Infer.java revision 4193:c32ca555da54
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.tools.javac.code.Type.UndetVar.UndetVarListener;
29import com.sun.tools.javac.code.Types.TypeMapping;
30import com.sun.tools.javac.comp.Attr.CheckMode;
31import com.sun.tools.javac.tree.JCTree;
32import com.sun.tools.javac.tree.JCTree.JCTypeCast;
33import com.sun.tools.javac.tree.TreeInfo;
34import com.sun.tools.javac.util.*;
35import com.sun.tools.javac.util.GraphUtils.DottableNode;
36import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
37import com.sun.tools.javac.util.List;
38import com.sun.tools.javac.code.*;
39import com.sun.tools.javac.code.Type.*;
40import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
41import com.sun.tools.javac.code.Symbol.*;
42import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
43import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
44import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph;
45import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph.Node;
46import com.sun.tools.javac.comp.Resolve.InapplicableMethodException;
47import com.sun.tools.javac.comp.Resolve.VerboseResolutionMode;
48
49import java.io.IOException;
50import java.io.Writer;
51import java.nio.file.Files;
52import java.nio.file.Path;
53import java.nio.file.Paths;
54import java.util.ArrayList;
55import java.util.Collection;
56import java.util.Collections;
57import java.util.EnumSet;
58import java.util.HashMap;
59import java.util.HashSet;
60import java.util.Map;
61import java.util.Optional;
62import java.util.Properties;
63import java.util.Set;
64import java.util.function.BiFunction;
65import java.util.function.BiPredicate;
66
67import static com.sun.tools.javac.code.TypeTag.*;
68
69/** Helper class for type parameter inference, used by the attribution phase.
70 *
71 *  <p><b>This is NOT part of any supported API.
72 *  If you write code that depends on this, you do so at your own risk.
73 *  This code and its internal interfaces are subject to change or
74 *  deletion without notice.</b>
75 */
76public class Infer {
77    protected static final Context.Key<Infer> inferKey = new Context.Key<>();
78
79    Resolve rs;
80    Check chk;
81    Symtab syms;
82    Types types;
83    JCDiagnostic.Factory diags;
84    Log log;
85
86    /** should the graph solver be used? */
87    boolean allowGraphInference;
88
89    /**
90     * folder in which the inference dependency graphs should be written.
91     */
92    private final String dependenciesFolder;
93
94    /**
95     * List of graphs awaiting to be dumped to a file.
96     */
97    private List<String> pendingGraphs;
98
99    public static Infer instance(Context context) {
100        Infer instance = context.get(inferKey);
101        if (instance == null)
102            instance = new Infer(context);
103        return instance;
104    }
105
106    protected Infer(Context context) {
107        context.put(inferKey, this);
108
109        rs = Resolve.instance(context);
110        chk = Check.instance(context);
111        syms = Symtab.instance(context);
112        types = Types.instance(context);
113        diags = JCDiagnostic.Factory.instance(context);
114        log = Log.instance(context);
115        inferenceException = new InferenceException(diags);
116        Options options = Options.instance(context);
117        allowGraphInference = Source.instance(context).allowGraphInference()
118                && options.isUnset("useLegacyInference");
119        dependenciesFolder = options.get("debug.dumpInferenceGraphsTo");
120        pendingGraphs = List.nil();
121
122        emptyContext = new InferenceContext(this, List.nil());
123    }
124
125    /** A value for prototypes that admit any type, including polymorphic ones. */
126    public static final Type anyPoly = new JCNoType();
127
128   /**
129    * This exception class is design to store a list of diagnostics corresponding
130    * to inference errors that can arise during a method applicability check.
131    */
132    public static class InferenceException extends InapplicableMethodException {
133        private static final long serialVersionUID = 0;
134
135        List<JCDiagnostic> messages = List.nil();
136
137        InferenceException(JCDiagnostic.Factory diags) {
138            super(diags);
139        }
140
141        @Override
142        InapplicableMethodException setMessage() {
143            //no message to set
144            return this;
145        }
146
147        @Override
148        InapplicableMethodException setMessage(JCDiagnostic diag) {
149            messages = messages.append(diag);
150            return this;
151        }
152
153        @Override
154        public JCDiagnostic getDiagnostic() {
155            return messages.head;
156        }
157
158        void clear() {
159            messages = List.nil();
160        }
161    }
162
163    protected final InferenceException inferenceException;
164
165    // <editor-fold defaultstate="collapsed" desc="Inference routines">
166    /**
167     * Main inference entry point - instantiate a generic method type
168     * using given argument types and (possibly) an expected target-type.
169     */
170    Type instantiateMethod( Env<AttrContext> env,
171                            List<Type> tvars,
172                            MethodType mt,
173                            Attr.ResultInfo resultInfo,
174                            MethodSymbol msym,
175                            List<Type> argtypes,
176                            boolean allowBoxing,
177                            boolean useVarargs,
178                            Resolve.MethodResolutionContext resolveContext,
179                            Warner warn) throws InferenceException {
180        //-System.err.println("instantiateMethod(" + tvars + ", " + mt + ", " + argtypes + ")"); //DEBUG
181        final InferenceContext inferenceContext = new InferenceContext(this, tvars);  //B0
182        inferenceException.clear();
183        try {
184            DeferredAttr.DeferredAttrContext deferredAttrContext =
185                        resolveContext.deferredAttrContext(msym, inferenceContext, resultInfo, warn);
186
187            resolveContext.methodCheck.argumentsAcceptable(env, deferredAttrContext,   //B2
188                    argtypes, mt.getParameterTypes(), warn);
189
190            if (allowGraphInference && resultInfo != null && resultInfo.pt == anyPoly) {
191                doIncorporation(inferenceContext, warn);
192                //we are inside method attribution - just return a partially inferred type
193                return new PartiallyInferredMethodType(mt, inferenceContext, env, warn);
194            } else if (allowGraphInference && resultInfo != null) {
195
196                //inject return constraints earlier
197                doIncorporation(inferenceContext, warn); //propagation
198
199                if (!warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
200                    boolean shouldPropagate = shouldPropagate(mt.getReturnType(), resultInfo, inferenceContext);
201
202                    InferenceContext minContext = shouldPropagate ?
203                            inferenceContext.min(roots(mt, deferredAttrContext), true, warn) :
204                            inferenceContext;
205
206                    Type newRestype = generateReturnConstraints(env.tree, resultInfo,  //B3
207                            mt, minContext);
208                    mt = (MethodType)types.createMethodTypeWithReturn(mt, newRestype);
209
210                    //propagate outwards if needed
211                    if (shouldPropagate) {
212                        //propagate inference context outwards and exit
213                        minContext.dupTo(resultInfo.checkContext.inferenceContext());
214                        deferredAttrContext.complete();
215                        return mt;
216                    }
217                }
218            }
219
220            deferredAttrContext.complete();
221
222            // minimize as yet undetermined type variables
223            if (allowGraphInference) {
224                inferenceContext.solve(warn);
225            } else {
226                inferenceContext.solveLegacy(true, warn, LegacyInferenceSteps.EQ_LOWER.steps); //minimizeInst
227            }
228
229            mt = (MethodType)inferenceContext.asInstType(mt);
230
231            if (!allowGraphInference &&
232                    inferenceContext.restvars().nonEmpty() &&
233                    resultInfo != null &&
234                    !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
235                generateReturnConstraints(env.tree, resultInfo, mt, inferenceContext);
236                inferenceContext.solveLegacy(false, warn, LegacyInferenceSteps.EQ_UPPER.steps); //maximizeInst
237                mt = (MethodType)inferenceContext.asInstType(mt);
238            }
239
240            if (resultInfo != null && rs.verboseResolutionMode.contains(VerboseResolutionMode.DEFERRED_INST)) {
241                log.note(env.tree.pos, "deferred.method.inst", msym, mt, resultInfo.pt);
242            }
243
244            // return instantiated version of method type
245            return mt;
246        } finally {
247            if (resultInfo != null || !allowGraphInference) {
248                inferenceContext.notifyChange();
249            } else {
250                inferenceContext.notifyChange(inferenceContext.boundedVars());
251            }
252            if (resultInfo == null) {
253                /* if the is no result info then we can clear the capture types
254                 * cache without affecting any result info check
255                 */
256                inferenceContext.captureTypeCache.clear();
257            }
258            dumpGraphsIfNeeded(env.tree, msym, resolveContext);
259        }
260    }
261    //where
262        private boolean shouldPropagate(Type restype, Attr.ResultInfo target, InferenceContext inferenceContext) {
263            return target.checkContext.inferenceContext() != emptyContext && //enclosing context is a generic method
264                        inferenceContext.free(restype) && //return type contains inference vars
265                        (!inferenceContext.inferencevars.contains(restype) || //no eager instantiation is required (as per 18.5.2)
266                                !needsEagerInstantiation((UndetVar)inferenceContext.asUndetVar(restype), target.pt, inferenceContext));
267        }
268
269        private List<Type> roots(MethodType mt, DeferredAttrContext deferredAttrContext) {
270            ListBuffer<Type> roots = new ListBuffer<>();
271            roots.add(mt.getReturnType());
272            if (deferredAttrContext != null && deferredAttrContext.mode == AttrMode.CHECK) {
273                roots.addAll(mt.getThrownTypes());
274                for (DeferredAttr.DeferredAttrNode n : deferredAttrContext.deferredAttrNodes) {
275                    roots.addAll(n.deferredStuckPolicy.stuckVars());
276                    roots.addAll(n.deferredStuckPolicy.depVars());
277                }
278            }
279            return roots.toList();
280        }
281
282    /**
283     * A partially infered method/constructor type; such a type can be checked multiple times
284     * against different targets.
285     */
286    public class PartiallyInferredMethodType extends MethodType {
287        public PartiallyInferredMethodType(MethodType mtype, InferenceContext inferenceContext, Env<AttrContext> env, Warner warn) {
288            super(mtype.getParameterTypes(), mtype.getReturnType(), mtype.getThrownTypes(), mtype.tsym);
289            this.inferenceContext = inferenceContext;
290            this.env = env;
291            this.warn = warn;
292        }
293
294        /** The inference context. */
295        final InferenceContext inferenceContext;
296
297        /** The attribution environment. */
298        Env<AttrContext> env;
299
300        /** The warner. */
301        final Warner warn;
302
303        @Override
304        public boolean isPartial() {
305            return true;
306        }
307
308        /**
309         * Checks this type against a target; this means generating return type constraints, solve
310         * and then roll back the results (to avoid poolluting the context).
311         */
312        Type check(Attr.ResultInfo resultInfo) {
313            Warner noWarnings = new Warner(null);
314            inferenceException.clear();
315            List<Type> saved_undet = null;
316            try {
317                /** we need to save the inference context before generating target type constraints.
318                 *  This constraints may pollute the inference context and make it useless in case we
319                 *  need to use it several times: with several targets.
320                 */
321                saved_undet = inferenceContext.save();
322                boolean unchecked = warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED);
323                if (!unchecked) {
324                    boolean shouldPropagate = shouldPropagate(getReturnType(), resultInfo, inferenceContext);
325
326                    InferenceContext minContext = shouldPropagate ?
327                            inferenceContext.min(roots(asMethodType(), null), false, warn) :
328                            inferenceContext;
329
330                    MethodType other = (MethodType)minContext.update(asMethodType());
331                    Type newRestype = generateReturnConstraints(env.tree, resultInfo,  //B3
332                            other, minContext);
333
334                    if (shouldPropagate) {
335                        //propagate inference context outwards and exit
336                        minContext.dupTo(resultInfo.checkContext.inferenceContext(),
337                                resultInfo.checkContext.deferredAttrContext().insideOverloadPhase());
338                        return newRestype;
339                    }
340                }
341                inferenceContext.solve(noWarnings);
342                Type ret = inferenceContext.asInstType(this).getReturnType();
343                if (unchecked) {
344                    //inline logic from Attr.checkMethod - if unchecked conversion was required, erase
345                    //return type _after_ resolution, and check against target
346                    ret = types.erasure(ret);
347                }
348                return resultInfo.check(env.tree, ret);
349            } catch (InferenceException ex) {
350                resultInfo.checkContext.report(null, ex.getDiagnostic());
351                Assert.error(); //cannot get here (the above should throw)
352                return null;
353            } finally {
354                if (saved_undet != null) {
355                    inferenceContext.rollback(saved_undet);
356                }
357            }
358        }
359    }
360
361    private void dumpGraphsIfNeeded(DiagnosticPosition pos, Symbol msym, Resolve.MethodResolutionContext rsContext) {
362        int round = 0;
363        try {
364            for (String graph : pendingGraphs.reverse()) {
365                Assert.checkNonNull(dependenciesFolder);
366                Name name = msym.name == msym.name.table.names.init ?
367                        msym.owner.name : msym.name;
368                String filename = String.format("%s@%s[mode=%s,step=%s]_%d.dot",
369                        name,
370                        pos.getStartPosition(),
371                        rsContext.attrMode(),
372                        rsContext.step,
373                        round);
374                Path dotFile = Paths.get(dependenciesFolder, filename);
375                try (Writer w = Files.newBufferedWriter(dotFile)) {
376                    w.append(graph);
377                }
378                round++;
379            }
380        } catch (IOException ex) {
381            Assert.error("Error occurred when dumping inference graph: " + ex.getMessage());
382        } finally {
383            pendingGraphs = List.nil();
384        }
385    }
386
387    /**
388     * Generate constraints from the generic method's return type. If the method
389     * call occurs in a context where a type T is expected, use the expected
390     * type to derive more constraints on the generic method inference variables.
391     */
392    Type generateReturnConstraints(JCTree tree, Attr.ResultInfo resultInfo,
393            MethodType mt, InferenceContext inferenceContext) {
394        InferenceContext rsInfoInfContext = resultInfo.checkContext.inferenceContext();
395        Type from = mt.getReturnType();
396        if (mt.getReturnType().containsAny(inferenceContext.inferencevars) &&
397                rsInfoInfContext != emptyContext) {
398            from = types.capture(from);
399            //add synthetic captured ivars
400            for (Type t : from.getTypeArguments()) {
401                if (t.hasTag(TYPEVAR) && ((TypeVar)t).isCaptured()) {
402                    inferenceContext.addVar((TypeVar)t);
403                }
404            }
405        }
406        Type qtype = inferenceContext.asUndetVar(from);
407        Type to = resultInfo.pt;
408
409        if (qtype.hasTag(VOID)) {
410            to = syms.voidType;
411        } else if (to.hasTag(NONE)) {
412            to = from.isPrimitive() ? from : syms.objectType;
413        } else if (qtype.hasTag(UNDETVAR)) {
414            if (needsEagerInstantiation((UndetVar)qtype, to, inferenceContext) &&
415                    (allowGraphInference || !to.isPrimitive())) {
416                to = generateReferenceToTargetConstraint(tree, (UndetVar)qtype, to, resultInfo, inferenceContext);
417            } else if (to.isPrimitive()) {
418                to = types.boxedClass(to).type;
419            }
420        } else if (rsInfoInfContext.free(resultInfo.pt)) {
421            //propagation - cache captured vars
422            qtype = inferenceContext.asUndetVar(rsInfoInfContext.cachedCapture(tree, from, !resultInfo.checkMode.updateTreeType()));
423        }
424        Assert.check(allowGraphInference || !rsInfoInfContext.free(to),
425                "legacy inference engine cannot handle constraints on both sides of a subtyping assertion");
426        //we need to skip capture?
427        Warner retWarn = new Warner();
428        if (!resultInfo.checkContext.compatible(qtype, rsInfoInfContext.asUndetVar(to), retWarn) ||
429                //unchecked conversion is not allowed in source 7 mode
430                (!allowGraphInference && retWarn.hasLint(Lint.LintCategory.UNCHECKED))) {
431            throw inferenceException
432                    .setMessage("infer.no.conforming.instance.exists",
433                    inferenceContext.restvars(), mt.getReturnType(), to);
434        }
435        return from;
436    }
437
438    private boolean needsEagerInstantiation(UndetVar from, Type to, InferenceContext inferenceContext) {
439        if (to.isPrimitive()) {
440            /* T is a primitive type, and one of the primitive wrapper classes is an instantiation,
441             * upper bound, or lower bound for alpha in B2.
442             */
443            for (Type t : from.getBounds(InferenceBound.values())) {
444                Type boundAsPrimitive = types.unboxedType(t);
445                if (boundAsPrimitive == null || boundAsPrimitive.hasTag(NONE)) {
446                    continue;
447                }
448                return true;
449            }
450            return false;
451        }
452
453        Type captureOfTo = types.capture(to);
454        /* T is a reference type, but is not a wildcard-parameterized type, and either
455         */
456        if (captureOfTo == to) { //not a wildcard parameterized type
457            /* i) B2 contains a bound of one of the forms alpha = S or S <: alpha,
458             *      where S is a wildcard-parameterized type, or
459             */
460            for (Type t : from.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
461                Type captureOfBound = types.capture(t);
462                if (captureOfBound != t) {
463                    return true;
464                }
465            }
466
467            /* ii) B2 contains two bounds of the forms S1 <: alpha and S2 <: alpha,
468             * where S1 and S2 have supertypes that are two different
469             * parameterizations of the same generic class or interface.
470             */
471            for (Type aLowerBound : from.getBounds(InferenceBound.LOWER)) {
472                for (Type anotherLowerBound : from.getBounds(InferenceBound.LOWER)) {
473                    if (aLowerBound != anotherLowerBound &&
474                            !inferenceContext.free(aLowerBound) &&
475                            !inferenceContext.free(anotherLowerBound) &&
476                            commonSuperWithDiffParameterization(aLowerBound, anotherLowerBound)) {
477                        return true;
478                    }
479                }
480            }
481        }
482
483        /* T is a parameterization of a generic class or interface, G,
484         * and B2 contains a bound of one of the forms alpha = S or S <: alpha,
485         * where there exists no type of the form G<...> that is a
486         * supertype of S, but the raw type G is a supertype of S
487         */
488        if (to.isParameterized()) {
489            for (Type t : from.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
490                Type sup = types.asSuper(t, to.tsym);
491                if (sup != null && sup.isRaw()) {
492                    return true;
493                }
494            }
495        }
496        return false;
497    }
498
499    private boolean commonSuperWithDiffParameterization(Type t, Type s) {
500        for (Pair<Type, Type> supers : getParameterizedSupers(t, s)) {
501            if (!types.isSameType(supers.fst, supers.snd)) return true;
502        }
503        return false;
504    }
505
506    private Type generateReferenceToTargetConstraint(JCTree tree, UndetVar from,
507            Type to, Attr.ResultInfo resultInfo,
508            InferenceContext inferenceContext) {
509        inferenceContext.solve(List.of(from.qtype), new Warner());
510        inferenceContext.notifyChange();
511        Type capturedType = resultInfo.checkContext.inferenceContext()
512                .cachedCapture(tree, from.getInst(), !resultInfo.checkMode.updateTreeType());
513        if (types.isConvertible(capturedType,
514                resultInfo.checkContext.inferenceContext().asUndetVar(to))) {
515            //effectively skip additional return-type constraint generation (compatibility)
516            return syms.objectType;
517        }
518        return to;
519    }
520
521    /**
522      * Infer cyclic inference variables as described in 15.12.2.8.
523      */
524    void instantiateAsUninferredVars(List<Type> vars, InferenceContext inferenceContext) {
525        ListBuffer<Type> todo = new ListBuffer<>();
526        //step 1 - create fresh tvars
527        for (Type t : vars) {
528            UndetVar uv = (UndetVar)inferenceContext.asUndetVar(t);
529            List<Type> upperBounds = uv.getBounds(InferenceBound.UPPER);
530            if (Type.containsAny(upperBounds, vars)) {
531                TypeSymbol fresh_tvar = new TypeVariableSymbol(Flags.SYNTHETIC, uv.qtype.tsym.name, null, uv.qtype.tsym.owner);
532                fresh_tvar.type = new TypeVar(fresh_tvar, types.makeIntersectionType(uv.getBounds(InferenceBound.UPPER)), null);
533                todo.append(uv);
534                uv.setInst(fresh_tvar.type);
535            } else if (upperBounds.nonEmpty()) {
536                uv.setInst(types.glb(upperBounds));
537            } else {
538                uv.setInst(syms.objectType);
539            }
540        }
541        //step 2 - replace fresh tvars in their bounds
542        List<Type> formals = vars;
543        for (Type t : todo) {
544            UndetVar uv = (UndetVar)t;
545            TypeVar ct = (TypeVar)uv.getInst();
546            ct.bound = types.glb(inferenceContext.asInstTypes(types.getBounds(ct)));
547            if (ct.bound.isErroneous()) {
548                //report inference error if glb fails
549                reportBoundError(uv, InferenceBound.UPPER);
550            }
551            formals = formals.tail;
552        }
553    }
554
555    /**
556     * Compute a synthetic method type corresponding to the requested polymorphic
557     * method signature. The target return type is computed from the immediately
558     * enclosing scope surrounding the polymorphic-signature call.
559     */
560    Type instantiatePolymorphicSignatureInstance(Env<AttrContext> env,
561                                            MethodSymbol spMethod,  // sig. poly. method or null if none
562                                            Resolve.MethodResolutionContext resolveContext,
563                                            List<Type> argtypes) {
564        final Type restype;
565
566        if (spMethod == null || types.isSameType(spMethod.getReturnType(), syms.objectType, true)) {
567            // The return type of the polymorphic signature is polymorphic,
568            // and is computed from the enclosing tree E, as follows:
569            // if E is a cast, then use the target type of the cast expression
570            // as a return type; if E is an expression statement, the return
571            // type is 'void'; otherwise
572            // the return type is simply 'Object'. A correctness check ensures
573            // that env.next refers to the lexically enclosing environment in
574            // which the polymorphic signature call environment is nested.
575
576            switch (env.next.tree.getTag()) {
577                case TYPECAST:
578                    JCTypeCast castTree = (JCTypeCast)env.next.tree;
579                    restype = (TreeInfo.skipParens(castTree.expr) == env.tree) ?
580                              castTree.clazz.type :
581                              syms.objectType;
582                    break;
583                case EXEC:
584                    JCTree.JCExpressionStatement execTree =
585                            (JCTree.JCExpressionStatement)env.next.tree;
586                    restype = (TreeInfo.skipParens(execTree.expr) == env.tree) ?
587                              syms.voidType :
588                              syms.objectType;
589                    break;
590                default:
591                    restype = syms.objectType;
592            }
593        } else {
594            // The return type of the polymorphic signature is fixed
595            // (not polymorphic)
596            restype = spMethod.getReturnType();
597        }
598
599        List<Type> paramtypes = argtypes.map(new ImplicitArgType(spMethod, resolveContext.step));
600        List<Type> exType = spMethod != null ?
601            spMethod.getThrownTypes() :
602            List.of(syms.throwableType); // make it throw all exceptions
603
604        MethodType mtype = new MethodType(paramtypes,
605                                          restype,
606                                          exType,
607                                          syms.methodClass);
608        return mtype;
609    }
610    //where
611        class ImplicitArgType extends DeferredAttr.DeferredTypeMap {
612
613            public ImplicitArgType(Symbol msym, Resolve.MethodResolutionPhase phase) {
614                (rs.deferredAttr).super(AttrMode.SPECULATIVE, msym, phase);
615            }
616
617            @Override
618            public Type visitClassType(ClassType t, Void aVoid) {
619                return types.erasure(t);
620            }
621
622            @Override
623            public Type visitType(Type t, Void _unused) {
624                if (t.hasTag(DEFERRED)) {
625                    return visit(super.visitType(t, null));
626                } else if (t.hasTag(BOT))
627                    // nulls type as the marker type Null (which has no instances)
628                    // infer as java.lang.Void for now
629                    t = types.boxedClass(syms.voidType).type;
630                return t;
631            }
632        }
633
634    TypeMapping<Void> fromTypeVarFun = new StructuralTypeMapping<Void>() {
635        @Override
636        public Type visitTypeVar(TypeVar tv, Void aVoid) {
637            UndetVar uv = new UndetVar(tv, incorporationEngine(), types);
638            if ((tv.tsym.flags() & Flags.THROWS) != 0) {
639                uv.setThrow();
640            }
641            return uv;
642        }
643    };
644
645    /**
646      * This method is used to infer a suitable target SAM in case the original
647      * SAM type contains one or more wildcards. An inference process is applied
648      * so that wildcard bounds, as well as explicit lambda/method ref parameters
649      * (where applicable) are used to constraint the solution.
650      */
651    public Type instantiateFunctionalInterface(DiagnosticPosition pos, Type funcInterface,
652            List<Type> paramTypes, Check.CheckContext checkContext) {
653        if (types.capture(funcInterface) == funcInterface) {
654            //if capture doesn't change the type then return the target unchanged
655            //(this means the target contains no wildcards!)
656            return funcInterface;
657        } else {
658            Type formalInterface = funcInterface.tsym.type;
659            InferenceContext funcInterfaceContext =
660                    new InferenceContext(this, funcInterface.tsym.type.getTypeArguments());
661
662            Assert.check(paramTypes != null);
663            //get constraints from explicit params (this is done by
664            //checking that explicit param types are equal to the ones
665            //in the functional interface descriptors)
666            List<Type> descParameterTypes = types.findDescriptorType(formalInterface).getParameterTypes();
667            if (descParameterTypes.size() != paramTypes.size()) {
668                checkContext.report(pos, diags.fragment("incompatible.arg.types.in.lambda"));
669                return types.createErrorType(funcInterface);
670            }
671            for (Type p : descParameterTypes) {
672                if (!types.isSameType(funcInterfaceContext.asUndetVar(p), paramTypes.head)) {
673                    checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
674                    return types.createErrorType(funcInterface);
675                }
676                paramTypes = paramTypes.tail;
677            }
678
679            List<Type> actualTypeargs = funcInterface.getTypeArguments();
680            for (Type t : funcInterfaceContext.undetvars) {
681                UndetVar uv = (UndetVar)t;
682                Optional<Type> inst = uv.getBounds(InferenceBound.EQ).stream()
683                        .filter(b -> !b.containsAny(formalInterface.getTypeArguments())).findFirst();
684                uv.setInst(inst.orElse(actualTypeargs.head));
685                actualTypeargs = actualTypeargs.tail;
686            }
687
688            Type owntype = funcInterfaceContext.asInstType(formalInterface);
689            if (!chk.checkValidGenericType(owntype)) {
690                //if the inferred functional interface type is not well-formed,
691                //or if it's not a subtype of the original target, issue an error
692                checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
693            }
694            //propagate constraints as per JLS 18.2.1
695            checkContext.compatible(owntype, funcInterface, types.noWarnings);
696            return owntype;
697        }
698    }
699    // </editor-fold>
700
701    // <editor-fold defaultstate="collapsed" desc="Incorporation">
702
703    /**
704     * This class is the root of all incorporation actions.
705     */
706    public abstract class IncorporationAction {
707        UndetVar uv;
708        Type t;
709
710        IncorporationAction(UndetVar uv, Type t) {
711            this.uv = uv;
712            this.t = t;
713        }
714
715        public abstract IncorporationAction dup(UndetVar that);
716
717        /**
718         * Incorporation action entry-point. Subclasses should define the logic associated with
719         * this incorporation action.
720         */
721        abstract void apply(InferenceContext ic, Warner warn);
722
723        /**
724         * Helper function: perform subtyping through incorporation cache.
725         */
726        boolean isSubtype(Type s, Type t, Warner warn) {
727            return doIncorporationOp(IncorporationBinaryOpKind.IS_SUBTYPE, s, t, warn);
728        }
729
730        /**
731         * Helper function: perform type-equivalence through incorporation cache.
732         */
733        boolean isSameType(Type s, Type t) {
734            return doIncorporationOp(IncorporationBinaryOpKind.IS_SAME_TYPE, s, t, null);
735        }
736
737        @Override
738        public String toString() {
739            return String.format("%s[undet=%s,t=%s]", getClass().getSimpleName(), uv.qtype, t);
740        }
741    }
742
743    /**
744     * Bound-check incorporation action. A newly added bound is checked against existing bounds,
745     * to verify its compatibility; each bound is checked using either subtyping or type equivalence.
746     */
747    class CheckBounds extends IncorporationAction {
748
749        InferenceBound from;
750        BiFunction<InferenceContext, Type, Type> typeFunc;
751        BiPredicate<InferenceContext, Type> optFilter;
752
753        CheckBounds(UndetVar uv, Type t, InferenceBound from) {
754            this(uv, t, InferenceContext::asUndetVar, null, from);
755        }
756
757        CheckBounds(UndetVar uv, Type t, BiFunction<InferenceContext, Type, Type> typeFunc,
758                    BiPredicate<InferenceContext, Type> typeFilter, InferenceBound from) {
759            super(uv, t);
760            this.from = from;
761            this.typeFunc = typeFunc;
762            this.optFilter = typeFilter;
763        }
764
765        @Override
766        public IncorporationAction dup(UndetVar that) {
767            return new CheckBounds(that, t, typeFunc, optFilter, from);
768        }
769
770        @Override
771        void apply(InferenceContext inferenceContext, Warner warn) {
772            t = typeFunc.apply(inferenceContext, t);
773            if (optFilter != null && optFilter.test(inferenceContext, t)) return;
774            for (InferenceBound to : boundsToCheck()) {
775                for (Type b : uv.getBounds(to)) {
776                    b = typeFunc.apply(inferenceContext, b);
777                    if (optFilter != null && optFilter.test(inferenceContext, b)) continue;
778                    boolean success = checkBound(t, b, from, to, warn);
779                    if (!success) {
780                        report(from, to);
781                    }
782                }
783            }
784        }
785
786        /**
787         * The list of bound kinds to be checked.
788         */
789        EnumSet<InferenceBound> boundsToCheck() {
790            return (from == InferenceBound.EQ) ?
791                            EnumSet.allOf(InferenceBound.class) :
792                            EnumSet.complementOf(EnumSet.of(from));
793        }
794
795        /**
796         * Is source type 's' compatible with target type 't' given source and target bound kinds?
797         */
798        boolean checkBound(Type s, Type t, InferenceBound ib_s, InferenceBound ib_t, Warner warn) {
799            if (ib_s.lessThan(ib_t)) {
800                return isSubtype(s, t, warn);
801            } else if (ib_t.lessThan(ib_s)) {
802                return isSubtype(t, s, warn);
803            } else {
804                return isSameType(s, t);
805            }
806        }
807
808        /**
809         * Report a bound check error.
810         */
811        void report(InferenceBound from, InferenceBound to) {
812            //this is a workaround to preserve compatibility with existing messages
813            if (from == to) {
814                reportBoundError(uv, from);
815            } else if (from == InferenceBound.LOWER || to == InferenceBound.EQ) {
816                reportBoundError(uv, to, from);
817            } else {
818                reportBoundError(uv, from, to);
819            }
820        }
821
822        @Override
823        public String toString() {
824            return String.format("%s[undet=%s,t=%s,bound=%s]", getClass().getSimpleName(), uv.qtype, t, from);
825        }
826    }
827
828    /**
829     * Custom check executed by the legacy incorporation engine. Newly added bounds are checked
830     * against existing eq bounds.
831     */
832    class EqCheckLegacy extends CheckBounds {
833        EqCheckLegacy(UndetVar uv, Type t, InferenceBound from) {
834            super(uv, t, InferenceContext::asInstType, InferenceContext::free, from);
835        }
836
837        @Override
838        public IncorporationAction dup(UndetVar that) {
839            return new EqCheckLegacy(that, t, from);
840        }
841
842        @Override
843        EnumSet<InferenceBound> boundsToCheck() {
844            return (from == InferenceBound.EQ) ?
845                            EnumSet.allOf(InferenceBound.class) :
846                            EnumSet.of(InferenceBound.EQ);
847        }
848    }
849
850    /**
851     * Check that the inferred type conforms to all bounds.
852     */
853    class CheckInst extends CheckBounds {
854
855        EnumSet<InferenceBound> to;
856
857        CheckInst(UndetVar uv, InferenceBound ib, InferenceBound... rest) {
858            this(uv, EnumSet.of(ib, rest));
859        }
860
861        CheckInst(UndetVar uv, EnumSet<InferenceBound> to) {
862            super(uv, uv.getInst(), InferenceBound.EQ);
863            this.to = to;
864        }
865
866        @Override
867        public IncorporationAction dup(UndetVar that) {
868            return new CheckInst(that, to);
869        }
870
871        @Override
872        EnumSet<InferenceBound> boundsToCheck() {
873            return to;
874        }
875
876        @Override
877        void report(InferenceBound from, InferenceBound to) {
878            reportInstError(uv, to);
879        }
880    }
881
882    /**
883     * Replace undetvars in bounds and check that the inferred type conforms to all bounds.
884     */
885    class SubstBounds extends CheckInst {
886        SubstBounds(UndetVar uv) {
887            super(uv, InferenceBound.LOWER, InferenceBound.EQ, InferenceBound.UPPER);
888        }
889
890        @Override
891        public IncorporationAction dup(UndetVar that) {
892            return new SubstBounds(that);
893        }
894
895        @Override
896        void apply(InferenceContext inferenceContext, Warner warn) {
897            for (Type undet : inferenceContext.undetvars) {
898                //we could filter out variables not mentioning uv2...
899                UndetVar uv2 = (UndetVar)undet;
900                uv2.substBounds(List.of(uv.qtype), List.of(uv.getInst()), types);
901                checkCompatibleUpperBounds(uv2, inferenceContext);
902            }
903            super.apply(inferenceContext, warn);
904        }
905
906        /**
907         * Make sure that the upper bounds we got so far lead to a solvable inference
908         * variable by making sure that a glb exists.
909         */
910        void checkCompatibleUpperBounds(UndetVar uv, InferenceContext inferenceContext) {
911            List<Type> hibounds =
912                    Type.filter(uv.getBounds(InferenceBound.UPPER), new BoundFilter(inferenceContext));
913            final Type hb;
914            if (hibounds.isEmpty())
915                hb = syms.objectType;
916            else if (hibounds.tail.isEmpty())
917                hb = hibounds.head;
918            else
919                hb = types.glb(hibounds);
920            if (hb == null || hb.isErroneous())
921                reportBoundError(uv, InferenceBound.UPPER);
922        }
923    }
924
925    /**
926     * Perform pairwise comparison between common generic supertypes of two upper bounds.
927     */
928    class CheckUpperBounds extends IncorporationAction {
929
930        public CheckUpperBounds(UndetVar uv, Type t) {
931            super(uv, t);
932        }
933
934        @Override
935        public IncorporationAction dup(UndetVar that) {
936            return new CheckUpperBounds(that, t);
937        }
938
939        @Override
940        void apply(InferenceContext inferenceContext, Warner warn) {
941            List<Type> boundList = uv.getBounds(InferenceBound.UPPER).stream()
942                    .collect(types.closureCollector(true, types::isSameType));
943            for (Type b2 : boundList) {
944                if (t == b2) continue;
945                    /* This wildcard check is temporary workaround. This code may need to be
946                     * revisited once spec bug JDK-7034922 is fixed.
947                     */
948                if (t != b2 && !t.hasTag(WILDCARD) && !b2.hasTag(WILDCARD)) {
949                    for (Pair<Type, Type> commonSupers : getParameterizedSupers(t, b2)) {
950                        List<Type> allParamsSuperBound1 = commonSupers.fst.allparams();
951                        List<Type> allParamsSuperBound2 = commonSupers.snd.allparams();
952                        while (allParamsSuperBound1.nonEmpty() && allParamsSuperBound2.nonEmpty()) {
953                            //traverse the list of all params comparing them
954                            if (!allParamsSuperBound1.head.hasTag(WILDCARD) &&
955                                    !allParamsSuperBound2.head.hasTag(WILDCARD)) {
956                                if (!isSameType(inferenceContext.asUndetVar(allParamsSuperBound1.head),
957                                        inferenceContext.asUndetVar(allParamsSuperBound2.head))) {
958                                    reportBoundError(uv, InferenceBound.UPPER);
959                                }
960                            }
961                            allParamsSuperBound1 = allParamsSuperBound1.tail;
962                            allParamsSuperBound2 = allParamsSuperBound2.tail;
963                        }
964                        Assert.check(allParamsSuperBound1.isEmpty() && allParamsSuperBound2.isEmpty());
965                    }
966                }
967            }
968        }
969    }
970
971    /**
972     * Perform propagation of bounds. Given a constraint of the kind {@code alpha <: T}, three
973     * kind of propagation occur:
974     *
975     * <li>T is copied into all matching bounds (i.e. lower/eq bounds) B of alpha such that B=beta (forward propagation)</li>
976     * <li>if T=beta, matching bounds (i.e. upper bounds) of beta are copied into alpha (backwards propagation)</li>
977     * <li>if T=beta, sets a symmetric bound on beta (i.e. beta :> alpha) (symmetric propagation) </li>
978     */
979    class PropagateBounds extends IncorporationAction {
980
981        InferenceBound ib;
982
983        public PropagateBounds(UndetVar uv, Type t, InferenceBound ib) {
984            super(uv, t);
985            this.ib = ib;
986        }
987
988        @Override
989        public IncorporationAction dup(UndetVar that) {
990            return new PropagateBounds(that, t, ib);
991        }
992
993        void apply(InferenceContext inferenceContext, Warner warner) {
994            Type undetT = inferenceContext.asUndetVar(t);
995            if (undetT.hasTag(UNDETVAR) && !((UndetVar)undetT).isCaptured()) {
996                UndetVar uv2 = (UndetVar)undetT;
997                //symmetric propagation
998                uv2.addBound(ib.complement(), uv, types);
999                //backwards propagation
1000                for (InferenceBound ib2 : backwards()) {
1001                    for (Type b : uv2.getBounds(ib2)) {
1002                        uv.addBound(ib2, b, types);
1003                    }
1004                }
1005            }
1006            //forward propagation
1007            for (InferenceBound ib2 : forward()) {
1008                for (Type l : uv.getBounds(ib2)) {
1009                    Type undet = inferenceContext.asUndetVar(l);
1010                    if (undet.hasTag(TypeTag.UNDETVAR) && !((UndetVar)undet).isCaptured()) {
1011                        UndetVar uv2 = (UndetVar)undet;
1012                        uv2.addBound(ib, inferenceContext.asInstType(t), types);
1013                    }
1014                }
1015            }
1016        }
1017
1018        EnumSet<InferenceBound> forward() {
1019            return (ib == InferenceBound.EQ) ?
1020                    EnumSet.of(InferenceBound.EQ) : EnumSet.complementOf(EnumSet.of(ib));
1021        }
1022
1023        EnumSet<InferenceBound> backwards() {
1024            return (ib == InferenceBound.EQ) ?
1025                    EnumSet.allOf(InferenceBound.class) : EnumSet.of(ib);
1026        }
1027
1028        @Override
1029        public String toString() {
1030            return String.format("%s[undet=%s,t=%s,bound=%s]", getClass().getSimpleName(), uv.qtype, t, ib);
1031        }
1032    }
1033
1034    /**
1035     * This class models an incorporation engine. The engine is responsible for listening to
1036     * changes in inference variables and register incorporation actions accordingly.
1037     */
1038    abstract class AbstractIncorporationEngine implements UndetVarListener {
1039
1040        @Override
1041        public void varInstantiated(UndetVar uv) {
1042            uv.incorporationActions.addFirst(new SubstBounds(uv));
1043        }
1044
1045        @Override
1046        public void varBoundChanged(UndetVar uv, InferenceBound ib, Type bound, boolean update) {
1047            if (uv.isCaptured()) return;
1048            uv.incorporationActions.addAll(getIncorporationActions(uv, ib, bound, update));
1049        }
1050
1051        abstract List<IncorporationAction> getIncorporationActions(UndetVar uv, InferenceBound ib, Type t, boolean update);
1052    }
1053
1054    /**
1055     * A legacy incorporation engine. Used for source <= 7.
1056     */
1057    AbstractIncorporationEngine legacyEngine = new AbstractIncorporationEngine() {
1058
1059        List<IncorporationAction> getIncorporationActions(UndetVar uv, InferenceBound ib, Type t, boolean update) {
1060            ListBuffer<IncorporationAction> actions = new ListBuffer<>();
1061            Type inst = uv.getInst();
1062            if (inst != null) {
1063                actions.add(new CheckInst(uv, ib));
1064            }
1065            actions.add(new EqCheckLegacy(uv, t, ib));
1066            return actions.toList();
1067        }
1068    };
1069
1070    /**
1071     * The standard incorporation engine. Used for source >= 8.
1072     */
1073    AbstractIncorporationEngine graphEngine = new AbstractIncorporationEngine() {
1074
1075        @Override
1076        List<IncorporationAction> getIncorporationActions(UndetVar uv, InferenceBound ib, Type t, boolean update) {
1077            ListBuffer<IncorporationAction> actions = new ListBuffer<>();
1078            Type inst = uv.getInst();
1079            if (inst != null) {
1080                actions.add(new CheckInst(uv, ib));
1081            }
1082            actions.add(new CheckBounds(uv, t, ib));
1083
1084            if (update) {
1085                return actions.toList();
1086            }
1087
1088            if (ib == InferenceBound.UPPER) {
1089                actions.add(new CheckUpperBounds(uv, t));
1090            }
1091
1092            actions.add(new PropagateBounds(uv, t, ib));
1093
1094            return actions.toList();
1095        }
1096    };
1097
1098    /**
1099     * Get the incorporation engine to be used in this compilation.
1100     */
1101    AbstractIncorporationEngine incorporationEngine() {
1102        return allowGraphInference ? graphEngine : legacyEngine;
1103    }
1104
1105    /** max number of incorporation rounds. */
1106    static final int MAX_INCORPORATION_STEPS = 10000;
1107
1108    /**
1109     * Check bounds and perform incorporation.
1110     */
1111    void doIncorporation(InferenceContext inferenceContext, Warner warn) throws InferenceException {
1112        try {
1113            boolean progress = true;
1114            int round = 0;
1115            while (progress && round < MAX_INCORPORATION_STEPS) {
1116                progress = false;
1117                for (Type t : inferenceContext.undetvars) {
1118                    UndetVar uv = (UndetVar)t;
1119                    if (!uv.incorporationActions.isEmpty()) {
1120                        progress = true;
1121                        uv.incorporationActions.removeFirst().apply(inferenceContext, warn);
1122                    }
1123                }
1124                round++;
1125            }
1126        } finally {
1127            incorporationCache.clear();
1128        }
1129    }
1130
1131    /* If for two types t and s there is a least upper bound that contains
1132     * parameterized types G1, G2 ... Gn, then there exists supertypes of 't' of the form
1133     * G1<T1, ..., Tn>, G2<T1, ..., Tn>, ... Gn<T1, ..., Tn> and supertypes of 's' of the form
1134     * G1<S1, ..., Sn>, G2<S1, ..., Sn>, ... Gn<S1, ..., Sn> which will be returned by this method.
1135     * If no such common supertypes exists then an empty list is returned.
1136     *
1137     * As an example for the following input:
1138     *
1139     * t = java.util.ArrayList<java.lang.String>
1140     * s = java.util.List<T>
1141     *
1142     * we get this ouput (singleton list):
1143     *
1144     * [Pair[java.util.List<java.lang.String>,java.util.List<T>]]
1145     */
1146    private List<Pair<Type, Type>> getParameterizedSupers(Type t, Type s) {
1147        Type lubResult = types.lub(t, s);
1148        if (lubResult == syms.errType || lubResult == syms.botType) {
1149            return List.nil();
1150        }
1151        List<Type> supertypesToCheck = lubResult.isIntersection() ?
1152                ((IntersectionClassType)lubResult).getComponents() :
1153                List.of(lubResult);
1154        ListBuffer<Pair<Type, Type>> commonSupertypes = new ListBuffer<>();
1155        for (Type sup : supertypesToCheck) {
1156            if (sup.isParameterized()) {
1157                Type asSuperOfT = asSuper(t, sup);
1158                Type asSuperOfS = asSuper(s, sup);
1159                commonSupertypes.add(new Pair<>(asSuperOfT, asSuperOfS));
1160            }
1161        }
1162        return commonSupertypes.toList();
1163    }
1164    //where
1165        private Type asSuper(Type t, Type sup) {
1166            return (sup.hasTag(ARRAY)) ?
1167                    new ArrayType(asSuper(types.elemtype(t), types.elemtype(sup)), syms.arrayClass) :
1168                    types.asSuper(t, sup.tsym);
1169        }
1170
1171    boolean doIncorporationOp(IncorporationBinaryOpKind opKind, Type op1, Type op2, Warner warn) {
1172            IncorporationBinaryOp newOp = new IncorporationBinaryOp(opKind, op1, op2);
1173            Boolean res = incorporationCache.get(newOp);
1174            if (res == null) {
1175                incorporationCache.put(newOp, res = newOp.apply(warn));
1176            }
1177            return res;
1178        }
1179
1180    /**
1181     * Three kinds of basic operation are supported as part of an incorporation step:
1182     * (i) subtype check, (ii) same type check and (iii) bound addition (either
1183     * upper/lower/eq bound).
1184     */
1185    enum IncorporationBinaryOpKind {
1186        IS_SUBTYPE() {
1187            @Override
1188            boolean apply(Type op1, Type op2, Warner warn, Types types) {
1189                return types.isSubtypeUnchecked(op1, op2, warn);
1190            }
1191        },
1192        IS_SAME_TYPE() {
1193            @Override
1194            boolean apply(Type op1, Type op2, Warner warn, Types types) {
1195                return types.isSameType(op1, op2);
1196            }
1197        };
1198
1199        abstract boolean apply(Type op1, Type op2, Warner warn, Types types);
1200    }
1201
1202    /**
1203     * This class encapsulates a basic incorporation operation; incorporation
1204     * operations takes two type operands and a kind. Each operation performed
1205     * during an incorporation round is stored in a cache, so that operations
1206     * are not executed unnecessarily (which would potentially lead to adding
1207     * same bounds over and over).
1208     */
1209    class IncorporationBinaryOp {
1210
1211        IncorporationBinaryOpKind opKind;
1212        Type op1;
1213        Type op2;
1214
1215        IncorporationBinaryOp(IncorporationBinaryOpKind opKind, Type op1, Type op2) {
1216            this.opKind = opKind;
1217            this.op1 = op1;
1218            this.op2 = op2;
1219        }
1220
1221        @Override
1222        public boolean equals(Object o) {
1223            if (!(o instanceof IncorporationBinaryOp)) {
1224                return false;
1225            } else {
1226                IncorporationBinaryOp that = (IncorporationBinaryOp)o;
1227                return opKind == that.opKind &&
1228                        types.isSameType(op1, that.op1, true) &&
1229                        types.isSameType(op2, that.op2, true);
1230            }
1231        }
1232
1233        @Override
1234        public int hashCode() {
1235            int result = opKind.hashCode();
1236            result *= 127;
1237            result += types.hashCode(op1);
1238            result *= 127;
1239            result += types.hashCode(op2);
1240            return result;
1241        }
1242
1243        boolean apply(Warner warn) {
1244            return opKind.apply(op1, op2, warn, types);
1245        }
1246    }
1247
1248    /** an incorporation cache keeps track of all executed incorporation-related operations */
1249    Map<IncorporationBinaryOp, Boolean> incorporationCache = new HashMap<>();
1250
1251    protected static class BoundFilter implements Filter<Type> {
1252
1253        InferenceContext inferenceContext;
1254
1255        public BoundFilter(InferenceContext inferenceContext) {
1256            this.inferenceContext = inferenceContext;
1257        }
1258
1259        @Override
1260        public boolean accepts(Type t) {
1261            return !t.isErroneous() && !inferenceContext.free(t) &&
1262                    !t.hasTag(BOT);
1263        }
1264    }
1265
1266    /**
1267     * Incorporation error: mismatch between inferred type and given bound.
1268     */
1269    void reportInstError(UndetVar uv, InferenceBound ib) {
1270        reportInferenceError(
1271                String.format("inferred.do.not.conform.to.%s.bounds", StringUtils.toLowerCase(ib.name())),
1272                uv.getInst(),
1273                uv.getBounds(ib));
1274    }
1275
1276    /**
1277     * Incorporation error: mismatch between two (or more) bounds of same kind.
1278     */
1279    void reportBoundError(UndetVar uv, InferenceBound ib) {
1280        reportInferenceError(
1281                String.format("incompatible.%s.bounds", StringUtils.toLowerCase(ib.name())),
1282                uv.qtype,
1283                uv.getBounds(ib));
1284    }
1285
1286    /**
1287     * Incorporation error: mismatch between two (or more) bounds of different kinds.
1288     */
1289    void reportBoundError(UndetVar uv, InferenceBound ib1, InferenceBound ib2) {
1290        reportInferenceError(
1291                String.format("incompatible.%s.%s.bounds",
1292                        StringUtils.toLowerCase(ib1.name()),
1293                        StringUtils.toLowerCase(ib2.name())),
1294                uv.qtype,
1295                uv.getBounds(ib1),
1296                uv.getBounds(ib2));
1297    }
1298
1299    /**
1300     * Helper method: reports an inference error.
1301     */
1302    void reportInferenceError(String key, Object... args) {
1303        throw inferenceException.setMessage(key, args);
1304    }
1305    // </editor-fold>
1306
1307    // <editor-fold defaultstate="collapsed" desc="Inference engine">
1308    /**
1309     * Graph inference strategy - act as an input to the inference solver; a strategy is
1310     * composed of two ingredients: (i) find a node to solve in the inference graph,
1311     * and (ii) tell th engine when we are done fixing inference variables
1312     */
1313    interface GraphStrategy {
1314
1315        /**
1316         * A NodeNotFoundException is thrown whenever an inference strategy fails
1317         * to pick the next node to solve in the inference graph.
1318         */
1319        public static class NodeNotFoundException extends RuntimeException {
1320            private static final long serialVersionUID = 0;
1321
1322            InferenceGraph graph;
1323
1324            public NodeNotFoundException(InferenceGraph graph) {
1325                this.graph = graph;
1326            }
1327        }
1328        /**
1329         * Pick the next node (leaf) to solve in the graph
1330         */
1331        Node pickNode(InferenceGraph g) throws NodeNotFoundException;
1332        /**
1333         * Is this the last step?
1334         */
1335        boolean done();
1336    }
1337
1338    /**
1339     * Simple solver strategy class that locates all leaves inside a graph
1340     * and picks the first leaf as the next node to solve
1341     */
1342    abstract class LeafSolver implements GraphStrategy {
1343        public Node pickNode(InferenceGraph g) {
1344            if (g.nodes.isEmpty()) {
1345                //should not happen
1346                throw new NodeNotFoundException(g);
1347            }
1348            return g.nodes.get(0);
1349        }
1350    }
1351
1352    /**
1353     * This solver uses an heuristic to pick the best leaf - the heuristic
1354     * tries to select the node that has maximal probability to contain one
1355     * or more inference variables in a given list
1356     */
1357    abstract class BestLeafSolver extends LeafSolver {
1358
1359        /** list of ivars of which at least one must be solved */
1360        List<Type> varsToSolve;
1361
1362        BestLeafSolver(List<Type> varsToSolve) {
1363            this.varsToSolve = varsToSolve;
1364        }
1365
1366        /**
1367         * Computes a path that goes from a given node to the leafs in the graph.
1368         * Typically this will start from a node containing a variable in
1369         * {@code varsToSolve}. For any given path, the cost is computed as the total
1370         * number of type-variables that should be eagerly instantiated across that path.
1371         */
1372        Pair<List<Node>, Integer> computeTreeToLeafs(Node n) {
1373            Pair<List<Node>, Integer> cachedPath = treeCache.get(n);
1374            if (cachedPath == null) {
1375                //cache miss
1376                if (n.isLeaf()) {
1377                    //if leaf, stop
1378                    cachedPath = new Pair<>(List.of(n), n.data.length());
1379                } else {
1380                    //if non-leaf, proceed recursively
1381                    Pair<List<Node>, Integer> path = new Pair<>(List.of(n), n.data.length());
1382                    for (Node n2 : n.getAllDependencies()) {
1383                        if (n2 == n) continue;
1384                        Pair<List<Node>, Integer> subpath = computeTreeToLeafs(n2);
1385                        path = new Pair<>(path.fst.prependList(subpath.fst),
1386                                          path.snd + subpath.snd);
1387                    }
1388                    cachedPath = path;
1389                }
1390                //save results in cache
1391                treeCache.put(n, cachedPath);
1392            }
1393            return cachedPath;
1394        }
1395
1396        /** cache used to avoid redundant computation of tree costs */
1397        final Map<Node, Pair<List<Node>, Integer>> treeCache = new HashMap<>();
1398
1399        /** constant value used to mark non-existent paths */
1400        final Pair<List<Node>, Integer> noPath = new Pair<>(null, Integer.MAX_VALUE);
1401
1402        /**
1403         * Pick the leaf that minimize cost
1404         */
1405        @Override
1406        public Node pickNode(final InferenceGraph g) {
1407            treeCache.clear(); //graph changes at every step - cache must be cleared
1408            Pair<List<Node>, Integer> bestPath = noPath;
1409            for (Node n : g.nodes) {
1410                if (!Collections.disjoint(n.data, varsToSolve)) {
1411                    Pair<List<Node>, Integer> path = computeTreeToLeafs(n);
1412                    //discard all paths containing at least a node in the
1413                    //closure computed above
1414                    if (path.snd < bestPath.snd) {
1415                        bestPath = path;
1416                    }
1417                }
1418            }
1419            if (bestPath == noPath) {
1420                //no path leads there
1421                throw new NodeNotFoundException(g);
1422            }
1423            return bestPath.fst.head;
1424        }
1425    }
1426
1427    /**
1428     * The inference process can be thought of as a sequence of steps. Each step
1429     * instantiates an inference variable using a subset of the inference variable
1430     * bounds, if certain condition are met. Decisions such as the sequence in which
1431     * steps are applied, or which steps are to be applied are left to the inference engine.
1432     */
1433    enum InferenceStep {
1434
1435        /**
1436         * Instantiate an inference variables using one of its (ground) equality
1437         * constraints
1438         */
1439        EQ(InferenceBound.EQ) {
1440            @Override
1441            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1442                return filterBounds(uv, inferenceContext).head;
1443            }
1444        },
1445        /**
1446         * Instantiate an inference variables using its (ground) lower bounds. Such
1447         * bounds are merged together using lub().
1448         */
1449        LOWER(InferenceBound.LOWER) {
1450            @Override
1451            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1452                Infer infer = inferenceContext.infer;
1453                List<Type> lobounds = filterBounds(uv, inferenceContext);
1454                //note: lobounds should have at least one element
1455                Type owntype = lobounds.tail.tail == null  ? lobounds.head : infer.types.lub(lobounds);
1456                if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
1457                    throw infer.inferenceException
1458                        .setMessage("no.unique.minimal.instance.exists",
1459                                    uv.qtype, lobounds);
1460                } else {
1461                    return owntype;
1462                }
1463            }
1464        },
1465        /**
1466         * Infer uninstantiated/unbound inference variables occurring in 'throws'
1467         * clause as RuntimeException
1468         */
1469        THROWS(InferenceBound.UPPER) {
1470            @Override
1471            public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1472                if (!t.isThrows()) {
1473                    //not a throws undet var
1474                    return false;
1475                }
1476                Types types = inferenceContext.types;
1477                Symtab syms = inferenceContext.infer.syms;
1478                return t.getBounds(InferenceBound.UPPER).stream()
1479                        .filter(b -> !inferenceContext.free(b))
1480                        .allMatch(u -> types.isSubtype(syms.runtimeExceptionType, u));
1481            }
1482
1483            @Override
1484            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1485                return inferenceContext.infer.syms.runtimeExceptionType;
1486            }
1487        },
1488        /**
1489         * Instantiate an inference variables using its (ground) upper bounds. Such
1490         * bounds are merged together using glb().
1491         */
1492        UPPER(InferenceBound.UPPER) {
1493            @Override
1494            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1495                Infer infer = inferenceContext.infer;
1496                List<Type> hibounds = filterBounds(uv, inferenceContext);
1497                //note: hibounds should have at least one element
1498                Type owntype = hibounds.tail.tail == null  ? hibounds.head : infer.types.glb(hibounds);
1499                if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
1500                    throw infer.inferenceException
1501                        .setMessage("no.unique.maximal.instance.exists",
1502                                    uv.qtype, hibounds);
1503                } else {
1504                    return owntype;
1505                }
1506            }
1507        },
1508        /**
1509         * Like the former; the only difference is that this step can only be applied
1510         * if all upper bounds are ground.
1511         */
1512        UPPER_LEGACY(InferenceBound.UPPER) {
1513            @Override
1514            public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1515                return !inferenceContext.free(t.getBounds(ib)) && !t.isCaptured();
1516            }
1517
1518            @Override
1519            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1520                return UPPER.solve(uv, inferenceContext);
1521            }
1522        },
1523        /**
1524         * Like the former; the only difference is that this step can only be applied
1525         * if all upper/lower bounds are ground.
1526         */
1527        CAPTURED(InferenceBound.UPPER) {
1528            @Override
1529            public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1530                return t.isCaptured() &&
1531                        !inferenceContext.free(t.getBounds(InferenceBound.UPPER, InferenceBound.LOWER));
1532            }
1533
1534            @Override
1535            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1536                Infer infer = inferenceContext.infer;
1537                Type upper = UPPER.filterBounds(uv, inferenceContext).nonEmpty() ?
1538                        UPPER.solve(uv, inferenceContext) :
1539                        infer.syms.objectType;
1540                Type lower = LOWER.filterBounds(uv, inferenceContext).nonEmpty() ?
1541                        LOWER.solve(uv, inferenceContext) :
1542                        infer.syms.botType;
1543                CapturedType prevCaptured = (CapturedType)uv.qtype;
1544                return new CapturedType(prevCaptured.tsym.name, prevCaptured.tsym.owner,
1545                                        upper, lower, prevCaptured.wildcard);
1546            }
1547        };
1548
1549        final InferenceBound ib;
1550
1551        InferenceStep(InferenceBound ib) {
1552            this.ib = ib;
1553        }
1554
1555        /**
1556         * Find an instantiated type for a given inference variable within
1557         * a given inference context
1558         */
1559        abstract Type solve(UndetVar uv, InferenceContext inferenceContext);
1560
1561        /**
1562         * Can the inference variable be instantiated using this step?
1563         */
1564        public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1565            return filterBounds(t, inferenceContext).nonEmpty() && !t.isCaptured();
1566        }
1567
1568        /**
1569         * Return the subset of ground bounds in a given bound set (i.e. eq/lower/upper)
1570         */
1571        List<Type> filterBounds(UndetVar uv, InferenceContext inferenceContext) {
1572            return Type.filter(uv.getBounds(ib), new BoundFilter(inferenceContext));
1573        }
1574    }
1575
1576    /**
1577     * This enumeration defines the sequence of steps to be applied when the
1578     * solver works in legacy mode. The steps in this enumeration reflect
1579     * the behavior of old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
1580     */
1581    enum LegacyInferenceSteps {
1582
1583        EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
1584        EQ_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.UPPER_LEGACY));
1585
1586        final EnumSet<InferenceStep> steps;
1587
1588        LegacyInferenceSteps(EnumSet<InferenceStep> steps) {
1589            this.steps = steps;
1590        }
1591    }
1592
1593    /**
1594     * This enumeration defines the sequence of steps to be applied when the
1595     * graph solver is used. This order is defined so as to maximize compatibility
1596     * w.r.t. old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
1597     */
1598    enum GraphInferenceSteps {
1599
1600        EQ(EnumSet.of(InferenceStep.EQ)),
1601        EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
1602        EQ_LOWER_THROWS_UPPER_CAPTURED(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER, InferenceStep.UPPER, InferenceStep.THROWS, InferenceStep.CAPTURED));
1603
1604        final EnumSet<InferenceStep> steps;
1605
1606        GraphInferenceSteps(EnumSet<InferenceStep> steps) {
1607            this.steps = steps;
1608        }
1609    }
1610
1611    /**
1612     * There are two kinds of dependencies between inference variables. The basic
1613     * kind of dependency (or bound dependency) arises when a variable mention
1614     * another variable in one of its bounds. There's also a more subtle kind
1615     * of dependency that arises when a variable 'might' lead to better constraints
1616     * on another variable (this is typically the case with variables holding up
1617     * stuck expressions).
1618     */
1619    enum DependencyKind implements GraphUtils.DependencyKind {
1620
1621        /** bound dependency */
1622        BOUND("dotted"),
1623        /** stuck dependency */
1624        STUCK("dashed");
1625
1626        final String dotSyle;
1627
1628        private DependencyKind(String dotSyle) {
1629            this.dotSyle = dotSyle;
1630        }
1631    }
1632
1633    /**
1634     * This is the graph inference solver - the solver organizes all inference variables in
1635     * a given inference context by bound dependencies - in the general case, such dependencies
1636     * would lead to a cyclic directed graph (hence the name); the dependency info is used to build
1637     * an acyclic graph, where all cyclic variables are bundled together. An inference
1638     * step corresponds to solving a node in the acyclic graph - this is done by
1639     * relying on a given strategy (see GraphStrategy).
1640     */
1641    class GraphSolver {
1642
1643        InferenceContext inferenceContext;
1644        Warner warn;
1645
1646        GraphSolver(InferenceContext inferenceContext, Warner warn) {
1647            this.inferenceContext = inferenceContext;
1648            this.warn = warn;
1649        }
1650
1651        /**
1652         * Solve variables in a given inference context. The amount of variables
1653         * to be solved, and the way in which the underlying acyclic graph is explored
1654         * depends on the selected solver strategy.
1655         */
1656        void solve(GraphStrategy sstrategy) {
1657            doIncorporation(inferenceContext, warn); //initial propagation of bounds
1658            InferenceGraph inferenceGraph = new InferenceGraph();
1659            while (!sstrategy.done()) {
1660                if (dependenciesFolder != null) {
1661                    //add this graph to the pending queue
1662                    pendingGraphs = pendingGraphs.prepend(inferenceGraph.toDot());
1663                }
1664                InferenceGraph.Node nodeToSolve = sstrategy.pickNode(inferenceGraph);
1665                List<Type> varsToSolve = List.from(nodeToSolve.data);
1666                List<Type> saved_undet = inferenceContext.save();
1667                try {
1668                    //repeat until all variables are solved
1669                    outer: while (Type.containsAny(inferenceContext.restvars(), varsToSolve)) {
1670                        //for each inference phase
1671                        for (GraphInferenceSteps step : GraphInferenceSteps.values()) {
1672                            if (inferenceContext.solveBasic(varsToSolve, step.steps).nonEmpty()) {
1673                                doIncorporation(inferenceContext, warn);
1674                                continue outer;
1675                            }
1676                        }
1677                        //no progress
1678                        throw inferenceException.setMessage();
1679                    }
1680                }
1681                catch (InferenceException ex) {
1682                    //did we fail because of interdependent ivars?
1683                    inferenceContext.rollback(saved_undet);
1684                    instantiateAsUninferredVars(varsToSolve, inferenceContext);
1685                    doIncorporation(inferenceContext, warn);
1686                }
1687                inferenceGraph.deleteNode(nodeToSolve);
1688            }
1689        }
1690
1691        /**
1692         * The dependencies between the inference variables that need to be solved
1693         * form a (possibly cyclic) graph. This class reduces the original dependency graph
1694         * to an acyclic version, where cyclic nodes are folded into a single 'super node'.
1695         */
1696        class InferenceGraph {
1697
1698            /**
1699             * This class represents a node in the graph. Each node corresponds
1700             * to an inference variable and has edges (dependencies) on other
1701             * nodes. The node defines an entry point that can be used to receive
1702             * updates on the structure of the graph this node belongs to (used to
1703             * keep dependencies in sync).
1704             */
1705            class Node extends GraphUtils.TarjanNode<ListBuffer<Type>, Node> implements DottableNode<ListBuffer<Type>, Node> {
1706
1707                /** node dependencies */
1708                Set<Node> deps;
1709
1710                Node(Type ivar) {
1711                    super(ListBuffer.of(ivar));
1712                    this.deps = new HashSet<>();
1713                }
1714
1715                @Override
1716                public GraphUtils.DependencyKind[] getSupportedDependencyKinds() {
1717                    return new GraphUtils.DependencyKind[] { DependencyKind.BOUND };
1718                }
1719
1720                public Iterable<? extends Node> getAllDependencies() {
1721                    return deps;
1722                }
1723
1724                @Override
1725                public Collection<? extends Node> getDependenciesByKind(GraphUtils.DependencyKind dk) {
1726                    if (dk == DependencyKind.BOUND) {
1727                        return deps;
1728                    } else {
1729                        throw new IllegalStateException();
1730                    }
1731                }
1732
1733                /**
1734                 * Adds dependency with given kind.
1735                 */
1736                protected void addDependency(Node depToAdd) {
1737                    deps.add(depToAdd);
1738                }
1739
1740                /**
1741                 * Add multiple dependencies of same given kind.
1742                 */
1743                protected void addDependencies(Set<Node> depsToAdd) {
1744                    for (Node n : depsToAdd) {
1745                        addDependency(n);
1746                    }
1747                }
1748
1749                /**
1750                 * Remove a dependency, regardless of its kind.
1751                 */
1752                protected boolean removeDependency(Node n) {
1753                    return deps.remove(n);
1754                }
1755
1756                /**
1757                 * Is this node a leaf? This means either the node has no dependencies,
1758                 * or it just has self-dependencies.
1759                 */
1760                protected boolean isLeaf() {
1761                    //no deps, or only one self dep
1762                    if (deps.isEmpty()) return true;
1763                    for (Node n : deps) {
1764                        if (n != this) {
1765                            return false;
1766                        }
1767                    }
1768                    return true;
1769                }
1770
1771                /**
1772                 * Merge this node with another node, acquiring its dependencies.
1773                 * This routine is used to merge all cyclic node together and
1774                 * form an acyclic graph.
1775                 */
1776                protected void mergeWith(List<? extends Node> nodes) {
1777                    for (Node n : nodes) {
1778                        Assert.check(n.data.length() == 1, "Attempt to merge a compound node!");
1779                        data.appendList(n.data);
1780                        addDependencies(n.deps);
1781                    }
1782                    //update deps
1783                    Set<Node> deps2 = new HashSet<>();
1784                    for (Node d : deps) {
1785                        if (data.contains(d.data.first())) {
1786                            deps2.add(this);
1787                        } else {
1788                            deps2.add(d);
1789                        }
1790                    }
1791                    deps = deps2;
1792                }
1793
1794                /**
1795                 * Notify all nodes that something has changed in the graph
1796                 * topology.
1797                 */
1798                private void graphChanged(Node from, Node to) {
1799                    if (removeDependency(from)) {
1800                        if (to != null) {
1801                            addDependency(to);
1802                        }
1803                    }
1804                }
1805
1806                @Override
1807                public Properties nodeAttributes() {
1808                    Properties p = new Properties();
1809                    p.put("label", "\"" + toString() + "\"");
1810                    return p;
1811                }
1812
1813                @Override
1814                public Properties dependencyAttributes(Node sink, GraphUtils.DependencyKind dk) {
1815                    Properties p = new Properties();
1816                    p.put("style", ((DependencyKind)dk).dotSyle);
1817                    StringBuilder buf = new StringBuilder();
1818                    String sep = "";
1819                    for (Type from : data) {
1820                        UndetVar uv = (UndetVar)inferenceContext.asUndetVar(from);
1821                        for (Type bound : uv.getBounds(InferenceBound.values())) {
1822                            if (bound.containsAny(List.from(sink.data))) {
1823                                buf.append(sep);
1824                                buf.append(bound);
1825                                sep = ",";
1826                            }
1827                        }
1828                    }
1829                    p.put("label", "\"" + buf.toString() + "\"");
1830                    return p;
1831                }
1832            }
1833
1834            /** the nodes in the inference graph */
1835            ArrayList<Node> nodes;
1836
1837            InferenceGraph() {
1838                initNodes();
1839            }
1840
1841            /**
1842             * Basic lookup helper for retrieving a graph node given an inference
1843             * variable type.
1844             */
1845            public Node findNode(Type t) {
1846                for (Node n : nodes) {
1847                    if (n.data.contains(t)) {
1848                        return n;
1849                    }
1850                }
1851                return null;
1852            }
1853
1854            /**
1855             * Delete a node from the graph. This update the underlying structure
1856             * of the graph (including dependencies) via listeners updates.
1857             */
1858            public void deleteNode(Node n) {
1859                Assert.check(nodes.contains(n));
1860                nodes.remove(n);
1861                notifyUpdate(n, null);
1862            }
1863
1864            /**
1865             * Notify all nodes of a change in the graph. If the target node is
1866             * {@code null} the source node is assumed to be removed.
1867             */
1868            void notifyUpdate(Node from, Node to) {
1869                for (Node n : nodes) {
1870                    n.graphChanged(from, to);
1871                }
1872            }
1873
1874            /**
1875             * Create the graph nodes. First a simple node is created for every inference
1876             * variables to be solved. Then Tarjan is used to found all connected components
1877             * in the graph. For each component containing more than one node, a super node is
1878             * created, effectively replacing the original cyclic nodes.
1879             */
1880            void initNodes() {
1881                //add nodes
1882                nodes = new ArrayList<>();
1883                for (Type t : inferenceContext.restvars()) {
1884                    nodes.add(new Node(t));
1885                }
1886                //add dependencies
1887                for (Node n_i : nodes) {
1888                    Type i = n_i.data.first();
1889                    for (Node n_j : nodes) {
1890                        Type j = n_j.data.first();
1891                        // don't compare a variable to itself
1892                        if (i != j) {
1893                            UndetVar uv_i = (UndetVar)inferenceContext.asUndetVar(i);
1894                            if (Type.containsAny(uv_i.getBounds(InferenceBound.values()), List.of(j))) {
1895                                //update i's bound dependencies
1896                                n_i.addDependency(n_j);
1897                            }
1898                        }
1899                    }
1900                }
1901                //merge cyclic nodes
1902                ArrayList<Node> acyclicNodes = new ArrayList<>();
1903                for (List<? extends Node> conSubGraph : GraphUtils.tarjan(nodes)) {
1904                    if (conSubGraph.length() > 1) {
1905                        Node root = conSubGraph.head;
1906                        root.mergeWith(conSubGraph.tail);
1907                        for (Node n : conSubGraph) {
1908                            notifyUpdate(n, root);
1909                        }
1910                    }
1911                    acyclicNodes.add(conSubGraph.head);
1912                }
1913                nodes = acyclicNodes;
1914            }
1915
1916            /**
1917             * Debugging: dot representation of this graph
1918             */
1919            String toDot() {
1920                StringBuilder buf = new StringBuilder();
1921                for (Type t : inferenceContext.undetvars) {
1922                    UndetVar uv = (UndetVar)t;
1923                    buf.append(String.format("var %s - upper bounds = %s, lower bounds = %s, eq bounds = %s\\n",
1924                            uv.qtype, uv.getBounds(InferenceBound.UPPER), uv.getBounds(InferenceBound.LOWER),
1925                            uv.getBounds(InferenceBound.EQ)));
1926                }
1927                return GraphUtils.toDot(nodes, "inferenceGraph" + hashCode(), buf.toString());
1928            }
1929        }
1930    }
1931    // </editor-fold>
1932
1933    // <editor-fold defaultstate="collapsed" desc="Inference context">
1934    /**
1935     * Functional interface for defining inference callbacks. Certain actions
1936     * (i.e. subtyping checks) might need to be redone after all inference variables
1937     * have been fixed.
1938     */
1939    interface FreeTypeListener {
1940        void typesInferred(InferenceContext inferenceContext);
1941    }
1942
1943    final InferenceContext emptyContext;
1944    // </editor-fold>
1945}
1946