Resolve.java revision 3324:82f94333bd7e
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.tools.javac.api.Formattable.LocalizedString;
29import com.sun.tools.javac.code.*;
30import com.sun.tools.javac.code.Scope.WriteableScope;
31import com.sun.tools.javac.code.Symbol.*;
32import com.sun.tools.javac.code.Type.*;
33import com.sun.tools.javac.comp.Attr.ResultInfo;
34import com.sun.tools.javac.comp.Check.CheckContext;
35import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
36import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
37import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
38import com.sun.tools.javac.comp.Infer.FreeTypeListener;
39import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
40import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
41import com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind;
42import com.sun.tools.javac.jvm.*;
43import com.sun.tools.javac.main.Option;
44import com.sun.tools.javac.tree.*;
45import com.sun.tools.javac.tree.JCTree.*;
46import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
47import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
48import com.sun.tools.javac.util.*;
49import com.sun.tools.javac.util.DefinedBy.Api;
50import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
51import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
52import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
53
54import java.util.Arrays;
55import java.util.Collection;
56import java.util.EnumSet;
57import java.util.Iterator;
58import java.util.LinkedHashMap;
59import java.util.Map;
60import java.util.function.BiPredicate;
61import java.util.stream.Stream;
62
63import javax.lang.model.element.ElementVisitor;
64
65import static com.sun.tools.javac.code.Flags.*;
66import static com.sun.tools.javac.code.Flags.BLOCK;
67import static com.sun.tools.javac.code.Flags.STATIC;
68import static com.sun.tools.javac.code.Kinds.*;
69import static com.sun.tools.javac.code.Kinds.Kind.*;
70import static com.sun.tools.javac.code.TypeTag.*;
71import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
72import static com.sun.tools.javac.tree.JCTree.Tag.*;
73
74/** Helper class for name resolution, used mostly by the attribution phase.
75 *
76 *  <p><b>This is NOT part of any supported API.
77 *  If you write code that depends on this, you do so at your own risk.
78 *  This code and its internal interfaces are subject to change or
79 *  deletion without notice.</b>
80 */
81public class Resolve {
82    protected static final Context.Key<Resolve> resolveKey = new Context.Key<>();
83
84    Names names;
85    Log log;
86    Symtab syms;
87    Attr attr;
88    DeferredAttr deferredAttr;
89    Check chk;
90    Infer infer;
91    ClassFinder finder;
92    Types types;
93    JCDiagnostic.Factory diags;
94    public final boolean allowMethodHandles;
95    public final boolean allowFunctionalInterfaceMostSpecific;
96    public final boolean allowModules;
97    public final boolean checkVarargsAccessAfterResolution;
98    private final boolean compactMethodDiags;
99    final EnumSet<VerboseResolutionMode> verboseResolutionMode;
100
101    private final boolean checkModuleAccess;
102
103    WriteableScope polymorphicSignatureScope;
104
105    protected Resolve(Context context) {
106        context.put(resolveKey, this);
107        syms = Symtab.instance(context);
108
109        varNotFound = new SymbolNotFoundError(ABSENT_VAR);
110        methodNotFound = new SymbolNotFoundError(ABSENT_MTH);
111        typeNotFound = new SymbolNotFoundError(ABSENT_TYP);
112        referenceNotFound = new ReferenceLookupResult(methodNotFound, null);
113
114        names = Names.instance(context);
115        log = Log.instance(context);
116        attr = Attr.instance(context);
117        deferredAttr = DeferredAttr.instance(context);
118        chk = Check.instance(context);
119        infer = Infer.instance(context);
120        finder = ClassFinder.instance(context);
121        types = Types.instance(context);
122        diags = JCDiagnostic.Factory.instance(context);
123        Source source = Source.instance(context);
124        Options options = Options.instance(context);
125        compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
126                options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
127        verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
128        Target target = Target.instance(context);
129        allowMethodHandles = target.hasMethodHandles();
130        allowFunctionalInterfaceMostSpecific = source.allowFunctionalInterfaceMostSpecific();
131        checkVarargsAccessAfterResolution =
132                source.allowPostApplicabilityVarargsAccessCheck();
133        polymorphicSignatureScope = WriteableScope.create(syms.noSymbol);
134
135        inapplicableMethodException = new InapplicableMethodException(diags);
136
137        allowModules = source.allowModules();
138
139        // The following is required, for now, to support building
140        // Swing beaninfo via javadoc.
141        checkModuleAccess = !options.isSet("noModules");
142    }
143
144    /** error symbols, which are returned when resolution fails
145     */
146    private final SymbolNotFoundError varNotFound;
147    private final SymbolNotFoundError methodNotFound;
148    private final SymbolNotFoundError typeNotFound;
149
150    /** empty reference lookup result */
151    private final ReferenceLookupResult referenceNotFound;
152
153    public static Resolve instance(Context context) {
154        Resolve instance = context.get(resolveKey);
155        if (instance == null)
156            instance = new Resolve(context);
157        return instance;
158    }
159
160    private static Symbol bestOf(Symbol s1,
161                                 Symbol s2) {
162        return s1.kind.betterThan(s2.kind) ? s1 : s2;
163    }
164
165    // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
166    enum VerboseResolutionMode {
167        SUCCESS("success"),
168        FAILURE("failure"),
169        APPLICABLE("applicable"),
170        INAPPLICABLE("inapplicable"),
171        DEFERRED_INST("deferred-inference"),
172        PREDEF("predef"),
173        OBJECT_INIT("object-init"),
174        INTERNAL("internal");
175
176        final String opt;
177
178        private VerboseResolutionMode(String opt) {
179            this.opt = opt;
180        }
181
182        static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
183            String s = opts.get("verboseResolution");
184            EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
185            if (s == null) return res;
186            if (s.contains("all")) {
187                res = EnumSet.allOf(VerboseResolutionMode.class);
188            }
189            Collection<String> args = Arrays.asList(s.split(","));
190            for (VerboseResolutionMode mode : values()) {
191                if (args.contains(mode.opt)) {
192                    res.add(mode);
193                } else if (args.contains("-" + mode.opt)) {
194                    res.remove(mode);
195                }
196            }
197            return res;
198        }
199    }
200
201    void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
202            List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
203        boolean success = !bestSoFar.kind.isResolutionError();
204
205        if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
206            return;
207        } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
208            return;
209        }
210
211        if (bestSoFar.name == names.init &&
212                bestSoFar.owner == syms.objectType.tsym &&
213                !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
214            return; //skip diags for Object constructor resolution
215        } else if (site == syms.predefClass.type &&
216                !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
217            return; //skip spurious diags for predef symbols (i.e. operators)
218        } else if (currentResolutionContext.internalResolution &&
219                !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
220            return;
221        }
222
223        int pos = 0;
224        int mostSpecificPos = -1;
225        ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
226        for (Candidate c : currentResolutionContext.candidates) {
227            if (currentResolutionContext.step != c.step ||
228                    (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
229                    (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
230                continue;
231            } else {
232                subDiags.append(c.isApplicable() ?
233                        getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
234                        getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
235                if (c.sym == bestSoFar)
236                    mostSpecificPos = pos;
237                pos++;
238            }
239        }
240        String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
241        List<Type> argtypes2 = argtypes.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
242        JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
243                site.tsym, mostSpecificPos, currentResolutionContext.step,
244                methodArguments(argtypes2),
245                methodArguments(typeargtypes));
246        JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
247        log.report(d);
248    }
249
250    JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
251        JCDiagnostic subDiag = null;
252        if (sym.type.hasTag(FORALL)) {
253            subDiag = diags.fragment("partial.inst.sig", inst);
254        }
255
256        String key = subDiag == null ?
257                "applicable.method.found" :
258                "applicable.method.found.1";
259
260        return diags.fragment(key, pos, sym, subDiag);
261    }
262
263    JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
264        return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
265    }
266    // </editor-fold>
267
268/* ************************************************************************
269 * Identifier resolution
270 *************************************************************************/
271
272    /** An environment is "static" if its static level is greater than
273     *  the one of its outer environment
274     */
275    protected static boolean isStatic(Env<AttrContext> env) {
276        return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
277    }
278
279    /** An environment is an "initializer" if it is a constructor or
280     *  an instance initializer.
281     */
282    static boolean isInitializer(Env<AttrContext> env) {
283        Symbol owner = env.info.scope.owner;
284        return owner.isConstructor() ||
285            owner.owner.kind == TYP &&
286            (owner.kind == VAR ||
287             owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
288            (owner.flags() & STATIC) == 0;
289    }
290
291    /** Is class accessible in given evironment?
292     *  @param env    The current environment.
293     *  @param c      The class whose accessibility is checked.
294     */
295    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
296        return isAccessible(env, c, false);
297    }
298
299    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
300
301        /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
302           to refer to an inaccessible type
303        */
304        if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
305            return true;
306
307        boolean isAccessible = false;
308        switch ((short)(c.flags() & AccessFlags)) {
309            case PRIVATE:
310                isAccessible =
311                    env.enclClass.sym.outermostClass() ==
312                    c.owner.outermostClass();
313                break;
314            case 0:
315                isAccessible =
316                    env.toplevel.packge == c.owner // fast special case
317                    ||
318                    env.toplevel.packge == c.packge();
319                break;
320            default: // error recovery
321                isAccessible = true;
322                break;
323            case PUBLIC:
324                isAccessible = true;
325                if (allowModules && checkModuleAccess) {
326                    ModuleSymbol currModule = env.toplevel.modle;
327                    currModule.complete();
328                    PackageSymbol p = c.packge();
329                    isAccessible =
330                        (currModule == p.modle) || currModule.visiblePackages.get(p.fullname) == p || p == syms.rootPackage;
331                } else {
332                    isAccessible = true;
333                }
334                break;
335            case PROTECTED:
336                isAccessible =
337                    env.toplevel.packge == c.owner // fast special case
338                    ||
339                    env.toplevel.packge == c.packge()
340                    ||
341                    isInnerSubClass(env.enclClass.sym, c.owner);
342                break;
343        }
344        return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
345            isAccessible :
346            isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
347    }
348    //where
349        /** Is given class a subclass of given base class, or an inner class
350         *  of a subclass?
351         *  Return null if no such class exists.
352         *  @param c     The class which is the subclass or is contained in it.
353         *  @param base  The base class
354         */
355        private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
356            while (c != null && !c.isSubClass(base, types)) {
357                c = c.owner.enclClass();
358            }
359            return c != null;
360        }
361
362    boolean isAccessible(Env<AttrContext> env, Type t) {
363        return isAccessible(env, t, false);
364    }
365
366    boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
367        return (t.hasTag(ARRAY))
368            ? isAccessible(env, types.cvarUpperBound(types.elemtype(t)))
369            : isAccessible(env, t.tsym, checkInner);
370    }
371
372    /** Is symbol accessible as a member of given type in given environment?
373     *  @param env    The current environment.
374     *  @param site   The type of which the tested symbol is regarded
375     *                as a member.
376     *  @param sym    The symbol.
377     */
378    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
379        return isAccessible(env, site, sym, false);
380    }
381    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
382        if (sym.name == names.init && sym.owner != site.tsym) return false;
383
384        /* 15.9.5.1: Note that it is possible for the signature of the anonymous constructor
385           to refer to an inaccessible type
386        */
387        if (env.enclMethod != null && (env.enclMethod.mods.flags & ANONCONSTR) != 0)
388            return true;
389
390        switch ((short)(sym.flags() & AccessFlags)) {
391        case PRIVATE:
392            return
393                (env.enclClass.sym == sym.owner // fast special case
394                 ||
395                 env.enclClass.sym.outermostClass() ==
396                 sym.owner.outermostClass())
397                &&
398                sym.isInheritedIn(site.tsym, types);
399        case 0:
400            return
401                (env.toplevel.packge == sym.owner.owner // fast special case
402                 ||
403                 env.toplevel.packge == sym.packge())
404                &&
405                isAccessible(env, site, checkInner)
406                &&
407                sym.isInheritedIn(site.tsym, types)
408                &&
409                notOverriddenIn(site, sym);
410        case PROTECTED:
411            return
412                (env.toplevel.packge == sym.owner.owner // fast special case
413                 ||
414                 env.toplevel.packge == sym.packge()
415                 ||
416                 isProtectedAccessible(sym, env.enclClass.sym, site)
417                 ||
418                 // OK to select instance method or field from 'super' or type name
419                 // (but type names should be disallowed elsewhere!)
420                 env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
421                &&
422                isAccessible(env, site, checkInner)
423                &&
424                notOverriddenIn(site, sym);
425        default: // this case includes erroneous combinations as well
426            return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
427        }
428    }
429    //where
430    /* `sym' is accessible only if not overridden by
431     * another symbol which is a member of `site'
432     * (because, if it is overridden, `sym' is not strictly
433     * speaking a member of `site'). A polymorphic signature method
434     * cannot be overridden (e.g. MH.invokeExact(Object[])).
435     */
436    private boolean notOverriddenIn(Type site, Symbol sym) {
437        if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
438            return true;
439        else {
440            Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
441            return (s2 == null || s2 == sym || sym.owner == s2.owner ||
442                    !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
443        }
444    }
445    //where
446        /** Is given protected symbol accessible if it is selected from given site
447         *  and the selection takes place in given class?
448         *  @param sym     The symbol with protected access
449         *  @param c       The class where the access takes place
450         *  @site          The type of the qualifier
451         */
452        private
453        boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
454            Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
455            while (c != null &&
456                   !(c.isSubClass(sym.owner, types) &&
457                     (c.flags() & INTERFACE) == 0 &&
458                     // In JLS 2e 6.6.2.1, the subclass restriction applies
459                     // only to instance fields and methods -- types are excluded
460                     // regardless of whether they are declared 'static' or not.
461                     ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
462                c = c.owner.enclClass();
463            return c != null;
464        }
465
466    /**
467     * Performs a recursive scan of a type looking for accessibility problems
468     * from current attribution environment
469     */
470    void checkAccessibleType(Env<AttrContext> env, Type t) {
471        accessibilityChecker.visit(t, env);
472    }
473
474    /**
475     * Accessibility type-visitor
476     */
477    Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
478            new Types.SimpleVisitor<Void, Env<AttrContext>>() {
479
480        void visit(List<Type> ts, Env<AttrContext> env) {
481            for (Type t : ts) {
482                visit(t, env);
483            }
484        }
485
486        public Void visitType(Type t, Env<AttrContext> env) {
487            return null;
488        }
489
490        @Override
491        public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
492            visit(t.elemtype, env);
493            return null;
494        }
495
496        @Override
497        public Void visitClassType(ClassType t, Env<AttrContext> env) {
498            visit(t.getTypeArguments(), env);
499            if (!isAccessible(env, t, true)) {
500                accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
501            }
502            return null;
503        }
504
505        @Override
506        public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
507            visit(t.type, env);
508            return null;
509        }
510
511        @Override
512        public Void visitMethodType(MethodType t, Env<AttrContext> env) {
513            visit(t.getParameterTypes(), env);
514            visit(t.getReturnType(), env);
515            visit(t.getThrownTypes(), env);
516            return null;
517        }
518    };
519
520    /** Try to instantiate the type of a method so that it fits
521     *  given type arguments and argument types. If successful, return
522     *  the method's instantiated type, else return null.
523     *  The instantiation will take into account an additional leading
524     *  formal parameter if the method is an instance method seen as a member
525     *  of an under determined site. In this case, we treat site as an additional
526     *  parameter and the parameters of the class containing the method as
527     *  additional type variables that get instantiated.
528     *
529     *  @param env         The current environment
530     *  @param site        The type of which the method is a member.
531     *  @param m           The method symbol.
532     *  @param argtypes    The invocation's given value arguments.
533     *  @param typeargtypes    The invocation's given type arguments.
534     *  @param allowBoxing Allow boxing conversions of arguments.
535     *  @param useVarargs Box trailing arguments into an array for varargs.
536     */
537    Type rawInstantiate(Env<AttrContext> env,
538                        Type site,
539                        Symbol m,
540                        ResultInfo resultInfo,
541                        List<Type> argtypes,
542                        List<Type> typeargtypes,
543                        boolean allowBoxing,
544                        boolean useVarargs,
545                        Warner warn) throws Infer.InferenceException {
546        Type mt = types.memberType(site, m);
547        // tvars is the list of formal type variables for which type arguments
548        // need to inferred.
549        List<Type> tvars = List.nil();
550        if (typeargtypes == null) typeargtypes = List.nil();
551        if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
552            // This is not a polymorphic method, but typeargs are supplied
553            // which is fine, see JLS 15.12.2.1
554        } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
555            ForAll pmt = (ForAll) mt;
556            if (typeargtypes.length() != pmt.tvars.length())
557                throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
558            // Check type arguments are within bounds
559            List<Type> formals = pmt.tvars;
560            List<Type> actuals = typeargtypes;
561            while (formals.nonEmpty() && actuals.nonEmpty()) {
562                List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
563                                                pmt.tvars, typeargtypes);
564                for (; bounds.nonEmpty(); bounds = bounds.tail) {
565                    if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
566                        throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
567                }
568                formals = formals.tail;
569                actuals = actuals.tail;
570            }
571            mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
572        } else if (mt.hasTag(FORALL)) {
573            ForAll pmt = (ForAll) mt;
574            List<Type> tvars1 = types.newInstances(pmt.tvars);
575            tvars = tvars.appendList(tvars1);
576            mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
577        }
578
579        // find out whether we need to go the slow route via infer
580        boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
581        for (List<Type> l = argtypes;
582             l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
583             l = l.tail) {
584            if (l.head.hasTag(FORALL)) instNeeded = true;
585        }
586
587        if (instNeeded) {
588            return infer.instantiateMethod(env,
589                                    tvars,
590                                    (MethodType)mt,
591                                    resultInfo,
592                                    (MethodSymbol)m,
593                                    argtypes,
594                                    allowBoxing,
595                                    useVarargs,
596                                    currentResolutionContext,
597                                    warn);
598        }
599
600        DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
601        currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
602                                argtypes, mt.getParameterTypes(), warn);
603        dc.complete();
604        return mt;
605    }
606
607    Type checkMethod(Env<AttrContext> env,
608                     Type site,
609                     Symbol m,
610                     ResultInfo resultInfo,
611                     List<Type> argtypes,
612                     List<Type> typeargtypes,
613                     Warner warn) {
614        MethodResolutionContext prevContext = currentResolutionContext;
615        try {
616            currentResolutionContext = new MethodResolutionContext();
617            currentResolutionContext.attrMode = (resultInfo.pt == Infer.anyPoly) ?
618                    AttrMode.SPECULATIVE : DeferredAttr.AttrMode.CHECK;
619            if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
620                //method/constructor references need special check class
621                //to handle inference variables in 'argtypes' (might happen
622                //during an unsticking round)
623                currentResolutionContext.methodCheck =
624                        new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
625            }
626            MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
627            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
628                    step.isBoxingRequired(), step.isVarargsRequired(), warn);
629        }
630        finally {
631            currentResolutionContext = prevContext;
632        }
633    }
634
635    /** Same but returns null instead throwing a NoInstanceException
636     */
637    Type instantiate(Env<AttrContext> env,
638                     Type site,
639                     Symbol m,
640                     ResultInfo resultInfo,
641                     List<Type> argtypes,
642                     List<Type> typeargtypes,
643                     boolean allowBoxing,
644                     boolean useVarargs,
645                     Warner warn) {
646        try {
647            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
648                                  allowBoxing, useVarargs, warn);
649        } catch (InapplicableMethodException ex) {
650            return null;
651        }
652    }
653
654    /**
655     * This interface defines an entry point that should be used to perform a
656     * method check. A method check usually consist in determining as to whether
657     * a set of types (actuals) is compatible with another set of types (formals).
658     * Since the notion of compatibility can vary depending on the circumstances,
659     * this interfaces allows to easily add new pluggable method check routines.
660     */
661    interface MethodCheck {
662        /**
663         * Main method check routine. A method check usually consist in determining
664         * as to whether a set of types (actuals) is compatible with another set of
665         * types (formals). If an incompatibility is found, an unchecked exception
666         * is assumed to be thrown.
667         */
668        void argumentsAcceptable(Env<AttrContext> env,
669                                DeferredAttrContext deferredAttrContext,
670                                List<Type> argtypes,
671                                List<Type> formals,
672                                Warner warn);
673
674        /**
675         * Retrieve the method check object that will be used during a
676         * most specific check.
677         */
678        MethodCheck mostSpecificCheck(List<Type> actuals);
679    }
680
681    /**
682     * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
683     */
684    enum MethodCheckDiag {
685        /**
686         * Actuals and formals differs in length.
687         */
688        ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
689        /**
690         * An actual is incompatible with a formal.
691         */
692        ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
693        /**
694         * An actual is incompatible with the varargs element type.
695         */
696        VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
697        /**
698         * The varargs element type is inaccessible.
699         */
700        INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
701
702        final String basicKey;
703        final String inferKey;
704
705        MethodCheckDiag(String basicKey, String inferKey) {
706            this.basicKey = basicKey;
707            this.inferKey = inferKey;
708        }
709
710        String regex() {
711            return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
712        }
713    }
714
715    /**
716     * Dummy method check object. All methods are deemed applicable, regardless
717     * of their formal parameter types.
718     */
719    MethodCheck nilMethodCheck = new MethodCheck() {
720        public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
721            //do nothing - method always applicable regardless of actuals
722        }
723
724        public MethodCheck mostSpecificCheck(List<Type> actuals) {
725            return this;
726        }
727    };
728
729    /**
730     * Base class for 'real' method checks. The class defines the logic for
731     * iterating through formals and actuals and provides and entry point
732     * that can be used by subclasses in order to define the actual check logic.
733     */
734    abstract class AbstractMethodCheck implements MethodCheck {
735        @Override
736        public void argumentsAcceptable(final Env<AttrContext> env,
737                                    DeferredAttrContext deferredAttrContext,
738                                    List<Type> argtypes,
739                                    List<Type> formals,
740                                    Warner warn) {
741            //should we expand formals?
742            boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
743            JCTree callTree = treeForDiagnostics(env);
744            List<JCExpression> trees = TreeInfo.args(callTree);
745
746            //inference context used during this method check
747            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
748
749            Type varargsFormal = useVarargs ? formals.last() : null;
750
751            if (varargsFormal == null &&
752                    argtypes.size() != formals.size()) {
753                reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
754            }
755
756            while (argtypes.nonEmpty() && formals.head != varargsFormal) {
757                DiagnosticPosition pos = trees != null ? trees.head : null;
758                checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
759                argtypes = argtypes.tail;
760                formals = formals.tail;
761                trees = trees != null ? trees.tail : trees;
762            }
763
764            if (formals.head != varargsFormal) {
765                reportMC(callTree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
766            }
767
768            if (useVarargs) {
769                //note: if applicability check is triggered by most specific test,
770                //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
771                final Type elt = types.elemtype(varargsFormal);
772                while (argtypes.nonEmpty()) {
773                    DiagnosticPosition pos = trees != null ? trees.head : null;
774                    checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
775                    argtypes = argtypes.tail;
776                    trees = trees != null ? trees.tail : trees;
777                }
778            }
779        }
780
781            // where
782            private JCTree treeForDiagnostics(Env<AttrContext> env) {
783                return env.info.preferredTreeForDiagnostics != null ? env.info.preferredTreeForDiagnostics : env.tree;
784            }
785
786        /**
787         * Does the actual argument conforms to the corresponding formal?
788         */
789        abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
790
791        protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
792            boolean inferDiag = inferenceContext != infer.emptyContext;
793            InapplicableMethodException ex = inferDiag ?
794                    infer.inferenceException : inapplicableMethodException;
795            if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
796                Object[] args2 = new Object[args.length + 1];
797                System.arraycopy(args, 0, args2, 1, args.length);
798                args2[0] = inferenceContext.inferenceVars();
799                args = args2;
800            }
801            String key = inferDiag ? diag.inferKey : diag.basicKey;
802            throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
803        }
804
805        public MethodCheck mostSpecificCheck(List<Type> actuals) {
806            return nilMethodCheck;
807        }
808
809    }
810
811    /**
812     * Arity-based method check. A method is applicable if the number of actuals
813     * supplied conforms to the method signature.
814     */
815    MethodCheck arityMethodCheck = new AbstractMethodCheck() {
816        @Override
817        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
818            //do nothing - actual always compatible to formals
819        }
820
821        @Override
822        public String toString() {
823            return "arityMethodCheck";
824        }
825    };
826
827    List<Type> dummyArgs(int length) {
828        ListBuffer<Type> buf = new ListBuffer<>();
829        for (int i = 0 ; i < length ; i++) {
830            buf.append(Type.noType);
831        }
832        return buf.toList();
833    }
834
835    /**
836     * Main method applicability routine. Given a list of actual types A,
837     * a list of formal types F, determines whether the types in A are
838     * compatible (by method invocation conversion) with the types in F.
839     *
840     * Since this routine is shared between overload resolution and method
841     * type-inference, a (possibly empty) inference context is used to convert
842     * formal types to the corresponding 'undet' form ahead of a compatibility
843     * check so that constraints can be propagated and collected.
844     *
845     * Moreover, if one or more types in A is a deferred type, this routine uses
846     * DeferredAttr in order to perform deferred attribution. If one or more actual
847     * deferred types are stuck, they are placed in a queue and revisited later
848     * after the remainder of the arguments have been seen. If this is not sufficient
849     * to 'unstuck' the argument, a cyclic inference error is called out.
850     *
851     * A method check handler (see above) is used in order to report errors.
852     */
853    MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
854
855        @Override
856        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
857            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
858            mresult.check(pos, actual);
859        }
860
861        @Override
862        public void argumentsAcceptable(final Env<AttrContext> env,
863                                    DeferredAttrContext deferredAttrContext,
864                                    List<Type> argtypes,
865                                    List<Type> formals,
866                                    Warner warn) {
867            super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
868            // should we check varargs element type accessibility?
869            if (deferredAttrContext.phase.isVarargsRequired()) {
870                if (deferredAttrContext.mode == AttrMode.CHECK || !checkVarargsAccessAfterResolution) {
871                    varargsAccessible(env, types.elemtype(formals.last()), deferredAttrContext.inferenceContext);
872                }
873            }
874        }
875
876        /**
877         * Test that the runtime array element type corresponding to 't' is accessible.  't' should be the
878         * varargs element type of either the method invocation type signature (after inference completes)
879         * or the method declaration signature (before inference completes).
880         */
881        private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
882            if (inferenceContext.free(t)) {
883                inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
884                    @Override
885                    public void typesInferred(InferenceContext inferenceContext) {
886                        varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
887                    }
888                });
889            } else {
890                if (!isAccessible(env, types.erasure(t))) {
891                    Symbol location = env.enclClass.sym;
892                    reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
893                }
894            }
895        }
896
897        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
898                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
899            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
900                MethodCheckDiag methodDiag = varargsCheck ?
901                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
902
903                @Override
904                public void report(DiagnosticPosition pos, JCDiagnostic details) {
905                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
906                }
907            };
908            return new MethodResultInfo(to, checkContext);
909        }
910
911        @Override
912        public MethodCheck mostSpecificCheck(List<Type> actuals) {
913            return new MostSpecificCheck(actuals);
914        }
915
916        @Override
917        public String toString() {
918            return "resolveMethodCheck";
919        }
920    };
921
922    /**
923     * This class handles method reference applicability checks; since during
924     * these checks it's sometime possible to have inference variables on
925     * the actual argument types list, the method applicability check must be
926     * extended so that inference variables are 'opened' as needed.
927     */
928    class MethodReferenceCheck extends AbstractMethodCheck {
929
930        InferenceContext pendingInferenceContext;
931
932        MethodReferenceCheck(InferenceContext pendingInferenceContext) {
933            this.pendingInferenceContext = pendingInferenceContext;
934        }
935
936        @Override
937        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
938            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
939            mresult.check(pos, actual);
940        }
941
942        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
943                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
944            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
945                MethodCheckDiag methodDiag = varargsCheck ?
946                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
947
948                @Override
949                public boolean compatible(Type found, Type req, Warner warn) {
950                    found = pendingInferenceContext.asUndetVar(found);
951                    if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
952                        req = types.boxedClass(req).type;
953                    }
954                    return super.compatible(found, req, warn);
955                }
956
957                @Override
958                public void report(DiagnosticPosition pos, JCDiagnostic details) {
959                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
960                }
961            };
962            return new MethodResultInfo(to, checkContext);
963        }
964
965        @Override
966        public MethodCheck mostSpecificCheck(List<Type> actuals) {
967            return new MostSpecificCheck(actuals);
968        }
969
970        @Override
971        public String toString() {
972            return "MethodReferenceCheck";
973        }
974    }
975
976    /**
977     * Check context to be used during method applicability checks. A method check
978     * context might contain inference variables.
979     */
980    abstract class MethodCheckContext implements CheckContext {
981
982        boolean strict;
983        DeferredAttrContext deferredAttrContext;
984        Warner rsWarner;
985
986        public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
987           this.strict = strict;
988           this.deferredAttrContext = deferredAttrContext;
989           this.rsWarner = rsWarner;
990        }
991
992        public boolean compatible(Type found, Type req, Warner warn) {
993            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
994            return strict ?
995                    types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
996                    types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
997        }
998
999        public void report(DiagnosticPosition pos, JCDiagnostic details) {
1000            throw inapplicableMethodException.setMessage(details);
1001        }
1002
1003        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
1004            return rsWarner;
1005        }
1006
1007        public InferenceContext inferenceContext() {
1008            return deferredAttrContext.inferenceContext;
1009        }
1010
1011        public DeferredAttrContext deferredAttrContext() {
1012            return deferredAttrContext;
1013        }
1014
1015        @Override
1016        public String toString() {
1017            return "MethodCheckContext";
1018        }
1019    }
1020
1021    /**
1022     * ResultInfo class to be used during method applicability checks. Check
1023     * for deferred types goes through special path.
1024     */
1025    class MethodResultInfo extends ResultInfo {
1026
1027        public MethodResultInfo(Type pt, CheckContext checkContext) {
1028            attr.super(KindSelector.VAL, pt, checkContext);
1029        }
1030
1031        @Override
1032        protected Type check(DiagnosticPosition pos, Type found) {
1033            if (found.hasTag(DEFERRED)) {
1034                DeferredType dt = (DeferredType)found;
1035                return dt.check(this);
1036            } else {
1037                Type uResult = U(found);
1038                Type capturedType = pos == null || pos.getTree() == null ?
1039                        types.capture(uResult) :
1040                        checkContext.inferenceContext()
1041                            .cachedCapture(pos.getTree(), uResult, true);
1042                return super.check(pos, chk.checkNonVoid(pos, capturedType));
1043            }
1044        }
1045
1046        /**
1047         * javac has a long-standing 'simplification' (see 6391995):
1048         * given an actual argument type, the method check is performed
1049         * on its upper bound. This leads to inconsistencies when an
1050         * argument type is checked against itself. For example, given
1051         * a type-variable T, it is not true that {@code U(T) <: T},
1052         * so we need to guard against that.
1053         */
1054        private Type U(Type found) {
1055            return found == pt ?
1056                    found : types.cvarUpperBound(found);
1057        }
1058
1059        @Override
1060        protected MethodResultInfo dup(Type newPt) {
1061            return new MethodResultInfo(newPt, checkContext);
1062        }
1063
1064        @Override
1065        protected ResultInfo dup(CheckContext newContext) {
1066            return new MethodResultInfo(pt, newContext);
1067        }
1068
1069        @Override
1070        protected ResultInfo dup(Type newPt, CheckContext newContext) {
1071            return new MethodResultInfo(newPt, newContext);
1072        }
1073    }
1074
1075    /**
1076     * Most specific method applicability routine. Given a list of actual types A,
1077     * a list of formal types F1, and a list of formal types F2, the routine determines
1078     * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
1079     * argument types A.
1080     */
1081    class MostSpecificCheck implements MethodCheck {
1082
1083        List<Type> actuals;
1084
1085        MostSpecificCheck(List<Type> actuals) {
1086            this.actuals = actuals;
1087        }
1088
1089        @Override
1090        public void argumentsAcceptable(final Env<AttrContext> env,
1091                                    DeferredAttrContext deferredAttrContext,
1092                                    List<Type> formals1,
1093                                    List<Type> formals2,
1094                                    Warner warn) {
1095            formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
1096            while (formals2.nonEmpty()) {
1097                ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
1098                mresult.check(null, formals1.head);
1099                formals1 = formals1.tail;
1100                formals2 = formals2.tail;
1101                actuals = actuals.isEmpty() ? actuals : actuals.tail;
1102            }
1103        }
1104
1105       /**
1106        * Create a method check context to be used during the most specific applicability check
1107        */
1108        ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
1109               Warner rsWarner, Type actual) {
1110            return attr.new ResultInfo(KindSelector.VAL, to,
1111                   new MostSpecificCheckContext(deferredAttrContext, rsWarner, actual));
1112        }
1113
1114        /**
1115         * Subclass of method check context class that implements most specific
1116         * method conversion. If the actual type under analysis is a deferred type
1117         * a full blown structural analysis is carried out.
1118         */
1119        class MostSpecificCheckContext extends MethodCheckContext {
1120
1121            Type actual;
1122
1123            public MostSpecificCheckContext(DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
1124                super(true, deferredAttrContext, rsWarner);
1125                this.actual = actual;
1126            }
1127
1128            public boolean compatible(Type found, Type req, Warner warn) {
1129                if (allowFunctionalInterfaceMostSpecific &&
1130                        unrelatedFunctionalInterfaces(found, req) &&
1131                        (actual != null && actual.getTag() == DEFERRED)) {
1132                    DeferredType dt = (DeferredType) actual;
1133                    JCTree speculativeTree = dt.speculativeTree(deferredAttrContext);
1134                    if (speculativeTree != deferredAttr.stuckTree) {
1135                        return functionalInterfaceMostSpecific(found, req, speculativeTree);
1136                    }
1137                }
1138                return compatibleBySubtyping(found, req);
1139            }
1140
1141            private boolean compatibleBySubtyping(Type found, Type req) {
1142                if (!strict && found.isPrimitive() != req.isPrimitive()) {
1143                    found = found.isPrimitive() ? types.boxedClass(found).type : types.unboxedType(found);
1144                }
1145                return types.isSubtypeNoCapture(found, deferredAttrContext.inferenceContext.asUndetVar(req));
1146            }
1147
1148            /** Whether {@code t} and {@code s} are unrelated functional interface types. */
1149            private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
1150                return types.isFunctionalInterface(t.tsym) &&
1151                       types.isFunctionalInterface(s.tsym) &&
1152                       types.asSuper(t, s.tsym) == null &&
1153                       types.asSuper(s, t.tsym) == null;
1154            }
1155
1156            /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1157            private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree) {
1158                Type tDesc = types.findDescriptorType(t);
1159                Type sDesc = types.findDescriptorType(s);
1160
1161                // compare type parameters -- can't use Types.hasSameBounds because bounds may have ivars
1162                final List<Type> tTypeParams = tDesc.getTypeArguments();
1163                final List<Type> sTypeParams = sDesc.getTypeArguments();
1164                List<Type> tIter = tTypeParams;
1165                List<Type> sIter = sTypeParams;
1166                while (tIter.nonEmpty() && sIter.nonEmpty()) {
1167                    Type tBound = tIter.head.getUpperBound();
1168                    Type sBound = types.subst(sIter.head.getUpperBound(), sTypeParams, tTypeParams);
1169                    if (tBound.containsAny(tTypeParams) && inferenceContext().free(sBound)) {
1170                        return false;
1171                    }
1172                    if (!types.isSameType(tBound, inferenceContext().asUndetVar(sBound))) {
1173                        return false;
1174                    }
1175                    tIter = tIter.tail;
1176                    sIter = sIter.tail;
1177                }
1178                if (!tIter.isEmpty() || !sIter.isEmpty()) {
1179                    return false;
1180                }
1181
1182                // compare parameters
1183                List<Type> tParams = tDesc.getParameterTypes();
1184                List<Type> sParams = sDesc.getParameterTypes();
1185                while (tParams.nonEmpty() && sParams.nonEmpty()) {
1186                    Type tParam = tParams.head;
1187                    Type sParam = types.subst(sParams.head, sTypeParams, tTypeParams);
1188                    if (tParam.containsAny(tTypeParams) && inferenceContext().free(sParam)) {
1189                        return false;
1190                    }
1191                    if (!types.isSameType(tParam, inferenceContext().asUndetVar(sParam))) {
1192                        return false;
1193                    }
1194                    tParams = tParams.tail;
1195                    sParams = sParams.tail;
1196                }
1197                if (!tParams.isEmpty() || !sParams.isEmpty()) {
1198                    return false;
1199                }
1200
1201                // compare returns
1202                Type tRet = tDesc.getReturnType();
1203                Type sRet = types.subst(sDesc.getReturnType(), sTypeParams, tTypeParams);
1204                if (tRet.containsAny(tTypeParams) && inferenceContext().free(sRet)) {
1205                    return false;
1206                }
1207                MostSpecificFunctionReturnChecker msc = new MostSpecificFunctionReturnChecker(tRet, sRet);
1208                msc.scan(tree);
1209                return msc.result;
1210            }
1211
1212            /**
1213             * Tests whether one functional interface type can be considered more specific
1214             * than another unrelated functional interface type for the scanned expression.
1215             */
1216            class MostSpecificFunctionReturnChecker extends DeferredAttr.PolyScanner {
1217
1218                final Type tRet;
1219                final Type sRet;
1220                boolean result;
1221
1222                /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1223                MostSpecificFunctionReturnChecker(Type tRet, Type sRet) {
1224                    this.tRet = tRet;
1225                    this.sRet = sRet;
1226                    result = true;
1227                }
1228
1229                @Override
1230                void skip(JCTree tree) {
1231                    result &= false;
1232                }
1233
1234                @Override
1235                public void visitConditional(JCConditional tree) {
1236                    scan(asExpr(tree.truepart));
1237                    scan(asExpr(tree.falsepart));
1238                }
1239
1240                @Override
1241                public void visitReference(JCMemberReference tree) {
1242                    if (sRet.hasTag(VOID)) {
1243                        result &= true;
1244                    } else if (tRet.hasTag(VOID)) {
1245                        result &= false;
1246                    } else if (tRet.isPrimitive() != sRet.isPrimitive()) {
1247                        boolean retValIsPrimitive =
1248                                tree.refPolyKind == PolyKind.STANDALONE &&
1249                                tree.sym.type.getReturnType().isPrimitive();
1250                        result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1251                                  (retValIsPrimitive != sRet.isPrimitive());
1252                    } else {
1253                        result &= compatibleBySubtyping(tRet, sRet);
1254                    }
1255                }
1256
1257                @Override
1258                public void visitParens(JCParens tree) {
1259                    scan(asExpr(tree.expr));
1260                }
1261
1262                @Override
1263                public void visitLambda(JCLambda tree) {
1264                    if (sRet.hasTag(VOID)) {
1265                        result &= true;
1266                    } else if (tRet.hasTag(VOID)) {
1267                        result &= false;
1268                    } else {
1269                        List<JCExpression> lambdaResults = lambdaResults(tree);
1270                        if (!lambdaResults.isEmpty() && unrelatedFunctionalInterfaces(tRet, sRet)) {
1271                            for (JCExpression expr : lambdaResults) {
1272                                result &= functionalInterfaceMostSpecific(tRet, sRet, expr);
1273                            }
1274                        } else if (!lambdaResults.isEmpty() && tRet.isPrimitive() != sRet.isPrimitive()) {
1275                            for (JCExpression expr : lambdaResults) {
1276                                boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
1277                                result &= (retValIsPrimitive == tRet.isPrimitive()) &&
1278                                        (retValIsPrimitive != sRet.isPrimitive());
1279                            }
1280                        } else {
1281                            result &= compatibleBySubtyping(tRet, sRet);
1282                        }
1283                    }
1284                }
1285                //where
1286
1287                private List<JCExpression> lambdaResults(JCLambda lambda) {
1288                    if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
1289                        return List.of(asExpr((JCExpression) lambda.body));
1290                    } else {
1291                        final ListBuffer<JCExpression> buffer = new ListBuffer<>();
1292                        DeferredAttr.LambdaReturnScanner lambdaScanner =
1293                                new DeferredAttr.LambdaReturnScanner() {
1294                                    @Override
1295                                    public void visitReturn(JCReturn tree) {
1296                                        if (tree.expr != null) {
1297                                            buffer.append(asExpr(tree.expr));
1298                                        }
1299                                    }
1300                                };
1301                        lambdaScanner.scan(lambda.body);
1302                        return buffer.toList();
1303                    }
1304                }
1305
1306                private JCExpression asExpr(JCExpression expr) {
1307                    if (expr.type.hasTag(DEFERRED)) {
1308                        JCTree speculativeTree = ((DeferredType)expr.type).speculativeTree(deferredAttrContext);
1309                        if (speculativeTree != deferredAttr.stuckTree) {
1310                            expr = (JCExpression)speculativeTree;
1311                        }
1312                    }
1313                    return expr;
1314                }
1315            }
1316
1317        }
1318
1319        public MethodCheck mostSpecificCheck(List<Type> actuals) {
1320            Assert.error("Cannot get here!");
1321            return null;
1322        }
1323    }
1324
1325    public static class InapplicableMethodException extends RuntimeException {
1326        private static final long serialVersionUID = 0;
1327
1328        JCDiagnostic diagnostic;
1329        JCDiagnostic.Factory diags;
1330
1331        InapplicableMethodException(JCDiagnostic.Factory diags) {
1332            this.diagnostic = null;
1333            this.diags = diags;
1334        }
1335        InapplicableMethodException setMessage() {
1336            return setMessage((JCDiagnostic)null);
1337        }
1338        InapplicableMethodException setMessage(String key) {
1339            return setMessage(key != null ? diags.fragment(key) : null);
1340        }
1341        InapplicableMethodException setMessage(String key, Object... args) {
1342            return setMessage(key != null ? diags.fragment(key, args) : null);
1343        }
1344        InapplicableMethodException setMessage(JCDiagnostic diag) {
1345            this.diagnostic = diag;
1346            return this;
1347        }
1348
1349        public JCDiagnostic getDiagnostic() {
1350            return diagnostic;
1351        }
1352    }
1353    private final InapplicableMethodException inapplicableMethodException;
1354
1355/* ***************************************************************************
1356 *  Symbol lookup
1357 *  the following naming conventions for arguments are used
1358 *
1359 *       env      is the environment where the symbol was mentioned
1360 *       site     is the type of which the symbol is a member
1361 *       name     is the symbol's name
1362 *                if no arguments are given
1363 *       argtypes are the value arguments, if we search for a method
1364 *
1365 *  If no symbol was found, a ResolveError detailing the problem is returned.
1366 ****************************************************************************/
1367
1368    /** Find field. Synthetic fields are always skipped.
1369     *  @param env     The current environment.
1370     *  @param site    The original type from where the selection takes place.
1371     *  @param name    The name of the field.
1372     *  @param c       The class to search for the field. This is always
1373     *                 a superclass or implemented interface of site's class.
1374     */
1375    Symbol findField(Env<AttrContext> env,
1376                     Type site,
1377                     Name name,
1378                     TypeSymbol c) {
1379        while (c.type.hasTag(TYPEVAR))
1380            c = c.type.getUpperBound().tsym;
1381        Symbol bestSoFar = varNotFound;
1382        Symbol sym;
1383        for (Symbol s : c.members().getSymbolsByName(name)) {
1384            if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1385                return isAccessible(env, site, s)
1386                    ? s : new AccessError(env, site, s);
1387            }
1388        }
1389        Type st = types.supertype(c.type);
1390        if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
1391            sym = findField(env, site, name, st.tsym);
1392            bestSoFar = bestOf(bestSoFar, sym);
1393        }
1394        for (List<Type> l = types.interfaces(c.type);
1395             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1396             l = l.tail) {
1397            sym = findField(env, site, name, l.head.tsym);
1398            if (bestSoFar.exists() && sym.exists() &&
1399                sym.owner != bestSoFar.owner)
1400                bestSoFar = new AmbiguityError(bestSoFar, sym);
1401            else
1402                bestSoFar = bestOf(bestSoFar, sym);
1403        }
1404        return bestSoFar;
1405    }
1406
1407    /** Resolve a field identifier, throw a fatal error if not found.
1408     *  @param pos       The position to use for error reporting.
1409     *  @param env       The environment current at the method invocation.
1410     *  @param site      The type of the qualifying expression, in which
1411     *                   identifier is searched.
1412     *  @param name      The identifier's name.
1413     */
1414    public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
1415                                          Type site, Name name) {
1416        Symbol sym = findField(env, site, name, site.tsym);
1417        if (sym.kind == VAR) return (VarSymbol)sym;
1418        else throw new FatalError(
1419                 diags.fragment("fatal.err.cant.locate.field",
1420                                name));
1421    }
1422
1423    /** Find unqualified variable or field with given name.
1424     *  Synthetic fields always skipped.
1425     *  @param env     The current environment.
1426     *  @param name    The name of the variable or field.
1427     */
1428    Symbol findVar(Env<AttrContext> env, Name name) {
1429        Symbol bestSoFar = varNotFound;
1430        Env<AttrContext> env1 = env;
1431        boolean staticOnly = false;
1432        while (env1.outer != null) {
1433            Symbol sym = null;
1434            if (isStatic(env1)) staticOnly = true;
1435            for (Symbol s : env1.info.scope.getSymbolsByName(name)) {
1436                if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1437                    sym = s;
1438                    break;
1439                }
1440            }
1441            if (sym == null) {
1442                sym = findField(env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
1443            }
1444            if (sym.exists()) {
1445                if (staticOnly &&
1446                    sym.kind == VAR &&
1447                    sym.owner.kind == TYP &&
1448                    (sym.flags() & STATIC) == 0)
1449                    return new StaticError(sym);
1450                else
1451                    return sym;
1452            } else {
1453                bestSoFar = bestOf(bestSoFar, sym);
1454            }
1455
1456            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1457            env1 = env1.outer;
1458        }
1459
1460        Symbol sym = findField(env, syms.predefClass.type, name, syms.predefClass);
1461        if (sym.exists())
1462            return sym;
1463        if (bestSoFar.exists())
1464            return bestSoFar;
1465
1466        Symbol origin = null;
1467        for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
1468            for (Symbol currentSymbol : sc.getSymbolsByName(name)) {
1469                if (currentSymbol.kind != VAR)
1470                    continue;
1471                // invariant: sym.kind == Symbol.Kind.VAR
1472                if (!bestSoFar.kind.isResolutionError() &&
1473                    currentSymbol.owner != bestSoFar.owner)
1474                    return new AmbiguityError(bestSoFar, currentSymbol);
1475                else if (!bestSoFar.kind.betterThan(VAR)) {
1476                    origin = sc.getOrigin(currentSymbol).owner;
1477                    bestSoFar = isAccessible(env, origin.type, currentSymbol)
1478                        ? currentSymbol : new AccessError(env, origin.type, currentSymbol);
1479                }
1480            }
1481            if (bestSoFar.exists()) break;
1482        }
1483        if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
1484            return bestSoFar.clone(origin);
1485        else
1486            return bestSoFar;
1487    }
1488
1489    Warner noteWarner = new Warner();
1490
1491    /** Select the best method for a call site among two choices.
1492     *  @param env              The current environment.
1493     *  @param site             The original type from where the
1494     *                          selection takes place.
1495     *  @param argtypes         The invocation's value arguments,
1496     *  @param typeargtypes     The invocation's type arguments,
1497     *  @param sym              Proposed new best match.
1498     *  @param bestSoFar        Previously found best match.
1499     *  @param allowBoxing Allow boxing conversions of arguments.
1500     *  @param useVarargs Box trailing arguments into an array for varargs.
1501     */
1502    @SuppressWarnings("fallthrough")
1503    Symbol selectBest(Env<AttrContext> env,
1504                      Type site,
1505                      List<Type> argtypes,
1506                      List<Type> typeargtypes,
1507                      Symbol sym,
1508                      Symbol bestSoFar,
1509                      boolean allowBoxing,
1510                      boolean useVarargs) {
1511        if (sym.kind == ERR ||
1512                !sym.isInheritedIn(site.tsym, types)) {
1513            return bestSoFar;
1514        } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
1515            return bestSoFar.kind.isResolutionError() ?
1516                    new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
1517                    bestSoFar;
1518        }
1519        Assert.check(!sym.kind.isResolutionError());
1520        try {
1521            types.noWarnings.clear();
1522            Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
1523                               allowBoxing, useVarargs, types.noWarnings);
1524            currentResolutionContext.addApplicableCandidate(sym, mt);
1525        } catch (InapplicableMethodException ex) {
1526            currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
1527            switch (bestSoFar.kind) {
1528                case ABSENT_MTH:
1529                    return new InapplicableSymbolError(currentResolutionContext);
1530                case WRONG_MTH:
1531                    bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1532                default:
1533                    return bestSoFar;
1534            }
1535        }
1536        if (!isAccessible(env, site, sym)) {
1537            return (bestSoFar.kind == ABSENT_MTH)
1538                ? new AccessError(env, site, sym)
1539                : bestSoFar;
1540        }
1541        return (bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS)
1542            ? sym
1543            : mostSpecific(argtypes, sym, bestSoFar, env, site, useVarargs);
1544    }
1545
1546    /* Return the most specific of the two methods for a call,
1547     *  given that both are accessible and applicable.
1548     *  @param m1               A new candidate for most specific.
1549     *  @param m2               The previous most specific candidate.
1550     *  @param env              The current environment.
1551     *  @param site             The original type from where the selection
1552     *                          takes place.
1553     *  @param allowBoxing Allow boxing conversions of arguments.
1554     *  @param useVarargs Box trailing arguments into an array for varargs.
1555     */
1556    Symbol mostSpecific(List<Type> argtypes, Symbol m1,
1557                        Symbol m2,
1558                        Env<AttrContext> env,
1559                        final Type site,
1560                        boolean useVarargs) {
1561        switch (m2.kind) {
1562        case MTH:
1563            if (m1 == m2) return m1;
1564            boolean m1SignatureMoreSpecific =
1565                    signatureMoreSpecific(argtypes, env, site, m1, m2, useVarargs);
1566            boolean m2SignatureMoreSpecific =
1567                    signatureMoreSpecific(argtypes, env, site, m2, m1, useVarargs);
1568            if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
1569                Type mt1 = types.memberType(site, m1);
1570                Type mt2 = types.memberType(site, m2);
1571                if (!types.overrideEquivalent(mt1, mt2))
1572                    return ambiguityError(m1, m2);
1573
1574                // same signature; select (a) the non-bridge method, or
1575                // (b) the one that overrides the other, or (c) the concrete
1576                // one, or (d) merge both abstract signatures
1577                if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
1578                    return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
1579
1580                // if one overrides or hides the other, use it
1581                TypeSymbol m1Owner = (TypeSymbol)m1.owner;
1582                TypeSymbol m2Owner = (TypeSymbol)m2.owner;
1583                if (types.asSuper(m1Owner.type, m2Owner) != null &&
1584                    ((m1.owner.flags_field & INTERFACE) == 0 ||
1585                     (m2.owner.flags_field & INTERFACE) != 0) &&
1586                    m1.overrides(m2, m1Owner, types, false))
1587                    return m1;
1588                if (types.asSuper(m2Owner.type, m1Owner) != null &&
1589                    ((m2.owner.flags_field & INTERFACE) == 0 ||
1590                     (m1.owner.flags_field & INTERFACE) != 0) &&
1591                    m2.overrides(m1, m2Owner, types, false))
1592                    return m2;
1593                boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
1594                boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
1595                if (m1Abstract && !m2Abstract) return m2;
1596                if (m2Abstract && !m1Abstract) return m1;
1597                // both abstract or both concrete
1598                return ambiguityError(m1, m2);
1599            }
1600            if (m1SignatureMoreSpecific) return m1;
1601            if (m2SignatureMoreSpecific) return m2;
1602            return ambiguityError(m1, m2);
1603        case AMBIGUOUS:
1604            //compare m1 to ambiguous methods in m2
1605            AmbiguityError e = (AmbiguityError)m2.baseSymbol();
1606            boolean m1MoreSpecificThanAnyAmbiguous = true;
1607            boolean allAmbiguousMoreSpecificThanM1 = true;
1608            for (Symbol s : e.ambiguousSyms) {
1609                Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, useVarargs);
1610                m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
1611                allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
1612            }
1613            if (m1MoreSpecificThanAnyAmbiguous)
1614                return m1;
1615            //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
1616            //more specific than m1, add it as a new ambiguous method:
1617            if (!allAmbiguousMoreSpecificThanM1)
1618                e.addAmbiguousSymbol(m1);
1619            return e;
1620        default:
1621            throw new AssertionError();
1622        }
1623    }
1624    //where
1625    private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean useVarargs) {
1626        noteWarner.clear();
1627        int maxLength = Math.max(
1628                            Math.max(m1.type.getParameterTypes().length(), actuals.length()),
1629                            m2.type.getParameterTypes().length());
1630        MethodResolutionContext prevResolutionContext = currentResolutionContext;
1631        try {
1632            currentResolutionContext = new MethodResolutionContext();
1633            currentResolutionContext.step = prevResolutionContext.step;
1634            currentResolutionContext.methodCheck =
1635                    prevResolutionContext.methodCheck.mostSpecificCheck(actuals);
1636            Type mst = instantiate(env, site, m2, null,
1637                    adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
1638                    false, useVarargs, noteWarner);
1639            return mst != null &&
1640                    !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
1641        } finally {
1642            currentResolutionContext = prevResolutionContext;
1643        }
1644    }
1645
1646    List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
1647        if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
1648            Type varargsElem = types.elemtype(args.last());
1649            if (varargsElem == null) {
1650                Assert.error("Bad varargs = " + args.last() + " " + msym);
1651            }
1652            List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
1653            while (newArgs.length() < length) {
1654                newArgs = newArgs.append(newArgs.last());
1655            }
1656            return newArgs;
1657        } else {
1658            return args;
1659        }
1660    }
1661    //where
1662    Type mostSpecificReturnType(Type mt1, Type mt2) {
1663        Type rt1 = mt1.getReturnType();
1664        Type rt2 = mt2.getReturnType();
1665
1666        if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
1667            //if both are generic methods, adjust return type ahead of subtyping check
1668            rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
1669        }
1670        //first use subtyping, then return type substitutability
1671        if (types.isSubtype(rt1, rt2)) {
1672            return mt1;
1673        } else if (types.isSubtype(rt2, rt1)) {
1674            return mt2;
1675        } else if (types.returnTypeSubstitutable(mt1, mt2)) {
1676            return mt1;
1677        } else if (types.returnTypeSubstitutable(mt2, mt1)) {
1678            return mt2;
1679        } else {
1680            return null;
1681        }
1682    }
1683    //where
1684    Symbol ambiguityError(Symbol m1, Symbol m2) {
1685        if (((m1.flags() | m2.flags()) & CLASH) != 0) {
1686            return (m1.flags() & CLASH) == 0 ? m1 : m2;
1687        } else {
1688            return new AmbiguityError(m1, m2);
1689        }
1690    }
1691
1692    Symbol findMethodInScope(Env<AttrContext> env,
1693            Type site,
1694            Name name,
1695            List<Type> argtypes,
1696            List<Type> typeargtypes,
1697            Scope sc,
1698            Symbol bestSoFar,
1699            boolean allowBoxing,
1700            boolean useVarargs,
1701            boolean abstractok) {
1702        for (Symbol s : sc.getSymbolsByName(name, new LookupFilter(abstractok))) {
1703            bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
1704                    bestSoFar, allowBoxing, useVarargs);
1705        }
1706        return bestSoFar;
1707    }
1708    //where
1709        class LookupFilter implements Filter<Symbol> {
1710
1711            boolean abstractOk;
1712
1713            LookupFilter(boolean abstractOk) {
1714                this.abstractOk = abstractOk;
1715            }
1716
1717            public boolean accepts(Symbol s) {
1718                long flags = s.flags();
1719                return s.kind == MTH &&
1720                        (flags & SYNTHETIC) == 0 &&
1721                        (abstractOk ||
1722                        (flags & DEFAULT) != 0 ||
1723                        (flags & ABSTRACT) == 0);
1724            }
1725        }
1726
1727    /** Find best qualified method matching given name, type and value
1728     *  arguments.
1729     *  @param env       The current environment.
1730     *  @param site      The original type from where the selection
1731     *                   takes place.
1732     *  @param name      The method's name.
1733     *  @param argtypes  The method's value arguments.
1734     *  @param typeargtypes The method's type arguments
1735     *  @param allowBoxing Allow boxing conversions of arguments.
1736     *  @param useVarargs Box trailing arguments into an array for varargs.
1737     */
1738    Symbol findMethod(Env<AttrContext> env,
1739                      Type site,
1740                      Name name,
1741                      List<Type> argtypes,
1742                      List<Type> typeargtypes,
1743                      boolean allowBoxing,
1744                      boolean useVarargs) {
1745        Symbol bestSoFar = methodNotFound;
1746        bestSoFar = findMethod(env,
1747                          site,
1748                          name,
1749                          argtypes,
1750                          typeargtypes,
1751                          site.tsym.type,
1752                          bestSoFar,
1753                          allowBoxing,
1754                          useVarargs);
1755        return bestSoFar;
1756    }
1757    // where
1758    private Symbol findMethod(Env<AttrContext> env,
1759                              Type site,
1760                              Name name,
1761                              List<Type> argtypes,
1762                              List<Type> typeargtypes,
1763                              Type intype,
1764                              Symbol bestSoFar,
1765                              boolean allowBoxing,
1766                              boolean useVarargs) {
1767        @SuppressWarnings({"unchecked","rawtypes"})
1768        List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
1769
1770        InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
1771        for (TypeSymbol s : superclasses(intype)) {
1772            bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1773                    s.members(), bestSoFar, allowBoxing, useVarargs, true);
1774            if (name == names.init) return bestSoFar;
1775            iphase = (iphase == null) ? null : iphase.update(s, this);
1776            if (iphase != null) {
1777                for (Type itype : types.interfaces(s.type)) {
1778                    itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
1779                }
1780            }
1781        }
1782
1783        Symbol concrete = bestSoFar.kind.isValid() &&
1784                (bestSoFar.flags() & ABSTRACT) == 0 ?
1785                bestSoFar : methodNotFound;
1786
1787        for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
1788            //keep searching for abstract methods
1789            for (Type itype : itypes[iphase2.ordinal()]) {
1790                if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
1791                if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
1792                        (itype.tsym.flags() & DEFAULT) == 0) continue;
1793                bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1794                        itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
1795                if (concrete != bestSoFar &&
1796                    concrete.kind.isValid() &&
1797                    bestSoFar.kind.isValid() &&
1798                        types.isSubSignature(concrete.type, bestSoFar.type)) {
1799                    //this is an hack - as javac does not do full membership checks
1800                    //most specific ends up comparing abstract methods that might have
1801                    //been implemented by some concrete method in a subclass and,
1802                    //because of raw override, it is possible for an abstract method
1803                    //to be more specific than the concrete method - so we need
1804                    //to explicitly call that out (see CR 6178365)
1805                    bestSoFar = concrete;
1806                }
1807            }
1808        }
1809        return bestSoFar;
1810    }
1811
1812    enum InterfaceLookupPhase {
1813        ABSTRACT_OK() {
1814            @Override
1815            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1816                //We should not look for abstract methods if receiver is a concrete class
1817                //(as concrete classes are expected to implement all abstracts coming
1818                //from superinterfaces)
1819                if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
1820                    return this;
1821                } else {
1822                    return DEFAULT_OK;
1823                }
1824            }
1825        },
1826        DEFAULT_OK() {
1827            @Override
1828            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1829                return this;
1830            }
1831        };
1832
1833        abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
1834    }
1835
1836    /**
1837     * Return an Iterable object to scan the superclasses of a given type.
1838     * It's crucial that the scan is done lazily, as we don't want to accidentally
1839     * access more supertypes than strictly needed (as this could trigger completion
1840     * errors if some of the not-needed supertypes are missing/ill-formed).
1841     */
1842    Iterable<TypeSymbol> superclasses(final Type intype) {
1843        return new Iterable<TypeSymbol>() {
1844            public Iterator<TypeSymbol> iterator() {
1845                return new Iterator<TypeSymbol>() {
1846
1847                    List<TypeSymbol> seen = List.nil();
1848                    TypeSymbol currentSym = symbolFor(intype);
1849                    TypeSymbol prevSym = null;
1850
1851                    public boolean hasNext() {
1852                        if (currentSym == syms.noSymbol) {
1853                            currentSym = symbolFor(types.supertype(prevSym.type));
1854                        }
1855                        return currentSym != null;
1856                    }
1857
1858                    public TypeSymbol next() {
1859                        prevSym = currentSym;
1860                        currentSym = syms.noSymbol;
1861                        Assert.check(prevSym != null || prevSym != syms.noSymbol);
1862                        return prevSym;
1863                    }
1864
1865                    public void remove() {
1866                        throw new UnsupportedOperationException();
1867                    }
1868
1869                    TypeSymbol symbolFor(Type t) {
1870                        if (!t.hasTag(CLASS) &&
1871                                !t.hasTag(TYPEVAR)) {
1872                            return null;
1873                        }
1874                        t = types.skipTypeVars(t, false);
1875                        if (seen.contains(t.tsym)) {
1876                            //degenerate case in which we have a circular
1877                            //class hierarchy - because of ill-formed classfiles
1878                            return null;
1879                        }
1880                        seen = seen.prepend(t.tsym);
1881                        return t.tsym;
1882                    }
1883                };
1884            }
1885        };
1886    }
1887
1888    /** Find unqualified method matching given name, type and value arguments.
1889     *  @param env       The current environment.
1890     *  @param name      The method's name.
1891     *  @param argtypes  The method's value arguments.
1892     *  @param typeargtypes  The method's type arguments.
1893     *  @param allowBoxing Allow boxing conversions of arguments.
1894     *  @param useVarargs Box trailing arguments into an array for varargs.
1895     */
1896    Symbol findFun(Env<AttrContext> env, Name name,
1897                   List<Type> argtypes, List<Type> typeargtypes,
1898                   boolean allowBoxing, boolean useVarargs) {
1899        Symbol bestSoFar = methodNotFound;
1900        Env<AttrContext> env1 = env;
1901        boolean staticOnly = false;
1902        while (env1.outer != null) {
1903            if (isStatic(env1)) staticOnly = true;
1904            Assert.check(env1.info.preferredTreeForDiagnostics == null);
1905            env1.info.preferredTreeForDiagnostics = env.tree;
1906            try {
1907                Symbol sym = findMethod(
1908                    env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
1909                    allowBoxing, useVarargs);
1910                if (sym.exists()) {
1911                    if (staticOnly &&
1912                        sym.kind == MTH &&
1913                        sym.owner.kind == TYP &&
1914                        (sym.flags() & STATIC) == 0) return new StaticError(sym);
1915                    else return sym;
1916                } else {
1917                    bestSoFar = bestOf(bestSoFar, sym);
1918                }
1919            } finally {
1920                env1.info.preferredTreeForDiagnostics = null;
1921            }
1922            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1923            env1 = env1.outer;
1924        }
1925
1926        Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
1927                                typeargtypes, allowBoxing, useVarargs);
1928        if (sym.exists())
1929            return sym;
1930
1931        for (Symbol currentSym : env.toplevel.namedImportScope.getSymbolsByName(name)) {
1932            Symbol origin = env.toplevel.namedImportScope.getOrigin(currentSym).owner;
1933            if (currentSym.kind == MTH) {
1934                if (currentSym.owner.type != origin.type)
1935                    currentSym = currentSym.clone(origin);
1936                if (!isAccessible(env, origin.type, currentSym))
1937                    currentSym = new AccessError(env, origin.type, currentSym);
1938                bestSoFar = selectBest(env, origin.type,
1939                                       argtypes, typeargtypes,
1940                                       currentSym, bestSoFar,
1941                                       allowBoxing, useVarargs);
1942            }
1943        }
1944        if (bestSoFar.exists())
1945            return bestSoFar;
1946
1947        for (Symbol currentSym : env.toplevel.starImportScope.getSymbolsByName(name)) {
1948            Symbol origin = env.toplevel.starImportScope.getOrigin(currentSym).owner;
1949            if (currentSym.kind == MTH) {
1950                if (currentSym.owner.type != origin.type)
1951                    currentSym = currentSym.clone(origin);
1952                if (!isAccessible(env, origin.type, currentSym))
1953                    currentSym = new AccessError(env, origin.type, currentSym);
1954                bestSoFar = selectBest(env, origin.type,
1955                                       argtypes, typeargtypes,
1956                                       currentSym, bestSoFar,
1957                                       allowBoxing, useVarargs);
1958            }
1959        }
1960        return bestSoFar;
1961    }
1962
1963    /** Load toplevel or member class with given fully qualified name and
1964     *  verify that it is accessible.
1965     *  @param env       The current environment.
1966     *  @param name      The fully qualified name of the class to be loaded.
1967     */
1968    Symbol loadClass(Env<AttrContext> env, Name name) {
1969        try {
1970            ClassSymbol c = finder.loadClass(env.toplevel.modle, name);
1971            return isAccessible(env, c) ? c : new AccessError(c);
1972        } catch (ClassFinder.BadClassFile err) {
1973            throw err;
1974        } catch (CompletionFailure ex) {
1975            //even if a class cannot be found in the current module and packages in modules it depends on that
1976            //are exported for any or this module, the class may exist internally in some of these modules,
1977            //or may exist in a module on which this module does not depend. Provide better diagnostic in
1978            //such cases by looking for the class in any module:
1979            for (ModuleSymbol ms : syms.getAllModules()) {
1980                //do not load currently unloaded classes, to avoid too eager completion of random things in other modules:
1981                ClassSymbol clazz = syms.getClass(ms, name);
1982
1983                if (clazz != null) {
1984                    return new AccessError(clazz);
1985                }
1986            }
1987            return typeNotFound;
1988        }
1989    }
1990
1991    /**
1992     * Find a type declared in a scope (not inherited).  Return null
1993     * if none is found.
1994     *  @param env       The current environment.
1995     *  @param site      The original type from where the selection takes
1996     *                   place.
1997     *  @param name      The type's name.
1998     *  @param c         The class to search for the member type. This is
1999     *                   always a superclass or implemented interface of
2000     *                   site's class.
2001     */
2002    Symbol findImmediateMemberType(Env<AttrContext> env,
2003                                   Type site,
2004                                   Name name,
2005                                   TypeSymbol c) {
2006        for (Symbol sym : c.members().getSymbolsByName(name)) {
2007            if (sym.kind == TYP) {
2008                return isAccessible(env, site, sym)
2009                    ? sym
2010                    : new AccessError(env, site, sym);
2011            }
2012        }
2013        return typeNotFound;
2014    }
2015
2016    /** Find a member type inherited from a superclass or interface.
2017     *  @param env       The current environment.
2018     *  @param site      The original type from where the selection takes
2019     *                   place.
2020     *  @param name      The type's name.
2021     *  @param c         The class to search for the member type. This is
2022     *                   always a superclass or implemented interface of
2023     *                   site's class.
2024     */
2025    Symbol findInheritedMemberType(Env<AttrContext> env,
2026                                   Type site,
2027                                   Name name,
2028                                   TypeSymbol c) {
2029        Symbol bestSoFar = typeNotFound;
2030        Symbol sym;
2031        Type st = types.supertype(c.type);
2032        if (st != null && st.hasTag(CLASS)) {
2033            sym = findMemberType(env, site, name, st.tsym);
2034            bestSoFar = bestOf(bestSoFar, sym);
2035        }
2036        for (List<Type> l = types.interfaces(c.type);
2037             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
2038             l = l.tail) {
2039            sym = findMemberType(env, site, name, l.head.tsym);
2040            if (!bestSoFar.kind.isResolutionError() &&
2041                !sym.kind.isResolutionError() &&
2042                sym.owner != bestSoFar.owner)
2043                bestSoFar = new AmbiguityError(bestSoFar, sym);
2044            else
2045                bestSoFar = bestOf(bestSoFar, sym);
2046        }
2047        return bestSoFar;
2048    }
2049
2050    /** Find qualified member type.
2051     *  @param env       The current environment.
2052     *  @param site      The original type from where the selection takes
2053     *                   place.
2054     *  @param name      The type's name.
2055     *  @param c         The class to search for the member type. This is
2056     *                   always a superclass or implemented interface of
2057     *                   site's class.
2058     */
2059    Symbol findMemberType(Env<AttrContext> env,
2060                          Type site,
2061                          Name name,
2062                          TypeSymbol c) {
2063        Symbol sym = findImmediateMemberType(env, site, name, c);
2064
2065        if (sym != typeNotFound)
2066            return sym;
2067
2068        return findInheritedMemberType(env, site, name, c);
2069
2070    }
2071
2072    /** Find a global type in given scope and load corresponding class.
2073     *  @param env       The current environment.
2074     *  @param scope     The scope in which to look for the type.
2075     *  @param name      The type's name.
2076     */
2077    Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
2078        Symbol bestSoFar = typeNotFound;
2079        for (Symbol s : scope.getSymbolsByName(name)) {
2080            Symbol sym = loadClass(env, s.flatName());
2081            if (bestSoFar.kind == TYP && sym.kind == TYP &&
2082                bestSoFar != sym)
2083                return new AmbiguityError(bestSoFar, sym);
2084            else
2085                bestSoFar = bestOf(bestSoFar, sym);
2086        }
2087        return bestSoFar;
2088    }
2089
2090    Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
2091        for (Symbol sym : env.info.scope.getSymbolsByName(name)) {
2092            if (sym.kind == TYP) {
2093                if (staticOnly &&
2094                    sym.type.hasTag(TYPEVAR) &&
2095                    sym.owner.kind == TYP)
2096                    return new StaticError(sym);
2097                return sym;
2098            }
2099        }
2100        return typeNotFound;
2101    }
2102
2103    /** Find an unqualified type symbol.
2104     *  @param env       The current environment.
2105     *  @param name      The type's name.
2106     */
2107    Symbol findType(Env<AttrContext> env, Name name) {
2108        if (name == names.empty)
2109            return typeNotFound; // do not allow inadvertent "lookup" of anonymous types
2110        Symbol bestSoFar = typeNotFound;
2111        Symbol sym;
2112        boolean staticOnly = false;
2113        for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
2114            if (isStatic(env1)) staticOnly = true;
2115            // First, look for a type variable and the first member type
2116            final Symbol tyvar = findTypeVar(env1, name, staticOnly);
2117            sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
2118                                          name, env1.enclClass.sym);
2119
2120            // Return the type variable if we have it, and have no
2121            // immediate member, OR the type variable is for a method.
2122            if (tyvar != typeNotFound) {
2123                if (env.baseClause || sym == typeNotFound ||
2124                    (tyvar.kind == TYP && tyvar.exists() &&
2125                     tyvar.owner.kind == MTH)) {
2126                    return tyvar;
2127                }
2128            }
2129
2130            // If the environment is a class def, finish up,
2131            // otherwise, do the entire findMemberType
2132            if (sym == typeNotFound)
2133                sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
2134                                              name, env1.enclClass.sym);
2135
2136            if (staticOnly && sym.kind == TYP &&
2137                sym.type.hasTag(CLASS) &&
2138                sym.type.getEnclosingType().hasTag(CLASS) &&
2139                env1.enclClass.sym.type.isParameterized() &&
2140                sym.type.getEnclosingType().isParameterized())
2141                return new StaticError(sym);
2142            else if (sym.exists()) return sym;
2143            else bestSoFar = bestOf(bestSoFar, sym);
2144
2145            JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
2146            if ((encl.sym.flags() & STATIC) != 0)
2147                staticOnly = true;
2148        }
2149
2150        if (!env.tree.hasTag(IMPORT)) {
2151            sym = findGlobalType(env, env.toplevel.namedImportScope, name);
2152            if (sym.exists()) return sym;
2153            else bestSoFar = bestOf(bestSoFar, sym);
2154
2155            sym = findGlobalType(env, env.toplevel.packge.members(), name);
2156            if (sym.exists()) return sym;
2157            else bestSoFar = bestOf(bestSoFar, sym);
2158
2159            sym = findGlobalType(env, env.toplevel.starImportScope, name);
2160            if (sym.exists()) return sym;
2161            else bestSoFar = bestOf(bestSoFar, sym);
2162        }
2163
2164        return bestSoFar;
2165    }
2166
2167    /** Find an unqualified identifier which matches a specified kind set.
2168     *  @param env       The current environment.
2169     *  @param name      The identifier's name.
2170     *  @param kind      Indicates the possible symbol kinds
2171     *                   (a subset of VAL, TYP, PCK).
2172     */
2173    Symbol findIdent(Env<AttrContext> env, Name name, KindSelector kind) {
2174        Symbol bestSoFar = typeNotFound;
2175        Symbol sym;
2176
2177        if (kind.contains(KindSelector.VAL)) {
2178            sym = findVar(env, name);
2179            if (sym.exists()) return sym;
2180            else bestSoFar = bestOf(bestSoFar, sym);
2181        }
2182
2183        if (kind.contains(KindSelector.TYP)) {
2184            sym = findType(env, name);
2185
2186            if (sym.exists()) return sym;
2187            else bestSoFar = bestOf(bestSoFar, sym);
2188        }
2189
2190        if (kind.contains(KindSelector.PCK))
2191            return syms.lookupPackage(env.toplevel.modle, name);
2192        else return bestSoFar;
2193    }
2194
2195    /** Find an identifier in a package which matches a specified kind set.
2196     *  @param env       The current environment.
2197     *  @param name      The identifier's name.
2198     *  @param kind      Indicates the possible symbol kinds
2199     *                   (a nonempty subset of TYP, PCK).
2200     */
2201    Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
2202                              Name name, KindSelector kind) {
2203        Name fullname = TypeSymbol.formFullName(name, pck);
2204        Symbol bestSoFar = typeNotFound;
2205        PackageSymbol pack = null;
2206        if (kind.contains(KindSelector.PCK)) {
2207            pack = syms.lookupPackage(env.toplevel.modle, fullname);
2208            if (pack.exists()) return pack;
2209        }
2210        if (kind.contains(KindSelector.TYP)) {
2211            Symbol sym = loadClass(env, fullname);
2212            if (sym.exists()) {
2213                // don't allow programs to use flatnames
2214                if (name == sym.name) return sym;
2215            }
2216            else bestSoFar = bestOf(bestSoFar, sym);
2217        }
2218        return (pack != null) ? pack : bestSoFar;
2219    }
2220
2221    /** Find an identifier among the members of a given type `site'.
2222     *  @param env       The current environment.
2223     *  @param site      The type containing the symbol to be found.
2224     *  @param name      The identifier's name.
2225     *  @param kind      Indicates the possible symbol kinds
2226     *                   (a subset of VAL, TYP).
2227     */
2228    Symbol findIdentInType(Env<AttrContext> env, Type site,
2229                           Name name, KindSelector kind) {
2230        Symbol bestSoFar = typeNotFound;
2231        Symbol sym;
2232        if (kind.contains(KindSelector.VAL)) {
2233            sym = findField(env, site, name, site.tsym);
2234            if (sym.exists()) return sym;
2235            else bestSoFar = bestOf(bestSoFar, sym);
2236        }
2237
2238        if (kind.contains(KindSelector.TYP)) {
2239            sym = findMemberType(env, site, name, site.tsym);
2240            if (sym.exists()) return sym;
2241            else bestSoFar = bestOf(bestSoFar, sym);
2242        }
2243        return bestSoFar;
2244    }
2245
2246/* ***************************************************************************
2247 *  Access checking
2248 *  The following methods convert ResolveErrors to ErrorSymbols, issuing
2249 *  an error message in the process
2250 ****************************************************************************/
2251
2252    /** If `sym' is a bad symbol: report error and return errSymbol
2253     *  else pass through unchanged,
2254     *  additional arguments duplicate what has been used in trying to find the
2255     *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
2256     *  expect misses to happen frequently.
2257     *
2258     *  @param sym       The symbol that was found, or a ResolveError.
2259     *  @param pos       The position to use for error reporting.
2260     *  @param location  The symbol the served as a context for this lookup
2261     *  @param site      The original type from where the selection took place.
2262     *  @param name      The symbol's name.
2263     *  @param qualified Did we get here through a qualified expression resolution?
2264     *  @param argtypes  The invocation's value arguments,
2265     *                   if we looked for a method.
2266     *  @param typeargtypes  The invocation's type arguments,
2267     *                   if we looked for a method.
2268     *  @param logResolveHelper helper class used to log resolve errors
2269     */
2270    Symbol accessInternal(Symbol sym,
2271                  DiagnosticPosition pos,
2272                  Symbol location,
2273                  Type site,
2274                  Name name,
2275                  boolean qualified,
2276                  List<Type> argtypes,
2277                  List<Type> typeargtypes,
2278                  LogResolveHelper logResolveHelper) {
2279        if (sym.kind.isResolutionError()) {
2280            ResolveError errSym = (ResolveError)sym.baseSymbol();
2281            sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
2282            argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
2283            if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
2284                logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
2285            }
2286        }
2287        return sym;
2288    }
2289
2290    /**
2291     * Variant of the generalized access routine, to be used for generating method
2292     * resolution diagnostics
2293     */
2294    Symbol accessMethod(Symbol sym,
2295                  DiagnosticPosition pos,
2296                  Symbol location,
2297                  Type site,
2298                  Name name,
2299                  boolean qualified,
2300                  List<Type> argtypes,
2301                  List<Type> typeargtypes) {
2302        return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
2303    }
2304
2305    /** Same as original accessMethod(), but without location.
2306     */
2307    Symbol accessMethod(Symbol sym,
2308                  DiagnosticPosition pos,
2309                  Type site,
2310                  Name name,
2311                  boolean qualified,
2312                  List<Type> argtypes,
2313                  List<Type> typeargtypes) {
2314        return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
2315    }
2316
2317    /**
2318     * Variant of the generalized access routine, to be used for generating variable,
2319     * type resolution diagnostics
2320     */
2321    Symbol accessBase(Symbol sym,
2322                  DiagnosticPosition pos,
2323                  Symbol location,
2324                  Type site,
2325                  Name name,
2326                  boolean qualified) {
2327        return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
2328    }
2329
2330    /** Same as original accessBase(), but without location.
2331     */
2332    Symbol accessBase(Symbol sym,
2333                  DiagnosticPosition pos,
2334                  Type site,
2335                  Name name,
2336                  boolean qualified) {
2337        return accessBase(sym, pos, site.tsym, site, name, qualified);
2338    }
2339
2340    interface LogResolveHelper {
2341        boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
2342        List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
2343    }
2344
2345    LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
2346        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2347            return !site.isErroneous();
2348        }
2349        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2350            return argtypes;
2351        }
2352    };
2353
2354    LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
2355        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2356            return !site.isErroneous() &&
2357                        !Type.isErroneous(argtypes) &&
2358                        (typeargtypes == null || !Type.isErroneous(typeargtypes));
2359        }
2360        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2361            return argtypes.map(new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
2362        }
2363    };
2364
2365    class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
2366
2367        public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
2368            deferredAttr.super(mode, msym, step);
2369        }
2370
2371        @Override
2372        protected Type typeOf(DeferredType dt) {
2373            Type res = super.typeOf(dt);
2374            if (!res.isErroneous()) {
2375                switch (TreeInfo.skipParens(dt.tree).getTag()) {
2376                    case LAMBDA:
2377                    case REFERENCE:
2378                        return dt;
2379                    case CONDEXPR:
2380                        return res == Type.recoveryType ?
2381                                dt : res;
2382                }
2383            }
2384            return res;
2385        }
2386    }
2387
2388    /** Check that sym is not an abstract method.
2389     */
2390    void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
2391        if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
2392            log.error(pos, "abstract.cant.be.accessed.directly",
2393                      kindName(sym), sym, sym.location());
2394    }
2395
2396/* ***************************************************************************
2397 *  Name resolution
2398 *  Naming conventions are as for symbol lookup
2399 *  Unlike the find... methods these methods will report access errors
2400 ****************************************************************************/
2401
2402    /** Resolve an unqualified (non-method) identifier.
2403     *  @param pos       The position to use for error reporting.
2404     *  @param env       The environment current at the identifier use.
2405     *  @param name      The identifier's name.
2406     *  @param kind      The set of admissible symbol kinds for the identifier.
2407     */
2408    Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
2409                        Name name, KindSelector kind) {
2410        return accessBase(
2411            findIdent(env, name, kind),
2412            pos, env.enclClass.sym.type, name, false);
2413    }
2414
2415    /** Resolve an unqualified method identifier.
2416     *  @param pos       The position to use for error reporting.
2417     *  @param env       The environment current at the method invocation.
2418     *  @param name      The identifier's name.
2419     *  @param argtypes  The types of the invocation's value arguments.
2420     *  @param typeargtypes  The types of the invocation's type arguments.
2421     */
2422    Symbol resolveMethod(DiagnosticPosition pos,
2423                         Env<AttrContext> env,
2424                         Name name,
2425                         List<Type> argtypes,
2426                         List<Type> typeargtypes) {
2427        return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
2428                new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
2429                    @Override
2430                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2431                        return findFun(env, name, argtypes, typeargtypes,
2432                                phase.isBoxingRequired(),
2433                                phase.isVarargsRequired());
2434                    }});
2435    }
2436
2437    /** Resolve a qualified method identifier
2438     *  @param pos       The position to use for error reporting.
2439     *  @param env       The environment current at the method invocation.
2440     *  @param site      The type of the qualifying expression, in which
2441     *                   identifier is searched.
2442     *  @param name      The identifier's name.
2443     *  @param argtypes  The types of the invocation's value arguments.
2444     *  @param typeargtypes  The types of the invocation's type arguments.
2445     */
2446    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2447                                  Type site, Name name, List<Type> argtypes,
2448                                  List<Type> typeargtypes) {
2449        return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
2450    }
2451    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2452                                  Symbol location, Type site, Name name, List<Type> argtypes,
2453                                  List<Type> typeargtypes) {
2454        return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
2455    }
2456    private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
2457                                  DiagnosticPosition pos, Env<AttrContext> env,
2458                                  Symbol location, Type site, Name name, List<Type> argtypes,
2459                                  List<Type> typeargtypes) {
2460        return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
2461            @Override
2462            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2463                return findMethod(env, site, name, argtypes, typeargtypes,
2464                        phase.isBoxingRequired(),
2465                        phase.isVarargsRequired());
2466            }
2467            @Override
2468            Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2469                if (sym.kind.isResolutionError()) {
2470                    sym = super.access(env, pos, location, sym);
2471                } else if (allowMethodHandles) {
2472                    MethodSymbol msym = (MethodSymbol)sym;
2473                    if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
2474                        return findPolymorphicSignatureInstance(env, sym, argtypes);
2475                    }
2476                }
2477                return sym;
2478            }
2479        });
2480    }
2481
2482    /** Find or create an implicit method of exactly the given type (after erasure).
2483     *  Searches in a side table, not the main scope of the site.
2484     *  This emulates the lookup process required by JSR 292 in JVM.
2485     *  @param env       Attribution environment
2486     *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
2487     *  @param argtypes  The required argument types
2488     */
2489    Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
2490                                            final Symbol spMethod,
2491                                            List<Type> argtypes) {
2492        Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
2493                (MethodSymbol)spMethod, currentResolutionContext, argtypes);
2494        for (Symbol sym : polymorphicSignatureScope.getSymbolsByName(spMethod.name)) {
2495            // Check that there is already a method symbol for the method
2496            // type and owner
2497            if (types.isSameType(mtype, sym.type) &&
2498                spMethod.owner == sym.owner) {
2499                return sym;
2500            }
2501        }
2502
2503        // Create the desired method
2504        // Retain static modifier is to support invocations to
2505        // MethodHandle.linkTo* methods
2506        long flags = ABSTRACT | HYPOTHETICAL |
2507                     spMethod.flags() & (Flags.AccessFlags | Flags.STATIC);
2508        Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
2509            @Override
2510            public Symbol baseSymbol() {
2511                return spMethod;
2512            }
2513        };
2514        if (!mtype.isErroneous()) { // Cache only if kosher.
2515            polymorphicSignatureScope.enter(msym);
2516        }
2517        return msym;
2518    }
2519
2520    /** Resolve a qualified method identifier, throw a fatal error if not
2521     *  found.
2522     *  @param pos       The position to use for error reporting.
2523     *  @param env       The environment current at the method invocation.
2524     *  @param site      The type of the qualifying expression, in which
2525     *                   identifier is searched.
2526     *  @param name      The identifier's name.
2527     *  @param argtypes  The types of the invocation's value arguments.
2528     *  @param typeargtypes  The types of the invocation's type arguments.
2529     */
2530    public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
2531                                        Type site, Name name,
2532                                        List<Type> argtypes,
2533                                        List<Type> typeargtypes) {
2534        MethodResolutionContext resolveContext = new MethodResolutionContext();
2535        resolveContext.internalResolution = true;
2536        Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
2537                site, name, argtypes, typeargtypes);
2538        if (sym.kind == MTH) return (MethodSymbol)sym;
2539        else throw new FatalError(
2540                 diags.fragment("fatal.err.cant.locate.meth",
2541                                name));
2542    }
2543
2544    /** Resolve constructor.
2545     *  @param pos       The position to use for error reporting.
2546     *  @param env       The environment current at the constructor invocation.
2547     *  @param site      The type of class for which a constructor is searched.
2548     *  @param argtypes  The types of the constructor invocation's value
2549     *                   arguments.
2550     *  @param typeargtypes  The types of the constructor invocation's type
2551     *                   arguments.
2552     */
2553    Symbol resolveConstructor(DiagnosticPosition pos,
2554                              Env<AttrContext> env,
2555                              Type site,
2556                              List<Type> argtypes,
2557                              List<Type> typeargtypes) {
2558        return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
2559    }
2560
2561    private Symbol resolveConstructor(MethodResolutionContext resolveContext,
2562                              final DiagnosticPosition pos,
2563                              Env<AttrContext> env,
2564                              Type site,
2565                              List<Type> argtypes,
2566                              List<Type> typeargtypes) {
2567        return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2568            @Override
2569            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2570                return findConstructor(pos, env, site, argtypes, typeargtypes,
2571                        phase.isBoxingRequired(),
2572                        phase.isVarargsRequired());
2573            }
2574        });
2575    }
2576
2577    /** Resolve a constructor, throw a fatal error if not found.
2578     *  @param pos       The position to use for error reporting.
2579     *  @param env       The environment current at the method invocation.
2580     *  @param site      The type to be constructed.
2581     *  @param argtypes  The types of the invocation's value arguments.
2582     *  @param typeargtypes  The types of the invocation's type arguments.
2583     */
2584    public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2585                                        Type site,
2586                                        List<Type> argtypes,
2587                                        List<Type> typeargtypes) {
2588        MethodResolutionContext resolveContext = new MethodResolutionContext();
2589        resolveContext.internalResolution = true;
2590        Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
2591        if (sym.kind == MTH) return (MethodSymbol)sym;
2592        else throw new FatalError(
2593                 diags.fragment("fatal.err.cant.locate.ctor", site));
2594    }
2595
2596    Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2597                              Type site, List<Type> argtypes,
2598                              List<Type> typeargtypes,
2599                              boolean allowBoxing,
2600                              boolean useVarargs) {
2601        Symbol sym = findMethod(env, site,
2602                                    names.init, argtypes,
2603                                    typeargtypes, allowBoxing,
2604                                    useVarargs);
2605        chk.checkDeprecated(pos, env.info.scope.owner, sym);
2606        return sym;
2607    }
2608
2609    /** Resolve constructor using diamond inference.
2610     *  @param pos       The position to use for error reporting.
2611     *  @param env       The environment current at the constructor invocation.
2612     *  @param site      The type of class for which a constructor is searched.
2613     *                   The scope of this class has been touched in attribution.
2614     *  @param argtypes  The types of the constructor invocation's value
2615     *                   arguments.
2616     *  @param typeargtypes  The types of the constructor invocation's type
2617     *                   arguments.
2618     */
2619    Symbol resolveDiamond(DiagnosticPosition pos,
2620                              Env<AttrContext> env,
2621                              Type site,
2622                              List<Type> argtypes,
2623                              List<Type> typeargtypes) {
2624        return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
2625                new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2626                    @Override
2627                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2628                        return findDiamond(env, site, argtypes, typeargtypes,
2629                                phase.isBoxingRequired(),
2630                                phase.isVarargsRequired());
2631                    }
2632                    @Override
2633                    Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2634                        if (sym.kind.isResolutionError()) {
2635                            if (sym.kind != WRONG_MTH &&
2636                                sym.kind != WRONG_MTHS) {
2637                                sym = super.access(env, pos, location, sym);
2638                            } else {
2639                                final JCDiagnostic details = sym.kind == WRONG_MTH ?
2640                                                ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
2641                                                null;
2642                                sym = new DiamondError(sym, currentResolutionContext);
2643                                sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
2644                                env.info.pendingResolutionPhase = currentResolutionContext.step;
2645                            }
2646                        }
2647                        return sym;
2648                    }});
2649    }
2650
2651    /** This method scans all the constructor symbol in a given class scope -
2652     *  assuming that the original scope contains a constructor of the kind:
2653     *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
2654     *  a method check is executed against the modified constructor type:
2655     *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
2656     *  inference. The inferred return type of the synthetic constructor IS
2657     *  the inferred type for the diamond operator.
2658     */
2659    private Symbol findDiamond(Env<AttrContext> env,
2660                              Type site,
2661                              List<Type> argtypes,
2662                              List<Type> typeargtypes,
2663                              boolean allowBoxing,
2664                              boolean useVarargs) {
2665        Symbol bestSoFar = methodNotFound;
2666        TypeSymbol tsym = site.tsym.isInterface() ? syms.objectType.tsym : site.tsym;
2667        for (final Symbol sym : tsym.members().getSymbolsByName(names.init)) {
2668            //- System.out.println(" e " + e.sym);
2669            if (sym.kind == MTH &&
2670                (sym.flags_field & SYNTHETIC) == 0) {
2671                    List<Type> oldParams = sym.type.hasTag(FORALL) ?
2672                            ((ForAll)sym.type).tvars :
2673                            List.<Type>nil();
2674                    Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
2675                                                 types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
2676                    MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
2677                        @Override
2678                        public Symbol baseSymbol() {
2679                            return sym;
2680                        }
2681                    };
2682                    bestSoFar = selectBest(env, site, argtypes, typeargtypes,
2683                            newConstr,
2684                            bestSoFar,
2685                            allowBoxing,
2686                            useVarargs);
2687            }
2688        }
2689        return bestSoFar;
2690    }
2691
2692    Symbol getMemberReference(DiagnosticPosition pos,
2693            Env<AttrContext> env,
2694            JCMemberReference referenceTree,
2695            Type site,
2696            Name name) {
2697
2698        site = types.capture(site);
2699
2700        ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
2701                referenceTree, site, name, List.<Type>nil(), null, VARARITY);
2702
2703        Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
2704        Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
2705                nilMethodCheck, lookupHelper);
2706
2707        env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
2708
2709        return sym;
2710    }
2711
2712    ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
2713                                  Type site,
2714                                  Name name,
2715                                  List<Type> argtypes,
2716                                  List<Type> typeargtypes,
2717                                  MethodResolutionPhase maxPhase) {
2718        if (!name.equals(names.init)) {
2719            //method reference
2720            return new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
2721        } else if (site.hasTag(ARRAY)) {
2722            //array constructor reference
2723            return new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2724        } else {
2725            //class constructor reference
2726            return new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2727        }
2728    }
2729
2730    /**
2731     * Resolution of member references is typically done as a single
2732     * overload resolution step, where the argument types A are inferred from
2733     * the target functional descriptor.
2734     *
2735     * If the member reference is a method reference with a type qualifier,
2736     * a two-step lookup process is performed. The first step uses the
2737     * expected argument list A, while the second step discards the first
2738     * type from A (which is treated as a receiver type).
2739     *
2740     * There are two cases in which inference is performed: (i) if the member
2741     * reference is a constructor reference and the qualifier type is raw - in
2742     * which case diamond inference is used to infer a parameterization for the
2743     * type qualifier; (ii) if the member reference is an unbound reference
2744     * where the type qualifier is raw - in that case, during the unbound lookup
2745     * the receiver argument type is used to infer an instantiation for the raw
2746     * qualifier type.
2747     *
2748     * When a multi-step resolution process is exploited, the process of picking
2749     * the resulting symbol is delegated to an helper class {@link com.sun.tools.javac.comp.Resolve.ReferenceChooser}.
2750     *
2751     * This routine returns a pair (T,S), where S is the member reference symbol,
2752     * and T is the type of the class in which S is defined. This is necessary as
2753     * the type T might be dynamically inferred (i.e. if constructor reference
2754     * has a raw qualifier).
2755     */
2756    Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
2757                                  JCMemberReference referenceTree,
2758                                  Type site,
2759                                  Name name,
2760                                  List<Type> argtypes,
2761                                  List<Type> typeargtypes,
2762                                  MethodCheck methodCheck,
2763                                  InferenceContext inferenceContext,
2764                                  ReferenceChooser referenceChooser) {
2765
2766        //step 1 - bound lookup
2767        ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
2768                referenceTree, site, name, argtypes, typeargtypes, VARARITY);
2769        Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
2770        MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
2771        boundSearchResolveContext.methodCheck = methodCheck;
2772        Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(),
2773                site.tsym, boundSearchResolveContext, boundLookupHelper);
2774        ReferenceLookupResult boundRes = new ReferenceLookupResult(boundSym, boundSearchResolveContext);
2775
2776        //step 2 - unbound lookup
2777        Symbol unboundSym = methodNotFound;
2778        Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
2779        ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
2780        ReferenceLookupResult unboundRes = referenceNotFound;
2781        if (unboundLookupHelper != null) {
2782            MethodResolutionContext unboundSearchResolveContext =
2783                    new MethodResolutionContext();
2784            unboundSearchResolveContext.methodCheck = methodCheck;
2785            unboundSym = lookupMethod(unboundEnv, env.tree.pos(),
2786                    site.tsym, unboundSearchResolveContext, unboundLookupHelper);
2787            unboundRes = new ReferenceLookupResult(unboundSym, unboundSearchResolveContext);
2788        }
2789
2790        //merge results
2791        Pair<Symbol, ReferenceLookupHelper> res;
2792        Symbol bestSym = referenceChooser.result(boundRes, unboundRes);
2793        res = new Pair<>(bestSym,
2794                bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
2795        env.info.pendingResolutionPhase = bestSym == unboundSym ?
2796                unboundEnv.info.pendingResolutionPhase :
2797                boundEnv.info.pendingResolutionPhase;
2798
2799        return res;
2800    }
2801
2802    /**
2803     * This class is used to represent a method reference lookup result. It keeps track of two
2804     * things: (i) the symbol found during a method reference lookup and (ii) the static kind
2805     * of the lookup (see {@link com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind}).
2806     */
2807    static class ReferenceLookupResult {
2808
2809        /**
2810         * Static kind associated with a method reference lookup. Erroneous lookups end up with
2811         * the UNDEFINED kind; successful lookups will end up with either STATIC, NON_STATIC,
2812         * depending on whether all applicable candidates are static or non-static methods,
2813         * respectively. If a successful lookup has both static and non-static applicable methods,
2814         * its kind is set to BOTH.
2815         */
2816        enum StaticKind {
2817            STATIC,
2818            NON_STATIC,
2819            BOTH,
2820            UNDEFINED;
2821
2822            /**
2823             * Retrieve the static kind associated with a given (method) symbol.
2824             */
2825            static StaticKind from(Symbol s) {
2826                return s.isStatic() ?
2827                        STATIC : NON_STATIC;
2828            }
2829
2830            /**
2831             * Merge two static kinds together.
2832             */
2833            static StaticKind reduce(StaticKind sk1, StaticKind sk2) {
2834                if (sk1 == UNDEFINED) {
2835                    return sk2;
2836                } else if (sk2 == UNDEFINED) {
2837                    return sk1;
2838                } else {
2839                    return sk1 == sk2 ? sk1 : BOTH;
2840                }
2841            }
2842        }
2843
2844        /** The static kind. */
2845        StaticKind staticKind;
2846
2847        /** The lookup result. */
2848        Symbol sym;
2849
2850        ReferenceLookupResult(Symbol sym, MethodResolutionContext resolutionContext) {
2851            this.staticKind = staticKind(sym, resolutionContext);
2852            this.sym = sym;
2853        }
2854
2855        private StaticKind staticKind(Symbol sym, MethodResolutionContext resolutionContext) {
2856            switch (sym.kind) {
2857                case MTH:
2858                case AMBIGUOUS:
2859                    return resolutionContext.candidates.stream()
2860                            .filter(c -> c.isApplicable() && c.step == resolutionContext.step)
2861                            .map(c -> StaticKind.from(c.sym))
2862                            .reduce(StaticKind::reduce)
2863                            .orElse(StaticKind.UNDEFINED);
2864                default:
2865                    return StaticKind.UNDEFINED;
2866            }
2867        }
2868
2869        /**
2870         * Does this result corresponds to a successful lookup (i.e. one where a method has been found?)
2871         */
2872        boolean isSuccess() {
2873            return staticKind != StaticKind.UNDEFINED;
2874        }
2875
2876        /**
2877         * Does this result have given static kind?
2878         */
2879        boolean hasKind(StaticKind sk) {
2880            return this.staticKind == sk;
2881        }
2882
2883        /**
2884         * Error recovery helper: can this lookup result be ignored (for the purpose of returning
2885         * some 'better' result) ?
2886         */
2887        boolean canIgnore() {
2888            switch (sym.kind) {
2889                case ABSENT_MTH:
2890                    return true;
2891                case WRONG_MTH:
2892                    InapplicableSymbolError errSym =
2893                            (InapplicableSymbolError)sym.baseSymbol();
2894                    return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
2895                            .matches(errSym.errCandidate().snd);
2896                case WRONG_MTHS:
2897                    InapplicableSymbolsError errSyms =
2898                            (InapplicableSymbolsError)sym.baseSymbol();
2899                    return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
2900                default:
2901                    return false;
2902            }
2903        }
2904    }
2905
2906    /**
2907     * This abstract class embodies the logic that converts one (bound lookup) or two (unbound lookup)
2908     * {@code ReferenceLookupResult} objects into a (@code Symbol), which is then regarded as the
2909     * result of method reference resolution.
2910     */
2911    abstract class ReferenceChooser {
2912        /**
2913         * Generate a result from a pair of lookup result objects. This method delegates to the
2914         * appropriate result generation routine.
2915         */
2916        Symbol result(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2917            return unboundRes != referenceNotFound ?
2918                    unboundResult(boundRes, unboundRes) :
2919                    boundResult(boundRes);
2920        }
2921
2922        /**
2923         * Generate a symbol from a given bound lookup result.
2924         */
2925        abstract Symbol boundResult(ReferenceLookupResult boundRes);
2926
2927        /**
2928         * Generate a symbol from a pair of bound/unbound lookup results.
2929         */
2930        abstract Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes);
2931    }
2932
2933    /**
2934     * This chooser implements the selection strategy used during a full lookup; this logic
2935     * is described in JLS SE 8 (15.3.2).
2936     */
2937    ReferenceChooser basicReferenceChooser = new ReferenceChooser() {
2938
2939        @Override
2940        Symbol boundResult(ReferenceLookupResult boundRes) {
2941            return !boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC) ?
2942                    boundRes.sym : //the search produces a non-static method
2943                    new BadMethodReferenceError(boundRes.sym, false);
2944        }
2945
2946        @Override
2947        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2948            if (boundRes.hasKind(StaticKind.STATIC) &&
2949                    (!unboundRes.isSuccess() || unboundRes.hasKind(StaticKind.STATIC))) {
2950                //the first search produces a static method and no non-static method is applicable
2951                //during the second search
2952                return boundRes.sym;
2953            } else if (unboundRes.hasKind(StaticKind.NON_STATIC) &&
2954                    (!boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC))) {
2955                //the second search produces a non-static method and no static method is applicable
2956                //during the first search
2957                return unboundRes.sym;
2958            } else if (boundRes.isSuccess() && unboundRes.isSuccess()) {
2959                //both searches produce some result; ambiguity (error recovery)
2960                return ambiguityError(boundRes.sym, unboundRes.sym);
2961            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
2962                //Both searches failed to produce a result with correct staticness (i.e. first search
2963                //produces an non-static method). Alternatively, a given search produced a result
2964                //with the right staticness, but the other search has applicable methods with wrong
2965                //staticness (error recovery)
2966                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
2967            } else {
2968                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
2969                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
2970                        unboundRes.sym : boundRes.sym;
2971            }
2972        }
2973    };
2974
2975    /**
2976     * This chooser implements the selection strategy used during an arity-based lookup; this logic
2977     * is described in JLS SE 8 (15.12.2.1).
2978     */
2979    ReferenceChooser structuralReferenceChooser = new ReferenceChooser() {
2980
2981        @Override
2982        Symbol boundResult(ReferenceLookupResult boundRes) {
2983            return (!boundRes.isSuccess() || !boundRes.hasKind(StaticKind.STATIC)) ?
2984                    boundRes.sym : //the search has at least one applicable non-static method
2985                    new BadMethodReferenceError(boundRes.sym, false);
2986        }
2987
2988        @Override
2989        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2990            if (boundRes.isSuccess() && !boundRes.hasKind(StaticKind.NON_STATIC)) {
2991                //the first serach has at least one applicable static method
2992                return boundRes.sym;
2993            } else if (unboundRes.isSuccess() && !unboundRes.hasKind(StaticKind.STATIC)) {
2994                //the second search has at least one applicable non-static method
2995                return unboundRes.sym;
2996            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
2997                //either the first search produces a non-static method, or second search produces
2998                //a non-static method (error recovery)
2999                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
3000            } else {
3001                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
3002                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
3003                        unboundRes.sym : boundRes.sym;
3004            }
3005        }
3006    };
3007
3008    /**
3009     * Helper for defining custom method-like lookup logic; a lookup helper
3010     * provides hooks for (i) the actual lookup logic and (ii) accessing the
3011     * lookup result (this step might result in compiler diagnostics to be generated)
3012     */
3013    abstract class LookupHelper {
3014
3015        /** name of the symbol to lookup */
3016        Name name;
3017
3018        /** location in which the lookup takes place */
3019        Type site;
3020
3021        /** actual types used during the lookup */
3022        List<Type> argtypes;
3023
3024        /** type arguments used during the lookup */
3025        List<Type> typeargtypes;
3026
3027        /** Max overload resolution phase handled by this helper */
3028        MethodResolutionPhase maxPhase;
3029
3030        LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3031            this.name = name;
3032            this.site = site;
3033            this.argtypes = argtypes;
3034            this.typeargtypes = typeargtypes;
3035            this.maxPhase = maxPhase;
3036        }
3037
3038        /**
3039         * Should lookup stop at given phase with given result
3040         */
3041        final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
3042            return phase.ordinal() > maxPhase.ordinal() ||
3043                !sym.kind.isResolutionError() || sym.kind == AMBIGUOUS;
3044        }
3045
3046        /**
3047         * Search for a symbol under a given overload resolution phase - this method
3048         * is usually called several times, once per each overload resolution phase
3049         */
3050        abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
3051
3052        /**
3053         * Dump overload resolution info
3054         */
3055        void debug(DiagnosticPosition pos, Symbol sym) {
3056            //do nothing
3057        }
3058
3059        /**
3060         * Validate the result of the lookup
3061         */
3062        abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
3063    }
3064
3065    abstract class BasicLookupHelper extends LookupHelper {
3066
3067        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
3068            this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
3069        }
3070
3071        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3072            super(name, site, argtypes, typeargtypes, maxPhase);
3073        }
3074
3075        @Override
3076        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3077            Symbol sym = doLookup(env, phase);
3078            if (sym.kind == AMBIGUOUS) {
3079                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3080                sym = a_err.mergeAbstracts(site);
3081            }
3082            return sym;
3083        }
3084
3085        abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
3086
3087        @Override
3088        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3089            if (sym.kind.isResolutionError()) {
3090                //if nothing is found return the 'first' error
3091                sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
3092            }
3093            return sym;
3094        }
3095
3096        @Override
3097        void debug(DiagnosticPosition pos, Symbol sym) {
3098            reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
3099        }
3100    }
3101
3102    /**
3103     * Helper class for member reference lookup. A reference lookup helper
3104     * defines the basic logic for member reference lookup; a method gives
3105     * access to an 'unbound' helper used to perform an unbound member
3106     * reference lookup.
3107     */
3108    abstract class ReferenceLookupHelper extends LookupHelper {
3109
3110        /** The member reference tree */
3111        JCMemberReference referenceTree;
3112
3113        ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3114                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3115            super(name, site, argtypes, typeargtypes, maxPhase);
3116            this.referenceTree = referenceTree;
3117        }
3118
3119        /**
3120         * Returns an unbound version of this lookup helper. By default, this
3121         * method returns an dummy lookup helper.
3122         */
3123        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3124            return null;
3125        }
3126
3127        /**
3128         * Get the kind of the member reference
3129         */
3130        abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
3131
3132        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3133            if (sym.kind == AMBIGUOUS) {
3134                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3135                sym = a_err.mergeAbstracts(site);
3136            }
3137            //skip error reporting
3138            return sym;
3139        }
3140    }
3141
3142    /**
3143     * Helper class for method reference lookup. The lookup logic is based
3144     * upon Resolve.findMethod; in certain cases, this helper class has a
3145     * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
3146     * In such cases, non-static lookup results are thrown away.
3147     */
3148    class MethodReferenceLookupHelper extends ReferenceLookupHelper {
3149
3150        /** The original method reference lookup site. */
3151        Type originalSite;
3152
3153        MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3154                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3155            super(referenceTree, name, types.skipTypeVars(site, true), argtypes, typeargtypes, maxPhase);
3156            this.originalSite = site;
3157        }
3158
3159        @Override
3160        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3161            return findMethod(env, site, name, argtypes, typeargtypes,
3162                    phase.isBoxingRequired(), phase.isVarargsRequired());
3163        }
3164
3165        @Override
3166        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3167            if (TreeInfo.isStaticSelector(referenceTree.expr, names)) {
3168                if (argtypes.nonEmpty() &&
3169                        (argtypes.head.hasTag(NONE) ||
3170                        types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), site))) {
3171                    return new UnboundMethodReferenceLookupHelper(referenceTree, name,
3172                            originalSite, argtypes, typeargtypes, maxPhase);
3173                } else {
3174                    return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
3175                        @Override
3176                        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3177                            return this;
3178                        }
3179
3180                        @Override
3181                        Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3182                            return methodNotFound;
3183                        }
3184
3185                        @Override
3186                        ReferenceKind referenceKind(Symbol sym) {
3187                            Assert.error();
3188                            return null;
3189                        }
3190                    };
3191                }
3192            } else {
3193                return super.unboundLookup(inferenceContext);
3194            }
3195        }
3196
3197        @Override
3198        ReferenceKind referenceKind(Symbol sym) {
3199            if (sym.isStatic()) {
3200                return ReferenceKind.STATIC;
3201            } else {
3202                Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
3203                return selName != null && selName == names._super ?
3204                        ReferenceKind.SUPER :
3205                        ReferenceKind.BOUND;
3206            }
3207        }
3208    }
3209
3210    /**
3211     * Helper class for unbound method reference lookup. Essentially the same
3212     * as the basic method reference lookup helper; main difference is that static
3213     * lookup results are thrown away. If qualifier type is raw, an attempt to
3214     * infer a parameterized type is made using the first actual argument (that
3215     * would otherwise be ignored during the lookup).
3216     */
3217    class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
3218
3219        UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3220                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3221            super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
3222            if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
3223                Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
3224                this.site = types.skipTypeVars(asSuperSite, true);
3225            }
3226        }
3227
3228        @Override
3229        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3230            return this;
3231        }
3232
3233        @Override
3234        ReferenceKind referenceKind(Symbol sym) {
3235            return ReferenceKind.UNBOUND;
3236        }
3237    }
3238
3239    /**
3240     * Helper class for array constructor lookup; an array constructor lookup
3241     * is simulated by looking up a method that returns the array type specified
3242     * as qualifier, and that accepts a single int parameter (size of the array).
3243     */
3244    class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3245
3246        ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3247                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3248            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3249        }
3250
3251        @Override
3252        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3253            WriteableScope sc = WriteableScope.create(syms.arrayClass);
3254            MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
3255            arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
3256            sc.enter(arrayConstr);
3257            return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false);
3258        }
3259
3260        @Override
3261        ReferenceKind referenceKind(Symbol sym) {
3262            return ReferenceKind.ARRAY_CTOR;
3263        }
3264    }
3265
3266    /**
3267     * Helper class for constructor reference lookup. The lookup logic is based
3268     * upon either Resolve.findMethod or Resolve.findDiamond - depending on
3269     * whether the constructor reference needs diamond inference (this is the case
3270     * if the qualifier type is raw). A special erroneous symbol is returned
3271     * if the lookup returns the constructor of an inner class and there's no
3272     * enclosing instance in scope.
3273     */
3274    class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3275
3276        boolean needsInference;
3277
3278        ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3279                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3280            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3281            if (site.isRaw()) {
3282                this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym, site.getMetadata());
3283                needsInference = true;
3284            }
3285        }
3286
3287        @Override
3288        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3289            Symbol sym = needsInference ?
3290                findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
3291                findMethod(env, site, name, argtypes, typeargtypes,
3292                        phase.isBoxingRequired(), phase.isVarargsRequired());
3293            return enclosingInstanceMissing(env, site) ? new BadConstructorReferenceError(sym) : sym;
3294        }
3295
3296        @Override
3297        ReferenceKind referenceKind(Symbol sym) {
3298            return site.getEnclosingType().hasTag(NONE) ?
3299                    ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
3300        }
3301    }
3302
3303    /**
3304     * Main overload resolution routine. On each overload resolution step, a
3305     * lookup helper class is used to perform the method/constructor lookup;
3306     * at the end of the lookup, the helper is used to validate the results
3307     * (this last step might trigger overload resolution diagnostics).
3308     */
3309    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
3310        MethodResolutionContext resolveContext = new MethodResolutionContext();
3311        resolveContext.methodCheck = methodCheck;
3312        return lookupMethod(env, pos, location, resolveContext, lookupHelper);
3313    }
3314
3315    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
3316            MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
3317        MethodResolutionContext prevResolutionContext = currentResolutionContext;
3318        try {
3319            Symbol bestSoFar = methodNotFound;
3320            currentResolutionContext = resolveContext;
3321            for (MethodResolutionPhase phase : methodResolutionSteps) {
3322                if (lookupHelper.shouldStop(bestSoFar, phase))
3323                    break;
3324                MethodResolutionPhase prevPhase = currentResolutionContext.step;
3325                Symbol prevBest = bestSoFar;
3326                currentResolutionContext.step = phase;
3327                Symbol sym = lookupHelper.lookup(env, phase);
3328                lookupHelper.debug(pos, sym);
3329                bestSoFar = phase.mergeResults(bestSoFar, sym);
3330                env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
3331            }
3332            return lookupHelper.access(env, pos, location, bestSoFar);
3333        } finally {
3334            currentResolutionContext = prevResolutionContext;
3335        }
3336    }
3337
3338    /**
3339     * Resolve `c.name' where name == this or name == super.
3340     * @param pos           The position to use for error reporting.
3341     * @param env           The environment current at the expression.
3342     * @param c             The qualifier.
3343     * @param name          The identifier's name.
3344     */
3345    Symbol resolveSelf(DiagnosticPosition pos,
3346                       Env<AttrContext> env,
3347                       TypeSymbol c,
3348                       Name name) {
3349        Env<AttrContext> env1 = env;
3350        boolean staticOnly = false;
3351        while (env1.outer != null) {
3352            if (isStatic(env1)) staticOnly = true;
3353            if (env1.enclClass.sym == c) {
3354                Symbol sym = env1.info.scope.findFirst(name);
3355                if (sym != null) {
3356                    if (staticOnly) sym = new StaticError(sym);
3357                    return accessBase(sym, pos, env.enclClass.sym.type,
3358                                  name, true);
3359                }
3360            }
3361            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
3362            env1 = env1.outer;
3363        }
3364        if (c.isInterface() &&
3365            name == names._super && !isStatic(env) &&
3366            types.isDirectSuperInterface(c, env.enclClass.sym)) {
3367            //this might be a default super call if one of the superinterfaces is 'c'
3368            for (Type t : pruneInterfaces(env.enclClass.type)) {
3369                if (t.tsym == c) {
3370                    env.info.defaultSuperCallSite = t;
3371                    return new VarSymbol(0, names._super,
3372                            types.asSuper(env.enclClass.type, c), env.enclClass.sym);
3373                }
3374            }
3375            //find a direct superinterface that is a subtype of 'c'
3376            for (Type i : types.interfaces(env.enclClass.type)) {
3377                if (i.tsym.isSubClass(c, types) && i.tsym != c) {
3378                    log.error(pos, "illegal.default.super.call", c,
3379                            diags.fragment("redundant.supertype", c, i));
3380                    return syms.errSymbol;
3381                }
3382            }
3383            Assert.error();
3384        }
3385        log.error(pos, "not.encl.class", c);
3386        return syms.errSymbol;
3387    }
3388    //where
3389    private List<Type> pruneInterfaces(Type t) {
3390        ListBuffer<Type> result = new ListBuffer<>();
3391        for (Type t1 : types.interfaces(t)) {
3392            boolean shouldAdd = true;
3393            for (Type t2 : types.interfaces(t)) {
3394                if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
3395                    shouldAdd = false;
3396                }
3397            }
3398            if (shouldAdd) {
3399                result.append(t1);
3400            }
3401        }
3402        return result.toList();
3403    }
3404
3405
3406    /**
3407     * Resolve `c.this' for an enclosing class c that contains the
3408     * named member.
3409     * @param pos           The position to use for error reporting.
3410     * @param env           The environment current at the expression.
3411     * @param member        The member that must be contained in the result.
3412     */
3413    Symbol resolveSelfContaining(DiagnosticPosition pos,
3414                                 Env<AttrContext> env,
3415                                 Symbol member,
3416                                 boolean isSuperCall) {
3417        Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
3418        if (sym == null) {
3419            log.error(pos, "encl.class.required", member);
3420            return syms.errSymbol;
3421        } else {
3422            return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
3423        }
3424    }
3425
3426    boolean enclosingInstanceMissing(Env<AttrContext> env, Type type) {
3427        if (type.hasTag(CLASS) && type.getEnclosingType().hasTag(CLASS)) {
3428            Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
3429            return encl == null || encl.kind.isResolutionError();
3430        }
3431        return false;
3432    }
3433
3434    private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
3435                                 Symbol member,
3436                                 boolean isSuperCall) {
3437        Name name = names._this;
3438        Env<AttrContext> env1 = isSuperCall ? env.outer : env;
3439        boolean staticOnly = false;
3440        if (env1 != null) {
3441            while (env1 != null && env1.outer != null) {
3442                if (isStatic(env1)) staticOnly = true;
3443                if (env1.enclClass.sym.isSubClass(member.owner.enclClass(), types)) {
3444                    Symbol sym = env1.info.scope.findFirst(name);
3445                    if (sym != null) {
3446                        if (staticOnly) sym = new StaticError(sym);
3447                        return sym;
3448                    }
3449                }
3450                if ((env1.enclClass.sym.flags() & STATIC) != 0)
3451                    staticOnly = true;
3452                env1 = env1.outer;
3453            }
3454        }
3455        return null;
3456    }
3457
3458    /**
3459     * Resolve an appropriate implicit this instance for t's container.
3460     * JLS 8.8.5.1 and 15.9.2
3461     */
3462    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
3463        return resolveImplicitThis(pos, env, t, false);
3464    }
3465
3466    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
3467        Type thisType = (t.tsym.owner.kind.matches(KindSelector.VAL_MTH)
3468                         ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
3469                         : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
3470        if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
3471            log.error(pos, "cant.ref.before.ctor.called", "this");
3472        return thisType;
3473    }
3474
3475/* ***************************************************************************
3476 *  ResolveError classes, indicating error situations when accessing symbols
3477 ****************************************************************************/
3478
3479    //used by TransTypes when checking target type of synthetic cast
3480    public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
3481        AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
3482        logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
3483    }
3484    //where
3485    private void logResolveError(ResolveError error,
3486            DiagnosticPosition pos,
3487            Symbol location,
3488            Type site,
3489            Name name,
3490            List<Type> argtypes,
3491            List<Type> typeargtypes) {
3492        JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3493                pos, location, site, name, argtypes, typeargtypes);
3494        if (d != null) {
3495            d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
3496            log.report(d);
3497        }
3498    }
3499
3500    private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
3501
3502    public Object methodArguments(List<Type> argtypes) {
3503        if (argtypes == null || argtypes.isEmpty()) {
3504            return noArgs;
3505        } else {
3506            ListBuffer<Object> diagArgs = new ListBuffer<>();
3507            for (Type t : argtypes) {
3508                if (t.hasTag(DEFERRED)) {
3509                    diagArgs.append(((DeferredAttr.DeferredType)t).tree);
3510                } else {
3511                    diagArgs.append(t);
3512                }
3513            }
3514            return diagArgs;
3515        }
3516    }
3517
3518    /**
3519     * Root class for resolution errors. Subclass of ResolveError
3520     * represent a different kinds of resolution error - as such they must
3521     * specify how they map into concrete compiler diagnostics.
3522     */
3523    abstract class ResolveError extends Symbol {
3524
3525        /** The name of the kind of error, for debugging only. */
3526        final String debugName;
3527
3528        ResolveError(Kind kind, String debugName) {
3529            super(kind, 0, null, null, null);
3530            this.debugName = debugName;
3531        }
3532
3533        @Override @DefinedBy(Api.LANGUAGE_MODEL)
3534        public <R, P> R accept(ElementVisitor<R, P> v, P p) {
3535            throw new AssertionError();
3536        }
3537
3538        @Override
3539        public String toString() {
3540            return debugName;
3541        }
3542
3543        @Override
3544        public boolean exists() {
3545            return false;
3546        }
3547
3548        @Override
3549        public boolean isStatic() {
3550            return false;
3551        }
3552
3553        /**
3554         * Create an external representation for this erroneous symbol to be
3555         * used during attribution - by default this returns the symbol of a
3556         * brand new error type which stores the original type found
3557         * during resolution.
3558         *
3559         * @param name     the name used during resolution
3560         * @param location the location from which the symbol is accessed
3561         */
3562        protected Symbol access(Name name, TypeSymbol location) {
3563            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3564        }
3565
3566        /**
3567         * Create a diagnostic representing this resolution error.
3568         *
3569         * @param dkind     The kind of the diagnostic to be created (e.g error).
3570         * @param pos       The position to be used for error reporting.
3571         * @param site      The original type from where the selection took place.
3572         * @param name      The name of the symbol to be resolved.
3573         * @param argtypes  The invocation's value arguments,
3574         *                  if we looked for a method.
3575         * @param typeargtypes  The invocation's type arguments,
3576         *                      if we looked for a method.
3577         */
3578        abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3579                DiagnosticPosition pos,
3580                Symbol location,
3581                Type site,
3582                Name name,
3583                List<Type> argtypes,
3584                List<Type> typeargtypes);
3585    }
3586
3587    /**
3588     * This class is the root class of all resolution errors caused by
3589     * an invalid symbol being found during resolution.
3590     */
3591    abstract class InvalidSymbolError extends ResolveError {
3592
3593        /** The invalid symbol found during resolution */
3594        Symbol sym;
3595
3596        InvalidSymbolError(Kind kind, Symbol sym, String debugName) {
3597            super(kind, debugName);
3598            this.sym = sym;
3599        }
3600
3601        @Override
3602        public boolean exists() {
3603            return true;
3604        }
3605
3606        @Override
3607        public String toString() {
3608             return super.toString() + " wrongSym=" + sym;
3609        }
3610
3611        @Override
3612        public Symbol access(Name name, TypeSymbol location) {
3613            if (!sym.kind.isResolutionError() && sym.kind.matches(KindSelector.TYP))
3614                return types.createErrorType(name, location, sym.type).tsym;
3615            else
3616                return sym;
3617        }
3618    }
3619
3620    /**
3621     * InvalidSymbolError error class indicating that a symbol matching a
3622     * given name does not exists in a given site.
3623     */
3624    class SymbolNotFoundError extends ResolveError {
3625
3626        SymbolNotFoundError(Kind kind) {
3627            this(kind, "symbol not found error");
3628        }
3629
3630        SymbolNotFoundError(Kind kind, String debugName) {
3631            super(kind, debugName);
3632        }
3633
3634        @Override
3635        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3636                DiagnosticPosition pos,
3637                Symbol location,
3638                Type site,
3639                Name name,
3640                List<Type> argtypes,
3641                List<Type> typeargtypes) {
3642            argtypes = argtypes == null ? List.<Type>nil() : argtypes;
3643            typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
3644            if (name == names.error)
3645                return null;
3646
3647            boolean hasLocation = false;
3648            if (location == null) {
3649                location = site.tsym;
3650            }
3651            if (!location.name.isEmpty()) {
3652                if (location.kind == PCK && !site.tsym.exists()) {
3653                    return diags.create(dkind, log.currentSource(), pos,
3654                        "doesnt.exist", location);
3655                }
3656                hasLocation = !location.name.equals(names._this) &&
3657                        !location.name.equals(names._super);
3658            }
3659            boolean isConstructor = name == names.init;
3660            KindName kindname = isConstructor ? KindName.CONSTRUCTOR : kind.absentKind();
3661            Name idname = isConstructor ? site.tsym.name : name;
3662            String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
3663            if (hasLocation) {
3664                return diags.create(dkind, log.currentSource(), pos,
3665                        errKey, kindname, idname, //symbol kindname, name
3666                        typeargtypes, args(argtypes), //type parameters and arguments (if any)
3667                        getLocationDiag(location, site)); //location kindname, type
3668            }
3669            else {
3670                return diags.create(dkind, log.currentSource(), pos,
3671                        errKey, kindname, idname, //symbol kindname, name
3672                        typeargtypes, args(argtypes)); //type parameters and arguments (if any)
3673            }
3674        }
3675        //where
3676        private Object args(List<Type> args) {
3677            return args.isEmpty() ? args : methodArguments(args);
3678        }
3679
3680        private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
3681            String key = "cant.resolve";
3682            String suffix = hasLocation ? ".location" : "";
3683            switch (kindname) {
3684                case METHOD:
3685                case CONSTRUCTOR: {
3686                    suffix += ".args";
3687                    suffix += hasTypeArgs ? ".params" : "";
3688                }
3689            }
3690            return key + suffix;
3691        }
3692        private JCDiagnostic getLocationDiag(Symbol location, Type site) {
3693            if (location.kind == VAR) {
3694                return diags.fragment("location.1",
3695                    kindName(location),
3696                    location,
3697                    location.type);
3698            } else {
3699                return diags.fragment("location",
3700                    typeKindName(site),
3701                    site,
3702                    null);
3703            }
3704        }
3705    }
3706
3707    /**
3708     * InvalidSymbolError error class indicating that a given symbol
3709     * (either a method, a constructor or an operand) is not applicable
3710     * given an actual arguments/type argument list.
3711     */
3712    class InapplicableSymbolError extends ResolveError {
3713
3714        protected MethodResolutionContext resolveContext;
3715
3716        InapplicableSymbolError(MethodResolutionContext context) {
3717            this(WRONG_MTH, "inapplicable symbol error", context);
3718        }
3719
3720        protected InapplicableSymbolError(Kind kind, String debugName, MethodResolutionContext context) {
3721            super(kind, debugName);
3722            this.resolveContext = context;
3723        }
3724
3725        @Override
3726        public String toString() {
3727            return super.toString();
3728        }
3729
3730        @Override
3731        public boolean exists() {
3732            return true;
3733        }
3734
3735        @Override
3736        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3737                DiagnosticPosition pos,
3738                Symbol location,
3739                Type site,
3740                Name name,
3741                List<Type> argtypes,
3742                List<Type> typeargtypes) {
3743            if (name == names.error)
3744                return null;
3745
3746            Pair<Symbol, JCDiagnostic> c = errCandidate();
3747            if (compactMethodDiags) {
3748                JCDiagnostic simpleDiag =
3749                    MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, c.snd);
3750                if (simpleDiag != null) {
3751                    return simpleDiag;
3752                }
3753            }
3754            Symbol ws = c.fst.asMemberOf(site, types);
3755            return diags.create(dkind, log.currentSource(), pos,
3756                      "cant.apply.symbol",
3757                      kindName(ws),
3758                      ws.name == names.init ? ws.owner.name : ws.name,
3759                      methodArguments(ws.type.getParameterTypes()),
3760                      methodArguments(argtypes),
3761                      kindName(ws.owner),
3762                      ws.owner.type,
3763                      c.snd);
3764        }
3765
3766        @Override
3767        public Symbol access(Name name, TypeSymbol location) {
3768            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3769        }
3770
3771        protected Pair<Symbol, JCDiagnostic> errCandidate() {
3772            Candidate bestSoFar = null;
3773            for (Candidate c : resolveContext.candidates) {
3774                if (c.isApplicable()) continue;
3775                bestSoFar = c;
3776            }
3777            Assert.checkNonNull(bestSoFar);
3778            return new Pair<>(bestSoFar.sym, bestSoFar.details);
3779        }
3780    }
3781
3782    /**
3783     * ResolveError error class indicating that a symbol (either methods, constructors or operand)
3784     * is not applicable given an actual arguments/type argument list.
3785     */
3786    class InapplicableSymbolsError extends InapplicableSymbolError {
3787
3788        InapplicableSymbolsError(MethodResolutionContext context) {
3789            super(WRONG_MTHS, "inapplicable symbols", context);
3790        }
3791
3792        @Override
3793        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3794                DiagnosticPosition pos,
3795                Symbol location,
3796                Type site,
3797                Name name,
3798                List<Type> argtypes,
3799                List<Type> typeargtypes) {
3800            Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
3801            Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
3802                    filterCandidates(candidatesMap) :
3803                    mapCandidates();
3804            if (filteredCandidates.isEmpty()) {
3805                filteredCandidates = candidatesMap;
3806            }
3807            boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
3808            if (filteredCandidates.size() > 1) {
3809                JCDiagnostic err = diags.create(dkind,
3810                        null,
3811                        truncatedDiag ?
3812                            EnumSet.of(DiagnosticFlag.COMPRESSED) :
3813                            EnumSet.noneOf(DiagnosticFlag.class),
3814                        log.currentSource(),
3815                        pos,
3816                        "cant.apply.symbols",
3817                        name == names.init ? KindName.CONSTRUCTOR : kind.absentKind(),
3818                        name == names.init ? site.tsym.name : name,
3819                        methodArguments(argtypes));
3820                return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
3821            } else if (filteredCandidates.size() == 1) {
3822                Map.Entry<Symbol, JCDiagnostic> _e =
3823                                filteredCandidates.entrySet().iterator().next();
3824                final Pair<Symbol, JCDiagnostic> p = new Pair<>(_e.getKey(), _e.getValue());
3825                JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
3826                    @Override
3827                    protected Pair<Symbol, JCDiagnostic> errCandidate() {
3828                        return p;
3829                    }
3830                }.getDiagnostic(dkind, pos,
3831                    location, site, name, argtypes, typeargtypes);
3832                if (truncatedDiag) {
3833                    d.setFlag(DiagnosticFlag.COMPRESSED);
3834                }
3835                return d;
3836            } else {
3837                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
3838                    location, site, name, argtypes, typeargtypes);
3839            }
3840        }
3841        //where
3842            private Map<Symbol, JCDiagnostic> mapCandidates() {
3843                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
3844                for (Candidate c : resolveContext.candidates) {
3845                    if (c.isApplicable()) continue;
3846                    candidates.put(c.sym, c.details);
3847                }
3848                return candidates;
3849            }
3850
3851            Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
3852                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
3853                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3854                    JCDiagnostic d = _entry.getValue();
3855                    if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
3856                        candidates.put(_entry.getKey(), d);
3857                    }
3858                }
3859                return candidates;
3860            }
3861
3862            private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
3863                List<JCDiagnostic> details = List.nil();
3864                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3865                    Symbol sym = _entry.getKey();
3866                    JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
3867                            Kinds.kindName(sym),
3868                            sym.location(site, types),
3869                            sym.asMemberOf(site, types),
3870                            _entry.getValue());
3871                    details = details.prepend(detailDiag);
3872                }
3873                //typically members are visited in reverse order (see Scope)
3874                //so we need to reverse the candidate list so that candidates
3875                //conform to source order
3876                return details;
3877            }
3878    }
3879
3880    /**
3881     * DiamondError error class indicating that a constructor symbol is not applicable
3882     * given an actual arguments/type argument list using diamond inference.
3883     */
3884    class DiamondError extends InapplicableSymbolError {
3885
3886        Symbol sym;
3887
3888        public DiamondError(Symbol sym, MethodResolutionContext context) {
3889            super(sym.kind, "diamondError", context);
3890            this.sym = sym;
3891        }
3892
3893        JCDiagnostic getDetails() {
3894            return (sym.kind == WRONG_MTH) ?
3895                    ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
3896                    null;
3897        }
3898
3899        @Override
3900        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
3901                Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
3902            JCDiagnostic details = getDetails();
3903            if (details != null && compactMethodDiags) {
3904                JCDiagnostic simpleDiag =
3905                        MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, details);
3906                if (simpleDiag != null) {
3907                    return simpleDiag;
3908                }
3909            }
3910            String key = details == null ?
3911                "cant.apply.diamond" :
3912                "cant.apply.diamond.1";
3913            return diags.create(dkind, log.currentSource(), pos, key,
3914                    diags.fragment("diamond", site.tsym), details);
3915        }
3916    }
3917
3918    /**
3919     * An InvalidSymbolError error class indicating that a symbol is not
3920     * accessible from a given site
3921     */
3922    class AccessError extends InvalidSymbolError {
3923
3924        private Env<AttrContext> env;
3925        private Type site;
3926
3927        AccessError(Symbol sym) {
3928            this(null, null, sym);
3929        }
3930
3931        AccessError(Env<AttrContext> env, Type site, Symbol sym) {
3932            super(HIDDEN, sym, "access error");
3933            this.env = env;
3934            this.site = site;
3935        }
3936
3937        @Override
3938        public boolean exists() {
3939            return false;
3940        }
3941
3942        @Override
3943        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3944                DiagnosticPosition pos,
3945                Symbol location,
3946                Type site,
3947                Name name,
3948                List<Type> argtypes,
3949                List<Type> typeargtypes) {
3950            if (sym.owner.type.hasTag(ERROR))
3951                return null;
3952
3953            if (sym.name == names.init && sym.owner != site.tsym) {
3954                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
3955                        pos, location, site, name, argtypes, typeargtypes);
3956            }
3957            else if ((sym.flags() & PUBLIC) != 0
3958                || (env != null && this.site != null
3959                    && !isAccessible(env, this.site))) {
3960                if (sym.owner.kind == PCK) {
3961                    return diags.create(dkind, log.currentSource(),
3962                            pos, "not.def.access.package.cant.access",
3963                        sym, sym.location());
3964                } else {
3965                    return diags.create(dkind, log.currentSource(),
3966                            pos, "not.def.access.class.intf.cant.access",
3967                        sym, sym.location());
3968                }
3969            }
3970            else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
3971                return diags.create(dkind, log.currentSource(),
3972                        pos, "report.access", sym,
3973                        asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
3974                        sym.location());
3975            }
3976            else {
3977                return diags.create(dkind, log.currentSource(),
3978                        pos, "not.def.public.cant.access", sym, sym.location());
3979            }
3980        }
3981
3982        private String toString(Type type) {
3983            StringBuilder sb = new StringBuilder();
3984            sb.append(type);
3985            if (type != null) {
3986                sb.append("[tsym:").append(type.tsym);
3987                if (type.tsym != null)
3988                    sb.append("packge:").append(type.tsym.packge());
3989                sb.append("]");
3990            }
3991            return sb.toString();
3992        }
3993    }
3994
3995    /**
3996     * InvalidSymbolError error class indicating that an instance member
3997     * has erroneously been accessed from a static context.
3998     */
3999    class StaticError extends InvalidSymbolError {
4000
4001        StaticError(Symbol sym) {
4002            super(STATICERR, sym, "static error");
4003        }
4004
4005        @Override
4006        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4007                DiagnosticPosition pos,
4008                Symbol location,
4009                Type site,
4010                Name name,
4011                List<Type> argtypes,
4012                List<Type> typeargtypes) {
4013            Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
4014                ? types.erasure(sym.type).tsym
4015                : sym);
4016            return diags.create(dkind, log.currentSource(), pos,
4017                    "non-static.cant.be.ref", kindName(sym), errSym);
4018        }
4019    }
4020
4021    /**
4022     * InvalidSymbolError error class indicating that a pair of symbols
4023     * (either methods, constructors or operands) are ambiguous
4024     * given an actual arguments/type argument list.
4025     */
4026    class AmbiguityError extends ResolveError {
4027
4028        /** The other maximally specific symbol */
4029        List<Symbol> ambiguousSyms = List.nil();
4030
4031        @Override
4032        public boolean exists() {
4033            return true;
4034        }
4035
4036        AmbiguityError(Symbol sym1, Symbol sym2) {
4037            super(AMBIGUOUS, "ambiguity error");
4038            ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
4039        }
4040
4041        private List<Symbol> flatten(Symbol sym) {
4042            if (sym.kind == AMBIGUOUS) {
4043                return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
4044            } else {
4045                return List.of(sym);
4046            }
4047        }
4048
4049        AmbiguityError addAmbiguousSymbol(Symbol s) {
4050            ambiguousSyms = ambiguousSyms.prepend(s);
4051            return this;
4052        }
4053
4054        @Override
4055        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
4056                DiagnosticPosition pos,
4057                Symbol location,
4058                Type site,
4059                Name name,
4060                List<Type> argtypes,
4061                List<Type> typeargtypes) {
4062            List<Symbol> diagSyms = ambiguousSyms.reverse();
4063            Symbol s1 = diagSyms.head;
4064            Symbol s2 = diagSyms.tail.head;
4065            Name sname = s1.name;
4066            if (sname == names.init) sname = s1.owner.name;
4067            return diags.create(dkind, log.currentSource(),
4068                    pos, "ref.ambiguous", sname,
4069                    kindName(s1),
4070                    s1,
4071                    s1.location(site, types),
4072                    kindName(s2),
4073                    s2,
4074                    s2.location(site, types));
4075        }
4076
4077        /**
4078         * If multiple applicable methods are found during overload and none of them
4079         * is more specific than the others, attempt to merge their signatures.
4080         */
4081        Symbol mergeAbstracts(Type site) {
4082            List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
4083            for (Symbol s : ambiguousInOrder) {
4084                Type mt = types.memberType(site, s);
4085                boolean found = true;
4086                List<Type> allThrown = mt.getThrownTypes();
4087                for (Symbol s2 : ambiguousInOrder) {
4088                    Type mt2 = types.memberType(site, s2);
4089                    if ((s2.flags() & ABSTRACT) == 0 ||
4090                        !types.overrideEquivalent(mt, mt2) ||
4091                        !types.isSameTypes(s.erasure(types).getParameterTypes(),
4092                                       s2.erasure(types).getParameterTypes())) {
4093                        //ambiguity cannot be resolved
4094                        return this;
4095                    }
4096                    Type mst = mostSpecificReturnType(mt, mt2);
4097                    if (mst == null || mst != mt) {
4098                        found = false;
4099                        break;
4100                    }
4101                    List<Type> thrownTypes2 = mt2.getThrownTypes();
4102                    if (mt.hasTag(FORALL) && mt2.hasTag(FORALL)) {
4103                        // if both are generic methods, adjust thrown types ahead of intersection computation
4104                        thrownTypes2 = types.subst(thrownTypes2, mt2.getTypeArguments(), mt.getTypeArguments());
4105                    }
4106                    allThrown = chk.intersect(allThrown, thrownTypes2);
4107                }
4108                if (found) {
4109                    //all ambiguous methods were abstract and one method had
4110                    //most specific return type then others
4111                    return (allThrown == mt.getThrownTypes()) ?
4112                            s : new MethodSymbol(
4113                                s.flags(),
4114                                s.name,
4115                                types.createMethodTypeWithThrown(s.type, allThrown),
4116                                s.owner);
4117                }
4118            }
4119            return this;
4120        }
4121
4122        @Override
4123        protected Symbol access(Name name, TypeSymbol location) {
4124            Symbol firstAmbiguity = ambiguousSyms.last();
4125            return firstAmbiguity.kind == TYP ?
4126                    types.createErrorType(name, location, firstAmbiguity.type).tsym :
4127                    firstAmbiguity;
4128        }
4129    }
4130
4131    class BadVarargsMethod extends ResolveError {
4132
4133        ResolveError delegatedError;
4134
4135        BadVarargsMethod(ResolveError delegatedError) {
4136            super(delegatedError.kind, "badVarargs");
4137            this.delegatedError = delegatedError;
4138        }
4139
4140        @Override
4141        public Symbol baseSymbol() {
4142            return delegatedError.baseSymbol();
4143        }
4144
4145        @Override
4146        protected Symbol access(Name name, TypeSymbol location) {
4147            return delegatedError.access(name, location);
4148        }
4149
4150        @Override
4151        public boolean exists() {
4152            return true;
4153        }
4154
4155        @Override
4156        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4157            return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
4158        }
4159    }
4160
4161    /**
4162     * BadMethodReferenceError error class indicating that a method reference symbol has been found,
4163     * but with the wrong staticness.
4164     */
4165    class BadMethodReferenceError extends StaticError {
4166
4167        boolean unboundLookup;
4168
4169        public BadMethodReferenceError(Symbol sym, boolean unboundLookup) {
4170            super(sym);
4171            this.unboundLookup = unboundLookup;
4172        }
4173
4174        @Override
4175        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4176            final String key;
4177            if (!unboundLookup) {
4178                key = "bad.static.method.in.bound.lookup";
4179            } else if (sym.isStatic()) {
4180                key = "bad.static.method.in.unbound.lookup";
4181            } else {
4182                key = "bad.instance.method.in.unbound.lookup";
4183            }
4184            return sym.kind.isResolutionError() ?
4185                    ((ResolveError)sym).getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes) :
4186                    diags.create(dkind, log.currentSource(), pos, key, Kinds.kindName(sym), sym);
4187        }
4188    }
4189
4190    /**
4191     * BadConstructorReferenceError error class indicating that a constructor reference symbol has been found,
4192     * but pointing to a class for which an enclosing instance is not available.
4193     */
4194    class BadConstructorReferenceError extends InvalidSymbolError {
4195
4196        public BadConstructorReferenceError(Symbol sym) {
4197            super(MISSING_ENCL, sym, "BadConstructorReferenceError");
4198        }
4199
4200        @Override
4201        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4202           return diags.create(dkind, log.currentSource(), pos,
4203                "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
4204        }
4205    }
4206
4207    /**
4208     * Helper class for method resolution diagnostic simplification.
4209     * Certain resolution diagnostic are rewritten as simpler diagnostic
4210     * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
4211     * is stripped away, as it doesn't carry additional info. The logic
4212     * for matching a given diagnostic is given in terms of a template
4213     * hierarchy: a diagnostic template can be specified programmatically,
4214     * so that only certain diagnostics are matched. Each templete is then
4215     * associated with a rewriter object that carries out the task of rewtiting
4216     * the diagnostic to a simpler one.
4217     */
4218    static class MethodResolutionDiagHelper {
4219
4220        /**
4221         * A diagnostic rewriter transforms a method resolution diagnostic
4222         * into a simpler one
4223         */
4224        interface DiagnosticRewriter {
4225            JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4226                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4227                    DiagnosticType preferredKind, JCDiagnostic d);
4228        }
4229
4230        /**
4231         * A diagnostic template is made up of two ingredients: (i) a regular
4232         * expression for matching a diagnostic key and (ii) a list of sub-templates
4233         * for matching diagnostic arguments.
4234         */
4235        static class Template {
4236
4237            /** regex used to match diag key */
4238            String regex;
4239
4240            /** templates used to match diagnostic args */
4241            Template[] subTemplates;
4242
4243            Template(String key, Template... subTemplates) {
4244                this.regex = key;
4245                this.subTemplates = subTemplates;
4246            }
4247
4248            /**
4249             * Returns true if the regex matches the diagnostic key and if
4250             * all diagnostic arguments are matches by corresponding sub-templates.
4251             */
4252            boolean matches(Object o) {
4253                JCDiagnostic d = (JCDiagnostic)o;
4254                Object[] args = d.getArgs();
4255                if (!d.getCode().matches(regex) ||
4256                        subTemplates.length != d.getArgs().length) {
4257                    return false;
4258                }
4259                for (int i = 0; i < args.length ; i++) {
4260                    if (!subTemplates[i].matches(args[i])) {
4261                        return false;
4262                    }
4263                }
4264                return true;
4265            }
4266        }
4267
4268        /**
4269         * Common rewriter for all argument mismatch simplifications.
4270         */
4271        static class ArgMismatchRewriter implements DiagnosticRewriter {
4272
4273            /** the index of the subdiagnostic to be used as primary. */
4274            int causeIndex;
4275
4276            public ArgMismatchRewriter(int causeIndex) {
4277                this.causeIndex = causeIndex;
4278            }
4279
4280            @Override
4281            public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4282                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4283                    DiagnosticType preferredKind, JCDiagnostic d) {
4284                JCDiagnostic cause = (JCDiagnostic)d.getArgs()[causeIndex];
4285                DiagnosticPosition pos = d.getDiagnosticPosition();
4286                if (pos == null) {
4287                    pos = preferedPos;
4288                }
4289                return diags.create(preferredKind, preferredSource, pos,
4290                        "prob.found.req", cause);
4291            }
4292        }
4293
4294        /** a dummy template that match any diagnostic argument */
4295        static final Template skip = new Template("") {
4296            @Override
4297            boolean matches(Object d) {
4298                return true;
4299            }
4300        };
4301
4302        /** template for matching inference-free arguments mismatch failures */
4303        static final Template argMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip);
4304
4305        /** template for matching inference related arguments mismatch failures */
4306        static final Template inferArgMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip, skip) {
4307            @Override
4308            boolean matches(Object o) {
4309                if (!super.matches(o)) {
4310                    return false;
4311                }
4312                JCDiagnostic d = (JCDiagnostic)o;
4313                @SuppressWarnings("unchecked")
4314                List<Type> tvars = (List<Type>)d.getArgs()[0];
4315                return !containsAny(d, tvars);
4316            }
4317
4318            BiPredicate<Object, List<Type>> containsPredicate = (o, ts) -> {
4319                if (o instanceof Type) {
4320                    return ((Type)o).containsAny(ts);
4321                } else if (o instanceof JCDiagnostic) {
4322                    return containsAny((JCDiagnostic)o, ts);
4323                } else {
4324                    return false;
4325                }
4326            };
4327
4328            boolean containsAny(JCDiagnostic d, List<Type> ts) {
4329                return Stream.of(d.getArgs())
4330                        .anyMatch(o -> containsPredicate.test(o, ts));
4331            }
4332        };
4333
4334        /** rewriter map used for method resolution simplification */
4335        static final Map<Template, DiagnosticRewriter> rewriters = new LinkedHashMap<>();
4336
4337        static {
4338            rewriters.put(argMismatchTemplate, new ArgMismatchRewriter(0));
4339            rewriters.put(inferArgMismatchTemplate, new ArgMismatchRewriter(1));
4340        }
4341
4342        /**
4343         * Main entry point for diagnostic rewriting - given a diagnostic, see if any templates matches it,
4344         * and rewrite it accordingly.
4345         */
4346        static JCDiagnostic rewrite(JCDiagnostic.Factory diags, DiagnosticPosition pos, DiagnosticSource source,
4347                                    DiagnosticType dkind, JCDiagnostic d) {
4348            for (Map.Entry<Template, DiagnosticRewriter> _entry : rewriters.entrySet()) {
4349                if (_entry.getKey().matches(d)) {
4350                    JCDiagnostic simpleDiag =
4351                            _entry.getValue().rewriteDiagnostic(diags, pos, source, dkind, d);
4352                    simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
4353                    return simpleDiag;
4354                }
4355            }
4356            return null;
4357        }
4358    }
4359
4360    enum MethodResolutionPhase {
4361        BASIC(false, false),
4362        BOX(true, false),
4363        VARARITY(true, true) {
4364            @Override
4365            public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
4366                //Check invariants (see {@code LookupHelper.shouldStop})
4367                Assert.check(bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS);
4368                if (!sym.kind.isResolutionError()) {
4369                    //varargs resolution successful
4370                    return sym;
4371                } else {
4372                    //pick best error
4373                    switch (bestSoFar.kind) {
4374                        case WRONG_MTH:
4375                        case WRONG_MTHS:
4376                            //Override previous errors if they were caused by argument mismatch.
4377                            //This generally means preferring current symbols - but we need to pay
4378                            //attention to the fact that the varargs lookup returns 'less' candidates
4379                            //than the previous rounds, and adjust that accordingly.
4380                            switch (sym.kind) {
4381                                case WRONG_MTH:
4382                                    //if the previous round matched more than one method, return that
4383                                    //result instead
4384                                    return bestSoFar.kind == WRONG_MTHS ?
4385                                            bestSoFar : sym;
4386                                case ABSENT_MTH:
4387                                    //do not override erroneous symbol if the arity lookup did not
4388                                    //match any method
4389                                    return bestSoFar;
4390                                case WRONG_MTHS:
4391                                default:
4392                                    //safe to override
4393                                    return sym;
4394                            }
4395                        default:
4396                            //otherwise, return first error
4397                            return bestSoFar;
4398                    }
4399                }
4400            }
4401        };
4402
4403        final boolean isBoxingRequired;
4404        final boolean isVarargsRequired;
4405
4406        MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
4407           this.isBoxingRequired = isBoxingRequired;
4408           this.isVarargsRequired = isVarargsRequired;
4409        }
4410
4411        public boolean isBoxingRequired() {
4412            return isBoxingRequired;
4413        }
4414
4415        public boolean isVarargsRequired() {
4416            return isVarargsRequired;
4417        }
4418
4419        public Symbol mergeResults(Symbol prev, Symbol sym) {
4420            return sym;
4421        }
4422    }
4423
4424    final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
4425
4426    /**
4427     * A resolution context is used to keep track of intermediate results of
4428     * overload resolution, such as list of method that are not applicable
4429     * (used to generate more precise diagnostics) and so on. Resolution contexts
4430     * can be nested - this means that when each overload resolution routine should
4431     * work within the resolution context it created.
4432     */
4433    class MethodResolutionContext {
4434
4435        private List<Candidate> candidates = List.nil();
4436
4437        MethodResolutionPhase step = null;
4438
4439        MethodCheck methodCheck = resolveMethodCheck;
4440
4441        private boolean internalResolution = false;
4442        private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
4443
4444        void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
4445            Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
4446            candidates = candidates.append(c);
4447        }
4448
4449        void addApplicableCandidate(Symbol sym, Type mtype) {
4450            Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
4451            candidates = candidates.append(c);
4452        }
4453
4454        DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
4455            DeferredAttrContext parent = (pendingResult == null)
4456                ? deferredAttr.emptyDeferredAttrContext
4457                : pendingResult.checkContext.deferredAttrContext();
4458            return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
4459                    inferenceContext, parent, warn);
4460        }
4461
4462        /**
4463         * This class represents an overload resolution candidate. There are two
4464         * kinds of candidates: applicable methods and inapplicable methods;
4465         * applicable methods have a pointer to the instantiated method type,
4466         * while inapplicable candidates contain further details about the
4467         * reason why the method has been considered inapplicable.
4468         */
4469        @SuppressWarnings("overrides")
4470        class Candidate {
4471
4472            final MethodResolutionPhase step;
4473            final Symbol sym;
4474            final JCDiagnostic details;
4475            final Type mtype;
4476
4477            private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
4478                this.step = step;
4479                this.sym = sym;
4480                this.details = details;
4481                this.mtype = mtype;
4482            }
4483
4484            @Override
4485            public boolean equals(Object o) {
4486                if (o instanceof Candidate) {
4487                    Symbol s1 = this.sym;
4488                    Symbol s2 = ((Candidate)o).sym;
4489                    if  ((s1 != s2 &&
4490                            (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
4491                            (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
4492                            ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
4493                        return true;
4494                }
4495                return false;
4496            }
4497
4498            boolean isApplicable() {
4499                return mtype != null;
4500            }
4501        }
4502
4503        DeferredAttr.AttrMode attrMode() {
4504            return attrMode;
4505        }
4506
4507        boolean internal() {
4508            return internalResolution;
4509        }
4510    }
4511
4512    MethodResolutionContext currentResolutionContext = null;
4513}
4514