Resolve.java revision 2866:801b26483eb6
1/*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.tools.javac.api.Formattable.LocalizedString;
29import com.sun.tools.javac.code.*;
30import com.sun.tools.javac.code.Scope.WriteableScope;
31import com.sun.tools.javac.code.Symbol.*;
32import com.sun.tools.javac.code.Type.*;
33import com.sun.tools.javac.comp.Attr.ResultInfo;
34import com.sun.tools.javac.comp.Check.CheckContext;
35import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
36import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
37import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
38import com.sun.tools.javac.comp.Infer.InferenceContext;
39import com.sun.tools.javac.comp.Infer.FreeTypeListener;
40import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
41import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
42import com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind;
43import com.sun.tools.javac.jvm.*;
44import com.sun.tools.javac.main.Option;
45import com.sun.tools.javac.tree.*;
46import com.sun.tools.javac.tree.JCTree.*;
47import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
48import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
49import com.sun.tools.javac.util.*;
50import com.sun.tools.javac.util.DefinedBy.Api;
51import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
52import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
53import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
54
55import java.util.Arrays;
56import java.util.Collection;
57import java.util.EnumSet;
58import java.util.Iterator;
59import java.util.LinkedHashMap;
60import java.util.Map;
61import java.util.function.BiPredicate;
62import java.util.stream.Stream;
63
64import javax.lang.model.element.ElementVisitor;
65
66import static com.sun.tools.javac.code.Flags.*;
67import static com.sun.tools.javac.code.Flags.BLOCK;
68import static com.sun.tools.javac.code.Flags.STATIC;
69import static com.sun.tools.javac.code.Kinds.*;
70import static com.sun.tools.javac.code.Kinds.Kind.*;
71import static com.sun.tools.javac.code.TypeTag.*;
72import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
73import static com.sun.tools.javac.tree.JCTree.Tag.*;
74
75/** Helper class for name resolution, used mostly by the attribution phase.
76 *
77 *  <p><b>This is NOT part of any supported API.
78 *  If you write code that depends on this, you do so at your own risk.
79 *  This code and its internal interfaces are subject to change or
80 *  deletion without notice.</b>
81 */
82public class Resolve {
83    protected static final Context.Key<Resolve> resolveKey = new Context.Key<>();
84
85    Names names;
86    Log log;
87    Symtab syms;
88    Attr attr;
89    DeferredAttr deferredAttr;
90    Check chk;
91    Infer infer;
92    ClassFinder finder;
93    Types types;
94    JCDiagnostic.Factory diags;
95    public final boolean allowMethodHandles;
96    public final boolean allowFunctionalInterfaceMostSpecific;
97    public final boolean checkVarargsAccessAfterResolution;
98    private final boolean debugResolve;
99    private final boolean compactMethodDiags;
100    final EnumSet<VerboseResolutionMode> verboseResolutionMode;
101
102    WriteableScope polymorphicSignatureScope;
103
104    protected Resolve(Context context) {
105        context.put(resolveKey, this);
106        syms = Symtab.instance(context);
107
108        varNotFound = new SymbolNotFoundError(ABSENT_VAR);
109        methodNotFound = new SymbolNotFoundError(ABSENT_MTH);
110        typeNotFound = new SymbolNotFoundError(ABSENT_TYP);
111        referenceNotFound = new ReferenceLookupResult(methodNotFound, null);
112
113        names = Names.instance(context);
114        log = Log.instance(context);
115        attr = Attr.instance(context);
116        deferredAttr = DeferredAttr.instance(context);
117        chk = Check.instance(context);
118        infer = Infer.instance(context);
119        finder = ClassFinder.instance(context);
120        types = Types.instance(context);
121        diags = JCDiagnostic.Factory.instance(context);
122        Source source = Source.instance(context);
123        Options options = Options.instance(context);
124        debugResolve = options.isSet("debugresolve");
125        compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
126                options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
127        verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
128        Target target = Target.instance(context);
129        allowMethodHandles = target.hasMethodHandles();
130        allowFunctionalInterfaceMostSpecific = source.allowFunctionalInterfaceMostSpecific();
131        checkVarargsAccessAfterResolution =
132                source.allowPostApplicabilityVarargsAccessCheck();
133        polymorphicSignatureScope = WriteableScope.create(syms.noSymbol);
134
135        inapplicableMethodException = new InapplicableMethodException(diags);
136    }
137
138    /** error symbols, which are returned when resolution fails
139     */
140    private final SymbolNotFoundError varNotFound;
141    private final SymbolNotFoundError methodNotFound;
142    private final SymbolNotFoundError typeNotFound;
143
144    /** empty reference lookup result */
145    private final ReferenceLookupResult referenceNotFound;
146
147    public static Resolve instance(Context context) {
148        Resolve instance = context.get(resolveKey);
149        if (instance == null)
150            instance = new Resolve(context);
151        return instance;
152    }
153
154    private static Symbol bestOf(Symbol s1,
155                                 Symbol s2) {
156        return s1.kind.betterThan(s2.kind) ? s1 : s2;
157    }
158
159    // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
160    enum VerboseResolutionMode {
161        SUCCESS("success"),
162        FAILURE("failure"),
163        APPLICABLE("applicable"),
164        INAPPLICABLE("inapplicable"),
165        DEFERRED_INST("deferred-inference"),
166        PREDEF("predef"),
167        OBJECT_INIT("object-init"),
168        INTERNAL("internal");
169
170        final String opt;
171
172        private VerboseResolutionMode(String opt) {
173            this.opt = opt;
174        }
175
176        static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
177            String s = opts.get("verboseResolution");
178            EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
179            if (s == null) return res;
180            if (s.contains("all")) {
181                res = EnumSet.allOf(VerboseResolutionMode.class);
182            }
183            Collection<String> args = Arrays.asList(s.split(","));
184            for (VerboseResolutionMode mode : values()) {
185                if (args.contains(mode.opt)) {
186                    res.add(mode);
187                } else if (args.contains("-" + mode.opt)) {
188                    res.remove(mode);
189                }
190            }
191            return res;
192        }
193    }
194
195    void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
196            List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
197        boolean success = !bestSoFar.kind.isResolutionError();
198
199        if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
200            return;
201        } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
202            return;
203        }
204
205        if (bestSoFar.name == names.init &&
206                bestSoFar.owner == syms.objectType.tsym &&
207                !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
208            return; //skip diags for Object constructor resolution
209        } else if (site == syms.predefClass.type &&
210                !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
211            return; //skip spurious diags for predef symbols (i.e. operators)
212        } else if (currentResolutionContext.internalResolution &&
213                !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
214            return;
215        }
216
217        int pos = 0;
218        int mostSpecificPos = -1;
219        ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
220        for (Candidate c : currentResolutionContext.candidates) {
221            if (currentResolutionContext.step != c.step ||
222                    (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
223                    (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
224                continue;
225            } else {
226                subDiags.append(c.isApplicable() ?
227                        getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
228                        getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
229                if (c.sym == bestSoFar)
230                    mostSpecificPos = pos;
231                pos++;
232            }
233        }
234        String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
235        List<Type> argtypes2 = argtypes.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
236        JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
237                site.tsym, mostSpecificPos, currentResolutionContext.step,
238                methodArguments(argtypes2),
239                methodArguments(typeargtypes));
240        JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
241        log.report(d);
242    }
243
244    JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
245        JCDiagnostic subDiag = null;
246        if (sym.type.hasTag(FORALL)) {
247            subDiag = diags.fragment("partial.inst.sig", inst);
248        }
249
250        String key = subDiag == null ?
251                "applicable.method.found" :
252                "applicable.method.found.1";
253
254        return diags.fragment(key, pos, sym, subDiag);
255    }
256
257    JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
258        return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
259    }
260    // </editor-fold>
261
262/* ************************************************************************
263 * Identifier resolution
264 *************************************************************************/
265
266    /** An environment is "static" if its static level is greater than
267     *  the one of its outer environment
268     */
269    protected static boolean isStatic(Env<AttrContext> env) {
270        return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
271    }
272
273    /** An environment is an "initializer" if it is a constructor or
274     *  an instance initializer.
275     */
276    static boolean isInitializer(Env<AttrContext> env) {
277        Symbol owner = env.info.scope.owner;
278        return owner.isConstructor() ||
279            owner.owner.kind == TYP &&
280            (owner.kind == VAR ||
281             owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
282            (owner.flags() & STATIC) == 0;
283    }
284
285    /** Is class accessible in given evironment?
286     *  @param env    The current environment.
287     *  @param c      The class whose accessibility is checked.
288     */
289    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
290        return isAccessible(env, c, false);
291    }
292
293    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
294        boolean isAccessible = false;
295        switch ((short)(c.flags() & AccessFlags)) {
296            case PRIVATE:
297                isAccessible =
298                    env.enclClass.sym.outermostClass() ==
299                    c.owner.outermostClass();
300                break;
301            case 0:
302                isAccessible =
303                    env.toplevel.packge == c.owner // fast special case
304                    ||
305                    env.toplevel.packge == c.packge()
306                    ||
307                    // Hack: this case is added since synthesized default constructors
308                    // of anonymous classes should be allowed to access
309                    // classes which would be inaccessible otherwise.
310                    env.enclMethod != null &&
311                    (env.enclMethod.mods.flags & ANONCONSTR) != 0;
312                break;
313            default: // error recovery
314            case PUBLIC:
315                isAccessible = true;
316                break;
317            case PROTECTED:
318                isAccessible =
319                    env.toplevel.packge == c.owner // fast special case
320                    ||
321                    env.toplevel.packge == c.packge()
322                    ||
323                    isInnerSubClass(env.enclClass.sym, c.owner);
324                break;
325        }
326        return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
327            isAccessible :
328            isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
329    }
330    //where
331        /** Is given class a subclass of given base class, or an inner class
332         *  of a subclass?
333         *  Return null if no such class exists.
334         *  @param c     The class which is the subclass or is contained in it.
335         *  @param base  The base class
336         */
337        private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
338            while (c != null && !c.isSubClass(base, types)) {
339                c = c.owner.enclClass();
340            }
341            return c != null;
342        }
343
344    boolean isAccessible(Env<AttrContext> env, Type t) {
345        return isAccessible(env, t, false);
346    }
347
348    boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
349        return (t.hasTag(ARRAY))
350            ? isAccessible(env, types.cvarUpperBound(types.elemtype(t)))
351            : isAccessible(env, t.tsym, checkInner);
352    }
353
354    /** Is symbol accessible as a member of given type in given environment?
355     *  @param env    The current environment.
356     *  @param site   The type of which the tested symbol is regarded
357     *                as a member.
358     *  @param sym    The symbol.
359     */
360    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
361        return isAccessible(env, site, sym, false);
362    }
363    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
364        if (sym.name == names.init && sym.owner != site.tsym) return false;
365        switch ((short)(sym.flags() & AccessFlags)) {
366        case PRIVATE:
367            return
368                (env.enclClass.sym == sym.owner // fast special case
369                 ||
370                 env.enclClass.sym.outermostClass() ==
371                 sym.owner.outermostClass())
372                &&
373                sym.isInheritedIn(site.tsym, types);
374        case 0:
375            return
376                (env.toplevel.packge == sym.owner.owner // fast special case
377                 ||
378                 env.toplevel.packge == sym.packge())
379                &&
380                isAccessible(env, site, checkInner)
381                &&
382                sym.isInheritedIn(site.tsym, types)
383                &&
384                notOverriddenIn(site, sym);
385        case PROTECTED:
386            return
387                (env.toplevel.packge == sym.owner.owner // fast special case
388                 ||
389                 env.toplevel.packge == sym.packge()
390                 ||
391                 isProtectedAccessible(sym, env.enclClass.sym, site)
392                 ||
393                 // OK to select instance method or field from 'super' or type name
394                 // (but type names should be disallowed elsewhere!)
395                 env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
396                &&
397                isAccessible(env, site, checkInner)
398                &&
399                notOverriddenIn(site, sym);
400        default: // this case includes erroneous combinations as well
401            return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
402        }
403    }
404    //where
405    /* `sym' is accessible only if not overridden by
406     * another symbol which is a member of `site'
407     * (because, if it is overridden, `sym' is not strictly
408     * speaking a member of `site'). A polymorphic signature method
409     * cannot be overridden (e.g. MH.invokeExact(Object[])).
410     */
411    private boolean notOverriddenIn(Type site, Symbol sym) {
412        if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
413            return true;
414        else {
415            Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
416            return (s2 == null || s2 == sym || sym.owner == s2.owner ||
417                    !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
418        }
419    }
420    //where
421        /** Is given protected symbol accessible if it is selected from given site
422         *  and the selection takes place in given class?
423         *  @param sym     The symbol with protected access
424         *  @param c       The class where the access takes place
425         *  @site          The type of the qualifier
426         */
427        private
428        boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
429            Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
430            while (c != null &&
431                   !(c.isSubClass(sym.owner, types) &&
432                     (c.flags() & INTERFACE) == 0 &&
433                     // In JLS 2e 6.6.2.1, the subclass restriction applies
434                     // only to instance fields and methods -- types are excluded
435                     // regardless of whether they are declared 'static' or not.
436                     ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
437                c = c.owner.enclClass();
438            return c != null;
439        }
440
441    /**
442     * Performs a recursive scan of a type looking for accessibility problems
443     * from current attribution environment
444     */
445    void checkAccessibleType(Env<AttrContext> env, Type t) {
446        accessibilityChecker.visit(t, env);
447    }
448
449    /**
450     * Accessibility type-visitor
451     */
452    Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
453            new Types.SimpleVisitor<Void, Env<AttrContext>>() {
454
455        void visit(List<Type> ts, Env<AttrContext> env) {
456            for (Type t : ts) {
457                visit(t, env);
458            }
459        }
460
461        public Void visitType(Type t, Env<AttrContext> env) {
462            return null;
463        }
464
465        @Override
466        public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
467            visit(t.elemtype, env);
468            return null;
469        }
470
471        @Override
472        public Void visitClassType(ClassType t, Env<AttrContext> env) {
473            visit(t.getTypeArguments(), env);
474            if (!isAccessible(env, t, true)) {
475                accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
476            }
477            return null;
478        }
479
480        @Override
481        public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
482            visit(t.type, env);
483            return null;
484        }
485
486        @Override
487        public Void visitMethodType(MethodType t, Env<AttrContext> env) {
488            visit(t.getParameterTypes(), env);
489            visit(t.getReturnType(), env);
490            visit(t.getThrownTypes(), env);
491            return null;
492        }
493    };
494
495    /** Try to instantiate the type of a method so that it fits
496     *  given type arguments and argument types. If successful, return
497     *  the method's instantiated type, else return null.
498     *  The instantiation will take into account an additional leading
499     *  formal parameter if the method is an instance method seen as a member
500     *  of an under determined site. In this case, we treat site as an additional
501     *  parameter and the parameters of the class containing the method as
502     *  additional type variables that get instantiated.
503     *
504     *  @param env         The current environment
505     *  @param site        The type of which the method is a member.
506     *  @param m           The method symbol.
507     *  @param argtypes    The invocation's given value arguments.
508     *  @param typeargtypes    The invocation's given type arguments.
509     *  @param allowBoxing Allow boxing conversions of arguments.
510     *  @param useVarargs Box trailing arguments into an array for varargs.
511     */
512    Type rawInstantiate(Env<AttrContext> env,
513                        Type site,
514                        Symbol m,
515                        ResultInfo resultInfo,
516                        List<Type> argtypes,
517                        List<Type> typeargtypes,
518                        boolean allowBoxing,
519                        boolean useVarargs,
520                        Warner warn) throws Infer.InferenceException {
521        Type mt = types.memberType(site, m);
522        // tvars is the list of formal type variables for which type arguments
523        // need to inferred.
524        List<Type> tvars = List.nil();
525        if (typeargtypes == null) typeargtypes = List.nil();
526        if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
527            // This is not a polymorphic method, but typeargs are supplied
528            // which is fine, see JLS 15.12.2.1
529        } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
530            ForAll pmt = (ForAll) mt;
531            if (typeargtypes.length() != pmt.tvars.length())
532                throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
533            // Check type arguments are within bounds
534            List<Type> formals = pmt.tvars;
535            List<Type> actuals = typeargtypes;
536            while (formals.nonEmpty() && actuals.nonEmpty()) {
537                List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
538                                                pmt.tvars, typeargtypes);
539                for (; bounds.nonEmpty(); bounds = bounds.tail) {
540                    if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
541                        throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
542                }
543                formals = formals.tail;
544                actuals = actuals.tail;
545            }
546            mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
547        } else if (mt.hasTag(FORALL)) {
548            ForAll pmt = (ForAll) mt;
549            List<Type> tvars1 = types.newInstances(pmt.tvars);
550            tvars = tvars.appendList(tvars1);
551            mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
552        }
553
554        // find out whether we need to go the slow route via infer
555        boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
556        for (List<Type> l = argtypes;
557             l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
558             l = l.tail) {
559            if (l.head.hasTag(FORALL)) instNeeded = true;
560        }
561
562        if (instNeeded) {
563            return infer.instantiateMethod(env,
564                                    tvars,
565                                    (MethodType)mt,
566                                    resultInfo,
567                                    (MethodSymbol)m,
568                                    argtypes,
569                                    allowBoxing,
570                                    useVarargs,
571                                    currentResolutionContext,
572                                    warn);
573        }
574
575        DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
576        currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
577                                argtypes, mt.getParameterTypes(), warn);
578        dc.complete();
579        return mt;
580    }
581
582    Type checkMethod(Env<AttrContext> env,
583                     Type site,
584                     Symbol m,
585                     ResultInfo resultInfo,
586                     List<Type> argtypes,
587                     List<Type> typeargtypes,
588                     Warner warn) {
589        MethodResolutionContext prevContext = currentResolutionContext;
590        try {
591            currentResolutionContext = new MethodResolutionContext();
592            currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
593            if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
594                //method/constructor references need special check class
595                //to handle inference variables in 'argtypes' (might happen
596                //during an unsticking round)
597                currentResolutionContext.methodCheck =
598                        new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
599            }
600            MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
601            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
602                    step.isBoxingRequired(), step.isVarargsRequired(), warn);
603        }
604        finally {
605            currentResolutionContext = prevContext;
606        }
607    }
608
609    /** Same but returns null instead throwing a NoInstanceException
610     */
611    Type instantiate(Env<AttrContext> env,
612                     Type site,
613                     Symbol m,
614                     ResultInfo resultInfo,
615                     List<Type> argtypes,
616                     List<Type> typeargtypes,
617                     boolean allowBoxing,
618                     boolean useVarargs,
619                     Warner warn) {
620        try {
621            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
622                                  allowBoxing, useVarargs, warn);
623        } catch (InapplicableMethodException ex) {
624            return null;
625        }
626    }
627
628    /**
629     * This interface defines an entry point that should be used to perform a
630     * method check. A method check usually consist in determining as to whether
631     * a set of types (actuals) is compatible with another set of types (formals).
632     * Since the notion of compatibility can vary depending on the circumstances,
633     * this interfaces allows to easily add new pluggable method check routines.
634     */
635    interface MethodCheck {
636        /**
637         * Main method check routine. A method check usually consist in determining
638         * as to whether a set of types (actuals) is compatible with another set of
639         * types (formals). If an incompatibility is found, an unchecked exception
640         * is assumed to be thrown.
641         */
642        void argumentsAcceptable(Env<AttrContext> env,
643                                DeferredAttrContext deferredAttrContext,
644                                List<Type> argtypes,
645                                List<Type> formals,
646                                Warner warn);
647
648        /**
649         * Retrieve the method check object that will be used during a
650         * most specific check.
651         */
652        MethodCheck mostSpecificCheck(List<Type> actuals);
653    }
654
655    /**
656     * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
657     */
658    enum MethodCheckDiag {
659        /**
660         * Actuals and formals differs in length.
661         */
662        ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
663        /**
664         * An actual is incompatible with a formal.
665         */
666        ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
667        /**
668         * An actual is incompatible with the varargs element type.
669         */
670        VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
671        /**
672         * The varargs element type is inaccessible.
673         */
674        INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
675
676        final String basicKey;
677        final String inferKey;
678
679        MethodCheckDiag(String basicKey, String inferKey) {
680            this.basicKey = basicKey;
681            this.inferKey = inferKey;
682        }
683
684        String regex() {
685            return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
686        }
687    }
688
689    /**
690     * Dummy method check object. All methods are deemed applicable, regardless
691     * of their formal parameter types.
692     */
693    MethodCheck nilMethodCheck = new MethodCheck() {
694        public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
695            //do nothing - method always applicable regardless of actuals
696        }
697
698        public MethodCheck mostSpecificCheck(List<Type> actuals) {
699            return this;
700        }
701    };
702
703    /**
704     * Base class for 'real' method checks. The class defines the logic for
705     * iterating through formals and actuals and provides and entry point
706     * that can be used by subclasses in order to define the actual check logic.
707     */
708    abstract class AbstractMethodCheck implements MethodCheck {
709        @Override
710        public void argumentsAcceptable(final Env<AttrContext> env,
711                                    DeferredAttrContext deferredAttrContext,
712                                    List<Type> argtypes,
713                                    List<Type> formals,
714                                    Warner warn) {
715            //should we expand formals?
716            boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
717            List<JCExpression> trees = TreeInfo.args(env.tree);
718
719            //inference context used during this method check
720            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
721
722            Type varargsFormal = useVarargs ? formals.last() : null;
723
724            if (varargsFormal == null &&
725                    argtypes.size() != formals.size()) {
726                reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
727            }
728
729            while (argtypes.nonEmpty() && formals.head != varargsFormal) {
730                DiagnosticPosition pos = trees != null ? trees.head : null;
731                checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
732                argtypes = argtypes.tail;
733                formals = formals.tail;
734                trees = trees != null ? trees.tail : trees;
735            }
736
737            if (formals.head != varargsFormal) {
738                reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
739            }
740
741            if (useVarargs) {
742                //note: if applicability check is triggered by most specific test,
743                //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
744                final Type elt = types.elemtype(varargsFormal);
745                while (argtypes.nonEmpty()) {
746                    DiagnosticPosition pos = trees != null ? trees.head : null;
747                    checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
748                    argtypes = argtypes.tail;
749                    trees = trees != null ? trees.tail : trees;
750                }
751            }
752        }
753
754        /**
755         * Does the actual argument conforms to the corresponding formal?
756         */
757        abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
758
759        protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
760            boolean inferDiag = inferenceContext != infer.emptyContext;
761            InapplicableMethodException ex = inferDiag ?
762                    infer.inferenceException : inapplicableMethodException;
763            if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
764                Object[] args2 = new Object[args.length + 1];
765                System.arraycopy(args, 0, args2, 1, args.length);
766                args2[0] = inferenceContext.inferenceVars();
767                args = args2;
768            }
769            String key = inferDiag ? diag.inferKey : diag.basicKey;
770            throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
771        }
772
773        public MethodCheck mostSpecificCheck(List<Type> actuals) {
774            return nilMethodCheck;
775        }
776
777    }
778
779    /**
780     * Arity-based method check. A method is applicable if the number of actuals
781     * supplied conforms to the method signature.
782     */
783    MethodCheck arityMethodCheck = new AbstractMethodCheck() {
784        @Override
785        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
786            //do nothing - actual always compatible to formals
787        }
788
789        @Override
790        public String toString() {
791            return "arityMethodCheck";
792        }
793    };
794
795    List<Type> dummyArgs(int length) {
796        ListBuffer<Type> buf = new ListBuffer<>();
797        for (int i = 0 ; i < length ; i++) {
798            buf.append(Type.noType);
799        }
800        return buf.toList();
801    }
802
803    /**
804     * Main method applicability routine. Given a list of actual types A,
805     * a list of formal types F, determines whether the types in A are
806     * compatible (by method invocation conversion) with the types in F.
807     *
808     * Since this routine is shared between overload resolution and method
809     * type-inference, a (possibly empty) inference context is used to convert
810     * formal types to the corresponding 'undet' form ahead of a compatibility
811     * check so that constraints can be propagated and collected.
812     *
813     * Moreover, if one or more types in A is a deferred type, this routine uses
814     * DeferredAttr in order to perform deferred attribution. If one or more actual
815     * deferred types are stuck, they are placed in a queue and revisited later
816     * after the remainder of the arguments have been seen. If this is not sufficient
817     * to 'unstuck' the argument, a cyclic inference error is called out.
818     *
819     * A method check handler (see above) is used in order to report errors.
820     */
821    MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
822
823        @Override
824        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
825            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
826            mresult.check(pos, actual);
827        }
828
829        @Override
830        public void argumentsAcceptable(final Env<AttrContext> env,
831                                    DeferredAttrContext deferredAttrContext,
832                                    List<Type> argtypes,
833                                    List<Type> formals,
834                                    Warner warn) {
835            super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
836            //should we expand formals?
837            if (deferredAttrContext.phase.isVarargsRequired()) {
838                Type typeToCheck = null;
839                if (!checkVarargsAccessAfterResolution) {
840                    typeToCheck = types.elemtype(formals.last());
841                } else if (deferredAttrContext.mode == AttrMode.CHECK) {
842                    typeToCheck = types.erasure(types.elemtype(formals.last()));
843                }
844                if (typeToCheck != null) {
845                    varargsAccessible(env, typeToCheck, deferredAttrContext.inferenceContext);
846                }
847            }
848        }
849
850        private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
851            if (inferenceContext.free(t)) {
852                inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
853                    @Override
854                    public void typesInferred(InferenceContext inferenceContext) {
855                        varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
856                    }
857                });
858            } else {
859                if (!isAccessible(env, t)) {
860                    Symbol location = env.enclClass.sym;
861                    reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
862                }
863            }
864        }
865
866        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
867                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
868            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
869                MethodCheckDiag methodDiag = varargsCheck ?
870                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
871
872                @Override
873                public void report(DiagnosticPosition pos, JCDiagnostic details) {
874                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
875                }
876            };
877            return new MethodResultInfo(to, checkContext);
878        }
879
880        @Override
881        public MethodCheck mostSpecificCheck(List<Type> actuals) {
882            return new MostSpecificCheck(actuals);
883        }
884
885        @Override
886        public String toString() {
887            return "resolveMethodCheck";
888        }
889    };
890
891    /**
892     * This class handles method reference applicability checks; since during
893     * these checks it's sometime possible to have inference variables on
894     * the actual argument types list, the method applicability check must be
895     * extended so that inference variables are 'opened' as needed.
896     */
897    class MethodReferenceCheck extends AbstractMethodCheck {
898
899        InferenceContext pendingInferenceContext;
900
901        MethodReferenceCheck(InferenceContext pendingInferenceContext) {
902            this.pendingInferenceContext = pendingInferenceContext;
903        }
904
905        @Override
906        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
907            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
908            mresult.check(pos, actual);
909        }
910
911        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
912                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
913            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
914                MethodCheckDiag methodDiag = varargsCheck ?
915                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
916
917                @Override
918                public boolean compatible(Type found, Type req, Warner warn) {
919                    found = pendingInferenceContext.asUndetVar(found);
920                    if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
921                        req = types.boxedClass(req).type;
922                    }
923                    return super.compatible(found, req, warn);
924                }
925
926                @Override
927                public void report(DiagnosticPosition pos, JCDiagnostic details) {
928                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
929                }
930            };
931            return new MethodResultInfo(to, checkContext);
932        }
933
934        @Override
935        public MethodCheck mostSpecificCheck(List<Type> actuals) {
936            return new MostSpecificCheck(actuals);
937        }
938
939        @Override
940        public String toString() {
941            return "MethodReferenceCheck";
942        }
943    }
944
945    /**
946     * Check context to be used during method applicability checks. A method check
947     * context might contain inference variables.
948     */
949    abstract class MethodCheckContext implements CheckContext {
950
951        boolean strict;
952        DeferredAttrContext deferredAttrContext;
953        Warner rsWarner;
954
955        public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
956           this.strict = strict;
957           this.deferredAttrContext = deferredAttrContext;
958           this.rsWarner = rsWarner;
959        }
960
961        public boolean compatible(Type found, Type req, Warner warn) {
962            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
963            return strict ?
964                    types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
965                    types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
966        }
967
968        public void report(DiagnosticPosition pos, JCDiagnostic details) {
969            throw inapplicableMethodException.setMessage(details);
970        }
971
972        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
973            return rsWarner;
974        }
975
976        public InferenceContext inferenceContext() {
977            return deferredAttrContext.inferenceContext;
978        }
979
980        public DeferredAttrContext deferredAttrContext() {
981            return deferredAttrContext;
982        }
983
984        @Override
985        public String toString() {
986            return "MethodCheckContext";
987        }
988    }
989
990    /**
991     * ResultInfo class to be used during method applicability checks. Check
992     * for deferred types goes through special path.
993     */
994    class MethodResultInfo extends ResultInfo {
995
996        public MethodResultInfo(Type pt, CheckContext checkContext) {
997            attr.super(KindSelector.VAL, pt, checkContext);
998        }
999
1000        @Override
1001        protected Type check(DiagnosticPosition pos, Type found) {
1002            if (found.hasTag(DEFERRED)) {
1003                DeferredType dt = (DeferredType)found;
1004                return dt.check(this);
1005            } else {
1006                Type uResult = U(found);
1007                Type capturedType = pos == null || pos.getTree() == null ?
1008                        types.capture(uResult) :
1009                        checkContext.inferenceContext()
1010                            .cachedCapture(pos.getTree(), uResult, true);
1011                return super.check(pos, chk.checkNonVoid(pos, capturedType));
1012            }
1013        }
1014
1015        /**
1016         * javac has a long-standing 'simplification' (see 6391995):
1017         * given an actual argument type, the method check is performed
1018         * on its upper bound. This leads to inconsistencies when an
1019         * argument type is checked against itself. For example, given
1020         * a type-variable T, it is not true that {@code U(T) <: T},
1021         * so we need to guard against that.
1022         */
1023        private Type U(Type found) {
1024            return found == pt ?
1025                    found : types.cvarUpperBound(found);
1026        }
1027
1028        @Override
1029        protected MethodResultInfo dup(Type newPt) {
1030            return new MethodResultInfo(newPt, checkContext);
1031        }
1032
1033        @Override
1034        protected ResultInfo dup(CheckContext newContext) {
1035            return new MethodResultInfo(pt, newContext);
1036        }
1037    }
1038
1039    /**
1040     * Most specific method applicability routine. Given a list of actual types A,
1041     * a list of formal types F1, and a list of formal types F2, the routine determines
1042     * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
1043     * argument types A.
1044     */
1045    class MostSpecificCheck implements MethodCheck {
1046
1047        List<Type> actuals;
1048
1049        MostSpecificCheck(List<Type> actuals) {
1050            this.actuals = actuals;
1051        }
1052
1053        @Override
1054        public void argumentsAcceptable(final Env<AttrContext> env,
1055                                    DeferredAttrContext deferredAttrContext,
1056                                    List<Type> formals1,
1057                                    List<Type> formals2,
1058                                    Warner warn) {
1059            formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
1060            while (formals2.nonEmpty()) {
1061                ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
1062                mresult.check(null, formals1.head);
1063                formals1 = formals1.tail;
1064                formals2 = formals2.tail;
1065                actuals = actuals.isEmpty() ? actuals : actuals.tail;
1066            }
1067        }
1068
1069       /**
1070        * Create a method check context to be used during the most specific applicability check
1071        */
1072        ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
1073               Warner rsWarner, Type actual) {
1074            return attr.new ResultInfo(KindSelector.VAL, to,
1075                   new MostSpecificCheckContext(deferredAttrContext, rsWarner, actual));
1076        }
1077
1078        /**
1079         * Subclass of method check context class that implements most specific
1080         * method conversion. If the actual type under analysis is a deferred type
1081         * a full blown structural analysis is carried out.
1082         */
1083        class MostSpecificCheckContext extends MethodCheckContext {
1084
1085            Type actual;
1086
1087            public MostSpecificCheckContext(DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
1088                super(true, deferredAttrContext, rsWarner);
1089                this.actual = actual;
1090            }
1091
1092            public boolean compatible(Type found, Type req, Warner warn) {
1093                if (allowFunctionalInterfaceMostSpecific &&
1094                        unrelatedFunctionalInterfaces(found, req) &&
1095                        (actual != null && actual.getTag() == DEFERRED)) {
1096                    DeferredType dt = (DeferredType) actual;
1097                    DeferredType.SpeculativeCache.Entry e =
1098                            dt.speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
1099                    if (e != null && e.speculativeTree != deferredAttr.stuckTree) {
1100                        return functionalInterfaceMostSpecific(found, req, e.speculativeTree);
1101                    }
1102                }
1103                return compatibleBySubtyping(found, req);
1104            }
1105
1106            private boolean compatibleBySubtyping(Type found, Type req) {
1107                if (!strict && found.isPrimitive() != req.isPrimitive()) {
1108                    found = found.isPrimitive() ? types.boxedClass(found).type : types.unboxedType(found);
1109                }
1110                return types.isSubtypeNoCapture(found, deferredAttrContext.inferenceContext.asUndetVar(req));
1111            }
1112
1113            /** Whether {@code t} and {@code s} are unrelated functional interface types. */
1114            private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
1115                return types.isFunctionalInterface(t.tsym) &&
1116                       types.isFunctionalInterface(s.tsym) &&
1117                       types.asSuper(t, s.tsym) == null &&
1118                       types.asSuper(s, t.tsym) == null;
1119            }
1120
1121            /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1122            private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree) {
1123                FunctionalInterfaceMostSpecificChecker msc = new FunctionalInterfaceMostSpecificChecker(t, s);
1124                msc.scan(tree);
1125                return msc.result;
1126            }
1127
1128            /**
1129             * Tests whether one functional interface type can be considered more specific
1130             * than another unrelated functional interface type for the scanned expression.
1131             */
1132            class FunctionalInterfaceMostSpecificChecker extends DeferredAttr.PolyScanner {
1133
1134                final Type t;
1135                final Type s;
1136                boolean result;
1137
1138                /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1139                FunctionalInterfaceMostSpecificChecker(Type t, Type s) {
1140                    this.t = t;
1141                    this.s = s;
1142                    result = true;
1143                }
1144
1145                @Override
1146                void skip(JCTree tree) {
1147                    result &= false;
1148                }
1149
1150                @Override
1151                public void visitConditional(JCConditional tree) {
1152                    scan(tree.truepart);
1153                    scan(tree.falsepart);
1154                }
1155
1156                @Override
1157                public void visitReference(JCMemberReference tree) {
1158                    Type desc_t = types.findDescriptorType(t);
1159                    Type desc_s = types.findDescriptorType(s);
1160                    // use inference variables here for more-specific inference (18.5.4)
1161                    if (!types.isSameTypes(desc_t.getParameterTypes(),
1162                            inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
1163                        result &= false;
1164                    } else {
1165                        // compare return types
1166                        Type ret_t = desc_t.getReturnType();
1167                        Type ret_s = desc_s.getReturnType();
1168                        if (ret_s.hasTag(VOID)) {
1169                            result &= true;
1170                        } else if (ret_t.hasTag(VOID)) {
1171                            result &= false;
1172                        } else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
1173                            boolean retValIsPrimitive =
1174                                    tree.refPolyKind == PolyKind.STANDALONE &&
1175                                    tree.sym.type.getReturnType().isPrimitive();
1176                            result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
1177                                      (retValIsPrimitive != ret_s.isPrimitive());
1178                        } else {
1179                            result &= compatibleBySubtyping(ret_t, ret_s);
1180                        }
1181                    }
1182                }
1183
1184                @Override
1185                public void visitLambda(JCLambda tree) {
1186                    Type desc_t = types.findDescriptorType(t);
1187                    Type desc_s = types.findDescriptorType(s);
1188                    // use inference variables here for more-specific inference (18.5.4)
1189                    if (!types.isSameTypes(desc_t.getParameterTypes(),
1190                            inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
1191                        result &= false;
1192                    } else {
1193                        // compare return types
1194                        Type ret_t = desc_t.getReturnType();
1195                        Type ret_s = desc_s.getReturnType();
1196                        if (ret_s.hasTag(VOID)) {
1197                            result &= true;
1198                        } else if (ret_t.hasTag(VOID)) {
1199                            result &= false;
1200                        } else if (unrelatedFunctionalInterfaces(ret_t, ret_s)) {
1201                            for (JCExpression expr : lambdaResults(tree)) {
1202                                result &= functionalInterfaceMostSpecific(ret_t, ret_s, expr);
1203                            }
1204                        } else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
1205                            for (JCExpression expr : lambdaResults(tree)) {
1206                                boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
1207                                result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
1208                                          (retValIsPrimitive != ret_s.isPrimitive());
1209                            }
1210                        } else {
1211                            result &= compatibleBySubtyping(ret_t, ret_s);
1212                        }
1213                    }
1214                }
1215                //where
1216
1217                private List<JCExpression> lambdaResults(JCLambda lambda) {
1218                    if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
1219                        return List.of((JCExpression) lambda.body);
1220                    } else {
1221                        final ListBuffer<JCExpression> buffer = new ListBuffer<>();
1222                        DeferredAttr.LambdaReturnScanner lambdaScanner =
1223                                new DeferredAttr.LambdaReturnScanner() {
1224                                    @Override
1225                                    public void visitReturn(JCReturn tree) {
1226                                        if (tree.expr != null) {
1227                                            buffer.append(tree.expr);
1228                                        }
1229                                    }
1230                                };
1231                        lambdaScanner.scan(lambda.body);
1232                        return buffer.toList();
1233                    }
1234                }
1235            }
1236
1237        }
1238
1239        public MethodCheck mostSpecificCheck(List<Type> actuals) {
1240            Assert.error("Cannot get here!");
1241            return null;
1242        }
1243    }
1244
1245    public static class InapplicableMethodException extends RuntimeException {
1246        private static final long serialVersionUID = 0;
1247
1248        JCDiagnostic diagnostic;
1249        JCDiagnostic.Factory diags;
1250
1251        InapplicableMethodException(JCDiagnostic.Factory diags) {
1252            this.diagnostic = null;
1253            this.diags = diags;
1254        }
1255        InapplicableMethodException setMessage() {
1256            return setMessage((JCDiagnostic)null);
1257        }
1258        InapplicableMethodException setMessage(String key) {
1259            return setMessage(key != null ? diags.fragment(key) : null);
1260        }
1261        InapplicableMethodException setMessage(String key, Object... args) {
1262            return setMessage(key != null ? diags.fragment(key, args) : null);
1263        }
1264        InapplicableMethodException setMessage(JCDiagnostic diag) {
1265            this.diagnostic = diag;
1266            return this;
1267        }
1268
1269        public JCDiagnostic getDiagnostic() {
1270            return diagnostic;
1271        }
1272    }
1273    private final InapplicableMethodException inapplicableMethodException;
1274
1275/* ***************************************************************************
1276 *  Symbol lookup
1277 *  the following naming conventions for arguments are used
1278 *
1279 *       env      is the environment where the symbol was mentioned
1280 *       site     is the type of which the symbol is a member
1281 *       name     is the symbol's name
1282 *                if no arguments are given
1283 *       argtypes are the value arguments, if we search for a method
1284 *
1285 *  If no symbol was found, a ResolveError detailing the problem is returned.
1286 ****************************************************************************/
1287
1288    /** Find field. Synthetic fields are always skipped.
1289     *  @param env     The current environment.
1290     *  @param site    The original type from where the selection takes place.
1291     *  @param name    The name of the field.
1292     *  @param c       The class to search for the field. This is always
1293     *                 a superclass or implemented interface of site's class.
1294     */
1295    Symbol findField(Env<AttrContext> env,
1296                     Type site,
1297                     Name name,
1298                     TypeSymbol c) {
1299        while (c.type.hasTag(TYPEVAR))
1300            c = c.type.getUpperBound().tsym;
1301        Symbol bestSoFar = varNotFound;
1302        Symbol sym;
1303        for (Symbol s : c.members().getSymbolsByName(name)) {
1304            if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1305                return isAccessible(env, site, s)
1306                    ? s : new AccessError(env, site, s);
1307            }
1308        }
1309        Type st = types.supertype(c.type);
1310        if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
1311            sym = findField(env, site, name, st.tsym);
1312            bestSoFar = bestOf(bestSoFar, sym);
1313        }
1314        for (List<Type> l = types.interfaces(c.type);
1315             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1316             l = l.tail) {
1317            sym = findField(env, site, name, l.head.tsym);
1318            if (bestSoFar.exists() && sym.exists() &&
1319                sym.owner != bestSoFar.owner)
1320                bestSoFar = new AmbiguityError(bestSoFar, sym);
1321            else
1322                bestSoFar = bestOf(bestSoFar, sym);
1323        }
1324        return bestSoFar;
1325    }
1326
1327    /** Resolve a field identifier, throw a fatal error if not found.
1328     *  @param pos       The position to use for error reporting.
1329     *  @param env       The environment current at the method invocation.
1330     *  @param site      The type of the qualifying expression, in which
1331     *                   identifier is searched.
1332     *  @param name      The identifier's name.
1333     */
1334    public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
1335                                          Type site, Name name) {
1336        Symbol sym = findField(env, site, name, site.tsym);
1337        if (sym.kind == VAR) return (VarSymbol)sym;
1338        else throw new FatalError(
1339                 diags.fragment("fatal.err.cant.locate.field",
1340                                name));
1341    }
1342
1343    /** Find unqualified variable or field with given name.
1344     *  Synthetic fields always skipped.
1345     *  @param env     The current environment.
1346     *  @param name    The name of the variable or field.
1347     */
1348    Symbol findVar(Env<AttrContext> env, Name name) {
1349        Symbol bestSoFar = varNotFound;
1350        Env<AttrContext> env1 = env;
1351        boolean staticOnly = false;
1352        while (env1.outer != null) {
1353            Symbol sym = null;
1354            if (isStatic(env1)) staticOnly = true;
1355            for (Symbol s : env1.info.scope.getSymbolsByName(name)) {
1356                if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1357                    sym = s;
1358                    break;
1359                }
1360            }
1361            if (sym == null) {
1362                sym = findField(env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
1363            }
1364            if (sym.exists()) {
1365                if (staticOnly &&
1366                    sym.kind == VAR &&
1367                    sym.owner.kind == TYP &&
1368                    (sym.flags() & STATIC) == 0)
1369                    return new StaticError(sym);
1370                else
1371                    return sym;
1372            } else {
1373                bestSoFar = bestOf(bestSoFar, sym);
1374            }
1375
1376            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1377            env1 = env1.outer;
1378        }
1379
1380        Symbol sym = findField(env, syms.predefClass.type, name, syms.predefClass);
1381        if (sym.exists())
1382            return sym;
1383        if (bestSoFar.exists())
1384            return bestSoFar;
1385
1386        Symbol origin = null;
1387        for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
1388            for (Symbol currentSymbol : sc.getSymbolsByName(name)) {
1389                if (currentSymbol.kind != VAR)
1390                    continue;
1391                // invariant: sym.kind == Symbol.Kind.VAR
1392                if (!bestSoFar.kind.isResolutionError() &&
1393                    currentSymbol.owner != bestSoFar.owner)
1394                    return new AmbiguityError(bestSoFar, currentSymbol);
1395                else if (!bestSoFar.kind.betterThan(VAR)) {
1396                    origin = sc.getOrigin(currentSymbol).owner;
1397                    bestSoFar = isAccessible(env, origin.type, currentSymbol)
1398                        ? currentSymbol : new AccessError(env, origin.type, currentSymbol);
1399                }
1400            }
1401            if (bestSoFar.exists()) break;
1402        }
1403        if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
1404            return bestSoFar.clone(origin);
1405        else
1406            return bestSoFar;
1407    }
1408
1409    Warner noteWarner = new Warner();
1410
1411    /** Select the best method for a call site among two choices.
1412     *  @param env              The current environment.
1413     *  @param site             The original type from where the
1414     *                          selection takes place.
1415     *  @param argtypes         The invocation's value arguments,
1416     *  @param typeargtypes     The invocation's type arguments,
1417     *  @param sym              Proposed new best match.
1418     *  @param bestSoFar        Previously found best match.
1419     *  @param allowBoxing Allow boxing conversions of arguments.
1420     *  @param useVarargs Box trailing arguments into an array for varargs.
1421     */
1422    @SuppressWarnings("fallthrough")
1423    Symbol selectBest(Env<AttrContext> env,
1424                      Type site,
1425                      List<Type> argtypes,
1426                      List<Type> typeargtypes,
1427                      Symbol sym,
1428                      Symbol bestSoFar,
1429                      boolean allowBoxing,
1430                      boolean useVarargs) {
1431        if (sym.kind == ERR ||
1432                !sym.isInheritedIn(site.tsym, types)) {
1433            return bestSoFar;
1434        } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
1435            return bestSoFar.kind.isResolutionError() ?
1436                    new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
1437                    bestSoFar;
1438        }
1439        Assert.check(!sym.kind.isResolutionError());
1440        try {
1441            Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
1442                               allowBoxing, useVarargs, types.noWarnings);
1443            currentResolutionContext.addApplicableCandidate(sym, mt);
1444        } catch (InapplicableMethodException ex) {
1445            currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
1446            switch (bestSoFar.kind) {
1447                case ABSENT_MTH:
1448                    return new InapplicableSymbolError(currentResolutionContext);
1449                case WRONG_MTH:
1450                    bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1451                default:
1452                    return bestSoFar;
1453            }
1454        }
1455        if (!isAccessible(env, site, sym)) {
1456            return (bestSoFar.kind == ABSENT_MTH)
1457                ? new AccessError(env, site, sym)
1458                : bestSoFar;
1459        }
1460        return (bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS)
1461            ? sym
1462            : mostSpecific(argtypes, sym, bestSoFar, env, site, useVarargs);
1463    }
1464
1465    /* Return the most specific of the two methods for a call,
1466     *  given that both are accessible and applicable.
1467     *  @param m1               A new candidate for most specific.
1468     *  @param m2               The previous most specific candidate.
1469     *  @param env              The current environment.
1470     *  @param site             The original type from where the selection
1471     *                          takes place.
1472     *  @param allowBoxing Allow boxing conversions of arguments.
1473     *  @param useVarargs Box trailing arguments into an array for varargs.
1474     */
1475    Symbol mostSpecific(List<Type> argtypes, Symbol m1,
1476                        Symbol m2,
1477                        Env<AttrContext> env,
1478                        final Type site,
1479                        boolean useVarargs) {
1480        switch (m2.kind) {
1481        case MTH:
1482            if (m1 == m2) return m1;
1483            boolean m1SignatureMoreSpecific =
1484                    signatureMoreSpecific(argtypes, env, site, m1, m2, useVarargs);
1485            boolean m2SignatureMoreSpecific =
1486                    signatureMoreSpecific(argtypes, env, site, m2, m1, useVarargs);
1487            if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
1488                Type mt1 = types.memberType(site, m1);
1489                Type mt2 = types.memberType(site, m2);
1490                if (!types.overrideEquivalent(mt1, mt2))
1491                    return ambiguityError(m1, m2);
1492
1493                // same signature; select (a) the non-bridge method, or
1494                // (b) the one that overrides the other, or (c) the concrete
1495                // one, or (d) merge both abstract signatures
1496                if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
1497                    return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
1498
1499                // if one overrides or hides the other, use it
1500                TypeSymbol m1Owner = (TypeSymbol)m1.owner;
1501                TypeSymbol m2Owner = (TypeSymbol)m2.owner;
1502                if (types.asSuper(m1Owner.type, m2Owner) != null &&
1503                    ((m1.owner.flags_field & INTERFACE) == 0 ||
1504                     (m2.owner.flags_field & INTERFACE) != 0) &&
1505                    m1.overrides(m2, m1Owner, types, false))
1506                    return m1;
1507                if (types.asSuper(m2Owner.type, m1Owner) != null &&
1508                    ((m2.owner.flags_field & INTERFACE) == 0 ||
1509                     (m1.owner.flags_field & INTERFACE) != 0) &&
1510                    m2.overrides(m1, m2Owner, types, false))
1511                    return m2;
1512                boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
1513                boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
1514                if (m1Abstract && !m2Abstract) return m2;
1515                if (m2Abstract && !m1Abstract) return m1;
1516                // both abstract or both concrete
1517                return ambiguityError(m1, m2);
1518            }
1519            if (m1SignatureMoreSpecific) return m1;
1520            if (m2SignatureMoreSpecific) return m2;
1521            return ambiguityError(m1, m2);
1522        case AMBIGUOUS:
1523            //compare m1 to ambiguous methods in m2
1524            AmbiguityError e = (AmbiguityError)m2.baseSymbol();
1525            boolean m1MoreSpecificThanAnyAmbiguous = true;
1526            boolean allAmbiguousMoreSpecificThanM1 = true;
1527            for (Symbol s : e.ambiguousSyms) {
1528                Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, useVarargs);
1529                m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
1530                allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
1531            }
1532            if (m1MoreSpecificThanAnyAmbiguous)
1533                return m1;
1534            //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
1535            //more specific than m1, add it as a new ambiguous method:
1536            if (!allAmbiguousMoreSpecificThanM1)
1537                e.addAmbiguousSymbol(m1);
1538            return e;
1539        default:
1540            throw new AssertionError();
1541        }
1542    }
1543    //where
1544    private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean useVarargs) {
1545        noteWarner.clear();
1546        int maxLength = Math.max(
1547                            Math.max(m1.type.getParameterTypes().length(), actuals.length()),
1548                            m2.type.getParameterTypes().length());
1549        MethodResolutionContext prevResolutionContext = currentResolutionContext;
1550        try {
1551            currentResolutionContext = new MethodResolutionContext();
1552            currentResolutionContext.step = prevResolutionContext.step;
1553            currentResolutionContext.methodCheck =
1554                    prevResolutionContext.methodCheck.mostSpecificCheck(actuals);
1555            Type mst = instantiate(env, site, m2, null,
1556                    adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
1557                    false, useVarargs, noteWarner);
1558            return mst != null &&
1559                    !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
1560        } finally {
1561            currentResolutionContext = prevResolutionContext;
1562        }
1563    }
1564
1565    List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
1566        if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
1567            Type varargsElem = types.elemtype(args.last());
1568            if (varargsElem == null) {
1569                Assert.error("Bad varargs = " + args.last() + " " + msym);
1570            }
1571            List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
1572            while (newArgs.length() < length) {
1573                newArgs = newArgs.append(newArgs.last());
1574            }
1575            return newArgs;
1576        } else {
1577            return args;
1578        }
1579    }
1580    //where
1581    Type mostSpecificReturnType(Type mt1, Type mt2) {
1582        Type rt1 = mt1.getReturnType();
1583        Type rt2 = mt2.getReturnType();
1584
1585        if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
1586            //if both are generic methods, adjust return type ahead of subtyping check
1587            rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
1588        }
1589        //first use subtyping, then return type substitutability
1590        if (types.isSubtype(rt1, rt2)) {
1591            return mt1;
1592        } else if (types.isSubtype(rt2, rt1)) {
1593            return mt2;
1594        } else if (types.returnTypeSubstitutable(mt1, mt2)) {
1595            return mt1;
1596        } else if (types.returnTypeSubstitutable(mt2, mt1)) {
1597            return mt2;
1598        } else {
1599            return null;
1600        }
1601    }
1602    //where
1603    Symbol ambiguityError(Symbol m1, Symbol m2) {
1604        if (((m1.flags() | m2.flags()) & CLASH) != 0) {
1605            return (m1.flags() & CLASH) == 0 ? m1 : m2;
1606        } else {
1607            return new AmbiguityError(m1, m2);
1608        }
1609    }
1610
1611    Symbol findMethodInScope(Env<AttrContext> env,
1612            Type site,
1613            Name name,
1614            List<Type> argtypes,
1615            List<Type> typeargtypes,
1616            Scope sc,
1617            Symbol bestSoFar,
1618            boolean allowBoxing,
1619            boolean useVarargs,
1620            boolean abstractok) {
1621        for (Symbol s : sc.getSymbolsByName(name, new LookupFilter(abstractok))) {
1622            bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
1623                    bestSoFar, allowBoxing, useVarargs);
1624        }
1625        return bestSoFar;
1626    }
1627    //where
1628        class LookupFilter implements Filter<Symbol> {
1629
1630            boolean abstractOk;
1631
1632            LookupFilter(boolean abstractOk) {
1633                this.abstractOk = abstractOk;
1634            }
1635
1636            public boolean accepts(Symbol s) {
1637                long flags = s.flags();
1638                return s.kind == MTH &&
1639                        (flags & SYNTHETIC) == 0 &&
1640                        (abstractOk ||
1641                        (flags & DEFAULT) != 0 ||
1642                        (flags & ABSTRACT) == 0);
1643            }
1644        }
1645
1646    /** Find best qualified method matching given name, type and value
1647     *  arguments.
1648     *  @param env       The current environment.
1649     *  @param site      The original type from where the selection
1650     *                   takes place.
1651     *  @param name      The method's name.
1652     *  @param argtypes  The method's value arguments.
1653     *  @param typeargtypes The method's type arguments
1654     *  @param allowBoxing Allow boxing conversions of arguments.
1655     *  @param useVarargs Box trailing arguments into an array for varargs.
1656     */
1657    Symbol findMethod(Env<AttrContext> env,
1658                      Type site,
1659                      Name name,
1660                      List<Type> argtypes,
1661                      List<Type> typeargtypes,
1662                      boolean allowBoxing,
1663                      boolean useVarargs) {
1664        Symbol bestSoFar = methodNotFound;
1665        bestSoFar = findMethod(env,
1666                          site,
1667                          name,
1668                          argtypes,
1669                          typeargtypes,
1670                          site.tsym.type,
1671                          bestSoFar,
1672                          allowBoxing,
1673                          useVarargs);
1674        return bestSoFar;
1675    }
1676    // where
1677    private Symbol findMethod(Env<AttrContext> env,
1678                              Type site,
1679                              Name name,
1680                              List<Type> argtypes,
1681                              List<Type> typeargtypes,
1682                              Type intype,
1683                              Symbol bestSoFar,
1684                              boolean allowBoxing,
1685                              boolean useVarargs) {
1686        @SuppressWarnings({"unchecked","rawtypes"})
1687        List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
1688
1689        InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
1690        for (TypeSymbol s : superclasses(intype)) {
1691            bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1692                    s.members(), bestSoFar, allowBoxing, useVarargs, true);
1693            if (name == names.init) return bestSoFar;
1694            iphase = (iphase == null) ? null : iphase.update(s, this);
1695            if (iphase != null) {
1696                for (Type itype : types.interfaces(s.type)) {
1697                    itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
1698                }
1699            }
1700        }
1701
1702        Symbol concrete = bestSoFar.kind.isValid() &&
1703                (bestSoFar.flags() & ABSTRACT) == 0 ?
1704                bestSoFar : methodNotFound;
1705
1706        for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
1707            //keep searching for abstract methods
1708            for (Type itype : itypes[iphase2.ordinal()]) {
1709                if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
1710                if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
1711                        (itype.tsym.flags() & DEFAULT) == 0) continue;
1712                bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1713                        itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
1714                if (concrete != bestSoFar &&
1715                    concrete.kind.isValid() &&
1716                    bestSoFar.kind.isValid() &&
1717                        types.isSubSignature(concrete.type, bestSoFar.type)) {
1718                    //this is an hack - as javac does not do full membership checks
1719                    //most specific ends up comparing abstract methods that might have
1720                    //been implemented by some concrete method in a subclass and,
1721                    //because of raw override, it is possible for an abstract method
1722                    //to be more specific than the concrete method - so we need
1723                    //to explicitly call that out (see CR 6178365)
1724                    bestSoFar = concrete;
1725                }
1726            }
1727        }
1728        return bestSoFar;
1729    }
1730
1731    enum InterfaceLookupPhase {
1732        ABSTRACT_OK() {
1733            @Override
1734            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1735                //We should not look for abstract methods if receiver is a concrete class
1736                //(as concrete classes are expected to implement all abstracts coming
1737                //from superinterfaces)
1738                if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
1739                    return this;
1740                } else {
1741                    return DEFAULT_OK;
1742                }
1743            }
1744        },
1745        DEFAULT_OK() {
1746            @Override
1747            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1748                return this;
1749            }
1750        };
1751
1752        abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
1753    }
1754
1755    /**
1756     * Return an Iterable object to scan the superclasses of a given type.
1757     * It's crucial that the scan is done lazily, as we don't want to accidentally
1758     * access more supertypes than strictly needed (as this could trigger completion
1759     * errors if some of the not-needed supertypes are missing/ill-formed).
1760     */
1761    Iterable<TypeSymbol> superclasses(final Type intype) {
1762        return new Iterable<TypeSymbol>() {
1763            public Iterator<TypeSymbol> iterator() {
1764                return new Iterator<TypeSymbol>() {
1765
1766                    List<TypeSymbol> seen = List.nil();
1767                    TypeSymbol currentSym = symbolFor(intype);
1768                    TypeSymbol prevSym = null;
1769
1770                    public boolean hasNext() {
1771                        if (currentSym == syms.noSymbol) {
1772                            currentSym = symbolFor(types.supertype(prevSym.type));
1773                        }
1774                        return currentSym != null;
1775                    }
1776
1777                    public TypeSymbol next() {
1778                        prevSym = currentSym;
1779                        currentSym = syms.noSymbol;
1780                        Assert.check(prevSym != null || prevSym != syms.noSymbol);
1781                        return prevSym;
1782                    }
1783
1784                    public void remove() {
1785                        throw new UnsupportedOperationException();
1786                    }
1787
1788                    TypeSymbol symbolFor(Type t) {
1789                        if (!t.hasTag(CLASS) &&
1790                                !t.hasTag(TYPEVAR)) {
1791                            return null;
1792                        }
1793                        t = types.skipTypeVars(t, false);
1794                        if (seen.contains(t.tsym)) {
1795                            //degenerate case in which we have a circular
1796                            //class hierarchy - because of ill-formed classfiles
1797                            return null;
1798                        }
1799                        seen = seen.prepend(t.tsym);
1800                        return t.tsym;
1801                    }
1802                };
1803            }
1804        };
1805    }
1806
1807    /** Find unqualified method matching given name, type and value arguments.
1808     *  @param env       The current environment.
1809     *  @param name      The method's name.
1810     *  @param argtypes  The method's value arguments.
1811     *  @param typeargtypes  The method's type arguments.
1812     *  @param allowBoxing Allow boxing conversions of arguments.
1813     *  @param useVarargs Box trailing arguments into an array for varargs.
1814     */
1815    Symbol findFun(Env<AttrContext> env, Name name,
1816                   List<Type> argtypes, List<Type> typeargtypes,
1817                   boolean allowBoxing, boolean useVarargs) {
1818        Symbol bestSoFar = methodNotFound;
1819        Env<AttrContext> env1 = env;
1820        boolean staticOnly = false;
1821        while (env1.outer != null) {
1822            if (isStatic(env1)) staticOnly = true;
1823            Symbol sym = findMethod(
1824                env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
1825                allowBoxing, useVarargs);
1826            if (sym.exists()) {
1827                if (staticOnly &&
1828                    sym.kind == MTH &&
1829                    sym.owner.kind == TYP &&
1830                    (sym.flags() & STATIC) == 0) return new StaticError(sym);
1831                else return sym;
1832            } else {
1833                bestSoFar = bestOf(bestSoFar, sym);
1834            }
1835            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1836            env1 = env1.outer;
1837        }
1838
1839        Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
1840                                typeargtypes, allowBoxing, useVarargs);
1841        if (sym.exists())
1842            return sym;
1843
1844        for (Symbol currentSym : env.toplevel.namedImportScope.getSymbolsByName(name)) {
1845            Symbol origin = env.toplevel.namedImportScope.getOrigin(currentSym).owner;
1846            if (currentSym.kind == MTH) {
1847                if (currentSym.owner.type != origin.type)
1848                    currentSym = currentSym.clone(origin);
1849                if (!isAccessible(env, origin.type, currentSym))
1850                    currentSym = new AccessError(env, origin.type, currentSym);
1851                bestSoFar = selectBest(env, origin.type,
1852                                       argtypes, typeargtypes,
1853                                       currentSym, bestSoFar,
1854                                       allowBoxing, useVarargs);
1855            }
1856        }
1857        if (bestSoFar.exists())
1858            return bestSoFar;
1859
1860        for (Symbol currentSym : env.toplevel.starImportScope.getSymbolsByName(name)) {
1861            Symbol origin = env.toplevel.starImportScope.getOrigin(currentSym).owner;
1862            if (currentSym.kind == MTH) {
1863                if (currentSym.owner.type != origin.type)
1864                    currentSym = currentSym.clone(origin);
1865                if (!isAccessible(env, origin.type, currentSym))
1866                    currentSym = new AccessError(env, origin.type, currentSym);
1867                bestSoFar = selectBest(env, origin.type,
1868                                       argtypes, typeargtypes,
1869                                       currentSym, bestSoFar,
1870                                       allowBoxing, useVarargs);
1871            }
1872        }
1873        return bestSoFar;
1874    }
1875
1876    /** Load toplevel or member class with given fully qualified name and
1877     *  verify that it is accessible.
1878     *  @param env       The current environment.
1879     *  @param name      The fully qualified name of the class to be loaded.
1880     */
1881    Symbol loadClass(Env<AttrContext> env, Name name) {
1882        try {
1883            ClassSymbol c = finder.loadClass(name);
1884            return isAccessible(env, c) ? c : new AccessError(c);
1885        } catch (ClassFinder.BadClassFile err) {
1886            throw err;
1887        } catch (CompletionFailure ex) {
1888            return typeNotFound;
1889        }
1890    }
1891
1892
1893    /**
1894     * Find a type declared in a scope (not inherited).  Return null
1895     * if none is found.
1896     *  @param env       The current environment.
1897     *  @param site      The original type from where the selection takes
1898     *                   place.
1899     *  @param name      The type's name.
1900     *  @param c         The class to search for the member type. This is
1901     *                   always a superclass or implemented interface of
1902     *                   site's class.
1903     */
1904    Symbol findImmediateMemberType(Env<AttrContext> env,
1905                                   Type site,
1906                                   Name name,
1907                                   TypeSymbol c) {
1908        for (Symbol sym : c.members().getSymbolsByName(name)) {
1909            if (sym.kind == TYP) {
1910                return isAccessible(env, site, sym)
1911                    ? sym
1912                    : new AccessError(env, site, sym);
1913            }
1914        }
1915        return typeNotFound;
1916    }
1917
1918    /** Find a member type inherited from a superclass or interface.
1919     *  @param env       The current environment.
1920     *  @param site      The original type from where the selection takes
1921     *                   place.
1922     *  @param name      The type's name.
1923     *  @param c         The class to search for the member type. This is
1924     *                   always a superclass or implemented interface of
1925     *                   site's class.
1926     */
1927    Symbol findInheritedMemberType(Env<AttrContext> env,
1928                                   Type site,
1929                                   Name name,
1930                                   TypeSymbol c) {
1931        Symbol bestSoFar = typeNotFound;
1932        Symbol sym;
1933        Type st = types.supertype(c.type);
1934        if (st != null && st.hasTag(CLASS)) {
1935            sym = findMemberType(env, site, name, st.tsym);
1936            bestSoFar = bestOf(bestSoFar, sym);
1937        }
1938        for (List<Type> l = types.interfaces(c.type);
1939             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1940             l = l.tail) {
1941            sym = findMemberType(env, site, name, l.head.tsym);
1942            if (!bestSoFar.kind.isResolutionError() &&
1943                !sym.kind.isResolutionError() &&
1944                sym.owner != bestSoFar.owner)
1945                bestSoFar = new AmbiguityError(bestSoFar, sym);
1946            else
1947                bestSoFar = bestOf(bestSoFar, sym);
1948        }
1949        return bestSoFar;
1950    }
1951
1952    /** Find qualified member type.
1953     *  @param env       The current environment.
1954     *  @param site      The original type from where the selection takes
1955     *                   place.
1956     *  @param name      The type's name.
1957     *  @param c         The class to search for the member type. This is
1958     *                   always a superclass or implemented interface of
1959     *                   site's class.
1960     */
1961    Symbol findMemberType(Env<AttrContext> env,
1962                          Type site,
1963                          Name name,
1964                          TypeSymbol c) {
1965        Symbol sym = findImmediateMemberType(env, site, name, c);
1966
1967        if (sym != typeNotFound)
1968            return sym;
1969
1970        return findInheritedMemberType(env, site, name, c);
1971
1972    }
1973
1974    /** Find a global type in given scope and load corresponding class.
1975     *  @param env       The current environment.
1976     *  @param scope     The scope in which to look for the type.
1977     *  @param name      The type's name.
1978     */
1979    Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
1980        Symbol bestSoFar = typeNotFound;
1981        for (Symbol s : scope.getSymbolsByName(name)) {
1982            Symbol sym = loadClass(env, s.flatName());
1983            if (bestSoFar.kind == TYP && sym.kind == TYP &&
1984                bestSoFar != sym)
1985                return new AmbiguityError(bestSoFar, sym);
1986            else
1987                bestSoFar = bestOf(bestSoFar, sym);
1988        }
1989        return bestSoFar;
1990    }
1991
1992    Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
1993        for (Symbol sym : env.info.scope.getSymbolsByName(name)) {
1994            if (sym.kind == TYP) {
1995                if (staticOnly &&
1996                    sym.type.hasTag(TYPEVAR) &&
1997                    sym.owner.kind == TYP)
1998                    return new StaticError(sym);
1999                return sym;
2000            }
2001        }
2002        return typeNotFound;
2003    }
2004
2005    /** Find an unqualified type symbol.
2006     *  @param env       The current environment.
2007     *  @param name      The type's name.
2008     */
2009    Symbol findType(Env<AttrContext> env, Name name) {
2010        Symbol bestSoFar = typeNotFound;
2011        Symbol sym;
2012        boolean staticOnly = false;
2013        for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
2014            if (isStatic(env1)) staticOnly = true;
2015            // First, look for a type variable and the first member type
2016            final Symbol tyvar = findTypeVar(env1, name, staticOnly);
2017            sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
2018                                          name, env1.enclClass.sym);
2019
2020            // Return the type variable if we have it, and have no
2021            // immediate member, OR the type variable is for a method.
2022            if (tyvar != typeNotFound) {
2023                if (env.baseClause || sym == typeNotFound ||
2024                    (tyvar.kind == TYP && tyvar.exists() &&
2025                     tyvar.owner.kind == MTH)) {
2026                    return tyvar;
2027                }
2028            }
2029
2030            // If the environment is a class def, finish up,
2031            // otherwise, do the entire findMemberType
2032            if (sym == typeNotFound)
2033                sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
2034                                              name, env1.enclClass.sym);
2035
2036            if (staticOnly && sym.kind == TYP &&
2037                sym.type.hasTag(CLASS) &&
2038                sym.type.getEnclosingType().hasTag(CLASS) &&
2039                env1.enclClass.sym.type.isParameterized() &&
2040                sym.type.getEnclosingType().isParameterized())
2041                return new StaticError(sym);
2042            else if (sym.exists()) return sym;
2043            else bestSoFar = bestOf(bestSoFar, sym);
2044
2045            JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
2046            if ((encl.sym.flags() & STATIC) != 0)
2047                staticOnly = true;
2048        }
2049
2050        if (!env.tree.hasTag(IMPORT)) {
2051            sym = findGlobalType(env, env.toplevel.namedImportScope, name);
2052            if (sym.exists()) return sym;
2053            else bestSoFar = bestOf(bestSoFar, sym);
2054
2055            sym = findGlobalType(env, env.toplevel.packge.members(), name);
2056            if (sym.exists()) return sym;
2057            else bestSoFar = bestOf(bestSoFar, sym);
2058
2059            sym = findGlobalType(env, env.toplevel.starImportScope, name);
2060            if (sym.exists()) return sym;
2061            else bestSoFar = bestOf(bestSoFar, sym);
2062        }
2063
2064        return bestSoFar;
2065    }
2066
2067    /** Find an unqualified identifier which matches a specified kind set.
2068     *  @param env       The current environment.
2069     *  @param name      The identifier's name.
2070     *  @param kind      Indicates the possible symbol kinds
2071     *                   (a subset of VAL, TYP, PCK).
2072     */
2073    Symbol findIdent(Env<AttrContext> env, Name name, KindSelector kind) {
2074        Symbol bestSoFar = typeNotFound;
2075        Symbol sym;
2076
2077        if (kind.contains(KindSelector.VAL)) {
2078            sym = findVar(env, name);
2079            if (sym.exists()) return sym;
2080            else bestSoFar = bestOf(bestSoFar, sym);
2081        }
2082
2083        if (kind.contains(KindSelector.TYP)) {
2084            sym = findType(env, name);
2085
2086            if (sym.exists()) return sym;
2087            else bestSoFar = bestOf(bestSoFar, sym);
2088        }
2089
2090        if (kind.contains(KindSelector.PCK))
2091            return syms.enterPackage(name);
2092        else return bestSoFar;
2093    }
2094
2095    /** Find an identifier in a package which matches a specified kind set.
2096     *  @param env       The current environment.
2097     *  @param name      The identifier's name.
2098     *  @param kind      Indicates the possible symbol kinds
2099     *                   (a nonempty subset of TYP, PCK).
2100     */
2101    Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
2102                              Name name, KindSelector kind) {
2103        Name fullname = TypeSymbol.formFullName(name, pck);
2104        Symbol bestSoFar = typeNotFound;
2105        PackageSymbol pack = null;
2106        if (kind.contains(KindSelector.PCK)) {
2107            pack = syms.enterPackage(fullname);
2108            if (pack.exists()) return pack;
2109        }
2110        if (kind.contains(KindSelector.TYP)) {
2111            Symbol sym = loadClass(env, fullname);
2112            if (sym.exists()) {
2113                // don't allow programs to use flatnames
2114                if (name == sym.name) return sym;
2115            }
2116            else bestSoFar = bestOf(bestSoFar, sym);
2117        }
2118        return (pack != null) ? pack : bestSoFar;
2119    }
2120
2121    /** Find an identifier among the members of a given type `site'.
2122     *  @param env       The current environment.
2123     *  @param site      The type containing the symbol to be found.
2124     *  @param name      The identifier's name.
2125     *  @param kind      Indicates the possible symbol kinds
2126     *                   (a subset of VAL, TYP).
2127     */
2128    Symbol findIdentInType(Env<AttrContext> env, Type site,
2129                           Name name, KindSelector kind) {
2130        Symbol bestSoFar = typeNotFound;
2131        Symbol sym;
2132        if (kind.contains(KindSelector.VAL)) {
2133            sym = findField(env, site, name, site.tsym);
2134            if (sym.exists()) return sym;
2135            else bestSoFar = bestOf(bestSoFar, sym);
2136        }
2137
2138        if (kind.contains(KindSelector.TYP)) {
2139            sym = findMemberType(env, site, name, site.tsym);
2140            if (sym.exists()) return sym;
2141            else bestSoFar = bestOf(bestSoFar, sym);
2142        }
2143        return bestSoFar;
2144    }
2145
2146/* ***************************************************************************
2147 *  Access checking
2148 *  The following methods convert ResolveErrors to ErrorSymbols, issuing
2149 *  an error message in the process
2150 ****************************************************************************/
2151
2152    /** If `sym' is a bad symbol: report error and return errSymbol
2153     *  else pass through unchanged,
2154     *  additional arguments duplicate what has been used in trying to find the
2155     *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
2156     *  expect misses to happen frequently.
2157     *
2158     *  @param sym       The symbol that was found, or a ResolveError.
2159     *  @param pos       The position to use for error reporting.
2160     *  @param location  The symbol the served as a context for this lookup
2161     *  @param site      The original type from where the selection took place.
2162     *  @param name      The symbol's name.
2163     *  @param qualified Did we get here through a qualified expression resolution?
2164     *  @param argtypes  The invocation's value arguments,
2165     *                   if we looked for a method.
2166     *  @param typeargtypes  The invocation's type arguments,
2167     *                   if we looked for a method.
2168     *  @param logResolveHelper helper class used to log resolve errors
2169     */
2170    Symbol accessInternal(Symbol sym,
2171                  DiagnosticPosition pos,
2172                  Symbol location,
2173                  Type site,
2174                  Name name,
2175                  boolean qualified,
2176                  List<Type> argtypes,
2177                  List<Type> typeargtypes,
2178                  LogResolveHelper logResolveHelper) {
2179        if (sym.kind.isResolutionError()) {
2180            ResolveError errSym = (ResolveError)sym.baseSymbol();
2181            sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
2182            argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
2183            if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
2184                logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
2185            }
2186        }
2187        return sym;
2188    }
2189
2190    /**
2191     * Variant of the generalized access routine, to be used for generating method
2192     * resolution diagnostics
2193     */
2194    Symbol accessMethod(Symbol sym,
2195                  DiagnosticPosition pos,
2196                  Symbol location,
2197                  Type site,
2198                  Name name,
2199                  boolean qualified,
2200                  List<Type> argtypes,
2201                  List<Type> typeargtypes) {
2202        return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
2203    }
2204
2205    /** Same as original accessMethod(), but without location.
2206     */
2207    Symbol accessMethod(Symbol sym,
2208                  DiagnosticPosition pos,
2209                  Type site,
2210                  Name name,
2211                  boolean qualified,
2212                  List<Type> argtypes,
2213                  List<Type> typeargtypes) {
2214        return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
2215    }
2216
2217    /**
2218     * Variant of the generalized access routine, to be used for generating variable,
2219     * type resolution diagnostics
2220     */
2221    Symbol accessBase(Symbol sym,
2222                  DiagnosticPosition pos,
2223                  Symbol location,
2224                  Type site,
2225                  Name name,
2226                  boolean qualified) {
2227        return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
2228    }
2229
2230    /** Same as original accessBase(), but without location.
2231     */
2232    Symbol accessBase(Symbol sym,
2233                  DiagnosticPosition pos,
2234                  Type site,
2235                  Name name,
2236                  boolean qualified) {
2237        return accessBase(sym, pos, site.tsym, site, name, qualified);
2238    }
2239
2240    interface LogResolveHelper {
2241        boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
2242        List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
2243    }
2244
2245    LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
2246        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2247            return !site.isErroneous();
2248        }
2249        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2250            return argtypes;
2251        }
2252    };
2253
2254    LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
2255        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2256            return !site.isErroneous() &&
2257                        !Type.isErroneous(argtypes) &&
2258                        (typeargtypes == null || !Type.isErroneous(typeargtypes));
2259        }
2260        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2261            return argtypes.map(new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
2262        }
2263    };
2264
2265    class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
2266
2267        public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
2268            deferredAttr.super(mode, msym, step);
2269        }
2270
2271        @Override
2272        protected Type typeOf(DeferredType dt) {
2273            Type res = super.typeOf(dt);
2274            if (!res.isErroneous()) {
2275                switch (TreeInfo.skipParens(dt.tree).getTag()) {
2276                    case LAMBDA:
2277                    case REFERENCE:
2278                        return dt;
2279                    case CONDEXPR:
2280                        return res == Type.recoveryType ?
2281                                dt : res;
2282                }
2283            }
2284            return res;
2285        }
2286    }
2287
2288    /** Check that sym is not an abstract method.
2289     */
2290    void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
2291        if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
2292            log.error(pos, "abstract.cant.be.accessed.directly",
2293                      kindName(sym), sym, sym.location());
2294    }
2295
2296/* ***************************************************************************
2297 *  Name resolution
2298 *  Naming conventions are as for symbol lookup
2299 *  Unlike the find... methods these methods will report access errors
2300 ****************************************************************************/
2301
2302    /** Resolve an unqualified (non-method) identifier.
2303     *  @param pos       The position to use for error reporting.
2304     *  @param env       The environment current at the identifier use.
2305     *  @param name      The identifier's name.
2306     *  @param kind      The set of admissible symbol kinds for the identifier.
2307     */
2308    Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
2309                        Name name, KindSelector kind) {
2310        return accessBase(
2311            findIdent(env, name, kind),
2312            pos, env.enclClass.sym.type, name, false);
2313    }
2314
2315    /** Resolve an unqualified method identifier.
2316     *  @param pos       The position to use for error reporting.
2317     *  @param env       The environment current at the method invocation.
2318     *  @param name      The identifier's name.
2319     *  @param argtypes  The types of the invocation's value arguments.
2320     *  @param typeargtypes  The types of the invocation's type arguments.
2321     */
2322    Symbol resolveMethod(DiagnosticPosition pos,
2323                         Env<AttrContext> env,
2324                         Name name,
2325                         List<Type> argtypes,
2326                         List<Type> typeargtypes) {
2327        return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
2328                new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
2329                    @Override
2330                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2331                        return findFun(env, name, argtypes, typeargtypes,
2332                                phase.isBoxingRequired(),
2333                                phase.isVarargsRequired());
2334                    }});
2335    }
2336
2337    /** Resolve a qualified method identifier
2338     *  @param pos       The position to use for error reporting.
2339     *  @param env       The environment current at the method invocation.
2340     *  @param site      The type of the qualifying expression, in which
2341     *                   identifier is searched.
2342     *  @param name      The identifier's name.
2343     *  @param argtypes  The types of the invocation's value arguments.
2344     *  @param typeargtypes  The types of the invocation's type arguments.
2345     */
2346    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2347                                  Type site, Name name, List<Type> argtypes,
2348                                  List<Type> typeargtypes) {
2349        return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
2350    }
2351    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2352                                  Symbol location, Type site, Name name, List<Type> argtypes,
2353                                  List<Type> typeargtypes) {
2354        return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
2355    }
2356    private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
2357                                  DiagnosticPosition pos, Env<AttrContext> env,
2358                                  Symbol location, Type site, Name name, List<Type> argtypes,
2359                                  List<Type> typeargtypes) {
2360        return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
2361            @Override
2362            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2363                return findMethod(env, site, name, argtypes, typeargtypes,
2364                        phase.isBoxingRequired(),
2365                        phase.isVarargsRequired());
2366            }
2367            @Override
2368            Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2369                if (sym.kind.isResolutionError()) {
2370                    sym = super.access(env, pos, location, sym);
2371                } else if (allowMethodHandles) {
2372                    MethodSymbol msym = (MethodSymbol)sym;
2373                    if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
2374                        return findPolymorphicSignatureInstance(env, sym, argtypes);
2375                    }
2376                }
2377                return sym;
2378            }
2379        });
2380    }
2381
2382    /** Find or create an implicit method of exactly the given type (after erasure).
2383     *  Searches in a side table, not the main scope of the site.
2384     *  This emulates the lookup process required by JSR 292 in JVM.
2385     *  @param env       Attribution environment
2386     *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
2387     *  @param argtypes  The required argument types
2388     */
2389    Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
2390                                            final Symbol spMethod,
2391                                            List<Type> argtypes) {
2392        Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
2393                (MethodSymbol)spMethod, currentResolutionContext, argtypes);
2394        for (Symbol sym : polymorphicSignatureScope.getSymbolsByName(spMethod.name)) {
2395            if (types.isSameType(mtype, sym.type)) {
2396               return sym;
2397            }
2398        }
2399
2400        // create the desired method
2401        long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
2402        Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
2403            @Override
2404            public Symbol baseSymbol() {
2405                return spMethod;
2406            }
2407        };
2408        polymorphicSignatureScope.enter(msym);
2409        return msym;
2410    }
2411
2412    /** Resolve a qualified method identifier, throw a fatal error if not
2413     *  found.
2414     *  @param pos       The position to use for error reporting.
2415     *  @param env       The environment current at the method invocation.
2416     *  @param site      The type of the qualifying expression, in which
2417     *                   identifier is searched.
2418     *  @param name      The identifier's name.
2419     *  @param argtypes  The types of the invocation's value arguments.
2420     *  @param typeargtypes  The types of the invocation's type arguments.
2421     */
2422    public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
2423                                        Type site, Name name,
2424                                        List<Type> argtypes,
2425                                        List<Type> typeargtypes) {
2426        MethodResolutionContext resolveContext = new MethodResolutionContext();
2427        resolveContext.internalResolution = true;
2428        Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
2429                site, name, argtypes, typeargtypes);
2430        if (sym.kind == MTH) return (MethodSymbol)sym;
2431        else throw new FatalError(
2432                 diags.fragment("fatal.err.cant.locate.meth",
2433                                name));
2434    }
2435
2436    /** Resolve constructor.
2437     *  @param pos       The position to use for error reporting.
2438     *  @param env       The environment current at the constructor invocation.
2439     *  @param site      The type of class for which a constructor is searched.
2440     *  @param argtypes  The types of the constructor invocation's value
2441     *                   arguments.
2442     *  @param typeargtypes  The types of the constructor invocation's type
2443     *                   arguments.
2444     */
2445    Symbol resolveConstructor(DiagnosticPosition pos,
2446                              Env<AttrContext> env,
2447                              Type site,
2448                              List<Type> argtypes,
2449                              List<Type> typeargtypes) {
2450        return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
2451    }
2452
2453    private Symbol resolveConstructor(MethodResolutionContext resolveContext,
2454                              final DiagnosticPosition pos,
2455                              Env<AttrContext> env,
2456                              Type site,
2457                              List<Type> argtypes,
2458                              List<Type> typeargtypes) {
2459        return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2460            @Override
2461            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2462                return findConstructor(pos, env, site, argtypes, typeargtypes,
2463                        phase.isBoxingRequired(),
2464                        phase.isVarargsRequired());
2465            }
2466        });
2467    }
2468
2469    /** Resolve a constructor, throw a fatal error if not found.
2470     *  @param pos       The position to use for error reporting.
2471     *  @param env       The environment current at the method invocation.
2472     *  @param site      The type to be constructed.
2473     *  @param argtypes  The types of the invocation's value arguments.
2474     *  @param typeargtypes  The types of the invocation's type arguments.
2475     */
2476    public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2477                                        Type site,
2478                                        List<Type> argtypes,
2479                                        List<Type> typeargtypes) {
2480        MethodResolutionContext resolveContext = new MethodResolutionContext();
2481        resolveContext.internalResolution = true;
2482        Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
2483        if (sym.kind == MTH) return (MethodSymbol)sym;
2484        else throw new FatalError(
2485                 diags.fragment("fatal.err.cant.locate.ctor", site));
2486    }
2487
2488    Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2489                              Type site, List<Type> argtypes,
2490                              List<Type> typeargtypes,
2491                              boolean allowBoxing,
2492                              boolean useVarargs) {
2493        Symbol sym = findMethod(env, site,
2494                                    names.init, argtypes,
2495                                    typeargtypes, allowBoxing,
2496                                    useVarargs);
2497        chk.checkDeprecated(pos, env.info.scope.owner, sym);
2498        return sym;
2499    }
2500
2501    /** Resolve constructor using diamond inference.
2502     *  @param pos       The position to use for error reporting.
2503     *  @param env       The environment current at the constructor invocation.
2504     *  @param site      The type of class for which a constructor is searched.
2505     *                   The scope of this class has been touched in attribution.
2506     *  @param argtypes  The types of the constructor invocation's value
2507     *                   arguments.
2508     *  @param typeargtypes  The types of the constructor invocation's type
2509     *                   arguments.
2510     */
2511    Symbol resolveDiamond(DiagnosticPosition pos,
2512                              Env<AttrContext> env,
2513                              Type site,
2514                              List<Type> argtypes,
2515                              List<Type> typeargtypes) {
2516        return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
2517                new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2518                    @Override
2519                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2520                        return findDiamond(env, site, argtypes, typeargtypes,
2521                                phase.isBoxingRequired(),
2522                                phase.isVarargsRequired());
2523                    }
2524                    @Override
2525                    Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2526                        if (sym.kind.isResolutionError()) {
2527                            if (sym.kind != WRONG_MTH &&
2528                                sym.kind != WRONG_MTHS) {
2529                                sym = super.access(env, pos, location, sym);
2530                            } else {
2531                                final JCDiagnostic details = sym.kind == WRONG_MTH ?
2532                                                ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
2533                                                null;
2534                                sym = new DiamondError(sym, currentResolutionContext);
2535                                sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
2536                                env.info.pendingResolutionPhase = currentResolutionContext.step;
2537                            }
2538                        }
2539                        return sym;
2540                    }});
2541    }
2542
2543    /** This method scans all the constructor symbol in a given class scope -
2544     *  assuming that the original scope contains a constructor of the kind:
2545     *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
2546     *  a method check is executed against the modified constructor type:
2547     *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
2548     *  inference. The inferred return type of the synthetic constructor IS
2549     *  the inferred type for the diamond operator.
2550     */
2551    private Symbol findDiamond(Env<AttrContext> env,
2552                              Type site,
2553                              List<Type> argtypes,
2554                              List<Type> typeargtypes,
2555                              boolean allowBoxing,
2556                              boolean useVarargs) {
2557        Symbol bestSoFar = methodNotFound;
2558        for (final Symbol sym : site.tsym.members().getSymbolsByName(names.init)) {
2559            //- System.out.println(" e " + e.sym);
2560            if (sym.kind == MTH &&
2561                (sym.flags_field & SYNTHETIC) == 0) {
2562                    List<Type> oldParams = sym.type.hasTag(FORALL) ?
2563                            ((ForAll)sym.type).tvars :
2564                            List.<Type>nil();
2565                    Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
2566                                                 types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
2567                    MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
2568                        @Override
2569                        public Symbol baseSymbol() {
2570                            return sym;
2571                        }
2572                    };
2573                    bestSoFar = selectBest(env, site, argtypes, typeargtypes,
2574                            newConstr,
2575                            bestSoFar,
2576                            allowBoxing,
2577                            useVarargs);
2578            }
2579        }
2580        return bestSoFar;
2581    }
2582
2583    Symbol getMemberReference(DiagnosticPosition pos,
2584            Env<AttrContext> env,
2585            JCMemberReference referenceTree,
2586            Type site,
2587            Name name) {
2588
2589        site = types.capture(site);
2590
2591        ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
2592                referenceTree, site, name, List.<Type>nil(), null, VARARITY);
2593
2594        Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
2595        Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
2596                nilMethodCheck, lookupHelper);
2597
2598        env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
2599
2600        return sym;
2601    }
2602
2603    ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
2604                                  Type site,
2605                                  Name name,
2606                                  List<Type> argtypes,
2607                                  List<Type> typeargtypes,
2608                                  MethodResolutionPhase maxPhase) {
2609        if (!name.equals(names.init)) {
2610            //method reference
2611            return new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
2612        } else if (site.hasTag(ARRAY)) {
2613            //array constructor reference
2614            return new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2615        } else {
2616            //class constructor reference
2617            return new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2618        }
2619    }
2620
2621    /**
2622     * Resolution of member references is typically done as a single
2623     * overload resolution step, where the argument types A are inferred from
2624     * the target functional descriptor.
2625     *
2626     * If the member reference is a method reference with a type qualifier,
2627     * a two-step lookup process is performed. The first step uses the
2628     * expected argument list A, while the second step discards the first
2629     * type from A (which is treated as a receiver type).
2630     *
2631     * There are two cases in which inference is performed: (i) if the member
2632     * reference is a constructor reference and the qualifier type is raw - in
2633     * which case diamond inference is used to infer a parameterization for the
2634     * type qualifier; (ii) if the member reference is an unbound reference
2635     * where the type qualifier is raw - in that case, during the unbound lookup
2636     * the receiver argument type is used to infer an instantiation for the raw
2637     * qualifier type.
2638     *
2639     * When a multi-step resolution process is exploited, the process of picking
2640     * the resulting symbol is delegated to an helper class {@link com.sun.tools.javac.comp.Resolve.ReferenceChooser}.
2641     *
2642     * This routine returns a pair (T,S), where S is the member reference symbol,
2643     * and T is the type of the class in which S is defined. This is necessary as
2644     * the type T might be dynamically inferred (i.e. if constructor reference
2645     * has a raw qualifier).
2646     */
2647    Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
2648                                  JCMemberReference referenceTree,
2649                                  Type site,
2650                                  Name name,
2651                                  List<Type> argtypes,
2652                                  List<Type> typeargtypes,
2653                                  MethodCheck methodCheck,
2654                                  InferenceContext inferenceContext,
2655                                  ReferenceChooser referenceChooser) {
2656
2657        //step 1 - bound lookup
2658        ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
2659                referenceTree, site, name, argtypes, typeargtypes, VARARITY);
2660        Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
2661        MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
2662        boundSearchResolveContext.methodCheck = methodCheck;
2663        Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(),
2664                site.tsym, boundSearchResolveContext, boundLookupHelper);
2665        ReferenceLookupResult boundRes = new ReferenceLookupResult(boundSym, boundSearchResolveContext);
2666
2667        //step 2 - unbound lookup
2668        Symbol unboundSym = methodNotFound;
2669        Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
2670        ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
2671        ReferenceLookupResult unboundRes = referenceNotFound;
2672        if (unboundLookupHelper != null) {
2673            MethodResolutionContext unboundSearchResolveContext =
2674                    new MethodResolutionContext();
2675            unboundSearchResolveContext.methodCheck = methodCheck;
2676            unboundSym = lookupMethod(unboundEnv, env.tree.pos(),
2677                    site.tsym, unboundSearchResolveContext, unboundLookupHelper);
2678            unboundRes = new ReferenceLookupResult(unboundSym, unboundSearchResolveContext);
2679        }
2680
2681        //merge results
2682        Pair<Symbol, ReferenceLookupHelper> res;
2683        Symbol bestSym = referenceChooser.result(boundRes, unboundRes);
2684        res = new Pair<>(bestSym,
2685                bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
2686        env.info.pendingResolutionPhase = bestSym == unboundSym ?
2687                unboundEnv.info.pendingResolutionPhase :
2688                boundEnv.info.pendingResolutionPhase;
2689
2690        return res;
2691    }
2692
2693    /**
2694     * This class is used to represent a method reference lookup result. It keeps track of two
2695     * things: (i) the symbol found during a method reference lookup and (ii) the static kind
2696     * of the lookup (see {@link com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind}).
2697     */
2698    static class ReferenceLookupResult {
2699
2700        /**
2701         * Static kind associated with a method reference lookup. Erroneous lookups end up with
2702         * the UNDEFINED kind; successful lookups will end up with either STATIC, NON_STATIC,
2703         * depending on whether all applicable candidates are static or non-static methods,
2704         * respectively. If a successful lookup has both static and non-static applicable methods,
2705         * its kind is set to BOTH.
2706         */
2707        enum StaticKind {
2708            STATIC,
2709            NON_STATIC,
2710            BOTH,
2711            UNDEFINED;
2712
2713            /**
2714             * Retrieve the static kind associated with a given (method) symbol.
2715             */
2716            static StaticKind from(Symbol s) {
2717                return s.isStatic() ?
2718                        STATIC : NON_STATIC;
2719            }
2720
2721            /**
2722             * Merge two static kinds together.
2723             */
2724            static StaticKind reduce(StaticKind sk1, StaticKind sk2) {
2725                if (sk1 == UNDEFINED) {
2726                    return sk2;
2727                } else if (sk2 == UNDEFINED) {
2728                    return sk1;
2729                } else {
2730                    return sk1 == sk2 ? sk1 : BOTH;
2731                }
2732            }
2733        }
2734
2735        /** The static kind. */
2736        StaticKind staticKind;
2737
2738        /** The lookup result. */
2739        Symbol sym;
2740
2741        ReferenceLookupResult(Symbol sym, MethodResolutionContext resolutionContext) {
2742            this.staticKind = staticKind(sym, resolutionContext);
2743            this.sym = sym;
2744        }
2745
2746        private StaticKind staticKind(Symbol sym, MethodResolutionContext resolutionContext) {
2747            switch (sym.kind) {
2748                case MTH:
2749                case AMBIGUOUS:
2750                    return resolutionContext.candidates.stream()
2751                            .filter(c -> c.isApplicable() && c.step == resolutionContext.step)
2752                            .map(c -> StaticKind.from(c.sym))
2753                            .reduce(StaticKind::reduce)
2754                            .orElse(StaticKind.UNDEFINED);
2755                case HIDDEN:
2756                    return StaticKind.from(((AccessError)sym).sym);
2757                default:
2758                    return StaticKind.UNDEFINED;
2759            }
2760        }
2761
2762        /**
2763         * Does this result corresponds to a successful lookup (i.e. one where a method has been found?)
2764         */
2765        boolean isSuccess() {
2766            return staticKind != StaticKind.UNDEFINED;
2767        }
2768
2769        /**
2770         * Does this result have given static kind?
2771         */
2772        boolean hasKind(StaticKind sk) {
2773            return this.staticKind == sk;
2774        }
2775
2776        /**
2777         * Error recovery helper: can this lookup result be ignored (for the purpose of returning
2778         * some 'better' result) ?
2779         */
2780        boolean canIgnore() {
2781            switch (sym.kind) {
2782                case ABSENT_MTH:
2783                    return true;
2784                case WRONG_MTH:
2785                    InapplicableSymbolError errSym =
2786                            (InapplicableSymbolError)sym.baseSymbol();
2787                    return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
2788                            .matches(errSym.errCandidate().snd);
2789                case WRONG_MTHS:
2790                    InapplicableSymbolsError errSyms =
2791                            (InapplicableSymbolsError)sym.baseSymbol();
2792                    return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
2793                default:
2794                    return false;
2795            }
2796        }
2797    }
2798
2799    /**
2800     * This abstract class embodies the logic that converts one (bound lookup) or two (unbound lookup)
2801     * {@code ReferenceLookupResult} objects into a (@code Symbol), which is then regarded as the
2802     * result of method reference resolution.
2803     */
2804    abstract class ReferenceChooser {
2805        /**
2806         * Generate a result from a pair of lookup result objects. This method delegates to the
2807         * appropriate result generation routine.
2808         */
2809        Symbol result(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2810            return unboundRes != referenceNotFound ?
2811                    unboundResult(boundRes, unboundRes) :
2812                    boundResult(boundRes);
2813        }
2814
2815        /**
2816         * Generate a symbol from a given bound lookup result.
2817         */
2818        abstract Symbol boundResult(ReferenceLookupResult boundRes);
2819
2820        /**
2821         * Generate a symbol from a pair of bound/unbound lookup results.
2822         */
2823        abstract Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes);
2824    }
2825
2826    /**
2827     * This chooser implements the selection strategy used during a full lookup; this logic
2828     * is described in JLS SE 8 (15.3.2).
2829     */
2830    ReferenceChooser basicReferenceChooser = new ReferenceChooser() {
2831
2832        @Override
2833        Symbol boundResult(ReferenceLookupResult boundRes) {
2834            return !boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC) ?
2835                    boundRes.sym : //the search produces a non-static method
2836                    new BadMethodReferenceError(boundRes.sym, false);
2837        }
2838
2839        @Override
2840        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2841            if (boundRes.hasKind(StaticKind.STATIC) &&
2842                    (!unboundRes.isSuccess() || unboundRes.hasKind(StaticKind.STATIC))) {
2843                //the first search produces a static method and no non-static method is applicable
2844                //during the second search
2845                return boundRes.sym;
2846            } else if (unboundRes.hasKind(StaticKind.NON_STATIC) &&
2847                    (!boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC))) {
2848                //the second search produces a non-static method and no static method is applicable
2849                //during the first search
2850                return unboundRes.sym;
2851            } else if (boundRes.isSuccess() && unboundRes.isSuccess()) {
2852                //both searches produce some result; ambiguity (error recovery)
2853                return ambiguityError(boundRes.sym, unboundRes.sym);
2854            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
2855                //Both searches failed to produce a result with correct staticness (i.e. first search
2856                //produces an non-static method). Alternatively, a given search produced a result
2857                //with the right staticness, but the other search has applicable methods with wrong
2858                //staticness (error recovery)
2859                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
2860            } else {
2861                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
2862                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
2863                        unboundRes.sym : boundRes.sym;
2864            }
2865        }
2866    };
2867
2868    /**
2869     * This chooser implements the selection strategy used during an arity-based lookup; this logic
2870     * is described in JLS SE 8 (15.12.2.1).
2871     */
2872    ReferenceChooser structuralReferenceChooser = new ReferenceChooser() {
2873
2874        @Override
2875        Symbol boundResult(ReferenceLookupResult boundRes) {
2876            return (!boundRes.isSuccess() || !boundRes.hasKind(StaticKind.STATIC)) ?
2877                    boundRes.sym : //the search has at least one applicable non-static method
2878                    new BadMethodReferenceError(boundRes.sym, false);
2879        }
2880
2881        @Override
2882        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2883            if (boundRes.isSuccess() && !boundRes.hasKind(StaticKind.NON_STATIC)) {
2884                //the first serach has at least one applicable static method
2885                return boundRes.sym;
2886            } else if (unboundRes.isSuccess() && !unboundRes.hasKind(StaticKind.STATIC)) {
2887                //the second search has at least one applicable non-static method
2888                return unboundRes.sym;
2889            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
2890                //either the first search produces a non-static method, or second search produces
2891                //a non-static method (error recovery)
2892                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
2893            } else {
2894                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
2895                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
2896                        unboundRes.sym : boundRes.sym;
2897            }
2898        }
2899    };
2900
2901    /**
2902     * Helper for defining custom method-like lookup logic; a lookup helper
2903     * provides hooks for (i) the actual lookup logic and (ii) accessing the
2904     * lookup result (this step might result in compiler diagnostics to be generated)
2905     */
2906    abstract class LookupHelper {
2907
2908        /** name of the symbol to lookup */
2909        Name name;
2910
2911        /** location in which the lookup takes place */
2912        Type site;
2913
2914        /** actual types used during the lookup */
2915        List<Type> argtypes;
2916
2917        /** type arguments used during the lookup */
2918        List<Type> typeargtypes;
2919
2920        /** Max overload resolution phase handled by this helper */
2921        MethodResolutionPhase maxPhase;
2922
2923        LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
2924            this.name = name;
2925            this.site = site;
2926            this.argtypes = argtypes;
2927            this.typeargtypes = typeargtypes;
2928            this.maxPhase = maxPhase;
2929        }
2930
2931        /**
2932         * Should lookup stop at given phase with given result
2933         */
2934        final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
2935            return phase.ordinal() > maxPhase.ordinal() ||
2936                !sym.kind.isResolutionError() || sym.kind == AMBIGUOUS;
2937        }
2938
2939        /**
2940         * Search for a symbol under a given overload resolution phase - this method
2941         * is usually called several times, once per each overload resolution phase
2942         */
2943        abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
2944
2945        /**
2946         * Dump overload resolution info
2947         */
2948        void debug(DiagnosticPosition pos, Symbol sym) {
2949            //do nothing
2950        }
2951
2952        /**
2953         * Validate the result of the lookup
2954         */
2955        abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
2956    }
2957
2958    abstract class BasicLookupHelper extends LookupHelper {
2959
2960        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
2961            this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
2962        }
2963
2964        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
2965            super(name, site, argtypes, typeargtypes, maxPhase);
2966        }
2967
2968        @Override
2969        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2970            Symbol sym = doLookup(env, phase);
2971            if (sym.kind == AMBIGUOUS) {
2972                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
2973                sym = a_err.mergeAbstracts(site);
2974            }
2975            return sym;
2976        }
2977
2978        abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
2979
2980        @Override
2981        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2982            if (sym.kind.isResolutionError()) {
2983                //if nothing is found return the 'first' error
2984                sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
2985            }
2986            return sym;
2987        }
2988
2989        @Override
2990        void debug(DiagnosticPosition pos, Symbol sym) {
2991            reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
2992        }
2993    }
2994
2995    /**
2996     * Helper class for member reference lookup. A reference lookup helper
2997     * defines the basic logic for member reference lookup; a method gives
2998     * access to an 'unbound' helper used to perform an unbound member
2999     * reference lookup.
3000     */
3001    abstract class ReferenceLookupHelper extends LookupHelper {
3002
3003        /** The member reference tree */
3004        JCMemberReference referenceTree;
3005
3006        ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3007                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3008            super(name, site, argtypes, typeargtypes, maxPhase);
3009            this.referenceTree = referenceTree;
3010        }
3011
3012        /**
3013         * Returns an unbound version of this lookup helper. By default, this
3014         * method returns an dummy lookup helper.
3015         */
3016        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3017            return null;
3018        }
3019
3020        /**
3021         * Get the kind of the member reference
3022         */
3023        abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
3024
3025        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3026            if (sym.kind == AMBIGUOUS) {
3027                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3028                sym = a_err.mergeAbstracts(site);
3029            }
3030            //skip error reporting
3031            return sym;
3032        }
3033    }
3034
3035    /**
3036     * Helper class for method reference lookup. The lookup logic is based
3037     * upon Resolve.findMethod; in certain cases, this helper class has a
3038     * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
3039     * In such cases, non-static lookup results are thrown away.
3040     */
3041    class MethodReferenceLookupHelper extends ReferenceLookupHelper {
3042
3043        /** The original method reference lookup site. */
3044        Type originalSite;
3045
3046        MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3047                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3048            super(referenceTree, name, types.skipTypeVars(site, true), argtypes, typeargtypes, maxPhase);
3049            this.originalSite = site;
3050        }
3051
3052        @Override
3053        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3054            return findMethod(env, site, name, argtypes, typeargtypes,
3055                    phase.isBoxingRequired(), phase.isVarargsRequired());
3056        }
3057
3058        @Override
3059        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3060            if (TreeInfo.isStaticSelector(referenceTree.expr, names)) {
3061                if (argtypes.nonEmpty() &&
3062                        (argtypes.head.hasTag(NONE) ||
3063                        types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), site))) {
3064                    return new UnboundMethodReferenceLookupHelper(referenceTree, name,
3065                            originalSite, argtypes, typeargtypes, maxPhase);
3066                } else {
3067                    return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
3068                        @Override
3069                        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3070                            return this;
3071                        }
3072
3073                        @Override
3074                        Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3075                            return methodNotFound;
3076                        }
3077
3078                        @Override
3079                        ReferenceKind referenceKind(Symbol sym) {
3080                            Assert.error();
3081                            return null;
3082                        }
3083                    };
3084                }
3085            } else {
3086                return super.unboundLookup(inferenceContext);
3087            }
3088        }
3089
3090        @Override
3091        ReferenceKind referenceKind(Symbol sym) {
3092            if (sym.isStatic()) {
3093                return ReferenceKind.STATIC;
3094            } else {
3095                Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
3096                return selName != null && selName == names._super ?
3097                        ReferenceKind.SUPER :
3098                        ReferenceKind.BOUND;
3099            }
3100        }
3101    }
3102
3103    /**
3104     * Helper class for unbound method reference lookup. Essentially the same
3105     * as the basic method reference lookup helper; main difference is that static
3106     * lookup results are thrown away. If qualifier type is raw, an attempt to
3107     * infer a parameterized type is made using the first actual argument (that
3108     * would otherwise be ignored during the lookup).
3109     */
3110    class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
3111
3112        UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3113                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3114            super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
3115            if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
3116                Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
3117                this.site = types.skipTypeVars(asSuperSite, true);
3118            }
3119        }
3120
3121        @Override
3122        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3123            return this;
3124        }
3125
3126        @Override
3127        ReferenceKind referenceKind(Symbol sym) {
3128            return ReferenceKind.UNBOUND;
3129        }
3130    }
3131
3132    /**
3133     * Helper class for array constructor lookup; an array constructor lookup
3134     * is simulated by looking up a method that returns the array type specified
3135     * as qualifier, and that accepts a single int parameter (size of the array).
3136     */
3137    class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3138
3139        ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3140                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3141            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3142        }
3143
3144        @Override
3145        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3146            WriteableScope sc = WriteableScope.create(syms.arrayClass);
3147            MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
3148            arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
3149            sc.enter(arrayConstr);
3150            return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false);
3151        }
3152
3153        @Override
3154        ReferenceKind referenceKind(Symbol sym) {
3155            return ReferenceKind.ARRAY_CTOR;
3156        }
3157    }
3158
3159    /**
3160     * Helper class for constructor reference lookup. The lookup logic is based
3161     * upon either Resolve.findMethod or Resolve.findDiamond - depending on
3162     * whether the constructor reference needs diamond inference (this is the case
3163     * if the qualifier type is raw). A special erroneous symbol is returned
3164     * if the lookup returns the constructor of an inner class and there's no
3165     * enclosing instance in scope.
3166     */
3167    class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3168
3169        boolean needsInference;
3170
3171        ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3172                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3173            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3174            if (site.isRaw()) {
3175                this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym, site.getMetadata());
3176                needsInference = true;
3177            }
3178        }
3179
3180        @Override
3181        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3182            Symbol sym = needsInference ?
3183                findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
3184                findMethod(env, site, name, argtypes, typeargtypes,
3185                        phase.isBoxingRequired(), phase.isVarargsRequired());
3186            return (sym.kind != MTH ||
3187                    site.getEnclosingType().hasTag(NONE) ||
3188                    hasEnclosingInstance(env, site)) ?
3189                    sym : new BadConstructorReferenceError(sym);
3190        }
3191
3192        @Override
3193        ReferenceKind referenceKind(Symbol sym) {
3194            return site.getEnclosingType().hasTag(NONE) ?
3195                    ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
3196        }
3197    }
3198
3199    /**
3200     * Main overload resolution routine. On each overload resolution step, a
3201     * lookup helper class is used to perform the method/constructor lookup;
3202     * at the end of the lookup, the helper is used to validate the results
3203     * (this last step might trigger overload resolution diagnostics).
3204     */
3205    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
3206        MethodResolutionContext resolveContext = new MethodResolutionContext();
3207        resolveContext.methodCheck = methodCheck;
3208        return lookupMethod(env, pos, location, resolveContext, lookupHelper);
3209    }
3210
3211    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
3212            MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
3213        MethodResolutionContext prevResolutionContext = currentResolutionContext;
3214        try {
3215            Symbol bestSoFar = methodNotFound;
3216            currentResolutionContext = resolveContext;
3217            for (MethodResolutionPhase phase : methodResolutionSteps) {
3218                if (lookupHelper.shouldStop(bestSoFar, phase))
3219                    break;
3220                MethodResolutionPhase prevPhase = currentResolutionContext.step;
3221                Symbol prevBest = bestSoFar;
3222                currentResolutionContext.step = phase;
3223                Symbol sym = lookupHelper.lookup(env, phase);
3224                lookupHelper.debug(pos, sym);
3225                bestSoFar = phase.mergeResults(bestSoFar, sym);
3226                env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
3227            }
3228            return lookupHelper.access(env, pos, location, bestSoFar);
3229        } finally {
3230            currentResolutionContext = prevResolutionContext;
3231        }
3232    }
3233
3234    /**
3235     * Resolve `c.name' where name == this or name == super.
3236     * @param pos           The position to use for error reporting.
3237     * @param env           The environment current at the expression.
3238     * @param c             The qualifier.
3239     * @param name          The identifier's name.
3240     */
3241    Symbol resolveSelf(DiagnosticPosition pos,
3242                       Env<AttrContext> env,
3243                       TypeSymbol c,
3244                       Name name) {
3245        Env<AttrContext> env1 = env;
3246        boolean staticOnly = false;
3247        while (env1.outer != null) {
3248            if (isStatic(env1)) staticOnly = true;
3249            if (env1.enclClass.sym == c) {
3250                Symbol sym = env1.info.scope.findFirst(name);
3251                if (sym != null) {
3252                    if (staticOnly) sym = new StaticError(sym);
3253                    return accessBase(sym, pos, env.enclClass.sym.type,
3254                                  name, true);
3255                }
3256            }
3257            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
3258            env1 = env1.outer;
3259        }
3260        if (c.isInterface() &&
3261            name == names._super && !isStatic(env) &&
3262            types.isDirectSuperInterface(c, env.enclClass.sym)) {
3263            //this might be a default super call if one of the superinterfaces is 'c'
3264            for (Type t : pruneInterfaces(env.enclClass.type)) {
3265                if (t.tsym == c) {
3266                    env.info.defaultSuperCallSite = t;
3267                    return new VarSymbol(0, names._super,
3268                            types.asSuper(env.enclClass.type, c), env.enclClass.sym);
3269                }
3270            }
3271            //find a direct superinterface that is a subtype of 'c'
3272            for (Type i : types.interfaces(env.enclClass.type)) {
3273                if (i.tsym.isSubClass(c, types) && i.tsym != c) {
3274                    log.error(pos, "illegal.default.super.call", c,
3275                            diags.fragment("redundant.supertype", c, i));
3276                    return syms.errSymbol;
3277                }
3278            }
3279            Assert.error();
3280        }
3281        log.error(pos, "not.encl.class", c);
3282        return syms.errSymbol;
3283    }
3284    //where
3285    private List<Type> pruneInterfaces(Type t) {
3286        ListBuffer<Type> result = new ListBuffer<>();
3287        for (Type t1 : types.interfaces(t)) {
3288            boolean shouldAdd = true;
3289            for (Type t2 : types.interfaces(t)) {
3290                if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
3291                    shouldAdd = false;
3292                }
3293            }
3294            if (shouldAdd) {
3295                result.append(t1);
3296            }
3297        }
3298        return result.toList();
3299    }
3300
3301
3302    /**
3303     * Resolve `c.this' for an enclosing class c that contains the
3304     * named member.
3305     * @param pos           The position to use for error reporting.
3306     * @param env           The environment current at the expression.
3307     * @param member        The member that must be contained in the result.
3308     */
3309    Symbol resolveSelfContaining(DiagnosticPosition pos,
3310                                 Env<AttrContext> env,
3311                                 Symbol member,
3312                                 boolean isSuperCall) {
3313        Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
3314        if (sym == null) {
3315            log.error(pos, "encl.class.required", member);
3316            return syms.errSymbol;
3317        } else {
3318            return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
3319        }
3320    }
3321
3322    boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
3323        Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
3324        return encl != null && !encl.kind.isResolutionError();
3325    }
3326
3327    private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
3328                                 Symbol member,
3329                                 boolean isSuperCall) {
3330        Name name = names._this;
3331        Env<AttrContext> env1 = isSuperCall ? env.outer : env;
3332        boolean staticOnly = false;
3333        if (env1 != null) {
3334            while (env1 != null && env1.outer != null) {
3335                if (isStatic(env1)) staticOnly = true;
3336                if (env1.enclClass.sym.isSubClass(member.owner, types)) {
3337                    Symbol sym = env1.info.scope.findFirst(name);
3338                    if (sym != null) {
3339                        if (staticOnly) sym = new StaticError(sym);
3340                        return sym;
3341                    }
3342                }
3343                if ((env1.enclClass.sym.flags() & STATIC) != 0)
3344                    staticOnly = true;
3345                env1 = env1.outer;
3346            }
3347        }
3348        return null;
3349    }
3350
3351    /**
3352     * Resolve an appropriate implicit this instance for t's container.
3353     * JLS 8.8.5.1 and 15.9.2
3354     */
3355    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
3356        return resolveImplicitThis(pos, env, t, false);
3357    }
3358
3359    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
3360        Type thisType = (t.tsym.owner.kind.matches(KindSelector.VAL_MTH)
3361                         ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
3362                         : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
3363        if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
3364            log.error(pos, "cant.ref.before.ctor.called", "this");
3365        return thisType;
3366    }
3367
3368/* ***************************************************************************
3369 *  ResolveError classes, indicating error situations when accessing symbols
3370 ****************************************************************************/
3371
3372    //used by TransTypes when checking target type of synthetic cast
3373    public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
3374        AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
3375        logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
3376    }
3377    //where
3378    private void logResolveError(ResolveError error,
3379            DiagnosticPosition pos,
3380            Symbol location,
3381            Type site,
3382            Name name,
3383            List<Type> argtypes,
3384            List<Type> typeargtypes) {
3385        JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3386                pos, location, site, name, argtypes, typeargtypes);
3387        if (d != null) {
3388            d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
3389            log.report(d);
3390        }
3391    }
3392
3393    private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
3394
3395    public Object methodArguments(List<Type> argtypes) {
3396        if (argtypes == null || argtypes.isEmpty()) {
3397            return noArgs;
3398        } else {
3399            ListBuffer<Object> diagArgs = new ListBuffer<>();
3400            for (Type t : argtypes) {
3401                if (t.hasTag(DEFERRED)) {
3402                    diagArgs.append(((DeferredAttr.DeferredType)t).tree);
3403                } else {
3404                    diagArgs.append(t);
3405                }
3406            }
3407            return diagArgs;
3408        }
3409    }
3410
3411    /**
3412     * Root class for resolution errors. Subclass of ResolveError
3413     * represent a different kinds of resolution error - as such they must
3414     * specify how they map into concrete compiler diagnostics.
3415     */
3416    abstract class ResolveError extends Symbol {
3417
3418        /** The name of the kind of error, for debugging only. */
3419        final String debugName;
3420
3421        ResolveError(Kind kind, String debugName) {
3422            super(kind, 0, null, null, null);
3423            this.debugName = debugName;
3424        }
3425
3426        @Override @DefinedBy(Api.LANGUAGE_MODEL)
3427        public <R, P> R accept(ElementVisitor<R, P> v, P p) {
3428            throw new AssertionError();
3429        }
3430
3431        @Override
3432        public String toString() {
3433            return debugName;
3434        }
3435
3436        @Override
3437        public boolean exists() {
3438            return false;
3439        }
3440
3441        @Override
3442        public boolean isStatic() {
3443            return false;
3444        }
3445
3446        /**
3447         * Create an external representation for this erroneous symbol to be
3448         * used during attribution - by default this returns the symbol of a
3449         * brand new error type which stores the original type found
3450         * during resolution.
3451         *
3452         * @param name     the name used during resolution
3453         * @param location the location from which the symbol is accessed
3454         */
3455        protected Symbol access(Name name, TypeSymbol location) {
3456            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3457        }
3458
3459        /**
3460         * Create a diagnostic representing this resolution error.
3461         *
3462         * @param dkind     The kind of the diagnostic to be created (e.g error).
3463         * @param pos       The position to be used for error reporting.
3464         * @param site      The original type from where the selection took place.
3465         * @param name      The name of the symbol to be resolved.
3466         * @param argtypes  The invocation's value arguments,
3467         *                  if we looked for a method.
3468         * @param typeargtypes  The invocation's type arguments,
3469         *                      if we looked for a method.
3470         */
3471        abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3472                DiagnosticPosition pos,
3473                Symbol location,
3474                Type site,
3475                Name name,
3476                List<Type> argtypes,
3477                List<Type> typeargtypes);
3478    }
3479
3480    /**
3481     * This class is the root class of all resolution errors caused by
3482     * an invalid symbol being found during resolution.
3483     */
3484    abstract class InvalidSymbolError extends ResolveError {
3485
3486        /** The invalid symbol found during resolution */
3487        Symbol sym;
3488
3489        InvalidSymbolError(Kind kind, Symbol sym, String debugName) {
3490            super(kind, debugName);
3491            this.sym = sym;
3492        }
3493
3494        @Override
3495        public boolean exists() {
3496            return true;
3497        }
3498
3499        @Override
3500        public String toString() {
3501             return super.toString() + " wrongSym=" + sym;
3502        }
3503
3504        @Override
3505        public Symbol access(Name name, TypeSymbol location) {
3506            if (!sym.kind.isResolutionError() && sym.kind.matches(KindSelector.TYP))
3507                return types.createErrorType(name, location, sym.type).tsym;
3508            else
3509                return sym;
3510        }
3511    }
3512
3513    /**
3514     * InvalidSymbolError error class indicating that a symbol matching a
3515     * given name does not exists in a given site.
3516     */
3517    class SymbolNotFoundError extends ResolveError {
3518
3519        SymbolNotFoundError(Kind kind) {
3520            this(kind, "symbol not found error");
3521        }
3522
3523        SymbolNotFoundError(Kind kind, String debugName) {
3524            super(kind, debugName);
3525        }
3526
3527        @Override
3528        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3529                DiagnosticPosition pos,
3530                Symbol location,
3531                Type site,
3532                Name name,
3533                List<Type> argtypes,
3534                List<Type> typeargtypes) {
3535            argtypes = argtypes == null ? List.<Type>nil() : argtypes;
3536            typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
3537            if (name == names.error)
3538                return null;
3539
3540            boolean hasLocation = false;
3541            if (location == null) {
3542                location = site.tsym;
3543            }
3544            if (!location.name.isEmpty()) {
3545                if (location.kind == PCK && !site.tsym.exists()) {
3546                    return diags.create(dkind, log.currentSource(), pos,
3547                        "doesnt.exist", location);
3548                }
3549                hasLocation = !location.name.equals(names._this) &&
3550                        !location.name.equals(names._super);
3551            }
3552            boolean isConstructor = name == names.init;
3553            KindName kindname = isConstructor ? KindName.CONSTRUCTOR : kind.absentKind();
3554            Name idname = isConstructor ? site.tsym.name : name;
3555            String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
3556            if (hasLocation) {
3557                return diags.create(dkind, log.currentSource(), pos,
3558                        errKey, kindname, idname, //symbol kindname, name
3559                        typeargtypes, args(argtypes), //type parameters and arguments (if any)
3560                        getLocationDiag(location, site)); //location kindname, type
3561            }
3562            else {
3563                return diags.create(dkind, log.currentSource(), pos,
3564                        errKey, kindname, idname, //symbol kindname, name
3565                        typeargtypes, args(argtypes)); //type parameters and arguments (if any)
3566            }
3567        }
3568        //where
3569        private Object args(List<Type> args) {
3570            return args.isEmpty() ? args : methodArguments(args);
3571        }
3572
3573        private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
3574            String key = "cant.resolve";
3575            String suffix = hasLocation ? ".location" : "";
3576            switch (kindname) {
3577                case METHOD:
3578                case CONSTRUCTOR: {
3579                    suffix += ".args";
3580                    suffix += hasTypeArgs ? ".params" : "";
3581                }
3582            }
3583            return key + suffix;
3584        }
3585        private JCDiagnostic getLocationDiag(Symbol location, Type site) {
3586            if (location.kind == VAR) {
3587                return diags.fragment("location.1",
3588                    kindName(location),
3589                    location,
3590                    location.type);
3591            } else {
3592                return diags.fragment("location",
3593                    typeKindName(site),
3594                    site,
3595                    null);
3596            }
3597        }
3598    }
3599
3600    /**
3601     * InvalidSymbolError error class indicating that a given symbol
3602     * (either a method, a constructor or an operand) is not applicable
3603     * given an actual arguments/type argument list.
3604     */
3605    class InapplicableSymbolError extends ResolveError {
3606
3607        protected MethodResolutionContext resolveContext;
3608
3609        InapplicableSymbolError(MethodResolutionContext context) {
3610            this(WRONG_MTH, "inapplicable symbol error", context);
3611        }
3612
3613        protected InapplicableSymbolError(Kind kind, String debugName, MethodResolutionContext context) {
3614            super(kind, debugName);
3615            this.resolveContext = context;
3616        }
3617
3618        @Override
3619        public String toString() {
3620            return super.toString();
3621        }
3622
3623        @Override
3624        public boolean exists() {
3625            return true;
3626        }
3627
3628        @Override
3629        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3630                DiagnosticPosition pos,
3631                Symbol location,
3632                Type site,
3633                Name name,
3634                List<Type> argtypes,
3635                List<Type> typeargtypes) {
3636            if (name == names.error)
3637                return null;
3638
3639            Pair<Symbol, JCDiagnostic> c = errCandidate();
3640            if (compactMethodDiags) {
3641                JCDiagnostic simpleDiag =
3642                    MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, c.snd);
3643                if (simpleDiag != null) {
3644                    return simpleDiag;
3645                }
3646            }
3647            Symbol ws = c.fst.asMemberOf(site, types);
3648            return diags.create(dkind, log.currentSource(), pos,
3649                      "cant.apply.symbol",
3650                      kindName(ws),
3651                      ws.name == names.init ? ws.owner.name : ws.name,
3652                      methodArguments(ws.type.getParameterTypes()),
3653                      methodArguments(argtypes),
3654                      kindName(ws.owner),
3655                      ws.owner.type,
3656                      c.snd);
3657        }
3658
3659        @Override
3660        public Symbol access(Name name, TypeSymbol location) {
3661            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3662        }
3663
3664        protected Pair<Symbol, JCDiagnostic> errCandidate() {
3665            Candidate bestSoFar = null;
3666            for (Candidate c : resolveContext.candidates) {
3667                if (c.isApplicable()) continue;
3668                bestSoFar = c;
3669            }
3670            Assert.checkNonNull(bestSoFar);
3671            return new Pair<>(bestSoFar.sym, bestSoFar.details);
3672        }
3673    }
3674
3675    /**
3676     * ResolveError error class indicating that a symbol (either methods, constructors or operand)
3677     * is not applicable given an actual arguments/type argument list.
3678     */
3679    class InapplicableSymbolsError extends InapplicableSymbolError {
3680
3681        InapplicableSymbolsError(MethodResolutionContext context) {
3682            super(WRONG_MTHS, "inapplicable symbols", context);
3683        }
3684
3685        @Override
3686        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3687                DiagnosticPosition pos,
3688                Symbol location,
3689                Type site,
3690                Name name,
3691                List<Type> argtypes,
3692                List<Type> typeargtypes) {
3693            Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
3694            Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
3695                    filterCandidates(candidatesMap) :
3696                    mapCandidates();
3697            if (filteredCandidates.isEmpty()) {
3698                filteredCandidates = candidatesMap;
3699            }
3700            boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
3701            if (filteredCandidates.size() > 1) {
3702                JCDiagnostic err = diags.create(dkind,
3703                        null,
3704                        truncatedDiag ?
3705                            EnumSet.of(DiagnosticFlag.COMPRESSED) :
3706                            EnumSet.noneOf(DiagnosticFlag.class),
3707                        log.currentSource(),
3708                        pos,
3709                        "cant.apply.symbols",
3710                        name == names.init ? KindName.CONSTRUCTOR : kind.absentKind(),
3711                        name == names.init ? site.tsym.name : name,
3712                        methodArguments(argtypes));
3713                return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
3714            } else if (filteredCandidates.size() == 1) {
3715                Map.Entry<Symbol, JCDiagnostic> _e =
3716                                filteredCandidates.entrySet().iterator().next();
3717                final Pair<Symbol, JCDiagnostic> p = new Pair<>(_e.getKey(), _e.getValue());
3718                JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
3719                    @Override
3720                    protected Pair<Symbol, JCDiagnostic> errCandidate() {
3721                        return p;
3722                    }
3723                }.getDiagnostic(dkind, pos,
3724                    location, site, name, argtypes, typeargtypes);
3725                if (truncatedDiag) {
3726                    d.setFlag(DiagnosticFlag.COMPRESSED);
3727                }
3728                return d;
3729            } else {
3730                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
3731                    location, site, name, argtypes, typeargtypes);
3732            }
3733        }
3734        //where
3735            private Map<Symbol, JCDiagnostic> mapCandidates() {
3736                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
3737                for (Candidate c : resolveContext.candidates) {
3738                    if (c.isApplicable()) continue;
3739                    candidates.put(c.sym, c.details);
3740                }
3741                return candidates;
3742            }
3743
3744            Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
3745                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
3746                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3747                    JCDiagnostic d = _entry.getValue();
3748                    if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
3749                        candidates.put(_entry.getKey(), d);
3750                    }
3751                }
3752                return candidates;
3753            }
3754
3755            private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
3756                List<JCDiagnostic> details = List.nil();
3757                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3758                    Symbol sym = _entry.getKey();
3759                    JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
3760                            Kinds.kindName(sym),
3761                            sym.location(site, types),
3762                            sym.asMemberOf(site, types),
3763                            _entry.getValue());
3764                    details = details.prepend(detailDiag);
3765                }
3766                //typically members are visited in reverse order (see Scope)
3767                //so we need to reverse the candidate list so that candidates
3768                //conform to source order
3769                return details;
3770            }
3771    }
3772
3773    /**
3774     * DiamondError error class indicating that a constructor symbol is not applicable
3775     * given an actual arguments/type argument list using diamond inference.
3776     */
3777    class DiamondError extends InapplicableSymbolError {
3778
3779        Symbol sym;
3780
3781        public DiamondError(Symbol sym, MethodResolutionContext context) {
3782            super(sym.kind, "diamondError", context);
3783            this.sym = sym;
3784        }
3785
3786        JCDiagnostic getDetails() {
3787            return (sym.kind == WRONG_MTH) ?
3788                    ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
3789                    null;
3790        }
3791
3792        @Override
3793        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
3794                Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
3795            JCDiagnostic details = getDetails();
3796            if (details != null && compactMethodDiags) {
3797                JCDiagnostic simpleDiag =
3798                        MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, details);
3799                if (simpleDiag != null) {
3800                    return simpleDiag;
3801                }
3802            }
3803            String key = details == null ?
3804                "cant.apply.diamond" :
3805                "cant.apply.diamond.1";
3806            return diags.create(dkind, log.currentSource(), pos, key,
3807                    diags.fragment("diamond", site.tsym), details);
3808        }
3809    }
3810
3811    /**
3812     * An InvalidSymbolError error class indicating that a symbol is not
3813     * accessible from a given site
3814     */
3815    class AccessError extends InvalidSymbolError {
3816
3817        private Env<AttrContext> env;
3818        private Type site;
3819
3820        AccessError(Symbol sym) {
3821            this(null, null, sym);
3822        }
3823
3824        AccessError(Env<AttrContext> env, Type site, Symbol sym) {
3825            super(HIDDEN, sym, "access error");
3826            this.env = env;
3827            this.site = site;
3828            if (debugResolve)
3829                log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
3830        }
3831
3832        @Override
3833        public boolean exists() {
3834            return false;
3835        }
3836
3837        @Override
3838        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3839                DiagnosticPosition pos,
3840                Symbol location,
3841                Type site,
3842                Name name,
3843                List<Type> argtypes,
3844                List<Type> typeargtypes) {
3845            if (sym.owner.type.hasTag(ERROR))
3846                return null;
3847
3848            if (sym.name == names.init && sym.owner != site.tsym) {
3849                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
3850                        pos, location, site, name, argtypes, typeargtypes);
3851            }
3852            else if ((sym.flags() & PUBLIC) != 0
3853                || (env != null && this.site != null
3854                    && !isAccessible(env, this.site))) {
3855                return diags.create(dkind, log.currentSource(),
3856                        pos, "not.def.access.class.intf.cant.access",
3857                    sym, sym.location());
3858            }
3859            else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
3860                return diags.create(dkind, log.currentSource(),
3861                        pos, "report.access", sym,
3862                        asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
3863                        sym.location());
3864            }
3865            else {
3866                return diags.create(dkind, log.currentSource(),
3867                        pos, "not.def.public.cant.access", sym, sym.location());
3868            }
3869        }
3870    }
3871
3872    /**
3873     * InvalidSymbolError error class indicating that an instance member
3874     * has erroneously been accessed from a static context.
3875     */
3876    class StaticError extends InvalidSymbolError {
3877
3878        StaticError(Symbol sym) {
3879            super(STATICERR, sym, "static error");
3880        }
3881
3882        @Override
3883        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3884                DiagnosticPosition pos,
3885                Symbol location,
3886                Type site,
3887                Name name,
3888                List<Type> argtypes,
3889                List<Type> typeargtypes) {
3890            Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
3891                ? types.erasure(sym.type).tsym
3892                : sym);
3893            return diags.create(dkind, log.currentSource(), pos,
3894                    "non-static.cant.be.ref", kindName(sym), errSym);
3895        }
3896    }
3897
3898    /**
3899     * InvalidSymbolError error class indicating that a pair of symbols
3900     * (either methods, constructors or operands) are ambiguous
3901     * given an actual arguments/type argument list.
3902     */
3903    class AmbiguityError extends ResolveError {
3904
3905        /** The other maximally specific symbol */
3906        List<Symbol> ambiguousSyms = List.nil();
3907
3908        @Override
3909        public boolean exists() {
3910            return true;
3911        }
3912
3913        AmbiguityError(Symbol sym1, Symbol sym2) {
3914            super(AMBIGUOUS, "ambiguity error");
3915            ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
3916        }
3917
3918        private List<Symbol> flatten(Symbol sym) {
3919            if (sym.kind == AMBIGUOUS) {
3920                return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
3921            } else {
3922                return List.of(sym);
3923            }
3924        }
3925
3926        AmbiguityError addAmbiguousSymbol(Symbol s) {
3927            ambiguousSyms = ambiguousSyms.prepend(s);
3928            return this;
3929        }
3930
3931        @Override
3932        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3933                DiagnosticPosition pos,
3934                Symbol location,
3935                Type site,
3936                Name name,
3937                List<Type> argtypes,
3938                List<Type> typeargtypes) {
3939            List<Symbol> diagSyms = ambiguousSyms.reverse();
3940            Symbol s1 = diagSyms.head;
3941            Symbol s2 = diagSyms.tail.head;
3942            Name sname = s1.name;
3943            if (sname == names.init) sname = s1.owner.name;
3944            return diags.create(dkind, log.currentSource(),
3945                    pos, "ref.ambiguous", sname,
3946                    kindName(s1),
3947                    s1,
3948                    s1.location(site, types),
3949                    kindName(s2),
3950                    s2,
3951                    s2.location(site, types));
3952        }
3953
3954        /**
3955         * If multiple applicable methods are found during overload and none of them
3956         * is more specific than the others, attempt to merge their signatures.
3957         */
3958        Symbol mergeAbstracts(Type site) {
3959            List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
3960            for (Symbol s : ambiguousInOrder) {
3961                Type mt = types.memberType(site, s);
3962                boolean found = true;
3963                List<Type> allThrown = mt.getThrownTypes();
3964                for (Symbol s2 : ambiguousInOrder) {
3965                    Type mt2 = types.memberType(site, s2);
3966                    if ((s2.flags() & ABSTRACT) == 0 ||
3967                        !types.overrideEquivalent(mt, mt2) ||
3968                        !types.isSameTypes(s.erasure(types).getParameterTypes(),
3969                                       s2.erasure(types).getParameterTypes())) {
3970                        //ambiguity cannot be resolved
3971                        return this;
3972                    }
3973                    Type mst = mostSpecificReturnType(mt, mt2);
3974                    if (mst == null || mst != mt) {
3975                        found = false;
3976                        break;
3977                    }
3978                    allThrown = chk.intersect(allThrown, mt2.getThrownTypes());
3979                }
3980                if (found) {
3981                    //all ambiguous methods were abstract and one method had
3982                    //most specific return type then others
3983                    return (allThrown == mt.getThrownTypes()) ?
3984                            s : new MethodSymbol(
3985                                s.flags(),
3986                                s.name,
3987                                types.createMethodTypeWithThrown(s.type, allThrown),
3988                                s.owner);
3989                }
3990            }
3991            return this;
3992        }
3993
3994        @Override
3995        protected Symbol access(Name name, TypeSymbol location) {
3996            Symbol firstAmbiguity = ambiguousSyms.last();
3997            return firstAmbiguity.kind == TYP ?
3998                    types.createErrorType(name, location, firstAmbiguity.type).tsym :
3999                    firstAmbiguity;
4000        }
4001    }
4002
4003    class BadVarargsMethod extends ResolveError {
4004
4005        ResolveError delegatedError;
4006
4007        BadVarargsMethod(ResolveError delegatedError) {
4008            super(delegatedError.kind, "badVarargs");
4009            this.delegatedError = delegatedError;
4010        }
4011
4012        @Override
4013        public Symbol baseSymbol() {
4014            return delegatedError.baseSymbol();
4015        }
4016
4017        @Override
4018        protected Symbol access(Name name, TypeSymbol location) {
4019            return delegatedError.access(name, location);
4020        }
4021
4022        @Override
4023        public boolean exists() {
4024            return true;
4025        }
4026
4027        @Override
4028        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4029            return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
4030        }
4031    }
4032
4033    /**
4034     * BadMethodReferenceError error class indicating that a method reference symbol has been found,
4035     * but with the wrong staticness.
4036     */
4037    class BadMethodReferenceError extends StaticError {
4038
4039        boolean unboundLookup;
4040
4041        public BadMethodReferenceError(Symbol sym, boolean unboundLookup) {
4042            super(sym);
4043            this.unboundLookup = unboundLookup;
4044        }
4045
4046        @Override
4047        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4048            final String key;
4049            if (!unboundLookup) {
4050                key = "bad.static.method.in.bound.lookup";
4051            } else if (sym.isStatic()) {
4052                key = "bad.static.method.in.unbound.lookup";
4053            } else {
4054                key = "bad.instance.method.in.unbound.lookup";
4055            }
4056            return sym.kind.isResolutionError() ?
4057                    ((ResolveError)sym).getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes) :
4058                    diags.create(dkind, log.currentSource(), pos, key, Kinds.kindName(sym), sym);
4059        }
4060    }
4061
4062    /**
4063     * BadConstructorReferenceError error class indicating that a constructor reference symbol has been found,
4064     * but pointing to a class for which an enclosing instance is not available.
4065     */
4066    class BadConstructorReferenceError extends InvalidSymbolError {
4067
4068        public BadConstructorReferenceError(Symbol sym) {
4069            super(MISSING_ENCL, sym, "BadConstructorReferenceError");
4070        }
4071
4072        @Override
4073        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4074           return diags.create(dkind, log.currentSource(), pos,
4075                "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
4076        }
4077    }
4078
4079    /**
4080     * Helper class for method resolution diagnostic simplification.
4081     * Certain resolution diagnostic are rewritten as simpler diagnostic
4082     * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
4083     * is stripped away, as it doesn't carry additional info. The logic
4084     * for matching a given diagnostic is given in terms of a template
4085     * hierarchy: a diagnostic template can be specified programmatically,
4086     * so that only certain diagnostics are matched. Each templete is then
4087     * associated with a rewriter object that carries out the task of rewtiting
4088     * the diagnostic to a simpler one.
4089     */
4090    static class MethodResolutionDiagHelper {
4091
4092        /**
4093         * A diagnostic rewriter transforms a method resolution diagnostic
4094         * into a simpler one
4095         */
4096        interface DiagnosticRewriter {
4097            JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4098                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4099                    DiagnosticType preferredKind, JCDiagnostic d);
4100        }
4101
4102        /**
4103         * A diagnostic template is made up of two ingredients: (i) a regular
4104         * expression for matching a diagnostic key and (ii) a list of sub-templates
4105         * for matching diagnostic arguments.
4106         */
4107        static class Template {
4108
4109            /** regex used to match diag key */
4110            String regex;
4111
4112            /** templates used to match diagnostic args */
4113            Template[] subTemplates;
4114
4115            Template(String key, Template... subTemplates) {
4116                this.regex = key;
4117                this.subTemplates = subTemplates;
4118            }
4119
4120            /**
4121             * Returns true if the regex matches the diagnostic key and if
4122             * all diagnostic arguments are matches by corresponding sub-templates.
4123             */
4124            boolean matches(Object o) {
4125                JCDiagnostic d = (JCDiagnostic)o;
4126                Object[] args = d.getArgs();
4127                if (!d.getCode().matches(regex) ||
4128                        subTemplates.length != d.getArgs().length) {
4129                    return false;
4130                }
4131                for (int i = 0; i < args.length ; i++) {
4132                    if (!subTemplates[i].matches(args[i])) {
4133                        return false;
4134                    }
4135                }
4136                return true;
4137            }
4138        }
4139
4140        /**
4141         * Common rewriter for all argument mismatch simplifications.
4142         */
4143        static class ArgMismatchRewriter implements DiagnosticRewriter {
4144
4145            /** the index of the subdiagnostic to be used as primary. */
4146            int causeIndex;
4147
4148            public ArgMismatchRewriter(int causeIndex) {
4149                this.causeIndex = causeIndex;
4150            }
4151
4152            @Override
4153            public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4154                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4155                    DiagnosticType preferredKind, JCDiagnostic d) {
4156                JCDiagnostic cause = (JCDiagnostic)d.getArgs()[causeIndex];
4157                return diags.create(preferredKind, preferredSource, d.getDiagnosticPosition(),
4158                        "prob.found.req", cause);
4159            }
4160        }
4161
4162        /** a dummy template that match any diagnostic argument */
4163        static final Template skip = new Template("") {
4164            @Override
4165            boolean matches(Object d) {
4166                return true;
4167            }
4168        };
4169
4170        /** template for matching inference-free arguments mismatch failures */
4171        static final Template argMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip);
4172
4173        /** template for matching inference related arguments mismatch failures */
4174        static final Template inferArgMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip, skip) {
4175            @Override
4176            boolean matches(Object o) {
4177                if (!super.matches(o)) {
4178                    return false;
4179                }
4180                JCDiagnostic d = (JCDiagnostic)o;
4181                @SuppressWarnings("unchecked")
4182                List<Type> tvars = (List<Type>)d.getArgs()[0];
4183                return !containsAny(d, tvars);
4184            }
4185
4186            BiPredicate<Object, List<Type>> containsPredicate = (o, ts) -> {
4187                if (o instanceof Type) {
4188                    return ((Type)o).containsAny(ts);
4189                } else if (o instanceof JCDiagnostic) {
4190                    return containsAny((JCDiagnostic)o, ts);
4191                } else {
4192                    return false;
4193                }
4194            };
4195
4196            boolean containsAny(JCDiagnostic d, List<Type> ts) {
4197                return Stream.of(d.getArgs())
4198                        .anyMatch(o -> containsPredicate.test(o, ts));
4199            }
4200        };
4201
4202        /** rewriter map used for method resolution simplification */
4203        static final Map<Template, DiagnosticRewriter> rewriters = new LinkedHashMap<>();
4204
4205        static {
4206            rewriters.put(argMismatchTemplate, new ArgMismatchRewriter(0));
4207            rewriters.put(inferArgMismatchTemplate, new ArgMismatchRewriter(1));
4208        }
4209
4210        /**
4211         * Main entry point for diagnostic rewriting - given a diagnostic, see if any templates matches it,
4212         * and rewrite it accordingly.
4213         */
4214        static JCDiagnostic rewrite(JCDiagnostic.Factory diags, DiagnosticPosition pos, DiagnosticSource source,
4215                                    DiagnosticType dkind, JCDiagnostic d) {
4216            for (Map.Entry<Template, DiagnosticRewriter> _entry : rewriters.entrySet()) {
4217                if (_entry.getKey().matches(d)) {
4218                    JCDiagnostic simpleDiag =
4219                            _entry.getValue().rewriteDiagnostic(diags, pos, source, dkind, d);
4220                    simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
4221                    return simpleDiag;
4222                }
4223            }
4224            return null;
4225        }
4226    }
4227
4228    enum MethodResolutionPhase {
4229        BASIC(false, false),
4230        BOX(true, false),
4231        VARARITY(true, true) {
4232            @Override
4233            public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
4234                //Check invariants (see {@code LookupHelper.shouldStop})
4235                Assert.check(bestSoFar.kind.isResolutionError() && bestSoFar.kind != AMBIGUOUS);
4236                if (!sym.kind.isResolutionError()) {
4237                    //varargs resolution successful
4238                    return sym;
4239                } else {
4240                    //pick best error
4241                    switch (bestSoFar.kind) {
4242                        case WRONG_MTH:
4243                        case WRONG_MTHS:
4244                            //Override previous errors if they were caused by argument mismatch.
4245                            //This generally means preferring current symbols - but we need to pay
4246                            //attention to the fact that the varargs lookup returns 'less' candidates
4247                            //than the previous rounds, and adjust that accordingly.
4248                            switch (sym.kind) {
4249                                case WRONG_MTH:
4250                                    //if the previous round matched more than one method, return that
4251                                    //result instead
4252                                    return bestSoFar.kind == WRONG_MTHS ?
4253                                            bestSoFar : sym;
4254                                case ABSENT_MTH:
4255                                    //do not override erroneous symbol if the arity lookup did not
4256                                    //match any method
4257                                    return bestSoFar;
4258                                case WRONG_MTHS:
4259                                default:
4260                                    //safe to override
4261                                    return sym;
4262                            }
4263                        default:
4264                            //otherwise, return first error
4265                            return bestSoFar;
4266                    }
4267                }
4268            }
4269        };
4270
4271        final boolean isBoxingRequired;
4272        final boolean isVarargsRequired;
4273
4274        MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
4275           this.isBoxingRequired = isBoxingRequired;
4276           this.isVarargsRequired = isVarargsRequired;
4277        }
4278
4279        public boolean isBoxingRequired() {
4280            return isBoxingRequired;
4281        }
4282
4283        public boolean isVarargsRequired() {
4284            return isVarargsRequired;
4285        }
4286
4287        public Symbol mergeResults(Symbol prev, Symbol sym) {
4288            return sym;
4289        }
4290    }
4291
4292    final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
4293
4294    /**
4295     * A resolution context is used to keep track of intermediate results of
4296     * overload resolution, such as list of method that are not applicable
4297     * (used to generate more precise diagnostics) and so on. Resolution contexts
4298     * can be nested - this means that when each overload resolution routine should
4299     * work within the resolution context it created.
4300     */
4301    class MethodResolutionContext {
4302
4303        private List<Candidate> candidates = List.nil();
4304
4305        MethodResolutionPhase step = null;
4306
4307        MethodCheck methodCheck = resolveMethodCheck;
4308
4309        private boolean internalResolution = false;
4310        private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
4311
4312        void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
4313            Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
4314            candidates = candidates.append(c);
4315        }
4316
4317        void addApplicableCandidate(Symbol sym, Type mtype) {
4318            Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
4319            candidates = candidates.append(c);
4320        }
4321
4322        DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
4323            DeferredAttrContext parent = (pendingResult == null)
4324                ? deferredAttr.emptyDeferredAttrContext
4325                : pendingResult.checkContext.deferredAttrContext();
4326            return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
4327                    inferenceContext, parent, warn);
4328        }
4329
4330        /**
4331         * This class represents an overload resolution candidate. There are two
4332         * kinds of candidates: applicable methods and inapplicable methods;
4333         * applicable methods have a pointer to the instantiated method type,
4334         * while inapplicable candidates contain further details about the
4335         * reason why the method has been considered inapplicable.
4336         */
4337        @SuppressWarnings("overrides")
4338        class Candidate {
4339
4340            final MethodResolutionPhase step;
4341            final Symbol sym;
4342            final JCDiagnostic details;
4343            final Type mtype;
4344
4345            private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
4346                this.step = step;
4347                this.sym = sym;
4348                this.details = details;
4349                this.mtype = mtype;
4350            }
4351
4352            @Override
4353            public boolean equals(Object o) {
4354                if (o instanceof Candidate) {
4355                    Symbol s1 = this.sym;
4356                    Symbol s2 = ((Candidate)o).sym;
4357                    if  ((s1 != s2 &&
4358                            (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
4359                            (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
4360                            ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
4361                        return true;
4362                }
4363                return false;
4364            }
4365
4366            boolean isApplicable() {
4367                return mtype != null;
4368            }
4369        }
4370
4371        DeferredAttr.AttrMode attrMode() {
4372            return attrMode;
4373        }
4374
4375        boolean internal() {
4376            return internalResolution;
4377        }
4378    }
4379
4380    MethodResolutionContext currentResolutionContext = null;
4381}
4382