Resolve.java revision 3528:5538ba41cb97
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.tools.javac.api.Formattable.LocalizedString;
29import com.sun.tools.javac.code.*;
30import com.sun.tools.javac.code.Scope.WriteableScope;
31import com.sun.tools.javac.code.Symbol.*;
32import com.sun.tools.javac.code.Type.*;
33import com.sun.tools.javac.comp.Attr.ResultInfo;
34import com.sun.tools.javac.comp.Check.CheckContext;
35import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
36import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
37import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
38import com.sun.tools.javac.comp.Infer.FreeTypeListener;
39import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
40import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
41import com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind;
42import com.sun.tools.javac.jvm.*;
43import com.sun.tools.javac.main.Option;
44import com.sun.tools.javac.tree.*;
45import com.sun.tools.javac.tree.JCTree.*;
46import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
47import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
48import com.sun.tools.javac.util.*;
49import com.sun.tools.javac.util.DefinedBy.Api;
50import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
51import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
52import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
53
54import java.util.Arrays;
55import java.util.Collection;
56import java.util.EnumSet;
57import java.util.Iterator;
58import java.util.LinkedHashMap;
59import java.util.Map;
60import java.util.function.BiPredicate;
61import java.util.stream.Stream;
62
63import javax.lang.model.element.ElementVisitor;
64
65import static com.sun.tools.javac.code.Flags.*;
66import static com.sun.tools.javac.code.Flags.BLOCK;
67import static com.sun.tools.javac.code.Flags.STATIC;
68import static com.sun.tools.javac.code.Kinds.*;
69import static com.sun.tools.javac.code.Kinds.Kind.*;
70import static com.sun.tools.javac.code.TypeTag.*;
71import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
72import static com.sun.tools.javac.tree.JCTree.Tag.*;
73
74/** Helper class for name resolution, used mostly by the attribution phase.
75 *
76 *  <p><b>This is NOT part of any supported API.
77 *  If you write code that depends on this, you do so at your own risk.
78 *  This code and its internal interfaces are subject to change or
79 *  deletion without notice.</b>
80 */
81public class Resolve {
82    protected static final Context.Key<Resolve> resolveKey = new Context.Key<>();
83
84    Names names;
85    Log log;
86    Symtab syms;
87    Attr attr;
88    DeferredAttr deferredAttr;
89    Check chk;
90    Infer infer;
91    ClassFinder finder;
92    Types types;
93    JCDiagnostic.Factory diags;
94    public final boolean allowMethodHandles;
95    public final boolean allowFunctionalInterfaceMostSpecific;
96    public final boolean allowModules;
97    public final boolean checkVarargsAccessAfterResolution;
98    private final boolean compactMethodDiags;
99    final EnumSet<VerboseResolutionMode> verboseResolutionMode;
100
101    private final boolean checkModuleAccess;
102
103    WriteableScope polymorphicSignatureScope;
104
105    protected Resolve(Context context) {
106        context.put(resolveKey, this);
107        syms = Symtab.instance(context);
108
109        varNotFound = new SymbolNotFoundError(ABSENT_VAR);
110        methodNotFound = new SymbolNotFoundError(ABSENT_MTH);
111        typeNotFound = new SymbolNotFoundError(ABSENT_TYP);
112        referenceNotFound = new ReferenceLookupResult(methodNotFound, null);
113
114        names = Names.instance(context);
115        log = Log.instance(context);
116        attr = Attr.instance(context);
117        deferredAttr = DeferredAttr.instance(context);
118        chk = Check.instance(context);
119        infer = Infer.instance(context);
120        finder = ClassFinder.instance(context);
121        types = Types.instance(context);
122        diags = JCDiagnostic.Factory.instance(context);
123        Source source = Source.instance(context);
124        Options options = Options.instance(context);
125        compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
126                options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
127        verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
128        Target target = Target.instance(context);
129        allowMethodHandles = target.hasMethodHandles();
130        allowFunctionalInterfaceMostSpecific = source.allowFunctionalInterfaceMostSpecific();
131        checkVarargsAccessAfterResolution =
132                source.allowPostApplicabilityVarargsAccessCheck();
133        polymorphicSignatureScope = WriteableScope.create(syms.noSymbol);
134
135        inapplicableMethodException = new InapplicableMethodException(diags);
136
137        allowModules = source.allowModules();
138
139        // The following is required, for now, to support building
140        // Swing beaninfo via javadoc.
141        checkModuleAccess = !options.isSet("noModules");
142    }
143
144    /** error symbols, which are returned when resolution fails
145     */
146    private final SymbolNotFoundError varNotFound;
147    private final SymbolNotFoundError methodNotFound;
148    private final SymbolNotFoundError typeNotFound;
149
150    /** empty reference lookup result */
151    private final ReferenceLookupResult referenceNotFound;
152
153    public static Resolve instance(Context context) {
154        Resolve instance = context.get(resolveKey);
155        if (instance == null)
156            instance = new Resolve(context);
157        return instance;
158    }
159
160    private static Symbol bestOf(Symbol s1,
161                                 Symbol s2) {
162        return s1.kind.betterThan(s2.kind) ? s1 : s2;
163    }
164
165    // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
166    enum VerboseResolutionMode {
167        SUCCESS("success"),
168        FAILURE("failure"),
169        APPLICABLE("applicable"),
170        INAPPLICABLE("inapplicable"),
171        DEFERRED_INST("deferred-inference"),
172        PREDEF("predef"),
173        OBJECT_INIT("object-init"),
174        INTERNAL("internal");
175
176        final String opt;
177
178        private VerboseResolutionMode(String opt) {
179            this.opt = opt;
180        }
181
182        static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
183            String s = opts.get("debug.verboseResolution");
184            EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
185            if (s == null) return res;
186            if (s.contains("all")) {
187                res = EnumSet.allOf(VerboseResolutionMode.class);
188            }
189            Collection<String> args = Arrays.asList(s.split(","));
190            for (VerboseResolutionMode mode : values()) {
191                if (args.contains(mode.opt)) {
192                    res.add(mode);
193                } else if (args.contains("-" + mode.opt)) {
194                    res.remove(mode);
195                }
196            }
197            return res;
198        }
199    }
200
201    void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
202            List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
203        boolean success = !bestSoFar.kind.isResolutionError();
204
205        if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
206            return;
207        } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
208            return;
209        }
210
211        if (bestSoFar.name == names.init &&
212                bestSoFar.owner == syms.objectType.tsym &&
213                !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
214            return; //skip diags for Object constructor resolution
215        } else if (site == syms.predefClass.type &&
216                !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
217            return; //skip spurious diags for predef symbols (i.e. operators)
218        } else if (currentResolutionContext.internalResolution &&
219                !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
220            return;
221        }
222
223        int pos = 0;
224        int mostSpecificPos = -1;
225        ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
226        for (Candidate c : currentResolutionContext.candidates) {
227            if (currentResolutionContext.step != c.step ||
228                    (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
229                    (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
230                continue;
231            } else {
232                subDiags.append(c.isApplicable() ?
233                        getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
234                        getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
235                if (c.sym == bestSoFar)
236                    mostSpecificPos = pos;
237                pos++;
238            }
239        }
240        String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
241        List<Type> argtypes2 = argtypes.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
242        JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
243                site.tsym, mostSpecificPos, currentResolutionContext.step,
244                methodArguments(argtypes2),
245                methodArguments(typeargtypes));
246        JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
247        log.report(d);
248    }
249
250    JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
251        JCDiagnostic subDiag = null;
252        if (sym.type.hasTag(FORALL)) {
253            subDiag = diags.fragment("partial.inst.sig", inst);
254        }
255
256        String key = subDiag == null ?
257                "applicable.method.found" :
258                "applicable.method.found.1";
259
260        return diags.fragment(key, pos, sym, subDiag);
261    }
262
263    JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
264        return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
265    }
266    // </editor-fold>
267
268/* ************************************************************************
269 * Identifier resolution
270 *************************************************************************/
271
272    /** An environment is "static" if its static level is greater than
273     *  the one of its outer environment
274     */
275    protected static boolean isStatic(Env<AttrContext> env) {
276        return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
277    }
278
279    /** An environment is an "initializer" if it is a constructor or
280     *  an instance initializer.
281     */
282    static boolean isInitializer(Env<AttrContext> env) {
283        Symbol owner = env.info.scope.owner;
284        return owner.isConstructor() ||
285            owner.owner.kind == TYP &&
286            (owner.kind == VAR ||
287             owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
288            (owner.flags() & STATIC) == 0;
289    }
290
291    /** Is class accessible in given evironment?
292     *  @param env    The current environment.
293     *  @param c      The class whose accessibility is checked.
294     */
295    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
296        return isAccessible(env, c, false);
297    }
298
299    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
300
301        /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
302           to refer to an inaccessible type
303        */
304        if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
305            return true;
306
307        boolean isAccessible = false;
308        switch ((short)(c.flags() & AccessFlags)) {
309            case PRIVATE:
310                isAccessible =
311                    env.enclClass.sym.outermostClass() ==
312                    c.owner.outermostClass();
313                break;
314            case 0:
315                isAccessible =
316                    env.toplevel.packge == c.owner // fast special case
317                    ||
318                    env.toplevel.packge == c.packge();
319                break;
320            default: // error recovery
321                isAccessible = true;
322                break;
323            case PUBLIC:
324                isAccessible = true;
325                if (allowModules && checkModuleAccess) {
326                    ModuleSymbol currModule = env.toplevel.modle;
327                    currModule.complete();
328                    PackageSymbol p = c.packge();
329                    isAccessible =
330                        (currModule == p.modle) || currModule.visiblePackages.get(p.fullname) == p || p == syms.rootPackage;
331                } else {
332                    isAccessible = true;
333                }
334                break;
335            case PROTECTED:
336                isAccessible =
337                    env.toplevel.packge == c.owner // fast special case
338                    ||
339                    env.toplevel.packge == c.packge()
340                    ||
341                    isInnerSubClass(env.enclClass.sym, c.owner);
342                break;
343        }
344        return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
345            isAccessible :
346            isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
347    }
348    //where
349        /** Is given class a subclass of given base class, or an inner class
350         *  of a subclass?
351         *  Return null if no such class exists.
352         *  @param c     The class which is the subclass or is contained in it.
353         *  @param base  The base class
354         */
355        private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
356            while (c != null && !c.isSubClass(base, types)) {
357                c = c.owner.enclClass();
358            }
359            return c != null;
360        }
361
362    boolean isAccessible(Env<AttrContext> env, Type t) {
363        return isAccessible(env, t, false);
364    }
365
366    boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
367        return (t.hasTag(ARRAY))
368            ? isAccessible(env, types.cvarUpperBound(types.elemtype(t)))
369            : isAccessible(env, t.tsym, checkInner);
370    }
371
372    /** Is symbol accessible as a member of given type in given environment?
373     *  @param env    The current environment.
374     *  @param site   The type of which the tested symbol is regarded
375     *                as a member.
376     *  @param sym    The symbol.
377     */
378    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
379        return isAccessible(env, site, sym, false);
380    }
381    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
382        if (sym.name == names.init && sym.owner != site.tsym) return false;
383
384        /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
385           to refer to an inaccessible type
386        */
387        if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
388            return true;
389
390        switch ((short)(sym.flags() & AccessFlags)) {
391        case PRIVATE:
392            return
393                (env.enclClass.sym == sym.owner // fast special case
394                 ||
395                 env.enclClass.sym.outermostClass() ==
396                 sym.owner.outermostClass())
397                &&
398                sym.isInheritedIn(site.tsym, types);
399        case 0:
400            return
401                (env.toplevel.packge == sym.owner.owner // fast special case
402                 ||
403                 env.toplevel.packge == sym.packge())
404                &&
405                isAccessible(env, site, checkInner)
406                &&
407                sym.isInheritedIn(site.tsym, types)
408                &&
409                notOverriddenIn(site, sym);
410        case PROTECTED:
411            return
412                (env.toplevel.packge == sym.owner.owner // fast special case
413                 ||
414                 env.toplevel.packge == sym.packge()
415                 ||
416                 isProtectedAccessible(sym, env.enclClass.sym, site)
417                 ||
418                 // OK to select instance method or field from 'super' or type name
419                 // (but type names should be disallowed elsewhere!)
420                 env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
421                &&
422                isAccessible(env, site, checkInner)
423                &&
424                notOverriddenIn(site, sym);
425        default: // this case includes erroneous combinations as well
426            return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
427        }
428    }
429    //where
430    /* `sym' is accessible only if not overridden by
431     * another symbol which is a member of `site'
432     * (because, if it is overridden, `sym' is not strictly
433     * speaking a member of `site'). A polymorphic signature method
434     * cannot be overridden (e.g. MH.invokeExact(Object[])).
435     */
436    private boolean notOverriddenIn(Type site, Symbol sym) {
437        if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
438            return true;
439        else {
440            Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
441            return (s2 == null || s2 == sym || sym.owner == s2.owner ||
442                    !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
443        }
444    }
445    //where
446        /** Is given protected symbol accessible if it is selected from given site
447         *  and the selection takes place in given class?
448         *  @param sym     The symbol with protected access
449         *  @param c       The class where the access takes place
450         *  @site          The type of the qualifier
451         */
452        private
453        boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
454            Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
455            while (c != null &&
456                   !(c.isSubClass(sym.owner, types) &&
457                     (c.flags() & INTERFACE) == 0 &&
458                     // In JLS 2e 6.6.2.1, the subclass restriction applies
459                     // only to instance fields and methods -- types are excluded
460                     // regardless of whether they are declared 'static' or not.
461                     ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
462                c = c.owner.enclClass();
463            return c != null;
464        }
465
466    /**
467     * Performs a recursive scan of a type looking for accessibility problems
468     * from current attribution environment
469     */
470    void checkAccessibleType(Env<AttrContext> env, Type t) {
471        accessibilityChecker.visit(t, env);
472    }
473
474    /**
475     * Accessibility type-visitor
476     */
477    Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
478            new Types.SimpleVisitor<Void, Env<AttrContext>>() {
479
480        void visit(List<Type> ts, Env<AttrContext> env) {
481            for (Type t : ts) {
482                visit(t, env);
483            }
484        }
485
486        public Void visitType(Type t, Env<AttrContext> env) {
487            return null;
488        }
489
490        @Override
491        public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
492            visit(t.elemtype, env);
493            return null;
494        }
495
496        @Override
497        public Void visitClassType(ClassType t, Env<AttrContext> env) {
498            visit(t.getTypeArguments(), env);
499            if (!isAccessible(env, t, true)) {
500                accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
501            }
502            return null;
503        }
504
505        @Override
506        public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
507            visit(t.type, env);
508            return null;
509        }
510
511        @Override
512        public Void visitMethodType(MethodType t, Env<AttrContext> env) {
513            visit(t.getParameterTypes(), env);
514            visit(t.getReturnType(), env);
515            visit(t.getThrownTypes(), env);
516            return null;
517        }
518    };
519
520    /** Try to instantiate the type of a method so that it fits
521     *  given type arguments and argument types. If successful, return
522     *  the method's instantiated type, else return null.
523     *  The instantiation will take into account an additional leading
524     *  formal parameter if the method is an instance method seen as a member
525     *  of an under determined site. In this case, we treat site as an additional
526     *  parameter and the parameters of the class containing the method as
527     *  additional type variables that get instantiated.
528     *
529     *  @param env         The current environment
530     *  @param site        The type of which the method is a member.
531     *  @param m           The method symbol.
532     *  @param argtypes    The invocation's given value arguments.
533     *  @param typeargtypes    The invocation's given type arguments.
534     *  @param allowBoxing Allow boxing conversions of arguments.
535     *  @param useVarargs Box trailing arguments into an array for varargs.
536     */
537    Type rawInstantiate(Env<AttrContext> env,
538                        Type site,
539                        Symbol m,
540                        ResultInfo resultInfo,
541                        List<Type> argtypes,
542                        List<Type> typeargtypes,
543                        boolean allowBoxing,
544                        boolean useVarargs,
545                        Warner warn) throws Infer.InferenceException {
546        Type mt = types.memberType(site, m);
547        // tvars is the list of formal type variables for which type arguments
548        // need to inferred.
549        List<Type> tvars = List.nil();
550        if (typeargtypes == null) typeargtypes = List.nil();
551        if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
552            // This is not a polymorphic method, but typeargs are supplied
553            // which is fine, see JLS 15.12.2.1
554        } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
555            ForAll pmt = (ForAll) mt;
556            if (typeargtypes.length() != pmt.tvars.length())
557                throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
558            // Check type arguments are within bounds
559            List<Type> formals = pmt.tvars;
560            List<Type> actuals = typeargtypes;
561            while (formals.nonEmpty() && actuals.nonEmpty()) {
562                List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
563                                                pmt.tvars, typeargtypes);
564                for (; bounds.nonEmpty(); bounds = bounds.tail) {
565                    if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
566                        throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
567                }
568                formals = formals.tail;
569                actuals = actuals.tail;
570            }
571            mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
572        } else if (mt.hasTag(FORALL)) {
573            ForAll pmt = (ForAll) mt;
574            List<Type> tvars1 = types.newInstances(pmt.tvars);
575            tvars = tvars.appendList(tvars1);
576            mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
577        }
578
579        // find out whether we need to go the slow route via infer
580        boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
581        for (List<Type> l = argtypes;
582             l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
583             l = l.tail) {
584            if (l.head.hasTag(FORALL)) instNeeded = true;
585        }
586
587        if (instNeeded) {
588            return infer.instantiateMethod(env,
589                                    tvars,
590                                    (MethodType)mt,
591                                    resultInfo,
592                                    (MethodSymbol)m,
593                                    argtypes,
594                                    allowBoxing,
595                                    useVarargs,
596                                    currentResolutionContext,
597                                    warn);
598        }
599
600        DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
601        currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
602                                argtypes, mt.getParameterTypes(), warn);
603        dc.complete();
604        return mt;
605    }
606
607    Type checkMethod(Env<AttrContext> env,
608                     Type site,
609                     Symbol m,
610                     ResultInfo resultInfo,
611                     List<Type> argtypes,
612                     List<Type> typeargtypes,
613                     Warner warn) {
614        MethodResolutionContext prevContext = currentResolutionContext;
615        try {
616            currentResolutionContext = new MethodResolutionContext();
617            currentResolutionContext.attrMode = (resultInfo.pt == Infer.anyPoly) ?
618                    AttrMode.SPECULATIVE : DeferredAttr.AttrMode.CHECK;
619            if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
620                //method/constructor references need special check class
621                //to handle inference variables in 'argtypes' (might happen
622                //during an unsticking round)
623                currentResolutionContext.methodCheck =
624                        new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
625            }
626            MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
627            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
628                    step.isBoxingRequired(), step.isVarargsRequired(), warn);
629        }
630        finally {
631            currentResolutionContext = prevContext;
632        }
633    }
634
635    /** Same but returns null instead throwing a NoInstanceException
636     */
637    Type instantiate(Env<AttrContext> env,
638                     Type site,
639                     Symbol m,
640                     ResultInfo resultInfo,
641                     List<Type> argtypes,
642                     List<Type> typeargtypes,
643                     boolean allowBoxing,
644                     boolean useVarargs,
645                     Warner warn) {
646        try {
647            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
648                                  allowBoxing, useVarargs, warn);
649        } catch (InapplicableMethodException ex) {
650            return null;
651        }
652    }
653
654    /**
655     * This interface defines an entry point that should be used to perform a
656     * method check. A method check usually consist in determining as to whether
657     * a set of types (actuals) is compatible with another set of types (formals).
658     * Since the notion of compatibility can vary depending on the circumstances,
659     * this interfaces allows to easily add new pluggable method check routines.
660     */
661    interface MethodCheck {
662        /**
663         * Main method check routine. A method check usually consist in determining
664         * as to whether a set of types (actuals) is compatible with another set of
665         * types (formals). If an incompatibility is found, an unchecked exception
666         * is assumed to be thrown.
667         */
668        void argumentsAcceptable(Env<AttrContext> env,
669                                DeferredAttrContext deferredAttrContext,
670                                List<Type> argtypes,
671                                List<Type> formals,
672                                Warner warn);
673
674        /**
675         * Retrieve the method check object that will be used during a
676         * most specific check.
677         */
678        MethodCheck mostSpecificCheck(List<Type> actuals);
679    }
680
681    /**
682     * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
683     */
684    enum MethodCheckDiag {
685        /**
686         * Actuals and formals differs in length.
687         */
688        ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
689        /**
690         * An actual is incompatible with a formal.
691         */
692        ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
693        /**
694         * An actual is incompatible with the varargs element type.
695         */
696        VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
697        /**
698         * The varargs element type is inaccessible.
699         */
700        INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
701
702        final String basicKey;
703        final String inferKey;
704
705        MethodCheckDiag(String basicKey, String inferKey) {
706            this.basicKey = basicKey;
707            this.inferKey = inferKey;
708        }
709
710        String regex() {
711            return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
712        }
713    }
714
715    /**
716     * Dummy method check object. All methods are deemed applicable, regardless
717     * of their formal parameter types.
718     */
719    MethodCheck nilMethodCheck = new MethodCheck() {
720        public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
721            //do nothing - method always applicable regardless of actuals
722        }
723
724        public MethodCheck mostSpecificCheck(List<Type> actuals) {
725            return this;
726        }
727    };
728
729    /**
730     * Base class for 'real' method checks. The class defines the logic for
731     * iterating through formals and actuals and provides and entry point
732     * that can be used by subclasses in order to define the actual check logic.
733     */
734    abstract class AbstractMethodCheck implements MethodCheck {
735        @Override
736        public void argumentsAcceptable(final Env<AttrContext> env,
737                                    DeferredAttrContext deferredAttrContext,
738                                    List<Type> argtypes,
739                                    List<Type> formals,
740                                    Warner warn) {
741            //should we expand formals?
742            boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
743            JCTree callTree = treeForDiagnostics(env);
744            List<JCExpression> trees = TreeInfo.args(callTree);
745
746            //inference context used during this method check
747            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
748
749            Type varargsFormal = useVarargs ? formals.last() : null;
750
751            if (varargsFormal == null &&
752                    argtypes.size() != formals.size()) {
753                reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
754            }
755
756            while (argtypes.nonEmpty() && formals.head != varargsFormal) {
757                DiagnosticPosition pos = trees != null ? trees.head : null;
758                checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
759                argtypes = argtypes.tail;
760                formals = formals.tail;
761                trees = trees != null ? trees.tail : trees;
762            }
763
764            if (formals.head != varargsFormal) {
765                reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
766            }
767
768            if (useVarargs) {
769                //note: if applicability check is triggered by most specific test,
770                //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
771                final Type elt = types.elemtype(varargsFormal);
772                while (argtypes.nonEmpty()) {
773                    DiagnosticPosition pos = trees != null ? trees.head : null;
774                    checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
775                    argtypes = argtypes.tail;
776                    trees = trees != null ? trees.tail : trees;
777                }
778            }
779        }
780
781            // where
782            private JCTree treeForDiagnostics(Env<AttrContext> env) {
783                return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree;
784            }
785
786        /**
787         * Does the actual argument conforms to the corresponding formal?
788         */
789        abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
790
791        protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
792            boolean inferDiag = inferenceContext != infer.emptyContext;
793            InapplicableMethodException ex = inferDiag ?
794                    infer.inferenceException : inapplicableMethodException;
795            if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
796                Object[] args2 = new Object[args.length + 1];
797                System.arraycopy(args, 0, args2, 1, args.length);
798                args2[0] = inferenceContext.inferenceVars();
799                args = args2;
800            }
801            String key = inferDiag ? diag.inferKey : diag.basicKey;
802            throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
803        }
804
805        public MethodCheck mostSpecificCheck(List<Type> actuals) {
806            return nilMethodCheck;
807        }
808
809    }
810
811    /**
812     * Arity-based method check. A method is applicable if the number of actuals
813     * supplied conforms to the method signature.
814     */
815    MethodCheck arityMethodCheck = new AbstractMethodCheck() {
816        @Override
817        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
818            //do nothing - actual always compatible to formals
819        }
820
821        @Override
822        public String toString() {
823            return "arityMethodCheck";
824        }
825    };
826
827    List<Type> dummyArgs(int length) {
828        ListBuffer<Type> buf = new ListBuffer<>();
829        for (int i = 0 ; i < length ; i++) {
830            buf.append(Type.noType);
831        }
832        return buf.toList();
833    }
834
835    /**
836     * Main method applicability routine. Given a list of actual types A,
837     * a list of formal types F, determines whether the types in A are
838     * compatible (by method invocation conversion) with the types in F.
839     *
840     * Since this routine is shared between overload resolution and method
841     * type-inference, a (possibly empty) inference context is used to convert
842     * formal types to the corresponding 'undet' form ahead of a compatibility
843     * check so that constraints can be propagated and collected.
844     *
845     * Moreover, if one or more types in A is a deferred type, this routine uses
846     * DeferredAttr in order to perform deferred attribution. If one or more actual
847     * deferred types are stuck, they are placed in a queue and revisited later
848     * after the remainder of the arguments have been seen. If this is not sufficient
849     * to 'unstuck' the argument, a cyclic inference error is called out.
850     *
851     * A method check handler (see above) is used in order to report errors.
852     */
853    MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
854
855        @Override
856        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
857            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
858            mresult.check(pos, actual);
859        }
860
861        @Override
862        public void argumentsAcceptable(final Env<AttrContext> env,
863                                    DeferredAttrContext deferredAttrContext,
864                                    List<Type> argtypes,
865                                    List<Type> formals,
866                                    Warner warn) {
867            super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
868            // should we check varargs element type accessibility?
869            if (deferredAttrContext.phase.isVarargsRequired()) {
870                if (deferredAttrContext.mode == AttrMode.CHECK || !checkVarargsAccessAfterResolution) {
871                    varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext);
872                }
873            }
874        }
875
876        /**
877         * Test that the runtime array element type corresponding to 't' is accessible.  't' should be the
878         * varargs element type of either the method invocation type signature (after inference completes)
879         * or the method declaration signature (before inference completes).
880         */
881        private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
882            if (inferenceContext.free(t)) {
883                inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
884                    @Override
885                    public void typesInferred(InferenceContext inferenceContext) {
886                        varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
887                    }
888                });
889            } else {
890                if (!isAccessible(env, types.erasure(t))) {
891                    Symbol location = env.enclClass.sym;
892                    reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
893                }
894            }
895        }
896
897        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
898                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
899            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
900                MethodCheckDiag methodDiag = varargsCheck ?
901                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
902
903                @Override
904                public void report(DiagnosticPosition pos, JCDiagnostic details) {
905                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
906                }
907            };
908            return new MethodResultInfo(to, checkContext);
909        }
910
911        @Override
912        public MethodCheck mostSpecificCheck(List<Type> actuals) {
913            return new MostSpecificCheck(actuals);
914        }
915
916        @Override
917        public String toString() {
918            return "resolveMethodCheck";
919        }
920    };
921
922    /**
923     * This class handles method reference applicability checks; since during
924     * these checks it's sometime possible to have inference variables on
925     * the actual argument types list, the method applicability check must be
926     * extended so that inference variables are 'opened' as needed.
927     */
928    class MethodReferenceCheck extends AbstractMethodCheck {
929
930        InferenceContext pendingInferenceContext;
931
932        MethodReferenceCheck(InferenceContext pendingInferenceContext) {
933            this.pendingInferenceContext = pendingInferenceContext;
934        }
935
936        @Override
937        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
938            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
939            mresult.check(pos, actual);
940        }
941
942        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
943                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
944            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
945                MethodCheckDiag methodDiag = varargsCheck ?
946                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
947
948                @Override
949                public boolean compatible(Type found, Type req, Warner warn) {
950                    found = pendingInferenceContext.asUndetVar(found);
951                    if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
952                        req = types.boxedClass(req).type;
953                    }
954                    return super.compatible(found, req, warn);
955                }
956
957                @Override
958                public void report(DiagnosticPosition pos, JCDiagnostic details) {
959                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
960                }
961            };
962            return new MethodResultInfo(to, checkContext);
963        }
964
965        @Override
966        public MethodCheck mostSpecificCheck(List<Type> actuals) {
967            return new MostSpecificCheck(actuals);
968        }
969
970        @Override
971        public String toString() {
972            return "MethodReferenceCheck";
973        }
974    }
975
976    /**
977     * Check context to be used during method applicability checks. A method check
978     * context might contain inference variables.
979     */
980    abstract class MethodCheckContext implements CheckContext {
981
982        boolean strict;
983        DeferredAttrContext deferredAttrContext;
984        Warner rsWarner;
985
986        public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
987           this.strict = strict;
988           this.deferredAttrContext = deferredAttrContext;
989           this.rsWarner = rsWarner;
990        }
991
992        public boolean compatible(Type found, Type req, Warner warn) {
993            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
994            return strict ?
995                    types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
996                    types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
997        }
998
999        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1000            throw inapplicableMethodException.setMessage(details);
1001        }
1002
1003        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
1004            return rsWarner;
1005        }
1006
1007        public InferenceContext inferenceContext() {
1008            return deferredAttrContext.inferenceContext;
1009        }
1010
1011        public DeferredAttrContext deferredAttrContext() {
1012            return deferredAttrContext;
1013        }
1014
1015        @Override
1016        public String toString() {
1017            return "MethodCheckContext";
1018        }
1019    }
1020
1021    /**
1022     * ResultInfo class to be used during method applicability checks. Check
1023     * for deferred types goes through special path.
1024     */
1025    class MethodResultInfo extends ResultInfo {
1026
1027        public MethodResultInfo(Type pt, CheckContext checkContext) {
1028            attr.super(KindSelector.VAL, pt, checkContext);
1029        }
1030
1031        @Override
1032        protected Type check(DiagnosticPosition pos, Type found) {
1033            if (found.hasTag(DEFERRED)) {
1034                DeferredType dt = (DeferredType)found;
1035                return dt.check(this);
1036            } else {
1037                Type uResult = U(found);
1038                Type capturedType = pos == null || pos.getTree() == null ?
1039                        types.capture(uResult) :
1040                        checkContext.inferenceContext()
1041                            .cachedCapture(pos.getTree(), uResult, true);
1042                return super.check(pos, chk.checkNonVoid(pos, capturedType));
1043            }
1044        }
1045
1046        /**
1047         * javac has a long-standing 'simplification' (see 6391995):
1048         * given an actual argument type, the method check is performed
1049         * on its upper bound. This leads to inconsistencies when an
1050         * argument type is checked against itself. For example, given
1051         * a type-variable T, it is not true that {@code U(T) <: T},
1052         * so we need to guard against that.
1053         */
1054        private Type U(Type found) {
1055            return found == pt ?
1056                    found : types.cvarUpperBound(found);
1057        }
1058
1059        @Override
1060        protected MethodResultInfo dup(Type newPt) {
1061            return new MethodResultInfo(newPt, checkContext);
1062        }
1063
1064        @Override
1065        protected ResultInfo dup(CheckContext newContext) {
1066            return new MethodResultInfo(pt, newContext);
1067        }
1068
1069        @Override
1070        protected ResultInfo dup(Type newPt, CheckContext newContext) {
1071            return new MethodResultInfo(newPt, newContext);
1072        }
1073    }
1074
1075    /**
1076     * Most specific method applicability routine. Given a list of actual types A,
1077     * a list of formal types F1, and a list of formal types F2, the routine determines
1078     * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
1079     * argument types A.
1080     */
1081    class MostSpecificCheck implements MethodCheck {
1082
1083        List<Type> actuals;
1084
1085        MostSpecificCheck(List<Type> actuals) {
1086            this.actuals = actuals;
1087        }
1088
1089        @Override
1090        public void argumentsAcceptable(final Env<AttrContext> env,
1091                                    DeferredAttrContext deferredAttrContext,
1092                                    List<Type> formals1,
1093                                    List<Type> formals2,
1094                                    Warner warn) {
1095            formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
1096            while (formals2.nonEmpty()) {
1097                ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
1098                mresult.check(null, formals1.head);
1099                formals1 = formals1.tail;
1100                formals2 = formals2.tail;
1101                actuals = actuals.isEmpty() ? actuals : actuals.tail;
1102            }
1103        }
1104
1105       /**
1106        * Create a method check context to be used during the most specific applicability check
1107        */
1108        ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
1109               Warner rsWarner, Type actual) {
1110            return attr.new ResultInfo(KindSelector.VAL, to,
1111                   new MostSpecificCheckContext(deferredAttrContext, rsWarner, actual));
1112        }
1113
1114        /**
1115         * Subclass of method check context class that implements most specific
1116         * method conversion. If the actual type under analysis is a deferred type
1117         * a full blown structural analysis is carried out.
1118         */
1119        class MostSpecificCheckContext extends MethodCheckContext {
1120
1121            Type actual;
1122
1123            public MostSpecificCheckContext(DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
1124                super(true, deferredAttrContext, rsWarner);
1125                this.actual = actual;
1126            }
1127
1128            public boolean compatible(Type found, Type req, Warner warn) {
1129                if (allowFunctionalInterfaceMostSpecific &&
1130                        unrelatedFunctionalInterfaces(found, req) &&
1131                        (actual != null && actual.getTag() == DEFERRED)) {
1132                    DeferredType dt = (DeferredType) actual;
1133                    JCTree speculativeTree = dt.speculativeTree(deferredAttrContext);
1134                    if (speculativeTree != deferredAttr.stuckTree) {
1135                        return functionalInterfaceMostSpecific(found, req, speculativeTree);
1136                    }
1137                }
1138                return compatibleBySubtyping(found, req);
1139            }
1140
1141            private boolean compatibleBySubtyping(Type found, Type req) {
1142                if (!strict && found.isPrimitive() != req.isPrimitive()) {
1143                    found = found.isPrimitive() ? types.boxedClass(found).type : types.unboxedType(found);
1144                }
1145                return types.isSubtypeNoCapture(found, deferredAttrContext.inferenceContext.asUndetVar(req));
1146            }
1147
1148            /** Whether {@code t} and {@code s} are unrelated functional interface types. */
1149            private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
1150                return types.isFunctionalInterface(t.tsym) &&
1151                       types.isFunctionalInterface(s.tsym) &&
1152                       unrelatedInterfaces(t, s);
1153            }
1154
1155            /** Whether {@code t} and {@code s} are unrelated interface types; recurs on intersections. **/
1156            private boolean unrelatedInterfaces(Type t, Type s) {
1157                if (t.isCompound()) {
1158                    for (Type ti : types.interfaces(t)) {
1159                        if (!unrelatedInterfaces(ti, s)) {
1160                            return false;
1161                        }
1162                    }
1163                    return true;
1164                } else if (s.isCompound()) {
1165                    for (Type si : types.interfaces(s)) {
1166                        if (!unrelatedInterfaces(t, si)) {
1167                            return false;
1168                        }
1169                    }
1170                    return true;
1171                } else {
1172                    return types.asSuper(t, s.tsym) == null && types.asSuper(s, t.tsym) == null;
1173                }
1174            }
1175
1176            /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1177            private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree) {
1178                Type tDesc = types.findDescriptorType(types.capture(t));
1179                Type tDescNoCapture = types.findDescriptorType(t);
1180                Type sDesc = types.findDescriptorType(s);
1181                final List<Type> tTypeParams = tDesc.getTypeArguments();
1182                final List<Type> tTypeParamsNoCapture = tDescNoCapture.getTypeArguments();
1183                final List<Type> sTypeParams = sDesc.getTypeArguments();
1184
1185                // compare type parameters
1186                if (tDesc.hasTag(FORALL) && !types.hasSameBounds((ForAll) tDesc, (ForAll) tDescNoCapture)) {
1187                    return false;
1188                }
1189                // can't use Types.hasSameBounds on sDesc because bounds may have ivars
1190                List<Type> tIter = tTypeParams;
1191                List<Type> sIter = sTypeParams;
1192                while (tIter.nonEmpty() && sIter.nonEmpty()) {
1193                    Type tBound = tIter.head.getUpperBound();
1194                    Type sBound = types.subst(sIter.head.getUpperBound(), sTypeParams, tTypeParams);
1195                    if (tBound.containsAny(tTypeParams) && inferenceContext().free(sBound)) {
1196                        return false;
1197                    }
1198                    if (!types.isSameType(tBound, inferenceContext().asUndetVar(sBound))) {
1199                        return false;
1200                    }
1201                    tIter = tIter.tail;
1202                    sIter = sIter.tail;
1203                }
1204                if (!tIter.isEmpty() || !sIter.isEmpty()) {
1205                    return false;
1206                }
1207
1208                // compare parameters
1209                List<Type> tParams = tDesc.getParameterTypes();
1210                List<Type> tParamsNoCapture = tDescNoCapture.getParameterTypes();
1211                List<Type> sParams = sDesc.getParameterTypes();
1212                while (tParams.nonEmpty() && tParamsNoCapture.nonEmpty() && sParams.nonEmpty()) {
1213                    Type tParam = tParams.head;
1214                    Type tParamNoCapture = types.subst(tParamsNoCapture.head, tTypeParamsNoCapture, tTypeParams);
1215                    Type sParam = types.subst(sParams.head, sTypeParams, tTypeParams);
1216                    if (tParam.containsAny(tTypeParams) && inferenceContext().free(sParam)) {
1217                        return false;
1218                    }
1219                    if (!types.isSubtype(inferenceContext().asUndetVar(sParam), tParam)) {
1220                        return false;
1221                    }
1222                    if (!types.isSameType(tParamNoCapture, inferenceContext().asUndetVar(sParam))) {
1223                        return false;
1224                    }
1225                    tParams = tParams.tail;
1226                    tParamsNoCapture = tParamsNoCapture.tail;
1227                    sParams = sParams.tail;
1228                }
1229                if (!tParams.isEmpty() || !tParamsNoCapture.isEmpty() || !sParams.isEmpty()) {
1230                    return false;
1231                }
1232
1233                // compare returns
1234                Type tRet = tDesc.getReturnType();
1235                Type sRet = types.subst(sDesc.getReturnType(), sTypeParams, tTypeParams);
1236                if (tRet.containsAny(tTypeParams) && inferenceContext().free(sRet)) {
1237                    return false;
1238                }
1239                MostSpecificFunctionReturnChecker msc = new MostSpecificFunctionReturnChecker(tRet, sRet);
1240                msc.scan(tree);
1241                return msc.result;
1242            }
1243
1244            /**
1245             * Tests whether one functional interface type can be considered more specific
1246             * than another unrelated functional interface type for the scanned expression.
1247             */
1248            class MostSpecificFunctionReturnChecker extends DeferredAttr.PolyScanner {
1249
1250                final Type tRet;
1251                final Type sRet;
1252                boolean result;
1253
1254                /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1255                MostSpecificFunctionReturnChecker(Type tRet, Type sRet) {
1256                    this.tRet = tRet;
1257                    this.sRet = sRet;
1258                    result = true;
1259                }
1260
1261                @Override
1262                void skip(JCTree tree) {
1263                    result &= false;
1264                }
1265
1266                @Override
1267                public void visitConditional(JCConditional tree) {
1268                    scan(asExpr(tree.truepart));
1269                    scan(asExpr(tree.falsepart));
1270                }
1271
1272                @Override
1273                public void visitReference(JCMemberReference tree) {
1274                    if (sRet.hasTag(VOID)) {
1275                        result &= true;
1276                    } else if (tRet.hasTag(VOID)) {
1277                        result &= false;
1278                    } else if (tRet.isPrimitive() != sRet.isPrimitive()) {
1279                        boolean retValIsPrimitive =
1280                                tree.refPolyKind == PolyKind.STANDALONE &&
1281                                tree.sym.type.getReturnType().isPrimitive();
1282                        result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1283                                  (retValIsPrimitive != sRet.isPrimitive());
1284                    } else {
1285                        result &= compatibleBySubtyping(tRet, sRet);
1286                    }
1287                }
1288
1289                @Override
1290                public void visitParens(JCParens tree) {
1291                    scan(asExpr(tree.expr));
1292                }
1293
1294                @Override
1295                public void visitLambda(JCLambda tree) {
1296                    if (sRet.hasTag(VOID)) {
1297                        result &= true;
1298                    } else if (tRet.hasTag(VOID)) {
1299                        result &= false;
1300                    } else {
1301                        List<JCExpression> lambdaResults = lambdaResults(tree);
1302                        if (!lambdaResults.isEmpty() && unrelatedFunctionalInterfaces(tRet, sRet)) {
1303                            for (JCExpression expr : lambdaResults) {
1304                                result &= functionalInterfaceMostSpecific(tRet, sRet, expr);
1305                            }
1306                        } else if (!lambdaResults.isEmpty() && tRet.isPrimitive() != sRet.isPrimitive()) {
1307                            for (JCExpression expr : lambdaResults) {
1308                                boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
1309                                result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1310                                        (retValIsPrimitive != sRet.isPrimitive());
1311                            }
1312                        } else {
1313                            result &= compatibleBySubtyping(tRet, sRet);
1314                        }
1315                    }
1316                }
1317                //where
1318
1319                private List<JCExpression> lambdaResults(JCLambda lambda) {
1320                    if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
1321                        return List.of(asExpr((JCExpression) lambda.body));
1322                    } else {
1323                        final ListBuffer<JCExpression> buffer = new ListBuffer<>();
1324                        DeferredAttr.LambdaReturnScanner lambdaScanner =
1325                                new DeferredAttr.LambdaReturnScanner() {
1326                                    @Override
1327                                    public void visitReturn(JCReturn tree) {
1328                                        if (tree.expr != null) {
1329                                            buffer.append(asExpr(tree.expr));
1330                                        }
1331                                    }
1332                                };
1333                        lambdaScanner.scan(lambda.body);
1334                        return buffer.toList();
1335                    }
1336                }
1337
1338                private JCExpression asExpr(JCExpression expr) {
1339                    if (expr.type.hasTag(DEFERRED)) {
1340                        JCTree speculativeTree = ((DeferredType)expr.type).speculativeTree(deferredAttrContext);
1341                        if (speculativeTree != deferredAttr.stuckTree) {
1342                            expr = (JCExpression)speculativeTree;
1343                        }
1344                    }
1345                    return expr;
1346                }
1347            }
1348
1349        }
1350
1351        public MethodCheck mostSpecificCheck(List<Type> actuals) {
1352            Assert.error("Cannot get here!");
1353            return null;
1354        }
1355    }
1356
1357    public static class InapplicableMethodException extends RuntimeException {
1358        private static final long serialVersionUID = 0;
1359
1360        JCDiagnostic diagnostic;
1361        JCDiagnostic.Factory diags;
1362
1363        InapplicableMethodException(JCDiagnostic.Factory diags) {
1364            this.diagnostic = null;
1365            this.diags = diags;
1366        }
1367        InapplicableMethodException setMessage() {
1368            return setMessage((JCDiagnostic)null);
1369        }
1370        InapplicableMethodException setMessage(String key) {
1371            return setMessage(key != null ? diags.fragment(key) : null);
1372        }
1373        InapplicableMethodException setMessage(String key, Object... args) {
1374            return setMessage(key != null ? diags.fragment(key, args) : null);
1375        }
1376        InapplicableMethodException setMessage(JCDiagnostic diag) {
1377            this.diagnostic = diag;
1378            return this;
1379        }
1380
1381        public JCDiagnostic getDiagnostic() {
1382            return diagnostic;
1383        }
1384    }
1385    private final InapplicableMethodException inapplicableMethodException;
1386
1387/* ***************************************************************************
1388 *  Symbol lookup
1389 *  the following naming conventions for arguments are used
1390 *
1391 *       env      is the environment where the symbol was mentioned
1392 *       site     is the type of which the symbol is a member
1393 *       name     is the symbol's name
1394 *                if no arguments are given
1395 *       argtypes are the value arguments, if we search for a method
1396 *
1397 *  If no symbol was found, a ResolveError detailing the problem is returned.
1398 ****************************************************************************/
1399
1400    /** Find field. Synthetic fields are always skipped.
1401     *  @param env     The current environment.
1402     *  @param site    The original type from where the selection takes place.
1403     *  @param name    The name of the field.
1404     *  @param c       The class to search for the field. This is always
1405     *                 a superclass or implemented interface of site's class.
1406     */
1407    Symbol findField(Env<AttrContext> env,
1408                     Type site,
1409                     Name name,
1410                     TypeSymbol c) {
1411        while (c.type.hasTag(TYPEVAR))
1412            c = c.type.getUpperBound().tsym;
1413        Symbol bestSoFar = varNotFound;
1414        Symbol sym;
1415        for (Symbol s : c.members().getSymbolsByName(name)) {
1416            if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1417                return isAccessible(env, site, s)
1418                    ? s : new AccessError(env, site, s);
1419            }
1420        }
1421        Type st = types.supertype(c.type);
1422        if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
1423            sym = findField(env, site, name, st.tsym);
1424            bestSoFar = bestOf(bestSoFar, sym);
1425        }
1426        for (List<Type> l = types.interfaces(c.type);
1427             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1428             l = l.tail) {
1429            sym = findField(env, site, name, l.head.tsym);
1430            if (bestSoFar.exists() && sym.exists() &&
1431                sym.owner != bestSoFar.owner)
1432                bestSoFar = new AmbiguityError(bestSoFar, sym);
1433            else
1434                bestSoFar = bestOf(bestSoFar, sym);
1435        }
1436        return bestSoFar;
1437    }
1438
1439    /** Resolve a field identifier, throw a fatal error if not found.
1440     *  @param pos       The position to use for error reporting.
1441     *  @param env       The environment current at the method invocation.
1442     *  @param site      The type of the qualifying expression, in which
1443     *                   identifier is searched.
1444     *  @param name      The identifier's name.
1445     */
1446    public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
1447                                          Type site, Name name) {
1448        Symbol sym = findField(env, site, name, site.tsym);
1449        if (sym.kind == VAR) return (VarSymbol)sym;
1450        else throw new FatalError(
1451                 diags.fragment("fatal.err.cant.locate.field",
1452                                name));
1453    }
1454
1455    /** Find unqualified variable or field with given name.
1456     *  Synthetic fields always skipped.
1457     *  @param env     The current environment.
1458     *  @param name    The name of the variable or field.
1459     */
1460    Symbol findVar(Env<AttrContext> env, Name name) {
1461        Symbol bestSoFar = varNotFound;
1462        Env<AttrContext> env1 = env;
1463        boolean staticOnly = false;
1464        while (env1.outer != null) {
1465            Symbol sym = null;
1466            if (isStatic(env1)) staticOnly = true;
1467            for (Symbol s : env1.info.scope.getSymbolsByName(name)) {
1468                if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1469                    sym = s;
1470                    break;
1471                }
1472            }
1473            if (sym == null) {
1474                sym = findField(env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
1475            }
1476            if (sym.exists()) {
1477                if (staticOnly &&
1478                    sym.kind == VAR &&
1479                    sym.owner.kind == TYP &&
1480                    (sym.flags() & STATIC) == 0)
1481                    return new StaticError(sym);
1482                else
1483                    return sym;
1484            } else {
1485                bestSoFar = bestOf(bestSoFar, sym);
1486            }
1487
1488            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1489            env1 = env1.outer;
1490        }
1491
1492        Symbol sym = findField(env, syms.predefClass.type, name, syms.predefClass);
1493        if (sym.exists())
1494            return sym;
1495        if (bestSoFar.exists())
1496            return bestSoFar;
1497
1498        Symbol origin = null;
1499        for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
1500            for (Symbol currentSymbol : sc.getSymbolsByName(name)) {
1501                if (currentSymbol.kind != VAR)
1502                    continue;
1503                // invariant: sym.kind == Symbol.Kind.VAR
1504                if (!bestSoFar.kind.isResolutionError() &&
1505                    currentSymbol.owner != bestSoFar.owner)
1506                    return new AmbiguityError(bestSoFar, currentSymbol);
1507                else if (!bestSoFar.kind.betterThan(VAR)) {
1508                    origin = sc.getOrigin(currentSymbol).owner;
1509                    bestSoFar = isAccessible(env, origin.type, currentSymbol)
1510                        ? currentSymbol : new AccessError(env, origin.type, currentSymbol);
1511                }
1512            }
1513            if (bestSoFar.exists()) break;
1514        }
1515        if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
1516            return bestSoFar.clone(origin);
1517        else
1518            return bestSoFar;
1519    }
1520
1521    Warner noteWarner = new Warner();
1522
1523    /** Select the best method for a call site among two choices.
1524     *  @param env              The current environment.
1525     *  @param site             The original type from where the
1526     *                          selection takes place.
1527     *  @param argtypes         The invocation's value arguments,
1528     *  @param typeargtypes     The invocation's type arguments,
1529     *  @param sym              Proposed new best match.
1530     *  @param bestSoFar        Previously found best match.
1531     *  @param allowBoxing Allow boxing conversions of arguments.
1532     *  @param useVarargs Box trailing arguments into an array for varargs.
1533     */
1534    @SuppressWarnings("fallthrough")
1535    Symbol selectBest(Env<AttrContext> env,
1536                      Type site,
1537                      List<Type> argtypes,
1538                      List<Type> typeargtypes,
1539                      Symbol sym,
1540                      Symbol bestSoFar,
1541                      boolean allowBoxing,
1542                      boolean useVarargs) {
1543        if (sym.kind == ERR ||
1544                !sym.isInheritedIn(site.tsym, types)) {
1545            return bestSoFar;
1546        } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
1547            return bestSoFar.kind.isResolutionError() ?
1548                    new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
1549                    bestSoFar;
1550        }
1551        Assert.check(!sym.kind.isResolutionError());
1552        try {
1553            types.noWarnings.clear();
1554            Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
1555                               allowBoxing, useVarargs, types.noWarnings);
1556            currentResolutionContext.addApplicableCandidate(sym, mt);
1557        } catch (InapplicableMethodException ex) {
1558            currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
1559            switch (bestSoFar.kind) {
1560                case ABSENT_MTH:
1561                    return new InapplicableSymbolError(currentResolutionContext);
1562                case WRONG_MTH:
1563                    bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1564                default:
1565                    return bestSoFar;
1566            }
1567        }
1568        if (!isAccessible(env, site, sym)) {
1569            return (bestSoFar.kind == ABSENT_MTH)
1570                ? new AccessError(env, site, sym)
1571                : bestSoFar;
1572        }
1573        return (bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS)
1574            ? sym
1575            : mostSpecific(argtypes, sym, bestSoFar, env, site, useVarargs);
1576    }
1577
1578    /* Return the most specific of the two methods for a call,
1579     *  given that both are accessible and applicable.
1580     *  @param m1               A new candidate for most specific.
1581     *  @param m2               The previous most specific candidate.
1582     *  @param env              The current environment.
1583     *  @param site             The original type from where the selection
1584     *                          takes place.
1585     *  @param allowBoxing Allow boxing conversions of arguments.
1586     *  @param useVarargs Box trailing arguments into an array for varargs.
1587     */
1588    Symbol mostSpecific(List<Type> argtypes, Symbol m1,
1589                        Symbol m2,
1590                        Env<AttrContext> env,
1591                        final Type site,
1592                        boolean useVarargs) {
1593        switch (m2.kind) {
1594        case MTH:
1595            if (m1 == m2) return m1;
1596            boolean m1SignatureMoreSpecific =
1597                    signatureMoreSpecific(argtypes, env, site, m1, m2, useVarargs);
1598            boolean m2SignatureMoreSpecific =
1599                    signatureMoreSpecific(argtypes, env, site, m2, m1, useVarargs);
1600            if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
1601                Type mt1 = types.memberType(site, m1);
1602                Type mt2 = types.memberType(site, m2);
1603                if (!types.overrideEquivalent(mt1, mt2))
1604                    return ambiguityError(m1, m2);
1605
1606                // same signature; select (a) the non-bridge method, or
1607                // (b) the one that overrides the other, or (c) the concrete
1608                // one, or (d) merge both abstract signatures
1609                if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
1610                    return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
1611
1612                // if one overrides or hides the other, use it
1613                TypeSymbol m1Owner = (TypeSymbol)m1.owner;
1614                TypeSymbol m2Owner = (TypeSymbol)m2.owner;
1615                if (types.asSuper(m1Owner.type, m2Owner) != null &&
1616                    ((m1.owner.flags_field & INTERFACE) == 0 ||
1617                     (m2.owner.flags_field & INTERFACE) != 0) &&
1618                    m1.overrides(m2, m1Owner, types, false))
1619                    return m1;
1620                if (types.asSuper(m2Owner.type, m1Owner) != null &&
1621                    ((m2.owner.flags_field & INTERFACE) == 0 ||
1622                     (m1.owner.flags_field & INTERFACE) != 0) &&
1623                    m2.overrides(m1, m2Owner, types, false))
1624                    return m2;
1625                boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
1626                boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
1627                if (m1Abstract && !m2Abstract) return m2;
1628                if (m2Abstract && !m1Abstract) return m1;
1629                // both abstract or both concrete
1630                return ambiguityError(m1, m2);
1631            }
1632            if (m1SignatureMoreSpecific) return m1;
1633            if (m2SignatureMoreSpecific) return m2;
1634            return ambiguityError(m1, m2);
1635        case AMBIGUOUS:
1636            //compare m1 to ambiguous methods in m2
1637            AmbiguityError e = (AmbiguityError)m2.baseSymbol();
1638            boolean m1MoreSpecificThanAnyAmbiguous = true;
1639            boolean allAmbiguousMoreSpecificThanM1 = true;
1640            for (Symbol s : e.ambiguousSyms) {
1641                Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, useVarargs);
1642                m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
1643                allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
1644            }
1645            if (m1MoreSpecificThanAnyAmbiguous)
1646                return m1;
1647            //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
1648            //more specific than m1, add it as a new ambiguous method:
1649            if (!allAmbiguousMoreSpecificThanM1)
1650                e.addAmbiguousSymbol(m1);
1651            return e;
1652        default:
1653            throw new AssertionError();
1654        }
1655    }
1656    //where
1657    private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean useVarargs) {
1658        noteWarner.clear();
1659        int maxLength = Math.max(
1660                            Math.max(m1.type.getParameterTypes().length(), actuals.length()),
1661                            m2.type.getParameterTypes().length());
1662        MethodResolutionContext prevResolutionContext = currentResolutionContext;
1663        try {
1664            currentResolutionContext = new MethodResolutionContext();
1665            currentResolutionContext.step = prevResolutionContext.step;
1666            currentResolutionContext.methodCheck =
1667                    prevResolutionContext.methodCheck.mostSpecificCheck(actuals);
1668            Type mst = instantiate(env, site, m2, null,
1669                    adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
1670                    false, useVarargs, noteWarner);
1671            return mst != null &&
1672                    !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
1673        } finally {
1674            currentResolutionContext = prevResolutionContext;
1675        }
1676    }
1677
1678    List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
1679        if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
1680            Type varargsElem = types.elemtype(args.last());
1681            if (varargsElem == null) {
1682                Assert.error("Bad varargs = " + args.last() + " " + msym);
1683            }
1684            List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
1685            while (newArgs.length() < length) {
1686                newArgs = newArgs.append(newArgs.last());
1687            }
1688            return newArgs;
1689        } else {
1690            return args;
1691        }
1692    }
1693    //where
1694    Type mostSpecificReturnType(Type mt1, Type mt2) {
1695        Type rt1 = mt1.getReturnType();
1696        Type rt2 = mt2.getReturnType();
1697
1698        if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
1699            //if both are generic methods, adjust return type ahead of subtyping check
1700            rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
1701        }
1702        //first use subtyping, then return type substitutability
1703        if (types.isSubtype(rt1, rt2)) {
1704            return mt1;
1705        } else if (types.isSubtype(rt2, rt1)) {
1706            return mt2;
1707        } else if (types.returnTypeSubstitutable(mt1, mt2)) {
1708            return mt1;
1709        } else if (types.returnTypeSubstitutable(mt2, mt1)) {
1710            return mt2;
1711        } else {
1712            return null;
1713        }
1714    }
1715    //where
1716    Symbol ambiguityError(Symbol m1, Symbol m2) {
1717        if (((m1.flags() | m2.flags()) & CLASH) != 0) {
1718            return (m1.flags() & CLASH) == 0 ? m1 : m2;
1719        } else {
1720            return new AmbiguityError(m1, m2);
1721        }
1722    }
1723
1724    Symbol findMethodInScope(Env<AttrContext> env,
1725            Type site,
1726            Name name,
1727            List<Type> argtypes,
1728            List<Type> typeargtypes,
1729            Scope sc,
1730            Symbol bestSoFar,
1731            boolean allowBoxing,
1732            boolean useVarargs,
1733            boolean abstractok) {
1734        for (Symbol s : sc.getSymbolsByName(name, new LookupFilter(abstractok))) {
1735            bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
1736                    bestSoFar, allowBoxing, useVarargs);
1737        }
1738        return bestSoFar;
1739    }
1740    //where
1741        class LookupFilter implements Filter<Symbol> {
1742
1743            boolean abstractOk;
1744
1745            LookupFilter(boolean abstractOk) {
1746                this.abstractOk = abstractOk;
1747            }
1748
1749            public boolean accepts(Symbol s) {
1750                long flags = s.flags();
1751                return s.kind == MTH &&
1752                        (flags & SYNTHETIC) == 0 &&
1753                        (abstractOk ||
1754                        (flags & DEFAULT) != 0 ||
1755                        (flags & ABSTRACT) == 0);
1756            }
1757        }
1758
1759    /** Find best qualified method matching given name, type and value
1760     *  arguments.
1761     *  @param env       The current environment.
1762     *  @param site      The original type from where the selection
1763     *                   takes place.
1764     *  @param name      The method's name.
1765     *  @param argtypes  The method's value arguments.
1766     *  @param typeargtypes The method's type arguments
1767     *  @param allowBoxing Allow boxing conversions of arguments.
1768     *  @param useVarargs Box trailing arguments into an array for varargs.
1769     */
1770    Symbol findMethod(Env<AttrContext> env,
1771                      Type site,
1772                      Name name,
1773                      List<Type> argtypes,
1774                      List<Type> typeargtypes,
1775                      boolean allowBoxing,
1776                      boolean useVarargs) {
1777        Symbol bestSoFar = methodNotFound;
1778        bestSoFar = findMethod(env,
1779                          site,
1780                          name,
1781                          argtypes,
1782                          typeargtypes,
1783                          site.tsym.type,
1784                          bestSoFar,
1785                          allowBoxing,
1786                          useVarargs);
1787        return bestSoFar;
1788    }
1789    // where
1790    private Symbol findMethod(Env<AttrContext> env,
1791                              Type site,
1792                              Name name,
1793                              List<Type> argtypes,
1794                              List<Type> typeargtypes,
1795                              Type intype,
1796                              Symbol bestSoFar,
1797                              boolean allowBoxing,
1798                              boolean useVarargs) {
1799        @SuppressWarnings({"unchecked","rawtypes"})
1800        List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
1801
1802        InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
1803        for (TypeSymbol s : superclasses(intype)) {
1804            bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1805                    s.members(), bestSoFar, allowBoxing, useVarargs, true);
1806            if (name == names.init) return bestSoFar;
1807            iphase = (iphase == null) ? null : iphase.update(s, this);
1808            if (iphase != null) {
1809                for (Type itype : types.interfaces(s.type)) {
1810                    itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
1811                }
1812            }
1813        }
1814
1815        Symbol concrete = bestSoFar.kind.isValid() &&
1816                (bestSoFar.flags() & ABSTRACT) == 0 ?
1817                bestSoFar : methodNotFound;
1818
1819        for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
1820            //keep searching for abstract methods
1821            for (Type itype : itypes[iphase2.ordinal()]) {
1822                if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
1823                if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
1824                        (itype.tsym.flags() & DEFAULT) == 0) continue;
1825                bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1826                        itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
1827                if (concrete != bestSoFar &&
1828                    concrete.kind.isValid() &&
1829                    bestSoFar.kind.isValid() &&
1830                        types.isSubSignature(concrete.type, bestSoFar.type)) {
1831                    //this is an hack - as javac does not do full membership checks
1832                    //most specific ends up comparing abstract methods that might have
1833                    //been implemented by some concrete method in a subclass and,
1834                    //because of raw override, it is possible for an abstract method
1835                    //to be more specific than the concrete method - so we need
1836                    //to explicitly call that out (see CR 6178365)
1837                    bestSoFar = concrete;
1838                }
1839            }
1840        }
1841        return bestSoFar;
1842    }
1843
1844    enum InterfaceLookupPhase {
1845        ABSTRACT_OK() {
1846            @Override
1847            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1848                //We should not look for abstract methods if receiver is a concrete class
1849                //(as concrete classes are expected to implement all abstracts coming
1850                //from superinterfaces)
1851                if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
1852                    return this;
1853                } else {
1854                    return DEFAULT_OK;
1855                }
1856            }
1857        },
1858        DEFAULT_OK() {
1859            @Override
1860            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1861                return this;
1862            }
1863        };
1864
1865        abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
1866    }
1867
1868    /**
1869     * Return an Iterable object to scan the superclasses of a given type.
1870     * It's crucial that the scan is done lazily, as we don't want to accidentally
1871     * access more supertypes than strictly needed (as this could trigger completion
1872     * errors if some of the not-needed supertypes are missing/ill-formed).
1873     */
1874    Iterable<TypeSymbol> superclasses(final Type intype) {
1875        return new Iterable<TypeSymbol>() {
1876            public Iterator<TypeSymbol> iterator() {
1877                return new Iterator<TypeSymbol>() {
1878
1879                    List<TypeSymbol> seen = List.nil();
1880                    TypeSymbol currentSym = symbolFor(intype);
1881                    TypeSymbol prevSym = null;
1882
1883                    public boolean hasNext() {
1884                        if (currentSym == syms.noSymbol) {
1885                            currentSym = symbolFor(types.supertype(prevSym.type));
1886                        }
1887                        return currentSym != null;
1888                    }
1889
1890                    public TypeSymbol next() {
1891                        prevSym = currentSym;
1892                        currentSym = syms.noSymbol;
1893                        Assert.check(prevSym != null || prevSym != syms.noSymbol);
1894                        return prevSym;
1895                    }
1896
1897                    public void remove() {
1898                        throw new UnsupportedOperationException();
1899                    }
1900
1901                    TypeSymbol symbolFor(Type t) {
1902                        if (!t.hasTag(CLASS) &&
1903                                !t.hasTag(TYPEVAR)) {
1904                            return null;
1905                        }
1906                        t = types.skipTypeVars(t, false);
1907                        if (seen.contains(t.tsym)) {
1908                            //degenerate case in which we have a circular
1909                            //class hierarchy - because of ill-formed classfiles
1910                            return null;
1911                        }
1912                        seen = seen.prepend(t.tsym);
1913                        return t.tsym;
1914                    }
1915                };
1916            }
1917        };
1918    }
1919
1920    /** Find unqualified method matching given name, type and value arguments.
1921     *  @param env       The current environment.
1922     *  @param name      The method's name.
1923     *  @param argtypes  The method's value arguments.
1924     *  @param typeargtypes  The method's type arguments.
1925     *  @param allowBoxing Allow boxing conversions of arguments.
1926     *  @param useVarargs Box trailing arguments into an array for varargs.
1927     */
1928    Symbol findFun(Env<AttrContext> env, Name name,
1929                   List<Type> argtypes, List<Type> typeargtypes,
1930                   boolean allowBoxing, boolean useVarargs) {
1931        Symbol bestSoFar = methodNotFound;
1932        Env<AttrContext> env1 = env;
1933        boolean staticOnly = false;
1934        while (env1.outer != null) {
1935            if (isStatic(env1)) staticOnly = true;
1936            Assert.check(env1.info.preferredTreeForDiagnostics == null);
1937            env1.info.preferredTreeForDiagnostics = env.tree;
1938            try {
1939                Symbol sym = findMethod(
1940                    env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
1941                    allowBoxing, useVarargs);
1942                if (sym.exists()) {
1943                    if (staticOnly &&
1944                        sym.kind == MTH &&
1945                        sym.owner.kind == TYP &&
1946                        (sym.flags() & STATIC) == 0) return new StaticError(sym);
1947                    else return sym;
1948                } else {
1949                    bestSoFar = bestOf(bestSoFar, sym);
1950                }
1951            } finally {
1952                env1.info.preferredTreeForDiagnostics = null;
1953            }
1954            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1955            env1 = env1.outer;
1956        }
1957
1958        Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
1959                                typeargtypes, allowBoxing, useVarargs);
1960        if (sym.exists())
1961            return sym;
1962
1963        for (Symbol currentSym : env.toplevel.namedImportScope.getSymbolsByName(name)) {
1964            Symbol origin = env.toplevel.namedImportScope.getOrigin(currentSym).owner;
1965            if (currentSym.kind == MTH) {
1966                if (currentSym.owner.type != origin.type)
1967                    currentSym = currentSym.clone(origin);
1968                if (!isAccessible(env, origin.type, currentSym))
1969                    currentSym = new AccessError(env, origin.type, currentSym);
1970                bestSoFar = selectBest(env, origin.type,
1971                                       argtypes, typeargtypes,
1972                                       currentSym, bestSoFar,
1973                                       allowBoxing, useVarargs);
1974            }
1975        }
1976        if (bestSoFar.exists())
1977            return bestSoFar;
1978
1979        for (Symbol currentSym : env.toplevel.starImportScope.getSymbolsByName(name)) {
1980            Symbol origin = env.toplevel.starImportScope.getOrigin(currentSym).owner;
1981            if (currentSym.kind == MTH) {
1982                if (currentSym.owner.type != origin.type)
1983                    currentSym = currentSym.clone(origin);
1984                if (!isAccessible(env, origin.type, currentSym))
1985                    currentSym = new AccessError(env, origin.type, currentSym);
1986                bestSoFar = selectBest(env, origin.type,
1987                                       argtypes, typeargtypes,
1988                                       currentSym, bestSoFar,
1989                                       allowBoxing, useVarargs);
1990            }
1991        }
1992        return bestSoFar;
1993    }
1994
1995    /** Load toplevel or member class with given fully qualified name and
1996     *  verify that it is accessible.
1997     *  @param env       The current environment.
1998     *  @param name      The fully qualified name of the class to be loaded.
1999     */
2000    Symbol loadClass(Env<AttrContext> env, Name name) {
2001        try {
2002            ClassSymbol c = finder.loadClass(env.toplevel.modle, name);
2003            return isAccessible(env, c) ? c : new AccessError(c);
2004        } catch (ClassFinder.BadClassFile err) {
2005            throw err;
2006        } catch (CompletionFailure ex) {
2007            //even if a class cannot be found in the current module and packages in modules it depends on that
2008            //are exported for any or this module, the class may exist internally in some of these modules,
2009            //or may exist in a module on which this module does not depend. Provide better diagnostic in
2010            //such cases by looking for the class in any module:
2011            for (ModuleSymbol ms : syms.getAllModules()) {
2012                //do not load currently unloaded classes, to avoid too eager completion of random things in other modules:
2013                ClassSymbol clazz = syms.getClass(ms, name);
2014
2015                if (clazz != null) {
2016                    return new AccessError(clazz);
2017                }
2018            }
2019            return typeNotFound;
2020        }
2021    }
2022
2023    /**
2024     * Find a type declared in a scope (not inherited).  Return null
2025     * if none is found.
2026     *  @param env       The current environment.
2027     *  @param site      The original type from where the selection takes
2028     *                   place.
2029     *  @param name      The type's name.
2030     *  @param c         The class to search for the member type. This is
2031     *                   always a superclass or implemented interface of
2032     *                   site's class.
2033     */
2034    Symbol findImmediateMemberType(Env<AttrContext> env,
2035                                   Type site,
2036                                   Name name,
2037                                   TypeSymbol c) {
2038        for (Symbol sym : c.members().getSymbolsByName(name)) {
2039            if (sym.kind == TYP) {
2040                return isAccessible(env, site, sym)
2041                    ? sym
2042                    : new AccessError(env, site, sym);
2043            }
2044        }
2045        return typeNotFound;
2046    }
2047
2048    /** Find a member type inherited from a superclass or interface.
2049     *  @param env       The current environment.
2050     *  @param site      The original type from where the selection takes
2051     *                   place.
2052     *  @param name      The type's name.
2053     *  @param c         The class to search for the member type. This is
2054     *                   always a superclass or implemented interface of
2055     *                   site's class.
2056     */
2057    Symbol findInheritedMemberType(Env<AttrContext> env,
2058                                   Type site,
2059                                   Name name,
2060                                   TypeSymbol c) {
2061        Symbol bestSoFar = typeNotFound;
2062        Symbol sym;
2063        Type st = types.supertype(c.type);
2064        if (st != null && st.hasTag(CLASS)) {
2065            sym = findMemberType(env, site, name, st.tsym);
2066            bestSoFar = bestOf(bestSoFar, sym);
2067        }
2068        for (List<Type> l = types.interfaces(c.type);
2069             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
2070             l = l.tail) {
2071            sym = findMemberType(env, site, name, l.head.tsym);
2072            if (!bestSoFar.kind.isResolutionError() &&
2073                !sym.kind.isResolutionError() &&
2074                sym.owner != bestSoFar.owner)
2075                bestSoFar = new AmbiguityError(bestSoFar, sym);
2076            else
2077                bestSoFar = bestOf(bestSoFar, sym);
2078        }
2079        return bestSoFar;
2080    }
2081
2082    /** Find qualified member type.
2083     *  @param env       The current environment.
2084     *  @param site      The original type from where the selection takes
2085     *                   place.
2086     *  @param name      The type's name.
2087     *  @param c         The class to search for the member type. This is
2088     *                   always a superclass or implemented interface of
2089     *                   site's class.
2090     */
2091    Symbol findMemberType(Env<AttrContext> env,
2092                          Type site,
2093                          Name name,
2094                          TypeSymbol c) {
2095        Symbol sym = findImmediateMemberType(env, site, name, c);
2096
2097        if (sym != typeNotFound)
2098            return sym;
2099
2100        return findInheritedMemberType(env, site, name, c);
2101
2102    }
2103
2104    /** Find a global type in given scope and load corresponding class.
2105     *  @param env       The current environment.
2106     *  @param scope     The scope in which to look for the type.
2107     *  @param name      The type's name.
2108     */
2109    Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
2110        Symbol bestSoFar = typeNotFound;
2111        for (Symbol s : scope.getSymbolsByName(name)) {
2112            Symbol sym = loadClass(env, s.flatName());
2113            if (bestSoFar.kind == TYP && sym.kind == TYP &&
2114                bestSoFar != sym)
2115                return new AmbiguityError(bestSoFar, sym);
2116            else
2117                bestSoFar = bestOf(bestSoFar, sym);
2118        }
2119        return bestSoFar;
2120    }
2121
2122    Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
2123        for (Symbol sym : env.info.scope.getSymbolsByName(name)) {
2124            if (sym.kind == TYP) {
2125                if (staticOnly &&
2126                    sym.type.hasTag(TYPEVAR) &&
2127                    sym.owner.kind == TYP)
2128                    return new StaticError(sym);
2129                return sym;
2130            }
2131        }
2132        return typeNotFound;
2133    }
2134
2135    /** Find an unqualified type symbol.
2136     *  @param env       The current environment.
2137     *  @param name      The type's name.
2138     */
2139    Symbol findType(Env<AttrContext> env, Name name) {
2140        if (name == names.empty)
2141            return typeNotFound; // do not allow inadvertent "lookup" of anonymous types
2142        Symbol bestSoFar = typeNotFound;
2143        Symbol sym;
2144        boolean staticOnly = false;
2145        for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
2146            if (isStatic(env1)) staticOnly = true;
2147            // First, look for a type variable and the first member type
2148            final Symbol tyvar = findTypeVar(env1, name, staticOnly);
2149            sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
2150                                          name, env1.enclClass.sym);
2151
2152            // Return the type variable if we have it, and have no
2153            // immediate member, OR the type variable is for a method.
2154            if (tyvar != typeNotFound) {
2155                if (env.baseClause || sym == typeNotFound ||
2156                    (tyvar.kind == TYP && tyvar.exists() &&
2157                     tyvar.owner.kind == MTH)) {
2158                    return tyvar;
2159                }
2160            }
2161
2162            // If the environment is a class def, finish up,
2163            // otherwise, do the entire findMemberType
2164            if (sym == typeNotFound)
2165                sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
2166                                              name, env1.enclClass.sym);
2167
2168            if (staticOnly && sym.kind == TYP &&
2169                sym.type.hasTag(CLASS) &&
2170                sym.type.getEnclosingType().hasTag(CLASS) &&
2171                env1.enclClass.sym.type.isParameterized() &&
2172                sym.type.getEnclosingType().isParameterized())
2173                return new StaticError(sym);
2174            else if (sym.exists()) return sym;
2175            else bestSoFar = bestOf(bestSoFar, sym);
2176
2177            JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
2178            if ((encl.sym.flags() & STATIC) != 0)
2179                staticOnly = true;
2180        }
2181
2182        if (!env.tree.hasTag(IMPORT)) {
2183            sym = findGlobalType(env, env.toplevel.namedImportScope, name);
2184            if (sym.exists()) return sym;
2185            else bestSoFar = bestOf(bestSoFar, sym);
2186
2187            sym = findGlobalType(env, env.toplevel.packge.members(), name);
2188            if (sym.exists()) return sym;
2189            else bestSoFar = bestOf(bestSoFar, sym);
2190
2191            sym = findGlobalType(env, env.toplevel.starImportScope, name);
2192            if (sym.exists()) return sym;
2193            else bestSoFar = bestOf(bestSoFar, sym);
2194        }
2195
2196        return bestSoFar;
2197    }
2198
2199    /** Find an unqualified identifier which matches a specified kind set.
2200     *  @param env       The current environment.
2201     *  @param name      The identifier's name.
2202     *  @param kind      Indicates the possible symbol kinds
2203     *                   (a subset of VAL, TYP, PCK).
2204     */
2205    Symbol findIdent(Env<AttrContext> env, Name name, KindSelector kind) {
2206        Symbol bestSoFar = typeNotFound;
2207        Symbol sym;
2208
2209        if (kind.contains(KindSelector.VAL)) {
2210            sym = findVar(env, name);
2211            if (sym.exists()) return sym;
2212            else bestSoFar = bestOf(bestSoFar, sym);
2213        }
2214
2215        if (kind.contains(KindSelector.TYP)) {
2216            sym = findType(env, name);
2217
2218            if (sym.exists()) return sym;
2219            else bestSoFar = bestOf(bestSoFar, sym);
2220        }
2221
2222        if (kind.contains(KindSelector.PCK))
2223            return syms.lookupPackage(env.toplevel.modle, name);
2224        else return bestSoFar;
2225    }
2226
2227    /** Find an identifier in a package which matches a specified kind set.
2228     *  @param env       The current environment.
2229     *  @param name      The identifier's name.
2230     *  @param kind      Indicates the possible symbol kinds
2231     *                   (a nonempty subset of TYP, PCK).
2232     */
2233    Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
2234                              Name name, KindSelector kind) {
2235        Name fullname = TypeSymbol.formFullName(name, pck);
2236        Symbol bestSoFar = typeNotFound;
2237        PackageSymbol pack = null;
2238        if (kind.contains(KindSelector.PCK)) {
2239            pack = syms.lookupPackage(env.toplevel.modle, fullname);
2240            if (pack.exists()) return pack;
2241        }
2242        if (kind.contains(KindSelector.TYP)) {
2243            Symbol sym = loadClass(env, fullname);
2244            if (sym.exists()) {
2245                // don't allow programs to use flatnames
2246                if (name == sym.name) return sym;
2247            }
2248            else bestSoFar = bestOf(bestSoFar, sym);
2249        }
2250        return (pack != null) ? pack : bestSoFar;
2251    }
2252
2253    /** Find an identifier among the members of a given type `site'.
2254     *  @param env       The current environment.
2255     *  @param site      The type containing the symbol to be found.
2256     *  @param name      The identifier's name.
2257     *  @param kind      Indicates the possible symbol kinds
2258     *                   (a subset of VAL, TYP).
2259     */
2260    Symbol findIdentInType(Env<AttrContext> env, Type site,
2261                           Name name, KindSelector kind) {
2262        Symbol bestSoFar = typeNotFound;
2263        Symbol sym;
2264        if (kind.contains(KindSelector.VAL)) {
2265            sym = findField(env, site, name, site.tsym);
2266            if (sym.exists()) return sym;
2267            else bestSoFar = bestOf(bestSoFar, sym);
2268        }
2269
2270        if (kind.contains(KindSelector.TYP)) {
2271            sym = findMemberType(env, site, name, site.tsym);
2272            if (sym.exists()) return sym;
2273            else bestSoFar = bestOf(bestSoFar, sym);
2274        }
2275        return bestSoFar;
2276    }
2277
2278/* ***************************************************************************
2279 *  Access checking
2280 *  The following methods convert ResolveErrors to ErrorSymbols, issuing
2281 *  an error message in the process
2282 ****************************************************************************/
2283
2284    /** If `sym' is a bad symbol: report error and return errSymbol
2285     *  else pass through unchanged,
2286     *  additional arguments duplicate what has been used in trying to find the
2287     *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
2288     *  expect misses to happen frequently.
2289     *
2290     *  @param sym       The symbol that was found, or a ResolveError.
2291     *  @param pos       The position to use for error reporting.
2292     *  @param location  The symbol the served as a context for this lookup
2293     *  @param site      The original type from where the selection took place.
2294     *  @param name      The symbol's name.
2295     *  @param qualified Did we get here through a qualified expression resolution?
2296     *  @param argtypes  The invocation's value arguments,
2297     *                   if we looked for a method.
2298     *  @param typeargtypes  The invocation's type arguments,
2299     *                   if we looked for a method.
2300     *  @param logResolveHelper helper class used to log resolve errors
2301     */
2302    Symbol accessInternal(Symbol sym,
2303                  DiagnosticPosition pos,
2304                  Symbol location,
2305                  Type site,
2306                  Name name,
2307                  boolean qualified,
2308                  List<Type> argtypes,
2309                  List<Type> typeargtypes,
2310                  LogResolveHelper logResolveHelper) {
2311        if (sym.kind.isResolutionError()) {
2312            ResolveError errSym = (ResolveError)sym.baseSymbol();
2313            sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
2314            argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
2315            if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
2316                logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
2317            }
2318        }
2319        return sym;
2320    }
2321
2322    /**
2323     * Variant of the generalized access routine, to be used for generating method
2324     * resolution diagnostics
2325     */
2326    Symbol accessMethod(Symbol sym,
2327                  DiagnosticPosition pos,
2328                  Symbol location,
2329                  Type site,
2330                  Name name,
2331                  boolean qualified,
2332                  List<Type> argtypes,
2333                  List<Type> typeargtypes) {
2334        return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
2335    }
2336
2337    /** Same as original accessMethod(), but without location.
2338     */
2339    Symbol accessMethod(Symbol sym,
2340                  DiagnosticPosition pos,
2341                  Type site,
2342                  Name name,
2343                  boolean qualified,
2344                  List<Type> argtypes,
2345                  List<Type> typeargtypes) {
2346        return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
2347    }
2348
2349    /**
2350     * Variant of the generalized access routine, to be used for generating variable,
2351     * type resolution diagnostics
2352     */
2353    Symbol accessBase(Symbol sym,
2354                  DiagnosticPosition pos,
2355                  Symbol location,
2356                  Type site,
2357                  Name name,
2358                  boolean qualified) {
2359        return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
2360    }
2361
2362    /** Same as original accessBase(), but without location.
2363     */
2364    Symbol accessBase(Symbol sym,
2365                  DiagnosticPosition pos,
2366                  Type site,
2367                  Name name,
2368                  boolean qualified) {
2369        return accessBase(sym, pos, site.tsym, site, name, qualified);
2370    }
2371
2372    interface LogResolveHelper {
2373        boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
2374        List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
2375    }
2376
2377    LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
2378        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2379            return !site.isErroneous();
2380        }
2381        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2382            return argtypes;
2383        }
2384    };
2385
2386    LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
2387        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2388            return !site.isErroneous() &&
2389                        !Type.isErroneous(argtypes) &&
2390                        (typeargtypes == null || !Type.isErroneous(typeargtypes));
2391        }
2392        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2393            return argtypes.map(new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
2394        }
2395    };
2396
2397    class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
2398
2399        public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
2400            deferredAttr.super(mode, msym, step);
2401        }
2402
2403        @Override
2404        protected Type typeOf(DeferredType dt) {
2405            Type res = super.typeOf(dt);
2406            if (!res.isErroneous()) {
2407                switch (TreeInfo.skipParens(dt.tree).getTag()) {
2408                    case LAMBDA:
2409                    case REFERENCE:
2410                        return dt;
2411                    case CONDEXPR:
2412                        return res == Type.recoveryType ?
2413                                dt : res;
2414                }
2415            }
2416            return res;
2417        }
2418    }
2419
2420    /** Check that sym is not an abstract method.
2421     */
2422    void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
2423        if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
2424            log.error(pos, "abstract.cant.be.accessed.directly",
2425                      kindName(sym), sym, sym.location());
2426    }
2427
2428/* ***************************************************************************
2429 *  Name resolution
2430 *  Naming conventions are as for symbol lookup
2431 *  Unlike the find... methods these methods will report access errors
2432 ****************************************************************************/
2433
2434    /** Resolve an unqualified (non-method) identifier.
2435     *  @param pos       The position to use for error reporting.
2436     *  @param env       The environment current at the identifier use.
2437     *  @param name      The identifier's name.
2438     *  @param kind      The set of admissible symbol kinds for the identifier.
2439     */
2440    Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
2441                        Name name, KindSelector kind) {
2442        return accessBase(
2443            findIdent(env, name, kind),
2444            pos, env.enclClass.sym.type, name, false);
2445    }
2446
2447    /** Resolve an unqualified method identifier.
2448     *  @param pos       The position to use for error reporting.
2449     *  @param env       The environment current at the method invocation.
2450     *  @param name      The identifier's name.
2451     *  @param argtypes  The types of the invocation's value arguments.
2452     *  @param typeargtypes  The types of the invocation's type arguments.
2453     */
2454    Symbol resolveMethod(DiagnosticPosition pos,
2455                         Env<AttrContext> env,
2456                         Name name,
2457                         List<Type> argtypes,
2458                         List<Type> typeargtypes) {
2459        return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
2460                new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
2461                    @Override
2462                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2463                        return findFun(env, name, argtypes, typeargtypes,
2464                                phase.isBoxingRequired(),
2465                                phase.isVarargsRequired());
2466                    }});
2467    }
2468
2469    /** Resolve a qualified method identifier
2470     *  @param pos       The position to use for error reporting.
2471     *  @param env       The environment current at the method invocation.
2472     *  @param site      The type of the qualifying expression, in which
2473     *                   identifier is searched.
2474     *  @param name      The identifier's name.
2475     *  @param argtypes  The types of the invocation's value arguments.
2476     *  @param typeargtypes  The types of the invocation's type arguments.
2477     */
2478    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2479                                  Type site, Name name, List<Type> argtypes,
2480                                  List<Type> typeargtypes) {
2481        return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
2482    }
2483    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2484                                  Symbol location, Type site, Name name, List<Type> argtypes,
2485                                  List<Type> typeargtypes) {
2486        return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
2487    }
2488    private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
2489                                  DiagnosticPosition pos, Env<AttrContext> env,
2490                                  Symbol location, Type site, Name name, List<Type> argtypes,
2491                                  List<Type> typeargtypes) {
2492        return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
2493            @Override
2494            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2495                return findMethod(env, site, name, argtypes, typeargtypes,
2496                        phase.isBoxingRequired(),
2497                        phase.isVarargsRequired());
2498            }
2499            @Override
2500            Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2501                if (sym.kind.isResolutionError()) {
2502                    sym = super.access(env, pos, location, sym);
2503                } else if (allowMethodHandles) {
2504                    MethodSymbol msym = (MethodSymbol)sym;
2505                    if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
2506                        return findPolymorphicSignatureInstance(env, sym, argtypes);
2507                    }
2508                }
2509                return sym;
2510            }
2511        });
2512    }
2513
2514    /** Find or create an implicit method of exactly the given type (after erasure).
2515     *  Searches in a side table, not the main scope of the site.
2516     *  This emulates the lookup process required by JSR 292 in JVM.
2517     *  @param env       Attribution environment
2518     *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
2519     *  @param argtypes  The required argument types
2520     */
2521    Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
2522                                            final Symbol spMethod,
2523                                            List<Type> argtypes) {
2524        Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
2525                (MethodSymbol)spMethod, currentResolutionContext, argtypes);
2526        for (Symbol sym : polymorphicSignatureScope.getSymbolsByName(spMethod.name)) {
2527            // Check that there is already a method symbol for the method
2528            // type and owner
2529            if (types.isSameType(mtype, sym.type) &&
2530                spMethod.owner == sym.owner) {
2531                return sym;
2532            }
2533        }
2534
2535        // Create the desired method
2536        // Retain static modifier is to support invocations to
2537        // MethodHandle.linkTo* methods
2538        long flags = ABSTRACT | HYPOTHETICAL |
2539                     spMethod.flags() & (Flags.AccessFlags | Flags.STATIC);
2540        Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
2541            @Override
2542            public Symbol baseSymbol() {
2543                return spMethod;
2544            }
2545        };
2546        if (!mtype.isErroneous()) { // Cache only if kosher.
2547            polymorphicSignatureScope.enter(msym);
2548        }
2549        return msym;
2550    }
2551
2552    /** Resolve a qualified method identifier, throw a fatal error if not
2553     *  found.
2554     *  @param pos       The position to use for error reporting.
2555     *  @param env       The environment current at the method invocation.
2556     *  @param site      The type of the qualifying expression, in which
2557     *                   identifier is searched.
2558     *  @param name      The identifier's name.
2559     *  @param argtypes  The types of the invocation's value arguments.
2560     *  @param typeargtypes  The types of the invocation's type arguments.
2561     */
2562    public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
2563                                        Type site, Name name,
2564                                        List<Type> argtypes,
2565                                        List<Type> typeargtypes) {
2566        MethodResolutionContext resolveContext = new MethodResolutionContext();
2567        resolveContext.internalResolution = true;
2568        Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
2569                site, name, argtypes, typeargtypes);
2570        if (sym.kind == MTH) return (MethodSymbol)sym;
2571        else throw new FatalError(
2572                 diags.fragment("fatal.err.cant.locate.meth",
2573                                name));
2574    }
2575
2576    /** Resolve constructor.
2577     *  @param pos       The position to use for error reporting.
2578     *  @param env       The environment current at the constructor invocation.
2579     *  @param site      The type of class for which a constructor is searched.
2580     *  @param argtypes  The types of the constructor invocation's value
2581     *                   arguments.
2582     *  @param typeargtypes  The types of the constructor invocation's type
2583     *                   arguments.
2584     */
2585    Symbol resolveConstructor(DiagnosticPosition pos,
2586                              Env<AttrContext> env,
2587                              Type site,
2588                              List<Type> argtypes,
2589                              List<Type> typeargtypes) {
2590        return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
2591    }
2592
2593    private Symbol resolveConstructor(MethodResolutionContext resolveContext,
2594                              final DiagnosticPosition pos,
2595                              Env<AttrContext> env,
2596                              Type site,
2597                              List<Type> argtypes,
2598                              List<Type> typeargtypes) {
2599        return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2600            @Override
2601            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2602                return findConstructor(pos, env, site, argtypes, typeargtypes,
2603                        phase.isBoxingRequired(),
2604                        phase.isVarargsRequired());
2605            }
2606        });
2607    }
2608
2609    /** Resolve a constructor, throw a fatal error if not found.
2610     *  @param pos       The position to use for error reporting.
2611     *  @param env       The environment current at the method invocation.
2612     *  @param site      The type to be constructed.
2613     *  @param argtypes  The types of the invocation's value arguments.
2614     *  @param typeargtypes  The types of the invocation's type arguments.
2615     */
2616    public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2617                                        Type site,
2618                                        List<Type> argtypes,
2619                                        List<Type> typeargtypes) {
2620        MethodResolutionContext resolveContext = new MethodResolutionContext();
2621        resolveContext.internalResolution = true;
2622        Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
2623        if (sym.kind == MTH) return (MethodSymbol)sym;
2624        else throw new FatalError(
2625                 diags.fragment("fatal.err.cant.locate.ctor", site));
2626    }
2627
2628    Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2629                              Type site, List<Type> argtypes,
2630                              List<Type> typeargtypes,
2631                              boolean allowBoxing,
2632                              boolean useVarargs) {
2633        Symbol sym = findMethod(env, site,
2634                                    names.init, argtypes,
2635                                    typeargtypes, allowBoxing,
2636                                    useVarargs);
2637        chk.checkDeprecated(pos, env.info.scope.owner, sym);
2638        return sym;
2639    }
2640
2641    /** Resolve constructor using diamond inference.
2642     *  @param pos       The position to use for error reporting.
2643     *  @param env       The environment current at the constructor invocation.
2644     *  @param site      The type of class for which a constructor is searched.
2645     *                   The scope of this class has been touched in attribution.
2646     *  @param argtypes  The types of the constructor invocation's value
2647     *                   arguments.
2648     *  @param typeargtypes  The types of the constructor invocation's type
2649     *                   arguments.
2650     */
2651    Symbol resolveDiamond(DiagnosticPosition pos,
2652                              Env<AttrContext> env,
2653                              Type site,
2654                              List<Type> argtypes,
2655                              List<Type> typeargtypes) {
2656        return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
2657                new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2658                    @Override
2659                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2660                        return findDiamond(env, site, argtypes, typeargtypes,
2661                                phase.isBoxingRequired(),
2662                                phase.isVarargsRequired());
2663                    }
2664                    @Override
2665                    Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2666                        if (sym.kind.isResolutionError()) {
2667                            if (sym.kind != WRONG_MTH &&
2668                                sym.kind != WRONG_MTHS) {
2669                                sym = super.access(env, pos, location, sym);
2670                            } else {
2671                                final JCDiagnostic details = sym.kind == WRONG_MTH ?
2672                                                ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
2673                                                null;
2674                                sym = new DiamondError(sym, currentResolutionContext);
2675                                sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
2676                                env.info.pendingResolutionPhase = currentResolutionContext.step;
2677                            }
2678                        }
2679                        return sym;
2680                    }});
2681    }
2682
2683    /** This method scans all the constructor symbol in a given class scope -
2684     *  assuming that the original scope contains a constructor of the kind:
2685     *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
2686     *  a method check is executed against the modified constructor type:
2687     *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
2688     *  inference. The inferred return type of the synthetic constructor IS
2689     *  the inferred type for the diamond operator.
2690     */
2691    private Symbol findDiamond(Env<AttrContext> env,
2692                              Type site,
2693                              List<Type> argtypes,
2694                              List<Type> typeargtypes,
2695                              boolean allowBoxing,
2696                              boolean useVarargs) {
2697        Symbol bestSoFar = methodNotFound;
2698        TypeSymbol tsym = site.tsym.isInterface() ? syms.objectType.tsym : site.tsym;
2699        for (final Symbol sym : tsym.members().getSymbolsByName(names.init)) {
2700            //- System.out.println(" e " + e.sym);
2701            if (sym.kind == MTH &&
2702                (sym.flags_field & SYNTHETIC) == 0) {
2703                    List<Type> oldParams = sym.type.hasTag(FORALL) ?
2704                            ((ForAll)sym.type).tvars :
2705                            List.<Type>nil();
2706                    Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
2707                                                 types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
2708                    MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
2709                        @Override
2710                        public Symbol baseSymbol() {
2711                            return sym;
2712                        }
2713                    };
2714                    bestSoFar = selectBest(env, site, argtypes, typeargtypes,
2715                            newConstr,
2716                            bestSoFar,
2717                            allowBoxing,
2718                            useVarargs);
2719            }
2720        }
2721        return bestSoFar;
2722    }
2723
2724    Symbol getMemberReference(DiagnosticPosition pos,
2725            Env<AttrContext> env,
2726            JCMemberReference referenceTree,
2727            Type site,
2728            Name name) {
2729
2730        site = types.capture(site);
2731
2732        ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
2733                referenceTree, site, name, List.<Type>nil(), null, VARARITY);
2734
2735        Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
2736        Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
2737                nilMethodCheck, lookupHelper);
2738
2739        env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
2740
2741        return sym;
2742    }
2743
2744    ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
2745                                  Type site,
2746                                  Name name,
2747                                  List<Type> argtypes,
2748                                  List<Type> typeargtypes,
2749                                  MethodResolutionPhase maxPhase) {
2750        if (!name.equals(names.init)) {
2751            //method reference
2752            return new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
2753        } else if (site.hasTag(ARRAY)) {
2754            //array constructor reference
2755            return new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2756        } else {
2757            //class constructor reference
2758            return new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2759        }
2760    }
2761
2762    /**
2763     * Resolution of member references is typically done as a single
2764     * overload resolution step, where the argument types A are inferred from
2765     * the target functional descriptor.
2766     *
2767     * If the member reference is a method reference with a type qualifier,
2768     * a two-step lookup process is performed. The first step uses the
2769     * expected argument list A, while the second step discards the first
2770     * type from A (which is treated as a receiver type).
2771     *
2772     * There are two cases in which inference is performed: (i) if the member
2773     * reference is a constructor reference and the qualifier type is raw - in
2774     * which case diamond inference is used to infer a parameterization for the
2775     * type qualifier; (ii) if the member reference is an unbound reference
2776     * where the type qualifier is raw - in that case, during the unbound lookup
2777     * the receiver argument type is used to infer an instantiation for the raw
2778     * qualifier type.
2779     *
2780     * When a multi-step resolution process is exploited, the process of picking
2781     * the resulting symbol is delegated to an helper class {@link com.sun.tools.javac.comp.Resolve.ReferenceChooser}.
2782     *
2783     * This routine returns a pair (T,S), where S is the member reference symbol,
2784     * and T is the type of the class in which S is defined. This is necessary as
2785     * the type T might be dynamically inferred (i.e. if constructor reference
2786     * has a raw qualifier).
2787     */
2788    Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
2789                                  JCMemberReference referenceTree,
2790                                  Type site,
2791                                  Name name,
2792                                  List<Type> argtypes,
2793                                  List<Type> typeargtypes,
2794                                  MethodCheck methodCheck,
2795                                  InferenceContext inferenceContext,
2796                                  ReferenceChooser referenceChooser) {
2797
2798        //step 1 - bound lookup
2799        ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
2800                referenceTree, site, name, argtypes, typeargtypes, VARARITY);
2801        Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
2802        MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
2803        boundSearchResolveContext.methodCheck = methodCheck;
2804        Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(),
2805                site.tsym, boundSearchResolveContext, boundLookupHelper);
2806        ReferenceLookupResult boundRes = new ReferenceLookupResult(boundSym, boundSearchResolveContext);
2807
2808        //step 2 - unbound lookup
2809        Symbol unboundSym = methodNotFound;
2810        Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
2811        ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
2812        ReferenceLookupResult unboundRes = referenceNotFound;
2813        if (unboundLookupHelper != null) {
2814            MethodResolutionContext unboundSearchResolveContext =
2815                    new MethodResolutionContext();
2816            unboundSearchResolveContext.methodCheck = methodCheck;
2817            unboundSym = lookupMethod(unboundEnv, env.tree.pos(),
2818                    site.tsym, unboundSearchResolveContext, unboundLookupHelper);
2819            unboundRes = new ReferenceLookupResult(unboundSym, unboundSearchResolveContext);
2820        }
2821
2822        //merge results
2823        Pair<Symbol, ReferenceLookupHelper> res;
2824        Symbol bestSym = referenceChooser.result(boundRes, unboundRes);
2825        res = new Pair<>(bestSym,
2826                bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
2827        env.info.pendingResolutionPhase = bestSym == unboundSym ?
2828                unboundEnv.info.pendingResolutionPhase :
2829                boundEnv.info.pendingResolutionPhase;
2830
2831        return res;
2832    }
2833
2834    /**
2835     * This class is used to represent a method reference lookup result. It keeps track of two
2836     * things: (i) the symbol found during a method reference lookup and (ii) the static kind
2837     * of the lookup (see {@link com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind}).
2838     */
2839    static class ReferenceLookupResult {
2840
2841        /**
2842         * Static kind associated with a method reference lookup. Erroneous lookups end up with
2843         * the UNDEFINED kind; successful lookups will end up with either STATIC, NON_STATIC,
2844         * depending on whether all applicable candidates are static or non-static methods,
2845         * respectively. If a successful lookup has both static and non-static applicable methods,
2846         * its kind is set to BOTH.
2847         */
2848        enum StaticKind {
2849            STATIC,
2850            NON_STATIC,
2851            BOTH,
2852            UNDEFINED;
2853
2854            /**
2855             * Retrieve the static kind associated with a given (method) symbol.
2856             */
2857            static StaticKind from(Symbol s) {
2858                return s.isStatic() ?
2859                        STATIC : NON_STATIC;
2860            }
2861
2862            /**
2863             * Merge two static kinds together.
2864             */
2865            static StaticKind reduce(StaticKind sk1, StaticKind sk2) {
2866                if (sk1 == UNDEFINED) {
2867                    return sk2;
2868                } else if (sk2 == UNDEFINED) {
2869                    return sk1;
2870                } else {
2871                    return sk1 == sk2 ? sk1 : BOTH;
2872                }
2873            }
2874        }
2875
2876        /** The static kind. */
2877        StaticKind staticKind;
2878
2879        /** The lookup result. */
2880        Symbol sym;
2881
2882        ReferenceLookupResult(Symbol sym, MethodResolutionContext resolutionContext) {
2883            this.staticKind = staticKind(sym, resolutionContext);
2884            this.sym = sym;
2885        }
2886
2887        private StaticKind staticKind(Symbol sym, MethodResolutionContext resolutionContext) {
2888            switch (sym.kind) {
2889                case MTH:
2890                case AMBIGUOUS:
2891                    return resolutionContext.candidates.stream()
2892                            .filter(c -> c.isApplicable() && c.step == resolutionContext.step)
2893                            .map(c -> StaticKind.from(c.sym))
2894                            .reduce(StaticKind::reduce)
2895                            .orElse(StaticKind.UNDEFINED);
2896                default:
2897                    return StaticKind.UNDEFINED;
2898            }
2899        }
2900
2901        /**
2902         * Does this result corresponds to a successful lookup (i.e. one where a method has been found?)
2903         */
2904        boolean isSuccess() {
2905            return staticKind != StaticKind.UNDEFINED;
2906        }
2907
2908        /**
2909         * Does this result have given static kind?
2910         */
2911        boolean hasKind(StaticKind sk) {
2912            return this.staticKind == sk;
2913        }
2914
2915        /**
2916         * Error recovery helper: can this lookup result be ignored (for the purpose of returning
2917         * some 'better' result) ?
2918         */
2919        boolean canIgnore() {
2920            switch (sym.kind) {
2921                case ABSENT_MTH:
2922                    return true;
2923                case WRONG_MTH:
2924                    InapplicableSymbolError errSym =
2925                            (InapplicableSymbolError)sym.baseSymbol();
2926                    return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
2927                            .matches(errSym.errCandidate().snd);
2928                case WRONG_MTHS:
2929                    InapplicableSymbolsError errSyms =
2930                            (InapplicableSymbolsError)sym.baseSymbol();
2931                    return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
2932                default:
2933                    return false;
2934            }
2935        }
2936    }
2937
2938    /**
2939     * This abstract class embodies the logic that converts one (bound lookup) or two (unbound lookup)
2940     * {@code ReferenceLookupResult} objects into a (@code Symbol), which is then regarded as the
2941     * result of method reference resolution.
2942     */
2943    abstract class ReferenceChooser {
2944        /**
2945         * Generate a result from a pair of lookup result objects. This method delegates to the
2946         * appropriate result generation routine.
2947         */
2948        Symbol result(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2949            return unboundRes != referenceNotFound ?
2950                    unboundResult(boundRes, unboundRes) :
2951                    boundResult(boundRes);
2952        }
2953
2954        /**
2955         * Generate a symbol from a given bound lookup result.
2956         */
2957        abstract Symbol boundResult(ReferenceLookupResult boundRes);
2958
2959        /**
2960         * Generate a symbol from a pair of bound/unbound lookup results.
2961         */
2962        abstract Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes);
2963    }
2964
2965    /**
2966     * This chooser implements the selection strategy used during a full lookup; this logic
2967     * is described in JLS SE 8 (15.3.2).
2968     */
2969    ReferenceChooser basicReferenceChooser = new ReferenceChooser() {
2970
2971        @Override
2972        Symbol boundResult(ReferenceLookupResult boundRes) {
2973            return !boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC) ?
2974                    boundRes.sym : //the search produces a non-static method
2975                    new BadMethodReferenceError(boundRes.sym, false);
2976        }
2977
2978        @Override
2979        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2980            if (boundRes.hasKind(StaticKind.STATIC) &&
2981                    (!unboundRes.isSuccess() || unboundRes.hasKind(StaticKind.STATIC))) {
2982                //the first search produces a static method and no non-static method is applicable
2983                //during the second search
2984                return boundRes.sym;
2985            } else if (unboundRes.hasKind(StaticKind.NON_STATIC) &&
2986                    (!boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC))) {
2987                //the second search produces a non-static method and no static method is applicable
2988                //during the first search
2989                return unboundRes.sym;
2990            } else if (boundRes.isSuccess() && unboundRes.isSuccess()) {
2991                //both searches produce some result; ambiguity (error recovery)
2992                return ambiguityError(boundRes.sym, unboundRes.sym);
2993            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
2994                //Both searches failed to produce a result with correct staticness (i.e. first search
2995                //produces an non-static method). Alternatively, a given search produced a result
2996                //with the right staticness, but the other search has applicable methods with wrong
2997                //staticness (error recovery)
2998                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
2999            } else {
3000                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
3001                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
3002                        unboundRes.sym : boundRes.sym;
3003            }
3004        }
3005    };
3006
3007    /**
3008     * This chooser implements the selection strategy used during an arity-based lookup; this logic
3009     * is described in JLS SE 8 (15.12.2.1).
3010     */
3011    ReferenceChooser structuralReferenceChooser = new ReferenceChooser() {
3012
3013        @Override
3014        Symbol boundResult(ReferenceLookupResult boundRes) {
3015            return (!boundRes.isSuccess() || !boundRes.hasKind(StaticKind.STATIC)) ?
3016                    boundRes.sym : //the search has at least one applicable non-static method
3017                    new BadMethodReferenceError(boundRes.sym, false);
3018        }
3019
3020        @Override
3021        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
3022            if (boundRes.isSuccess() && !boundRes.hasKind(StaticKind.NON_STATIC)) {
3023                //the first serach has at least one applicable static method
3024                return boundRes.sym;
3025            } else if (unboundRes.isSuccess() && !unboundRes.hasKind(StaticKind.STATIC)) {
3026                //the second search has at least one applicable non-static method
3027                return unboundRes.sym;
3028            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
3029                //either the first search produces a non-static method, or second search produces
3030                //a non-static method (error recovery)
3031                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
3032            } else {
3033                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
3034                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
3035                        unboundRes.sym : boundRes.sym;
3036            }
3037        }
3038    };
3039
3040    /**
3041     * Helper for defining custom method-like lookup logic; a lookup helper
3042     * provides hooks for (i) the actual lookup logic and (ii) accessing the
3043     * lookup result (this step might result in compiler diagnostics to be generated)
3044     */
3045    abstract class LookupHelper {
3046
3047        /** name of the symbol to lookup */
3048        Name name;
3049
3050        /** location in which the lookup takes place */
3051        Type site;
3052
3053        /** actual types used during the lookup */
3054        List<Type> argtypes;
3055
3056        /** type arguments used during the lookup */
3057        List<Type> typeargtypes;
3058
3059        /** Max overload resolution phase handled by this helper */
3060        MethodResolutionPhase maxPhase;
3061
3062        LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3063            this.name = name;
3064            this.site = site;
3065            this.argtypes = argtypes;
3066            this.typeargtypes = typeargtypes;
3067            this.maxPhase = maxPhase;
3068        }
3069
3070        /**
3071         * Should lookup stop at given phase with given result
3072         */
3073        final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
3074            return phase.ordinal() > maxPhase.ordinal() ||
3075                !sym.kind.isResolutionError() || sym.kind == AMBIGUOUS;
3076        }
3077
3078        /**
3079         * Search for a symbol under a given overload resolution phase - this method
3080         * is usually called several times, once per each overload resolution phase
3081         */
3082        abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
3083
3084        /**
3085         * Dump overload resolution info
3086         */
3087        void debug(DiagnosticPosition pos, Symbol sym) {
3088            //do nothing
3089        }
3090
3091        /**
3092         * Validate the result of the lookup
3093         */
3094        abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
3095    }
3096
3097    abstract class BasicLookupHelper extends LookupHelper {
3098
3099        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
3100            this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
3101        }
3102
3103        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3104            super(name, site, argtypes, typeargtypes, maxPhase);
3105        }
3106
3107        @Override
3108        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3109            Symbol sym = doLookup(env, phase);
3110            if (sym.kind == AMBIGUOUS) {
3111                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3112                sym = a_err.mergeAbstracts(site);
3113            }
3114            return sym;
3115        }
3116
3117        abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
3118
3119        @Override
3120        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3121            if (sym.kind.isResolutionError()) {
3122                //if nothing is found return the 'first' error
3123                sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
3124            }
3125            return sym;
3126        }
3127
3128        @Override
3129        void debug(DiagnosticPosition pos, Symbol sym) {
3130            reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
3131        }
3132    }
3133
3134    /**
3135     * Helper class for member reference lookup. A reference lookup helper
3136     * defines the basic logic for member reference lookup; a method gives
3137     * access to an 'unbound' helper used to perform an unbound member
3138     * reference lookup.
3139     */
3140    abstract class ReferenceLookupHelper extends LookupHelper {
3141
3142        /** The member reference tree */
3143        JCMemberReference referenceTree;
3144
3145        ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3146                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3147            super(name, site, argtypes, typeargtypes, maxPhase);
3148            this.referenceTree = referenceTree;
3149        }
3150
3151        /**
3152         * Returns an unbound version of this lookup helper. By default, this
3153         * method returns an dummy lookup helper.
3154         */
3155        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3156            return null;
3157        }
3158
3159        /**
3160         * Get the kind of the member reference
3161         */
3162        abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
3163
3164        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3165            if (sym.kind == AMBIGUOUS) {
3166                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3167                sym = a_err.mergeAbstracts(site);
3168            }
3169            //skip error reporting
3170            return sym;
3171        }
3172    }
3173
3174    /**
3175     * Helper class for method reference lookup. The lookup logic is based
3176     * upon Resolve.findMethod; in certain cases, this helper class has a
3177     * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
3178     * In such cases, non-static lookup results are thrown away.
3179     */
3180    class MethodReferenceLookupHelper extends ReferenceLookupHelper {
3181
3182        /** The original method reference lookup site. */
3183        Type originalSite;
3184
3185        MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3186                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3187            super(referenceTree, name, types.skipTypeVars(site, true), argtypes, typeargtypes, maxPhase);
3188            this.originalSite = site;
3189        }
3190
3191        @Override
3192        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3193            return findMethod(env, site, name, argtypes, typeargtypes,
3194                    phase.isBoxingRequired(), phase.isVarargsRequired());
3195        }
3196
3197        @Override
3198        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3199            if (TreeInfo.isStaticSelector(referenceTree.expr, names)) {
3200                if (argtypes.nonEmpty() &&
3201                        (argtypes.head.hasTag(NONE) ||
3202                        types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), site))) {
3203                    return new UnboundMethodReferenceLookupHelper(referenceTree, name,
3204                            originalSite, argtypes, typeargtypes, maxPhase);
3205                } else {
3206                    return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
3207                        @Override
3208                        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3209                            return this;
3210                        }
3211
3212                        @Override
3213                        Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3214                            return methodNotFound;
3215                        }
3216
3217                        @Override
3218                        ReferenceKind referenceKind(Symbol sym) {
3219                            Assert.error();
3220                            return null;
3221                        }
3222                    };
3223                }
3224            } else {
3225                return super.unboundLookup(inferenceContext);
3226            }
3227        }
3228
3229        @Override
3230        ReferenceKind referenceKind(Symbol sym) {
3231            if (sym.isStatic()) {
3232                return ReferenceKind.STATIC;
3233            } else {
3234                Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
3235                return selName != null && selName == names._super ?
3236                        ReferenceKind.SUPER :
3237                        ReferenceKind.BOUND;
3238            }
3239        }
3240    }
3241
3242    /**
3243     * Helper class for unbound method reference lookup. Essentially the same
3244     * as the basic method reference lookup helper; main difference is that static
3245     * lookup results are thrown away. If qualifier type is raw, an attempt to
3246     * infer a parameterized type is made using the first actual argument (that
3247     * would otherwise be ignored during the lookup).
3248     */
3249    class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
3250
3251        UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3252                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3253            super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
3254            if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
3255                Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
3256                this.site = types.skipTypeVars(asSuperSite, true);
3257            }
3258        }
3259
3260        @Override
3261        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3262            return this;
3263        }
3264
3265        @Override
3266        ReferenceKind referenceKind(Symbol sym) {
3267            return ReferenceKind.UNBOUND;
3268        }
3269    }
3270
3271    /**
3272     * Helper class for array constructor lookup; an array constructor lookup
3273     * is simulated by looking up a method that returns the array type specified
3274     * as qualifier, and that accepts a single int parameter (size of the array).
3275     */
3276    class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3277
3278        ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3279                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3280            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3281        }
3282
3283        @Override
3284        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3285            WriteableScope sc = WriteableScope.create(syms.arrayClass);
3286            MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
3287            arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
3288            sc.enter(arrayConstr);
3289            return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false);
3290        }
3291
3292        @Override
3293        ReferenceKind referenceKind(Symbol sym) {
3294            return ReferenceKind.ARRAY_CTOR;
3295        }
3296    }
3297
3298    /**
3299     * Helper class for constructor reference lookup. The lookup logic is based
3300     * upon either Resolve.findMethod or Resolve.findDiamond - depending on
3301     * whether the constructor reference needs diamond inference (this is the case
3302     * if the qualifier type is raw). A special erroneous symbol is returned
3303     * if the lookup returns the constructor of an inner class and there's no
3304     * enclosing instance in scope.
3305     */
3306    class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3307
3308        boolean needsInference;
3309
3310        ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3311                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3312            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3313            if (site.isRaw()) {
3314                this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym, site.getMetadata());
3315                needsInference = true;
3316            }
3317        }
3318
3319        @Override
3320        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3321            Symbol sym = needsInference ?
3322                findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
3323                findMethod(env, site, name, argtypes, typeargtypes,
3324                        phase.isBoxingRequired(), phase.isVarargsRequired());
3325            return enclosingInstanceMissing(env, site) ? new BadConstructorReferenceError(sym) : sym;
3326        }
3327
3328        @Override
3329        ReferenceKind referenceKind(Symbol sym) {
3330            return site.getEnclosingType().hasTag(NONE) ?
3331                    ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
3332        }
3333    }
3334
3335    /**
3336     * Main overload resolution routine. On each overload resolution step, a
3337     * lookup helper class is used to perform the method/constructor lookup;
3338     * at the end of the lookup, the helper is used to validate the results
3339     * (this last step might trigger overload resolution diagnostics).
3340     */
3341    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
3342        MethodResolutionContext resolveContext = new MethodResolutionContext();
3343        resolveContext.methodCheck = methodCheck;
3344        return lookupMethod(env, pos, location, resolveContext, lookupHelper);
3345    }
3346
3347    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
3348            MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
3349        MethodResolutionContext prevResolutionContext = currentResolutionContext;
3350        try {
3351            Symbol bestSoFar = methodNotFound;
3352            currentResolutionContext = resolveContext;
3353            for (MethodResolutionPhase phase : methodResolutionSteps) {
3354                if (lookupHelper.shouldStop(bestSoFar, phase))
3355                    break;
3356                MethodResolutionPhase prevPhase = currentResolutionContext.step;
3357                Symbol prevBest = bestSoFar;
3358                currentResolutionContext.step = phase;
3359                Symbol sym = lookupHelper.lookup(env, phase);
3360                lookupHelper.debug(pos, sym);
3361                bestSoFar = phase.mergeResults(bestSoFar, sym);
3362                env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
3363            }
3364            return lookupHelper.access(env, pos, location, bestSoFar);
3365        } finally {
3366            currentResolutionContext = prevResolutionContext;
3367        }
3368    }
3369
3370    /**
3371     * Resolve `c.name' where name == this or name == super.
3372     * @param pos           The position to use for error reporting.
3373     * @param env           The environment current at the expression.
3374     * @param c             The qualifier.
3375     * @param name          The identifier's name.
3376     */
3377    Symbol resolveSelf(DiagnosticPosition pos,
3378                       Env<AttrContext> env,
3379                       TypeSymbol c,
3380                       Name name) {
3381        Env<AttrContext> env1 = env;
3382        boolean staticOnly = false;
3383        while (env1.outer != null) {
3384            if (isStatic(env1)) staticOnly = true;
3385            if (env1.enclClass.sym == c) {
3386                Symbol sym = env1.info.scope.findFirst(name);
3387                if (sym != null) {
3388                    if (staticOnly) sym = new StaticError(sym);
3389                    return accessBase(sym, pos, env.enclClass.sym.type,
3390                                  name, true);
3391                }
3392            }
3393            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
3394            env1 = env1.outer;
3395        }
3396        if (c.isInterface() &&
3397            name == names._super && !isStatic(env) &&
3398            types.isDirectSuperInterface(c, env.enclClass.sym)) {
3399            //this might be a default super call if one of the superinterfaces is 'c'
3400            for (Type t : pruneInterfaces(env.enclClass.type)) {
3401                if (t.tsym == c) {
3402                    env.info.defaultSuperCallSite = t;
3403                    return new VarSymbol(0, names._super,
3404                            types.asSuper(env.enclClass.type, c), env.enclClass.sym);
3405                }
3406            }
3407            //find a direct super type that is a subtype of 'c'
3408            for (Type i : types.directSupertypes(env.enclClass.type)) {
3409                if (i.tsym.isSubClass(c, types) && i.tsym != c) {
3410                    log.error(pos, "illegal.default.super.call", c,
3411                            diags.fragment("redundant.supertype", c, i));
3412                    return syms.errSymbol;
3413                }
3414            }
3415            Assert.error();
3416        }
3417        log.error(pos, "not.encl.class", c);
3418        return syms.errSymbol;
3419    }
3420    //where
3421    private List<Type> pruneInterfaces(Type t) {
3422        ListBuffer<Type> result = new ListBuffer<>();
3423        for (Type t1 : types.interfaces(t)) {
3424            boolean shouldAdd = true;
3425            for (Type t2 : types.directSupertypes(t)) {
3426                if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
3427                    shouldAdd = false;
3428                }
3429            }
3430            if (shouldAdd) {
3431                result.append(t1);
3432            }
3433        }
3434        return result.toList();
3435    }
3436
3437
3438    /**
3439     * Resolve `c.this' for an enclosing class c that contains the
3440     * named member.
3441     * @param pos           The position to use for error reporting.
3442     * @param env           The environment current at the expression.
3443     * @param member        The member that must be contained in the result.
3444     */
3445    Symbol resolveSelfContaining(DiagnosticPosition pos,
3446                                 Env<AttrContext> env,
3447                                 Symbol member,
3448                                 boolean isSuperCall) {
3449        Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
3450        if (sym == null) {
3451            log.error(pos, "encl.class.required", member);
3452            return syms.errSymbol;
3453        } else {
3454            return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
3455        }
3456    }
3457
3458    boolean enclosingInstanceMissing(Env<AttrContext> env, Type type) {
3459        if (type.hasTag(CLASS) && type.getEnclosingType().hasTag(CLASS)) {
3460            Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
3461            return encl == null || encl.kind.isResolutionError();
3462        }
3463        return false;
3464    }
3465
3466    private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
3467                                 Symbol member,
3468                                 boolean isSuperCall) {
3469        Name name = names._this;
3470        Env<AttrContext> env1 = isSuperCall ? env.outer : env;
3471        boolean staticOnly = false;
3472        if (env1 != null) {
3473            while (env1 != null && env1.outer != null) {
3474                if (isStatic(env1)) staticOnly = true;
3475                if (env1.enclClass.sym.isSubClass(member.owner.enclClass(), types)) {
3476                    Symbol sym = env1.info.scope.findFirst(name);
3477                    if (sym != null) {
3478                        if (staticOnly) sym = new StaticError(sym);
3479                        return sym;
3480                    }
3481                }
3482                if ((env1.enclClass.sym.flags() & STATIC) != 0)
3483                    staticOnly = true;
3484                env1 = env1.outer;
3485            }
3486        }
3487        return null;
3488    }
3489
3490    /**
3491     * Resolve an appropriate implicit this instance for t's container.
3492     * JLS 8.8.5.1 and 15.9.2
3493     */
3494    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
3495        return resolveImplicitThis(pos, env, t, false);
3496    }
3497
3498    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
3499        Type thisType = (t.tsym.owner.kind.matches(KindSelector.VAL_MTH)
3500                         ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
3501                         : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
3502        if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
3503            log.error(pos, "cant.ref.before.ctor.called", "this");
3504        return thisType;
3505    }
3506
3507/* ***************************************************************************
3508 *  ResolveError classes, indicating error situations when accessing symbols
3509 ****************************************************************************/
3510
3511    //used by TransTypes when checking target type of synthetic cast
3512    public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
3513        AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
3514        logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
3515    }
3516    //where
3517    private void logResolveError(ResolveError error,
3518            DiagnosticPosition pos,
3519            Symbol location,
3520            Type site,
3521            Name name,
3522            List<Type> argtypes,
3523            List<Type> typeargtypes) {
3524        JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3525                pos, location, site, name, argtypes, typeargtypes);
3526        if (d != null) {
3527            d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
3528            log.report(d);
3529        }
3530    }
3531
3532    private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
3533
3534    public Object methodArguments(List<Type> argtypes) {
3535        if (argtypes == null || argtypes.isEmpty()) {
3536            return noArgs;
3537        } else {
3538            ListBuffer<Object> diagArgs = new ListBuffer<>();
3539            for (Type t : argtypes) {
3540                if (t.hasTag(DEFERRED)) {
3541                    diagArgs.append(((DeferredAttr.DeferredType)t).tree);
3542                } else {
3543                    diagArgs.append(t);
3544                }
3545            }
3546            return diagArgs;
3547        }
3548    }
3549
3550    /**
3551     * Root class for resolution errors. Subclass of ResolveError
3552     * represent a different kinds of resolution error - as such they must
3553     * specify how they map into concrete compiler diagnostics.
3554     */
3555    abstract class ResolveError extends Symbol {
3556
3557        /** The name of the kind of error, for debugging only. */
3558        final String debugName;
3559
3560        ResolveError(Kind kind, String debugName) {
3561            super(kind, 0, null, null, null);
3562            this.debugName = debugName;
3563        }
3564
3565        @Override @DefinedBy(Api.LANGUAGE_MODEL)
3566        public <R, P> R accept(ElementVisitor<R, P> v, P p) {
3567            throw new AssertionError();
3568        }
3569
3570        @Override
3571        public String toString() {
3572            return debugName;
3573        }
3574
3575        @Override
3576        public boolean exists() {
3577            return false;
3578        }
3579
3580        @Override
3581        public boolean isStatic() {
3582            return false;
3583        }
3584
3585        /**
3586         * Create an external representation for this erroneous symbol to be
3587         * used during attribution - by default this returns the symbol of a
3588         * brand new error type which stores the original type found
3589         * during resolution.
3590         *
3591         * @param name     the name used during resolution
3592         * @param location the location from which the symbol is accessed
3593         */
3594        protected Symbol access(Name name, TypeSymbol location) {
3595            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3596        }
3597
3598        /**
3599         * Create a diagnostic representing this resolution error.
3600         *
3601         * @param dkind     The kind of the diagnostic to be created (e.g error).
3602         * @param pos       The position to be used for error reporting.
3603         * @param site      The original type from where the selection took place.
3604         * @param name      The name of the symbol to be resolved.
3605         * @param argtypes  The invocation's value arguments,
3606         *                  if we looked for a method.
3607         * @param typeargtypes  The invocation's type arguments,
3608         *                      if we looked for a method.
3609         */
3610        abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3611                DiagnosticPosition pos,
3612                Symbol location,
3613                Type site,
3614                Name name,
3615                List<Type> argtypes,
3616                List<Type> typeargtypes);
3617    }
3618
3619    /**
3620     * This class is the root class of all resolution errors caused by
3621     * an invalid symbol being found during resolution.
3622     */
3623    abstract class InvalidSymbolError extends ResolveError {
3624
3625        /** The invalid symbol found during resolution */
3626        Symbol sym;
3627
3628        InvalidSymbolError(Kind kind, Symbol sym, String debugName) {
3629            super(kind, debugName);
3630            this.sym = sym;
3631        }
3632
3633        @Override
3634        public boolean exists() {
3635            return true;
3636        }
3637
3638        @Override
3639        public String toString() {
3640             return super.toString() + " wrongSym=" + sym;
3641        }
3642
3643        @Override
3644        public Symbol access(Name name, TypeSymbol location) {
3645            if (!sym.kind.isResolutionError() && sym.kind.matches(KindSelector.TYP))
3646                return types.createErrorType(name, location, sym.type).tsym;
3647            else
3648                return sym;
3649        }
3650    }
3651
3652    /**
3653     * InvalidSymbolError error class indicating that a symbol matching a
3654     * given name does not exists in a given site.
3655     */
3656    class SymbolNotFoundError extends ResolveError {
3657
3658        SymbolNotFoundError(Kind kind) {
3659            this(kind, "symbol not found error");
3660        }
3661
3662        SymbolNotFoundError(Kind kind, String debugName) {
3663            super(kind, debugName);
3664        }
3665
3666        @Override
3667        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3668                DiagnosticPosition pos,
3669                Symbol location,
3670                Type site,
3671                Name name,
3672                List<Type> argtypes,
3673                List<Type> typeargtypes) {
3674            argtypes = argtypes == null ? List.<Type>nil() : argtypes;
3675            typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
3676            if (name == names.error)
3677                return null;
3678
3679            boolean hasLocation = false;
3680            if (location == null) {
3681                location = site.tsym;
3682            }
3683            if (!location.name.isEmpty()) {
3684                if (location.kind == PCK && !site.tsym.exists()) {
3685                    return diags.create(dkind, log.currentSource(), pos,
3686                        "doesnt.exist", location);
3687                }
3688                hasLocation = !location.name.equals(names._this) &&
3689                        !location.name.equals(names._super);
3690            }
3691            boolean isConstructor = name == names.init;
3692            KindName kindname = isConstructor ? KindName.CONSTRUCTOR : kind.absentKind();
3693            Name idname = isConstructor ? site.tsym.name : name;
3694            String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
3695            if (hasLocation) {
3696                return diags.create(dkind, log.currentSource(), pos,
3697                        errKey, kindname, idname, //symbol kindname, name
3698                        typeargtypes, args(argtypes), //type parameters and arguments (if any)
3699                        getLocationDiag(location, site)); //location kindname, type
3700            }
3701            else {
3702                return diags.create(dkind, log.currentSource(), pos,
3703                        errKey, kindname, idname, //symbol kindname, name
3704                        typeargtypes, args(argtypes)); //type parameters and arguments (if any)
3705            }
3706        }
3707        //where
3708        private Object args(List<Type> args) {
3709            return args.isEmpty() ? args : methodArguments(args);
3710        }
3711
3712        private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
3713            String key = "cant.resolve";
3714            String suffix = hasLocation ? ".location" : "";
3715            switch (kindname) {
3716                case METHOD:
3717                case CONSTRUCTOR: {
3718                    suffix += ".args";
3719                    suffix += hasTypeArgs ? ".params" : "";
3720                }
3721            }
3722            return key + suffix;
3723        }
3724        private JCDiagnostic getLocationDiag(Symbol location, Type site) {
3725            if (location.kind == VAR) {
3726                return diags.fragment("location.1",
3727                    kindName(location),
3728                    location,
3729                    location.type);
3730            } else {
3731                return diags.fragment("location",
3732                    typeKindName(site),
3733                    site,
3734                    null);
3735            }
3736        }
3737    }
3738
3739    /**
3740     * InvalidSymbolError error class indicating that a given symbol
3741     * (either a method, a constructor or an operand) is not applicable
3742     * given an actual arguments/type argument list.
3743     */
3744    class InapplicableSymbolError extends ResolveError {
3745
3746        protected MethodResolutionContext resolveContext;
3747
3748        InapplicableSymbolError(MethodResolutionContext context) {
3749            this(WRONG_MTH, "inapplicable symbol error", context);
3750        }
3751
3752        protected InapplicableSymbolError(Kind kind, String debugName, MethodResolutionContext context) {
3753            super(kind, debugName);
3754            this.resolveContext = context;
3755        }
3756
3757        @Override
3758        public String toString() {
3759            return super.toString();
3760        }
3761
3762        @Override
3763        public boolean exists() {
3764            return true;
3765        }
3766
3767        @Override
3768        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3769                DiagnosticPosition pos,
3770                Symbol location,
3771                Type site,
3772                Name name,
3773                List<Type> argtypes,
3774                List<Type> typeargtypes) {
3775            if (name == names.error)
3776                return null;
3777
3778            Pair<Symbol, JCDiagnostic> c = errCandidate();
3779            if (compactMethodDiags) {
3780                JCDiagnostic simpleDiag =
3781                    MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, c.snd);
3782                if (simpleDiag != null) {
3783                    return simpleDiag;
3784                }
3785            }
3786            Symbol ws = c.fst.asMemberOf(site, types);
3787            return diags.create(dkind, log.currentSource(), pos,
3788                      "cant.apply.symbol",
3789                      kindName(ws),
3790                      ws.name == names.init ? ws.owner.name : ws.name,
3791                      methodArguments(ws.type.getParameterTypes()),
3792                      methodArguments(argtypes),
3793                      kindName(ws.owner),
3794                      ws.owner.type,
3795                      c.snd);
3796        }
3797
3798        @Override
3799        public Symbol access(Name name, TypeSymbol location) {
3800            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3801        }
3802
3803        protected Pair<Symbol, JCDiagnostic> errCandidate() {
3804            Candidate bestSoFar = null;
3805            for (Candidate c : resolveContext.candidates) {
3806                if (c.isApplicable()) continue;
3807                bestSoFar = c;
3808            }
3809            Assert.checkNonNull(bestSoFar);
3810            return new Pair<>(bestSoFar.sym, bestSoFar.details);
3811        }
3812    }
3813
3814    /**
3815     * ResolveError error class indicating that a symbol (either methods, constructors or operand)
3816     * is not applicable given an actual arguments/type argument list.
3817     */
3818    class InapplicableSymbolsError extends InapplicableSymbolError {
3819
3820        InapplicableSymbolsError(MethodResolutionContext context) {
3821            super(WRONG_MTHS, "inapplicable symbols", context);
3822        }
3823
3824        @Override
3825        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3826                DiagnosticPosition pos,
3827                Symbol location,
3828                Type site,
3829                Name name,
3830                List<Type> argtypes,
3831                List<Type> typeargtypes) {
3832            Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
3833            Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
3834                    filterCandidates(candidatesMap) :
3835                    mapCandidates();
3836            if (filteredCandidates.isEmpty()) {
3837                filteredCandidates = candidatesMap;
3838            }
3839            boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
3840            if (filteredCandidates.size() > 1) {
3841                JCDiagnostic err = diags.create(dkind,
3842                        null,
3843                        truncatedDiag ?
3844                            EnumSet.of(DiagnosticFlag.COMPRESSED) :
3845                            EnumSet.noneOf(DiagnosticFlag.class),
3846                        log.currentSource(),
3847                        pos,
3848                        "cant.apply.symbols",
3849                        name == names.init ? KindName.CONSTRUCTOR : kind.absentKind(),
3850                        name == names.init ? site.tsym.name : name,
3851                        methodArguments(argtypes));
3852                return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
3853            } else if (filteredCandidates.size() == 1) {
3854                Map.Entry<Symbol, JCDiagnostic> _e =
3855                                filteredCandidates.entrySet().iterator().next();
3856                final Pair<Symbol, JCDiagnostic> p = new Pair<>(_e.getKey(), _e.getValue());
3857                JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
3858                    @Override
3859                    protected Pair<Symbol, JCDiagnostic> errCandidate() {
3860                        return p;
3861                    }
3862                }.getDiagnostic(dkind, pos,
3863                    location, site, name, argtypes, typeargtypes);
3864                if (truncatedDiag) {
3865                    d.setFlag(DiagnosticFlag.COMPRESSED);
3866                }
3867                return d;
3868            } else {
3869                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
3870                    location, site, name, argtypes, typeargtypes);
3871            }
3872        }
3873        //where
3874            private Map<Symbol, JCDiagnostic> mapCandidates() {
3875                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
3876                for (Candidate c : resolveContext.candidates) {
3877                    if (c.isApplicable()) continue;
3878                    candidates.put(c.sym, c.details);
3879                }
3880                return candidates;
3881            }
3882
3883            Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
3884                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
3885                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3886                    JCDiagnostic d = _entry.getValue();
3887                    if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
3888                        candidates.put(_entry.getKey(), d);
3889                    }
3890                }
3891                return candidates;
3892            }
3893
3894            private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
3895                List<JCDiagnostic> details = List.nil();
3896                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3897                    Symbol sym = _entry.getKey();
3898                    JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
3899                            Kinds.kindName(sym),
3900                            sym.location(site, types),
3901                            sym.asMemberOf(site, types),
3902                            _entry.getValue());
3903                    details = details.prepend(detailDiag);
3904                }
3905                //typically members are visited in reverse order (see Scope)
3906                //so we need to reverse the candidate list so that candidates
3907                //conform to source order
3908                return details;
3909            }
3910    }
3911
3912    /**
3913     * DiamondError error class indicating that a constructor symbol is not applicable
3914     * given an actual arguments/type argument list using diamond inference.
3915     */
3916    class DiamondError extends InapplicableSymbolError {
3917
3918        Symbol sym;
3919
3920        public DiamondError(Symbol sym, MethodResolutionContext context) {
3921            super(sym.kind, "diamondError", context);
3922            this.sym = sym;
3923        }
3924
3925        JCDiagnostic getDetails() {
3926            return (sym.kind == WRONG_MTH) ?
3927                    ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
3928                    null;
3929        }
3930
3931        @Override
3932        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
3933                Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
3934            JCDiagnostic details = getDetails();
3935            if (details != null && compactMethodDiags) {
3936                JCDiagnostic simpleDiag =
3937                        MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, details);
3938                if (simpleDiag != null) {
3939                    return simpleDiag;
3940                }
3941            }
3942            String key = details == null ?
3943                "cant.apply.diamond" :
3944                "cant.apply.diamond.1";
3945            return diags.create(dkind, log.currentSource(), pos, key,
3946                    diags.fragment("diamond", site.tsym), details);
3947        }
3948    }
3949
3950    /**
3951     * An InvalidSymbolError error class indicating that a symbol is not
3952     * accessible from a given site
3953     */
3954    class AccessError extends InvalidSymbolError {
3955
3956        private Env<AttrContext> env;
3957        private Type site;
3958
3959        AccessError(Symbol sym) {
3960            this(null, null, sym);
3961        }
3962
3963        AccessError(Env<AttrContext> env, Type site, Symbol sym) {
3964            super(HIDDEN, sym, "access error");
3965            this.env = env;
3966            this.site = site;
3967        }
3968
3969        @Override
3970        public boolean exists() {
3971            return false;
3972        }
3973
3974        @Override
3975        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3976                DiagnosticPosition pos,
3977                Symbol location,
3978                Type site,
3979                Name name,
3980                List<Type> argtypes,
3981                List<Type> typeargtypes) {
3982            if (sym.owner.type.hasTag(ERROR))
3983                return null;
3984
3985            if (sym.name == names.init && sym.owner != site.tsym) {
3986                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
3987                        pos, location, site, name, argtypes, typeargtypes);
3988            }
3989            else if ((sym.flags() & PUBLIC) != 0
3990                || (env != null && this.site != null
3991                    && !isAccessible(env, this.site))) {
3992                if (sym.owner.kind == PCK) {
3993                    return diags.create(dkind, log.currentSource(),
3994                            pos, "not.def.access.package.cant.access",
3995                        sym, sym.location());
3996                } else {
3997                    return diags.create(dkind, log.currentSource(),
3998                            pos, "not.def.access.class.intf.cant.access",
3999                        sym, sym.location());
4000                }
4001            }
4002            else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
4003                return diags.create(dkind, log.currentSource(),
4004                        pos, "report.access", sym,
4005                        asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
4006                        sym.location());
4007            }
4008            else {
4009                return diags.create(dkind, log.currentSource(),
4010                        pos, "not.def.public.cant.access", sym, sym.location());
4011            }
4012        }
4013
4014        private String toString(Type type) {
4015            StringBuilder sb = new StringBuilder();
4016            sb.append(type);
4017            if (type != null) {
4018                sb.append("[tsym:").append(type.tsym);
4019                if (type.tsym != null)
4020                    sb.append("packge:").append(type.tsym.packge());
4021                sb.append("]");
4022            }
4023            return sb.toString();
4024        }
4025    }
4026
4027    /**
4028     * InvalidSymbolError error class indicating that an instance member
4029     * has erroneously been accessed from a static context.
4030     */
4031    class StaticError extends InvalidSymbolError {
4032
4033        StaticError(Symbol sym) {
4034            super(STATICERR, sym, "static error");
4035        }
4036
4037        @Override
4038        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4039                DiagnosticPosition pos,
4040                Symbol location,
4041                Type site,
4042                Name name,
4043                List<Type> argtypes,
4044                List<Type> typeargtypes) {
4045            Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
4046                ? types.erasure(sym.type).tsym
4047                : sym);
4048            return diags.create(dkind, log.currentSource(), pos,
4049                    "non-static.cant.be.ref", kindName(sym), errSym);
4050        }
4051    }
4052
4053    /**
4054     * InvalidSymbolError error class indicating that a pair of symbols
4055     * (either methods, constructors or operands) are ambiguous
4056     * given an actual arguments/type argument list.
4057     */
4058    class AmbiguityError extends ResolveError {
4059
4060        /** The other maximally specific symbol */
4061        List<Symbol> ambiguousSyms = List.nil();
4062
4063        @Override
4064        public boolean exists() {
4065            return true;
4066        }
4067
4068        AmbiguityError(Symbol sym1, Symbol sym2) {
4069            super(AMBIGUOUS, "ambiguity error");
4070            ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
4071        }
4072
4073        private List<Symbol> flatten(Symbol sym) {
4074            if (sym.kind == AMBIGUOUS) {
4075                return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
4076            } else {
4077                return List.of(sym);
4078            }
4079        }
4080
4081        AmbiguityError addAmbiguousSymbol(Symbol s) {
4082            ambiguousSyms = ambiguousSyms.prepend(s);
4083            return this;
4084        }
4085
4086        @Override
4087        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4088                DiagnosticPosition pos,
4089                Symbol location,
4090                Type site,
4091                Name name,
4092                List<Type> argtypes,
4093                List<Type> typeargtypes) {
4094            List<Symbol> diagSyms = ambiguousSyms.reverse();
4095            Symbol s1 = diagSyms.head;
4096            Symbol s2 = diagSyms.tail.head;
4097            Name sname = s1.name;
4098            if (sname == names.init) sname = s1.owner.name;
4099            return diags.create(dkind, log.currentSource(),
4100                    pos, "ref.ambiguous", sname,
4101                    kindName(s1),
4102                    s1,
4103                    s1.location(site, types),
4104                    kindName(s2),
4105                    s2,
4106                    s2.location(site, types));
4107        }
4108
4109        /**
4110         * If multiple applicable methods are found during overload and none of them
4111         * is more specific than the others, attempt to merge their signatures.
4112         */
4113        Symbol mergeAbstracts(Type site) {
4114            List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
4115            for (Symbol s : ambiguousInOrder) {
4116                Type mt = types.memberType(site, s);
4117                boolean found = true;
4118                List<Type> allThrown = mt.getThrownTypes();
4119                for (Symbol s2 : ambiguousInOrder) {
4120                    Type mt2 = types.memberType(site, s2);
4121                    if ((s2.flags() & ABSTRACT) == 0 ||
4122                        !types.overrideEquivalent(mt, mt2) ||
4123                        !types.isSameTypes(s.erasure(types).getParameterTypes(),
4124                                       s2.erasure(types).getParameterTypes())) {
4125                        //ambiguity cannot be resolved
4126                        return this;
4127                    }
4128                    Type mst = mostSpecificReturnType(mt, mt2);
4129                    if (mst == null || mst != mt) {
4130                        found = false;
4131                        break;
4132                    }
4133                    List<Type> thrownTypes2 = mt2.getThrownTypes();
4134                    if (mt.hasTag(FORALL) && mt2.hasTag(FORALL)) {
4135                        // if both are generic methods, adjust thrown types ahead of intersection computation
4136                        thrownTypes2 = types.subst(thrownTypes2, mt2.getTypeArguments(), mt.getTypeArguments());
4137                    }
4138                    allThrown = chk.intersect(allThrown, thrownTypes2);
4139                }
4140                if (found) {
4141                    //all ambiguous methods were abstract and one method had
4142                    //most specific return type then others
4143                    return (allThrown == mt.getThrownTypes()) ?
4144                            s : new MethodSymbol(
4145                                s.flags(),
4146                                s.name,
4147                                types.createMethodTypeWithThrown(s.type, allThrown),
4148                                s.owner);
4149                }
4150            }
4151            return this;
4152        }
4153
4154        @Override
4155        protected Symbol access(Name name, TypeSymbol location) {
4156            Symbol firstAmbiguity = ambiguousSyms.last();
4157            return firstAmbiguity.kind == TYP ?
4158                    types.createErrorType(name, location, firstAmbiguity.type).tsym :
4159                    firstAmbiguity;
4160        }
4161    }
4162
4163    class BadVarargsMethod extends ResolveError {
4164
4165        ResolveError delegatedError;
4166
4167        BadVarargsMethod(ResolveError delegatedError) {
4168            super(delegatedError.kind, "badVarargs");
4169            this.delegatedError = delegatedError;
4170        }
4171
4172        @Override
4173        public Symbol baseSymbol() {
4174            return delegatedError.baseSymbol();
4175        }
4176
4177        @Override
4178        protected Symbol access(Name name, TypeSymbol location) {
4179            return delegatedError.access(name, location);
4180        }
4181
4182        @Override
4183        public boolean exists() {
4184            return true;
4185        }
4186
4187        @Override
4188        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4189            return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
4190        }
4191    }
4192
4193    /**
4194     * BadMethodReferenceError error class indicating that a method reference symbol has been found,
4195     * but with the wrong staticness.
4196     */
4197    class BadMethodReferenceError extends StaticError {
4198
4199        boolean unboundLookup;
4200
4201        public BadMethodReferenceError(Symbol sym, boolean unboundLookup) {
4202            super(sym);
4203            this.unboundLookup = unboundLookup;
4204        }
4205
4206        @Override
4207        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4208            final String key;
4209            if (!unboundLookup) {
4210                key = "bad.static.method.in.bound.lookup";
4211            } else if (sym.isStatic()) {
4212                key = "bad.static.method.in.unbound.lookup";
4213            } else {
4214                key = "bad.instance.method.in.unbound.lookup";
4215            }
4216            return sym.kind.isResolutionError() ?
4217                    ((ResolveError)sym).getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes) :
4218                    diags.create(dkind, log.currentSource(), pos, key, Kinds.kindName(sym), sym);
4219        }
4220    }
4221
4222    /**
4223     * BadConstructorReferenceError error class indicating that a constructor reference symbol has been found,
4224     * but pointing to a class for which an enclosing instance is not available.
4225     */
4226    class BadConstructorReferenceError extends InvalidSymbolError {
4227
4228        public BadConstructorReferenceError(Symbol sym) {
4229            super(MISSING_ENCL, sym, "BadConstructorReferenceError");
4230        }
4231
4232        @Override
4233        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4234           return diags.create(dkind, log.currentSource(), pos,
4235                "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
4236        }
4237    }
4238
4239    /**
4240     * Helper class for method resolution diagnostic simplification.
4241     * Certain resolution diagnostic are rewritten as simpler diagnostic
4242     * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
4243     * is stripped away, as it doesn't carry additional info. The logic
4244     * for matching a given diagnostic is given in terms of a template
4245     * hierarchy: a diagnostic template can be specified programmatically,
4246     * so that only certain diagnostics are matched. Each templete is then
4247     * associated with a rewriter object that carries out the task of rewtiting
4248     * the diagnostic to a simpler one.
4249     */
4250    static class MethodResolutionDiagHelper {
4251
4252        /**
4253         * A diagnostic rewriter transforms a method resolution diagnostic
4254         * into a simpler one
4255         */
4256        interface DiagnosticRewriter {
4257            JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4258                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4259                    DiagnosticType preferredKind, JCDiagnostic d);
4260        }
4261
4262        /**
4263         * A diagnostic template is made up of two ingredients: (i) a regular
4264         * expression for matching a diagnostic key and (ii) a list of sub-templates
4265         * for matching diagnostic arguments.
4266         */
4267        static class Template {
4268
4269            /** regex used to match diag key */
4270            String regex;
4271
4272            /** templates used to match diagnostic args */
4273            Template[] subTemplates;
4274
4275            Template(String key, Template... subTemplates) {
4276                this.regex = key;
4277                this.subTemplates = subTemplates;
4278            }
4279
4280            /**
4281             * Returns true if the regex matches the diagnostic key and if
4282             * all diagnostic arguments are matches by corresponding sub-templates.
4283             */
4284            boolean matches(Object o) {
4285                JCDiagnostic d = (JCDiagnostic)o;
4286                Object[] args = d.getArgs();
4287                if (!d.getCode().matches(regex) ||
4288                        subTemplates.length != d.getArgs().length) {
4289                    return false;
4290                }
4291                for (int i = 0; i < args.length ; i++) {
4292                    if (!subTemplates[i].matches(args[i])) {
4293                        return false;
4294                    }
4295                }
4296                return true;
4297            }
4298        }
4299
4300        /**
4301         * Common rewriter for all argument mismatch simplifications.
4302         */
4303        static class ArgMismatchRewriter implements DiagnosticRewriter {
4304
4305            /** the index of the subdiagnostic to be used as primary. */
4306            int causeIndex;
4307
4308            public ArgMismatchRewriter(int causeIndex) {
4309                this.causeIndex = causeIndex;
4310            }
4311
4312            @Override
4313            public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4314                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4315                    DiagnosticType preferredKind, JCDiagnostic d) {
4316                JCDiagnostic cause = (JCDiagnostic)d.getArgs()[causeIndex];
4317                DiagnosticPosition pos = d.getDiagnosticPosition();
4318                if (pos == null) {
4319                    pos = preferedPos;
4320                }
4321                return diags.create(preferredKind, preferredSource, pos,
4322                        "prob.found.req", cause);
4323            }
4324        }
4325
4326        /** a dummy template that match any diagnostic argument */
4327        static final Template skip = new Template("") {
4328            @Override
4329            boolean matches(Object d) {
4330                return true;
4331            }
4332        };
4333
4334        /** template for matching inference-free arguments mismatch failures */
4335        static final Template argMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip);
4336
4337        /** template for matching inference related arguments mismatch failures */
4338        static final Template inferArgMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip, skip) {
4339            @Override
4340            boolean matches(Object o) {
4341                if (!super.matches(o)) {
4342                    return false;
4343                }
4344                JCDiagnostic d = (JCDiagnostic)o;
4345                @SuppressWarnings("unchecked")
4346                List<Type> tvars = (List<Type>)d.getArgs()[0];
4347                return !containsAny(d, tvars);
4348            }
4349
4350            BiPredicate<Object, List<Type>> containsPredicate = (o, ts) -> {
4351                if (o instanceof Type) {
4352                    return ((Type)o).containsAny(ts);
4353                } else if (o instanceof JCDiagnostic) {
4354                    return containsAny((JCDiagnostic)o, ts);
4355                } else {
4356                    return false;
4357                }
4358            };
4359
4360            boolean containsAny(JCDiagnostic d, List<Type> ts) {
4361                return Stream.of(d.getArgs())
4362                        .anyMatch(o -> containsPredicate.test(o, ts));
4363            }
4364        };
4365
4366        /** rewriter map used for method resolution simplification */
4367        static final Map<Template, DiagnosticRewriter> rewriters = new LinkedHashMap<>();
4368
4369        static {
4370            rewriters.put(argMismatchTemplate, new ArgMismatchRewriter(0));
4371            rewriters.put(inferArgMismatchTemplate, new ArgMismatchRewriter(1));
4372        }
4373
4374        /**
4375         * Main entry point for diagnostic rewriting - given a diagnostic, see if any templates matches it,
4376         * and rewrite it accordingly.
4377         */
4378        static JCDiagnostic rewrite(JCDiagnostic.Factory diags, DiagnosticPosition pos, DiagnosticSource source,
4379                                    DiagnosticType dkind, JCDiagnostic d) {
4380            for (Map.Entry<Template, DiagnosticRewriter> _entry : rewriters.entrySet()) {
4381                if (_entry.getKey().matches(d)) {
4382                    JCDiagnostic simpleDiag =
4383                            _entry.getValue().rewriteDiagnostic(diags, pos, source, dkind, d);
4384                    simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
4385                    return simpleDiag;
4386                }
4387            }
4388            return null;
4389        }
4390    }
4391
4392    enum MethodResolutionPhase {
4393        BASIC(false, false),
4394        BOX(true, false),
4395        VARARITY(true, true) {
4396            @Override
4397            public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
4398                //Check invariants (see {@code LookupHelper.shouldStop})
4399                Assert.check(bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS);
4400                if (!sym.kind.isResolutionError()) {
4401                    //varargs resolution successful
4402                    return sym;
4403                } else {
4404                    //pick best error
4405                    switch (bestSoFar.kind) {
4406                        case WRONG_MTH:
4407                        case WRONG_MTHS:
4408                            //Override previous errors if they were caused by argument mismatch.
4409                            //This generally means preferring current symbols - but we need to pay
4410                            //attention to the fact that the varargs lookup returns 'less' candidates
4411                            //than the previous rounds, and adjust that accordingly.
4412                            switch (sym.kind) {
4413                                case WRONG_MTH:
4414                                    //if the previous round matched more than one method, return that
4415                                    //result instead
4416                                    return bestSoFar.kind == WRONG_MTHS ?
4417                                            bestSoFar : sym;
4418                                case ABSENT_MTH:
4419                                    //do not override erroneous symbol if the arity lookup did not
4420                                    //match any method
4421                                    return bestSoFar;
4422                                case WRONG_MTHS:
4423                                default:
4424                                    //safe to override
4425                                    return sym;
4426                            }
4427                        default:
4428                            //otherwise, return first error
4429                            return bestSoFar;
4430                    }
4431                }
4432            }
4433        };
4434
4435        final boolean isBoxingRequired;
4436        final boolean isVarargsRequired;
4437
4438        MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
4439           this.isBoxingRequired = isBoxingRequired;
4440           this.isVarargsRequired = isVarargsRequired;
4441        }
4442
4443        public boolean isBoxingRequired() {
4444            return isBoxingRequired;
4445        }
4446
4447        public boolean isVarargsRequired() {
4448            return isVarargsRequired;
4449        }
4450
4451        public Symbol mergeResults(Symbol prev, Symbol sym) {
4452            return sym;
4453        }
4454    }
4455
4456    final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
4457
4458    /**
4459     * A resolution context is used to keep track of intermediate results of
4460     * overload resolution, such as list of method that are not applicable
4461     * (used to generate more precise diagnostics) and so on. Resolution contexts
4462     * can be nested - this means that when each overload resolution routine should
4463     * work within the resolution context it created.
4464     */
4465    class MethodResolutionContext {
4466
4467        private List<Candidate> candidates = List.nil();
4468
4469        MethodResolutionPhase step = null;
4470
4471        MethodCheck methodCheck = resolveMethodCheck;
4472
4473        private boolean internalResolution = false;
4474        private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
4475
4476        void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
4477            Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
4478            candidates = candidates.append(c);
4479        }
4480
4481        void addApplicableCandidate(Symbol sym, Type mtype) {
4482            Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
4483            candidates = candidates.append(c);
4484        }
4485
4486        DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
4487            DeferredAttrContext parent = (pendingResult == null)
4488                ? deferredAttr.emptyDeferredAttrContext
4489                : pendingResult.checkContext.deferredAttrContext();
4490            return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
4491                    inferenceContext, parent, warn);
4492        }
4493
4494        /**
4495         * This class represents an overload resolution candidate. There are two
4496         * kinds of candidates: applicable methods and inapplicable methods;
4497         * applicable methods have a pointer to the instantiated method type,
4498         * while inapplicable candidates contain further details about the
4499         * reason why the method has been considered inapplicable.
4500         */
4501        @SuppressWarnings("overrides")
4502        class Candidate {
4503
4504            final MethodResolutionPhase step;
4505            final Symbol sym;
4506            final JCDiagnostic details;
4507            final Type mtype;
4508
4509            private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
4510                this.step = step;
4511                this.sym = sym;
4512                this.details = details;
4513                this.mtype = mtype;
4514            }
4515
4516            @Override
4517            public boolean equals(Object o) {
4518                if (o instanceof Candidate) {
4519                    Symbol s1 = this.sym;
4520                    Symbol s2 = ((Candidate)o).sym;
4521                    if  ((s1 != s2 &&
4522                            (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
4523                            (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
4524                            ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
4525                        return true;
4526                }
4527                return false;
4528            }
4529
4530            boolean isApplicable() {
4531                return mtype != null;
4532            }
4533        }
4534
4535        DeferredAttr.AttrMode attrMode() {
4536            return attrMode;
4537        }
4538
4539        boolean internal() {
4540            return internalResolution;
4541        }
4542    }
4543
4544    MethodResolutionContext currentResolutionContext = null;
4545}
4546