeferredAttr deferredAttr;
96    Check chk;
97    Infer infer;
98    ClassFinder finder;
99    ModuleFinder moduleFinder;
100    Types types;
101    JCDiagnostic.Factory diags;
102    public final boolean allowMethodHandles;
103    public final boolean allowFunctionalInterfaceMostSpecific;
104    public final boolean allowModules;
105    public final boolean checkVarargsAccessAfterResolution;
106    private final boolean compactMethodDiags;
107    final EnumSet<VerboseResolutionMode> verboseResolutionMode;
108
109    WriteableScope polymorphicSignatureScope;
110
111    protected Resolve(Context context) {
112        context.put(resolveKey, this);
113        syms = Symtab.instance(context);
114
115        varNotFound = new SymbolNotFoundError(ABSENT_VAR);
116        methodNotFound = new SymbolNotFoundError(ABSENT_MTH);
117        typeNotFound = new SymbolNotFoundError(ABSENT_TYP);
118        referenceNotFound = new ReferenceLookupResult(methodNotFound, null);
119
120        names = Names.instance(context);
121        log = Log.instance(context);
122        attr = Attr.instance(context);
123        deferredAttr = DeferredAttr.instance(context);
124        chk = Check.instance(context);
125        infer = Infer.instance(context);
126        finder = ClassFinder.instance(context);
127        moduleFinder = ModuleFinder.instance(context);
128        types = Types.instance(context);
129        diags = JCDiagnostic.Factory.instance(context);
130        Source source = Source.instance(context);
131        Options options = Options.instance(context);
132        compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
133                options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
134        verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
135        Target target = Target.instance(context);
136        allowMethodHandles = target.hasMethodHandles();
137        allowFunctionalInterfaceMostSpecific = source.allowFunctionalInterfaceMostSpecific();
138        checkVarargsAccessAfterResolution =
139                source.allowPostApplicabilityVarargsAccessCheck();
140        polymorphicSignatureScope = WriteableScope.create(syms.noSymbol);
141
142        inapplicableMethodException = new InapplicableMethodException(diags);
143
144        allowModules = source.allowModules();
145    }
146
147    /** error symbols, which are returned when resolution fails
148     */
149    private final SymbolNotFoundError varNotFound;
150    private final SymbolNotFoundError methodNotFound;
151    private final SymbolNotFoundError typeNotFound;
152
153    /** empty reference lookup result */
154    private final ReferenceLookupResult referenceNotFound;
155
156    public static Resolve instance(Context context) {
157        Resolve instance = context.get(resolveKey);
158        if (instance == null)
159            instance = new Resolve(context);
160        return instance;
161    }
162
163    private static Symbol bestOf(Symbol s1,
164                                 Symbol s2) {
165        return s1.kind.betterThan(s2.kind) ? s1 : s2;
166    }
167
168    // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
169    enum VerboseResolutionMode {
170        SUCCESS("success"),
171        FAILURE("failure"),
172        APPLICABLE("applicable"),
173        INAPPLICABLE("inapplicable"),
174        DEFERRED_INST("deferred-inference"),
175        PREDEF("predef"),
176        OBJECT_INIT("object-init"),
177        INTERNAL("internal");
178
179        final String opt;
180
181        private VerboseResolutionMode(String opt) {
182            this.opt = opt;
183        }
184
185        static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
186            String s = opts.get("debug.verboseResolution");
187            EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
188            if (s == null) return res;
189            if (s.contains("all")) {
190                res = EnumSet.allOf(VerboseResolutionMode.class);
191            }
192            Collection<String> args = Arrays.asList(s.split(","));
193            for (VerboseResolutionMode mode : values()) {
194                if (args.contains(mode.opt)) {
195                    res.add(mode);
196                } else if (args.contains("-" + mode.opt)) {
197                    res.remove(mode);
198                }
199            }
200            return res;
201        }
202    }
203
204    void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
205            List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
206        boolean success = !bestSoFar.kind.isResolutionError();
207
208        if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
209            return;
210        } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
211            return;
212        }
213
214        if (bestSoFar.name == names.init &&
215                bestSoFar.owner == syms.objectType.tsym &&
216                !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
217            return; //skip diags for Object constructor resolution
218        } else if (site == syms.predefClass.type &&
219                !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
220            return; //skip spurious diags for predef symbols (i.e. operators)
221        } else if (currentResolutionContext.internalResolution &&
222                !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
223            return;
224        }
225
226        int pos = 0;
227        int mostSpecificPos = -1;
228        ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
229        for (Candidate c : currentResolutionContext.candidates) {
230            if (currentResolutionContext.step != c.step ||
231                    (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
232                    (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
233                continue;
234            } else {
235                subDiags.append(c.isApplicable() ?
236                        getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
237                        getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
238                if (c.sym == bestSoFar)
239                    mostSpecificPos = pos;
240                pos++;
241            }
242        }
243        String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
244        List<Type> argtypes2 = argtypes.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
245        JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
246                site.tsym, mostSpecificPos, currentResolutionContext.step,
247                methodArguments(argtypes2),
248                methodArguments(typeargtypes));
249        JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
250        log.report(d);
251    }
252
253    JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
254        JCDiagnostic subDiag = null;
255        if (sym.type.hasTag(FORALL)) {
256            subDiag = diags.fragment("partial.inst.sig", inst);
257        }
258
259        String key = subDiag == null ?
260                "applicable.method.found" :
261                "applicable.method.found.1";
262
263        return diags.fragment(key, pos, sym, subDiag);
264    }
265
266    JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
267        return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
268    }
269    // </editor-fold>
270
271/* ************************************************************************
272 * Identifier resolution
273 *************************************************************************/
274
275    /** An environment is "static" if its static level is greater than
276     *  the one of its outer environment
277     */
278    protected static boolean isStatic(Env<AttrContext> env) {
279        return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
280    }
281
282    /** An environment is an "initializer" if it is a constructor or
283     *  an instance initializer.
284     */
285    static boolean isInitializer(Env<AttrContext> env) {
286        Symbol owner = env.info.scope.owner;
287        return owner.isConstructor() ||
288            owner.owner.kind == TYP &&
289            (owner.kind == VAR ||
290             owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
291            (owner.flags() & STATIC) == 0;
292    }
293
294    /** Is class accessible in given evironment?
295     *  @param env    The current environment.
296     *  @param c      The class whose accessibility is checked.
297     */
298    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
299        return isAccessible(env, c, false);
300    }
301
302    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
303
304        /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
305           to refer to an inaccessible type
306        */
307        if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
308            return true;
309
310        if (env.info.visitingServiceImplementation &&
311            env.toplevel.modle == c.packge().modle) {
312            return true;
313        }
314
315        boolean isAccessible = false;
316        switch ((short)(c.flags() & AccessFlags)) {
317            case PRIVATE:
318                isAccessible =
319                    env.enclClass.sym.outermostClass() ==
320                    c.owner.outermostClass();
321                break;
322            case 0:
323                isAccessible =
324                    env.toplevel.packge == c.owner // fast special case
325                    ||
326                    env.toplevel.packge == c.packge();
327                break;
328            default: // error recovery
329                isAccessible = true;
330                break;
331            case PUBLIC:
332                if (allowModules) {
333                    ModuleSymbol currModule = env.toplevel.modle;
334                    currModule.complete();
335                    PackageSymbol p = c.packge();
336                    isAccessible =
337                        currModule == p.modle ||
338                        currModule.visiblePackages.get(p.fullname) == p ||
339                        p == syms.rootPackage ||
340                        (p.modle == syms.unnamedModule && currModule.readModules.contains(p.modle));
341                } else {
342                    isAccessible = true;
343                }
344                break;
345            case PROTECTED:
346                isAccessible =
347                    env.toplevel.packge == c.owner // fast special case
348                    ||
349                    env.toplevel.packge == c.packge()
350                    ||
351                    isInnerSubClass(env.enclClass.sym, c.owner);
352                break;
353        }
354        return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
355            isAccessible :
356            isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
357    }
358    //where
359        /** Is given class a subclass of given base class, or an inner class
360         *  of a subclass?
361         *  Return null if no such class exists.
362         *  @param c     The class which is the subclass or is contained in it.
363         *  @param base  The base class
364         */
365        private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
366            while (c != null && !c.isSubClass(base, types)) {
367                c = c.owner.enclClass();
368            }
369            return c != null;
370        }
371
372    boolean isAccessible(Env<AttrContext> env, Type t) {
373        return isAccessible(env, t, false);
374    }
375
376    boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
377        return (t.hasTag(ARRAY))
378            ? isAccessible(env, types.cvarUpperBound(types.elemtype(t)))
379            : isAccessible(env, t.tsym, checkInner);
380    }
381
382    /** Is symbol accessible as a member of given type in given environment?
383     *  @param env    The current environment.
384     *  @param site   The type of which the tested symbol is regarded
385     *                as a member.
386     *  @param sym    The symbol.
387     */
388    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
389        return isAccessible(env, site, sym, false);
390    }
391    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
392        if (sym.name == names.init && sym.owner != site.tsym) return false;
393
394        /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
395           to refer to an inaccessible type
396        */
397        if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
398            return true;
399
400        if (env.info.visitingServiceImplementation &&
401            env.toplevel.modle == sym.packge().modle) {
402            return true;
403        }
404
405        switch ((short)(sym.flags() & AccessFlags)) {
406        case PRIVATE:
407            return
408                (env.enclClass.sym == sym.owner // fast special case
409                 ||
410                 env.enclClass.sym.outermostClass() ==
411                 sym.owner.outermostClass())
412                &&
413                sym.isInheritedIn(site.tsym, types);
414        case 0:
415            return
416                (env.toplevel.packge == sym.owner.owner // fast special case
417                 ||
418                 env.toplevel.packge == sym.packge())
419                &&
420                isAccessible(env, site, checkInner)
421                &&
422                sym.isInheritedIn(site.tsym, types)
423                &&
424                notOverriddenIn(site, sym);
425        case PROTECTED:
426            return
427                (env.toplevel.packge == sym.owner.owner // fast special case
428                 ||
429                 env.toplevel.packge == sym.packge()
430                 ||
431                 isProtectedAccessible(sym, env.enclClass.sym, site)
432                 ||
433                 // OK to select instance method or field from 'super' or type name
434                 // (but type names should be disallowed elsewhere!)
435                 env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
436                &&
437                isAccessible(env, site, checkInner)
438                &&
439                notOverriddenIn(site, sym);
440        default: // this case includes erroneous combinations as well
441            return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
442        }
443    }
444    //where
445    /* `sym' is accessible only if not overridden by
446     * another symbol which is a member of `site'
447     * (because, if it is overridden, `sym' is not strictly
448     * speaking a member of `site'). A polymorphic signature method
449     * cannot be overridden (e.g. MH.invokeExact(Object[])).
450     */
451    private boolean notOverriddenIn(Type site, Symbol sym) {
452        if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
453            return true;
454        else {
455            Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
456            return (s2 == null || s2 == sym || sym.owner == s2.owner ||
457                    !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
458        }
459    }
460    //where
461        /** Is given protected symbol accessible if it is selected from given site
462         *  and the selection takes place in given class?
463         *  @param sym     The symbol with protected access
464         *  @param c       The class where the access takes place
465         *  @site          The type of the qualifier
466         */
467        private
468        boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
469            Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
470            while (c != null &&
471                   !(c.isSubClass(sym.owner, types) &&
472                     (c.flags() & INTERFACE) == 0 &&
473                     // In JLS 2e 6.6.2.1, the subclass restriction applies
474                     // only to instance fields and methods -- types are excluded
475                     // regardless of whether they are declared 'static' or not.
476                     ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
477                c = c.owner.enclClass();
478            return c != null;
479        }
480
481    /**
482     * Performs a recursive scan of a type looking for accessibility problems
483     * from current attribution environment
484     */
485    void checkAccessibleType(Env<AttrContext> env, Type t) {
486        accessibilityChecker.visit(t, env);
487    }
488
489    /**
490     * Accessibility type-visitor
491     */
492    Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
493            new Types.SimpleVisitor<Void, Env<AttrContext>>() {
494
495        void visit(List<Type> ts, Env<AttrContext> env) {
496            for (Type t : ts) {
497                visit(t, env);
498            }
499        }
500
501        public Void visitType(Type t, Env<AttrContext> env) {
502            return null;
503        }
504
505        @Override
506        public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
507            visit(t.elemtype, env);
508            return null;
509        }
510
511        @Override
512        public Void visitClassType(ClassType t, Env<AttrContext> env) {
513            visit(t.getTypeArguments(), env);
514            if (!isAccessible(env, t, true)) {
515                accessBase(new AccessError(env, null, t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
516            }
517            return null;
518        }
519
520        @Override
521        public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
522            visit(t.type, env);
523            return null;
524        }
525
526        @Override
527        public Void visitMethodType(MethodType t, Env<AttrContext> env) {
528            visit(t.getParameterTypes(), env);
529            visit(t.getReturnType(), env);
530            visit(t.getThrownTypes(), env);
531            return null;
532        }
533    };
534
535    /** Try to instantiate the type of a method so that it fits
536     *  given type arguments and argument types. If successful, return
537     *  the method's instantiated type, else return null.
538     *  The instantiation will take into account an additional leading
539     *  formal parameter if the method is an instance method seen as a member
540     *  of an under determined site. In this case, we treat site as an additional
541     *  parameter and the parameters of the class containing the method as
542     *  additional type variables that get instantiated.
543     *
544     *  @param env         The current environment
545     *  @param site        The type of which the method is a member.
546     *  @param m           The method symbol.
547     *  @param argtypes    The invocation's given value arguments.
548     *  @param typeargtypes    The invocation's given type arguments.
549     *  @param allowBoxing Allow boxing conversions of arguments.
550     *  @param useVarargs Box trailing arguments into an array for varargs.
551     */
552    Type rawInstantiate(Env<AttrContext> env,
553                        Type site,
554                        Symbol m,
555                        ResultInfo resultInfo,
556                        List<Type> argtypes,
557                        List<Type> typeargtypes,
558                        boolean allowBoxing,
559                        boolean useVarargs,
560                        Warner warn) throws Infer.InferenceException {
561        Type mt = types.memberType(site, m);
562        // tvars is the list of formal type variables for which type arguments
563        // need to inferred.
564        List<Type> tvars = List.nil();
565        if (typeargtypes == null) typeargtypes = List.nil();
566        if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
567            // This is not a polymorphic method, but typeargs are supplied
568            // which is fine, see JLS 15.12.2.1
569        } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
570            ForAll pmt = (ForAll) mt;
571            if (typeargtypes.length() != pmt.tvars.length())
572                 // not enough args
573                throw inapplicableMethodException.setMessage("wrong.number.type.args", Integer.toString(pmt.tvars.length()));
574            // Check type arguments are within bounds
575            List<Type> formals = pmt.tvars;
576            List<Type> actuals = typeargtypes;
577            while (formals.nonEmpty() && actuals.nonEmpty()) {
578                List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
579                                                pmt.tvars, typeargtypes);
580                for (; bounds.nonEmpty(); bounds = bounds.tail) {
581                    if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
582                        throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
583                }
584                formals = formals.tail;
585                actuals = actuals.tail;
586            }
587            mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
588        } else if (mt.hasTag(FORALL)) {
589            ForAll pmt = (ForAll) mt;
590            List<Type> tvars1 = types.newInstances(pmt.tvars);
591            tvars = tvars.appendList(tvars1);
592            mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
593        }
594
595        // find out whether we need to go the slow route via infer
596        boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
597        for (List<Type> l = argtypes;
598             l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
599             l = l.tail) {
600            if (l.head.hasTag(FORALL)) instNeeded = true;
601        }
602
603        if (instNeeded) {
604            return infer.instantiateMethod(env,
605                                    tvars,
606                                    (MethodType)mt,
607                                    resultInfo,
608                                    (MethodSymbol)m,
609                                    argtypes,
610                                    allowBoxing,
611                                    useVarargs,
612                                    currentResolutionContext,
613                                    warn);
614        }
615
616        DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
617        currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
618                                argtypes, mt.getParameterTypes(), warn);
619        dc.complete();
620        return mt;
621    }
622
623    Type checkMethod(Env<AttrContext> env,
624                     Type site,
625                     Symbol m,
626                     ResultInfo resultInfo,
627                     List<Type> argtypes,
628                     List<Type> typeargtypes,
629                     Warner warn) {
630        MethodResolutionContext prevContext = currentResolutionContext;
631        try {
632            currentResolutionContext = new MethodResolutionContext();
633            currentResolutionContext.attrMode = (resultInfo.pt == Infer.anyPoly) ?
634                    AttrMode.SPECULATIVE : DeferredAttr.AttrMode.CHECK;
635            if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
636                //method/constructor references need special check class
637                //to handle inference variables in 'argtypes' (might happen
638                //during an unsticking round)
639                currentResolutionContext.methodCheck =
640                        new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
641            }
642            MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
643            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
644                    step.isBoxingRequired(), step.isVarargsRequired(), warn);
645        }
646        finally {
647            currentResolutionContext = prevContext;
648        }
649    }
650
651    /** Same but returns null instead throwing a NoInstanceException
652     */
653    Type instantiate(Env<AttrContext> env,
654                     Type site,
655                     Symbol m,
656                     ResultInfo resultInfo,
657                     List<Type> argtypes,
658                     List<Type> typeargtypes,
659                     boolean allowBoxing,
660                     boolean useVarargs,
661                     Warner warn) {
662        try {
663            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
664                                  allowBoxing, useVarargs, warn);
665        } catch (InapplicableMethodException ex) {
666            return null;
667        }
668    }
669
670    /**
671     * This interface defines an entry point that should be used to perform a
672     * method check. A method check usually consist in determining as to whether
673     * a set of types (actuals) is compatible with another set of types (formals).
674     * Since the notion of compatibility can vary depending on the circumstances,
675     * this interfaces allows to easily add new pluggable method check routines.
676     */
677    interface MethodCheck {
678        /**
679         * Main method check routine. A method check usually consist in determining
680         * as to whether a set of types (actuals) is compatible with another set of
681         * types (formals). If an incompatibility is found, an unchecked exception
682         * is assumed to be thrown.
683         */
684        void argumentsAcceptable(Env<AttrContext> env,
685                                DeferredAttrContext deferredAttrContext,
686                                List<Type> argtypes,
687                                List<Type> formals,
688                                Warner warn);
689
690        /**
691         * Retrieve the method check object that will be used during a
692         * most specific check.
693         */
694        MethodCheck mostSpecificCheck(List<Type> actuals);
695    }
696
697    /**
698     * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
699     */
700    enum MethodCheckDiag {
701        /**
702         * Actuals and formals differs in length.
703         */
704        ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
705        /**
706         * An actual is incompatible with a formal.
707         */
708        ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
709        /**
710         * An actual is incompatible with the varargs element type.
711         */
712        VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
713        /**
714         * The varargs element type is inaccessible.
715         */
716        INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
717
718        final String basicKey;
719        final String inferKey;
720
721        MethodCheckDiag(String basicKey, String inferKey) {
722            this.basicKey = basicKey;
723            this.inferKey = inferKey;
724        }
725
726        String regex() {
727            return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
728        }
729    }
730
731    /**
732     * Dummy method check object. All methods are deemed applicable, regardless
733     * of their formal parameter types.
734     */
735    MethodCheck nilMethodCheck = new MethodCheck() {
736        public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
737            //do nothing - method always applicable regardless of actuals
738        }
739
740        public MethodCheck mostSpecificCheck(List<Type> actuals) {
741            return this;
742        }
743    };
744
745    /**
746     * Base class for 'real' method checks. The class defines the logic for
747     * iterating through formals and actuals and provides and entry point
748     * that can be used by subclasses in order to define the actual check logic.
749     */
750    abstract class AbstractMethodCheck implements MethodCheck {
751        @Override
752        public void argumentsAcceptable(final Env<AttrContext> env,
753                                    DeferredAttrContext deferredAttrContext,
754                                    List<Type> argtypes,
755                                    List<Type> formals,
756                                    Warner warn) {
757            //should we expand formals?
758            boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
759            JCTree callTree = treeForDiagnostics(env);
760            List<JCExpression> trees = TreeInfo.args(callTree);
761
762            //inference context used during this method check
763            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
764
765            Type varargsFormal = useVarargs ? formals.last() : null;
766
767            if (varargsFormal == null &&
768                    argtypes.size() != formals.size()) {
769                reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
770            }
771
772            while (argtypes.nonEmpty() && formals.head != varargsFormal) {
773                DiagnosticPosition pos = trees != null ? trees.head : null;
774                checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
775                argtypes = argtypes.tail;
776                formals = formals.tail;
777                trees = trees != null ? trees.tail : trees;
778            }
779
780            if (formals.head != varargsFormal) {
781                reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
782            }
783
784            if (useVarargs) {
785                //note: if applicability check is triggered by most specific test,
786                //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
787                final Type elt = types.elemtype(varargsFormal);
788                while (argtypes.nonEmpty()) {
789                    DiagnosticPosition pos = trees != null ? trees.head : null;
790                    checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
791                    argtypes = argtypes.tail;
792                    trees = trees != null ? trees.tail : trees;
793                }
794            }
795        }
796
797            // where
798            private JCTree treeForDiagnostics(Env<AttrContext> env) {
799                return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree;
800            }
801
802        /**
803         * Does the actual argument conforms to the corresponding formal?
804         */
805        abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
806
807        protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
808            boolean inferDiag = inferenceContext != infer.emptyContext;
809            InapplicableMethodException ex = inferDiag ?
810                    infer.inferenceException : inapplicableMethodException;
811            if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
812                Object[] args2 = new Object[args.length + 1];
813                System.arraycopy(args, 0, args2, 1, args.length);
814                args2[0] = inferenceContext.inferenceVars();
815                args = args2;
816            }
817            String key = inferDiag ? diag.inferKey : diag.basicKey;
818            throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
819        }
820
821        public MethodCheck mostSpecificCheck(List<Type> actuals) {
822            return nilMethodCheck;
823        }
824
825    }
826
827    /**
828     * Arity-based method check. A method is applicable if the number of actuals
829     * supplied conforms to the method signature.
830     */
831    MethodCheck arityMethodCheck = new AbstractMethodCheck() {
832        @Override
833        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
834            //do nothing - actual always compatible to formals
835        }
836
837        @Override
838        public String toString() {
839            return "arityMethodCheck";
840        }
841    };
842
843    /**
844     * Main method applicability routine. Given a list of actual types A,
845     * a list of formal types F, determines whether the types in A are
846     * compatible (by method invocation conversion) with the types in F.
847     *
848     * Since this routine is shared between overload resolution and method
849     * type-inference, a (possibly empty) inference context is used to convert
850     * formal types to the corresponding 'undet' form ahead of a compatibility
851     * check so that constraints can be propagated and collected.
852     *
853     * Moreover, if one or more types in A is a deferred type, this routine uses
854     * DeferredAttr in order to perform deferred attribution. If one or more actual
855     * deferred types are stuck, they are placed in a queue and revisited later
856     * after the remainder of the arguments have been seen. If this is not sufficient
857     * to 'unstuck' the argument, a cyclic inference error is called out.
858     *
859     * A method check handler (see above) is used in order to report errors.
860     */
861    MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
862
863        @Override
864        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
865            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
866            mresult.check(pos, actual);
867        }
868
869        @Override
870        public void argumentsAcceptable(final Env<AttrContext> env,
871                                    DeferredAttrContext deferredAttrContext,
872                                    List<Type> argtypes,
873                                    List<Type> formals,
874                                    Warner warn) {
875            super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
876            // should we check varargs element type accessibility?
877            if (deferredAttrContext.phase.isVarargsRequired()) {
878                if (deferredAttrContext.mode == AttrMode.CHECK || !checkVarargsAccessAfterResolution) {
879                    varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext);
880                }
881            }
882        }
883
884        /**
885         * Test that the runtime array element type corresponding to 't' is accessible.  't' should be the
886         * varargs element type of either the method invocation type signature (after inference completes)
887         * or the method declaration signature (before inference completes).
888         */
889        private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
890            if (inferenceContext.free(t)) {
891                inferenceContext.addFreeTypeListener(List.of(t),
892                        solvedContext -> varargsAccessible(env, solvedContext.asInstType(t), solvedContext));
893            } else {
894                if (!isAccessible(env, types.erasure(t))) {
895                    Symbol location = env.enclClass.sym;
896                    reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
897                }
898            }
899        }
900
901        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
902                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
903            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
904                MethodCheckDiag methodDiag = varargsCheck ?
905                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
906
907                @Override
908                public void report(DiagnosticPosition pos, JCDiagnostic details) {
909                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
910                }
911            };
912            return new MethodResultInfo(to, checkContext);
913        }
914
915        @Override
916        public MethodCheck mostSpecificCheck(List<Type> actuals) {
917            return new MostSpecificCheck(actuals);
918        }
919
920        @Override
921        public String toString() {
922            return "resolveMethodCheck";
923        }
924    };
925
926    /**
927     * This class handles method reference applicability checks; since during
928     * these checks it's sometime possible to have inference variables on
929     * the actual argument types list, the method applicability check must be
930     * extended so that inference variables are 'opened' as needed.
931     */
932    class MethodReferenceCheck extends AbstractMethodCheck {
933
934        InferenceContext pendingInferenceContext;
935
936        MethodReferenceCheck(InferenceContext pendingInferenceContext) {
937            this.pendingInferenceContext = pendingInferenceContext;
938        }
939
940        @Override
941        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
942            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
943            mresult.check(pos, actual);
944        }
945
946        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
947                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
948            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
949                MethodCheckDiag methodDiag = varargsCheck ?
950                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
951
952                @Override
953                public boolean compatible(Type found, Type req, Warner warn) {
954                    found = pendingInferenceContext.asUndetVar(found);
955                    if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
956                        req = types.boxedClass(req).type;
957                    }
958                    return super.compatible(found, req, warn);
959                }
960
961                @Override
962                public void report(DiagnosticPosition pos, JCDiagnostic details) {
963                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
964                }
965            };
966            return new MethodResultInfo(to, checkContext);
967        }
968
969        @Override
970        public MethodCheck mostSpecificCheck(List<Type> actuals) {
971            return new MostSpecificCheck(actuals);
972        }
973
974        @Override
975        public String toString() {
976            return "MethodReferenceCheck";
977        }
978    }
979
980    /**
981     * Check context to be used during method applicability checks. A method check
982     * context might contain inference variables.
983     */
984    abstract class MethodCheckContext implements CheckContext {
985
986        boolean strict;
987        DeferredAttrContext deferredAttrContext;
988        Warner rsWarner;
989
990        public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
991           this.strict = strict;
992           this.deferredAttrContext = deferredAttrContext;
993           this.rsWarner = rsWarner;
994        }
995
996        public boolean compatible(Type found, Type req, Warner warn) {
997            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
998            return strict ?
999                    types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
1000                    types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
1001        }
1002
1003        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1004            throw inapplicableMethodException.setMessage(details);
1005        }
1006
1007        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
1008            return rsWarner;
1009        }
1010
1011        public InferenceContext inferenceContext() {
1012            return deferredAttrContext.inferenceContext;
1013        }
1014
1015        public DeferredAttrContext deferredAttrContext() {
1016            return deferredAttrContext;
1017        }
1018
1019        @Override
1020        public String toString() {
1021            return "MethodCheckContext";
1022        }
1023    }
1024
1025    /**
1026     * ResultInfo class to be used during method applicability checks. Check
1027     * for deferred types goes through special path.
1028     */
1029    class MethodResultInfo extends ResultInfo {
1030
1031        public MethodResultInfo(Type pt, CheckContext checkContext) {
1032            attr.super(KindSelector.VAL, pt, checkContext);
1033        }
1034
1035        @Override
1036        protected Type check(DiagnosticPosition pos, Type found) {
1037            if (found.hasTag(DEFERRED)) {
1038                DeferredType dt = (DeferredType)found;
1039                return dt.check(this);
1040            } else {
1041                Type uResult = U(found);
1042                Type capturedType = pos == null || pos.getTree() == null ?
1043                        types.capture(uResult) :
1044                        checkContext.inferenceContext()
1045                            .cachedCapture(pos.getTree(), uResult, true);
1046                return super.check(pos, chk.checkNonVoid(pos, capturedType));
1047            }
1048        }
1049
1050        /**
1051         * javac has a long-standing 'simplification' (see 6391995):
1052         * given an actual argument type, the method check is performed
1053         * on its upper bound. This leads to inconsistencies when an
1054         * argument type is checked against itself. For example, given
1055         * a type-variable T, it is not true that {@code U(T) <: T},
1056         * so we need to guard against that.
1057         */
1058        private Type U(Type found) {
1059            return found == pt ?
1060                    found : types.cvarUpperBound(found);
1061        }
1062
1063        @Override
1064        protected MethodResultInfo dup(Type newPt) {
1065            return new MethodResultInfo(newPt, checkContext);
1066        }
1067
1068        @Override
1069        protected ResultInfo dup(CheckContext newContext) {
1070            return new MethodResultInfo(pt, newContext);
1071        }
1072
1073        @Override
1074        protected ResultInfo dup(Type newPt, CheckContext newContext) {
1075            return new MethodResultInfo(newPt, newContext);
1076        }
1077    }
1078
1079    /**
1080     * Most specific method applicability routine. Given a list of actual types A,
1081     * a list of formal types F1, and a list of formal types F2, the routine determines
1082     * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
1083     * argument types A.
1084     */
1085    class MostSpecificCheck implements MethodCheck {
1086
1087        List<Type> actuals;
1088
1089        MostSpecificCheck(List<Type> actuals) {
1090            this.actuals = actuals;
1091        }
1092
1093        @Override
1094        public void argumentsAcceptable(final Env<AttrContext> env,
1095                                    DeferredAttrContext deferredAttrContext,
1096                                    List<Type> formals1,
1097                                    List<Type> formals2,
1098                                    Warner warn) {
1099            formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
1100            while (formals2.nonEmpty()) {
1101                ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
1102                mresult.check(null, formals1.head);
1103                formals1 = formals1.tail;
1104                formals2 = formals2.tail;
1105                actuals = actuals.isEmpty() ? actuals : actuals.tail;
1106            }
1107        }
1108
1109       /**
1110        * Create a method check context to be used during the most specific applicability check
1111        */
1112        ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
1113               Warner rsWarner, Type actual) {
1114            return attr.new ResultInfo(KindSelector.VAL, to,
1115                   new MostSpecificCheckContext(deferredAttrContext, rsWarner, actual));
1116        }
1117
1118        /**
1119         * Subclass of method check context class that implements most specific
1120         * method conversion. If the actual type under analysis is a deferred type
1121         * a full blown structural analysis is carried out.
1122         */
1123        class MostSpecificCheckContext extends MethodCheckContext {
1124
1125            Type actual;
1126
1127            public MostSpecificCheckContext(DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
1128                super(true, deferredAttrContext, rsWarner);
1129                this.actual = actual;
1130            }
1131
1132            public boolean compatible(Type found, Type req, Warner warn) {
1133                if (allowFunctionalInterfaceMostSpecific &&
1134                        unrelatedFunctionalInterfaces(found, req) &&
1135                        (actual != null && actual.getTag() == DEFERRED)) {
1136                    DeferredType dt = (DeferredType) actual;
1137                    JCTree speculativeTree = dt.speculativeTree(deferredAttrContext);
1138                    if (speculativeTree != deferredAttr.stuckTree) {
1139                        return functionalInterfaceMostSpecific(found, req, speculativeTree);
1140                    }
1141                }
1142                return compatibleBySubtyping(found, req);
1143            }
1144
1145            private boolean compatibleBySubtyping(Type found, Type req) {
1146                if (!strict && found.isPrimitive() != req.isPrimitive()) {
1147                    found = found.isPrimitive() ? types.boxedClass(found).type : types.unboxedType(found);
1148                }
1149                return types.isSubtypeNoCapture(found, deferredAttrContext.inferenceContext.asUndetVar(req));
1150            }
1151
1152            /** Whether {@code t} and {@code s} are unrelated functional interface types. */
1153            private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
1154                return types.isFunctionalInterface(t.tsym) &&
1155                       types.isFunctionalInterface(s.tsym) &&
1156                       unrelatedInterfaces(t, s);
1157            }
1158
1159            /** Whether {@code t} and {@code s} are unrelated interface types; recurs on intersections. **/
1160            private boolean unrelatedInterfaces(Type t, Type s) {
1161                if (t.isCompound()) {
1162                    for (Type ti : types.interfaces(t)) {
1163                        if (!unrelatedInterfaces(ti, s)) {
1164                            return false;
1165                        }
1166                    }
1167                    return true;
1168                } else if (s.isCompound()) {
1169                    for (Type si : types.interfaces(s)) {
1170                        if (!unrelatedInterfaces(t, si)) {
1171                            return false;
1172                        }
1173                    }
1174                    return true;
1175                } else {
1176                    return types.asSuper(t, s.tsym) == null && types.asSuper(s, t.tsym) == null;
1177                }
1178            }
1179
1180            /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1181            private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree) {
1182                Type tDesc = types.findDescriptorType(types.capture(t));
1183                Type tDescNoCapture = types.findDescriptorType(t);
1184                Type sDesc = types.findDescriptorType(s);
1185                final List<Type> tTypeParams = tDesc.getTypeArguments();
1186                final List<Type> tTypeParamsNoCapture = tDescNoCapture.getTypeArguments();
1187                final List<Type> sTypeParams = sDesc.getTypeArguments();
1188
1189                // compare type parameters
1190                if (tDesc.hasTag(FORALL) && !types.hasSameBounds((ForAll) tDesc, (ForAll) tDescNoCapture)) {
1191                    return false;
1192                }
1193                // can't use Types.hasSameBounds on sDesc because bounds may have ivars
1194                List<Type> tIter = tTypeParams;
1195                List<Type> sIter = sTypeParams;
1196                while (tIter.nonEmpty() && sIter.nonEmpty()) {
1197                    Type tBound = tIter.head.getUpperBound();
1198                    Type sBound = types.subst(sIter.head.getUpperBound(), sTypeParams, tTypeParams);
1199                    if (tBound.containsAny(tTypeParams) && inferenceContext().free(sBound)) {
1200                        return false;
1201                    }
1202                    if (!types.isSameType(tBound, inferenceContext().asUndetVar(sBound))) {
1203                        return false;
1204                    }
1205                    tIter = tIter.tail;
1206                    sIter = sIter.tail;
1207                }
1208                if (!tIter.isEmpty() || !sIter.isEmpty()) {
1209                    return false;
1210                }
1211
1212                // compare parameters
1213                List<Type> tParams = tDesc.getParameterTypes();
1214                List<Type> tParamsNoCapture = tDescNoCapture.getParameterTypes();
1215                List<Type> sParams = sDesc.getParameterTypes();
1216                while (tParams.nonEmpty() && tParamsNoCapture.nonEmpty() && sParams.nonEmpty()) {
1217                    Type tParam = tParams.head;
1218                    Type tParamNoCapture = types.subst(tParamsNoCapture.head, tTypeParamsNoCapture, tTypeParams);
1219                    Type sParam = types.subst(sParams.head, sTypeParams, tTypeParams);
1220                    if (tParam.containsAny(tTypeParams) && inferenceContext().free(sParam)) {
1221                        return false;
1222                    }
1223                    if (!types.isSubtype(inferenceContext().asUndetVar(sParam), tParam)) {
1224                        return false;
1225                    }
1226                    if (!types.isSameType(tParamNoCapture, inferenceContext().asUndetVar(sParam))) {
1227                        return false;
1228                    }
1229                    tParams = tParams.tail;
1230                    tParamsNoCapture = tParamsNoCapture.tail;
1231                    sParams = sParams.tail;
1232                }
1233                if (!tParams.isEmpty() || !tParamsNoCapture.isEmpty() || !sParams.isEmpty()) {
1234                    return false;
1235                }
1236
1237                // compare returns
1238                Type tRet = tDesc.getReturnType();
1239                Type sRet = types.subst(sDesc.getReturnType(), sTypeParams, tTypeParams);
1240                if (tRet.containsAny(tTypeParams) && inferenceContext().free(sRet)) {
1241                    return false;
1242                }
1243                MostSpecificFunctionReturnChecker msc = new MostSpecificFunctionReturnChecker(tRet, sRet);
1244                msc.scan(tree);
1245                return msc.result;
1246            }
1247
1248            /**
1249             * Tests whether one functional interface type can be considered more specific
1250             * than another unrelated functional interface type for the scanned expression.
1251             */
1252            class MostSpecificFunctionReturnChecker extends DeferredAttr.PolyScanner {
1253
1254                final Type tRet;
1255                final Type sRet;
1256                boolean result;
1257
1258                /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1259                MostSpecificFunctionReturnChecker(Type tRet, Type sRet) {
1260                    this.tRet = tRet;
1261                    this.sRet = sRet;
1262                    result = true;
1263                }
1264
1265                @Override
1266                void skip(JCTree tree) {
1267                    result &= false;
1268                }
1269
1270                @Override
1271                public void visitConditional(JCConditional tree) {
1272                    scan(asExpr(tree.truepart));
1273                    scan(asExpr(tree.falsepart));
1274                }
1275
1276                @Override
1277                public void visitReference(JCMemberReference tree) {
1278                    if (sRet.hasTag(VOID)) {
1279                        result &= true;
1280                    } else if (tRet.hasTag(VOID)) {
1281                        result &= false;
1282                    } else if (tRet.isPrimitive() != sRet.isPrimitive()) {
1283                        boolean retValIsPrimitive =
1284                                tree.refPolyKind == PolyKind.STANDALONE &&
1285                                tree.sym.type.getReturnType().isPrimitive();
1286                        result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1287                                  (retValIsPrimitive != sRet.isPrimitive());
1288                    } else {
1289                        result &= compatibleBySubtyping(tRet, sRet);
1290                    }
1291                }
1292
1293                @Override
1294                public void visitParens(JCParens tree) {
1295                    scan(asExpr(tree.expr));
1296                }
1297
1298                @Override
1299                public void visitLambda(JCLambda tree) {
1300                    if (sRet.hasTag(VOID)) {
1301                        result &= true;
1302                    } else if (tRet.hasTag(VOID)) {
1303                        result &= false;
1304                    } else {
1305                        List<JCExpression> lambdaResults = lambdaResults(tree);
1306                        if (!lambdaResults.isEmpty() && unrelatedFunctionalInterfaces(tRet, sRet)) {
1307                            for (JCExpression expr : lambdaResults) {
1308                                result &= functionalInterfaceMostSpecific(tRet, sRet, expr);
1309                            }
1310                        } else if (!lambdaResults.isEmpty() && tRet.isPrimitive() != sRet.isPrimitive()) {
1311                            for (JCExpression expr : lambdaResults) {
1312                                boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
1313                                result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1314                                        (retValIsPrimitive != sRet.isPrimitive());
1315                            }
1316                        } else {
1317                            result &= compatibleBySubtyping(tRet, sRet);
1318                        }
1319                    }
1320                }
1321                //where
1322
1323                private List<JCExpression> lambdaResults(JCLambda lambda) {
1324                    if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
1325                        return List.of(asExpr((JCExpression) lambda.body));
1326                    } else {
1327                        final ListBuffer<JCExpression> buffer = new ListBuffer<>();
1328                        DeferredAttr.LambdaReturnScanner lambdaScanner =
1329                                new DeferredAttr.LambdaReturnScanner() {
1330                                    @Override
1331                                    public void visitReturn(JCReturn tree) {
1332                                        if (tree.expr != null) {
1333                                            buffer.append(asExpr(tree.expr));
1334                                        }
1335                                    }
1336                                };
1337                        lambdaScanner.scan(lambda.body);
1338                        return buffer.toList();
1339                    }
1340                }
1341
1342                private JCExpression asExpr(JCExpression expr) {
1343                    if (expr.type.hasTag(DEFERRED)) {
1344                        JCTree speculativeTree = ((DeferredType)expr.type).speculativeTree(deferredAttrContext);
1345                        if (speculativeTree != deferredAttr.stuckTree) {
1346                            expr = (JCExpression)speculativeTree;
1347                        }
1348                    }
1349                    return expr;
1350                }
1351            }
1352
1353        }
1354
1355        public MethodCheck mostSpecificCheck(List<Type> actuals) {
1356            Assert.error("Cannot get here!");
1357            return null;
1358        }
1359    }
1360
1361    public static class InapplicableMethodException extends RuntimeException {
1362        private static final long serialVersionUID = 0;
1363
1364        JCDiagnostic diagnostic;
1365        JCDiagnostic.Factory diags;
1366
1367        InapplicableMethodException(JCDiagnostic.Factory diags) {
1368            this.diagnostic = null;
1369            this.diags = diags;
1370        }
1371        InapplicableMethodException setMessage() {
1372            return setMessage((JCDiagnostic)null);
1373        }
1374        InapplicableMethodException setMessage(String key) {
1375            return setMessage(key != null ? diags.fragment(key) : null);
1376        }
1377        InapplicableMethodException setMessage(String key, Object... args) {
1378            return setMessage(key != null ? diags.fragment(key, args) : null);
1379        }
1380        InapplicableMethodException setMessage(JCDiagnostic diag) {
1381            this.diagnostic = diag;
1382            return this;
1383        }
1384
1385        public JCDiagnostic getDiagnostic() {
1386            return diagnostic;
1387        }
1388    }
1389    private final InapplicableMethodException inapplicableMethodException;
1390
1391/* ***************************************************************************
1392 *  Symbol lookup
1393 *  the following naming conventions for arguments are used
1394 *
1395 *       env      is the environment where the symbol was mentioned
1396 *       site     is the type of which the symbol is a member
1397 *       name     is the symbol's name
1398 *                if no arguments are given
1399 *       argtypes are the value arguments, if we search for a method
1400 *
1401 *  If no symbol was found, a ResolveError detailing the problem is returned.
1402 ****************************************************************************/
1403
1404    /** Find field. Synthetic fields are always skipped.
1405     *  @param env     The current environment.
1406     *  @param site    The original type from where the selection takes place.
1407     *  @param name    The name of the field.
1408     *  @param c       The class to search for the field. This is always
1409     *                 a superclass or implemented interface of site's class.
1410     */
1411    Symbol findField(Env<AttrContext> env,
1412                     Type site,
1413                     Name name,
1414                     TypeSymbol c) {
1415        while (c.type.hasTag(TYPEVAR))
1416            c = c.type.getUpperBound().tsym;
1417        Symbol bestSoFar = varNotFound;
1418        Symbol sym;
1419        for (Symbol s : c.members().getSymbolsByName(name)) {
1420            if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1421                return isAccessible(env, site, s)
1422                    ? s : new AccessError(env, site, s);
1423            }
1424        }
1425        Type st = types.supertype(c.type);
1426        if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
1427            sym = findField(env, site, name, st.tsym);
1428            bestSoFar = bestOf(bestSoFar, sym);
1429        }
1430        for (List<Type> l = types.interfaces(c.type);
1431             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1432             l = l.tail) {
1433            sym = findField(env, site, name, l.head.tsym);
1434            if (bestSoFar.exists() && sym.exists() &&
1435                sym.owner != bestSoFar.owner)
1436                bestSoFar = new AmbiguityError(bestSoFar, sym);
1437            else
1438                bestSoFar = bestOf(bestSoFar, sym);
1439        }
1440        return bestSoFar;
1441    }
1442
1443    /** Resolve a field identifier, throw a fatal error if not found.
1444     *  @param pos       The position to use for error reporting.
1445     *  @param env       The environment current at the method invocation.
1446     *  @param site      The type of the qualifying expression, in which
1447     *                   identifier is searched.
1448     *  @param name      The identifier's name.
1449     */
1450    public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
1451                                          Type site, Name name) {
1452        Symbol sym = findField(env, site, name, site.tsym);
1453        if (sym.kind == VAR) return (VarSymbol)sym;
1454        else throw new FatalError(
1455                 diags.fragment("fatal.err.cant.locate.field",
1456                                name));
1457    }
1458
1459    /** Find unqualified variable or field with given name.
1460     *  Synthetic fields always skipped.
1461     *  @param env     The current environment.
1462     *  @param name    The name of the variable or field.
1463     */
1464    Symbol findVar(Env<AttrContext> env, Name name) {
1465        Symbol bestSoFar = varNotFound;
1466        Env<AttrContext> env1 = env;
1467        boolean staticOnly = false;
1468        while (env1.outer != null) {
1469            Symbol sym = null;
1470            if (isStatic(env1)) staticOnly = true;
1471            for (Symbol s : env1.info.scope.getSymbolsByName(name)) {
1472                if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1473                    sym = s;
1474                    break;
1475                }
1476            }
1477            if (sym == null) {
1478                sym = findField(env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
1479            }
1480            if (sym.exists()) {
1481                if (staticOnly &&
1482                    sym.kind == VAR &&
1483                    sym.owner.kind == TYP &&
1484                    (sym.flags() & STATIC) == 0)
1485                    return new StaticError(sym);
1486                else
1487                    return sym;
1488            } else {
1489                bestSoFar = bestOf(bestSoFar, sym);
1490            }
1491
1492            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1493            env1 = env1.outer;
1494        }
1495
1496        Symbol sym = findField(env, syms.predefClass.type, name, syms.predefClass);
1497        if (sym.exists())
1498            return sym;
1499        if (bestSoFar.exists())
1500            return bestSoFar;
1501
1502        Symbol origin = null;
1503        for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
1504            for (Symbol currentSymbol : sc.getSymbolsByName(name)) {
1505                if (currentSymbol.kind != VAR)
1506                    continue;
1507                // invariant: sym.kind == Symbol.Kind.VAR
1508                if (!bestSoFar.kind.isResolutionError() &&
1509                    currentSymbol.owner != bestSoFar.owner)
1510                    return new AmbiguityError(bestSoFar, currentSymbol);
1511                else if (!bestSoFar.kind.betterThan(VAR)) {
1512                    origin = sc.getOrigin(currentSymbol).owner;
1513                    bestSoFar = isAccessible(env, origin.type, currentSymbol)
1514                        ? currentSymbol : new AccessError(env, origin.type, currentSymbol);
1515                }
1516            }
1517            if (bestSoFar.exists()) break;
1518        }
1519        if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
1520            return bestSoFar.clone(origin);
1521        else
1522            return bestSoFar;
1523    }
1524
1525    Warner noteWarner = new Warner();
1526
1527    /** Select the best method for a call site among two choices.
1528     *  @param env              The current environment.
1529     *  @param site             The original type from where the
1530     *                          selection takes place.
1531     *  @param argtypes         The invocation's value arguments,
1532     *  @param typeargtypes     The invocation's type arguments,
1533     *  @param sym              Proposed new best match.
1534     *  @param bestSoFar        Previously found best match.
1535     *  @param allowBoxing Allow boxing conversions of arguments.
1536     *  @param useVarargs Box trailing arguments into an array for varargs.
1537     */
1538    @SuppressWarnings("fallthrough")
1539    Symbol selectBest(Env<AttrContext> env,
1540                      Type site,
1541                      List<Type> argtypes,
1542                      List<Type> typeargtypes,
1543                      Symbol sym,
1544                      Symbol bestSoFar,
1545                      boolean allowBoxing,
1546                      boolean useVarargs) {
1547        if (sym.kind == ERR ||
1548                !sym.isInheritedIn(site.tsym, types)) {
1549            return bestSoFar;
1550        } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
1551            return bestSoFar.kind.isResolutionError() ?
1552                    new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
1553                    bestSoFar;
1554        }
1555        Assert.check(!sym.kind.isResolutionError());
1556        try {
1557            types.noWarnings.clear();
1558            Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
1559                               allowBoxing, useVarargs, types.noWarnings);
1560            currentResolutionContext.addApplicableCandidate(sym, mt);
1561        } catch (InapplicableMethodException ex) {
1562            currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
1563            switch (bestSoFar.kind) {
1564                case ABSENT_MTH:
1565                    return new InapplicableSymbolError(currentResolutionContext);
1566                case WRONG_MTH:
1567                    bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1568                default:
1569                    return bestSoFar;
1570            }
1571        }
1572        if (!isAccessible(env, site, sym)) {
1573            return (bestSoFar.kind == ABSENT_MTH)
1574                ? new AccessError(env, site, sym)
1575                : bestSoFar;
1576        }
1577        return (bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS)
1578            ? sym
1579            : mostSpecific(argtypes, sym, bestSoFar, env, site, useVarargs);
1580    }
1581
1582    /* Return the most specific of the two methods for a call,
1583     *  given that both are accessible and applicable.
1584     *  @param m1               A new candidate for most specific.
1585     *  @param m2               The previous most specific candidate.
1586     *  @param env              The current environment.
1587     *  @param site             The original type from where the selection
1588     *                          takes place.
1589     *  @param allowBoxing Allow boxing conversions of arguments.
1590     *  @param useVarargs Box trailing arguments into an array for varargs.
1591     */
1592    Symbol mostSpecific(List<Type> argtypes, Symbol m1,
1593                        Symbol m2,
1594                        Env<AttrContext> env,
1595                        final Type site,
1596                        boolean useVarargs) {
1597        switch (m2.kind) {
1598        case MTH:
1599            if (m1 == m2) return m1;
1600            boolean m1SignatureMoreSpecific =
1601                    signatureMoreSpecific(argtypes, env, site, m1, m2, useVarargs);
1602            boolean m2SignatureMoreSpecific =
1603                    signatureMoreSpecific(argtypes, env, site, m2, m1, useVarargs);
1604            if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
1605                Type mt1 = types.memberType(site, m1);
1606                Type mt2 = types.memberType(site, m2);
1607                if (!types.overrideEquivalent(mt1, mt2))
1608                    return ambiguityError(m1, m2);
1609
1610                // same signature; select (a) the non-bridge method, or
1611                // (b) the one that overrides the other, or (c) the concrete
1612                // one, or (d) merge both abstract signatures
1613                if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
1614                    return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
1615
1616                // if one overrides or hides the other, use it
1617                TypeSymbol m1Owner = (TypeSymbol)m1.owner;
1618                TypeSymbol m2Owner = (TypeSymbol)m2.owner;
1619                if (types.asSuper(m1Owner.type, m2Owner) != null &&
1620                    ((m1.owner.flags_field & INTERFACE) == 0 ||
1621                     (m2.owner.flags_field & INTERFACE) != 0) &&
1622                    m1.overrides(m2, m1Owner, types, false))
1623                    return m1;
1624                if (types.asSuper(m2Owner.type, m1Owner) != null &&
1625                    ((m2.owner.flags_field & INTERFACE) == 0 ||
1626                     (m1.owner.flags_field & INTERFACE) != 0) &&
1627                    m2.overrides(m1, m2Owner, types, false))
1628                    return m2;
1629                boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
1630                boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
1631                if (m1Abstract && !m2Abstract) return m2;
1632                if (m2Abstract && !m1Abstract) return m1;
1633                // both abstract or both concrete
1634                return ambiguityError(m1, m2);
1635            }
1636            if (m1SignatureMoreSpecific) return m1;
1637            if (m2SignatureMoreSpecific) return m2;
1638            return ambiguityError(m1, m2);
1639        case AMBIGUOUS:
1640            //compare m1 to ambiguous methods in m2
1641            AmbiguityError e = (AmbiguityError)m2.baseSymbol();
1642            boolean m1MoreSpecificThanAnyAmbiguous = true;
1643            boolean allAmbiguousMoreSpecificThanM1 = true;
1644            for (Symbol s : e.ambiguousSyms) {
1645                Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, useVarargs);
1646                m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
1647                allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
1648            }
1649            if (m1MoreSpecificThanAnyAmbiguous)
1650                return m1;
1651            //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
1652            //more specific than m1, add it as a new ambiguous method:
1653            if (!allAmbiguousMoreSpecificThanM1)
1654                e.addAmbiguousSymbol(m1);
1655            return e;
1656        default:
1657            throw new AssertionError();
1658        }
1659    }
1660    //where
1661    private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean useVarargs) {
1662        noteWarner.clear();
1663        int maxLength = Math.max(
1664                            Math.max(m1.type.getParameterTypes().length(), actuals.length()),
1665                            m2.type.getParameterTypes().length());
1666        MethodResolutionContext prevResolutionContext = currentResolutionContext;
1667        try {
1668            currentResolutionContext = new MethodResolutionContext();
1669            currentResolutionContext.step = prevResolutionContext.step;
1670            currentResolutionContext.methodCheck =
1671                    prevResolutionContext.methodCheck.mostSpecificCheck(actuals);
1672            Type mst = instantiate(env, site, m2, null,
1673                    adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
1674                    false, useVarargs, noteWarner);
1675            return mst != null &&
1676                    !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
1677        } finally {
1678            currentResolutionContext = prevResolutionContext;
1679        }
1680    }
1681
1682    List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
1683        if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
1684            Type varargsElem = types.elemtype(args.last());
1685            if (varargsElem == null) {
1686                Assert.error("Bad varargs = " + args.last() + " " + msym);
1687            }
1688            List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
1689            while (newArgs.length() < length) {
1690                newArgs = newArgs.append(newArgs.last());
1691            }
1692            return newArgs;
1693        } else {
1694            return args;
1695        }
1696    }
1697    //where
1698    Symbol ambiguityError(Symbol m1, Symbol m2) {
1699        if (((m1.flags() | m2.flags()) & CLASH) != 0) {
1700            return (m1.flags() & CLASH) == 0 ? m1 : m2;
1701        } else {
1702            return new AmbiguityError(m1, m2);
1703        }
1704    }
1705
1706    Symbol findMethodInScope(Env<AttrContext> env,
1707            Type site,
1708            Name name,
1709            List<Type> argtypes,
1710            List<Type> typeargtypes,
1711            Scope sc,
1712            Symbol bestSoFar,
1713            boolean allowBoxing,
1714            boolean useVarargs,
1715            boolean abstractok) {
1716        for (Symbol s : sc.getSymbolsByName(name, new LookupFilter(abstractok))) {
1717            bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
1718                    bestSoFar, allowBoxing, useVarargs);
1719        }
1720        return bestSoFar;
1721    }
1722    //where
1723        class LookupFilter implements Filter<Symbol> {
1724
1725            boolean abstractOk;
1726
1727            LookupFilter(boolean abstractOk) {
1728                this.abstractOk = abstractOk;
1729            }
1730
1731            public boolean accepts(Symbol s) {
1732                long flags = s.flags();
1733                return s.kind == MTH &&
1734                        (flags & SYNTHETIC) == 0 &&
1735                        (abstractOk ||
1736                        (flags & DEFAULT) != 0 ||
1737                        (flags & ABSTRACT) == 0);
1738            }
1739        }
1740
1741    /** Find best qualified method matching given name, type and value
1742     *  arguments.
1743     *  @param env       The current environment.
1744     *  @param site      The original type from where the selection
1745     *                   takes place.
1746     *  @param name      The method's name.
1747     *  @param argtypes  The method's value arguments.
1748     *  @param typeargtypes The method's type arguments
1749     *  @param allowBoxing Allow boxing conversions of arguments.
1750     *  @param useVarargs Box trailing arguments into an array for varargs.
1751     */
1752    Symbol findMethod(Env<AttrContext> env,
1753                      Type site,
1754                      Name name,
1755                      List<Type> argtypes,
1756                      List<Type> typeargtypes,
1757                      boolean allowBoxing,
1758                      boolean useVarargs) {
1759        Symbol bestSoFar = methodNotFound;
1760        bestSoFar = findMethod(env,
1761                          site,
1762                          name,
1763                          argtypes,
1764                          typeargtypes,
1765                          site.tsym.type,
1766                          bestSoFar,
1767                          allowBoxing,
1768                          useVarargs);
1769        return bestSoFar;
1770    }
1771    // where
1772    private Symbol findMethod(Env<AttrContext> env,
1773                              Type site,
1774                              Name name,
1775                              List<Type> argtypes,
1776                              List<Type> typeargtypes,
1777                              Type intype,
1778                              Symbol bestSoFar,
1779                              boolean allowBoxing,
1780                              boolean useVarargs) {
1781        @SuppressWarnings({"unchecked","rawtypes"})
1782        List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
1783
1784        InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
1785        for (TypeSymbol s : superclasses(intype)) {
1786            bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1787                    s.members(), bestSoFar, allowBoxing, useVarargs, true);
1788            if (name == names.init) return bestSoFar;
1789            iphase = (iphase == null) ? null : iphase.update(s, this);
1790            if (iphase != null) {
1791                for (Type itype : types.interfaces(s.type)) {
1792                    itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
1793                }
1794            }
1795        }
1796
1797        Symbol concrete = bestSoFar.kind.isValid() &&
1798                (bestSoFar.flags() & ABSTRACT) == 0 ?
1799                bestSoFar : methodNotFound;
1800
1801        for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
1802            //keep searching for abstract methods
1803            for (Type itype : itypes[iphase2.ordinal()]) {
1804                if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
1805                if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
1806                        (itype.tsym.flags() & DEFAULT) == 0) continue;
1807                bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1808                        itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
1809                if (concrete != bestSoFar &&
1810                    concrete.kind.isValid() &&
1811                    bestSoFar.kind.isValid() &&
1812                        types.isSubSignature(concrete.type, bestSoFar.type)) {
1813                    //this is an hack - as javac does not do full membership checks
1814                    //most specific ends up comparing abstract methods that might have
1815                    //been implemented by some concrete method in a subclass and,
1816                    //because of raw override, it is possible for an abstract method
1817                    //to be more specific than the concrete method - so we need
1818                    //to explicitly call that out (see CR 6178365)
1819                    bestSoFar = concrete;
1820                }
1821            }
1822        }
1823        return bestSoFar;
1824    }
1825
1826    enum InterfaceLookupPhase {
1827        ABSTRACT_OK() {
1828            @Override
1829            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1830                //We should not look for abstract methods if receiver is a concrete class
1831                //(as concrete classes are expected to implement all abstracts coming
1832                //from superinterfaces)
1833                if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
1834                    return this;
1835                } else {
1836                    return DEFAULT_OK;
1837                }
1838            }
1839        },
1840        DEFAULT_OK() {
1841            @Override
1842            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1843                return this;
1844            }
1845        };
1846
1847        abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
1848    }
1849
1850    /**
1851     * Return an Iterable object to scan the superclasses of a given type.
1852     * It's crucial that the scan is done lazily, as we don't want to accidentally
1853     * access more supertypes than strictly needed (as this could trigger completion
1854     * errors if some of the not-needed supertypes are missing/ill-formed).
1855     */
1856    Iterable<TypeSymbol> superclasses(final Type intype) {
1857        return () -> new Iterator<TypeSymbol>() {
1858
1859            List<TypeSymbol> seen = List.nil();
1860            TypeSymbol currentSym = symbolFor(intype);
1861            TypeSymbol prevSym = null;
1862
1863            public boolean hasNext() {
1864                if (currentSym == syms.noSymbol) {
1865                    currentSym = symbolFor(types.supertype(prevSym.type));
1866                }
1867                return currentSym != null;
1868            }
1869
1870            public TypeSymbol next() {
1871                prevSym = currentSym;
1872                currentSym = syms.noSymbol;
1873                Assert.check(prevSym != null || prevSym != syms.noSymbol);
1874                return prevSym;
1875            }
1876
1877            public void remove() {
1878                throw new UnsupportedOperationException();
1879            }
1880
1881            TypeSymbol symbolFor(Type t) {
1882                if (!t.hasTag(CLASS) &&
1883                        !t.hasTag(TYPEVAR)) {
1884                    return null;
1885                }
1886                t = types.skipTypeVars(t, false);
1887                if (seen.contains(t.tsym)) {
1888                    //degenerate case in which we have a circular
1889                    //class hierarchy - because of ill-formed classfiles
1890                    return null;
1891                }
1892                seen = seen.prepend(t.tsym);
1893                return t.tsym;
1894            }
1895        };
1896    }
1897
1898    /** Find unqualified method matching given name, type and value arguments.
1899     *  @param env       The current environment.
1900     *  @param name      The method's name.
1901     *  @param argtypes  The method's value arguments.
1902     *  @param typeargtypes  The method's type arguments.
1903     *  @param allowBoxing Allow boxing conversions of arguments.
1904     *  @param useVarargs Box trailing arguments into an array for varargs.
1905     */
1906    Symbol findFun(Env<AttrContext> env, Name name,
1907                   List<Type> argtypes, List<Type> typeargtypes,
1908                   boolean allowBoxing, boolean useVarargs) {
1909        Symbol bestSoFar = methodNotFound;
1910        Env<AttrContext> env1 = env;
1911        boolean staticOnly = false;
1912        while (env1.outer != null) {
1913            if (isStatic(env1)) staticOnly = true;
1914            Assert.check(env1.info.preferredTreeForDiagnostics == null);
1915            env1.info.preferredTreeForDiagnostics = env.tree;
1916            try {
1917                Symbol sym = findMethod(
1918                    env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
1919                    allowBoxing, useVarargs);
1920                if (sym.exists()) {
1921                    if (staticOnly &&
1922                        sym.kind == MTH &&
1923                        sym.owner.kind == TYP &&
1924                        (sym.flags() & STATIC) == 0) return new StaticError(sym);
1925                    else return sym;
1926                } else {
1927                    bestSoFar = bestOf(bestSoFar, sym);
1928                }
1929            } finally {
1930                env1.info.preferredTreeForDiagnostics = null;
1931            }
1932            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1933            env1 = env1.outer;
1934        }
1935
1936        Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
1937                                typeargtypes, allowBoxing, useVarargs);
1938        if (sym.exists())
1939            return sym;
1940
1941        for (Symbol currentSym : env.toplevel.namedImportScope.getSymbolsByName(name)) {
1942            Symbol origin = env.toplevel.namedImportScope.getOrigin(currentSym).owner;
1943            if (currentSym.kind == MTH) {
1944                if (currentSym.owner.type != origin.type)
1945                    currentSym = currentSym.clone(origin);
1946                if (!isAccessible(env, origin.type, currentSym))
1947                    currentSym = new AccessError(env, origin.type, currentSym);
1948                bestSoFar = selectBest(env, origin.type,
1949                                       argtypes, typeargtypes,
1950                                       currentSym, bestSoFar,
1951                                       allowBoxing, useVarargs);
1952            }
1953        }
1954        if (bestSoFar.exists())
1955            return bestSoFar;
1956
1957        for (Symbol currentSym : env.toplevel.starImportScope.getSymbolsByName(name)) {
1958            Symbol origin = env.toplevel.starImportScope.getOrigin(currentSym).owner;
1959            if (currentSym.kind == MTH) {
1960                if (currentSym.owner.type != origin.type)
1961                    currentSym = currentSym.clone(origin);
1962                if (!isAccessible(env, origin.type, currentSym))
1963                    currentSym = new AccessError(env, origin.type, currentSym);
1964                bestSoFar = selectBest(env, origin.type,
1965                                       argtypes, typeargtypes,
1966                                       currentSym, bestSoFar,
1967                                       allowBoxing, useVarargs);
1968            }
1969        }
1970        return bestSoFar;
1971    }
1972
1973    /** Load toplevel or member class with given fully qualified name and
1974     *  verify that it is accessible.
1975     *  @param env       The current environment.
1976     *  @param name      The fully qualified name of the class to be loaded.
1977     */
1978    Symbol loadClass(Env<AttrContext> env, Name name, RecoveryLoadClass recoveryLoadClass) {
1979        try {
1980            ClassSymbol c = finder.loadClass(env.toplevel.modle, name);
1981            return isAccessible(env, c) ? c : new AccessError(env, null, c);
1982        } catch (ClassFinder.BadClassFile err) {
1983            throw err;
1984        } catch (CompletionFailure ex) {
1985            Symbol candidate = recoveryLoadClass.loadClass(env, name);
1986
1987            if (candidate != null) {
1988                return candidate;
1989            }
1990
1991            return typeNotFound;
1992        }
1993    }
1994
1995    public interface RecoveryLoadClass {
1996        Symbol loadClass(Env<AttrContext> env, Name name);
1997    }
1998
1999    private final RecoveryLoadClass noRecovery = (env, name) -> null;
2000
2001    private final RecoveryLoadClass doRecoveryLoadClass = new RecoveryLoadClass() {
2002        @Override public Symbol loadClass(Env<AttrContext> env, Name name) {
2003            List<Name> candidates = Convert.classCandidates(name);
2004            return lookupInvisibleSymbol(env, name,
2005                                         n -> () -> createCompoundIterator(candidates,
2006                                                                           c -> syms.getClassesForName(c)
2007                                                                                    .iterator()),
2008                                         (ms, n) -> {
2009                for (Name candidate : candidates) {
2010                    try {
2011                        return finder.loadClass(ms, candidate);
2012                    } catch (CompletionFailure cf) {
2013                        //ignore
2014                    }
2015                }
2016                return null;
2017            }, sym -> sym.kind == Kind.TYP, false, typeNotFound);
2018        }
2019    };
2020
2021    private final RecoveryLoadClass namedImportScopeRecovery = (env, name) -> {
2022        Scope importScope = env.toplevel.namedImportScope;
2023        Symbol existing = importScope.findFirst(Convert.shortName(name),
2024                                                sym -> sym.kind == TYP && sym.flatName() == name);
2025
2026        if (existing != null) {
2027            return new InvisibleSymbolError(env, true, existing);
2028        }
2029        return null;
2030    };
2031
2032    private final RecoveryLoadClass starImportScopeRecovery = (env, name) -> {
2033        Scope importScope = env.toplevel.starImportScope;
2034        Symbol existing = importScope.findFirst(Convert.shortName(name),
2035                                                sym -> sym.kind == TYP && sym.flatName() == name);
2036
2037        if (existing != null) {
2038            try {
2039                existing = finder.loadClass(existing.packge().modle, name);
2040
2041                return new InvisibleSymbolError(env, true, existing);
2042            } catch (CompletionFailure cf) {
2043                //ignore
2044            }
2045        }
2046
2047        return null;
2048    };
2049
2050    Symbol lookupPackage(Env<AttrContext> env, Name name) {
2051        PackageSymbol pack = syms.lookupPackage(env.toplevel.modle, name);
2052
2053        if (allowModules && isImportOnDemand(env, name)) {
2054            pack.complete();
2055            if (!pack.exists()) {
2056                Name nameAndDot = name.append('.', names.empty);
2057                boolean prefixOfKnown =
2058                        env.toplevel.modle.visiblePackages.values()
2059                                                          .stream()
2060                                                          .anyMatch(p -> p.fullname.startsWith(nameAndDot));
2061
2062                return lookupInvisibleSymbol(env, name, syms::getPackagesForName, syms::enterPackage, sym -> {
2063                    sym.complete();
2064                    return sym.exists();
2065                }, prefixOfKnown, pack);
2066            }
2067        }
2068
2069        return pack;
2070    }
2071
2072    private boolean isImportOnDemand(Env<AttrContext> env, Name name) {
2073        if (!env.tree.hasTag(IMPORT))
2074            return false;
2075
2076        JCTree qualid = ((JCImport) env.tree).qualid;
2077
2078        if (!qualid.hasTag(SELECT))
2079            return false;
2080
2081        if (TreeInfo.name(qualid) != names.asterisk)
2082            return false;
2083
2084        return TreeInfo.fullName(((JCFieldAccess) qualid).selected) == name;
2085    }
2086
2087    private <S extends Symbol> Symbol lookupInvisibleSymbol(Env<AttrContext> env,
2088                                                            Name name,
2089                                                            Function<Name, Iterable<S>> get,
2090                                                            BiFunction<ModuleSymbol, Name, S> load,
2091                                                            Predicate<S> validate,
2092                                                            boolean suppressError,
2093                                                            Symbol defaultResult) {
2094        //even if a class/package cannot be found in the current module and among packages in modules
2095        //it depends on that are exported for any or this module, the class/package may exist internally
2096        //in some of these modules, or may exist in a module on which this module does not depend.
2097        //Provide better diagnostic in such cases by looking for the class in any module:
2098        Iterable<? extends S> candidates = get.apply(name);
2099
2100        for (S sym : candidates) {
2101            if (validate.test(sym))
2102                return createInvisibleSymbolError(env, suppressError, sym);
2103        }
2104
2105        Set<ModuleSymbol> recoverableModules = new HashSet<>(syms.getAllModules());
2106
2107        recoverableModules.remove(env.toplevel.modle);
2108
2109        for (ModuleSymbol ms : recoverableModules) {
2110            //avoid overly eager completing classes from source-based modules, as those
2111            //may not be completable with the current compiler settings:
2112            if (ms.sourceLocation == null) {
2113                if (ms.classLocation == null) {
2114                    ms = moduleFinder.findModule(ms);
2115                }
2116
2117                if (ms.kind != ERR) {
2118                    S sym = load.apply(ms, name);
2119
2120                    if (sym != null && validate.test(sym)) {
2121                        return createInvisibleSymbolError(env, suppressError, sym);
2122                    }
2123                }
2124            }
2125        }
2126
2127        return defaultResult;
2128    }
2129
2130    private Symbol createInvisibleSymbolError(Env<AttrContext> env, boolean suppressError, Symbol sym) {
2131        if (symbolPackageVisible(env, sym)) {
2132            return new AccessError(env, null, sym);
2133        } else {
2134            return new InvisibleSymbolError(env, suppressError, sym);
2135        }
2136    }
2137
2138    private boolean symbolPackageVisible(Env<AttrContext> env, Symbol sym) {
2139        ModuleSymbol envMod = env.toplevel.modle;
2140        PackageSymbol symPack = sym.packge();
2141        return envMod == symPack.modle ||
2142               envMod.visiblePackages.containsKey(symPack.fullname);
2143    }
2144
2145    /**
2146     * Find a type declared in a scope (not inherited).  Return null
2147     * if none is found.
2148     *  @param env       The current environment.
2149     *  @param site      The original type from where the selection takes
2150     *                   place.
2151     *  @param name      The type's name.
2152     *  @param c         The class to search for the member type. This is
2153     *                   always a superclass or implemented interface of
2154     *                   site's class.
2155     */
2156    Symbol findImmediateMemberType(Env<AttrContext> env,
2157                                   Type site,
2158                                   Name name,
2159                                   TypeSymbol c) {
2160        for (Symbol sym : c.members().getSymbolsByName(name)) {
2161            if (sym.kind == TYP) {
2162                return isAccessible(env, site, sym)
2163                    ? sym
2164                    : new AccessError(env, site, sym);
2165            }
2166        }
2167        return typeNotFound;
2168    }
2169
2170    /** Find a member type inherited from a superclass or interface.
2171     *  @param env       The current environment.
2172     *  @param site      The original type from where the selection takes
2173     *                   place.
2174     *  @param name      The type's name.
2175     *  @param c         The class to search for the member type. This is
2176     *                   always a superclass or implemented interface of
2177     *                   site's class.
2178     */
2179    Symbol findInheritedMemberType(Env<AttrContext> env,
2180                                   Type site,
2181                                   Name name,
2182                                   TypeSymbol c) {
2183        Symbol bestSoFar = typeNotFound;
2184        Symbol sym;
2185        Type st = types.supertype(c.type);
2186        if (st != null && st.hasTag(CLASS)) {
2187            sym = findMemberType(env, site, name, st.tsym);
2188            bestSoFar = bestOf(bestSoFar, sym);
2189        }
2190        for (List<Type> l = types.interfaces(c.type);
2191             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
2192             l = l.tail) {
2193            sym = findMemberType(env, site, name, l.head.tsym);
2194            if (!bestSoFar.kind.isResolutionError() &&
2195                !sym.kind.isResolutionError() &&
2196                sym.owner != bestSoFar.owner)
2197                bestSoFar = new AmbiguityError(bestSoFar, sym);
2198            else
2199                bestSoFar = bestOf(bestSoFar, sym);
2200        }
2201        return bestSoFar;
2202    }
2203
2204    /** Find qualified member type.
2205     *  @param env       The current environment.
2206     *  @param site      The original type from where the selection takes
2207     *                   place.
2208     *  @param name      The type's name.
2209     *  @param c         The class to search for the member type. This is
2210     *                   always a superclass or implemented interface of
2211     *                   site's class.
2212     */
2213    Symbol findMemberType(Env<AttrContext> env,
2214                          Type site,
2215                          Name name,
2216                          TypeSymbol c) {
2217        Symbol sym = findImmediateMemberType(env, site, name, c);
2218
2219        if (sym != typeNotFound)
2220            return sym;
2221
2222        return findInheritedMemberType(env, site, name, c);
2223
2224    }
2225
2226    /** Find a global type in given scope and load corresponding class.
2227     *  @param env       The current environment.
2228     *  @param scope     The scope in which to look for the type.
2229     *  @param name      The type's name.
2230     */
2231    Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name, RecoveryLoadClass recoveryLoadClass) {
2232        Symbol bestSoFar = typeNotFound;
2233        for (Symbol s : scope.getSymbolsByName(name)) {
2234            Symbol sym = loadClass(env, s.flatName(), recoveryLoadClass);
2235            if (bestSoFar.kind == TYP && sym.kind == TYP &&
2236                bestSoFar != sym)
2237                return new AmbiguityError(bestSoFar, sym);
2238            else
2239                bestSoFar = bestOf(bestSoFar, sym);
2240        }
2241        return bestSoFar;
2242    }
2243
2244    Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
2245        for (Symbol sym : env.info.scope.getSymbolsByName(name)) {
2246            if (sym.kind == TYP) {
2247                if (staticOnly &&
2248                    sym.type.hasTag(TYPEVAR) &&
2249                    sym.owner.kind == TYP)
2250                    return new StaticError(sym);
2251                return sym;
2252            }
2253        }
2254        return typeNotFound;
2255    }
2256
2257    /** Find an unqualified type symbol.
2258     *  @param env       The current environment.
2259     *  @param name      The type's name.
2260     */
2261    Symbol findType(Env<AttrContext> env, Name name) {
2262        if (name == names.empty)
2263            return typeNotFound; // do not allow inadvertent "lookup" of anonymous types
2264        Symbol bestSoFar = typeNotFound;
2265        Symbol sym;
2266        boolean staticOnly = false;
2267        for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
2268            if (isStatic(env1)) staticOnly = true;
2269            // First, look for a type variable and the first member type
2270            final Symbol tyvar = findTypeVar(env1, name, staticOnly);
2271            sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
2272                                          name, env1.enclClass.sym);
2273
2274            // Return the type variable if we have it, and have no
2275            // immediate member, OR the type variable is for a method.
2276            if (tyvar != typeNotFound) {
2277                if (env.baseClause || sym == typeNotFound ||
2278                    (tyvar.kind == TYP && tyvar.exists() &&
2279                     tyvar.owner.kind == MTH)) {
2280                    return tyvar;
2281                }
2282            }
2283
2284            // If the environment is a class def, finish up,
2285            // otherwise, do the entire findMemberType
2286            if (sym == typeNotFound)
2287                sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
2288                                              name, env1.enclClass.sym);
2289
2290            if (staticOnly && sym.kind == TYP &&
2291                sym.type.hasTag(CLASS) &&
2292                sym.type.getEnclosingType().hasTag(CLASS) &&
2293                env1.enclClass.sym.type.isParameterized() &&
2294                sym.type.getEnclosingType().isParameterized())
2295                return new StaticError(sym);
2296            else if (sym.exists()) return sym;
2297            else bestSoFar = bestOf(bestSoFar, sym);
2298
2299            JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
2300            if ((encl.sym.flags() & STATIC) != 0)
2301                staticOnly = true;
2302        }
2303
2304        if (!env.tree.hasTag(IMPORT)) {
2305            sym = findGlobalType(env, env.toplevel.namedImportScope, name, namedImportScopeRecovery);
2306            if (sym.exists()) return sym;
2307            else bestSoFar = bestOf(bestSoFar, sym);
2308
2309            sym = findGlobalType(env, env.toplevel.packge.members(), name, noRecovery);
2310            if (sym.exists()) return sym;
2311            else bestSoFar = bestOf(bestSoFar, sym);
2312
2313            sym = findGlobalType(env, env.toplevel.starImportScope, name, starImportScopeRecovery);
2314            if (sym.exists()) return sym;
2315            else bestSoFar = bestOf(bestSoFar, sym);
2316        }
2317
2318        return bestSoFar;
2319    }
2320
2321    /** Find an unqualified identifier which matches a specified kind set.
2322     *  @param env       The current environment.
2323     *  @param name      The identifier's name.
2324     *  @param kind      Indicates the possible symbol kinds
2325     *                   (a subset of VAL, TYP, PCK).
2326     */
2327    Symbol findIdent(Env<AttrContext> env, Name name, KindSelector kind) {
2328        Symbol bestSoFar = typeNotFound;
2329        Symbol sym;
2330
2331        if (kind.contains(KindSelector.VAL)) {
2332            sym = findVar(env, name);
2333            if (sym.exists()) return sym;
2334            else bestSoFar = bestOf(bestSoFar, sym);
2335        }
2336
2337        if (kind.contains(KindSelector.TYP)) {
2338            sym = findType(env, name);
2339
2340            if (sym.exists()) return sym;
2341            else bestSoFar = bestOf(bestSoFar, sym);
2342        }
2343
2344        if (kind.contains(KindSelector.PCK))
2345            return lookupPackage(env, name);
2346        else return bestSoFar;
2347    }
2348
2349    /** Find an identifier in a package which matches a specified kind set.
2350     *  @param env       The current environment.
2351     *  @param name      The identifier's name.
2352     *  @param kind      Indicates the possible symbol kinds
2353     *                   (a nonempty subset of TYP, PCK).
2354     */
2355    Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
2356                              Name name, KindSelector kind) {
2357        Name fullname = TypeSymbol.formFullName(name, pck);
2358        Symbol bestSoFar = typeNotFound;
2359        if (kind.contains(KindSelector.TYP)) {
2360            RecoveryLoadClass recoveryLoadClass =
2361                    allowModules && !kind.contains(KindSelector.PCK) &&
2362                    !pck.exists() && !env.info.isSpeculative ?
2363                        doRecoveryLoadClass : noRecovery;
2364            Symbol sym = loadClass(env, fullname, recoveryLoadClass);
2365            if (sym.exists()) {
2366                // don't allow programs to use flatnames
2367                if (name == sym.name) return sym;
2368            }
2369            else bestSoFar = bestOf(bestSoFar, sym);
2370        }
2371        if (kind.contains(KindSelector.PCK)) {
2372            return lookupPackage(env, fullname);
2373        }
2374        return bestSoFar;
2375    }
2376
2377    /** Find an identifier among the members of a given type `site'.
2378     *  @param env       The current environment.
2379     *  @param site      The type containing the symbol to be found.
2380     *  @param name      The identifier's name.
2381     *  @param kind      Indicates the possible symbol kinds
2382     *                   (a subset of VAL, TYP).
2383     */
2384    Symbol findIdentInType(Env<AttrContext> env, Type site,
2385                           Name name, KindSelector kind) {
2386        Symbol bestSoFar = typeNotFound;
2387        Symbol sym;
2388        if (kind.contains(KindSelector.VAL)) {
2389            sym = findField(env, site, name, site.tsym);
2390            if (sym.exists()) return sym;
2391            else bestSoFar = bestOf(bestSoFar, sym);
2392        }
2393
2394        if (kind.contains(KindSelector.TYP)) {
2395            sym = findMemberType(env, site, name, site.tsym);
2396            if (sym.exists()) return sym;
2397            else bestSoFar = bestOf(bestSoFar, sym);
2398        }
2399        return bestSoFar;
2400    }
2401
2402/* ***************************************************************************
2403 *  Access checking
2404 *  The following methods convert ResolveErrors to ErrorSymbols, issuing
2405 *  an error message in the process
2406 ****************************************************************************/
2407
2408    /** If `sym' is a bad symbol: report error and return errSymbol
2409     *  else pass through unchanged,
2410     *  additional arguments duplicate what has been used in trying to find the
2411     *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
2412     *  expect misses to happen frequently.
2413     *
2414     *  @param sym       The symbol that was found, or a ResolveError.
2415     *  @param pos       The position to use for error reporting.
2416     *  @param location  The symbol the served as a context for this lookup
2417     *  @param site      The original type from where the selection took place.
2418     *  @param name      The symbol's name.
2419     *  @param qualified Did we get here through a qualified expression resolution?
2420     *  @param argtypes  The invocation's value arguments,
2421     *                   if we looked for a method.
2422     *  @param typeargtypes  The invocation's type arguments,
2423     *                   if we looked for a method.
2424     *  @param logResolveHelper helper class used to log resolve errors
2425     */
2426    Symbol accessInternal(Symbol sym,
2427                  DiagnosticPosition pos,
2428                  Symbol location,
2429                  Type site,
2430                  Name name,
2431                  boolean qualified,
2432                  List<Type> argtypes,
2433                  List<Type> typeargtypes,
2434                  LogResolveHelper logResolveHelper) {
2435        if (sym.kind.isResolutionError()) {
2436            ResolveError errSym = (ResolveError)sym.baseSymbol();
2437            sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
2438            argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
2439            if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
2440                logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
2441            }
2442        }
2443        return sym;
2444    }
2445
2446    /**
2447     * Variant of the generalized access routine, to be used for generating method
2448     * resolution diagnostics
2449     */
2450    Symbol accessMethod(Symbol sym,
2451                  DiagnosticPosition pos,
2452                  Symbol location,
2453                  Type site,
2454                  Name name,
2455                  boolean qualified,
2456                  List<Type> argtypes,
2457                  List<Type> typeargtypes) {
2458        return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
2459    }
2460
2461    /** Same as original accessMethod(), but without location.
2462     */
2463    Symbol accessMethod(Symbol sym,
2464                  DiagnosticPosition pos,
2465                  Type site,
2466                  Name name,
2467                  boolean qualified,
2468                  List<Type> argtypes,
2469                  List<Type> typeargtypes) {
2470        return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
2471    }
2472
2473    /**
2474     * Variant of the generalized access routine, to be used for generating variable,
2475     * type resolution diagnostics
2476     */
2477    Symbol accessBase(Symbol sym,
2478                  DiagnosticPosition pos,
2479                  Symbol location,
2480                  Type site,
2481                  Name name,
2482                  boolean qualified) {
2483        return accessInternal(sym, pos, location, site, name, qualified, List.nil(), null, basicLogResolveHelper);
2484    }
2485
2486    /** Same as original accessBase(), but without location.
2487     */
2488    Symbol accessBase(Symbol sym,
2489                  DiagnosticPosition pos,
2490                  Type site,
2491                  Name name,
2492                  boolean qualified) {
2493        return accessBase(sym, pos, site.tsym, site, name, qualified);
2494    }
2495
2496    interface LogResolveHelper {
2497        boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
2498        List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
2499    }
2500
2501    LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
2502        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2503            return !site.isErroneous();
2504        }
2505        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2506            return argtypes;
2507        }
2508    };
2509
2510    LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
2511        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2512            return !site.isErroneous() &&
2513                        !Type.isErroneous(argtypes) &&
2514                        (typeargtypes == null || !Type.isErroneous(typeargtypes));
2515        }
2516        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2517            return argtypes.map(new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
2518        }
2519    };
2520
2521    class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
2522
2523        public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
2524            deferredAttr.super(mode, msym, step);
2525        }
2526
2527        @Override
2528        protected Type typeOf(DeferredType dt) {
2529            Type res = super.typeOf(dt);
2530            if (!res.isErroneous()) {
2531                switch (TreeInfo.skipParens(dt.tree).getTag()) {
2532                    case LAMBDA:
2533                    case REFERENCE:
2534                        return dt;
2535                    case CONDEXPR:
2536                        return res == Type.recoveryType ?
2537                                dt : res;
2538                }
2539            }
2540            return res;
2541        }
2542    }
2543
2544    /** Check that sym is not an abstract method.
2545     */
2546    void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
2547        if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
2548            log.error(pos, "abstract.cant.be.accessed.directly",
2549                      kindName(sym), sym, sym.location());
2550    }
2551
2552/* ***************************************************************************
2553 *  Name resolution
2554 *  Naming conventions are as for symbol lookup
2555 *  Unlike the find... methods these methods will report access errors
2556 ****************************************************************************/
2557
2558    /** Resolve an unqualified (non-method) identifier.
2559     *  @param pos       The position to use for error reporting.
2560     *  @param env       The environment current at the identifier use.
2561     *  @param name      The identifier's name.
2562     *  @param kind      The set of admissible symbol kinds for the identifier.
2563     */
2564    Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
2565                        Name name, KindSelector kind) {
2566        return accessBase(
2567            findIdent(env, name, kind),
2568            pos, env.enclClass.sym.type, name, false);
2569    }
2570
2571    /** Resolve an unqualified method identifier.
2572     *  @param pos       The position to use for error reporting.
2573     *  @param env       The environment current at the method invocation.
2574     *  @param name      The identifier's name.
2575     *  @param argtypes  The types of the invocation's value arguments.
2576     *  @param typeargtypes  The types of the invocation's type arguments.
2577     */
2578    Symbol resolveMethod(DiagnosticPosition pos,
2579                         Env<AttrContext> env,
2580                         Name name,
2581                         List<Type> argtypes,
2582                         List<Type> typeargtypes) {
2583        return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
2584                new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
2585                    @Override
2586                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2587                        return findFun(env, name, argtypes, typeargtypes,
2588                                phase.isBoxingRequired(),
2589                                phase.isVarargsRequired());
2590                    }});
2591    }
2592
2593    /** Resolve a qualified method identifier
2594     *  @param pos       The position to use for error reporting.
2595     *  @param env       The environment current at the method invocation.
2596     *  @param site      The type of the qualifying expression, in which
2597     *                   identifier is searched.
2598     *  @param name      The identifier's name.
2599     *  @param argtypes  The types of the invocation's value arguments.
2600     *  @param typeargtypes  The types of the invocation's type arguments.
2601     */
2602    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2603                                  Type site, Name name, List<Type> argtypes,
2604                                  List<Type> typeargtypes) {
2605        return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
2606    }
2607    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2608                                  Symbol location, Type site, Name name, List<Type> argtypes,
2609                                  List<Type> typeargtypes) {
2610        return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
2611    }
2612    private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
2613                                  DiagnosticPosition pos, Env<AttrContext> env,
2614                                  Symbol location, Type site, Name name, List<Type> argtypes,
2615                                  List<Type> typeargtypes) {
2616        return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
2617            @Override
2618            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2619                return findMethod(env, site, name, argtypes, typeargtypes,
2620                        phase.isBoxingRequired(),
2621                        phase.isVarargsRequired());
2622            }
2623            @Override
2624            Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2625                if (sym.kind.isResolutionError()) {
2626                    sym = super.access(env, pos, location, sym);
2627                } else if (allowMethodHandles) {
2628                    MethodSymbol msym = (MethodSymbol)sym;
2629                    if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
2630                        return findPolymorphicSignatureInstance(env, sym, argtypes);
2631                    }
2632                }
2633                return sym;
2634            }
2635        });
2636    }
2637
2638    /** Find or create an implicit method of exactly the given type (after erasure).
2639     *  Searches in a side table, not the main scope of the site.
2640     *  This emulates the lookup process required by JSR 292 in JVM.
2641     *  @param env       Attribution environment
2642     *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
2643     *  @param argtypes  The required argument types
2644     */
2645    Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
2646                                            final Symbol spMethod,
2647                                            List<Type> argtypes) {
2648        Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
2649                (MethodSymbol)spMethod, currentResolutionContext, argtypes);
2650        for (Symbol sym : polymorphicSignatureScope.getSymbolsByName(spMethod.name)) {
2651            // Check that there is already a method symbol for the method
2652            // type and owner
2653            if (types.isSameType(mtype, sym.type) &&
2654                spMethod.owner == sym.owner) {
2655                return sym;
2656            }
2657        }
2658
2659        // Create the desired method
2660        // Retain static modifier is to support invocations to
2661        // MethodHandle.linkTo* methods
2662        long flags = ABSTRACT | HYPOTHETICAL |
2663                     spMethod.flags() & (Flags.AccessFlags | Flags.STATIC);
2664        Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
2665            @Override
2666            public Symbol baseSymbol() {
2667                return spMethod;
2668            }
2669        };
2670        if (!mtype.isErroneous()) { // Cache only if kosher.
2671            polymorphicSignatureScope.enter(msym);
2672        }
2673        return msym;
2674    }
2675
2676    /** Resolve a qualified method identifier, throw a fatal error if not
2677     *  found.
2678     *  @param pos       The position to use for error reporting.
2679     *  @param env       The environment current at the method invocation.
2680     *  @param site      The type of the qualifying expression, in which
2681     *                   identifier is searched.
2682     *  @param name      The identifier's name.
2683     *  @param argtypes  The types of the invocation's value arguments.
2684     *  @param typeargtypes  The types of the invocation's type arguments.
2685     */
2686    public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
2687                                        Type site, Name name,
2688                                        List<Type> argtypes,
2689                                        List<Type> typeargtypes) {
2690        MethodResolutionContext resolveContext = new MethodResolutionContext();
2691        resolveContext.internalResolution = true;
2692        Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
2693                site, name, argtypes, typeargtypes);
2694        if (sym.kind == MTH) return (MethodSymbol)sym;
2695        else throw new FatalError(
2696                 diags.fragment("fatal.err.cant.locate.meth",
2697                                name));
2698    }
2699
2700    /** Resolve constructor.
2701     *  @param pos       The position to use for error reporting.
2702     *  @param env       The environment current at the constructor invocation.
2703     *  @param site      The type of class for which a constructor is searched.
2704     *  @param argtypes  The types of the constructor invocation's value
2705     *                   arguments.
2706     *  @param typeargtypes  The types of the constructor invocation's type
2707     *                   arguments.
2708     */
2709    Symbol resolveConstructor(DiagnosticPosition pos,
2710                              Env<AttrContext> env,
2711                              Type site,
2712                              List<Type> argtypes,
2713                              List<Type> typeargtypes) {
2714        return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
2715    }
2716
2717    private Symbol resolveConstructor(MethodResolutionContext resolveContext,
2718                              final DiagnosticPosition pos,
2719                              Env<AttrContext> env,
2720                              Type site,
2721                              List<Type> argtypes,
2722                              List<Type> typeargtypes) {
2723        return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2724            @Override
2725            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2726                return findConstructor(pos, env, site, argtypes, typeargtypes,
2727                        phase.isBoxingRequired(),
2728                        phase.isVarargsRequired());
2729            }
2730        });
2731    }
2732
2733    /** Resolve a constructor, throw a fatal error if not found.
2734     *  @param pos       The position to use for error reporting.
2735     *  @param env       The environment current at the method invocation.
2736     *  @param site      The type to be constructed.
2737     *  @param argtypes  The types of the invocation's value arguments.
2738     *  @param typeargtypes  The types of the invocation's type arguments.
2739     */
2740    public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2741                                        Type site,
2742                                        List<Type> argtypes,
2743                                        List<Type> typeargtypes) {
2744        MethodResolutionContext resolveContext = new MethodResolutionContext();
2745        resolveContext.internalResolution = true;
2746        Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
2747        if (sym.kind == MTH) return (MethodSymbol)sym;
2748        else throw new FatalError(
2749                 diags.fragment("fatal.err.cant.locate.ctor", site));
2750    }
2751
2752    Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2753                              Type site, List<Type> argtypes,
2754                              List<Type> typeargtypes,
2755                              boolean allowBoxing,
2756                              boolean useVarargs) {
2757        Symbol sym = findMethod(env, site,
2758                                    names.init, argtypes,
2759                                    typeargtypes, allowBoxing,
2760                                    useVarargs);
2761        chk.checkDeprecated(pos, env.info.scope.owner, sym);
2762        return sym;
2763    }
2764
2765    /** Resolve constructor using diamond inference.
2766     *  @param pos       The position to use for error reporting.
2767     *  @param env       The environment current at the constructor invocation.
2768     *  @param site      The type of class for which a constructor is searched.
2769     *                   The scope of this class has been touched in attribution.
2770     *  @param argtypes  The types of the constructor invocation's value
2771     *                   arguments.
2772     *  @param typeargtypes  The types of the constructor invocation's type
2773     *                   arguments.
2774     */
2775    Symbol resolveDiamond(DiagnosticPosition pos,
2776                              Env<AttrContext> env,
2777                              Type site,
2778                              List<Type> argtypes,
2779                              List<Type> typeargtypes) {
2780        return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
2781                new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2782                    @Override
2783                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2784                        return findDiamond(env, site, argtypes, typeargtypes,
2785                                phase.isBoxingRequired(),
2786                                phase.isVarargsRequired());
2787                    }
2788                    @Override
2789                    Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2790                        if (sym.kind.isResolutionError()) {
2791                            if (sym.kind != WRONG_MTH &&
2792                                sym.kind != WRONG_MTHS) {
2793                                sym = super.access(env, pos, location, sym);
2794                            } else {
2795                                final JCDiagnostic details = sym.kind == WRONG_MTH ?
2796                                                ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
2797                                                null;
2798                                sym = new DiamondError(sym, currentResolutionContext);
2799                                sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
2800                                env.info.pendingResolutionPhase = currentResolutionContext.step;
2801                            }
2802                        }
2803                        return sym;
2804                    }});
2805    }
2806
2807    /** This method scans all the constructor symbol in a given class scope -
2808     *  assuming that the original scope contains a constructor of the kind:
2809     *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
2810     *  a method check is executed against the modified constructor type:
2811     *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
2812     *  inference. The inferred return type of the synthetic constructor IS
2813     *  the inferred type for the diamond operator.
2814     */
2815    private Symbol findDiamond(Env<AttrContext> env,
2816                              Type site,
2817                              List<Type> argtypes,
2818                              List<Type> typeargtypes,
2819                              boolean allowBoxing,
2820                              boolean useVarargs) {
2821        Symbol bestSoFar = methodNotFound;
2822        TypeSymbol tsym = site.tsym.isInterface() ? syms.objectType.tsym : site.tsym;
2823        for (final Symbol sym : tsym.members().getSymbolsByName(names.init)) {
2824            //- System.out.println(" e " + e.sym);
2825            if (sym.kind == MTH &&
2826                (sym.flags_field & SYNTHETIC) == 0) {
2827                    List<Type> oldParams = sym.type.hasTag(FORALL) ?
2828                            ((ForAll)sym.type).tvars :
2829                            List.nil();
2830                    Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
2831                                                 types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
2832                    MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
2833                        @Override
2834                        public Symbol baseSymbol() {
2835                            return sym;
2836                        }
2837                    };
2838                    bestSoFar = selectBest(env, site, argtypes, typeargtypes,
2839                            newConstr,
2840                            bestSoFar,
2841                            allowBoxing,
2842                            useVarargs);
2843            }
2844        }
2845        return bestSoFar;
2846    }
2847
2848    Symbol getMemberReference(DiagnosticPosition pos,
2849            Env<AttrContext> env,
2850            JCMemberReference referenceTree,
2851            Type site,
2852            Name name) {
2853
2854        site = types.capture(site);
2855
2856        ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
2857                referenceTree, site, name, List.nil(), null, VARARITY);
2858
2859        Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
2860        Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
2861                nilMethodCheck, lookupHelper);
2862
2863        env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
2864
2865        return sym;
2866    }
2867
2868    ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
2869                                  Type site,
2870                                  Name name,
2871                                  List<Type> argtypes,
2872                                  List<Type> typeargtypes,
2873                                  MethodResolutionPhase maxPhase) {
2874        if (!name.equals(names.init)) {
2875            //method reference
2876            return new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
2877        } else if (site.hasTag(ARRAY)) {
2878            //array constructor reference
2879            return new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2880        } else {
2881            //class constructor reference
2882            return new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2883        }
2884    }
2885
2886    /**
2887     * Resolution of member references is typically done as a single
2888     * overload resolution step, where the argument types A are inferred from
2889     * the target functional descriptor.
2890     *
2891     * If the member reference is a method reference with a type qualifier,
2892     * a two-step lookup process is performed. The first step uses the
2893     * expected argument list A, while the second step discards the first
2894     * type from A (which is treated as a receiver type).
2895     *
2896     * There are two cases in which inference is performed: (i) if the member
2897     * reference is a constructor reference and the qualifier type is raw - in
2898     * which case diamond inference is used to infer a parameterization for the
2899     * type qualifier; (ii) if the member reference is an unbound reference
2900     * where the type qualifier is raw - in that case, during the unbound lookup
2901     * the receiver argument type is used to infer an instantiation for the raw
2902     * qualifier type.
2903     *
2904     * When a multi-step resolution process is exploited, the process of picking
2905     * the resulting symbol is delegated to an helper class {@link com.sun.tools.javac.comp.Resolve.ReferenceChooser}.
2906     *
2907     * This routine returns a pair (T,S), where S is the member reference symbol,
2908     * and T is the type of the class in which S is defined. This is necessary as
2909     * the type T might be dynamically inferred (i.e. if constructor reference
2910     * has a raw qualifier).
2911     */
2912    Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
2913                                  JCMemberReference referenceTree,
2914                                  Type site,
2915                                  Name name,
2916                                  List<Type> argtypes,
2917                                  List<Type> typeargtypes,
2918                                  MethodCheck methodCheck,
2919                                  InferenceContext inferenceContext,
2920                                  ReferenceChooser referenceChooser) {
2921
2922        //step 1 - bound lookup
2923        ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
2924                referenceTree, site, name, argtypes, typeargtypes, VARARITY);
2925        Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
2926        MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
2927        boundSearchResolveContext.methodCheck = methodCheck;
2928        Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(),
2929                site.tsym, boundSearchResolveContext, boundLookupHelper);
2930        ReferenceLookupResult boundRes = new ReferenceLookupResult(boundSym, boundSearchResolveContext);
2931
2932        //step 2 - unbound lookup
2933        Symbol unboundSym = methodNotFound;
2934        Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
2935        ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
2936        ReferenceLookupResult unboundRes = referenceNotFound;
2937        if (unboundLookupHelper != null) {
2938            MethodResolutionContext unboundSearchResolveContext =
2939                    new MethodResolutionContext();
2940            unboundSearchResolveContext.methodCheck = methodCheck;
2941            unboundSym = lookupMethod(unboundEnv, env.tree.pos(),
2942                    site.tsym, unboundSearchResolveContext, unboundLookupHelper);
2943            unboundRes = new ReferenceLookupResult(unboundSym, unboundSearchResolveContext);
2944        }
2945
2946        //merge results
2947        Pair<Symbol, ReferenceLookupHelper> res;
2948        Symbol bestSym = referenceChooser.result(boundRes, unboundRes);
2949        res = new Pair<>(bestSym,
2950                bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
2951        env.info.pendingResolutionPhase = bestSym == unboundSym ?
2952                unboundEnv.info.pendingResolutionPhase :
2953                boundEnv.info.pendingResolutionPhase;
2954
2955        return res;
2956    }
2957
2958    /**
2959     * This class is used to represent a method reference lookup result. It keeps track of two
2960     * things: (i) the symbol found during a method reference lookup and (ii) the static kind
2961     * of the lookup (see {@link com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind}).
2962     */
2963    static class ReferenceLookupResult {
2964
2965        /**
2966         * Static kind associated with a method reference lookup. Erroneous lookups end up with
2967         * the UNDEFINED kind; successful lookups will end up with either STATIC, NON_STATIC,
2968         * depending on whether all applicable candidates are static or non-static methods,
2969         * respectively. If a successful lookup has both static and non-static applicable methods,
2970         * its kind is set to BOTH.
2971         */
2972        enum StaticKind {
2973            STATIC,
2974            NON_STATIC,
2975            BOTH,
2976            UNDEFINED;
2977
2978            /**
2979             * Retrieve the static kind associated with a given (method) symbol.
2980             */
2981            static StaticKind from(Symbol s) {
2982                return s.isStatic() ?
2983                        STATIC : NON_STATIC;
2984            }
2985
2986            /**
2987             * Merge two static kinds together.
2988             */
2989            static StaticKind reduce(StaticKind sk1, StaticKind sk2) {
2990                if (sk1 == UNDEFINED) {
2991                    return sk2;
2992                } else if (sk2 == UNDEFINED) {
2993                    return sk1;
2994                } else {
2995                    return sk1 == sk2 ? sk1 : BOTH;
2996                }
2997            }
2998        }
2999
3000        /** The static kind. */
3001        StaticKind staticKind;
3002
3003        /** The lookup result. */
3004        Symbol sym;
3005
3006        ReferenceLookupResult(Symbol sym, MethodResolutionContext resolutionContext) {
3007            this.staticKind = staticKind(sym, resolutionContext);
3008            this.sym = sym;
3009        }
3010
3011        private StaticKind staticKind(Symbol sym, MethodResolutionContext resolutionContext) {
3012            switch (sym.kind) {
3013                case MTH:
3014                case AMBIGUOUS:
3015                    return resolutionContext.candidates.stream()
3016                            .filter(c -> c.isApplicable() && c.step == resolutionContext.step)
3017                            .map(c -> StaticKind.from(c.sym))
3018                            .reduce(StaticKind::reduce)
3019                            .orElse(StaticKind.UNDEFINED);
3020                default:
3021                    return StaticKind.UNDEFINED;
3022            }
3023        }
3024
3025        /**
3026         * Does this result corresponds to a successful lookup (i.e. one where a method has been found?)
3027         */
3028        boolean isSuccess() {
3029            return staticKind != StaticKind.UNDEFINED;
3030        }
3031
3032        /**
3033         * Does this result have given static kind?
3034         */
3035        boolean hasKind(StaticKind sk) {
3036            return this.staticKind == sk;
3037        }
3038
3039        /**
3040         * Error recovery helper: can this lookup result be ignored (for the purpose of returning
3041         * some 'better' result) ?
3042         */
3043        boolean canIgnore() {
3044            switch (sym.kind) {
3045                case ABSENT_MTH:
3046                    return true;
3047                case WRONG_MTH:
3048                    InapplicableSymbolError errSym =
3049                            (InapplicableSymbolError)sym.baseSymbol();
3050                    return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
3051                            .matches(errSym.errCandidate().snd);
3052                case WRONG_MTHS:
3053                    InapplicableSymbolsError errSyms =
3054                            (InapplicableSymbolsError)sym.baseSymbol();
3055                    return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
3056                default:
3057                    return false;
3058            }
3059        }
3060    }
3061
3062    /**
3063     * This abstract class embodies the logic that converts one (bound lookup) or two (unbound lookup)
3064     * {@code ReferenceLookupResult} objects into a (@code Symbol), which is then regarded as the
3065     * result of method reference resolution.
3066     */
3067    abstract class ReferenceChooser {
3068        /**
3069         * Generate a result from a pair of lookup result objects. This method delegates to the
3070         * appropriate result generation routine.
3071         */
3072        Symbol result(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3073            return unboundRes != referenceNotFound ?
3074                    unboundResult(boundRes, unboundRes) :
3075                    boundResult(boundRes);
3076        }
3077
3078        /**
3079         * Generate a symbol from a given bound lookup result.
3080         */
3081        abstract Symbol boundResult(ReferenceLookupResult boundRes);
3082
3083        /**
3084         * Generate a symbol from a pair of bound/unbound lookup results.
3085         */
3086        abstract Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes);
3087    }
3088
3089    /**
3090     * This chooser implements the selection strategy used during a full lookup; this logic
3091     * is described in JLS SE 8 (15.3.2).
3092     */
3093    ReferenceChooser basicReferenceChooser = new ReferenceChooser() {
3094
3095        @Override
3096        Symbol boundResult(ReferenceLookupResult boundRes) {
3097            return !boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC) ?
3098                    boundRes.sym : //the search produces a non-static method
3099                    new BadMethodReferenceError(boundRes.sym, false);
3100        }
3101
3102        @Override
3103        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3104            if (boundRes.hasKind(StaticKind.STATIC) &&
3105                    (!unboundRes.isSuccess() || unboundRes.hasKind(StaticKind.STATIC))) {
3106                //the first search produces a static method and no non-static method is applicable
3107                //during the second search
3108                return boundRes.sym;
3109            } else if (unboundRes.hasKind(StaticKind.NON_STATIC) &&
3110                    (!boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC))) {
3111                //the second search produces a non-static method and no static method is applicable
3112                //during the first search
3113                return unboundRes.sym;
3114            } else if (boundRes.isSuccess() && unboundRes.isSuccess()) {
3115                //both searches produce some result; ambiguity (error recovery)
3116                return ambiguityError(boundRes.sym, unboundRes.sym);
3117            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
3118                //Both searches failed to produce a result with correct staticness (i.e. first search
3119                //produces an non-static method). Alternatively, a given search produced a result
3120                //with the right staticness, but the other search has applicable methods with wrong
3121                //staticness (error recovery)
3122                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
3123            } else {
3124                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
3125                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
3126                        unboundRes.sym : boundRes.sym;
3127            }
3128        }
3129    };
3130
3131    /**
3132     * This chooser implements the selection strategy used during an arity-based lookup; this logic
3133     * is described in JLS SE 8 (15.12.2.1).
3134     */
3135    ReferenceChooser structuralReferenceChooser = new ReferenceChooser() {
3136
3137        @Override
3138        Symbol boundResult(ReferenceLookupResult boundRes) {
3139            return (!boundRes.isSuccess() || !boundRes.hasKind(StaticKind.STATIC)) ?
3140                    boundRes.sym : //the search has at least one applicable non-static method
3141                    new BadMethodReferenceError(boundRes.sym, false);
3142        }
3143
3144        @Override
3145        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3146            if (boundRes.isSuccess() && !boundRes.hasKind(StaticKind.NON_STATIC)) {
3147                //the first serach has at least one applicable static method
3148                return boundRes.sym;
3149            } else if (unboundRes.isSuccess() && !unboundRes.hasKind(StaticKind.STATIC)) {
3150                //the second search has at least one applicable non-static method
3151                return unboundRes.sym;
3152            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
3153                //either the first search produces a non-static method, or second search produces
3154                //a non-static method (error recovery)
3155                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
3156            } else {
3157                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
3158                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
3159                        unboundRes.sym : boundRes.sym;
3160            }
3161        }
3162    };
3163
3164    /**
3165     * Helper for defining custom method-like lookup logic; a lookup helper
3166     * provides hooks for (i) the actual lookup logic and (ii) accessing the
3167     * lookup result (this step might result in compiler diagnostics to be generated)
3168     */
3169    abstract class LookupHelper {
3170
3171        /** name of the symbol to lookup */
3172        Name name;
3173
3174        /** location in which the lookup takes place */
3175        Type site;
3176
3177        /** actual types used during the lookup */
3178        List<Type> argtypes;
3179
3180        /** type arguments used during the lookup */
3181        List<Type> typeargtypes;
3182
3183        /** Max overload resolution phase handled by this helper */
3184        MethodResolutionPhase maxPhase;
3185
3186        LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3187            this.name = name;
3188            this.site = site;
3189            this.argtypes = argtypes;
3190            this.typeargtypes = typeargtypes;
3191            this.maxPhase = maxPhase;
3192        }
3193
3194        /**
3195         * Should lookup stop at given phase with given result
3196         */
3197        final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
3198            return phase.ordinal() > maxPhase.ordinal() ||
3199                !sym.kind.isResolutionError() || sym.kind == AMBIGUOUS;
3200        }
3201
3202        /**
3203         * Search for a symbol under a given overload resolution phase - this method
3204         * is usually called several times, once per each overload resolution phase
3205         */
3206        abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
3207
3208        /**
3209         * Dump overload resolution info
3210         */
3211        void debug(DiagnosticPosition pos, Symbol sym) {
3212            //do nothing
3213        }
3214
3215        /**
3216         * Validate the result of the lookup
3217         */
3218        abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
3219    }
3220
3221    abstract class BasicLookupHelper extends LookupHelper {
3222
3223        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
3224            this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
3225        }
3226
3227        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3228            super(name, site, argtypes, typeargtypes, maxPhase);
3229        }
3230
3231        @Override
3232        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3233            Symbol sym = doLookup(env, phase);
3234            if (sym.kind == AMBIGUOUS) {
3235                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3236                sym = a_err.mergeAbstracts(site);
3237            }
3238            return sym;
3239        }
3240
3241        abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
3242
3243        @Override
3244        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3245            if (sym.kind.isResolutionError()) {
3246                //if nothing is found return the 'first' error
3247                sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
3248            }
3249            return sym;
3250        }
3251
3252        @Override
3253        void debug(DiagnosticPosition pos, Symbol sym) {
3254            reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
3255        }
3256    }
3257
3258    /**
3259     * Helper class for member reference lookup. A reference lookup helper
3260     * defines the basic logic for member reference lookup; a method gives
3261     * access to an 'unbound' helper used to perform an unbound member
3262     * reference lookup.
3263     */
3264    abstract class ReferenceLookupHelper extends LookupHelper {
3265
3266        /** The member reference tree */
3267        JCMemberReference referenceTree;
3268
3269        ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3270                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3271            super(name, site, argtypes, typeargtypes, maxPhase);
3272            this.referenceTree = referenceTree;
3273        }
3274
3275        /**
3276         * Returns an unbound version of this lookup helper. By default, this
3277         * method returns an dummy lookup helper.
3278         */
3279        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3280            return null;
3281        }
3282
3283        /**
3284         * Get the kind of the member reference
3285         */
3286        abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
3287
3288        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3289            if (sym.kind == AMBIGUOUS) {
3290                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3291                sym = a_err.mergeAbstracts(site);
3292            }
3293            //skip error reporting
3294            return sym;
3295        }
3296    }
3297
3298    /**
3299     * Helper class for method reference lookup. The lookup logic is based
3300     * upon Resolve.findMethod; in certain cases, this helper class has a
3301     * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
3302     * In such cases, non-static lookup results are thrown away.
3303     */
3304    class MethodReferenceLookupHelper extends ReferenceLookupHelper {
3305
3306        /** The original method reference lookup site. */
3307        Type originalSite;
3308
3309        MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3310                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3311            super(referenceTree, name, types.skipTypeVars(site, true), argtypes, typeargtypes, maxPhase);
3312            this.originalSite = site;
3313        }
3314
3315        @Override
3316        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3317            return findMethod(env, site, name, argtypes, typeargtypes,
3318                    phase.isBoxingRequired(), phase.isVarargsRequired());
3319        }
3320
3321        @Override
3322        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3323            if (TreeInfo.isStaticSelector(referenceTree.expr, names)) {
3324                if (argtypes.nonEmpty() &&
3325                        (argtypes.head.hasTag(NONE) ||
3326                        types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), originalSite))) {
3327                    return new UnboundMethodReferenceLookupHelper(referenceTree, name,
3328                            originalSite, argtypes, typeargtypes, maxPhase);
3329                } else {
3330                    return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
3331                        @Override
3332                        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3333                            return this;
3334                        }
3335
3336                        @Override
3337                        Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3338                            return methodNotFound;
3339                        }
3340
3341                        @Override
3342                        ReferenceKind referenceKind(Symbol sym) {
3343                            Assert.error();
3344                            return null;
3345                        }
3346                    };
3347                }
3348            } else {
3349                return super.unboundLookup(inferenceContext);
3350            }
3351        }
3352
3353        @Override
3354        ReferenceKind referenceKind(Symbol sym) {
3355            if (sym.isStatic()) {
3356                return ReferenceKind.STATIC;
3357            } else {
3358                Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
3359                return selName != null && selName == names._super ?
3360                        ReferenceKind.SUPER :
3361                        ReferenceKind.BOUND;
3362            }
3363        }
3364    }
3365
3366    /**
3367     * Helper class for unbound method reference lookup. Essentially the same
3368     * as the basic method reference lookup helper; main difference is that static
3369     * lookup results are thrown away. If qualifier type is raw, an attempt to
3370     * infer a parameterized type is made using the first actual argument (that
3371     * would otherwise be ignored during the lookup).
3372     */
3373    class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
3374
3375        UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3376                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3377            super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
3378            if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
3379                Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
3380                this.site = types.skipTypeVars(asSuperSite, true);
3381            }
3382        }
3383
3384        @Override
3385        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3386            return this;
3387        }
3388
3389        @Override
3390        ReferenceKind referenceKind(Symbol sym) {
3391            return ReferenceKind.UNBOUND;
3392        }
3393    }
3394
3395    /**
3396     * Helper class for array constructor lookup; an array constructor lookup
3397     * is simulated by looking up a method that returns the array type specified
3398     * as qualifier, and that accepts a single int parameter (size of the array).
3399     */
3400    class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3401
3402        ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3403                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3404            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3405        }
3406
3407        @Override
3408        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3409            WriteableScope sc = WriteableScope.create(syms.arrayClass);
3410            MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
3411            arrayConstr.type = new MethodType(List.of(syms.intType), site, List.nil(), syms.methodClass);
3412            sc.enter(arrayConstr);
3413            return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false);
3414        }
3415
3416        @Override
3417        ReferenceKind referenceKind(Symbol sym) {
3418            return ReferenceKind.ARRAY_CTOR;
3419        }
3420    }
3421
3422    /**
3423     * Helper class for constructor reference lookup. The lookup logic is based
3424     * upon either Resolve.findMethod or Resolve.findDiamond - depending on
3425     * whether the constructor reference needs diamond inference (this is the case
3426     * if the qualifier type is raw). A special erroneous symbol is returned
3427     * if the lookup returns the constructor of an inner class and there's no
3428     * enclosing instance in scope.
3429     */
3430    class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3431
3432        boolean needsInference;
3433
3434        ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3435                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3436            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3437            if (site.isRaw()) {
3438                this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym, site.getMetadata());
3439                needsInference = true;
3440            }
3441        }
3442
3443        @Override
3444        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3445            Symbol sym = needsInference ?
3446                findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
3447                findMethod(env, site, name, argtypes, typeargtypes,
3448                        phase.isBoxingRequired(), phase.isVarargsRequired());
3449            return enclosingInstanceMissing(env, site) ? new BadConstructorReferenceError(sym) : sym;
3450        }
3451
3452        @Override
3453        ReferenceKind referenceKind(Symbol sym) {
3454            return site.getEnclosingType().hasTag(NONE) ?
3455                    ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
3456        }
3457    }
3458
3459    /**
3460     * Main overload resolution routine. On each overload resolution step, a
3461     * lookup helper class is used to perform the method/constructor lookup;
3462     * at the end of the lookup, the helper is used to validate the results
3463     * (this last step might trigger overload resolution diagnostics).
3464     */
3465    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
3466        MethodResolutionContext resolveContext = new MethodResolutionContext();
3467        resolveContext.methodCheck = methodCheck;
3468        return lookupMethod(env, pos, location, resolveContext, lookupHelper);
3469    }
3470
3471    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
3472            MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
3473        MethodResolutionContext prevResolutionContext = currentResolutionContext;
3474        try {
3475            Symbol bestSoFar = methodNotFound;
3476            currentResolutionContext = resolveContext;
3477            for (MethodResolutionPhase phase : methodResolutionSteps) {
3478                if (lookupHelper.shouldStop(bestSoFar, phase))
3479                    break;
3480                MethodResolutionPhase prevPhase = currentResolutionContext.step;
3481                Symbol prevBest = bestSoFar;
3482                currentResolutionContext.step = phase;
3483                Symbol sym = lookupHelper.lookup(env, phase);
3484                lookupHelper.debug(pos, sym);
3485                bestSoFar = phase.mergeResults(bestSoFar, sym);
3486                env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
3487            }
3488            return lookupHelper.access(env, pos, location, bestSoFar);
3489        } finally {
3490            currentResolutionContext = prevResolutionContext;
3491        }
3492    }
3493
3494    /**
3495     * Resolve `c.name' where name == this or name == super.
3496     * @param pos           The position to use for error reporting.
3497     * @param env           The environment current at the expression.
3498     * @param c             The qualifier.
3499     * @param name          The identifier's name.
3500     */
3501    Symbol resolveSelf(DiagnosticPosition pos,
3502                       Env<AttrContext> env,
3503                       TypeSymbol c,
3504                       Name name) {
3505        Env<AttrContext> env1 = env;
3506        boolean staticOnly = false;
3507        while (env1.outer != null) {
3508            if (isStatic(env1)) staticOnly = true;
3509            if (env1.enclClass.sym == c) {
3510                Symbol sym = env1.info.scope.findFirst(name);
3511                if (sym != null) {
3512                    if (staticOnly) sym = new StaticError(sym);
3513                    return accessBase(sym, pos, env.enclClass.sym.type,
3514                                  name, true);
3515                }
3516            }
3517            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
3518            env1 = env1.outer;
3519        }
3520        if (c.isInterface() &&
3521            name == names._super && !isStatic(env) &&
3522            types.isDirectSuperInterface(c, env.enclClass.sym)) {
3523            //this might be a default super call if one of the superinterfaces is 'c'
3524            for (Type t : pruneInterfaces(env.enclClass.type)) {
3525                if (t.tsym == c) {
3526                    env.info.defaultSuperCallSite = t;
3527                    return new VarSymbol(0, names._super,
3528                            types.asSuper(env.enclClass.type, c), env.enclClass.sym);
3529                }
3530            }
3531            //find a direct super type that is a subtype of 'c'
3532            for (Type i : types.directSupertypes(env.enclClass.type)) {
3533                if (i.tsym.isSubClass(c, types) && i.tsym != c) {
3534                    log.error(pos, "illegal.default.super.call", c,
3535                            diags.fragment("redundant.supertype", c, i));
3536                    return syms.errSymbol;
3537                }
3538            }
3539            Assert.error();
3540        }
3541        log.error(pos, "not.encl.class", c);
3542        return syms.errSymbol;
3543    }
3544    //where
3545    private List<Type> pruneInterfaces(Type t) {
3546        ListBuffer<Type> result = new ListBuffer<>();
3547        for (Type t1 : types.interfaces(t)) {
3548            boolean shouldAdd = true;
3549            for (Type t2 : types.directSupertypes(t)) {
3550                if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
3551                    shouldAdd = false;
3552                }
3553            }
3554            if (shouldAdd) {
3555                result.append(t1);
3556            }
3557        }
3558        return result.toList();
3559    }
3560
3561
3562    /**
3563     * Resolve `c.this' for an enclosing class c that contains the
3564     * named member.
3565     * @param pos           The position to use for error reporting.
3566     * @param env           The environment current at the expression.
3567     * @param member        The member that must be contained in the result.
3568     */
3569    Symbol resolveSelfContaining(DiagnosticPosition pos,
3570                                 Env<AttrContext> env,
3571                                 Symbol member,
3572                                 boolean isSuperCall) {
3573        Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
3574        if (sym == null) {
3575            log.error(pos, "encl.class.required", member);
3576            return syms.errSymbol;
3577        } else {
3578            return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
3579        }
3580    }
3581
3582    boolean enclosingInstanceMissing(Env<AttrContext> env, Type type) {
3583        if (type.hasTag(CLASS) && type.getEnclosingType().hasTag(CLASS)) {
3584            Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
3585            return encl == null || encl.kind.isResolutionError();
3586        }
3587        return false;
3588    }
3589
3590    private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
3591                                 Symbol member,
3592                                 boolean isSuperCall) {
3593        Name name = names._this;
3594        Env<AttrContext> env1 = isSuperCall ? env.outer : env;
3595        boolean staticOnly = false;
3596        if (env1 != null) {
3597            while (env1 != null && env1.outer != null) {
3598                if (isStatic(env1)) staticOnly = true;
3599                if (env1.enclClass.sym.isSubClass(member.owner.enclClass(), types)) {
3600                    Symbol sym = env1.info.scope.findFirst(name);
3601                    if (sym != null) {
3602                        if (staticOnly) sym = new StaticError(sym);
3603                        return sym;
3604                    }
3605                }
3606                if ((env1.enclClass.sym.flags() & STATIC) != 0)
3607                    staticOnly = true;
3608                env1 = env1.outer;
3609            }
3610        }
3611        return null;
3612    }
3613
3614    /**
3615     * Resolve an appropriate implicit this instance for t's container.
3616     * JLS 8.8.5.1 and 15.9.2
3617     */
3618    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
3619        return resolveImplicitThis(pos, env, t, false);
3620    }
3621
3622    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
3623        Type thisType = (t.tsym.owner.kind.matches(KindSelector.VAL_MTH)
3624                         ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
3625                         : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
3626        if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
3627            log.error(pos, "cant.ref.before.ctor.called", "this");
3628        return thisType;
3629    }
3630
3631/* ***************************************************************************
3632 *  ResolveError classes, indicating error situations when accessing symbols
3633 ****************************************************************************/
3634
3635    //used by TransTypes when checking target type of synthetic cast
3636    public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
3637        AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
3638        logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
3639    }
3640    //where
3641    private void logResolveError(ResolveError error,
3642            DiagnosticPosition pos,
3643            Symbol location,
3644            Type site,
3645            Name name,
3646            List<Type> argtypes,
3647            List<Type> typeargtypes) {
3648        JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3649                pos, location, site, name, argtypes, typeargtypes);
3650        if (d != null) {
3651            d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
3652            log.report(d);
3653        }
3654    }
3655
3656    private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
3657
3658    public Object methodArguments(List<Type> argtypes) {
3659        if (argtypes == null || argtypes.isEmpty()) {
3660            return noArgs;
3661        } else {
3662            ListBuffer<Object> diagArgs = new ListBuffer<>();
3663            for (Type t : argtypes) {
3664                if (t.hasTag(DEFERRED)) {
3665                    diagArgs.append(((DeferredAttr.DeferredType)t).tree);
3666                } else {
3667                    diagArgs.append(t);
3668                }
3669            }
3670            return diagArgs;
3671        }
3672    }
3673
3674    /**
3675     * Root class for resolution errors. Subclass of ResolveError
3676     * represent a different kinds of resolution error - as such they must
3677     * specify how they map into concrete compiler diagnostics.
3678     */
3679    abstract class ResolveError extends Symbol {
3680
3681        /** The name of the kind of error, for debugging only. */
3682        final String debugName;
3683
3684        ResolveError(Kind kind, String debugName) {
3685            super(kind, 0, null, null, null);
3686            this.debugName = debugName;
3687        }
3688
3689        @Override @DefinedBy(Api.LANGUAGE_MODEL)
3690        public <R, P> R accept(ElementVisitor<R, P> v, P p) {
3691            throw new AssertionError();
3692        }
3693
3694        @Override
3695        public String toString() {
3696            return debugName;
3697        }
3698
3699        @Override
3700        public boolean exists() {
3701            return false;
3702        }
3703
3704        @Override
3705        public boolean isStatic() {
3706            return false;
3707        }
3708
3709        /**
3710         * Create an external representation for this erroneous symbol to be
3711         * used during attribution - by default this returns the symbol of a
3712         * brand new error type which stores the original type found
3713         * during resolution.
3714         *
3715         * @param name     the name used during resolution
3716         * @param location the location from which the symbol is accessed
3717         */
3718        protected Symbol access(Name name, TypeSymbol location) {
3719            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3720        }
3721
3722        /**
3723         * Create a diagnostic representing this resolution error.
3724         *
3725         * @param dkind     The kind of the diagnostic to be created (e.g error).
3726         * @param pos       The position to be used for error reporting.
3727         * @param site      The original type from where the selection took place.
3728         * @param name      The name of the symbol to be resolved.
3729         * @param argtypes  The invocation's value arguments,
3730         *                  if we looked for a method.
3731         * @param typeargtypes  The invocation's type arguments,
3732         *                      if we looked for a method.
3733         */
3734        abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3735                DiagnosticPosition pos,
3736                Symbol location,
3737                Type site,
3738                Name name,
3739                List<Type> argtypes,
3740                List<Type> typeargtypes);
3741    }
3742
3743    /**
3744     * This class is the root class of all resolution errors caused by
3745     * an invalid symbol being found during resolution.
3746     */
3747    abstract class InvalidSymbolError extends ResolveError {
3748
3749        /** The invalid symbol found during resolution */
3750        Symbol sym;
3751
3752        InvalidSymbolError(Kind kind, Symbol sym, String debugName) {
3753            super(kind, debugName);
3754            this.sym = sym;
3755        }
3756
3757        @Override
3758        public boolean exists() {
3759            return true;
3760        }
3761
3762        @Override
3763        public String toString() {
3764             return super.toString() + " wrongSym=" + sym;
3765        }
3766
3767        @Override
3768        public Symbol access(Name name, TypeSymbol location) {
3769            if (!sym.kind.isResolutionError() && sym.kind.matches(KindSelector.TYP))
3770                return types.createErrorType(name, location, sym.type).tsym;
3771            else
3772                return sym;
3773        }
3774    }
3775
3776    /**
3777     * InvalidSymbolError error class indicating that a symbol matching a
3778     * given name does not exists in a given site.
3779     */
3780    class SymbolNotFoundError extends ResolveError {
3781
3782        SymbolNotFoundError(Kind kind) {
3783            this(kind, "symbol not found error");
3784        }
3785
3786        SymbolNotFoundError(Kind kind, String debugName) {
3787            super(kind, debugName);
3788        }
3789
3790        @Override
3791        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3792                DiagnosticPosition pos,
3793                Symbol location,
3794                Type site,
3795                Name name,
3796                List<Type> argtypes,
3797                List<Type> typeargtypes) {
3798            argtypes = argtypes == null ? List.nil() : argtypes;
3799            typeargtypes = typeargtypes == null ? List.nil() : typeargtypes;
3800            if (name == names.error)
3801                return null;
3802
3803            boolean hasLocation = false;
3804            if (location == null) {
3805                location = site.tsym;
3806            }
3807            if (!location.name.isEmpty()) {
3808                if (location.kind == PCK && !site.tsym.exists()) {
3809                    return diags.create(dkind, log.currentSource(), pos,
3810                        "doesnt.exist", location);
3811                }
3812                hasLocation = !location.name.equals(names._this) &&
3813                        !location.name.equals(names._super);
3814            }
3815            boolean isConstructor = name == names.init;
3816            KindName kindname = isConstructor ? KindName.CONSTRUCTOR : kind.absentKind();
3817            Name idname = isConstructor ? site.tsym.name : name;
3818            String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
3819            if (hasLocation) {
3820                return diags.create(dkind, log.currentSource(), pos,
3821                        errKey, kindname, idname, //symbol kindname, name
3822                        typeargtypes, args(argtypes), //type parameters and arguments (if any)
3823                        getLocationDiag(location, site)); //location kindname, type
3824            }
3825            else {
3826                return diags.create(dkind, log.currentSource(), pos,
3827                        errKey, kindname, idname, //symbol kindname, name
3828                        typeargtypes, args(argtypes)); //type parameters and arguments (if any)
3829            }
3830        }
3831        //where
3832        private Object args(List<Type> args) {
3833            return args.isEmpty() ? args : methodArguments(args);
3834        }
3835
3836        private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
3837            String key = "cant.resolve";
3838            String suffix = hasLocation ? ".location" : "";
3839            switch (kindname) {
3840                case METHOD:
3841                case CONSTRUCTOR: {
3842                    suffix += ".args";
3843                    suffix += hasTypeArgs ? ".params" : "";
3844                }
3845            }
3846            return key + suffix;
3847        }
3848        private JCDiagnostic getLocationDiag(Symbol location, Type site) {
3849            if (location.kind == VAR) {
3850                return diags.fragment("location.1",
3851                    kindName(location),
3852                    location,
3853                    location.type);
3854            } else {
3855                return diags.fragment("location",
3856                    typeKindName(site),
3857                    site,
3858                    null);
3859            }
3860        }
3861    }
3862
3863    /**
3864     * InvalidSymbolError error class indicating that a given symbol
3865     * (either a method, a constructor or an operand) is not applicable
3866     * given an actual arguments/type argument list.
3867     */
3868    class InapplicableSymbolError extends ResolveError {
3869
3870        protected MethodResolutionContext resolveContext;
3871
3872        InapplicableSymbolError(MethodResolutionContext context) {
3873            this(WRONG_MTH, "inapplicable symbol error", context);
3874        }
3875
3876        protected InapplicableSymbolError(Kind kind, String debugName, MethodResolutionContext context) {
3877            super(kind, debugName);
3878            this.resolveContext = context;
3879        }
3880
3881        @Override
3882        public String toString() {
3883            return super.toString();
3884        }
3885
3886        @Override
3887        public boolean exists() {
3888            return true;
3889        }
3890
3891        @Override
3892        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3893                DiagnosticPosition pos,
3894                Symbol location,
3895                Type site,
3896                Name name,
3897                List<Type> argtypes,
3898                List<Type> typeargtypes) {
3899            if (name == names.error)
3900                return null;
3901
3902            Pair<Symbol, JCDiagnostic> c = errCandidate();
3903            if (compactMethodDiags) {
3904                JCDiagnostic simpleDiag =
3905                    MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, c.snd);
3906                if (simpleDiag != null) {
3907                    return simpleDiag;
3908                }
3909            }
3910            Symbol ws = c.fst.asMemberOf(site, types);
3911            return diags.create(dkind, log.currentSource(), pos,
3912                      "cant.apply.symbol",
3913                      kindName(ws),
3914                      ws.name == names.init ? ws.owner.name : ws.name,
3915                      methodArguments(ws.type.getParameterTypes()),
3916                      methodArguments(argtypes),
3917                      kindName(ws.owner),
3918                      ws.owner.type,
3919                      c.snd);
3920        }
3921
3922        @Override
3923        public Symbol access(Name name, TypeSymbol location) {
3924            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3925        }
3926
3927        protected Pair<Symbol, JCDiagnostic> errCandidate() {
3928            Candidate bestSoFar = null;
3929            for (Candidate c : resolveContext.candidates) {
3930                if (c.isApplicable()) continue;
3931                bestSoFar = c;
3932            }
3933            Assert.checkNonNull(bestSoFar);
3934            return new Pair<>(bestSoFar.sym, bestSoFar.details);
3935        }
3936    }
3937
3938    /**
3939     * ResolveError error class indicating that a symbol (either methods, constructors or operand)
3940     * is not applicable given an actual arguments/type argument list.
3941     */
3942    class InapplicableSymbolsError extends InapplicableSymbolError {
3943
3944        InapplicableSymbolsError(MethodResolutionContext context) {
3945            super(WRONG_MTHS, "inapplicable symbols", context);
3946        }
3947
3948        @Override
3949        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3950                DiagnosticPosition pos,
3951                Symbol location,
3952                Type site,
3953                Name name,
3954                List<Type> argtypes,
3955                List<Type> typeargtypes) {
3956            Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
3957            Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
3958                    filterCandidates(candidatesMap) :
3959                    mapCandidates();
3960            if (filteredCandidates.isEmpty()) {
3961                filteredCandidates = candidatesMap;
3962            }
3963            boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
3964            if (filteredCandidates.size() > 1) {
3965                JCDiagnostic err = diags.create(dkind,
3966                        null,
3967                        truncatedDiag ?
3968                            EnumSet.of(DiagnosticFlag.COMPRESSED) :
3969                            EnumSet.noneOf(DiagnosticFlag.class),
3970                        log.currentSource(),
3971                        pos,
3972                        "cant.apply.symbols",
3973                        name == names.init ? KindName.CONSTRUCTOR : kind.absentKind(),
3974                        name == names.init ? site.tsym.name : name,
3975                        methodArguments(argtypes));
3976                return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
3977            } else if (filteredCandidates.size() == 1) {
3978                Map.Entry<Symbol, JCDiagnostic> _e =
3979                                filteredCandidates.entrySet().iterator().next();
3980                final Pair<Symbol, JCDiagnostic> p = new Pair<>(_e.getKey(), _e.getValue());
3981                JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
3982                    @Override
3983                    protected Pair<Symbol, JCDiagnostic> errCandidate() {
3984                        return p;
3985                    }
3986                }.getDiagnostic(dkind, pos,
3987                    location, site, name, argtypes, typeargtypes);
3988                if (truncatedDiag) {
3989                    d.setFlag(DiagnosticFlag.COMPRESSED);
3990                }
3991                return d;
3992            } else {
3993                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
3994                    location, site, name, argtypes, typeargtypes);
3995            }
3996        }
3997        //where
3998            private Map<Symbol, JCDiagnostic> mapCandidates() {
3999                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
4000                for (Candidate c : resolveContext.candidates) {
4001                    if (c.isApplicable()) continue;
4002                    candidates.put(c.sym, c.details);
4003                }
4004                return candidates;
4005            }
4006
4007            Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
4008                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
4009                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
4010                    JCDiagnostic d = _entry.getValue();
4011                    if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
4012                        candidates.put(_entry.getKey(), d);
4013                    }
4014                }
4015                return candidates;
4016            }
4017
4018            private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
4019                List<JCDiagnostic> details = List.nil();
4020                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
4021                    Symbol sym = _entry.getKey();
4022                    JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
4023                            Kinds.kindName(sym),
4024                            sym.location(site, types),
4025                            sym.asMemberOf(site, types),
4026                            _entry.getValue());
4027                    details = details.prepend(detailDiag);
4028                }
4029                //typically members are visited in reverse order (see Scope)
4030                //so we need to reverse the candidate list so that candidates
4031                //conform to source order
4032                return details;
4033            }
4034    }
4035
4036    /**
4037     * DiamondError error class indicating that a constructor symbol is not applicable
4038     * given an actual arguments/type argument list using diamond inference.
4039     */
4040    class DiamondError extends InapplicableSymbolError {
4041
4042        Symbol sym;
4043
4044        public DiamondError(Symbol sym, MethodResolutionContext context) {
4045            super(sym.kind, "diamondError", context);
4046            this.sym = sym;
4047        }
4048
4049        JCDiagnostic getDetails() {
4050            return (sym.kind == WRONG_MTH) ?
4051                    ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
4052                    null;
4053        }
4054
4055        @Override
4056        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
4057                Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4058            JCDiagnostic details = getDetails();
4059            if (details != null && compactMethodDiags) {
4060                JCDiagnostic simpleDiag =
4061                        MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, details);
4062                if (simpleDiag != null) {
4063                    return simpleDiag;
4064                }
4065            }
4066            String key = details == null ?
4067                "cant.apply.diamond" :
4068                "cant.apply.diamond.1";
4069            return diags.create(dkind, log.currentSource(), pos, key,
4070                    diags.fragment("diamond", site.tsym), details);
4071        }
4072    }
4073
4074    /**
4075     * An InvalidSymbolError error class indicating that a symbol is not
4076     * accessible from a given site
4077     */
4078    class AccessError extends InvalidSymbolError {
4079
4080        private Env<AttrContext> env;
4081        private Type site;
4082
4083        AccessError(Env<AttrContext> env, Type site, Symbol sym) {
4084            super(HIDDEN, sym, "access error");
4085            this.env = env;
4086            this.site = site;
4087        }
4088
4089        @Override
4090        public boolean exists() {
4091            return false;
4092        }
4093
4094        @Override
4095        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4096                DiagnosticPosition pos,
4097                Symbol location,
4098                Type site,
4099                Name name,
4100                List<Type> argtypes,
4101                List<Type> typeargtypes) {
4102            if (sym.owner.type.hasTag(ERROR))
4103                return null;
4104
4105            if (sym.name == names.init && sym.owner != site.tsym) {
4106                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
4107                        pos, location, site, name, argtypes, typeargtypes);
4108            }
4109            else if ((sym.flags() & PUBLIC) != 0
4110                || (env != null && this.site != null
4111                    && !isAccessible(env, this.site))) {
4112                if (sym.owner.kind == PCK) {
4113                    return diags.create(dkind, log.currentSource(),
4114                            pos, "not.def.access.package.cant.access",
4115                        sym, sym.location(), inaccessiblePackageReason(env, sym.packge()));
4116                } else if (   sym.packge() != syms.rootPackage
4117                           && !symbolPackageVisible(env, sym)) {
4118                    return diags.create(dkind, log.currentSource(),
4119                            pos, "not.def.access.class.intf.cant.access.reason",
4120                            sym, sym.location(), sym.location().packge(),
4121                            inaccessiblePackageReason(env, sym.packge()));
4122                } else {
4123                    return diags.create(dkind, log.currentSource(),
4124                            pos, "not.def.access.class.intf.cant.access",
4125                        sym, sym.location());
4126                }
4127            }
4128            else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
4129                return diags.create(dkind, log.currentSource(),
4130                        pos, "report.access", sym,
4131                        asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
4132                        sym.location());
4133            }
4134            else {
4135                return diags.create(dkind, log.currentSource(),
4136                        pos, "not.def.public.cant.access", sym, sym.location());
4137            }
4138        }
4139
4140        private String toString(Type type) {
4141            StringBuilder sb = new StringBuilder();
4142            sb.append(type);
4143            if (type != null) {
4144                sb.append("[tsym:").append(type.tsym);
4145                if (type.tsym != null)
4146                    sb.append("packge:").append(type.tsym.packge());
4147                sb.append("]");
4148            }
4149            return sb.toString();
4150        }
4151    }
4152
4153    class InvisibleSymbolError extends InvalidSymbolError {
4154
4155        private final Env<AttrContext> env;
4156        private final boolean suppressError;
4157
4158        InvisibleSymbolError(Env<AttrContext> env, boolean suppressError, Symbol sym) {
4159            super(HIDDEN, sym, "invisible class error");
4160            this.env = env;
4161            this.suppressError = suppressError;
4162            this.name = sym.name;
4163        }
4164
4165        @Override
4166        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4167                DiagnosticPosition pos,
4168                Symbol location,
4169                Type site,
4170                Name name,
4171                List<Type> argtypes,
4172                List<Type> typeargtypes) {
4173            if (suppressError)
4174                return null;
4175
4176            if (sym.kind == PCK) {
4177                JCDiagnostic details = inaccessiblePackageReason(env, sym.packge());
4178                return diags.create(dkind, log.currentSource(),
4179                        pos, "package.not.visible", sym, details);
4180            }
4181
4182            JCDiagnostic details = inaccessiblePackageReason(env, sym.packge());
4183
4184            if (pos.getTree() != null) {
4185                Symbol o = sym;
4186                JCTree tree = pos.getTree();
4187
4188                while (o.kind != PCK && tree.hasTag(SELECT)) {
4189                    o = o.owner;
4190                    tree = ((JCFieldAccess) tree).selected;
4191                }
4192
4193                if (o.kind == PCK) {
4194                    pos = tree.pos();
4195
4196                    return diags.create(dkind, log.currentSource(),
4197                            pos, "package.not.visible", o, details);
4198                }
4199            }
4200
4201            return diags.create(dkind, log.currentSource(),
4202                    pos, "not.def.access.package.cant.access", sym, sym.packge(), details);
4203        }
4204    }
4205
4206    JCDiagnostic inaccessiblePackageReason(Env<AttrContext> env, PackageSymbol sym) {
4207        //no dependency:
4208        if (!env.toplevel.modle.readModules.contains(sym.modle)) {
4209            //does not read:
4210            if (sym.modle != syms.unnamedModule) {
4211                if (env.toplevel.modle != syms.unnamedModule) {
4212                    return diags.fragment(Fragments.NotDefAccessDoesNotRead(env.toplevel.modle,
4213                                                                            sym,
4214                                                                            sym.modle));
4215                } else {
4216                    return diags.fragment(Fragments.NotDefAccessDoesNotReadFromUnnamed(sym,
4217                                                                                       sym.modle));
4218                }
4219            } else {
4220                return diags.fragment(Fragments.NotDefAccessDoesNotReadUnnamed(sym,
4221                                                                               env.toplevel.modle));
4222            }
4223        } else {
4224            if (sym.packge().modle.exports.stream().anyMatch(e -> e.packge == sym)) {
4225                //not exported to this module:
4226                if (env.toplevel.modle != syms.unnamedModule) {
4227                    return diags.fragment(Fragments.NotDefAccessNotExportedToModule(sym,
4228                                                                                    sym.modle,
4229                                                                                    env.toplevel.modle));
4230                } else {
4231                    return diags.fragment(Fragments.NotDefAccessNotExportedToModuleFromUnnamed(sym,
4232                                                                                               sym.modle));
4233                }
4234            } else {
4235                //not exported:
4236                if (env.toplevel.modle != syms.unnamedModule) {
4237                    return diags.fragment(Fragments.NotDefAccessNotExported(sym,
4238                                                                            sym.modle));
4239                } else {
4240                    return diags.fragment(Fragments.NotDefAccessNotExportedFromUnnamed(sym,
4241                                                                                       sym.modle));
4242                }
4243            }
4244        }
4245    }
4246
4247    /**
4248     * InvalidSymbolError error class indicating that an instance member
4249     * has erroneously been accessed from a static context.
4250     */
4251    class StaticError extends InvalidSymbolError {
4252
4253        StaticError(Symbol sym) {
4254            super(STATICERR, sym, "static error");
4255        }
4256
4257        @Override
4258        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4259                DiagnosticPosition pos,
4260                Symbol location,
4261                Type site,
4262                Name name,
4263                List<Type> argtypes,
4264                List<Type> typeargtypes) {
4265            Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
4266                ? types.erasure(sym.type).tsym
4267                : sym);
4268            return diags.create(dkind, log.currentSource(), pos,
4269                    "non-static.cant.be.ref", kindName(sym), errSym);
4270        }
4271    }
4272
4273    /**
4274     * InvalidSymbolError error class indicating that a pair of symbols
4275     * (either methods, constructors or operands) are ambiguous
4276     * given an actual arguments/type argument list.
4277     */
4278    class AmbiguityError extends ResolveError {
4279
4280        /** The other maximally specific symbol */
4281        List<Symbol> ambiguousSyms = List.nil();
4282
4283        @Override
4284        public boolean exists() {
4285            return true;
4286        }
4287
4288        AmbiguityError(Symbol sym1, Symbol sym2) {
4289            super(AMBIGUOUS, "ambiguity error");
4290            ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
4291        }
4292
4293        private List<Symbol> flatten(Symbol sym) {
4294            if (sym.kind == AMBIGUOUS) {
4295                return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
4296            } else {
4297                return List.of(sym);
4298            }
4299        }
4300
4301        AmbiguityError addAmbiguousSymbol(Symbol s) {
4302            ambiguousSyms = ambiguousSyms.prepend(s);
4303            return this;
4304        }
4305
4306        @Override
4307        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4308                DiagnosticPosition pos,
4309                Symbol location,
4310                Type site,
4311                Name name,
4312                List<Type> argtypes,
4313                List<Type> typeargtypes) {
4314            List<Symbol> diagSyms = ambiguousSyms.reverse();
4315            Symbol s1 = diagSyms.head;
4316            Symbol s2 = diagSyms.tail.head;
4317            Name sname = s1.name;
4318            if (sname == names.init) sname = s1.owner.name;
4319            return diags.create(dkind, log.currentSource(),
4320                    pos, "ref.ambiguous", sname,
4321                    kindName(s1),
4322                    s1,
4323                    s1.location(site, types),
4324                    kindName(s2),
4325                    s2,
4326                    s2.location(site, types));
4327        }
4328
4329        /**
4330         * If multiple applicable methods are found during overload and none of them
4331         * is more specific than the others, attempt to merge their signatures.
4332         */
4333        Symbol mergeAbstracts(Type site) {
4334            List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
4335            return types.mergeAbstracts(ambiguousInOrder, site, true).orElse(this);
4336        }
4337
4338        @Override
4339        protected Symbol access(Name name, TypeSymbol location) {
4340            Symbol firstAmbiguity = ambiguousSyms.last();
4341            return firstAmbiguity.kind == TYP ?
4342                    types.createErrorType(name, location, firstAmbiguity.type).tsym :
4343                    firstAmbiguity;
4344        }
4345    }
4346
4347    class BadVarargsMethod extends ResolveError {
4348
4349        ResolveError delegatedError;
4350
4351        BadVarargsMethod(ResolveError delegatedError) {
4352            super(delegatedError.kind, "badVarargs");
4353            this.delegatedError = delegatedError;
4354        }
4355
4356        @Override
4357        public Symbol baseSymbol() {
4358            return delegatedError.baseSymbol();
4359        }
4360
4361        @Override
4362        protected Symbol access(Name name, TypeSymbol location) {
4363            return delegatedError.access(name, location);
4364        }
4365
4366        @Override
4367        public boolean exists() {
4368            return true;
4369        }
4370
4371        @Override
4372        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4373            return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
4374        }
4375    }
4376
4377    /**
4378     * BadMethodReferenceError error class indicating that a method reference symbol has been found,
4379     * but with the wrong staticness.
4380     */
4381    class BadMethodReferenceError extends StaticError {
4382
4383        boolean unboundLookup;
4384
4385        public BadMethodReferenceError(Symbol sym, boolean unboundLookup) {
4386            super(sym);
4387            this.unboundLookup = unboundLookup;
4388        }
4389
4390        @Override
4391        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4392            final String key;
4393            if (!unboundLookup) {
4394                key = "bad.static.method.in.bound.lookup";
4395            } else if (sym.isStatic()) {
4396                key = "bad.static.method.in.unbound.lookup";
4397            } else {
4398                key = "bad.instance.method.in.unbound.lookup";
4399            }
4400            return sym.kind.isResolutionError() ?
4401                    ((ResolveError)sym).getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes) :
4402                    diags.create(dkind, log.currentSource(), pos, key, Kinds.kindName(sym), sym);
4403        }
4404    }
4405
4406    /**
4407     * BadConstructorReferenceError error class indicating that a constructor reference symbol has been found,
4408     * but pointing to a class for which an enclosing instance is not available.
4409     */
4410    class BadConstructorReferenceError extends InvalidSymbolError {
4411
4412        public BadConstructorReferenceError(Symbol sym) {
4413            super(MISSING_ENCL, sym, "BadConstructorReferenceError");
4414        }
4415
4416        @Override
4417        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4418           return diags.create(dkind, log.currentSource(), pos,
4419                "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
4420        }
4421    }
4422
4423    /**
4424     * Helper class for method resolution diagnostic simplification.
4425     * Certain resolution diagnostic are rewritten as simpler diagnostic
4426     * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
4427     * is stripped away, as it doesn't carry additional info. The logic
4428     * for matching a given diagnostic is given in terms of a template
4429     * hierarchy: a diagnostic template can be specified programmatically,
4430     * so that only certain diagnostics are matched. Each templete is then
4431     * associated with a rewriter object that carries out the task of rewtiting
4432     * the diagnostic to a simpler one.
4433     */
4434    static class MethodResolutionDiagHelper {
4435
4436        /**
4437         * A diagnostic rewriter transforms a method resolution diagnostic
4438         * into a simpler one
4439         */
4440        interface DiagnosticRewriter {
4441            JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4442                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4443                    DiagnosticType preferredKind, JCDiagnostic d);
4444        }
4445
4446        /**
4447         * A diagnostic template is made up of two ingredients: (i) a regular
4448         * expression for matching a diagnostic key and (ii) a list of sub-templates
4449         * for matching diagnostic arguments.
4450         */
4451        static class Template {
4452
4453            /** regex used to match diag key */
4454            String regex;
4455
4456            /** templates used to match diagnostic args */
4457            Template[] subTemplates;
4458
4459            Template(String key, Template... subTemplates) {
4460                this.regex = key;
4461                this.subTemplates = subTemplates;
4462            }
4463
4464            /**
4465             * Returns true if the regex matches the diagnostic key and if
4466             * all diagnostic arguments are matches by corresponding sub-templates.
4467             */
4468            boolean matches(Object o) {
4469                JCDiagnostic d = (JCDiagnostic)o;
4470                Object[] args = d.getArgs();
4471                if (!d.getCode().matches(regex) ||
4472                        subTemplates.length != d.getArgs().length) {
4473                    return false;
4474                }
4475                for (int i = 0; i < args.length ; i++) {
4476                    if (!subTemplates[i].matches(args[i])) {
4477                        return false;
4478                    }
4479                }
4480                return true;
4481            }
4482        }
4483
4484        /**
4485         * Common rewriter for all argument mismatch simplifications.
4486         */
4487        static class ArgMismatchRewriter implements DiagnosticRewriter {
4488
4489            /** the index of the subdiagnostic to be used as primary. */
4490            int causeIndex;
4491
4492            public ArgMismatchRewriter(int causeIndex) {
4493                this.causeIndex = causeIndex;
4494            }
4495
4496            @Override
4497            public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4498                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4499                    DiagnosticType preferredKind, JCDiagnostic d) {
4500                JCDiagnostic cause = (JCDiagnostic)d.getArgs()[causeIndex];
4501                DiagnosticPosition pos = d.getDiagnosticPosition();
4502                if (pos == null) {
4503                    pos = preferedPos;
4504                }
4505                return diags.create(preferredKind, preferredSource, pos,
4506                        "prob.found.req", cause);
4507            }
4508        }
4509
4510        /** a dummy template that match any diagnostic argument */
4511        static final Template skip = new Template("") {
4512            @Override
4513            boolean matches(Object d) {
4514                return true;
4515            }
4516        };
4517
4518        /** template for matching inference-free arguments mismatch failures */
4519        static final Template argMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip);
4520
4521        /** template for matching inference related arguments mismatch failures */
4522        static final Template inferArgMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip, skip) {
4523            @Override
4524            boolean matches(Object o) {
4525                if (!super.matches(o)) {
4526                    return false;
4527                }
4528                JCDiagnostic d = (JCDiagnostic)o;
4529                @SuppressWarnings("unchecked")
4530                List<Type> tvars = (List<Type>)d.getArgs()[0];
4531                return !containsAny(d, tvars);
4532            }
4533
4534            BiPredicate<Object, List<Type>> containsPredicate = (o, ts) -> {
4535                if (o instanceof Type) {
4536                    return ((Type)o).containsAny(ts);
4537                } else if (o instanceof JCDiagnostic) {
4538                    return containsAny((JCDiagnostic)o, ts);
4539                } else {
4540                    return false;
4541                }
4542            };
4543
4544            boolean containsAny(JCDiagnostic d, List<Type> ts) {
4545                return Stream.of(d.getArgs())
4546                        .anyMatch(o -> containsPredicate.test(o, ts));
4547            }
4548        };
4549
4550        /** rewriter map used for method resolution simplification */
4551        static final Map<Template, DiagnosticRewriter> rewriters = new LinkedHashMap<>();
4552
4553        static {
4554            rewriters.put(argMismatchTemplate, new ArgMismatchRewriter(0));
4555            rewriters.put(inferArgMismatchTemplate, new ArgMismatchRewriter(1));
4556        }
4557
4558        /**
4559         * Main entry point for diagnostic rewriting - given a diagnostic, see if any templates matches it,
4560         * and rewrite it accordingly.
4561         */
4562        static JCDiagnostic rewrite(JCDiagnostic.Factory diags, DiagnosticPosition pos, DiagnosticSource source,
4563                                    DiagnosticType dkind, JCDiagnostic d) {
4564            for (Map.Entry<Template, DiagnosticRewriter> _entry : rewriters.entrySet()) {
4565                if (_entry.getKey().matches(d)) {
4566                    JCDiagnostic simpleDiag =
4567                            _entry.getValue().rewriteDiagnostic(diags, pos, source, dkind, d);
4568                    simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
4569                    return simpleDiag;
4570                }
4571            }
4572            return null;
4573        }
4574    }
4575
4576    enum MethodResolutionPhase {
4577        BASIC(false, false),
4578        BOX(true, false),
4579        VARARITY(true, true) {
4580            @Override
4581            public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
4582                //Check invariants (see {@code LookupHelper.shouldStop})
4583                Assert.check(bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS);
4584                if (!sym.kind.isResolutionError()) {
4585                    //varargs resolution successful
4586                    return sym;
4587                } else {
4588                    //pick best error
4589                    switch (bestSoFar.kind) {
4590                        case WRONG_MTH:
4591                        case WRONG_MTHS:
4592                            //Override previous errors if they were caused by argument mismatch.
4593                            //This generally means preferring current symbols - but we need to pay
4594                            //attention to the fact that the varargs lookup returns 'less' candidates
4595                            //than the previous rounds, and adjust that accordingly.
4596                            switch (sym.kind) {
4597                                case WRONG_MTH:
4598                                    //if the previous round matched more than one method, return that
4599                                    //result instead
4600                                    return bestSoFar.kind == WRONG_MTHS ?
4601                                            bestSoFar : sym;
4602                                case ABSENT_MTH:
4603                                    //do not override erroneous symbol if the arity lookup did not
4604                                    //match any method
4605                                    return bestSoFar;
4606                                case WRONG_MTHS:
4607                                default:
4608                                    //safe to override
4609                                    return sym;
4610                            }
4611                        default:
4612                            //otherwise, return first error
4613                            return bestSoFar;
4614                    }
4615                }
4616            }
4617        };
4618
4619        final boolean isBoxingRequired;
4620        final boolean isVarargsRequired;
4621
4622        MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
4623           this.isBoxingRequired = isBoxingRequired;
4624           this.isVarargsRequired = isVarargsRequired;
4625        }
4626
4627        public boolean isBoxingRequired() {
4628            return isBoxingRequired;
4629        }
4630
4631        public boolean isVarargsRequired() {
4632            return isVarargsRequired;
4633        }
4634
4635        public Symbol mergeResults(Symbol prev, Symbol sym) {
4636            return sym;
4637        }
4638    }
4639
4640    final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
4641
4642    /**
4643     * A resolution context is used to keep track of intermediate results of
4644     * overload resolution, such as list of method that are not applicable
4645     * (used to generate more precise diagnostics) and so on. Resolution contexts
4646     * can be nested - this means that when each overload resolution routine should
4647     * work within the resolution context it created.
4648     */
4649    class MethodResolutionContext {
4650
4651        private List<Candidate> candidates = List.nil();
4652
4653        MethodResolutionPhase step = null;
4654
4655        MethodCheck methodCheck = resolveMethodCheck;
4656
4657        private boolean internalResolution = false;
4658        private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
4659
4660        void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
4661            Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
4662            candidates = candidates.append(c);
4663        }
4664
4665        void addApplicableCandidate(Symbol sym, Type mtype) {
4666            Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
4667            candidates = candidates.append(c);
4668        }
4669
4670        DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
4671            DeferredAttrContext parent = (pendingResult == null)
4672                ? deferredAttr.emptyDeferredAttrContext
4673                : pendingResult.checkContext.deferredAttrContext();
4674            return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
4675                    inferenceContext, parent, warn);
4676        }
4677
4678        /**
4679         * This class represents an overload resolution candidate. There are two
4680         * kinds of candidates: applicable methods and inapplicable methods;
4681         * applicable methods have a pointer to the instantiated method type,
4682         * while inapplicable candidates contain further details about the
4683         * reason why the method has been considered inapplicable.
4684         */
4685        @SuppressWarnings("overrides")
4686        class Candidate {
4687
4688            final MethodResolutionPhase step;
4689            final Symbol sym;
4690            final JCDiagnostic details;
4691            final Type mtype;
4692
4693            private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
4694                this.step = step;
4695                this.sym = sym;
4696                this.details = details;
4697                this.mtype = mtype;
4698            }
4699
4700            boolean isApplicable() {
4701                return mtype != null;
4702            }
4703        }
4704
4705        DeferredAttr.AttrMode attrMode() {
4706            return attrMode;
4707        }
4708
4709        boolean internal() {
4710            return internalResolution;
4711        }
4712    }
4713
4714    MethodResolutionContext currentResolutionContext = null;
4715}
4716