Resolve.java revision 2830:414b82835861
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.tools.javac.api.Formattable.LocalizedString;
29import com.sun.tools.javac.code.*;
30import com.sun.tools.javac.code.Scope.WriteableScope;
31import com.sun.tools.javac.code.Symbol.*;
32import com.sun.tools.javac.code.Type.*;
33import com.sun.tools.javac.comp.Attr.ResultInfo;
34import com.sun.tools.javac.comp.Check.CheckContext;
35import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
36import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
37import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
38import com.sun.tools.javac.comp.Infer.InferenceContext;
39import com.sun.tools.javac.comp.Infer.FreeTypeListener;
40import com.sun.tools.javac.comp.Resolve.MethodResolutionContext.Candidate;
41import com.sun.tools.javac.comp.Resolve.MethodResolutionDiagHelper.Template;
42import com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind;
43import com.sun.tools.javac.jvm.*;
44import com.sun.tools.javac.main.Option;
45import com.sun.tools.javac.tree.*;
46import com.sun.tools.javac.tree.JCTree.*;
47import com.sun.tools.javac.tree.JCTree.JCMemberReference.ReferenceKind;
48import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
49import com.sun.tools.javac.util.*;
50import com.sun.tools.javac.util.DefinedBy.Api;
51import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
52import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
53import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
54
55import java.util.Arrays;
56import java.util.Collection;
57import java.util.EnumSet;
58import java.util.Iterator;
59import java.util.LinkedHashMap;
60import java.util.Map;
61import java.util.function.BiPredicate;
62import java.util.stream.Stream;
63
64import javax.lang.model.element.ElementVisitor;
65
66import static com.sun.tools.javac.code.Flags.*;
67import static com.sun.tools.javac.code.Flags.BLOCK;
68import static com.sun.tools.javac.code.Flags.STATIC;
69import static com.sun.tools.javac.code.Kinds.*;
70import static com.sun.tools.javac.code.Kinds.Kind.*;
71import static com.sun.tools.javac.code.TypeTag.*;
72import static com.sun.tools.javac.comp.Resolve.MethodResolutionPhase.*;
73import static com.sun.tools.javac.tree.JCTree.Tag.*;
74
75/** Helper class for name resolution, used mostly by the attribution phase.
76 *
77 *  <p><b>This is NOT part of any supported API.
78 *  If you write code that depends on this, you do so at your own risk.
79 *  This code and its internal interfaces are subject to change or
80 *  deletion without notice.</b>
81 */
82public class Resolve {
83    protected static final Context.Key<Resolve> resolveKey = new Context.Key<>();
84
85    Names names;
86    Log log;
87    Symtab syms;
88    Attr attr;
89    DeferredAttr deferredAttr;
90    Check chk;
91    Infer infer;
92    ClassFinder finder;
93    Types types;
94    JCDiagnostic.Factory diags;
95    public final boolean allowMethodHandles;
96    public final boolean allowFunctionalInterfaceMostSpecific;
97    public final boolean checkVarargsAccessAfterResolution;
98    private final boolean debugResolve;
99    private final boolean compactMethodDiags;
100    final EnumSet<VerboseResolutionMode> verboseResolutionMode;
101
102    WriteableScope polymorphicSignatureScope;
103
104    protected Resolve(Context context) {
105        context.put(resolveKey, this);
106        syms = Symtab.instance(context);
107
108        varNotFound = new SymbolNotFoundError(ABSENT_VAR);
109        methodNotFound = new SymbolNotFoundError(ABSENT_MTH);
110        typeNotFound = new SymbolNotFoundError(ABSENT_TYP);
111        referenceNotFound = new ReferenceLookupResult(methodNotFound, null);
112
113        names = Names.instance(context);
114        log = Log.instance(context);
115        attr = Attr.instance(context);
116        deferredAttr = DeferredAttr.instance(context);
117        chk = Check.instance(context);
118        infer = Infer.instance(context);
119        finder = ClassFinder.instance(context);
120        types = Types.instance(context);
121        diags = JCDiagnostic.Factory.instance(context);
122        Source source = Source.instance(context);
123        Options options = Options.instance(context);
124        debugResolve = options.isSet("debugresolve");
125        compactMethodDiags = options.isSet(Option.XDIAGS, "compact") ||
126                options.isUnset(Option.XDIAGS) && options.isUnset("rawDiagnostics");
127        verboseResolutionMode = VerboseResolutionMode.getVerboseResolutionMode(options);
128        Target target = Target.instance(context);
129        allowMethodHandles = target.hasMethodHandles();
130        allowFunctionalInterfaceMostSpecific = source.allowFunctionalInterfaceMostSpecific();
131        checkVarargsAccessAfterResolution =
132                source.allowPostApplicabilityVarargsAccessCheck();
133        polymorphicSignatureScope = WriteableScope.create(syms.noSymbol);
134
135        inapplicableMethodException = new InapplicableMethodException(diags);
136    }
137
138    /** error symbols, which are returned when resolution fails
139     */
140    private final SymbolNotFoundError varNotFound;
141    private final SymbolNotFoundError methodNotFound;
142    private final SymbolNotFoundError typeNotFound;
143
144    /** empty reference lookup result */
145    private final ReferenceLookupResult referenceNotFound;
146
147    public static Resolve instance(Context context) {
148        Resolve instance = context.get(resolveKey);
149        if (instance == null)
150            instance = new Resolve(context);
151        return instance;
152    }
153
154    private static Symbol bestOf(Symbol s1,
155                                 Symbol s2) {
156        return s1.kind.betterThan(s2.kind) ? s1 : s2;
157    }
158
159    // <editor-fold defaultstate="collapsed" desc="Verbose resolution diagnostics support">
160    enum VerboseResolutionMode {
161        SUCCESS("success"),
162        FAILURE("failure"),
163        APPLICABLE("applicable"),
164        INAPPLICABLE("inapplicable"),
165        DEFERRED_INST("deferred-inference"),
166        PREDEF("predef"),
167        OBJECT_INIT("object-init"),
168        INTERNAL("internal");
169
170        final String opt;
171
172        private VerboseResolutionMode(String opt) {
173            this.opt = opt;
174        }
175
176        static EnumSet<VerboseResolutionMode> getVerboseResolutionMode(Options opts) {
177            String s = opts.get("verboseResolution");
178            EnumSet<VerboseResolutionMode> res = EnumSet.noneOf(VerboseResolutionMode.class);
179            if (s == null) return res;
180            if (s.contains("all")) {
181                res = EnumSet.allOf(VerboseResolutionMode.class);
182            }
183            Collection<String> args = Arrays.asList(s.split(","));
184            for (VerboseResolutionMode mode : values()) {
185                if (args.contains(mode.opt)) {
186                    res.add(mode);
187                } else if (args.contains("-" + mode.opt)) {
188                    res.remove(mode);
189                }
190            }
191            return res;
192        }
193    }
194
195    void reportVerboseResolutionDiagnostic(DiagnosticPosition dpos, Name name, Type site,
196            List<Type> argtypes, List<Type> typeargtypes, Symbol bestSoFar) {
197        boolean success = !bestSoFar.kind.isOverloadError();
198
199        if (success && !verboseResolutionMode.contains(VerboseResolutionMode.SUCCESS)) {
200            return;
201        } else if (!success && !verboseResolutionMode.contains(VerboseResolutionMode.FAILURE)) {
202            return;
203        }
204
205        if (bestSoFar.name == names.init &&
206                bestSoFar.owner == syms.objectType.tsym &&
207                !verboseResolutionMode.contains(VerboseResolutionMode.OBJECT_INIT)) {
208            return; //skip diags for Object constructor resolution
209        } else if (site == syms.predefClass.type &&
210                !verboseResolutionMode.contains(VerboseResolutionMode.PREDEF)) {
211            return; //skip spurious diags for predef symbols (i.e. operators)
212        } else if (currentResolutionContext.internalResolution &&
213                !verboseResolutionMode.contains(VerboseResolutionMode.INTERNAL)) {
214            return;
215        }
216
217        int pos = 0;
218        int mostSpecificPos = -1;
219        ListBuffer<JCDiagnostic> subDiags = new ListBuffer<>();
220        for (Candidate c : currentResolutionContext.candidates) {
221            if (currentResolutionContext.step != c.step ||
222                    (c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.APPLICABLE)) ||
223                    (!c.isApplicable() && !verboseResolutionMode.contains(VerboseResolutionMode.INAPPLICABLE))) {
224                continue;
225            } else {
226                subDiags.append(c.isApplicable() ?
227                        getVerboseApplicableCandidateDiag(pos, c.sym, c.mtype) :
228                        getVerboseInapplicableCandidateDiag(pos, c.sym, c.details));
229                if (c.sym == bestSoFar)
230                    mostSpecificPos = pos;
231                pos++;
232            }
233        }
234        String key = success ? "verbose.resolve.multi" : "verbose.resolve.multi.1";
235        List<Type> argtypes2 = Type.map(argtypes,
236                    deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, bestSoFar, currentResolutionContext.step));
237        JCDiagnostic main = diags.note(log.currentSource(), dpos, key, name,
238                site.tsym, mostSpecificPos, currentResolutionContext.step,
239                methodArguments(argtypes2),
240                methodArguments(typeargtypes));
241        JCDiagnostic d = new JCDiagnostic.MultilineDiagnostic(main, subDiags.toList());
242        log.report(d);
243    }
244
245    JCDiagnostic getVerboseApplicableCandidateDiag(int pos, Symbol sym, Type inst) {
246        JCDiagnostic subDiag = null;
247        if (sym.type.hasTag(FORALL)) {
248            subDiag = diags.fragment("partial.inst.sig", inst);
249        }
250
251        String key = subDiag == null ?
252                "applicable.method.found" :
253                "applicable.method.found.1";
254
255        return diags.fragment(key, pos, sym, subDiag);
256    }
257
258    JCDiagnostic getVerboseInapplicableCandidateDiag(int pos, Symbol sym, JCDiagnostic subDiag) {
259        return diags.fragment("not.applicable.method.found", pos, sym, subDiag);
260    }
261    // </editor-fold>
262
263/* ************************************************************************
264 * Identifier resolution
265 *************************************************************************/
266
267    /** An environment is "static" if its static level is greater than
268     *  the one of its outer environment
269     */
270    protected static boolean isStatic(Env<AttrContext> env) {
271        return env.outer != null && env.info.staticLevel > env.outer.info.staticLevel;
272    }
273
274    /** An environment is an "initializer" if it is a constructor or
275     *  an instance initializer.
276     */
277    static boolean isInitializer(Env<AttrContext> env) {
278        Symbol owner = env.info.scope.owner;
279        return owner.isConstructor() ||
280            owner.owner.kind == TYP &&
281            (owner.kind == VAR ||
282             owner.kind == MTH && (owner.flags() & BLOCK) != 0) &&
283            (owner.flags() & STATIC) == 0;
284    }
285
286    /** Is class accessible in given evironment?
287     *  @param env    The current environment.
288     *  @param c      The class whose accessibility is checked.
289     */
290    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c) {
291        return isAccessible(env, c, false);
292    }
293
294    public boolean isAccessible(Env<AttrContext> env, TypeSymbol c, boolean checkInner) {
295        boolean isAccessible = false;
296        switch ((short)(c.flags() & AccessFlags)) {
297            case PRIVATE:
298                isAccessible =
299                    env.enclClass.sym.outermostClass() ==
300                    c.owner.outermostClass();
301                break;
302            case 0:
303                isAccessible =
304                    env.toplevel.packge == c.owner // fast special case
305                    ||
306                    env.toplevel.packge == c.packge()
307                    ||
308                    // Hack: this case is added since synthesized default constructors
309                    // of anonymous classes should be allowed to access
310                    // classes which would be inaccessible otherwise.
311                    env.enclMethod != null &&
312                    (env.enclMethod.mods.flags & ANONCONSTR) != 0;
313                break;
314            default: // error recovery
315            case PUBLIC:
316                isAccessible = true;
317                break;
318            case PROTECTED:
319                isAccessible =
320                    env.toplevel.packge == c.owner // fast special case
321                    ||
322                    env.toplevel.packge == c.packge()
323                    ||
324                    isInnerSubClass(env.enclClass.sym, c.owner);
325                break;
326        }
327        return (checkInner == false || c.type.getEnclosingType() == Type.noType) ?
328            isAccessible :
329            isAccessible && isAccessible(env, c.type.getEnclosingType(), checkInner);
330    }
331    //where
332        /** Is given class a subclass of given base class, or an inner class
333         *  of a subclass?
334         *  Return null if no such class exists.
335         *  @param c     The class which is the subclass or is contained in it.
336         *  @param base  The base class
337         */
338        private boolean isInnerSubClass(ClassSymbol c, Symbol base) {
339            while (c != null && !c.isSubClass(base, types)) {
340                c = c.owner.enclClass();
341            }
342            return c != null;
343        }
344
345    boolean isAccessible(Env<AttrContext> env, Type t) {
346        return isAccessible(env, t, false);
347    }
348
349    boolean isAccessible(Env<AttrContext> env, Type t, boolean checkInner) {
350        return (t.hasTag(ARRAY))
351            ? isAccessible(env, types.cvarUpperBound(types.elemtype(t)))
352            : isAccessible(env, t.tsym, checkInner);
353    }
354
355    /** Is symbol accessible as a member of given type in given environment?
356     *  @param env    The current environment.
357     *  @param site   The type of which the tested symbol is regarded
358     *                as a member.
359     *  @param sym    The symbol.
360     */
361    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym) {
362        return isAccessible(env, site, sym, false);
363    }
364    public boolean isAccessible(Env<AttrContext> env, Type site, Symbol sym, boolean checkInner) {
365        if (sym.name == names.init && sym.owner != site.tsym) return false;
366        switch ((short)(sym.flags() & AccessFlags)) {
367        case PRIVATE:
368            return
369                (env.enclClass.sym == sym.owner // fast special case
370                 ||
371                 env.enclClass.sym.outermostClass() ==
372                 sym.owner.outermostClass())
373                &&
374                sym.isInheritedIn(site.tsym, types);
375        case 0:
376            return
377                (env.toplevel.packge == sym.owner.owner // fast special case
378                 ||
379                 env.toplevel.packge == sym.packge())
380                &&
381                isAccessible(env, site, checkInner)
382                &&
383                sym.isInheritedIn(site.tsym, types)
384                &&
385                notOverriddenIn(site, sym);
386        case PROTECTED:
387            return
388                (env.toplevel.packge == sym.owner.owner // fast special case
389                 ||
390                 env.toplevel.packge == sym.packge()
391                 ||
392                 isProtectedAccessible(sym, env.enclClass.sym, site)
393                 ||
394                 // OK to select instance method or field from 'super' or type name
395                 // (but type names should be disallowed elsewhere!)
396                 env.info.selectSuper && (sym.flags() & STATIC) == 0 && sym.kind != TYP)
397                &&
398                isAccessible(env, site, checkInner)
399                &&
400                notOverriddenIn(site, sym);
401        default: // this case includes erroneous combinations as well
402            return isAccessible(env, site, checkInner) && notOverriddenIn(site, sym);
403        }
404    }
405    //where
406    /* `sym' is accessible only if not overridden by
407     * another symbol which is a member of `site'
408     * (because, if it is overridden, `sym' is not strictly
409     * speaking a member of `site'). A polymorphic signature method
410     * cannot be overridden (e.g. MH.invokeExact(Object[])).
411     */
412    private boolean notOverriddenIn(Type site, Symbol sym) {
413        if (sym.kind != MTH || sym.isConstructor() || sym.isStatic())
414            return true;
415        else {
416            Symbol s2 = ((MethodSymbol)sym).implementation(site.tsym, types, true);
417            return (s2 == null || s2 == sym || sym.owner == s2.owner ||
418                    !types.isSubSignature(types.memberType(site, s2), types.memberType(site, sym)));
419        }
420    }
421    //where
422        /** Is given protected symbol accessible if it is selected from given site
423         *  and the selection takes place in given class?
424         *  @param sym     The symbol with protected access
425         *  @param c       The class where the access takes place
426         *  @site          The type of the qualifier
427         */
428        private
429        boolean isProtectedAccessible(Symbol sym, ClassSymbol c, Type site) {
430            Type newSite = site.hasTag(TYPEVAR) ? site.getUpperBound() : site;
431            while (c != null &&
432                   !(c.isSubClass(sym.owner, types) &&
433                     (c.flags() & INTERFACE) == 0 &&
434                     // In JLS 2e 6.6.2.1, the subclass restriction applies
435                     // only to instance fields and methods -- types are excluded
436                     // regardless of whether they are declared 'static' or not.
437                     ((sym.flags() & STATIC) != 0 || sym.kind == TYP || newSite.tsym.isSubClass(c, types))))
438                c = c.owner.enclClass();
439            return c != null;
440        }
441
442    /**
443     * Performs a recursive scan of a type looking for accessibility problems
444     * from current attribution environment
445     */
446    void checkAccessibleType(Env<AttrContext> env, Type t) {
447        accessibilityChecker.visit(t, env);
448    }
449
450    /**
451     * Accessibility type-visitor
452     */
453    Types.SimpleVisitor<Void, Env<AttrContext>> accessibilityChecker =
454            new Types.SimpleVisitor<Void, Env<AttrContext>>() {
455
456        void visit(List<Type> ts, Env<AttrContext> env) {
457            for (Type t : ts) {
458                visit(t, env);
459            }
460        }
461
462        public Void visitType(Type t, Env<AttrContext> env) {
463            return null;
464        }
465
466        @Override
467        public Void visitArrayType(ArrayType t, Env<AttrContext> env) {
468            visit(t.elemtype, env);
469            return null;
470        }
471
472        @Override
473        public Void visitClassType(ClassType t, Env<AttrContext> env) {
474            visit(t.getTypeArguments(), env);
475            if (!isAccessible(env, t, true)) {
476                accessBase(new AccessError(t.tsym), env.tree.pos(), env.enclClass.sym, t, t.tsym.name, true);
477            }
478            return null;
479        }
480
481        @Override
482        public Void visitWildcardType(WildcardType t, Env<AttrContext> env) {
483            visit(t.type, env);
484            return null;
485        }
486
487        @Override
488        public Void visitMethodType(MethodType t, Env<AttrContext> env) {
489            visit(t.getParameterTypes(), env);
490            visit(t.getReturnType(), env);
491            visit(t.getThrownTypes(), env);
492            return null;
493        }
494    };
495
496    /** Try to instantiate the type of a method so that it fits
497     *  given type arguments and argument types. If successful, return
498     *  the method's instantiated type, else return null.
499     *  The instantiation will take into account an additional leading
500     *  formal parameter if the method is an instance method seen as a member
501     *  of an under determined site. In this case, we treat site as an additional
502     *  parameter and the parameters of the class containing the method as
503     *  additional type variables that get instantiated.
504     *
505     *  @param env         The current environment
506     *  @param site        The type of which the method is a member.
507     *  @param m           The method symbol.
508     *  @param argtypes    The invocation's given value arguments.
509     *  @param typeargtypes    The invocation's given type arguments.
510     *  @param allowBoxing Allow boxing conversions of arguments.
511     *  @param useVarargs Box trailing arguments into an array for varargs.
512     */
513    Type rawInstantiate(Env<AttrContext> env,
514                        Type site,
515                        Symbol m,
516                        ResultInfo resultInfo,
517                        List<Type> argtypes,
518                        List<Type> typeargtypes,
519                        boolean allowBoxing,
520                        boolean useVarargs,
521                        Warner warn) throws Infer.InferenceException {
522        Type mt = types.memberType(site, m);
523        // tvars is the list of formal type variables for which type arguments
524        // need to inferred.
525        List<Type> tvars = List.nil();
526        if (typeargtypes == null) typeargtypes = List.nil();
527        if (!mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
528            // This is not a polymorphic method, but typeargs are supplied
529            // which is fine, see JLS 15.12.2.1
530        } else if (mt.hasTag(FORALL) && typeargtypes.nonEmpty()) {
531            ForAll pmt = (ForAll) mt;
532            if (typeargtypes.length() != pmt.tvars.length())
533                throw inapplicableMethodException.setMessage("arg.length.mismatch"); // not enough args
534            // Check type arguments are within bounds
535            List<Type> formals = pmt.tvars;
536            List<Type> actuals = typeargtypes;
537            while (formals.nonEmpty() && actuals.nonEmpty()) {
538                List<Type> bounds = types.subst(types.getBounds((TypeVar)formals.head),
539                                                pmt.tvars, typeargtypes);
540                for (; bounds.nonEmpty(); bounds = bounds.tail) {
541                    if (!types.isSubtypeUnchecked(actuals.head, bounds.head, warn))
542                        throw inapplicableMethodException.setMessage("explicit.param.do.not.conform.to.bounds",actuals.head, bounds);
543                }
544                formals = formals.tail;
545                actuals = actuals.tail;
546            }
547            mt = types.subst(pmt.qtype, pmt.tvars, typeargtypes);
548        } else if (mt.hasTag(FORALL)) {
549            ForAll pmt = (ForAll) mt;
550            List<Type> tvars1 = types.newInstances(pmt.tvars);
551            tvars = tvars.appendList(tvars1);
552            mt = types.subst(pmt.qtype, pmt.tvars, tvars1);
553        }
554
555        // find out whether we need to go the slow route via infer
556        boolean instNeeded = tvars.tail != null; /*inlined: tvars.nonEmpty()*/
557        for (List<Type> l = argtypes;
558             l.tail != null/*inlined: l.nonEmpty()*/ && !instNeeded;
559             l = l.tail) {
560            if (l.head.hasTag(FORALL)) instNeeded = true;
561        }
562
563        if (instNeeded) {
564            return infer.instantiateMethod(env,
565                                    tvars,
566                                    (MethodType)mt,
567                                    resultInfo,
568                                    (MethodSymbol)m,
569                                    argtypes,
570                                    allowBoxing,
571                                    useVarargs,
572                                    currentResolutionContext,
573                                    warn);
574        }
575
576        DeferredAttr.DeferredAttrContext dc = currentResolutionContext.deferredAttrContext(m, infer.emptyContext, resultInfo, warn);
577        currentResolutionContext.methodCheck.argumentsAcceptable(env, dc,
578                                argtypes, mt.getParameterTypes(), warn);
579        dc.complete();
580        return mt;
581    }
582
583    Type checkMethod(Env<AttrContext> env,
584                     Type site,
585                     Symbol m,
586                     ResultInfo resultInfo,
587                     List<Type> argtypes,
588                     List<Type> typeargtypes,
589                     Warner warn) {
590        MethodResolutionContext prevContext = currentResolutionContext;
591        try {
592            currentResolutionContext = new MethodResolutionContext();
593            currentResolutionContext.attrMode = DeferredAttr.AttrMode.CHECK;
594            if (env.tree.hasTag(JCTree.Tag.REFERENCE)) {
595                //method/constructor references need special check class
596                //to handle inference variables in 'argtypes' (might happen
597                //during an unsticking round)
598                currentResolutionContext.methodCheck =
599                        new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
600            }
601            MethodResolutionPhase step = currentResolutionContext.step = env.info.pendingResolutionPhase;
602            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
603                    step.isBoxingRequired(), step.isVarargsRequired(), warn);
604        }
605        finally {
606            currentResolutionContext = prevContext;
607        }
608    }
609
610    /** Same but returns null instead throwing a NoInstanceException
611     */
612    Type instantiate(Env<AttrContext> env,
613                     Type site,
614                     Symbol m,
615                     ResultInfo resultInfo,
616                     List<Type> argtypes,
617                     List<Type> typeargtypes,
618                     boolean allowBoxing,
619                     boolean useVarargs,
620                     Warner warn) {
621        try {
622            return rawInstantiate(env, site, m, resultInfo, argtypes, typeargtypes,
623                                  allowBoxing, useVarargs, warn);
624        } catch (InapplicableMethodException ex) {
625            return null;
626        }
627    }
628
629    /**
630     * This interface defines an entry point that should be used to perform a
631     * method check. A method check usually consist in determining as to whether
632     * a set of types (actuals) is compatible with another set of types (formals).
633     * Since the notion of compatibility can vary depending on the circumstances,
634     * this interfaces allows to easily add new pluggable method check routines.
635     */
636    interface MethodCheck {
637        /**
638         * Main method check routine. A method check usually consist in determining
639         * as to whether a set of types (actuals) is compatible with another set of
640         * types (formals). If an incompatibility is found, an unchecked exception
641         * is assumed to be thrown.
642         */
643        void argumentsAcceptable(Env<AttrContext> env,
644                                DeferredAttrContext deferredAttrContext,
645                                List<Type> argtypes,
646                                List<Type> formals,
647                                Warner warn);
648
649        /**
650         * Retrieve the method check object that will be used during a
651         * most specific check.
652         */
653        MethodCheck mostSpecificCheck(List<Type> actuals);
654    }
655
656    /**
657     * Helper enum defining all method check diagnostics (used by resolveMethodCheck).
658     */
659    enum MethodCheckDiag {
660        /**
661         * Actuals and formals differs in length.
662         */
663        ARITY_MISMATCH("arg.length.mismatch", "infer.arg.length.mismatch"),
664        /**
665         * An actual is incompatible with a formal.
666         */
667        ARG_MISMATCH("no.conforming.assignment.exists", "infer.no.conforming.assignment.exists"),
668        /**
669         * An actual is incompatible with the varargs element type.
670         */
671        VARARG_MISMATCH("varargs.argument.mismatch", "infer.varargs.argument.mismatch"),
672        /**
673         * The varargs element type is inaccessible.
674         */
675        INACCESSIBLE_VARARGS("inaccessible.varargs.type", "inaccessible.varargs.type");
676
677        final String basicKey;
678        final String inferKey;
679
680        MethodCheckDiag(String basicKey, String inferKey) {
681            this.basicKey = basicKey;
682            this.inferKey = inferKey;
683        }
684
685        String regex() {
686            return String.format("([a-z]*\\.)*(%s|%s)", basicKey, inferKey);
687        }
688    }
689
690    /**
691     * Dummy method check object. All methods are deemed applicable, regardless
692     * of their formal parameter types.
693     */
694    MethodCheck nilMethodCheck = new MethodCheck() {
695        public void argumentsAcceptable(Env<AttrContext> env, DeferredAttrContext deferredAttrContext, List<Type> argtypes, List<Type> formals, Warner warn) {
696            //do nothing - method always applicable regardless of actuals
697        }
698
699        public MethodCheck mostSpecificCheck(List<Type> actuals) {
700            return this;
701        }
702    };
703
704    /**
705     * Base class for 'real' method checks. The class defines the logic for
706     * iterating through formals and actuals and provides and entry point
707     * that can be used by subclasses in order to define the actual check logic.
708     */
709    abstract class AbstractMethodCheck implements MethodCheck {
710        @Override
711        public void argumentsAcceptable(final Env<AttrContext> env,
712                                    DeferredAttrContext deferredAttrContext,
713                                    List<Type> argtypes,
714                                    List<Type> formals,
715                                    Warner warn) {
716            //should we expand formals?
717            boolean useVarargs = deferredAttrContext.phase.isVarargsRequired();
718            List<JCExpression> trees = TreeInfo.args(env.tree);
719
720            //inference context used during this method check
721            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
722
723            Type varargsFormal = useVarargs ? formals.last() : null;
724
725            if (varargsFormal == null &&
726                    argtypes.size() != formals.size()) {
727                reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
728            }
729
730            while (argtypes.nonEmpty() && formals.head != varargsFormal) {
731                DiagnosticPosition pos = trees != null ? trees.head : null;
732                checkArg(pos, false, argtypes.head, formals.head, deferredAttrContext, warn);
733                argtypes = argtypes.tail;
734                formals = formals.tail;
735                trees = trees != null ? trees.tail : trees;
736            }
737
738            if (formals.head != varargsFormal) {
739                reportMC(env.tree, MethodCheckDiag.ARITY_MISMATCH, inferenceContext); // not enough args
740            }
741
742            if (useVarargs) {
743                //note: if applicability check is triggered by most specific test,
744                //the last argument of a varargs is _not_ an array type (see JLS 15.12.2.5)
745                final Type elt = types.elemtype(varargsFormal);
746                while (argtypes.nonEmpty()) {
747                    DiagnosticPosition pos = trees != null ? trees.head : null;
748                    checkArg(pos, true, argtypes.head, elt, deferredAttrContext, warn);
749                    argtypes = argtypes.tail;
750                    trees = trees != null ? trees.tail : trees;
751                }
752            }
753        }
754
755        /**
756         * Does the actual argument conforms to the corresponding formal?
757         */
758        abstract void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn);
759
760        protected void reportMC(DiagnosticPosition pos, MethodCheckDiag diag, InferenceContext inferenceContext, Object... args) {
761            boolean inferDiag = inferenceContext != infer.emptyContext;
762            InapplicableMethodException ex = inferDiag ?
763                    infer.inferenceException : inapplicableMethodException;
764            if (inferDiag && (!diag.inferKey.equals(diag.basicKey))) {
765                Object[] args2 = new Object[args.length + 1];
766                System.arraycopy(args, 0, args2, 1, args.length);
767                args2[0] = inferenceContext.inferenceVars();
768                args = args2;
769            }
770            String key = inferDiag ? diag.inferKey : diag.basicKey;
771            throw ex.setMessage(diags.create(DiagnosticType.FRAGMENT, log.currentSource(), pos, key, args));
772        }
773
774        public MethodCheck mostSpecificCheck(List<Type> actuals) {
775            return nilMethodCheck;
776        }
777
778    }
779
780    /**
781     * Arity-based method check. A method is applicable if the number of actuals
782     * supplied conforms to the method signature.
783     */
784    MethodCheck arityMethodCheck = new AbstractMethodCheck() {
785        @Override
786        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
787            //do nothing - actual always compatible to formals
788        }
789
790        @Override
791        public String toString() {
792            return "arityMethodCheck";
793        }
794    };
795
796    List<Type> dummyArgs(int length) {
797        ListBuffer<Type> buf = new ListBuffer<>();
798        for (int i = 0 ; i < length ; i++) {
799            buf.append(Type.noType);
800        }
801        return buf.toList();
802    }
803
804    /**
805     * Main method applicability routine. Given a list of actual types A,
806     * a list of formal types F, determines whether the types in A are
807     * compatible (by method invocation conversion) with the types in F.
808     *
809     * Since this routine is shared between overload resolution and method
810     * type-inference, a (possibly empty) inference context is used to convert
811     * formal types to the corresponding 'undet' form ahead of a compatibility
812     * check so that constraints can be propagated and collected.
813     *
814     * Moreover, if one or more types in A is a deferred type, this routine uses
815     * DeferredAttr in order to perform deferred attribution. If one or more actual
816     * deferred types are stuck, they are placed in a queue and revisited later
817     * after the remainder of the arguments have been seen. If this is not sufficient
818     * to 'unstuck' the argument, a cyclic inference error is called out.
819     *
820     * A method check handler (see above) is used in order to report errors.
821     */
822    MethodCheck resolveMethodCheck = new AbstractMethodCheck() {
823
824        @Override
825        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
826            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
827            mresult.check(pos, actual);
828        }
829
830        @Override
831        public void argumentsAcceptable(final Env<AttrContext> env,
832                                    DeferredAttrContext deferredAttrContext,
833                                    List<Type> argtypes,
834                                    List<Type> formals,
835                                    Warner warn) {
836            super.argumentsAcceptable(env, deferredAttrContext, argtypes, formals, warn);
837            //should we expand formals?
838            if (deferredAttrContext.phase.isVarargsRequired()) {
839                Type typeToCheck = null;
840                if (!checkVarargsAccessAfterResolution) {
841                    typeToCheck = types.elemtype(formals.last());
842                } else if (deferredAttrContext.mode == AttrMode.CHECK) {
843                    typeToCheck = types.erasure(types.elemtype(formals.last()));
844                }
845                if (typeToCheck != null) {
846                    varargsAccessible(env, typeToCheck, deferredAttrContext.inferenceContext);
847                }
848            }
849        }
850
851        private void varargsAccessible(final Env<AttrContext> env, final Type t, final InferenceContext inferenceContext) {
852            if (inferenceContext.free(t)) {
853                inferenceContext.addFreeTypeListener(List.of(t), new FreeTypeListener() {
854                    @Override
855                    public void typesInferred(InferenceContext inferenceContext) {
856                        varargsAccessible(env, inferenceContext.asInstType(t), inferenceContext);
857                    }
858                });
859            } else {
860                if (!isAccessible(env, t)) {
861                    Symbol location = env.enclClass.sym;
862                    reportMC(env.tree, MethodCheckDiag.INACCESSIBLE_VARARGS, inferenceContext, t, Kinds.kindName(location), location);
863                }
864            }
865        }
866
867        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
868                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
869            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
870                MethodCheckDiag methodDiag = varargsCheck ?
871                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
872
873                @Override
874                public void report(DiagnosticPosition pos, JCDiagnostic details) {
875                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
876                }
877            };
878            return new MethodResultInfo(to, checkContext);
879        }
880
881        @Override
882        public MethodCheck mostSpecificCheck(List<Type> actuals) {
883            return new MostSpecificCheck(actuals);
884        }
885
886        @Override
887        public String toString() {
888            return "resolveMethodCheck";
889        }
890    };
891
892    /**
893     * This class handles method reference applicability checks; since during
894     * these checks it's sometime possible to have inference variables on
895     * the actual argument types list, the method applicability check must be
896     * extended so that inference variables are 'opened' as needed.
897     */
898    class MethodReferenceCheck extends AbstractMethodCheck {
899
900        InferenceContext pendingInferenceContext;
901
902        MethodReferenceCheck(InferenceContext pendingInferenceContext) {
903            this.pendingInferenceContext = pendingInferenceContext;
904        }
905
906        @Override
907        void checkArg(DiagnosticPosition pos, boolean varargs, Type actual, Type formal, DeferredAttrContext deferredAttrContext, Warner warn) {
908            ResultInfo mresult = methodCheckResult(varargs, formal, deferredAttrContext, warn);
909            mresult.check(pos, actual);
910        }
911
912        private ResultInfo methodCheckResult(final boolean varargsCheck, Type to,
913                final DeferredAttr.DeferredAttrContext deferredAttrContext, Warner rsWarner) {
914            CheckContext checkContext = new MethodCheckContext(!deferredAttrContext.phase.isBoxingRequired(), deferredAttrContext, rsWarner) {
915                MethodCheckDiag methodDiag = varargsCheck ?
916                                 MethodCheckDiag.VARARG_MISMATCH : MethodCheckDiag.ARG_MISMATCH;
917
918                @Override
919                public boolean compatible(Type found, Type req, Warner warn) {
920                    found = pendingInferenceContext.asUndetVar(found);
921                    if (found.hasTag(UNDETVAR) && req.isPrimitive()) {
922                        req = types.boxedClass(req).type;
923                    }
924                    return super.compatible(found, req, warn);
925                }
926
927                @Override
928                public void report(DiagnosticPosition pos, JCDiagnostic details) {
929                    reportMC(pos, methodDiag, deferredAttrContext.inferenceContext, details);
930                }
931            };
932            return new MethodResultInfo(to, checkContext);
933        }
934
935        @Override
936        public MethodCheck mostSpecificCheck(List<Type> actuals) {
937            return new MostSpecificCheck(actuals);
938        }
939
940        @Override
941        public String toString() {
942            return "MethodReferenceCheck";
943        }
944    }
945
946    /**
947     * Check context to be used during method applicability checks. A method check
948     * context might contain inference variables.
949     */
950    abstract class MethodCheckContext implements CheckContext {
951
952        boolean strict;
953        DeferredAttrContext deferredAttrContext;
954        Warner rsWarner;
955
956        public MethodCheckContext(boolean strict, DeferredAttrContext deferredAttrContext, Warner rsWarner) {
957           this.strict = strict;
958           this.deferredAttrContext = deferredAttrContext;
959           this.rsWarner = rsWarner;
960        }
961
962        public boolean compatible(Type found, Type req, Warner warn) {
963            InferenceContext inferenceContext = deferredAttrContext.inferenceContext;
964            return strict ?
965                    types.isSubtypeUnchecked(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn) :
966                    types.isConvertible(inferenceContext.asUndetVar(found), inferenceContext.asUndetVar(req), warn);
967        }
968
969        public void report(DiagnosticPosition pos, JCDiagnostic details) {
970            throw inapplicableMethodException.setMessage(details);
971        }
972
973        public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
974            return rsWarner;
975        }
976
977        public InferenceContext inferenceContext() {
978            return deferredAttrContext.inferenceContext;
979        }
980
981        public DeferredAttrContext deferredAttrContext() {
982            return deferredAttrContext;
983        }
984
985        @Override
986        public String toString() {
987            return "MethodCheckContext";
988        }
989    }
990
991    /**
992     * ResultInfo class to be used during method applicability checks. Check
993     * for deferred types goes through special path.
994     */
995    class MethodResultInfo extends ResultInfo {
996
997        public MethodResultInfo(Type pt, CheckContext checkContext) {
998            attr.super(KindSelector.VAL, pt, checkContext);
999        }
1000
1001        @Override
1002        protected Type check(DiagnosticPosition pos, Type found) {
1003            if (found.hasTag(DEFERRED)) {
1004                DeferredType dt = (DeferredType)found;
1005                return dt.check(this);
1006            } else {
1007                Type uResult = U(found);
1008                Type capturedType = pos == null || pos.getTree() == null ?
1009                        types.capture(uResult) :
1010                        checkContext.inferenceContext()
1011                            .cachedCapture(pos.getTree(), uResult, true);
1012                return super.check(pos, chk.checkNonVoid(pos, capturedType));
1013            }
1014        }
1015
1016        /**
1017         * javac has a long-standing 'simplification' (see 6391995):
1018         * given an actual argument type, the method check is performed
1019         * on its upper bound. This leads to inconsistencies when an
1020         * argument type is checked against itself. For example, given
1021         * a type-variable T, it is not true that {@code U(T) <: T},
1022         * so we need to guard against that.
1023         */
1024        private Type U(Type found) {
1025            return found == pt ?
1026                    found : types.cvarUpperBound(found);
1027        }
1028
1029        @Override
1030        protected MethodResultInfo dup(Type newPt) {
1031            return new MethodResultInfo(newPt, checkContext);
1032        }
1033
1034        @Override
1035        protected ResultInfo dup(CheckContext newContext) {
1036            return new MethodResultInfo(pt, newContext);
1037        }
1038    }
1039
1040    /**
1041     * Most specific method applicability routine. Given a list of actual types A,
1042     * a list of formal types F1, and a list of formal types F2, the routine determines
1043     * as to whether the types in F1 can be considered more specific than those in F2 w.r.t.
1044     * argument types A.
1045     */
1046    class MostSpecificCheck implements MethodCheck {
1047
1048        List<Type> actuals;
1049
1050        MostSpecificCheck(List<Type> actuals) {
1051            this.actuals = actuals;
1052        }
1053
1054        @Override
1055        public void argumentsAcceptable(final Env<AttrContext> env,
1056                                    DeferredAttrContext deferredAttrContext,
1057                                    List<Type> formals1,
1058                                    List<Type> formals2,
1059                                    Warner warn) {
1060            formals2 = adjustArgs(formals2, deferredAttrContext.msym, formals1.length(), deferredAttrContext.phase.isVarargsRequired());
1061            while (formals2.nonEmpty()) {
1062                ResultInfo mresult = methodCheckResult(formals2.head, deferredAttrContext, warn, actuals.head);
1063                mresult.check(null, formals1.head);
1064                formals1 = formals1.tail;
1065                formals2 = formals2.tail;
1066                actuals = actuals.isEmpty() ? actuals : actuals.tail;
1067            }
1068        }
1069
1070       /**
1071        * Create a method check context to be used during the most specific applicability check
1072        */
1073        ResultInfo methodCheckResult(Type to, DeferredAttr.DeferredAttrContext deferredAttrContext,
1074               Warner rsWarner, Type actual) {
1075            return attr.new ResultInfo(KindSelector.VAL, to,
1076                   new MostSpecificCheckContext(deferredAttrContext, rsWarner, actual));
1077        }
1078
1079        /**
1080         * Subclass of method check context class that implements most specific
1081         * method conversion. If the actual type under analysis is a deferred type
1082         * a full blown structural analysis is carried out.
1083         */
1084        class MostSpecificCheckContext extends MethodCheckContext {
1085
1086            Type actual;
1087
1088            public MostSpecificCheckContext(DeferredAttrContext deferredAttrContext, Warner rsWarner, Type actual) {
1089                super(true, deferredAttrContext, rsWarner);
1090                this.actual = actual;
1091            }
1092
1093            public boolean compatible(Type found, Type req, Warner warn) {
1094                if (allowFunctionalInterfaceMostSpecific &&
1095                        unrelatedFunctionalInterfaces(found, req) &&
1096                        (actual != null && actual.getTag() == DEFERRED)) {
1097                    DeferredType dt = (DeferredType) actual;
1098                    DeferredType.SpeculativeCache.Entry e =
1099                            dt.speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
1100                    if (e != null && e.speculativeTree != deferredAttr.stuckTree) {
1101                        return functionalInterfaceMostSpecific(found, req, e.speculativeTree);
1102                    }
1103                }
1104                return compatibleBySubtyping(found, req);
1105            }
1106
1107            private boolean compatibleBySubtyping(Type found, Type req) {
1108                if (!strict && found.isPrimitive() != req.isPrimitive()) {
1109                    found = found.isPrimitive() ? types.boxedClass(found).type : types.unboxedType(found);
1110                }
1111                return types.isSubtypeNoCapture(found, deferredAttrContext.inferenceContext.asUndetVar(req));
1112            }
1113
1114            /** Whether {@code t} and {@code s} are unrelated functional interface types. */
1115            private boolean unrelatedFunctionalInterfaces(Type t, Type s) {
1116                return types.isFunctionalInterface(t.tsym) &&
1117                       types.isFunctionalInterface(s.tsym) &&
1118                       types.asSuper(t, s.tsym) == null &&
1119                       types.asSuper(s, t.tsym) == null;
1120            }
1121
1122            /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1123            private boolean functionalInterfaceMostSpecific(Type t, Type s, JCTree tree) {
1124                FunctionalInterfaceMostSpecificChecker msc = new FunctionalInterfaceMostSpecificChecker(t, s);
1125                msc.scan(tree);
1126                return msc.result;
1127            }
1128
1129            /**
1130             * Tests whether one functional interface type can be considered more specific
1131             * than another unrelated functional interface type for the scanned expression.
1132             */
1133            class FunctionalInterfaceMostSpecificChecker extends DeferredAttr.PolyScanner {
1134
1135                final Type t;
1136                final Type s;
1137                boolean result;
1138
1139                /** Parameters {@code t} and {@code s} are unrelated functional interface types. */
1140                FunctionalInterfaceMostSpecificChecker(Type t, Type s) {
1141                    this.t = t;
1142                    this.s = s;
1143                    result = true;
1144                }
1145
1146                @Override
1147                void skip(JCTree tree) {
1148                    result &= false;
1149                }
1150
1151                @Override
1152                public void visitConditional(JCConditional tree) {
1153                    scan(tree.truepart);
1154                    scan(tree.falsepart);
1155                }
1156
1157                @Override
1158                public void visitReference(JCMemberReference tree) {
1159                    Type desc_t = types.findDescriptorType(t);
1160                    Type desc_s = types.findDescriptorType(s);
1161                    // use inference variables here for more-specific inference (18.5.4)
1162                    if (!types.isSameTypes(desc_t.getParameterTypes(),
1163                            inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
1164                        result &= false;
1165                    } else {
1166                        // compare return types
1167                        Type ret_t = desc_t.getReturnType();
1168                        Type ret_s = desc_s.getReturnType();
1169                        if (ret_s.hasTag(VOID)) {
1170                            result &= true;
1171                        } else if (ret_t.hasTag(VOID)) {
1172                            result &= false;
1173                        } else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
1174                            boolean retValIsPrimitive =
1175                                    tree.refPolyKind == PolyKind.STANDALONE &&
1176                                    tree.sym.type.getReturnType().isPrimitive();
1177                            result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
1178                                      (retValIsPrimitive != ret_s.isPrimitive());
1179                        } else {
1180                            result &= compatibleBySubtyping(ret_t, ret_s);
1181                        }
1182                    }
1183                }
1184
1185                @Override
1186                public void visitLambda(JCLambda tree) {
1187                    Type desc_t = types.findDescriptorType(t);
1188                    Type desc_s = types.findDescriptorType(s);
1189                    // use inference variables here for more-specific inference (18.5.4)
1190                    if (!types.isSameTypes(desc_t.getParameterTypes(),
1191                            inferenceContext().asUndetVars(desc_s.getParameterTypes()))) {
1192                        result &= false;
1193                    } else {
1194                        // compare return types
1195                        Type ret_t = desc_t.getReturnType();
1196                        Type ret_s = desc_s.getReturnType();
1197                        if (ret_s.hasTag(VOID)) {
1198                            result &= true;
1199                        } else if (ret_t.hasTag(VOID)) {
1200                            result &= false;
1201                        } else if (unrelatedFunctionalInterfaces(ret_t, ret_s)) {
1202                            for (JCExpression expr : lambdaResults(tree)) {
1203                                result &= functionalInterfaceMostSpecific(ret_t, ret_s, expr);
1204                            }
1205                        } else if (ret_t.isPrimitive() != ret_s.isPrimitive()) {
1206                            for (JCExpression expr : lambdaResults(tree)) {
1207                                boolean retValIsPrimitive = expr.isStandalone() && expr.type.isPrimitive();
1208                                result &= (retValIsPrimitive == ret_t.isPrimitive()) &&
1209                                          (retValIsPrimitive != ret_s.isPrimitive());
1210                            }
1211                        } else {
1212                            result &= compatibleBySubtyping(ret_t, ret_s);
1213                        }
1214                    }
1215                }
1216                //where
1217
1218                private List<JCExpression> lambdaResults(JCLambda lambda) {
1219                    if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
1220                        return List.of((JCExpression) lambda.body);
1221                    } else {
1222                        final ListBuffer<JCExpression> buffer = new ListBuffer<>();
1223                        DeferredAttr.LambdaReturnScanner lambdaScanner =
1224                                new DeferredAttr.LambdaReturnScanner() {
1225                                    @Override
1226                                    public void visitReturn(JCReturn tree) {
1227                                        if (tree.expr != null) {
1228                                            buffer.append(tree.expr);
1229                                        }
1230                                    }
1231                                };
1232                        lambdaScanner.scan(lambda.body);
1233                        return buffer.toList();
1234                    }
1235                }
1236            }
1237
1238        }
1239
1240        public MethodCheck mostSpecificCheck(List<Type> actuals) {
1241            Assert.error("Cannot get here!");
1242            return null;
1243        }
1244    }
1245
1246    public static class InapplicableMethodException extends RuntimeException {
1247        private static final long serialVersionUID = 0;
1248
1249        JCDiagnostic diagnostic;
1250        JCDiagnostic.Factory diags;
1251
1252        InapplicableMethodException(JCDiagnostic.Factory diags) {
1253            this.diagnostic = null;
1254            this.diags = diags;
1255        }
1256        InapplicableMethodException setMessage() {
1257            return setMessage((JCDiagnostic)null);
1258        }
1259        InapplicableMethodException setMessage(String key) {
1260            return setMessage(key != null ? diags.fragment(key) : null);
1261        }
1262        InapplicableMethodException setMessage(String key, Object... args) {
1263            return setMessage(key != null ? diags.fragment(key, args) : null);
1264        }
1265        InapplicableMethodException setMessage(JCDiagnostic diag) {
1266            this.diagnostic = diag;
1267            return this;
1268        }
1269
1270        public JCDiagnostic getDiagnostic() {
1271            return diagnostic;
1272        }
1273    }
1274    private final InapplicableMethodException inapplicableMethodException;
1275
1276/* ***************************************************************************
1277 *  Symbol lookup
1278 *  the following naming conventions for arguments are used
1279 *
1280 *       env      is the environment where the symbol was mentioned
1281 *       site     is the type of which the symbol is a member
1282 *       name     is the symbol's name
1283 *                if no arguments are given
1284 *       argtypes are the value arguments, if we search for a method
1285 *
1286 *  If no symbol was found, a ResolveError detailing the problem is returned.
1287 ****************************************************************************/
1288
1289    /** Find field. Synthetic fields are always skipped.
1290     *  @param env     The current environment.
1291     *  @param site    The original type from where the selection takes place.
1292     *  @param name    The name of the field.
1293     *  @param c       The class to search for the field. This is always
1294     *                 a superclass or implemented interface of site's class.
1295     */
1296    Symbol findField(Env<AttrContext> env,
1297                     Type site,
1298                     Name name,
1299                     TypeSymbol c) {
1300        while (c.type.hasTag(TYPEVAR))
1301            c = c.type.getUpperBound().tsym;
1302        Symbol bestSoFar = varNotFound;
1303        Symbol sym;
1304        for (Symbol s : c.members().getSymbolsByName(name)) {
1305            if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1306                return isAccessible(env, site, s)
1307                    ? s : new AccessError(env, site, s);
1308            }
1309        }
1310        Type st = types.supertype(c.type);
1311        if (st != null && (st.hasTag(CLASS) || st.hasTag(TYPEVAR))) {
1312            sym = findField(env, site, name, st.tsym);
1313            bestSoFar = bestOf(bestSoFar, sym);
1314        }
1315        for (List<Type> l = types.interfaces(c.type);
1316             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1317             l = l.tail) {
1318            sym = findField(env, site, name, l.head.tsym);
1319            if (bestSoFar.exists() && sym.exists() &&
1320                sym.owner != bestSoFar.owner)
1321                bestSoFar = new AmbiguityError(bestSoFar, sym);
1322            else
1323                bestSoFar = bestOf(bestSoFar, sym);
1324        }
1325        return bestSoFar;
1326    }
1327
1328    /** Resolve a field identifier, throw a fatal error if not found.
1329     *  @param pos       The position to use for error reporting.
1330     *  @param env       The environment current at the method invocation.
1331     *  @param site      The type of the qualifying expression, in which
1332     *                   identifier is searched.
1333     *  @param name      The identifier's name.
1334     */
1335    public VarSymbol resolveInternalField(DiagnosticPosition pos, Env<AttrContext> env,
1336                                          Type site, Name name) {
1337        Symbol sym = findField(env, site, name, site.tsym);
1338        if (sym.kind == VAR) return (VarSymbol)sym;
1339        else throw new FatalError(
1340                 diags.fragment("fatal.err.cant.locate.field",
1341                                name));
1342    }
1343
1344    /** Find unqualified variable or field with given name.
1345     *  Synthetic fields always skipped.
1346     *  @param env     The current environment.
1347     *  @param name    The name of the variable or field.
1348     */
1349    Symbol findVar(Env<AttrContext> env, Name name) {
1350        Symbol bestSoFar = varNotFound;
1351        Env<AttrContext> env1 = env;
1352        boolean staticOnly = false;
1353        while (env1.outer != null) {
1354            Symbol sym = null;
1355            if (isStatic(env1)) staticOnly = true;
1356            for (Symbol s : env1.info.scope.getSymbolsByName(name)) {
1357                if (s.kind == VAR && (s.flags_field & SYNTHETIC) == 0) {
1358                    sym = s;
1359                    break;
1360                }
1361            }
1362            if (sym == null) {
1363                sym = findField(env1, env1.enclClass.sym.type, name, env1.enclClass.sym);
1364            }
1365            if (sym.exists()) {
1366                if (staticOnly &&
1367                    sym.kind == VAR &&
1368                    sym.owner.kind == TYP &&
1369                    (sym.flags() & STATIC) == 0)
1370                    return new StaticError(sym);
1371                else
1372                    return sym;
1373            } else {
1374                bestSoFar = bestOf(bestSoFar, sym);
1375            }
1376
1377            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1378            env1 = env1.outer;
1379        }
1380
1381        Symbol sym = findField(env, syms.predefClass.type, name, syms.predefClass);
1382        if (sym.exists())
1383            return sym;
1384        if (bestSoFar.exists())
1385            return bestSoFar;
1386
1387        Symbol origin = null;
1388        for (Scope sc : new Scope[] { env.toplevel.namedImportScope, env.toplevel.starImportScope }) {
1389            for (Symbol currentSymbol : sc.getSymbolsByName(name)) {
1390                if (currentSymbol.kind != VAR)
1391                    continue;
1392                // invariant: sym.kind == Symbol.Kind.VAR
1393                if (!bestSoFar.kind.isOverloadError() &&
1394                    currentSymbol.owner != bestSoFar.owner)
1395                    return new AmbiguityError(bestSoFar, currentSymbol);
1396                else if (!bestSoFar.kind.betterThan(VAR)) {
1397                    origin = sc.getOrigin(currentSymbol).owner;
1398                    bestSoFar = isAccessible(env, origin.type, currentSymbol)
1399                        ? currentSymbol : new AccessError(env, origin.type, currentSymbol);
1400                }
1401            }
1402            if (bestSoFar.exists()) break;
1403        }
1404        if (bestSoFar.kind == VAR && bestSoFar.owner.type != origin.type)
1405            return bestSoFar.clone(origin);
1406        else
1407            return bestSoFar;
1408    }
1409
1410    Warner noteWarner = new Warner();
1411
1412    /** Select the best method for a call site among two choices.
1413     *  @param env              The current environment.
1414     *  @param site             The original type from where the
1415     *                          selection takes place.
1416     *  @param argtypes         The invocation's value arguments,
1417     *  @param typeargtypes     The invocation's type arguments,
1418     *  @param sym              Proposed new best match.
1419     *  @param bestSoFar        Previously found best match.
1420     *  @param allowBoxing Allow boxing conversions of arguments.
1421     *  @param useVarargs Box trailing arguments into an array for varargs.
1422     */
1423    @SuppressWarnings("fallthrough")
1424    Symbol selectBest(Env<AttrContext> env,
1425                      Type site,
1426                      List<Type> argtypes,
1427                      List<Type> typeargtypes,
1428                      Symbol sym,
1429                      Symbol bestSoFar,
1430                      boolean allowBoxing,
1431                      boolean useVarargs) {
1432        if (sym.kind == ERR ||
1433                !sym.isInheritedIn(site.tsym, types)) {
1434            return bestSoFar;
1435        } else if (useVarargs && (sym.flags() & VARARGS) == 0) {
1436            return bestSoFar.kind.isOverloadError() ?
1437                    new BadVarargsMethod((ResolveError)bestSoFar.baseSymbol()) :
1438                    bestSoFar;
1439        }
1440        Assert.check(!sym.kind.isOverloadError());
1441        try {
1442            Type mt = rawInstantiate(env, site, sym, null, argtypes, typeargtypes,
1443                               allowBoxing, useVarargs, types.noWarnings);
1444            currentResolutionContext.addApplicableCandidate(sym, mt);
1445        } catch (InapplicableMethodException ex) {
1446            currentResolutionContext.addInapplicableCandidate(sym, ex.getDiagnostic());
1447            switch (bestSoFar.kind) {
1448                case ABSENT_MTH:
1449                    return new InapplicableSymbolError(currentResolutionContext);
1450                case WRONG_MTH:
1451                    bestSoFar = new InapplicableSymbolsError(currentResolutionContext);
1452                default:
1453                    return bestSoFar;
1454            }
1455        }
1456        if (!isAccessible(env, site, sym)) {
1457            return (bestSoFar.kind == ABSENT_MTH)
1458                ? new AccessError(env, site, sym)
1459                : bestSoFar;
1460        }
1461        return (bestSoFar.kind.isOverloadError() && bestSoFar.kind != AMBIGUOUS)
1462            ? sym
1463            : mostSpecific(argtypes, sym, bestSoFar, env, site, useVarargs);
1464    }
1465
1466    /* Return the most specific of the two methods for a call,
1467     *  given that both are accessible and applicable.
1468     *  @param m1               A new candidate for most specific.
1469     *  @param m2               The previous most specific candidate.
1470     *  @param env              The current environment.
1471     *  @param site             The original type from where the selection
1472     *                          takes place.
1473     *  @param allowBoxing Allow boxing conversions of arguments.
1474     *  @param useVarargs Box trailing arguments into an array for varargs.
1475     */
1476    Symbol mostSpecific(List<Type> argtypes, Symbol m1,
1477                        Symbol m2,
1478                        Env<AttrContext> env,
1479                        final Type site,
1480                        boolean useVarargs) {
1481        switch (m2.kind) {
1482        case MTH:
1483            if (m1 == m2) return m1;
1484            boolean m1SignatureMoreSpecific =
1485                    signatureMoreSpecific(argtypes, env, site, m1, m2, useVarargs);
1486            boolean m2SignatureMoreSpecific =
1487                    signatureMoreSpecific(argtypes, env, site, m2, m1, useVarargs);
1488            if (m1SignatureMoreSpecific && m2SignatureMoreSpecific) {
1489                Type mt1 = types.memberType(site, m1);
1490                Type mt2 = types.memberType(site, m2);
1491                if (!types.overrideEquivalent(mt1, mt2))
1492                    return ambiguityError(m1, m2);
1493
1494                // same signature; select (a) the non-bridge method, or
1495                // (b) the one that overrides the other, or (c) the concrete
1496                // one, or (d) merge both abstract signatures
1497                if ((m1.flags() & BRIDGE) != (m2.flags() & BRIDGE))
1498                    return ((m1.flags() & BRIDGE) != 0) ? m2 : m1;
1499
1500                // if one overrides or hides the other, use it
1501                TypeSymbol m1Owner = (TypeSymbol)m1.owner;
1502                TypeSymbol m2Owner = (TypeSymbol)m2.owner;
1503                if (types.asSuper(m1Owner.type, m2Owner) != null &&
1504                    ((m1.owner.flags_field & INTERFACE) == 0 ||
1505                     (m2.owner.flags_field & INTERFACE) != 0) &&
1506                    m1.overrides(m2, m1Owner, types, false))
1507                    return m1;
1508                if (types.asSuper(m2Owner.type, m1Owner) != null &&
1509                    ((m2.owner.flags_field & INTERFACE) == 0 ||
1510                     (m1.owner.flags_field & INTERFACE) != 0) &&
1511                    m2.overrides(m1, m2Owner, types, false))
1512                    return m2;
1513                boolean m1Abstract = (m1.flags() & ABSTRACT) != 0;
1514                boolean m2Abstract = (m2.flags() & ABSTRACT) != 0;
1515                if (m1Abstract && !m2Abstract) return m2;
1516                if (m2Abstract && !m1Abstract) return m1;
1517                // both abstract or both concrete
1518                return ambiguityError(m1, m2);
1519            }
1520            if (m1SignatureMoreSpecific) return m1;
1521            if (m2SignatureMoreSpecific) return m2;
1522            return ambiguityError(m1, m2);
1523        case AMBIGUOUS:
1524            //compare m1 to ambiguous methods in m2
1525            AmbiguityError e = (AmbiguityError)m2.baseSymbol();
1526            boolean m1MoreSpecificThanAnyAmbiguous = true;
1527            boolean allAmbiguousMoreSpecificThanM1 = true;
1528            for (Symbol s : e.ambiguousSyms) {
1529                Symbol moreSpecific = mostSpecific(argtypes, m1, s, env, site, useVarargs);
1530                m1MoreSpecificThanAnyAmbiguous &= moreSpecific == m1;
1531                allAmbiguousMoreSpecificThanM1 &= moreSpecific == s;
1532            }
1533            if (m1MoreSpecificThanAnyAmbiguous)
1534                return m1;
1535            //if m1 is more specific than some ambiguous methods, but other ambiguous methods are
1536            //more specific than m1, add it as a new ambiguous method:
1537            if (!allAmbiguousMoreSpecificThanM1)
1538                e.addAmbiguousSymbol(m1);
1539            return e;
1540        default:
1541            throw new AssertionError();
1542        }
1543    }
1544    //where
1545    private boolean signatureMoreSpecific(List<Type> actuals, Env<AttrContext> env, Type site, Symbol m1, Symbol m2, boolean useVarargs) {
1546        noteWarner.clear();
1547        int maxLength = Math.max(
1548                            Math.max(m1.type.getParameterTypes().length(), actuals.length()),
1549                            m2.type.getParameterTypes().length());
1550        MethodResolutionContext prevResolutionContext = currentResolutionContext;
1551        try {
1552            currentResolutionContext = new MethodResolutionContext();
1553            currentResolutionContext.step = prevResolutionContext.step;
1554            currentResolutionContext.methodCheck =
1555                    prevResolutionContext.methodCheck.mostSpecificCheck(actuals);
1556            Type mst = instantiate(env, site, m2, null,
1557                    adjustArgs(types.cvarLowerBounds(types.memberType(site, m1).getParameterTypes()), m1, maxLength, useVarargs), null,
1558                    false, useVarargs, noteWarner);
1559            return mst != null &&
1560                    !noteWarner.hasLint(Lint.LintCategory.UNCHECKED);
1561        } finally {
1562            currentResolutionContext = prevResolutionContext;
1563        }
1564    }
1565
1566    List<Type> adjustArgs(List<Type> args, Symbol msym, int length, boolean allowVarargs) {
1567        if ((msym.flags() & VARARGS) != 0 && allowVarargs) {
1568            Type varargsElem = types.elemtype(args.last());
1569            if (varargsElem == null) {
1570                Assert.error("Bad varargs = " + args.last() + " " + msym);
1571            }
1572            List<Type> newArgs = args.reverse().tail.prepend(varargsElem).reverse();
1573            while (newArgs.length() < length) {
1574                newArgs = newArgs.append(newArgs.last());
1575            }
1576            return newArgs;
1577        } else {
1578            return args;
1579        }
1580    }
1581    //where
1582    Type mostSpecificReturnType(Type mt1, Type mt2) {
1583        Type rt1 = mt1.getReturnType();
1584        Type rt2 = mt2.getReturnType();
1585
1586        if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL)) {
1587            //if both are generic methods, adjust return type ahead of subtyping check
1588            rt1 = types.subst(rt1, mt1.getTypeArguments(), mt2.getTypeArguments());
1589        }
1590        //first use subtyping, then return type substitutability
1591        if (types.isSubtype(rt1, rt2)) {
1592            return mt1;
1593        } else if (types.isSubtype(rt2, rt1)) {
1594            return mt2;
1595        } else if (types.returnTypeSubstitutable(mt1, mt2)) {
1596            return mt1;
1597        } else if (types.returnTypeSubstitutable(mt2, mt1)) {
1598            return mt2;
1599        } else {
1600            return null;
1601        }
1602    }
1603    //where
1604    Symbol ambiguityError(Symbol m1, Symbol m2) {
1605        if (((m1.flags() | m2.flags()) & CLASH) != 0) {
1606            return (m1.flags() & CLASH) == 0 ? m1 : m2;
1607        } else {
1608            return new AmbiguityError(m1, m2);
1609        }
1610    }
1611
1612    Symbol findMethodInScope(Env<AttrContext> env,
1613            Type site,
1614            Name name,
1615            List<Type> argtypes,
1616            List<Type> typeargtypes,
1617            Scope sc,
1618            Symbol bestSoFar,
1619            boolean allowBoxing,
1620            boolean useVarargs,
1621            boolean abstractok) {
1622        for (Symbol s : sc.getSymbolsByName(name, new LookupFilter(abstractok))) {
1623            bestSoFar = selectBest(env, site, argtypes, typeargtypes, s,
1624                    bestSoFar, allowBoxing, useVarargs);
1625        }
1626        return bestSoFar;
1627    }
1628    //where
1629        class LookupFilter implements Filter<Symbol> {
1630
1631            boolean abstractOk;
1632
1633            LookupFilter(boolean abstractOk) {
1634                this.abstractOk = abstractOk;
1635            }
1636
1637            public boolean accepts(Symbol s) {
1638                long flags = s.flags();
1639                return s.kind == MTH &&
1640                        (flags & SYNTHETIC) == 0 &&
1641                        (abstractOk ||
1642                        (flags & DEFAULT) != 0 ||
1643                        (flags & ABSTRACT) == 0);
1644            }
1645        }
1646
1647    /** Find best qualified method matching given name, type and value
1648     *  arguments.
1649     *  @param env       The current environment.
1650     *  @param site      The original type from where the selection
1651     *                   takes place.
1652     *  @param name      The method's name.
1653     *  @param argtypes  The method's value arguments.
1654     *  @param typeargtypes The method's type arguments
1655     *  @param allowBoxing Allow boxing conversions of arguments.
1656     *  @param useVarargs Box trailing arguments into an array for varargs.
1657     */
1658    Symbol findMethod(Env<AttrContext> env,
1659                      Type site,
1660                      Name name,
1661                      List<Type> argtypes,
1662                      List<Type> typeargtypes,
1663                      boolean allowBoxing,
1664                      boolean useVarargs) {
1665        Symbol bestSoFar = methodNotFound;
1666        bestSoFar = findMethod(env,
1667                          site,
1668                          name,
1669                          argtypes,
1670                          typeargtypes,
1671                          site.tsym.type,
1672                          bestSoFar,
1673                          allowBoxing,
1674                          useVarargs);
1675        return bestSoFar;
1676    }
1677    // where
1678    private Symbol findMethod(Env<AttrContext> env,
1679                              Type site,
1680                              Name name,
1681                              List<Type> argtypes,
1682                              List<Type> typeargtypes,
1683                              Type intype,
1684                              Symbol bestSoFar,
1685                              boolean allowBoxing,
1686                              boolean useVarargs) {
1687        @SuppressWarnings({"unchecked","rawtypes"})
1688        List<Type>[] itypes = (List<Type>[])new List[] { List.<Type>nil(), List.<Type>nil() };
1689
1690        InterfaceLookupPhase iphase = InterfaceLookupPhase.ABSTRACT_OK;
1691        for (TypeSymbol s : superclasses(intype)) {
1692            bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1693                    s.members(), bestSoFar, allowBoxing, useVarargs, true);
1694            if (name == names.init) return bestSoFar;
1695            iphase = (iphase == null) ? null : iphase.update(s, this);
1696            if (iphase != null) {
1697                for (Type itype : types.interfaces(s.type)) {
1698                    itypes[iphase.ordinal()] = types.union(types.closure(itype), itypes[iphase.ordinal()]);
1699                }
1700            }
1701        }
1702
1703        Symbol concrete = bestSoFar.kind.isValid() &&
1704                (bestSoFar.flags() & ABSTRACT) == 0 ?
1705                bestSoFar : methodNotFound;
1706
1707        for (InterfaceLookupPhase iphase2 : InterfaceLookupPhase.values()) {
1708            //keep searching for abstract methods
1709            for (Type itype : itypes[iphase2.ordinal()]) {
1710                if (!itype.isInterface()) continue; //skip j.l.Object (included by Types.closure())
1711                if (iphase2 == InterfaceLookupPhase.DEFAULT_OK &&
1712                        (itype.tsym.flags() & DEFAULT) == 0) continue;
1713                bestSoFar = findMethodInScope(env, site, name, argtypes, typeargtypes,
1714                        itype.tsym.members(), bestSoFar, allowBoxing, useVarargs, true);
1715                if (concrete != bestSoFar &&
1716                    concrete.kind.isValid() &&
1717                    bestSoFar.kind.isValid() &&
1718                        types.isSubSignature(concrete.type, bestSoFar.type)) {
1719                    //this is an hack - as javac does not do full membership checks
1720                    //most specific ends up comparing abstract methods that might have
1721                    //been implemented by some concrete method in a subclass and,
1722                    //because of raw override, it is possible for an abstract method
1723                    //to be more specific than the concrete method - so we need
1724                    //to explicitly call that out (see CR 6178365)
1725                    bestSoFar = concrete;
1726                }
1727            }
1728        }
1729        return bestSoFar;
1730    }
1731
1732    enum InterfaceLookupPhase {
1733        ABSTRACT_OK() {
1734            @Override
1735            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1736                //We should not look for abstract methods if receiver is a concrete class
1737                //(as concrete classes are expected to implement all abstracts coming
1738                //from superinterfaces)
1739                if ((s.flags() & (ABSTRACT | INTERFACE | ENUM)) != 0) {
1740                    return this;
1741                } else {
1742                    return DEFAULT_OK;
1743                }
1744            }
1745        },
1746        DEFAULT_OK() {
1747            @Override
1748            InterfaceLookupPhase update(Symbol s, Resolve rs) {
1749                return this;
1750            }
1751        };
1752
1753        abstract InterfaceLookupPhase update(Symbol s, Resolve rs);
1754    }
1755
1756    /**
1757     * Return an Iterable object to scan the superclasses of a given type.
1758     * It's crucial that the scan is done lazily, as we don't want to accidentally
1759     * access more supertypes than strictly needed (as this could trigger completion
1760     * errors if some of the not-needed supertypes are missing/ill-formed).
1761     */
1762    Iterable<TypeSymbol> superclasses(final Type intype) {
1763        return new Iterable<TypeSymbol>() {
1764            public Iterator<TypeSymbol> iterator() {
1765                return new Iterator<TypeSymbol>() {
1766
1767                    List<TypeSymbol> seen = List.nil();
1768                    TypeSymbol currentSym = symbolFor(intype);
1769                    TypeSymbol prevSym = null;
1770
1771                    public boolean hasNext() {
1772                        if (currentSym == syms.noSymbol) {
1773                            currentSym = symbolFor(types.supertype(prevSym.type));
1774                        }
1775                        return currentSym != null;
1776                    }
1777
1778                    public TypeSymbol next() {
1779                        prevSym = currentSym;
1780                        currentSym = syms.noSymbol;
1781                        Assert.check(prevSym != null || prevSym != syms.noSymbol);
1782                        return prevSym;
1783                    }
1784
1785                    public void remove() {
1786                        throw new UnsupportedOperationException();
1787                    }
1788
1789                    TypeSymbol symbolFor(Type t) {
1790                        if (!t.hasTag(CLASS) &&
1791                                !t.hasTag(TYPEVAR)) {
1792                            return null;
1793                        }
1794                        while (t.hasTag(TYPEVAR))
1795                            t = t.getUpperBound();
1796                        if (seen.contains(t.tsym)) {
1797                            //degenerate case in which we have a circular
1798                            //class hierarchy - because of ill-formed classfiles
1799                            return null;
1800                        }
1801                        seen = seen.prepend(t.tsym);
1802                        return t.tsym;
1803                    }
1804                };
1805            }
1806        };
1807    }
1808
1809    /** Find unqualified method matching given name, type and value arguments.
1810     *  @param env       The current environment.
1811     *  @param name      The method's name.
1812     *  @param argtypes  The method's value arguments.
1813     *  @param typeargtypes  The method's type arguments.
1814     *  @param allowBoxing Allow boxing conversions of arguments.
1815     *  @param useVarargs Box trailing arguments into an array for varargs.
1816     */
1817    Symbol findFun(Env<AttrContext> env, Name name,
1818                   List<Type> argtypes, List<Type> typeargtypes,
1819                   boolean allowBoxing, boolean useVarargs) {
1820        Symbol bestSoFar = methodNotFound;
1821        Env<AttrContext> env1 = env;
1822        boolean staticOnly = false;
1823        while (env1.outer != null) {
1824            if (isStatic(env1)) staticOnly = true;
1825            Symbol sym = findMethod(
1826                env1, env1.enclClass.sym.type, name, argtypes, typeargtypes,
1827                allowBoxing, useVarargs);
1828            if (sym.exists()) {
1829                if (staticOnly &&
1830                    sym.kind == MTH &&
1831                    sym.owner.kind == TYP &&
1832                    (sym.flags() & STATIC) == 0) return new StaticError(sym);
1833                else return sym;
1834            } else {
1835                bestSoFar = bestOf(bestSoFar, sym);
1836            }
1837            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
1838            env1 = env1.outer;
1839        }
1840
1841        Symbol sym = findMethod(env, syms.predefClass.type, name, argtypes,
1842                                typeargtypes, allowBoxing, useVarargs);
1843        if (sym.exists())
1844            return sym;
1845
1846        for (Symbol currentSym : env.toplevel.namedImportScope.getSymbolsByName(name)) {
1847            Symbol origin = env.toplevel.namedImportScope.getOrigin(currentSym).owner;
1848            if (currentSym.kind == MTH) {
1849                if (currentSym.owner.type != origin.type)
1850                    currentSym = currentSym.clone(origin);
1851                if (!isAccessible(env, origin.type, currentSym))
1852                    currentSym = new AccessError(env, origin.type, currentSym);
1853                bestSoFar = selectBest(env, origin.type,
1854                                       argtypes, typeargtypes,
1855                                       currentSym, bestSoFar,
1856                                       allowBoxing, useVarargs);
1857            }
1858        }
1859        if (bestSoFar.exists())
1860            return bestSoFar;
1861
1862        for (Symbol currentSym : env.toplevel.starImportScope.getSymbolsByName(name)) {
1863            Symbol origin = env.toplevel.starImportScope.getOrigin(currentSym).owner;
1864            if (currentSym.kind == MTH) {
1865                if (currentSym.owner.type != origin.type)
1866                    currentSym = currentSym.clone(origin);
1867                if (!isAccessible(env, origin.type, currentSym))
1868                    currentSym = new AccessError(env, origin.type, currentSym);
1869                bestSoFar = selectBest(env, origin.type,
1870                                       argtypes, typeargtypes,
1871                                       currentSym, bestSoFar,
1872                                       allowBoxing, useVarargs);
1873            }
1874        }
1875        return bestSoFar;
1876    }
1877
1878    /** Load toplevel or member class with given fully qualified name and
1879     *  verify that it is accessible.
1880     *  @param env       The current environment.
1881     *  @param name      The fully qualified name of the class to be loaded.
1882     */
1883    Symbol loadClass(Env<AttrContext> env, Name name) {
1884        try {
1885            ClassSymbol c = finder.loadClass(name);
1886            return isAccessible(env, c) ? c : new AccessError(c);
1887        } catch (ClassFinder.BadClassFile err) {
1888            throw err;
1889        } catch (CompletionFailure ex) {
1890            return typeNotFound;
1891        }
1892    }
1893
1894
1895    /**
1896     * Find a type declared in a scope (not inherited).  Return null
1897     * if none is found.
1898     *  @param env       The current environment.
1899     *  @param site      The original type from where the selection takes
1900     *                   place.
1901     *  @param name      The type's name.
1902     *  @param c         The class to search for the member type. This is
1903     *                   always a superclass or implemented interface of
1904     *                   site's class.
1905     */
1906    Symbol findImmediateMemberType(Env<AttrContext> env,
1907                                   Type site,
1908                                   Name name,
1909                                   TypeSymbol c) {
1910        for (Symbol sym : c.members().getSymbolsByName(name)) {
1911            if (sym.kind == TYP) {
1912                return isAccessible(env, site, sym)
1913                    ? sym
1914                    : new AccessError(env, site, sym);
1915            }
1916        }
1917        return typeNotFound;
1918    }
1919
1920    /** Find a member type inherited from a superclass or interface.
1921     *  @param env       The current environment.
1922     *  @param site      The original type from where the selection takes
1923     *                   place.
1924     *  @param name      The type's name.
1925     *  @param c         The class to search for the member type. This is
1926     *                   always a superclass or implemented interface of
1927     *                   site's class.
1928     */
1929    Symbol findInheritedMemberType(Env<AttrContext> env,
1930                                   Type site,
1931                                   Name name,
1932                                   TypeSymbol c) {
1933        Symbol bestSoFar = typeNotFound;
1934        Symbol sym;
1935        Type st = types.supertype(c.type);
1936        if (st != null && st.hasTag(CLASS)) {
1937            sym = findMemberType(env, site, name, st.tsym);
1938            bestSoFar = bestOf(bestSoFar, sym);
1939        }
1940        for (List<Type> l = types.interfaces(c.type);
1941             bestSoFar.kind != AMBIGUOUS && l.nonEmpty();
1942             l = l.tail) {
1943            sym = findMemberType(env, site, name, l.head.tsym);
1944            if (!bestSoFar.kind.isOverloadError() &&
1945                !sym.kind.isOverloadError() &&
1946                sym.owner != bestSoFar.owner)
1947                bestSoFar = new AmbiguityError(bestSoFar, sym);
1948            else
1949                bestSoFar = bestOf(bestSoFar, sym);
1950        }
1951        return bestSoFar;
1952    }
1953
1954    /** Find qualified member type.
1955     *  @param env       The current environment.
1956     *  @param site      The original type from where the selection takes
1957     *                   place.
1958     *  @param name      The type's name.
1959     *  @param c         The class to search for the member type. This is
1960     *                   always a superclass or implemented interface of
1961     *                   site's class.
1962     */
1963    Symbol findMemberType(Env<AttrContext> env,
1964                          Type site,
1965                          Name name,
1966                          TypeSymbol c) {
1967        Symbol sym = findImmediateMemberType(env, site, name, c);
1968
1969        if (sym != typeNotFound)
1970            return sym;
1971
1972        return findInheritedMemberType(env, site, name, c);
1973
1974    }
1975
1976    /** Find a global type in given scope and load corresponding class.
1977     *  @param env       The current environment.
1978     *  @param scope     The scope in which to look for the type.
1979     *  @param name      The type's name.
1980     */
1981    Symbol findGlobalType(Env<AttrContext> env, Scope scope, Name name) {
1982        Symbol bestSoFar = typeNotFound;
1983        for (Symbol s : scope.getSymbolsByName(name)) {
1984            Symbol sym = loadClass(env, s.flatName());
1985            if (bestSoFar.kind == TYP && sym.kind == TYP &&
1986                bestSoFar != sym)
1987                return new AmbiguityError(bestSoFar, sym);
1988            else
1989                bestSoFar = bestOf(bestSoFar, sym);
1990        }
1991        return bestSoFar;
1992    }
1993
1994    Symbol findTypeVar(Env<AttrContext> env, Name name, boolean staticOnly) {
1995        for (Symbol sym : env.info.scope.getSymbolsByName(name)) {
1996            if (sym.kind == TYP) {
1997                if (staticOnly &&
1998                    sym.type.hasTag(TYPEVAR) &&
1999                    sym.owner.kind == TYP)
2000                    return new StaticError(sym);
2001                return sym;
2002            }
2003        }
2004        return typeNotFound;
2005    }
2006
2007    /** Find an unqualified type symbol.
2008     *  @param env       The current environment.
2009     *  @param name      The type's name.
2010     */
2011    Symbol findType(Env<AttrContext> env, Name name) {
2012        Symbol bestSoFar = typeNotFound;
2013        Symbol sym;
2014        boolean staticOnly = false;
2015        for (Env<AttrContext> env1 = env; env1.outer != null; env1 = env1.outer) {
2016            if (isStatic(env1)) staticOnly = true;
2017            // First, look for a type variable and the first member type
2018            final Symbol tyvar = findTypeVar(env1, name, staticOnly);
2019            sym = findImmediateMemberType(env1, env1.enclClass.sym.type,
2020                                          name, env1.enclClass.sym);
2021
2022            // Return the type variable if we have it, and have no
2023            // immediate member, OR the type variable is for a method.
2024            if (tyvar != typeNotFound) {
2025                if (env.baseClause || sym == typeNotFound ||
2026                    (tyvar.kind == TYP && tyvar.exists() &&
2027                     tyvar.owner.kind == MTH)) {
2028                    return tyvar;
2029                }
2030            }
2031
2032            // If the environment is a class def, finish up,
2033            // otherwise, do the entire findMemberType
2034            if (sym == typeNotFound)
2035                sym = findInheritedMemberType(env1, env1.enclClass.sym.type,
2036                                              name, env1.enclClass.sym);
2037
2038            if (staticOnly && sym.kind == TYP &&
2039                sym.type.hasTag(CLASS) &&
2040                sym.type.getEnclosingType().hasTag(CLASS) &&
2041                env1.enclClass.sym.type.isParameterized() &&
2042                sym.type.getEnclosingType().isParameterized())
2043                return new StaticError(sym);
2044            else if (sym.exists()) return sym;
2045            else bestSoFar = bestOf(bestSoFar, sym);
2046
2047            JCClassDecl encl = env1.baseClause ? (JCClassDecl)env1.tree : env1.enclClass;
2048            if ((encl.sym.flags() & STATIC) != 0)
2049                staticOnly = true;
2050        }
2051
2052        if (!env.tree.hasTag(IMPORT)) {
2053            sym = findGlobalType(env, env.toplevel.namedImportScope, name);
2054            if (sym.exists()) return sym;
2055            else bestSoFar = bestOf(bestSoFar, sym);
2056
2057            sym = findGlobalType(env, env.toplevel.packge.members(), name);
2058            if (sym.exists()) return sym;
2059            else bestSoFar = bestOf(bestSoFar, sym);
2060
2061            sym = findGlobalType(env, env.toplevel.starImportScope, name);
2062            if (sym.exists()) return sym;
2063            else bestSoFar = bestOf(bestSoFar, sym);
2064        }
2065
2066        return bestSoFar;
2067    }
2068
2069    /** Find an unqualified identifier which matches a specified kind set.
2070     *  @param env       The current environment.
2071     *  @param name      The identifier's name.
2072     *  @param kind      Indicates the possible symbol kinds
2073     *                   (a subset of VAL, TYP, PCK).
2074     */
2075    Symbol findIdent(Env<AttrContext> env, Name name, KindSelector kind) {
2076        Symbol bestSoFar = typeNotFound;
2077        Symbol sym;
2078
2079        if (kind.contains(KindSelector.VAL)) {
2080            sym = findVar(env, name);
2081            if (sym.exists()) return sym;
2082            else bestSoFar = bestOf(bestSoFar, sym);
2083        }
2084
2085        if (kind.contains(KindSelector.TYP)) {
2086            sym = findType(env, name);
2087
2088            if (sym.exists()) return sym;
2089            else bestSoFar = bestOf(bestSoFar, sym);
2090        }
2091
2092        if (kind.contains(KindSelector.PCK))
2093            return syms.enterPackage(name);
2094        else return bestSoFar;
2095    }
2096
2097    /** Find an identifier in a package which matches a specified kind set.
2098     *  @param env       The current environment.
2099     *  @param name      The identifier's name.
2100     *  @param kind      Indicates the possible symbol kinds
2101     *                   (a nonempty subset of TYP, PCK).
2102     */
2103    Symbol findIdentInPackage(Env<AttrContext> env, TypeSymbol pck,
2104                              Name name, KindSelector kind) {
2105        Name fullname = TypeSymbol.formFullName(name, pck);
2106        Symbol bestSoFar = typeNotFound;
2107        PackageSymbol pack = null;
2108        if (kind.contains(KindSelector.PCK)) {
2109            pack = syms.enterPackage(fullname);
2110            if (pack.exists()) return pack;
2111        }
2112        if (kind.contains(KindSelector.TYP)) {
2113            Symbol sym = loadClass(env, fullname);
2114            if (sym.exists()) {
2115                // don't allow programs to use flatnames
2116                if (name == sym.name) return sym;
2117            }
2118            else bestSoFar = bestOf(bestSoFar, sym);
2119        }
2120        return (pack != null) ? pack : bestSoFar;
2121    }
2122
2123    /** Find an identifier among the members of a given type `site'.
2124     *  @param env       The current environment.
2125     *  @param site      The type containing the symbol to be found.
2126     *  @param name      The identifier's name.
2127     *  @param kind      Indicates the possible symbol kinds
2128     *                   (a subset of VAL, TYP).
2129     */
2130    Symbol findIdentInType(Env<AttrContext> env, Type site,
2131                           Name name, KindSelector kind) {
2132        Symbol bestSoFar = typeNotFound;
2133        Symbol sym;
2134        if (kind.contains(KindSelector.VAL)) {
2135            sym = findField(env, site, name, site.tsym);
2136            if (sym.exists()) return sym;
2137            else bestSoFar = bestOf(bestSoFar, sym);
2138        }
2139
2140        if (kind.contains(KindSelector.TYP)) {
2141            sym = findMemberType(env, site, name, site.tsym);
2142            if (sym.exists()) return sym;
2143            else bestSoFar = bestOf(bestSoFar, sym);
2144        }
2145        return bestSoFar;
2146    }
2147
2148/* ***************************************************************************
2149 *  Access checking
2150 *  The following methods convert ResolveErrors to ErrorSymbols, issuing
2151 *  an error message in the process
2152 ****************************************************************************/
2153
2154    /** If `sym' is a bad symbol: report error and return errSymbol
2155     *  else pass through unchanged,
2156     *  additional arguments duplicate what has been used in trying to find the
2157     *  symbol {@literal (--> flyweight pattern)}. This improves performance since we
2158     *  expect misses to happen frequently.
2159     *
2160     *  @param sym       The symbol that was found, or a ResolveError.
2161     *  @param pos       The position to use for error reporting.
2162     *  @param location  The symbol the served as a context for this lookup
2163     *  @param site      The original type from where the selection took place.
2164     *  @param name      The symbol's name.
2165     *  @param qualified Did we get here through a qualified expression resolution?
2166     *  @param argtypes  The invocation's value arguments,
2167     *                   if we looked for a method.
2168     *  @param typeargtypes  The invocation's type arguments,
2169     *                   if we looked for a method.
2170     *  @param logResolveHelper helper class used to log resolve errors
2171     */
2172    Symbol accessInternal(Symbol sym,
2173                  DiagnosticPosition pos,
2174                  Symbol location,
2175                  Type site,
2176                  Name name,
2177                  boolean qualified,
2178                  List<Type> argtypes,
2179                  List<Type> typeargtypes,
2180                  LogResolveHelper logResolveHelper) {
2181        if (sym.kind.isOverloadError()) {
2182            ResolveError errSym = (ResolveError)sym.baseSymbol();
2183            sym = errSym.access(name, qualified ? site.tsym : syms.noSymbol);
2184            argtypes = logResolveHelper.getArgumentTypes(errSym, sym, name, argtypes);
2185            if (logResolveHelper.resolveDiagnosticNeeded(site, argtypes, typeargtypes)) {
2186                logResolveError(errSym, pos, location, site, name, argtypes, typeargtypes);
2187            }
2188        }
2189        return sym;
2190    }
2191
2192    /**
2193     * Variant of the generalized access routine, to be used for generating method
2194     * resolution diagnostics
2195     */
2196    Symbol accessMethod(Symbol sym,
2197                  DiagnosticPosition pos,
2198                  Symbol location,
2199                  Type site,
2200                  Name name,
2201                  boolean qualified,
2202                  List<Type> argtypes,
2203                  List<Type> typeargtypes) {
2204        return accessInternal(sym, pos, location, site, name, qualified, argtypes, typeargtypes, methodLogResolveHelper);
2205    }
2206
2207    /** Same as original accessMethod(), but without location.
2208     */
2209    Symbol accessMethod(Symbol sym,
2210                  DiagnosticPosition pos,
2211                  Type site,
2212                  Name name,
2213                  boolean qualified,
2214                  List<Type> argtypes,
2215                  List<Type> typeargtypes) {
2216        return accessMethod(sym, pos, site.tsym, site, name, qualified, argtypes, typeargtypes);
2217    }
2218
2219    /**
2220     * Variant of the generalized access routine, to be used for generating variable,
2221     * type resolution diagnostics
2222     */
2223    Symbol accessBase(Symbol sym,
2224                  DiagnosticPosition pos,
2225                  Symbol location,
2226                  Type site,
2227                  Name name,
2228                  boolean qualified) {
2229        return accessInternal(sym, pos, location, site, name, qualified, List.<Type>nil(), null, basicLogResolveHelper);
2230    }
2231
2232    /** Same as original accessBase(), but without location.
2233     */
2234    Symbol accessBase(Symbol sym,
2235                  DiagnosticPosition pos,
2236                  Type site,
2237                  Name name,
2238                  boolean qualified) {
2239        return accessBase(sym, pos, site.tsym, site, name, qualified);
2240    }
2241
2242    interface LogResolveHelper {
2243        boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes);
2244        List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes);
2245    }
2246
2247    LogResolveHelper basicLogResolveHelper = new LogResolveHelper() {
2248        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2249            return !site.isErroneous();
2250        }
2251        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2252            return argtypes;
2253        }
2254    };
2255
2256    LogResolveHelper methodLogResolveHelper = new LogResolveHelper() {
2257        public boolean resolveDiagnosticNeeded(Type site, List<Type> argtypes, List<Type> typeargtypes) {
2258            return !site.isErroneous() &&
2259                        !Type.isErroneous(argtypes) &&
2260                        (typeargtypes == null || !Type.isErroneous(typeargtypes));
2261        }
2262        public List<Type> getArgumentTypes(ResolveError errSym, Symbol accessedSym, Name name, List<Type> argtypes) {
2263            return Type.map(argtypes, new ResolveDeferredRecoveryMap(AttrMode.SPECULATIVE, accessedSym, currentResolutionContext.step));
2264        }
2265    };
2266
2267    class ResolveDeferredRecoveryMap extends DeferredAttr.RecoveryDeferredTypeMap {
2268
2269        public ResolveDeferredRecoveryMap(AttrMode mode, Symbol msym, MethodResolutionPhase step) {
2270            deferredAttr.super(mode, msym, step);
2271        }
2272
2273        @Override
2274        protected Type typeOf(DeferredType dt) {
2275            Type res = super.typeOf(dt);
2276            if (!res.isErroneous()) {
2277                switch (TreeInfo.skipParens(dt.tree).getTag()) {
2278                    case LAMBDA:
2279                    case REFERENCE:
2280                        return dt;
2281                    case CONDEXPR:
2282                        return res == Type.recoveryType ?
2283                                dt : res;
2284                }
2285            }
2286            return res;
2287        }
2288    }
2289
2290    /** Check that sym is not an abstract method.
2291     */
2292    void checkNonAbstract(DiagnosticPosition pos, Symbol sym) {
2293        if ((sym.flags() & ABSTRACT) != 0 && (sym.flags() & DEFAULT) == 0)
2294            log.error(pos, "abstract.cant.be.accessed.directly",
2295                      kindName(sym), sym, sym.location());
2296    }
2297
2298/* ***************************************************************************
2299 *  Name resolution
2300 *  Naming conventions are as for symbol lookup
2301 *  Unlike the find... methods these methods will report access errors
2302 ****************************************************************************/
2303
2304    /** Resolve an unqualified (non-method) identifier.
2305     *  @param pos       The position to use for error reporting.
2306     *  @param env       The environment current at the identifier use.
2307     *  @param name      The identifier's name.
2308     *  @param kind      The set of admissible symbol kinds for the identifier.
2309     */
2310    Symbol resolveIdent(DiagnosticPosition pos, Env<AttrContext> env,
2311                        Name name, KindSelector kind) {
2312        return accessBase(
2313            findIdent(env, name, kind),
2314            pos, env.enclClass.sym.type, name, false);
2315    }
2316
2317    /** Resolve an unqualified method identifier.
2318     *  @param pos       The position to use for error reporting.
2319     *  @param env       The environment current at the method invocation.
2320     *  @param name      The identifier's name.
2321     *  @param argtypes  The types of the invocation's value arguments.
2322     *  @param typeargtypes  The types of the invocation's type arguments.
2323     */
2324    Symbol resolveMethod(DiagnosticPosition pos,
2325                         Env<AttrContext> env,
2326                         Name name,
2327                         List<Type> argtypes,
2328                         List<Type> typeargtypes) {
2329        return lookupMethod(env, pos, env.enclClass.sym, resolveMethodCheck,
2330                new BasicLookupHelper(name, env.enclClass.sym.type, argtypes, typeargtypes) {
2331                    @Override
2332                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2333                        return findFun(env, name, argtypes, typeargtypes,
2334                                phase.isBoxingRequired(),
2335                                phase.isVarargsRequired());
2336                    }});
2337    }
2338
2339    /** Resolve a qualified method identifier
2340     *  @param pos       The position to use for error reporting.
2341     *  @param env       The environment current at the method invocation.
2342     *  @param site      The type of the qualifying expression, in which
2343     *                   identifier is searched.
2344     *  @param name      The identifier's name.
2345     *  @param argtypes  The types of the invocation's value arguments.
2346     *  @param typeargtypes  The types of the invocation's type arguments.
2347     */
2348    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2349                                  Type site, Name name, List<Type> argtypes,
2350                                  List<Type> typeargtypes) {
2351        return resolveQualifiedMethod(pos, env, site.tsym, site, name, argtypes, typeargtypes);
2352    }
2353    Symbol resolveQualifiedMethod(DiagnosticPosition pos, Env<AttrContext> env,
2354                                  Symbol location, Type site, Name name, List<Type> argtypes,
2355                                  List<Type> typeargtypes) {
2356        return resolveQualifiedMethod(new MethodResolutionContext(), pos, env, location, site, name, argtypes, typeargtypes);
2357    }
2358    private Symbol resolveQualifiedMethod(MethodResolutionContext resolveContext,
2359                                  DiagnosticPosition pos, Env<AttrContext> env,
2360                                  Symbol location, Type site, Name name, List<Type> argtypes,
2361                                  List<Type> typeargtypes) {
2362        return lookupMethod(env, pos, location, resolveContext, new BasicLookupHelper(name, site, argtypes, typeargtypes) {
2363            @Override
2364            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2365                return findMethod(env, site, name, argtypes, typeargtypes,
2366                        phase.isBoxingRequired(),
2367                        phase.isVarargsRequired());
2368            }
2369            @Override
2370            Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2371                if (sym.kind.isOverloadError()) {
2372                    sym = super.access(env, pos, location, sym);
2373                } else if (allowMethodHandles) {
2374                    MethodSymbol msym = (MethodSymbol)sym;
2375                    if ((msym.flags() & SIGNATURE_POLYMORPHIC) != 0) {
2376                        return findPolymorphicSignatureInstance(env, sym, argtypes);
2377                    }
2378                }
2379                return sym;
2380            }
2381        });
2382    }
2383
2384    /** Find or create an implicit method of exactly the given type (after erasure).
2385     *  Searches in a side table, not the main scope of the site.
2386     *  This emulates the lookup process required by JSR 292 in JVM.
2387     *  @param env       Attribution environment
2388     *  @param spMethod  signature polymorphic method - i.e. MH.invokeExact
2389     *  @param argtypes  The required argument types
2390     */
2391    Symbol findPolymorphicSignatureInstance(Env<AttrContext> env,
2392                                            final Symbol spMethod,
2393                                            List<Type> argtypes) {
2394        Type mtype = infer.instantiatePolymorphicSignatureInstance(env,
2395                (MethodSymbol)spMethod, currentResolutionContext, argtypes);
2396        for (Symbol sym : polymorphicSignatureScope.getSymbolsByName(spMethod.name)) {
2397            if (types.isSameType(mtype, sym.type)) {
2398               return sym;
2399            }
2400        }
2401
2402        // create the desired method
2403        long flags = ABSTRACT | HYPOTHETICAL | spMethod.flags() & Flags.AccessFlags;
2404        Symbol msym = new MethodSymbol(flags, spMethod.name, mtype, spMethod.owner) {
2405            @Override
2406            public Symbol baseSymbol() {
2407                return spMethod;
2408            }
2409        };
2410        polymorphicSignatureScope.enter(msym);
2411        return msym;
2412    }
2413
2414    /** Resolve a qualified method identifier, throw a fatal error if not
2415     *  found.
2416     *  @param pos       The position to use for error reporting.
2417     *  @param env       The environment current at the method invocation.
2418     *  @param site      The type of the qualifying expression, in which
2419     *                   identifier is searched.
2420     *  @param name      The identifier's name.
2421     *  @param argtypes  The types of the invocation's value arguments.
2422     *  @param typeargtypes  The types of the invocation's type arguments.
2423     */
2424    public MethodSymbol resolveInternalMethod(DiagnosticPosition pos, Env<AttrContext> env,
2425                                        Type site, Name name,
2426                                        List<Type> argtypes,
2427                                        List<Type> typeargtypes) {
2428        MethodResolutionContext resolveContext = new MethodResolutionContext();
2429        resolveContext.internalResolution = true;
2430        Symbol sym = resolveQualifiedMethod(resolveContext, pos, env, site.tsym,
2431                site, name, argtypes, typeargtypes);
2432        if (sym.kind == MTH) return (MethodSymbol)sym;
2433        else throw new FatalError(
2434                 diags.fragment("fatal.err.cant.locate.meth",
2435                                name));
2436    }
2437
2438    /** Resolve constructor.
2439     *  @param pos       The position to use for error reporting.
2440     *  @param env       The environment current at the constructor invocation.
2441     *  @param site      The type of class for which a constructor is searched.
2442     *  @param argtypes  The types of the constructor invocation's value
2443     *                   arguments.
2444     *  @param typeargtypes  The types of the constructor invocation's type
2445     *                   arguments.
2446     */
2447    Symbol resolveConstructor(DiagnosticPosition pos,
2448                              Env<AttrContext> env,
2449                              Type site,
2450                              List<Type> argtypes,
2451                              List<Type> typeargtypes) {
2452        return resolveConstructor(new MethodResolutionContext(), pos, env, site, argtypes, typeargtypes);
2453    }
2454
2455    private Symbol resolveConstructor(MethodResolutionContext resolveContext,
2456                              final DiagnosticPosition pos,
2457                              Env<AttrContext> env,
2458                              Type site,
2459                              List<Type> argtypes,
2460                              List<Type> typeargtypes) {
2461        return lookupMethod(env, pos, site.tsym, resolveContext, new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2462            @Override
2463            Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2464                return findConstructor(pos, env, site, argtypes, typeargtypes,
2465                        phase.isBoxingRequired(),
2466                        phase.isVarargsRequired());
2467            }
2468        });
2469    }
2470
2471    /** Resolve a constructor, throw a fatal error if not found.
2472     *  @param pos       The position to use for error reporting.
2473     *  @param env       The environment current at the method invocation.
2474     *  @param site      The type to be constructed.
2475     *  @param argtypes  The types of the invocation's value arguments.
2476     *  @param typeargtypes  The types of the invocation's type arguments.
2477     */
2478    public MethodSymbol resolveInternalConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2479                                        Type site,
2480                                        List<Type> argtypes,
2481                                        List<Type> typeargtypes) {
2482        MethodResolutionContext resolveContext = new MethodResolutionContext();
2483        resolveContext.internalResolution = true;
2484        Symbol sym = resolveConstructor(resolveContext, pos, env, site, argtypes, typeargtypes);
2485        if (sym.kind == MTH) return (MethodSymbol)sym;
2486        else throw new FatalError(
2487                 diags.fragment("fatal.err.cant.locate.ctor", site));
2488    }
2489
2490    Symbol findConstructor(DiagnosticPosition pos, Env<AttrContext> env,
2491                              Type site, List<Type> argtypes,
2492                              List<Type> typeargtypes,
2493                              boolean allowBoxing,
2494                              boolean useVarargs) {
2495        Symbol sym = findMethod(env, site,
2496                                    names.init, argtypes,
2497                                    typeargtypes, allowBoxing,
2498                                    useVarargs);
2499        chk.checkDeprecated(pos, env.info.scope.owner, sym);
2500        return sym;
2501    }
2502
2503    /** Resolve constructor using diamond inference.
2504     *  @param pos       The position to use for error reporting.
2505     *  @param env       The environment current at the constructor invocation.
2506     *  @param site      The type of class for which a constructor is searched.
2507     *                   The scope of this class has been touched in attribution.
2508     *  @param argtypes  The types of the constructor invocation's value
2509     *                   arguments.
2510     *  @param typeargtypes  The types of the constructor invocation's type
2511     *                   arguments.
2512     */
2513    Symbol resolveDiamond(DiagnosticPosition pos,
2514                              Env<AttrContext> env,
2515                              Type site,
2516                              List<Type> argtypes,
2517                              List<Type> typeargtypes) {
2518        return lookupMethod(env, pos, site.tsym, resolveMethodCheck,
2519                new BasicLookupHelper(names.init, site, argtypes, typeargtypes) {
2520                    @Override
2521                    Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2522                        return findDiamond(env, site, argtypes, typeargtypes,
2523                                phase.isBoxingRequired(),
2524                                phase.isVarargsRequired());
2525                    }
2526                    @Override
2527                    Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2528                        if (sym.kind.isOverloadError()) {
2529                            if (sym.kind != WRONG_MTH &&
2530                                sym.kind != WRONG_MTHS) {
2531                                sym = super.access(env, pos, location, sym);
2532                            } else {
2533                                final JCDiagnostic details = sym.kind == WRONG_MTH ?
2534                                                ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
2535                                                null;
2536                                sym = new DiamondError(sym, currentResolutionContext);
2537                                sym = accessMethod(sym, pos, site, names.init, true, argtypes, typeargtypes);
2538                                env.info.pendingResolutionPhase = currentResolutionContext.step;
2539                            }
2540                        }
2541                        return sym;
2542                    }});
2543    }
2544
2545    /** This method scans all the constructor symbol in a given class scope -
2546     *  assuming that the original scope contains a constructor of the kind:
2547     *  {@code Foo(X x, Y y)}, where X,Y are class type-variables declared in Foo,
2548     *  a method check is executed against the modified constructor type:
2549     *  {@code <X,Y>Foo<X,Y>(X x, Y y)}. This is crucial in order to enable diamond
2550     *  inference. The inferred return type of the synthetic constructor IS
2551     *  the inferred type for the diamond operator.
2552     */
2553    private Symbol findDiamond(Env<AttrContext> env,
2554                              Type site,
2555                              List<Type> argtypes,
2556                              List<Type> typeargtypes,
2557                              boolean allowBoxing,
2558                              boolean useVarargs) {
2559        Symbol bestSoFar = methodNotFound;
2560        for (final Symbol sym : site.tsym.members().getSymbolsByName(names.init)) {
2561            //- System.out.println(" e " + e.sym);
2562            if (sym.kind == MTH &&
2563                (sym.flags_field & SYNTHETIC) == 0) {
2564                    List<Type> oldParams = sym.type.hasTag(FORALL) ?
2565                            ((ForAll)sym.type).tvars :
2566                            List.<Type>nil();
2567                    Type constrType = new ForAll(site.tsym.type.getTypeArguments().appendList(oldParams),
2568                                                 types.createMethodTypeWithReturn(sym.type.asMethodType(), site));
2569                    MethodSymbol newConstr = new MethodSymbol(sym.flags(), names.init, constrType, site.tsym) {
2570                        @Override
2571                        public Symbol baseSymbol() {
2572                            return sym;
2573                        }
2574                    };
2575                    bestSoFar = selectBest(env, site, argtypes, typeargtypes,
2576                            newConstr,
2577                            bestSoFar,
2578                            allowBoxing,
2579                            useVarargs);
2580            }
2581        }
2582        return bestSoFar;
2583    }
2584
2585    Symbol getMemberReference(DiagnosticPosition pos,
2586            Env<AttrContext> env,
2587            JCMemberReference referenceTree,
2588            Type site,
2589            Name name) {
2590
2591        site = types.capture(site);
2592
2593        ReferenceLookupHelper lookupHelper = makeReferenceLookupHelper(
2594                referenceTree, site, name, List.<Type>nil(), null, VARARITY);
2595
2596        Env<AttrContext> newEnv = env.dup(env.tree, env.info.dup());
2597        Symbol sym = lookupMethod(newEnv, env.tree.pos(), site.tsym,
2598                nilMethodCheck, lookupHelper);
2599
2600        env.info.pendingResolutionPhase = newEnv.info.pendingResolutionPhase;
2601
2602        return sym;
2603    }
2604
2605    ReferenceLookupHelper makeReferenceLookupHelper(JCMemberReference referenceTree,
2606                                  Type site,
2607                                  Name name,
2608                                  List<Type> argtypes,
2609                                  List<Type> typeargtypes,
2610                                  MethodResolutionPhase maxPhase) {
2611        if (!name.equals(names.init)) {
2612            //method reference
2613            return new MethodReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
2614        } else if (site.hasTag(ARRAY)) {
2615            //array constructor reference
2616            return new ArrayConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2617        } else {
2618            //class constructor reference
2619            return new ConstructorReferenceLookupHelper(referenceTree, site, argtypes, typeargtypes, maxPhase);
2620        }
2621    }
2622
2623    /**
2624     * Resolution of member references is typically done as a single
2625     * overload resolution step, where the argument types A are inferred from
2626     * the target functional descriptor.
2627     *
2628     * If the member reference is a method reference with a type qualifier,
2629     * a two-step lookup process is performed. The first step uses the
2630     * expected argument list A, while the second step discards the first
2631     * type from A (which is treated as a receiver type).
2632     *
2633     * There are two cases in which inference is performed: (i) if the member
2634     * reference is a constructor reference and the qualifier type is raw - in
2635     * which case diamond inference is used to infer a parameterization for the
2636     * type qualifier; (ii) if the member reference is an unbound reference
2637     * where the type qualifier is raw - in that case, during the unbound lookup
2638     * the receiver argument type is used to infer an instantiation for the raw
2639     * qualifier type.
2640     *
2641     * When a multi-step resolution process is exploited, the process of picking
2642     * the resulting symbol is delegated to an helper class {@link com.sun.tools.javac.comp.Resolve.ReferenceChooser}.
2643     *
2644     * This routine returns a pair (T,S), where S is the member reference symbol,
2645     * and T is the type of the class in which S is defined. This is necessary as
2646     * the type T might be dynamically inferred (i.e. if constructor reference
2647     * has a raw qualifier).
2648     */
2649    Pair<Symbol, ReferenceLookupHelper> resolveMemberReference(Env<AttrContext> env,
2650                                  JCMemberReference referenceTree,
2651                                  Type site,
2652                                  Name name,
2653                                  List<Type> argtypes,
2654                                  List<Type> typeargtypes,
2655                                  MethodCheck methodCheck,
2656                                  InferenceContext inferenceContext,
2657                                  ReferenceChooser referenceChooser) {
2658
2659        site = types.capture(site);
2660        ReferenceLookupHelper boundLookupHelper = makeReferenceLookupHelper(
2661                referenceTree, site, name, argtypes, typeargtypes, VARARITY);
2662
2663        //step 1 - bound lookup
2664        Env<AttrContext> boundEnv = env.dup(env.tree, env.info.dup());
2665        MethodResolutionContext boundSearchResolveContext = new MethodResolutionContext();
2666        boundSearchResolveContext.methodCheck = methodCheck;
2667        Symbol boundSym = lookupMethod(boundEnv, env.tree.pos(),
2668                site.tsym, boundSearchResolveContext, boundLookupHelper);
2669        ReferenceLookupResult boundRes = new ReferenceLookupResult(boundSym, boundSearchResolveContext);
2670
2671        //step 2 - unbound lookup
2672        Symbol unboundSym = methodNotFound;
2673        Env<AttrContext> unboundEnv = env.dup(env.tree, env.info.dup());
2674        ReferenceLookupHelper unboundLookupHelper = boundLookupHelper.unboundLookup(inferenceContext);
2675        ReferenceLookupResult unboundRes = referenceNotFound;
2676        if (unboundLookupHelper != null) {
2677            MethodResolutionContext unboundSearchResolveContext =
2678                    new MethodResolutionContext();
2679            unboundSearchResolveContext.methodCheck = methodCheck;
2680            unboundSym = lookupMethod(unboundEnv, env.tree.pos(),
2681                    site.tsym, unboundSearchResolveContext, unboundLookupHelper);
2682            unboundRes = new ReferenceLookupResult(unboundSym, unboundSearchResolveContext);
2683        }
2684
2685        //merge results
2686        Pair<Symbol, ReferenceLookupHelper> res;
2687        Symbol bestSym = referenceChooser.result(boundRes, unboundRes);
2688        res = new Pair<>(bestSym,
2689                bestSym == unboundSym ? unboundLookupHelper : boundLookupHelper);
2690        env.info.pendingResolutionPhase = bestSym == unboundSym ?
2691                unboundEnv.info.pendingResolutionPhase :
2692                boundEnv.info.pendingResolutionPhase;
2693
2694        return res;
2695    }
2696
2697    /**
2698     * This class is used to represent a method reference lookup result. It keeps track of two
2699     * things: (i) the symbol found during a method reference lookup and (ii) the static kind
2700     * of the lookup (see {@link com.sun.tools.javac.comp.Resolve.ReferenceLookupResult.StaticKind}).
2701     */
2702    static class ReferenceLookupResult {
2703
2704        /**
2705         * Static kind associated with a method reference lookup. Erroneous lookups end up with
2706         * the UNDEFINED kind; successful lookups will end up with either STATIC, NON_STATIC,
2707         * depending on whether all applicable candidates are static or non-static methods,
2708         * respectively. If a successful lookup has both static and non-static applicable methods,
2709         * its kind is set to BOTH.
2710         */
2711        enum StaticKind {
2712            STATIC,
2713            NON_STATIC,
2714            BOTH,
2715            UNDEFINED;
2716
2717            /**
2718             * Retrieve the static kind associated with a given (method) symbol.
2719             */
2720            static StaticKind from(Symbol s) {
2721                return s.isStatic() ?
2722                        STATIC : NON_STATIC;
2723            }
2724
2725            /**
2726             * Merge two static kinds together.
2727             */
2728            static StaticKind reduce(StaticKind sk1, StaticKind sk2) {
2729                if (sk1 == UNDEFINED) {
2730                    return sk2;
2731                } else if (sk2 == UNDEFINED) {
2732                    return sk1;
2733                } else {
2734                    return sk1 == sk2 ? sk1 : BOTH;
2735                }
2736            }
2737        }
2738
2739        /** The static kind. */
2740        StaticKind staticKind;
2741
2742        /** The lookup result. */
2743        Symbol sym;
2744
2745        ReferenceLookupResult(Symbol sym, MethodResolutionContext resolutionContext) {
2746            this.staticKind = staticKind(sym, resolutionContext);
2747            this.sym = sym;
2748        }
2749
2750        private StaticKind staticKind(Symbol sym, MethodResolutionContext resolutionContext) {
2751            switch (sym.kind) {
2752                case MTH:
2753                case AMBIGUOUS:
2754                    return resolutionContext.candidates.stream()
2755                            .filter(c -> c.isApplicable() && c.step == resolutionContext.step)
2756                            .map(c -> StaticKind.from(c.sym))
2757                            .reduce(StaticKind::reduce)
2758                            .orElse(StaticKind.UNDEFINED);
2759                case HIDDEN:
2760                    return StaticKind.from(((AccessError)sym).sym);
2761                default:
2762                    return StaticKind.UNDEFINED;
2763            }
2764        }
2765
2766        /**
2767         * Does this result corresponds to a successful lookup (i.e. one where a method has been found?)
2768         */
2769        boolean isSuccess() {
2770            return staticKind != StaticKind.UNDEFINED;
2771        }
2772
2773        /**
2774         * Does this result have given static kind?
2775         */
2776        boolean hasKind(StaticKind sk) {
2777            return this.staticKind == sk;
2778        }
2779
2780        /**
2781         * Error recovery helper: can this lookup result be ignored (for the purpose of returning
2782         * some 'better' result) ?
2783         */
2784        boolean canIgnore() {
2785            switch (sym.kind) {
2786                case ABSENT_MTH:
2787                    return true;
2788                case WRONG_MTH:
2789                    InapplicableSymbolError errSym =
2790                            (InapplicableSymbolError)sym.baseSymbol();
2791                    return new Template(MethodCheckDiag.ARITY_MISMATCH.regex())
2792                            .matches(errSym.errCandidate().snd);
2793                case WRONG_MTHS:
2794                    InapplicableSymbolsError errSyms =
2795                            (InapplicableSymbolsError)sym.baseSymbol();
2796                    return errSyms.filterCandidates(errSyms.mapCandidates()).isEmpty();
2797                default:
2798                    return false;
2799            }
2800        }
2801    }
2802
2803    /**
2804     * This abstract class embodies the logic that converts one (bound lookup) or two (unbound lookup)
2805     * {@code ReferenceLookupResult} objects into a (@code Symbol), which is then regarded as the
2806     * result of method reference resolution.
2807     */
2808    abstract class ReferenceChooser {
2809        /**
2810         * Generate a result from a pair of lookup result objects. This method delegates to the
2811         * appropriate result generation routine.
2812         */
2813        Symbol result(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2814            return unboundRes != referenceNotFound ?
2815                    unboundResult(boundRes, unboundRes) :
2816                    boundResult(boundRes);
2817        }
2818
2819        /**
2820         * Generate a symbol from a given bound lookup result.
2821         */
2822        abstract Symbol boundResult(ReferenceLookupResult boundRes);
2823
2824        /**
2825         * Generate a symbol from a pair of bound/unbound lookup results.
2826         */
2827        abstract Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes);
2828    }
2829
2830    /**
2831     * This chooser implements the selection strategy used during a full lookup; this logic
2832     * is described in JLS SE 8 (15.3.2).
2833     */
2834    ReferenceChooser basicReferenceChooser = new ReferenceChooser() {
2835
2836        @Override
2837        Symbol boundResult(ReferenceLookupResult boundRes) {
2838            return !boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC) ?
2839                    boundRes.sym : //the search produces a non-static method
2840                    new BadMethodReferenceError(boundRes.sym, false);
2841        }
2842
2843        @Override
2844        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2845            if (boundRes.hasKind(StaticKind.STATIC) &&
2846                    (!unboundRes.isSuccess() || unboundRes.hasKind(StaticKind.STATIC))) {
2847                //the first search produces a static method and no non-static method is applicable
2848                //during the second search
2849                return boundRes.sym;
2850            } else if (unboundRes.hasKind(StaticKind.NON_STATIC) &&
2851                    (!boundRes.isSuccess() || boundRes.hasKind(StaticKind.NON_STATIC))) {
2852                //the second search produces a non-static method and no static method is applicable
2853                //during the first search
2854                return unboundRes.sym;
2855            } else if (boundRes.isSuccess() && unboundRes.isSuccess()) {
2856                //both searches produce some result; ambiguity (error recovery)
2857                return ambiguityError(boundRes.sym, unboundRes.sym);
2858            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
2859                //Both searches failed to produce a result with correct staticness (i.e. first search
2860                //produces an non-static method). Alternatively, a given search produced a result
2861                //with the right staticness, but the other search has applicable methods with wrong
2862                //staticness (error recovery)
2863                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
2864            } else {
2865                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
2866                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
2867                        unboundRes.sym : boundRes.sym;
2868            }
2869        }
2870    };
2871
2872    /**
2873     * This chooser implements the selection strategy used during an arity-based lookup; this logic
2874     * is described in JLS SE 8 (15.12.2.1).
2875     */
2876    ReferenceChooser structuralReferenceChooser = new ReferenceChooser() {
2877
2878        @Override
2879        Symbol boundResult(ReferenceLookupResult boundRes) {
2880            return (!boundRes.isSuccess() || !boundRes.hasKind(StaticKind.STATIC)) ?
2881                    boundRes.sym : //the search has at least one applicable non-static method
2882                    new BadMethodReferenceError(boundRes.sym, false);
2883        }
2884
2885        @Override
2886        Symbol unboundResult(ReferenceLookupResult boundRes, ReferenceLookupResult unboundRes) {
2887            if (boundRes.isSuccess() && !boundRes.hasKind(StaticKind.NON_STATIC)) {
2888                //the first serach has at least one applicable static method
2889                return boundRes.sym;
2890            } else if (unboundRes.isSuccess() && !unboundRes.hasKind(StaticKind.STATIC)) {
2891                //the second search has at least one applicable non-static method
2892                return unboundRes.sym;
2893            } else if (boundRes.isSuccess() || unboundRes.isSuccess()) {
2894                //either the first search produces a non-static method, or second search produces
2895                //a non-static method (error recovery)
2896                return new BadMethodReferenceError(boundRes.isSuccess() ? boundRes.sym : unboundRes.sym, true);
2897            } else {
2898                //both searches fail to produce a result - pick 'better' error using heuristics (error recovery)
2899                return (boundRes.canIgnore() && !unboundRes.canIgnore()) ?
2900                        unboundRes.sym : boundRes.sym;
2901            }
2902        }
2903    };
2904
2905    /**
2906     * Helper for defining custom method-like lookup logic; a lookup helper
2907     * provides hooks for (i) the actual lookup logic and (ii) accessing the
2908     * lookup result (this step might result in compiler diagnostics to be generated)
2909     */
2910    abstract class LookupHelper {
2911
2912        /** name of the symbol to lookup */
2913        Name name;
2914
2915        /** location in which the lookup takes place */
2916        Type site;
2917
2918        /** actual types used during the lookup */
2919        List<Type> argtypes;
2920
2921        /** type arguments used during the lookup */
2922        List<Type> typeargtypes;
2923
2924        /** Max overload resolution phase handled by this helper */
2925        MethodResolutionPhase maxPhase;
2926
2927        LookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
2928            this.name = name;
2929            this.site = site;
2930            this.argtypes = argtypes;
2931            this.typeargtypes = typeargtypes;
2932            this.maxPhase = maxPhase;
2933        }
2934
2935        /**
2936         * Should lookup stop at given phase with given result
2937         */
2938        final boolean shouldStop(Symbol sym, MethodResolutionPhase phase) {
2939            return phase.ordinal() > maxPhase.ordinal() ||
2940                !sym.kind.isOverloadError() || sym.kind == AMBIGUOUS;
2941        }
2942
2943        /**
2944         * Search for a symbol under a given overload resolution phase - this method
2945         * is usually called several times, once per each overload resolution phase
2946         */
2947        abstract Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase);
2948
2949        /**
2950         * Dump overload resolution info
2951         */
2952        void debug(DiagnosticPosition pos, Symbol sym) {
2953            //do nothing
2954        }
2955
2956        /**
2957         * Validate the result of the lookup
2958         */
2959        abstract Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym);
2960    }
2961
2962    abstract class BasicLookupHelper extends LookupHelper {
2963
2964        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes) {
2965            this(name, site, argtypes, typeargtypes, MethodResolutionPhase.VARARITY);
2966        }
2967
2968        BasicLookupHelper(Name name, Type site, List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
2969            super(name, site, argtypes, typeargtypes, maxPhase);
2970        }
2971
2972        @Override
2973        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
2974            Symbol sym = doLookup(env, phase);
2975            if (sym.kind == AMBIGUOUS) {
2976                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
2977                sym = a_err.mergeAbstracts(site);
2978            }
2979            return sym;
2980        }
2981
2982        abstract Symbol doLookup(Env<AttrContext> env, MethodResolutionPhase phase);
2983
2984        @Override
2985        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
2986            if (sym.kind.isOverloadError()) {
2987                //if nothing is found return the 'first' error
2988                sym = accessMethod(sym, pos, location, site, name, true, argtypes, typeargtypes);
2989            }
2990            return sym;
2991        }
2992
2993        @Override
2994        void debug(DiagnosticPosition pos, Symbol sym) {
2995            reportVerboseResolutionDiagnostic(pos, name, site, argtypes, typeargtypes, sym);
2996        }
2997    }
2998
2999    /**
3000     * Helper class for member reference lookup. A reference lookup helper
3001     * defines the basic logic for member reference lookup; a method gives
3002     * access to an 'unbound' helper used to perform an unbound member
3003     * reference lookup.
3004     */
3005    abstract class ReferenceLookupHelper extends LookupHelper {
3006
3007        /** The member reference tree */
3008        JCMemberReference referenceTree;
3009
3010        ReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3011                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3012            super(name, site, argtypes, typeargtypes, maxPhase);
3013            this.referenceTree = referenceTree;
3014        }
3015
3016        /**
3017         * Returns an unbound version of this lookup helper. By default, this
3018         * method returns an dummy lookup helper.
3019         */
3020        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3021            return null;
3022        }
3023
3024        /**
3025         * Get the kind of the member reference
3026         */
3027        abstract JCMemberReference.ReferenceKind referenceKind(Symbol sym);
3028
3029        Symbol access(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, Symbol sym) {
3030            if (sym.kind == AMBIGUOUS) {
3031                AmbiguityError a_err = (AmbiguityError)sym.baseSymbol();
3032                sym = a_err.mergeAbstracts(site);
3033            }
3034            //skip error reporting
3035            return sym;
3036        }
3037    }
3038
3039    /**
3040     * Helper class for method reference lookup. The lookup logic is based
3041     * upon Resolve.findMethod; in certain cases, this helper class has a
3042     * corresponding unbound helper class (see UnboundMethodReferenceLookupHelper).
3043     * In such cases, non-static lookup results are thrown away.
3044     */
3045    class MethodReferenceLookupHelper extends ReferenceLookupHelper {
3046
3047        MethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3048                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3049            super(referenceTree, name, site, argtypes, typeargtypes, maxPhase);
3050        }
3051
3052        @Override
3053        final Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3054            return findMethod(env, site, name, argtypes, typeargtypes,
3055                    phase.isBoxingRequired(), phase.isVarargsRequired());
3056        }
3057
3058        @Override
3059        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3060            if (TreeInfo.isStaticSelector(referenceTree.expr, names)) {
3061                if (argtypes.nonEmpty() &&
3062                        (argtypes.head.hasTag(NONE) ||
3063                        types.isSubtypeUnchecked(inferenceContext.asUndetVar(argtypes.head), site))) {
3064                    return new UnboundMethodReferenceLookupHelper(referenceTree, name,
3065                            site, argtypes, typeargtypes, maxPhase);
3066                } else {
3067                    return new ReferenceLookupHelper(referenceTree, name, site, argtypes, typeargtypes, maxPhase) {
3068                        @Override
3069                        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3070                            return this;
3071                        }
3072
3073                        @Override
3074                        Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3075                            return methodNotFound;
3076                        }
3077
3078                        @Override
3079                        ReferenceKind referenceKind(Symbol sym) {
3080                            Assert.error();
3081                            return null;
3082                        }
3083                    };
3084                }
3085            } else {
3086                return super.unboundLookup(inferenceContext);
3087            }
3088        }
3089
3090        @Override
3091        ReferenceKind referenceKind(Symbol sym) {
3092            if (sym.isStatic()) {
3093                return ReferenceKind.STATIC;
3094            } else {
3095                Name selName = TreeInfo.name(referenceTree.getQualifierExpression());
3096                return selName != null && selName == names._super ?
3097                        ReferenceKind.SUPER :
3098                        ReferenceKind.BOUND;
3099            }
3100        }
3101    }
3102
3103    /**
3104     * Helper class for unbound method reference lookup. Essentially the same
3105     * as the basic method reference lookup helper; main difference is that static
3106     * lookup results are thrown away. If qualifier type is raw, an attempt to
3107     * infer a parameterized type is made using the first actual argument (that
3108     * would otherwise be ignored during the lookup).
3109     */
3110    class UnboundMethodReferenceLookupHelper extends MethodReferenceLookupHelper {
3111
3112        UnboundMethodReferenceLookupHelper(JCMemberReference referenceTree, Name name, Type site,
3113                List<Type> argtypes, List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3114            super(referenceTree, name, site, argtypes.tail, typeargtypes, maxPhase);
3115            if (site.isRaw() && !argtypes.head.hasTag(NONE)) {
3116                Type asSuperSite = types.asSuper(argtypes.head, site.tsym);
3117                this.site = types.capture(asSuperSite);
3118            }
3119        }
3120
3121        @Override
3122        ReferenceLookupHelper unboundLookup(InferenceContext inferenceContext) {
3123            return this;
3124        }
3125
3126        @Override
3127        ReferenceKind referenceKind(Symbol sym) {
3128            return ReferenceKind.UNBOUND;
3129        }
3130    }
3131
3132    /**
3133     * Helper class for array constructor lookup; an array constructor lookup
3134     * is simulated by looking up a method that returns the array type specified
3135     * as qualifier, and that accepts a single int parameter (size of the array).
3136     */
3137    class ArrayConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3138
3139        ArrayConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3140                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3141            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3142        }
3143
3144        @Override
3145        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3146            WriteableScope sc = WriteableScope.create(syms.arrayClass);
3147            MethodSymbol arrayConstr = new MethodSymbol(PUBLIC, name, null, site.tsym);
3148            arrayConstr.type = new MethodType(List.<Type>of(syms.intType), site, List.<Type>nil(), syms.methodClass);
3149            sc.enter(arrayConstr);
3150            return findMethodInScope(env, site, name, argtypes, typeargtypes, sc, methodNotFound, phase.isBoxingRequired(), phase.isVarargsRequired(), false);
3151        }
3152
3153        @Override
3154        ReferenceKind referenceKind(Symbol sym) {
3155            return ReferenceKind.ARRAY_CTOR;
3156        }
3157    }
3158
3159    /**
3160     * Helper class for constructor reference lookup. The lookup logic is based
3161     * upon either Resolve.findMethod or Resolve.findDiamond - depending on
3162     * whether the constructor reference needs diamond inference (this is the case
3163     * if the qualifier type is raw). A special erroneous symbol is returned
3164     * if the lookup returns the constructor of an inner class and there's no
3165     * enclosing instance in scope.
3166     */
3167    class ConstructorReferenceLookupHelper extends ReferenceLookupHelper {
3168
3169        boolean needsInference;
3170
3171        ConstructorReferenceLookupHelper(JCMemberReference referenceTree, Type site, List<Type> argtypes,
3172                List<Type> typeargtypes, MethodResolutionPhase maxPhase) {
3173            super(referenceTree, names.init, site, argtypes, typeargtypes, maxPhase);
3174            if (site.isRaw()) {
3175                this.site = new ClassType(site.getEnclosingType(), site.tsym.type.getTypeArguments(), site.tsym, site.getMetadata());
3176                needsInference = true;
3177            }
3178        }
3179
3180        @Override
3181        protected Symbol lookup(Env<AttrContext> env, MethodResolutionPhase phase) {
3182            Symbol sym = needsInference ?
3183                findDiamond(env, site, argtypes, typeargtypes, phase.isBoxingRequired(), phase.isVarargsRequired()) :
3184                findMethod(env, site, name, argtypes, typeargtypes,
3185                        phase.isBoxingRequired(), phase.isVarargsRequired());
3186            return (sym.kind != MTH ||
3187                    site.getEnclosingType().hasTag(NONE) ||
3188                    hasEnclosingInstance(env, site)) ?
3189                    sym : new BadConstructorReferenceError(sym);
3190        }
3191
3192        @Override
3193        ReferenceKind referenceKind(Symbol sym) {
3194            return site.getEnclosingType().hasTag(NONE) ?
3195                    ReferenceKind.TOPLEVEL : ReferenceKind.IMPLICIT_INNER;
3196        }
3197    }
3198
3199    /**
3200     * Main overload resolution routine. On each overload resolution step, a
3201     * lookup helper class is used to perform the method/constructor lookup;
3202     * at the end of the lookup, the helper is used to validate the results
3203     * (this last step might trigger overload resolution diagnostics).
3204     */
3205    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location, MethodCheck methodCheck, LookupHelper lookupHelper) {
3206        MethodResolutionContext resolveContext = new MethodResolutionContext();
3207        resolveContext.methodCheck = methodCheck;
3208        return lookupMethod(env, pos, location, resolveContext, lookupHelper);
3209    }
3210
3211    Symbol lookupMethod(Env<AttrContext> env, DiagnosticPosition pos, Symbol location,
3212            MethodResolutionContext resolveContext, LookupHelper lookupHelper) {
3213        MethodResolutionContext prevResolutionContext = currentResolutionContext;
3214        try {
3215            Symbol bestSoFar = methodNotFound;
3216            currentResolutionContext = resolveContext;
3217            for (MethodResolutionPhase phase : methodResolutionSteps) {
3218                if (lookupHelper.shouldStop(bestSoFar, phase))
3219                    break;
3220                MethodResolutionPhase prevPhase = currentResolutionContext.step;
3221                Symbol prevBest = bestSoFar;
3222                currentResolutionContext.step = phase;
3223                Symbol sym = lookupHelper.lookup(env, phase);
3224                lookupHelper.debug(pos, sym);
3225                bestSoFar = phase.mergeResults(bestSoFar, sym);
3226                env.info.pendingResolutionPhase = (prevBest == bestSoFar) ? prevPhase : phase;
3227            }
3228            return lookupHelper.access(env, pos, location, bestSoFar);
3229        } finally {
3230            currentResolutionContext = prevResolutionContext;
3231        }
3232    }
3233
3234    /**
3235     * Resolve `c.name' where name == this or name == super.
3236     * @param pos           The position to use for error reporting.
3237     * @param env           The environment current at the expression.
3238     * @param c             The qualifier.
3239     * @param name          The identifier's name.
3240     */
3241    Symbol resolveSelf(DiagnosticPosition pos,
3242                       Env<AttrContext> env,
3243                       TypeSymbol c,
3244                       Name name) {
3245        Env<AttrContext> env1 = env;
3246        boolean staticOnly = false;
3247        while (env1.outer != null) {
3248            if (isStatic(env1)) staticOnly = true;
3249            if (env1.enclClass.sym == c) {
3250                Symbol sym = env1.info.scope.findFirst(name);
3251                if (sym != null) {
3252                    if (staticOnly) sym = new StaticError(sym);
3253                    return accessBase(sym, pos, env.enclClass.sym.type,
3254                                  name, true);
3255                }
3256            }
3257            if ((env1.enclClass.sym.flags() & STATIC) != 0) staticOnly = true;
3258            env1 = env1.outer;
3259        }
3260        if (c.isInterface() &&
3261            name == names._super && !isStatic(env) &&
3262            types.isDirectSuperInterface(c, env.enclClass.sym)) {
3263            //this might be a default super call if one of the superinterfaces is 'c'
3264            for (Type t : pruneInterfaces(env.enclClass.type)) {
3265                if (t.tsym == c) {
3266                    env.info.defaultSuperCallSite = t;
3267                    return new VarSymbol(0, names._super,
3268                            types.asSuper(env.enclClass.type, c), env.enclClass.sym);
3269                }
3270            }
3271            //find a direct superinterface that is a subtype of 'c'
3272            for (Type i : types.interfaces(env.enclClass.type)) {
3273                if (i.tsym.isSubClass(c, types) && i.tsym != c) {
3274                    log.error(pos, "illegal.default.super.call", c,
3275                            diags.fragment("redundant.supertype", c, i));
3276                    return syms.errSymbol;
3277                }
3278            }
3279            Assert.error();
3280        }
3281        log.error(pos, "not.encl.class", c);
3282        return syms.errSymbol;
3283    }
3284    //where
3285    private List<Type> pruneInterfaces(Type t) {
3286        ListBuffer<Type> result = new ListBuffer<>();
3287        for (Type t1 : types.interfaces(t)) {
3288            boolean shouldAdd = true;
3289            for (Type t2 : types.interfaces(t)) {
3290                if (t1 != t2 && types.isSubtypeNoCapture(t2, t1)) {
3291                    shouldAdd = false;
3292                }
3293            }
3294            if (shouldAdd) {
3295                result.append(t1);
3296            }
3297        }
3298        return result.toList();
3299    }
3300
3301
3302    /**
3303     * Resolve `c.this' for an enclosing class c that contains the
3304     * named member.
3305     * @param pos           The position to use for error reporting.
3306     * @param env           The environment current at the expression.
3307     * @param member        The member that must be contained in the result.
3308     */
3309    Symbol resolveSelfContaining(DiagnosticPosition pos,
3310                                 Env<AttrContext> env,
3311                                 Symbol member,
3312                                 boolean isSuperCall) {
3313        Symbol sym = resolveSelfContainingInternal(env, member, isSuperCall);
3314        if (sym == null) {
3315            log.error(pos, "encl.class.required", member);
3316            return syms.errSymbol;
3317        } else {
3318            return accessBase(sym, pos, env.enclClass.sym.type, sym.name, true);
3319        }
3320    }
3321
3322    boolean hasEnclosingInstance(Env<AttrContext> env, Type type) {
3323        Symbol encl = resolveSelfContainingInternal(env, type.tsym, false);
3324        return encl != null && !encl.kind.isOverloadError();
3325    }
3326
3327    private Symbol resolveSelfContainingInternal(Env<AttrContext> env,
3328                                 Symbol member,
3329                                 boolean isSuperCall) {
3330        Name name = names._this;
3331        Env<AttrContext> env1 = isSuperCall ? env.outer : env;
3332        boolean staticOnly = false;
3333        if (env1 != null) {
3334            while (env1 != null && env1.outer != null) {
3335                if (isStatic(env1)) staticOnly = true;
3336                if (env1.enclClass.sym.isSubClass(member.owner, types)) {
3337                    Symbol sym = env1.info.scope.findFirst(name);
3338                    if (sym != null) {
3339                        if (staticOnly) sym = new StaticError(sym);
3340                        return sym;
3341                    }
3342                }
3343                if ((env1.enclClass.sym.flags() & STATIC) != 0)
3344                    staticOnly = true;
3345                env1 = env1.outer;
3346            }
3347        }
3348        return null;
3349    }
3350
3351    /**
3352     * Resolve an appropriate implicit this instance for t's container.
3353     * JLS 8.8.5.1 and 15.9.2
3354     */
3355    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t) {
3356        return resolveImplicitThis(pos, env, t, false);
3357    }
3358
3359    Type resolveImplicitThis(DiagnosticPosition pos, Env<AttrContext> env, Type t, boolean isSuperCall) {
3360        Type thisType = (t.tsym.owner.kind.matches(KindSelector.VAL_MTH)
3361                         ? resolveSelf(pos, env, t.getEnclosingType().tsym, names._this)
3362                         : resolveSelfContaining(pos, env, t.tsym, isSuperCall)).type;
3363        if (env.info.isSelfCall && thisType.tsym == env.enclClass.sym)
3364            log.error(pos, "cant.ref.before.ctor.called", "this");
3365        return thisType;
3366    }
3367
3368/* ***************************************************************************
3369 *  ResolveError classes, indicating error situations when accessing symbols
3370 ****************************************************************************/
3371
3372    //used by TransTypes when checking target type of synthetic cast
3373    public void logAccessErrorInternal(Env<AttrContext> env, JCTree tree, Type type) {
3374        AccessError error = new AccessError(env, env.enclClass.type, type.tsym);
3375        logResolveError(error, tree.pos(), env.enclClass.sym, env.enclClass.type, null, null, null);
3376    }
3377    //where
3378    private void logResolveError(ResolveError error,
3379            DiagnosticPosition pos,
3380            Symbol location,
3381            Type site,
3382            Name name,
3383            List<Type> argtypes,
3384            List<Type> typeargtypes) {
3385        JCDiagnostic d = error.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
3386                pos, location, site, name, argtypes, typeargtypes);
3387        if (d != null) {
3388            d.setFlag(DiagnosticFlag.RESOLVE_ERROR);
3389            log.report(d);
3390        }
3391    }
3392
3393    private final LocalizedString noArgs = new LocalizedString("compiler.misc.no.args");
3394
3395    public Object methodArguments(List<Type> argtypes) {
3396        if (argtypes == null || argtypes.isEmpty()) {
3397            return noArgs;
3398        } else {
3399            ListBuffer<Object> diagArgs = new ListBuffer<>();
3400            for (Type t : argtypes) {
3401                if (t.hasTag(DEFERRED)) {
3402                    diagArgs.append(((DeferredAttr.DeferredType)t).tree);
3403                } else {
3404                    diagArgs.append(t);
3405                }
3406            }
3407            return diagArgs;
3408        }
3409    }
3410
3411    /**
3412     * Root class for resolution errors. Subclass of ResolveError
3413     * represent a different kinds of resolution error - as such they must
3414     * specify how they map into concrete compiler diagnostics.
3415     */
3416    abstract class ResolveError extends Symbol {
3417
3418        /** The name of the kind of error, for debugging only. */
3419        final String debugName;
3420
3421        ResolveError(Kind kind, String debugName) {
3422            super(kind, 0, null, null, null);
3423            this.debugName = debugName;
3424        }
3425
3426        @Override @DefinedBy(Api.LANGUAGE_MODEL)
3427        public <R, P> R accept(ElementVisitor<R, P> v, P p) {
3428            throw new AssertionError();
3429        }
3430
3431        @Override
3432        public String toString() {
3433            return debugName;
3434        }
3435
3436        @Override
3437        public boolean exists() {
3438            return false;
3439        }
3440
3441        @Override
3442        public boolean isStatic() {
3443            return false;
3444        }
3445
3446        /**
3447         * Create an external representation for this erroneous symbol to be
3448         * used during attribution - by default this returns the symbol of a
3449         * brand new error type which stores the original type found
3450         * during resolution.
3451         *
3452         * @param name     the name used during resolution
3453         * @param location the location from which the symbol is accessed
3454         */
3455        protected Symbol access(Name name, TypeSymbol location) {
3456            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3457        }
3458
3459        /**
3460         * Create a diagnostic representing this resolution error.
3461         *
3462         * @param dkind     The kind of the diagnostic to be created (e.g error).
3463         * @param pos       The position to be used for error reporting.
3464         * @param site      The original type from where the selection took place.
3465         * @param name      The name of the symbol to be resolved.
3466         * @param argtypes  The invocation's value arguments,
3467         *                  if we looked for a method.
3468         * @param typeargtypes  The invocation's type arguments,
3469         *                      if we looked for a method.
3470         */
3471        abstract JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3472                DiagnosticPosition pos,
3473                Symbol location,
3474                Type site,
3475                Name name,
3476                List<Type> argtypes,
3477                List<Type> typeargtypes);
3478    }
3479
3480    /**
3481     * This class is the root class of all resolution errors caused by
3482     * an invalid symbol being found during resolution.
3483     */
3484    abstract class InvalidSymbolError extends ResolveError {
3485
3486        /** The invalid symbol found during resolution */
3487        Symbol sym;
3488
3489        InvalidSymbolError(Kind kind, Symbol sym, String debugName) {
3490            super(kind, debugName);
3491            this.sym = sym;
3492        }
3493
3494        @Override
3495        public boolean exists() {
3496            return true;
3497        }
3498
3499        @Override
3500        public String toString() {
3501             return super.toString() + " wrongSym=" + sym;
3502        }
3503
3504        @Override
3505        public Symbol access(Name name, TypeSymbol location) {
3506            if (!sym.kind.isOverloadError() && sym.kind.matches(KindSelector.TYP))
3507                return types.createErrorType(name, location, sym.type).tsym;
3508            else
3509                return sym;
3510        }
3511    }
3512
3513    /**
3514     * InvalidSymbolError error class indicating that a symbol matching a
3515     * given name does not exists in a given site.
3516     */
3517    class SymbolNotFoundError extends ResolveError {
3518
3519        SymbolNotFoundError(Kind kind) {
3520            this(kind, "symbol not found error");
3521        }
3522
3523        SymbolNotFoundError(Kind kind, String debugName) {
3524            super(kind, debugName);
3525        }
3526
3527        @Override
3528        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3529                DiagnosticPosition pos,
3530                Symbol location,
3531                Type site,
3532                Name name,
3533                List<Type> argtypes,
3534                List<Type> typeargtypes) {
3535            argtypes = argtypes == null ? List.<Type>nil() : argtypes;
3536            typeargtypes = typeargtypes == null ? List.<Type>nil() : typeargtypes;
3537            if (name == names.error)
3538                return null;
3539
3540            boolean hasLocation = false;
3541            if (location == null) {
3542                location = site.tsym;
3543            }
3544            if (!location.name.isEmpty()) {
3545                if (location.kind == PCK && !site.tsym.exists()) {
3546                    return diags.create(dkind, log.currentSource(), pos,
3547                        "doesnt.exist", location);
3548                }
3549                hasLocation = !location.name.equals(names._this) &&
3550                        !location.name.equals(names._super);
3551            }
3552            boolean isConstructor = name == names.init;
3553            KindName kindname = isConstructor ? KindName.CONSTRUCTOR : kind.absentKind();
3554            Name idname = isConstructor ? site.tsym.name : name;
3555            String errKey = getErrorKey(kindname, typeargtypes.nonEmpty(), hasLocation);
3556            if (hasLocation) {
3557                return diags.create(dkind, log.currentSource(), pos,
3558                        errKey, kindname, idname, //symbol kindname, name
3559                        typeargtypes, args(argtypes), //type parameters and arguments (if any)
3560                        getLocationDiag(location, site)); //location kindname, type
3561            }
3562            else {
3563                return diags.create(dkind, log.currentSource(), pos,
3564                        errKey, kindname, idname, //symbol kindname, name
3565                        typeargtypes, args(argtypes)); //type parameters and arguments (if any)
3566            }
3567        }
3568        //where
3569        private Object args(List<Type> args) {
3570            return args.isEmpty() ? args : methodArguments(args);
3571        }
3572
3573        private String getErrorKey(KindName kindname, boolean hasTypeArgs, boolean hasLocation) {
3574            String key = "cant.resolve";
3575            String suffix = hasLocation ? ".location" : "";
3576            switch (kindname) {
3577                case METHOD:
3578                case CONSTRUCTOR: {
3579                    suffix += ".args";
3580                    suffix += hasTypeArgs ? ".params" : "";
3581                }
3582            }
3583            return key + suffix;
3584        }
3585        private JCDiagnostic getLocationDiag(Symbol location, Type site) {
3586            if (location.kind == VAR) {
3587                return diags.fragment("location.1",
3588                    kindName(location),
3589                    location,
3590                    location.type);
3591            } else {
3592                return diags.fragment("location",
3593                    typeKindName(site),
3594                    site,
3595                    null);
3596            }
3597        }
3598    }
3599
3600    /**
3601     * InvalidSymbolError error class indicating that a given symbol
3602     * (either a method, a constructor or an operand) is not applicable
3603     * given an actual arguments/type argument list.
3604     */
3605    class InapplicableSymbolError extends ResolveError {
3606
3607        protected MethodResolutionContext resolveContext;
3608
3609        InapplicableSymbolError(MethodResolutionContext context) {
3610            this(WRONG_MTH, "inapplicable symbol error", context);
3611        }
3612
3613        protected InapplicableSymbolError(Kind kind, String debugName, MethodResolutionContext context) {
3614            super(kind, debugName);
3615            this.resolveContext = context;
3616        }
3617
3618        @Override
3619        public String toString() {
3620            return super.toString();
3621        }
3622
3623        @Override
3624        public boolean exists() {
3625            return true;
3626        }
3627
3628        @Override
3629        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3630                DiagnosticPosition pos,
3631                Symbol location,
3632                Type site,
3633                Name name,
3634                List<Type> argtypes,
3635                List<Type> typeargtypes) {
3636            if (name == names.error)
3637                return null;
3638
3639            Pair<Symbol, JCDiagnostic> c = errCandidate();
3640            if (compactMethodDiags) {
3641                JCDiagnostic simpleDiag =
3642                    MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, c.snd);
3643                if (simpleDiag != null) {
3644                    return simpleDiag;
3645                }
3646            }
3647            Symbol ws = c.fst.asMemberOf(site, types);
3648            return diags.create(dkind, log.currentSource(), pos,
3649                      "cant.apply.symbol",
3650                      kindName(ws),
3651                      ws.name == names.init ? ws.owner.name : ws.name,
3652                      methodArguments(ws.type.getParameterTypes()),
3653                      methodArguments(argtypes),
3654                      kindName(ws.owner),
3655                      ws.owner.type,
3656                      c.snd);
3657        }
3658
3659        @Override
3660        public Symbol access(Name name, TypeSymbol location) {
3661            return types.createErrorType(name, location, syms.errSymbol.type).tsym;
3662        }
3663
3664        protected Pair<Symbol, JCDiagnostic> errCandidate() {
3665            Candidate bestSoFar = null;
3666            for (Candidate c : resolveContext.candidates) {
3667                if (c.isApplicable()) continue;
3668                bestSoFar = c;
3669            }
3670            Assert.checkNonNull(bestSoFar);
3671            return new Pair<>(bestSoFar.sym, bestSoFar.details);
3672        }
3673    }
3674
3675    /**
3676     * ResolveError error class indicating that a symbol (either methods, constructors or operand)
3677     * is not applicable given an actual arguments/type argument list.
3678     */
3679    class InapplicableSymbolsError extends InapplicableSymbolError {
3680
3681        InapplicableSymbolsError(MethodResolutionContext context) {
3682            super(WRONG_MTHS, "inapplicable symbols", context);
3683        }
3684
3685        @Override
3686        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3687                DiagnosticPosition pos,
3688                Symbol location,
3689                Type site,
3690                Name name,
3691                List<Type> argtypes,
3692                List<Type> typeargtypes) {
3693            Map<Symbol, JCDiagnostic> candidatesMap = mapCandidates();
3694            Map<Symbol, JCDiagnostic> filteredCandidates = compactMethodDiags ?
3695                    filterCandidates(candidatesMap) :
3696                    mapCandidates();
3697            if (filteredCandidates.isEmpty()) {
3698                filteredCandidates = candidatesMap;
3699            }
3700            boolean truncatedDiag = candidatesMap.size() != filteredCandidates.size();
3701            if (filteredCandidates.size() > 1) {
3702                JCDiagnostic err = diags.create(dkind,
3703                        null,
3704                        truncatedDiag ?
3705                            EnumSet.of(DiagnosticFlag.COMPRESSED) :
3706                            EnumSet.noneOf(DiagnosticFlag.class),
3707                        log.currentSource(),
3708                        pos,
3709                        "cant.apply.symbols",
3710                        name == names.init ? KindName.CONSTRUCTOR : kind.absentKind(),
3711                        name == names.init ? site.tsym.name : name,
3712                        methodArguments(argtypes));
3713                return new JCDiagnostic.MultilineDiagnostic(err, candidateDetails(filteredCandidates, site));
3714            } else if (filteredCandidates.size() == 1) {
3715                Map.Entry<Symbol, JCDiagnostic> _e =
3716                                filteredCandidates.entrySet().iterator().next();
3717                final Pair<Symbol, JCDiagnostic> p = new Pair<>(_e.getKey(), _e.getValue());
3718                JCDiagnostic d = new InapplicableSymbolError(resolveContext) {
3719                    @Override
3720                    protected Pair<Symbol, JCDiagnostic> errCandidate() {
3721                        return p;
3722                    }
3723                }.getDiagnostic(dkind, pos,
3724                    location, site, name, argtypes, typeargtypes);
3725                if (truncatedDiag) {
3726                    d.setFlag(DiagnosticFlag.COMPRESSED);
3727                }
3728                return d;
3729            } else {
3730                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind, pos,
3731                    location, site, name, argtypes, typeargtypes);
3732            }
3733        }
3734        //where
3735            private Map<Symbol, JCDiagnostic> mapCandidates() {
3736                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
3737                for (Candidate c : resolveContext.candidates) {
3738                    if (c.isApplicable()) continue;
3739                    candidates.put(c.sym, c.details);
3740                }
3741                return candidates;
3742            }
3743
3744            Map<Symbol, JCDiagnostic> filterCandidates(Map<Symbol, JCDiagnostic> candidatesMap) {
3745                Map<Symbol, JCDiagnostic> candidates = new LinkedHashMap<>();
3746                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3747                    JCDiagnostic d = _entry.getValue();
3748                    if (!new Template(MethodCheckDiag.ARITY_MISMATCH.regex()).matches(d)) {
3749                        candidates.put(_entry.getKey(), d);
3750                    }
3751                }
3752                return candidates;
3753            }
3754
3755            private List<JCDiagnostic> candidateDetails(Map<Symbol, JCDiagnostic> candidatesMap, Type site) {
3756                List<JCDiagnostic> details = List.nil();
3757                for (Map.Entry<Symbol, JCDiagnostic> _entry : candidatesMap.entrySet()) {
3758                    Symbol sym = _entry.getKey();
3759                    JCDiagnostic detailDiag = diags.fragment("inapplicable.method",
3760                            Kinds.kindName(sym),
3761                            sym.location(site, types),
3762                            sym.asMemberOf(site, types),
3763                            _entry.getValue());
3764                    details = details.prepend(detailDiag);
3765                }
3766                //typically members are visited in reverse order (see Scope)
3767                //so we need to reverse the candidate list so that candidates
3768                //conform to source order
3769                return details;
3770            }
3771    }
3772
3773    /**
3774     * DiamondError error class indicating that a constructor symbol is not applicable
3775     * given an actual arguments/type argument list using diamond inference.
3776     */
3777    class DiamondError extends InapplicableSymbolError {
3778
3779        Symbol sym;
3780
3781        public DiamondError(Symbol sym, MethodResolutionContext context) {
3782            super(sym.kind, "diamondError", context);
3783            this.sym = sym;
3784        }
3785
3786        JCDiagnostic getDetails() {
3787            return (sym.kind == WRONG_MTH) ?
3788                    ((InapplicableSymbolError)sym.baseSymbol()).errCandidate().snd :
3789                    null;
3790        }
3791
3792        @Override
3793        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos,
3794                Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
3795            JCDiagnostic details = getDetails();
3796            if (details != null && compactMethodDiags) {
3797                JCDiagnostic simpleDiag =
3798                        MethodResolutionDiagHelper.rewrite(diags, pos, log.currentSource(), dkind, details);
3799                if (simpleDiag != null) {
3800                    return simpleDiag;
3801                }
3802            }
3803            String key = details == null ?
3804                "cant.apply.diamond" :
3805                "cant.apply.diamond.1";
3806            return diags.create(dkind, log.currentSource(), pos, key,
3807                    diags.fragment("diamond", site.tsym), details);
3808        }
3809    }
3810
3811    /**
3812     * An InvalidSymbolError error class indicating that a symbol is not
3813     * accessible from a given site
3814     */
3815    class AccessError extends InvalidSymbolError {
3816
3817        private Env<AttrContext> env;
3818        private Type site;
3819
3820        AccessError(Symbol sym) {
3821            this(null, null, sym);
3822        }
3823
3824        AccessError(Env<AttrContext> env, Type site, Symbol sym) {
3825            super(HIDDEN, sym, "access error");
3826            this.env = env;
3827            this.site = site;
3828            if (debugResolve)
3829                log.error("proc.messager", sym + " @ " + site + " is inaccessible.");
3830        }
3831
3832        @Override
3833        public boolean exists() {
3834            return false;
3835        }
3836
3837        @Override
3838        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3839                DiagnosticPosition pos,
3840                Symbol location,
3841                Type site,
3842                Name name,
3843                List<Type> argtypes,
3844                List<Type> typeargtypes) {
3845            if (sym.owner.type.hasTag(ERROR))
3846                return null;
3847
3848            if (sym.name == names.init && sym.owner != site.tsym) {
3849                return new SymbolNotFoundError(ABSENT_MTH).getDiagnostic(dkind,
3850                        pos, location, site, name, argtypes, typeargtypes);
3851            }
3852            else if ((sym.flags() & PUBLIC) != 0
3853                || (env != null && this.site != null
3854                    && !isAccessible(env, this.site))) {
3855                return diags.create(dkind, log.currentSource(),
3856                        pos, "not.def.access.class.intf.cant.access",
3857                    sym, sym.location());
3858            }
3859            else if ((sym.flags() & (PRIVATE | PROTECTED)) != 0) {
3860                return diags.create(dkind, log.currentSource(),
3861                        pos, "report.access", sym,
3862                        asFlagSet(sym.flags() & (PRIVATE | PROTECTED)),
3863                        sym.location());
3864            }
3865            else {
3866                return diags.create(dkind, log.currentSource(),
3867                        pos, "not.def.public.cant.access", sym, sym.location());
3868            }
3869        }
3870    }
3871
3872    /**
3873     * InvalidSymbolError error class indicating that an instance member
3874     * has erroneously been accessed from a static context.
3875     */
3876    class StaticError extends InvalidSymbolError {
3877
3878        StaticError(Symbol sym) {
3879            super(STATICERR, sym, "static error");
3880        }
3881
3882        @Override
3883        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3884                DiagnosticPosition pos,
3885                Symbol location,
3886                Type site,
3887                Name name,
3888                List<Type> argtypes,
3889                List<Type> typeargtypes) {
3890            Symbol errSym = ((sym.kind == TYP && sym.type.hasTag(CLASS))
3891                ? types.erasure(sym.type).tsym
3892                : sym);
3893            return diags.create(dkind, log.currentSource(), pos,
3894                    "non-static.cant.be.ref", kindName(sym), errSym);
3895        }
3896    }
3897
3898    /**
3899     * InvalidSymbolError error class indicating that a pair of symbols
3900     * (either methods, constructors or operands) are ambiguous
3901     * given an actual arguments/type argument list.
3902     */
3903    class AmbiguityError extends ResolveError {
3904
3905        /** The other maximally specific symbol */
3906        List<Symbol> ambiguousSyms = List.nil();
3907
3908        @Override
3909        public boolean exists() {
3910            return true;
3911        }
3912
3913        AmbiguityError(Symbol sym1, Symbol sym2) {
3914            super(AMBIGUOUS, "ambiguity error");
3915            ambiguousSyms = flatten(sym2).appendList(flatten(sym1));
3916        }
3917
3918        private List<Symbol> flatten(Symbol sym) {
3919            if (sym.kind == AMBIGUOUS) {
3920                return ((AmbiguityError)sym.baseSymbol()).ambiguousSyms;
3921            } else {
3922                return List.of(sym);
3923            }
3924        }
3925
3926        AmbiguityError addAmbiguousSymbol(Symbol s) {
3927            ambiguousSyms = ambiguousSyms.prepend(s);
3928            return this;
3929        }
3930
3931        @Override
3932        JCDiagnostic getDiagnostic(JCDiagnostic.DiagnosticType dkind,
3933                DiagnosticPosition pos,
3934                Symbol location,
3935                Type site,
3936                Name name,
3937                List<Type> argtypes,
3938                List<Type> typeargtypes) {
3939            List<Symbol> diagSyms = ambiguousSyms.reverse();
3940            Symbol s1 = diagSyms.head;
3941            Symbol s2 = diagSyms.tail.head;
3942            Name sname = s1.name;
3943            if (sname == names.init) sname = s1.owner.name;
3944            return diags.create(dkind, log.currentSource(),
3945                    pos, "ref.ambiguous", sname,
3946                    kindName(s1),
3947                    s1,
3948                    s1.location(site, types),
3949                    kindName(s2),
3950                    s2,
3951                    s2.location(site, types));
3952        }
3953
3954        /**
3955         * If multiple applicable methods are found during overload and none of them
3956         * is more specific than the others, attempt to merge their signatures.
3957         */
3958        Symbol mergeAbstracts(Type site) {
3959            List<Symbol> ambiguousInOrder = ambiguousSyms.reverse();
3960            for (Symbol s : ambiguousInOrder) {
3961                Type mt = types.memberType(site, s);
3962                boolean found = true;
3963                List<Type> allThrown = mt.getThrownTypes();
3964                for (Symbol s2 : ambiguousInOrder) {
3965                    Type mt2 = types.memberType(site, s2);
3966                    if ((s2.flags() & ABSTRACT) == 0 ||
3967                        !types.overrideEquivalent(mt, mt2) ||
3968                        !types.isSameTypes(s.erasure(types).getParameterTypes(),
3969                                       s2.erasure(types).getParameterTypes())) {
3970                        //ambiguity cannot be resolved
3971                        return this;
3972                    }
3973                    Type mst = mostSpecificReturnType(mt, mt2);
3974                    if (mst == null || mst != mt) {
3975                        found = false;
3976                        break;
3977                    }
3978                    allThrown = chk.intersect(allThrown, mt2.getThrownTypes());
3979                }
3980                if (found) {
3981                    //all ambiguous methods were abstract and one method had
3982                    //most specific return type then others
3983                    return (allThrown == mt.getThrownTypes()) ?
3984                            s : new MethodSymbol(
3985                                s.flags(),
3986                                s.name,
3987                                types.createMethodTypeWithThrown(s.type, allThrown),
3988                                s.owner);
3989                }
3990            }
3991            return this;
3992        }
3993
3994        @Override
3995        protected Symbol access(Name name, TypeSymbol location) {
3996            Symbol firstAmbiguity = ambiguousSyms.last();
3997            return firstAmbiguity.kind == TYP ?
3998                    types.createErrorType(name, location, firstAmbiguity.type).tsym :
3999                    firstAmbiguity;
4000        }
4001    }
4002
4003    class BadVarargsMethod extends ResolveError {
4004
4005        ResolveError delegatedError;
4006
4007        BadVarargsMethod(ResolveError delegatedError) {
4008            super(delegatedError.kind, "badVarargs");
4009            this.delegatedError = delegatedError;
4010        }
4011
4012        @Override
4013        public Symbol baseSymbol() {
4014            return delegatedError.baseSymbol();
4015        }
4016
4017        @Override
4018        protected Symbol access(Name name, TypeSymbol location) {
4019            return delegatedError.access(name, location);
4020        }
4021
4022        @Override
4023        public boolean exists() {
4024            return true;
4025        }
4026
4027        @Override
4028        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4029            return delegatedError.getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes);
4030        }
4031    }
4032
4033    /**
4034     * BadMethodReferenceError error class indicating that a method reference symbol has been found,
4035     * but with the wrong staticness.
4036     */
4037    class BadMethodReferenceError extends StaticError {
4038
4039        boolean unboundLookup;
4040
4041        public BadMethodReferenceError(Symbol sym, boolean unboundLookup) {
4042            super(sym);
4043            this.unboundLookup = unboundLookup;
4044        }
4045
4046        @Override
4047        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4048            final String key;
4049            if (!unboundLookup) {
4050                key = "bad.static.method.in.bound.lookup";
4051            } else if (sym.isStatic()) {
4052                key = "bad.static.method.in.unbound.lookup";
4053            } else {
4054                key = "bad.instance.method.in.unbound.lookup";
4055            }
4056            return sym.kind.isOverloadError() ?
4057                    ((ResolveError)sym).getDiagnostic(dkind, pos, location, site, name, argtypes, typeargtypes) :
4058                    diags.create(dkind, log.currentSource(), pos, key, Kinds.kindName(sym), sym);
4059        }
4060    }
4061
4062    /**
4063     * BadConstructorReferenceError error class indicating that a constructor reference symbol has been found,
4064     * but pointing to a class for which an enclosing instance is not available.
4065     */
4066    class BadConstructorReferenceError extends InvalidSymbolError {
4067
4068        public BadConstructorReferenceError(Symbol sym) {
4069            super(MISSING_ENCL, sym, "BadConstructorReferenceError");
4070        }
4071
4072        @Override
4073        JCDiagnostic getDiagnostic(DiagnosticType dkind, DiagnosticPosition pos, Symbol location, Type site, Name name, List<Type> argtypes, List<Type> typeargtypes) {
4074           return diags.create(dkind, log.currentSource(), pos,
4075                "cant.access.inner.cls.constr", site.tsym.name, argtypes, site.getEnclosingType());
4076        }
4077    }
4078
4079    /**
4080     * Helper class for method resolution diagnostic simplification.
4081     * Certain resolution diagnostic are rewritten as simpler diagnostic
4082     * where the enclosing resolution diagnostic (i.e. 'inapplicable method')
4083     * is stripped away, as it doesn't carry additional info. The logic
4084     * for matching a given diagnostic is given in terms of a template
4085     * hierarchy: a diagnostic template can be specified programmatically,
4086     * so that only certain diagnostics are matched. Each templete is then
4087     * associated with a rewriter object that carries out the task of rewtiting
4088     * the diagnostic to a simpler one.
4089     */
4090    static class MethodResolutionDiagHelper {
4091
4092        /**
4093         * A diagnostic rewriter transforms a method resolution diagnostic
4094         * into a simpler one
4095         */
4096        interface DiagnosticRewriter {
4097            JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4098                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4099                    DiagnosticType preferredKind, JCDiagnostic d);
4100        }
4101
4102        /**
4103         * A diagnostic template is made up of two ingredients: (i) a regular
4104         * expression for matching a diagnostic key and (ii) a list of sub-templates
4105         * for matching diagnostic arguments.
4106         */
4107        static class Template {
4108
4109            /** regex used to match diag key */
4110            String regex;
4111
4112            /** templates used to match diagnostic args */
4113            Template[] subTemplates;
4114
4115            Template(String key, Template... subTemplates) {
4116                this.regex = key;
4117                this.subTemplates = subTemplates;
4118            }
4119
4120            /**
4121             * Returns true if the regex matches the diagnostic key and if
4122             * all diagnostic arguments are matches by corresponding sub-templates.
4123             */
4124            boolean matches(Object o) {
4125                JCDiagnostic d = (JCDiagnostic)o;
4126                Object[] args = d.getArgs();
4127                if (!d.getCode().matches(regex) ||
4128                        subTemplates.length != d.getArgs().length) {
4129                    return false;
4130                }
4131                for (int i = 0; i < args.length ; i++) {
4132                    if (!subTemplates[i].matches(args[i])) {
4133                        return false;
4134                    }
4135                }
4136                return true;
4137            }
4138        }
4139
4140        /**
4141         * Common rewriter for all argument mismatch simplifications.
4142         */
4143        static class ArgMismatchRewriter implements DiagnosticRewriter {
4144
4145            /** the index of the subdiagnostic to be used as primary. */
4146            int causeIndex;
4147
4148            public ArgMismatchRewriter(int causeIndex) {
4149                this.causeIndex = causeIndex;
4150            }
4151
4152            @Override
4153            public JCDiagnostic rewriteDiagnostic(JCDiagnostic.Factory diags,
4154                    DiagnosticPosition preferedPos, DiagnosticSource preferredSource,
4155                    DiagnosticType preferredKind, JCDiagnostic d) {
4156                JCDiagnostic cause = (JCDiagnostic)d.getArgs()[causeIndex];
4157                return diags.create(preferredKind, preferredSource, d.getDiagnosticPosition(),
4158                        "prob.found.req", cause);
4159            }
4160        }
4161
4162        /** a dummy template that match any diagnostic argument */
4163        static final Template skip = new Template("") {
4164            @Override
4165            boolean matches(Object d) {
4166                return true;
4167            }
4168        };
4169
4170        /** template for matching inference-free arguments mismatch failures */
4171        static final Template argMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip);
4172
4173        /** template for matching inference related arguments mismatch failures */
4174        static final Template inferArgMismatchTemplate = new Template(MethodCheckDiag.ARG_MISMATCH.regex(), skip, skip) {
4175            @Override
4176            boolean matches(Object o) {
4177                if (!super.matches(o)) {
4178                    return false;
4179                }
4180                JCDiagnostic d = (JCDiagnostic)o;
4181                @SuppressWarnings("unchecked")
4182                List<Type> tvars = (List<Type>)d.getArgs()[0];
4183                return !containsAny(d, tvars);
4184            }
4185
4186            BiPredicate<Object, List<Type>> containsPredicate = (o, ts) -> {
4187                if (o instanceof Type) {
4188                    return ((Type)o).containsAny(ts);
4189                } else if (o instanceof JCDiagnostic) {
4190                    return containsAny((JCDiagnostic)o, ts);
4191                } else {
4192                    return false;
4193                }
4194            };
4195
4196            boolean containsAny(JCDiagnostic d, List<Type> ts) {
4197                return Stream.of(d.getArgs())
4198                        .anyMatch(o -> containsPredicate.test(o, ts));
4199            }
4200        };
4201
4202        /** rewriter map used for method resolution simplification */
4203        static final Map<Template, DiagnosticRewriter> rewriters = new LinkedHashMap<>();
4204
4205        static {
4206            rewriters.put(argMismatchTemplate, new ArgMismatchRewriter(0));
4207            rewriters.put(inferArgMismatchTemplate, new ArgMismatchRewriter(1));
4208        }
4209
4210        /**
4211         * Main entry point for diagnostic rewriting - given a diagnostic, see if any templates matches it,
4212         * and rewrite it accordingly.
4213         */
4214        static JCDiagnostic rewrite(JCDiagnostic.Factory diags, DiagnosticPosition pos, DiagnosticSource source,
4215                                    DiagnosticType dkind, JCDiagnostic d) {
4216            for (Map.Entry<Template, DiagnosticRewriter> _entry : rewriters.entrySet()) {
4217                if (_entry.getKey().matches(d)) {
4218                    JCDiagnostic simpleDiag =
4219                            _entry.getValue().rewriteDiagnostic(diags, pos, source, dkind, d);
4220                    simpleDiag.setFlag(DiagnosticFlag.COMPRESSED);
4221                    return simpleDiag;
4222                }
4223            }
4224            return null;
4225        }
4226    }
4227
4228    enum MethodResolutionPhase {
4229        BASIC(false, false),
4230        BOX(true, false),
4231        VARARITY(true, true) {
4232            @Override
4233            public Symbol mergeResults(Symbol bestSoFar, Symbol sym) {
4234                //Check invariants (see {@code LookupHelper.shouldStop})
4235                Assert.check(bestSoFar.kind.isOverloadError() && bestSoFar.kind != AMBIGUOUS);
4236                if (!sym.kind.isOverloadError()) {
4237                    //varargs resolution successful
4238                    return sym;
4239                } else {
4240                    //pick best error
4241                    switch (bestSoFar.kind) {
4242                        case WRONG_MTH:
4243                        case WRONG_MTHS:
4244                            //Override previous errors if they were caused by argument mismatch.
4245                            //This generally means preferring current symbols - but we need to pay
4246                            //attention to the fact that the varargs lookup returns 'less' candidates
4247                            //than the previous rounds, and adjust that accordingly.
4248                            switch (sym.kind) {
4249                                case WRONG_MTH:
4250                                    //if the previous round matched more than one method, return that
4251                                    //result instead
4252                                    return bestSoFar.kind == WRONG_MTHS ?
4253                                            bestSoFar : sym;
4254                                case ABSENT_MTH:
4255                                    //do not override erroneous symbol if the arity lookup did not
4256                                    //match any method
4257                                    return bestSoFar;
4258                                case WRONG_MTHS:
4259                                default:
4260                                    //safe to override
4261                                    return sym;
4262                            }
4263                        default:
4264                            //otherwise, return first error
4265                            return bestSoFar;
4266                    }
4267                }
4268            }
4269        };
4270
4271        final boolean isBoxingRequired;
4272        final boolean isVarargsRequired;
4273
4274        MethodResolutionPhase(boolean isBoxingRequired, boolean isVarargsRequired) {
4275           this.isBoxingRequired = isBoxingRequired;
4276           this.isVarargsRequired = isVarargsRequired;
4277        }
4278
4279        public boolean isBoxingRequired() {
4280            return isBoxingRequired;
4281        }
4282
4283        public boolean isVarargsRequired() {
4284            return isVarargsRequired;
4285        }
4286
4287        public Symbol mergeResults(Symbol prev, Symbol sym) {
4288            return sym;
4289        }
4290    }
4291
4292    final List<MethodResolutionPhase> methodResolutionSteps = List.of(BASIC, BOX, VARARITY);
4293
4294    /**
4295     * A resolution context is used to keep track of intermediate results of
4296     * overload resolution, such as list of method that are not applicable
4297     * (used to generate more precise diagnostics) and so on. Resolution contexts
4298     * can be nested - this means that when each overload resolution routine should
4299     * work within the resolution context it created.
4300     */
4301    class MethodResolutionContext {
4302
4303        private List<Candidate> candidates = List.nil();
4304
4305        MethodResolutionPhase step = null;
4306
4307        MethodCheck methodCheck = resolveMethodCheck;
4308
4309        private boolean internalResolution = false;
4310        private DeferredAttr.AttrMode attrMode = DeferredAttr.AttrMode.SPECULATIVE;
4311
4312        void addInapplicableCandidate(Symbol sym, JCDiagnostic details) {
4313            Candidate c = new Candidate(currentResolutionContext.step, sym, details, null);
4314            candidates = candidates.append(c);
4315        }
4316
4317        void addApplicableCandidate(Symbol sym, Type mtype) {
4318            Candidate c = new Candidate(currentResolutionContext.step, sym, null, mtype);
4319            candidates = candidates.append(c);
4320        }
4321
4322        DeferredAttrContext deferredAttrContext(Symbol sym, InferenceContext inferenceContext, ResultInfo pendingResult, Warner warn) {
4323            DeferredAttrContext parent = (pendingResult == null)
4324                ? deferredAttr.emptyDeferredAttrContext
4325                : pendingResult.checkContext.deferredAttrContext();
4326            return deferredAttr.new DeferredAttrContext(attrMode, sym, step,
4327                    inferenceContext, parent, warn);
4328        }
4329
4330        /**
4331         * This class represents an overload resolution candidate. There are two
4332         * kinds of candidates: applicable methods and inapplicable methods;
4333         * applicable methods have a pointer to the instantiated method type,
4334         * while inapplicable candidates contain further details about the
4335         * reason why the method has been considered inapplicable.
4336         */
4337        @SuppressWarnings("overrides")
4338        class Candidate {
4339
4340            final MethodResolutionPhase step;
4341            final Symbol sym;
4342            final JCDiagnostic details;
4343            final Type mtype;
4344
4345            private Candidate(MethodResolutionPhase step, Symbol sym, JCDiagnostic details, Type mtype) {
4346                this.step = step;
4347                this.sym = sym;
4348                this.details = details;
4349                this.mtype = mtype;
4350            }
4351
4352            @Override
4353            public boolean equals(Object o) {
4354                if (o instanceof Candidate) {
4355                    Symbol s1 = this.sym;
4356                    Symbol s2 = ((Candidate)o).sym;
4357                    if  ((s1 != s2 &&
4358                            (s1.overrides(s2, s1.owner.type.tsym, types, false) ||
4359                            (s2.overrides(s1, s2.owner.type.tsym, types, false)))) ||
4360                            ((s1.isConstructor() || s2.isConstructor()) && s1.owner != s2.owner))
4361                        return true;
4362                }
4363                return false;
4364            }
4365
4366            boolean isApplicable() {
4367                return mtype != null;
4368            }
4369        }
4370
4371        DeferredAttr.AttrMode attrMode() {
4372            return attrMode;
4373        }
4374
4375        boolean internal() {
4376            return internalResolution;
4377        }
4378    }
4379
4380    MethodResolutionContext currentResolutionContext = null;
4381}
4382