Infer.java revision 3801:8fc0a7bf47a9
1/*
2 * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.tools.javac.code.Type.UndetVar.UndetVarListener;
29import com.sun.tools.javac.tree.JCTree;
30import com.sun.tools.javac.tree.JCTree.JCTypeCast;
31import com.sun.tools.javac.tree.TreeInfo;
32import com.sun.tools.javac.util.*;
33import com.sun.tools.javac.util.GraphUtils.DottableNode;
34import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
35import com.sun.tools.javac.util.List;
36import com.sun.tools.javac.code.*;
37import com.sun.tools.javac.code.Type.*;
38import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
39import com.sun.tools.javac.code.Symbol.*;
40import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
41import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
42import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph;
43import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph.Node;
44import com.sun.tools.javac.comp.Resolve.InapplicableMethodException;
45import com.sun.tools.javac.comp.Resolve.VerboseResolutionMode;
46
47import java.io.IOException;
48import java.io.Writer;
49import java.nio.file.Files;
50import java.nio.file.Path;
51import java.nio.file.Paths;
52import java.util.ArrayList;
53import java.util.Collection;
54import java.util.Collections;
55import java.util.EnumSet;
56import java.util.HashMap;
57import java.util.HashSet;
58import java.util.Map;
59import java.util.Optional;
60import java.util.Properties;
61import java.util.Set;
62import java.util.function.BiFunction;
63import java.util.function.BiPredicate;
64import java.util.stream.Collectors;
65
66import com.sun.tools.javac.main.Option;
67
68import static com.sun.tools.javac.code.TypeTag.*;
69
70/** Helper class for type parameter inference, used by the attribution phase.
71 *
72 *  <p><b>This is NOT part of any supported API.
73 *  If you write code that depends on this, you do so at your own risk.
74 *  This code and its internal interfaces are subject to change or
75 *  deletion without notice.</b>
76 */
77public class Infer {
78    protected static final Context.Key<Infer> inferKey = new Context.Key<>();
79
80    Resolve rs;
81    Check chk;
82    Symtab syms;
83    Types types;
84    JCDiagnostic.Factory diags;
85    Log log;
86
87    /** should the graph solver be used? */
88    boolean allowGraphInference;
89
90    /**
91     * folder in which the inference dependency graphs should be written.
92     */
93    private final String dependenciesFolder;
94
95    /**
96     * List of graphs awaiting to be dumped to a file.
97     */
98    private List<String> pendingGraphs;
99
100    public static Infer instance(Context context) {
101        Infer instance = context.get(inferKey);
102        if (instance == null)
103            instance = new Infer(context);
104        return instance;
105    }
106
107    protected Infer(Context context) {
108        context.put(inferKey, this);
109
110        rs = Resolve.instance(context);
111        chk = Check.instance(context);
112        syms = Symtab.instance(context);
113        types = Types.instance(context);
114        diags = JCDiagnostic.Factory.instance(context);
115        log = Log.instance(context);
116        inferenceException = new InferenceException(diags);
117        Options options = Options.instance(context);
118        allowGraphInference = Source.instance(context).allowGraphInference()
119                && options.isUnset("useLegacyInference");
120        dependenciesFolder = options.get("debug.dumpInferenceGraphsTo");
121        pendingGraphs = List.nil();
122
123        emptyContext = new InferenceContext(this, List.<Type>nil());
124    }
125
126    /** A value for prototypes that admit any type, including polymorphic ones. */
127    public static final Type anyPoly = new JCNoType();
128
129   /**
130    * This exception class is design to store a list of diagnostics corresponding
131    * to inference errors that can arise during a method applicability check.
132    */
133    public static class InferenceException extends InapplicableMethodException {
134        private static final long serialVersionUID = 0;
135
136        List<JCDiagnostic> messages = List.nil();
137
138        InferenceException(JCDiagnostic.Factory diags) {
139            super(diags);
140        }
141
142        @Override
143        InapplicableMethodException setMessage() {
144            //no message to set
145            return this;
146        }
147
148        @Override
149        InapplicableMethodException setMessage(JCDiagnostic diag) {
150            messages = messages.append(diag);
151            return this;
152        }
153
154        @Override
155        public JCDiagnostic getDiagnostic() {
156            return messages.head;
157        }
158
159        void clear() {
160            messages = List.nil();
161        }
162    }
163
164    protected final InferenceException inferenceException;
165
166    // <editor-fold defaultstate="collapsed" desc="Inference routines">
167    /**
168     * Main inference entry point - instantiate a generic method type
169     * using given argument types and (possibly) an expected target-type.
170     */
171    Type instantiateMethod( Env<AttrContext> env,
172                            List<Type> tvars,
173                            MethodType mt,
174                            Attr.ResultInfo resultInfo,
175                            MethodSymbol msym,
176                            List<Type> argtypes,
177                            boolean allowBoxing,
178                            boolean useVarargs,
179                            Resolve.MethodResolutionContext resolveContext,
180                            Warner warn) throws InferenceException {
181        //-System.err.println("instantiateMethod(" + tvars + ", " + mt + ", " + argtypes + ")"); //DEBUG
182        final InferenceContext inferenceContext = new InferenceContext(this, tvars);  //B0
183        inferenceException.clear();
184        try {
185            DeferredAttr.DeferredAttrContext deferredAttrContext =
186                        resolveContext.deferredAttrContext(msym, inferenceContext, resultInfo, warn);
187
188            resolveContext.methodCheck.argumentsAcceptable(env, deferredAttrContext,   //B2
189                    argtypes, mt.getParameterTypes(), warn);
190
191            if (allowGraphInference && resultInfo != null && resultInfo.pt == anyPoly) {
192                doIncorporation(inferenceContext, warn);
193                //we are inside method attribution - just return a partially inferred type
194                return new PartiallyInferredMethodType(mt, inferenceContext, env, warn);
195            } else if (allowGraphInference &&
196                    resultInfo != null &&
197                    !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
198                //inject return constraints earlier
199                doIncorporation(inferenceContext, warn); //propagation
200
201                boolean shouldPropagate = shouldPropagate(mt.getReturnType(), resultInfo, inferenceContext);
202
203                InferenceContext minContext = shouldPropagate ?
204                        inferenceContext.min(roots(mt, deferredAttrContext), true, warn) :
205                        inferenceContext;
206
207                Type newRestype = generateReturnConstraints(env.tree, resultInfo,  //B3
208                        mt, minContext);
209                mt = (MethodType)types.createMethodTypeWithReturn(mt, newRestype);
210
211                //propagate outwards if needed
212                if (shouldPropagate) {
213                    //propagate inference context outwards and exit
214                    minContext.dupTo(resultInfo.checkContext.inferenceContext());
215                    deferredAttrContext.complete();
216                    return mt;
217                }
218            }
219
220            deferredAttrContext.complete();
221
222            // minimize as yet undetermined type variables
223            if (allowGraphInference) {
224                inferenceContext.solve(warn);
225            } else {
226                inferenceContext.solveLegacy(true, warn, LegacyInferenceSteps.EQ_LOWER.steps); //minimizeInst
227            }
228
229            mt = (MethodType)inferenceContext.asInstType(mt);
230
231            if (!allowGraphInference &&
232                    inferenceContext.restvars().nonEmpty() &&
233                    resultInfo != null &&
234                    !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
235                generateReturnConstraints(env.tree, resultInfo, mt, inferenceContext);
236                inferenceContext.solveLegacy(false, warn, LegacyInferenceSteps.EQ_UPPER.steps); //maximizeInst
237                mt = (MethodType)inferenceContext.asInstType(mt);
238            }
239
240            if (resultInfo != null && rs.verboseResolutionMode.contains(VerboseResolutionMode.DEFERRED_INST)) {
241                log.note(env.tree.pos, "deferred.method.inst", msym, mt, resultInfo.pt);
242            }
243
244            // return instantiated version of method type
245            return mt;
246        } finally {
247            if (resultInfo != null || !allowGraphInference) {
248                inferenceContext.notifyChange();
249            } else {
250                inferenceContext.notifyChange(inferenceContext.boundedVars());
251            }
252            if (resultInfo == null) {
253                /* if the is no result info then we can clear the capture types
254                 * cache without affecting any result info check
255                 */
256                inferenceContext.captureTypeCache.clear();
257            }
258            dumpGraphsIfNeeded(env.tree, msym, resolveContext);
259        }
260    }
261    //where
262        private boolean shouldPropagate(Type restype, Attr.ResultInfo target, InferenceContext inferenceContext) {
263            return target.checkContext.inferenceContext() != emptyContext && //enclosing context is a generic method
264                        inferenceContext.free(restype) && //return type contains inference vars
265                        (!inferenceContext.inferencevars.contains(restype) || //no eager instantiation is required (as per 18.5.2)
266                                !needsEagerInstantiation((UndetVar)inferenceContext.asUndetVar(restype), target.pt, inferenceContext));
267        }
268
269        private List<Type> roots(MethodType mt, DeferredAttrContext deferredAttrContext) {
270            ListBuffer<Type> roots = new ListBuffer<>();
271            roots.add(mt.getReturnType());
272            if (deferredAttrContext != null && deferredAttrContext.mode == AttrMode.CHECK) {
273                roots.addAll(mt.getThrownTypes());
274                for (DeferredAttr.DeferredAttrNode n : deferredAttrContext.deferredAttrNodes) {
275                    roots.addAll(n.deferredStuckPolicy.stuckVars());
276                    roots.addAll(n.deferredStuckPolicy.depVars());
277                }
278            }
279            return roots.toList();
280        }
281
282    /**
283     * A partially infered method/constructor type; such a type can be checked multiple times
284     * against different targets.
285     */
286    public class PartiallyInferredMethodType extends MethodType {
287        public PartiallyInferredMethodType(MethodType mtype, InferenceContext inferenceContext, Env<AttrContext> env, Warner warn) {
288            super(mtype.getParameterTypes(), mtype.getReturnType(), mtype.getThrownTypes(), mtype.tsym);
289            this.inferenceContext = inferenceContext;
290            this.env = env;
291            this.warn = warn;
292        }
293
294        /** The inference context. */
295        final InferenceContext inferenceContext;
296
297        /** The attribution environment. */
298        Env<AttrContext> env;
299
300        /** The warner. */
301        final Warner warn;
302
303        @Override
304        public boolean isPartial() {
305            return true;
306        }
307
308        /**
309         * Checks this type against a target; this means generating return type constraints, solve
310         * and then roll back the results (to avoid poolluting the context).
311         */
312        Type check(Attr.ResultInfo resultInfo) {
313            Warner noWarnings = new Warner(null);
314            inferenceException.clear();
315            List<Type> saved_undet = null;
316            try {
317                /** we need to save the inference context before generating target type constraints.
318                 *  This constraints may pollute the inference context and make it useless in case we
319                 *  need to use it several times: with several targets.
320                 */
321                saved_undet = inferenceContext.save();
322                if (allowGraphInference && !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
323                    boolean shouldPropagate = shouldPropagate(getReturnType(), resultInfo, inferenceContext);
324
325                    InferenceContext minContext = shouldPropagate ?
326                            inferenceContext.min(roots(asMethodType(), null), false, warn) :
327                            inferenceContext;
328
329                    MethodType other = (MethodType)minContext.update(asMethodType());
330                    Type newRestype = generateReturnConstraints(env.tree, resultInfo,  //B3
331                            other, minContext);
332
333                    if (shouldPropagate) {
334                        //propagate inference context outwards and exit
335                        minContext.dupTo(resultInfo.checkContext.inferenceContext(),
336                                resultInfo.checkContext.deferredAttrContext().insideOverloadPhase());
337                        return newRestype;
338                    }
339                }
340                inferenceContext.solve(noWarnings);
341                return inferenceContext.asInstType(this).getReturnType();
342            } catch (InferenceException ex) {
343                resultInfo.checkContext.report(null, ex.getDiagnostic());
344                Assert.error(); //cannot get here (the above should throw)
345                return null;
346            } finally {
347                if (saved_undet != null) {
348                    inferenceContext.rollback(saved_undet);
349                }
350            }
351        }
352    }
353
354    private void dumpGraphsIfNeeded(DiagnosticPosition pos, Symbol msym, Resolve.MethodResolutionContext rsContext) {
355        int round = 0;
356        try {
357            for (String graph : pendingGraphs.reverse()) {
358                Assert.checkNonNull(dependenciesFolder);
359                Name name = msym.name == msym.name.table.names.init ?
360                        msym.owner.name : msym.name;
361                String filename = String.format("%s@%s[mode=%s,step=%s]_%d.dot",
362                        name,
363                        pos.getStartPosition(),
364                        rsContext.attrMode(),
365                        rsContext.step,
366                        round);
367                Path dotFile = Paths.get(dependenciesFolder, filename);
368                try (Writer w = Files.newBufferedWriter(dotFile)) {
369                    w.append(graph);
370                }
371                round++;
372            }
373        } catch (IOException ex) {
374            Assert.error("Error occurred when dumping inference graph: " + ex.getMessage());
375        } finally {
376            pendingGraphs = List.nil();
377        }
378    }
379
380    /**
381     * Generate constraints from the generic method's return type. If the method
382     * call occurs in a context where a type T is expected, use the expected
383     * type to derive more constraints on the generic method inference variables.
384     */
385    Type generateReturnConstraints(JCTree tree, Attr.ResultInfo resultInfo,
386            MethodType mt, InferenceContext inferenceContext) {
387        InferenceContext rsInfoInfContext = resultInfo.checkContext.inferenceContext();
388        Type from = mt.getReturnType();
389        if (mt.getReturnType().containsAny(inferenceContext.inferencevars) &&
390                rsInfoInfContext != emptyContext) {
391            from = types.capture(from);
392            //add synthetic captured ivars
393            for (Type t : from.getTypeArguments()) {
394                if (t.hasTag(TYPEVAR) && ((TypeVar)t).isCaptured()) {
395                    inferenceContext.addVar((TypeVar)t);
396                }
397            }
398        }
399        Type qtype = inferenceContext.asUndetVar(from);
400        Type to = resultInfo.pt;
401
402        if (qtype.hasTag(VOID)) {
403            to = syms.voidType;
404        } else if (to.hasTag(NONE)) {
405            to = from.isPrimitive() ? from : syms.objectType;
406        } else if (qtype.hasTag(UNDETVAR)) {
407            if (needsEagerInstantiation((UndetVar)qtype, to, inferenceContext) &&
408                    (allowGraphInference || !to.isPrimitive())) {
409                to = generateReferenceToTargetConstraint(tree, (UndetVar)qtype, to, resultInfo, inferenceContext);
410            } else if (to.isPrimitive()) {
411                to = types.boxedClass(to).type;
412            }
413        } else if (rsInfoInfContext.free(resultInfo.pt)) {
414            //propagation - cache captured vars
415            qtype = inferenceContext.asUndetVar(rsInfoInfContext.cachedCapture(tree, from, false));
416        }
417        Assert.check(allowGraphInference || !rsInfoInfContext.free(to),
418                "legacy inference engine cannot handle constraints on both sides of a subtyping assertion");
419        //we need to skip capture?
420        Warner retWarn = new Warner();
421        if (!resultInfo.checkContext.compatible(qtype, rsInfoInfContext.asUndetVar(to), retWarn) ||
422                //unchecked conversion is not allowed in source 7 mode
423                (!allowGraphInference && retWarn.hasLint(Lint.LintCategory.UNCHECKED))) {
424            throw inferenceException
425                    .setMessage("infer.no.conforming.instance.exists",
426                    inferenceContext.restvars(), mt.getReturnType(), to);
427        }
428        return from;
429    }
430
431    private boolean needsEagerInstantiation(UndetVar from, Type to, InferenceContext inferenceContext) {
432        if (to.isPrimitive()) {
433            /* T is a primitive type, and one of the primitive wrapper classes is an instantiation,
434             * upper bound, or lower bound for alpha in B2.
435             */
436            for (Type t : from.getBounds(InferenceBound.values())) {
437                Type boundAsPrimitive = types.unboxedType(t);
438                if (boundAsPrimitive == null || boundAsPrimitive.hasTag(NONE)) {
439                    continue;
440                }
441                return true;
442            }
443            return false;
444        }
445
446        Type captureOfTo = types.capture(to);
447        /* T is a reference type, but is not a wildcard-parameterized type, and either
448         */
449        if (captureOfTo == to) { //not a wildcard parameterized type
450            /* i) B2 contains a bound of one of the forms alpha = S or S <: alpha,
451             *      where S is a wildcard-parameterized type, or
452             */
453            for (Type t : from.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
454                Type captureOfBound = types.capture(t);
455                if (captureOfBound != t) {
456                    return true;
457                }
458            }
459
460            /* ii) B2 contains two bounds of the forms S1 <: alpha and S2 <: alpha,
461             * where S1 and S2 have supertypes that are two different
462             * parameterizations of the same generic class or interface.
463             */
464            for (Type aLowerBound : from.getBounds(InferenceBound.LOWER)) {
465                for (Type anotherLowerBound : from.getBounds(InferenceBound.LOWER)) {
466                    if (aLowerBound != anotherLowerBound &&
467                            !inferenceContext.free(aLowerBound) &&
468                            !inferenceContext.free(anotherLowerBound) &&
469                            commonSuperWithDiffParameterization(aLowerBound, anotherLowerBound)) {
470                        return true;
471                    }
472                }
473            }
474        }
475
476        /* T is a parameterization of a generic class or interface, G,
477         * and B2 contains a bound of one of the forms alpha = S or S <: alpha,
478         * where there exists no type of the form G<...> that is a
479         * supertype of S, but the raw type G is a supertype of S
480         */
481        if (to.isParameterized()) {
482            for (Type t : from.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
483                Type sup = types.asSuper(t, to.tsym);
484                if (sup != null && sup.isRaw()) {
485                    return true;
486                }
487            }
488        }
489        return false;
490    }
491
492    private boolean commonSuperWithDiffParameterization(Type t, Type s) {
493        for (Pair<Type, Type> supers : getParameterizedSupers(t, s)) {
494            if (!types.isSameType(supers.fst, supers.snd)) return true;
495        }
496        return false;
497    }
498
499    private Type generateReferenceToTargetConstraint(JCTree tree, UndetVar from,
500            Type to, Attr.ResultInfo resultInfo,
501            InferenceContext inferenceContext) {
502        inferenceContext.solve(List.of(from.qtype), new Warner());
503        inferenceContext.notifyChange();
504        Type capturedType = resultInfo.checkContext.inferenceContext()
505                .cachedCapture(tree, from.getInst(), false);
506        if (types.isConvertible(capturedType,
507                resultInfo.checkContext.inferenceContext().asUndetVar(to))) {
508            //effectively skip additional return-type constraint generation (compatibility)
509            return syms.objectType;
510        }
511        return to;
512    }
513
514    /**
515      * Infer cyclic inference variables as described in 15.12.2.8.
516      */
517    void instantiateAsUninferredVars(List<Type> vars, InferenceContext inferenceContext) {
518        ListBuffer<Type> todo = new ListBuffer<>();
519        //step 1 - create fresh tvars
520        for (Type t : vars) {
521            UndetVar uv = (UndetVar)inferenceContext.asUndetVar(t);
522            List<Type> upperBounds = uv.getBounds(InferenceBound.UPPER);
523            if (Type.containsAny(upperBounds, vars)) {
524                TypeSymbol fresh_tvar = new TypeVariableSymbol(Flags.SYNTHETIC, uv.qtype.tsym.name, null, uv.qtype.tsym.owner);
525                fresh_tvar.type = new TypeVar(fresh_tvar, types.makeIntersectionType(uv.getBounds(InferenceBound.UPPER)), null);
526                todo.append(uv);
527                uv.setInst(fresh_tvar.type);
528            } else if (upperBounds.nonEmpty()) {
529                uv.setInst(types.glb(upperBounds));
530            } else {
531                uv.setInst(syms.objectType);
532            }
533        }
534        //step 2 - replace fresh tvars in their bounds
535        List<Type> formals = vars;
536        for (Type t : todo) {
537            UndetVar uv = (UndetVar)t;
538            TypeVar ct = (TypeVar)uv.getInst();
539            ct.bound = types.glb(inferenceContext.asInstTypes(types.getBounds(ct)));
540            if (ct.bound.isErroneous()) {
541                //report inference error if glb fails
542                reportBoundError(uv, InferenceBound.UPPER);
543            }
544            formals = formals.tail;
545        }
546    }
547
548    /**
549     * Compute a synthetic method type corresponding to the requested polymorphic
550     * method signature. The target return type is computed from the immediately
551     * enclosing scope surrounding the polymorphic-signature call.
552     */
553    Type instantiatePolymorphicSignatureInstance(Env<AttrContext> env,
554                                            MethodSymbol spMethod,  // sig. poly. method or null if none
555                                            Resolve.MethodResolutionContext resolveContext,
556                                            List<Type> argtypes) {
557        final Type restype;
558
559        if (spMethod == null || types.isSameType(spMethod.getReturnType(), syms.objectType, true)) {
560            // The return type of the polymorphic signature is polymorphic,
561            // and is computed from the enclosing tree E, as follows:
562            // if E is a cast, then use the target type of the cast expression
563            // as a return type; if E is an expression statement, the return
564            // type is 'void'; otherwise
565            // the return type is simply 'Object'. A correctness check ensures
566            // that env.next refers to the lexically enclosing environment in
567            // which the polymorphic signature call environment is nested.
568
569            switch (env.next.tree.getTag()) {
570                case TYPECAST:
571                    JCTypeCast castTree = (JCTypeCast)env.next.tree;
572                    restype = (TreeInfo.skipParens(castTree.expr) == env.tree) ?
573                              castTree.clazz.type :
574                              syms.objectType;
575                    break;
576                case EXEC:
577                    JCTree.JCExpressionStatement execTree =
578                            (JCTree.JCExpressionStatement)env.next.tree;
579                    restype = (TreeInfo.skipParens(execTree.expr) == env.tree) ?
580                              syms.voidType :
581                              syms.objectType;
582                    break;
583                default:
584                    restype = syms.objectType;
585            }
586        } else {
587            // The return type of the polymorphic signature is fixed
588            // (not polymorphic)
589            restype = spMethod.getReturnType();
590        }
591
592        List<Type> paramtypes = argtypes.map(new ImplicitArgType(spMethod, resolveContext.step));
593        List<Type> exType = spMethod != null ?
594            spMethod.getThrownTypes() :
595            List.of(syms.throwableType); // make it throw all exceptions
596
597        MethodType mtype = new MethodType(paramtypes,
598                                          restype,
599                                          exType,
600                                          syms.methodClass);
601        return mtype;
602    }
603    //where
604        class ImplicitArgType extends DeferredAttr.DeferredTypeMap {
605
606            public ImplicitArgType(Symbol msym, Resolve.MethodResolutionPhase phase) {
607                (rs.deferredAttr).super(AttrMode.SPECULATIVE, msym, phase);
608            }
609
610            @Override
611            public Type visitClassType(ClassType t, Void aVoid) {
612                return types.erasure(t);
613            }
614
615            @Override
616            public Type visitType(Type t, Void _unused) {
617                if (t.hasTag(DEFERRED)) {
618                    return visit(super.visitType(t, null));
619                } else if (t.hasTag(BOT))
620                    // nulls type as the marker type Null (which has no instances)
621                    // infer as java.lang.Void for now
622                    t = types.boxedClass(syms.voidType).type;
623                return t;
624            }
625        }
626
627    TypeMapping<Void> fromTypeVarFun = new TypeMapping<Void>() {
628        @Override
629        public Type visitTypeVar(TypeVar tv, Void aVoid) {
630            UndetVar uv = new UndetVar(tv, incorporationEngine(), types);
631            if ((tv.tsym.flags() & Flags.THROWS) != 0) {
632                uv.setThrow();
633            }
634            return uv;
635        }
636    };
637
638    /**
639      * This method is used to infer a suitable target SAM in case the original
640      * SAM type contains one or more wildcards. An inference process is applied
641      * so that wildcard bounds, as well as explicit lambda/method ref parameters
642      * (where applicable) are used to constraint the solution.
643      */
644    public Type instantiateFunctionalInterface(DiagnosticPosition pos, Type funcInterface,
645            List<Type> paramTypes, Check.CheckContext checkContext) {
646        if (types.capture(funcInterface) == funcInterface) {
647            //if capture doesn't change the type then return the target unchanged
648            //(this means the target contains no wildcards!)
649            return funcInterface;
650        } else {
651            Type formalInterface = funcInterface.tsym.type;
652            InferenceContext funcInterfaceContext =
653                    new InferenceContext(this, funcInterface.tsym.type.getTypeArguments());
654
655            Assert.check(paramTypes != null);
656            //get constraints from explicit params (this is done by
657            //checking that explicit param types are equal to the ones
658            //in the functional interface descriptors)
659            List<Type> descParameterTypes = types.findDescriptorType(formalInterface).getParameterTypes();
660            if (descParameterTypes.size() != paramTypes.size()) {
661                checkContext.report(pos, diags.fragment("incompatible.arg.types.in.lambda"));
662                return types.createErrorType(funcInterface);
663            }
664            for (Type p : descParameterTypes) {
665                if (!types.isSameType(funcInterfaceContext.asUndetVar(p), paramTypes.head)) {
666                    checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
667                    return types.createErrorType(funcInterface);
668                }
669                paramTypes = paramTypes.tail;
670            }
671
672            List<Type> actualTypeargs = funcInterface.getTypeArguments();
673            for (Type t : funcInterfaceContext.undetvars) {
674                UndetVar uv = (UndetVar)t;
675                Optional<Type> inst = uv.getBounds(InferenceBound.EQ).stream()
676                        .filter(b -> !b.containsAny(formalInterface.getTypeArguments())).findFirst();
677                uv.setInst(inst.orElse(actualTypeargs.head));
678                actualTypeargs = actualTypeargs.tail;
679            }
680
681            Type owntype = funcInterfaceContext.asInstType(formalInterface);
682            if (!chk.checkValidGenericType(owntype)) {
683                //if the inferred functional interface type is not well-formed,
684                //or if it's not a subtype of the original target, issue an error
685                checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
686            }
687            //propagate constraints as per JLS 18.2.1
688            checkContext.compatible(owntype, funcInterface, types.noWarnings);
689            return owntype;
690        }
691    }
692    // </editor-fold>
693
694    // <editor-fold defaultstate="collapsed" desc="Incorporation">
695
696    /**
697     * This class is the root of all incorporation actions.
698     */
699    public abstract class IncorporationAction {
700        UndetVar uv;
701        Type t;
702
703        IncorporationAction(UndetVar uv, Type t) {
704            this.uv = uv;
705            this.t = t;
706        }
707
708        public abstract IncorporationAction dup(UndetVar that);
709
710        /**
711         * Incorporation action entry-point. Subclasses should define the logic associated with
712         * this incorporation action.
713         */
714        abstract void apply(InferenceContext ic, Warner warn);
715
716        /**
717         * Helper function: perform subtyping through incorporation cache.
718         */
719        boolean isSubtype(Type s, Type t, Warner warn) {
720            return doIncorporationOp(IncorporationBinaryOpKind.IS_SUBTYPE, s, t, warn);
721        }
722
723        /**
724         * Helper function: perform type-equivalence through incorporation cache.
725         */
726        boolean isSameType(Type s, Type t) {
727            return doIncorporationOp(IncorporationBinaryOpKind.IS_SAME_TYPE, s, t, null);
728        }
729
730        @Override
731        public String toString() {
732            return String.format("%s[undet=%s,t=%s]", getClass().getSimpleName(), uv.qtype, t);
733        }
734    }
735
736    /**
737     * Bound-check incorporation action. A newly added bound is checked against existing bounds,
738     * to verify its compatibility; each bound is checked using either subtyping or type equivalence.
739     */
740    class CheckBounds extends IncorporationAction {
741
742        InferenceBound from;
743        BiFunction<InferenceContext, Type, Type> typeFunc;
744        BiPredicate<InferenceContext, Type> optFilter;
745
746        CheckBounds(UndetVar uv, Type t, InferenceBound from) {
747            this(uv, t, InferenceContext::asUndetVar, null, from);
748        }
749
750        CheckBounds(UndetVar uv, Type t, BiFunction<InferenceContext, Type, Type> typeFunc,
751                    BiPredicate<InferenceContext, Type> typeFilter, InferenceBound from) {
752            super(uv, t);
753            this.from = from;
754            this.typeFunc = typeFunc;
755            this.optFilter = typeFilter;
756        }
757
758        @Override
759        public IncorporationAction dup(UndetVar that) {
760            return new CheckBounds(that, t, typeFunc, optFilter, from);
761        }
762
763        @Override
764        void apply(InferenceContext inferenceContext, Warner warn) {
765            t = typeFunc.apply(inferenceContext, t);
766            if (optFilter != null && optFilter.test(inferenceContext, t)) return;
767            for (InferenceBound to : boundsToCheck()) {
768                for (Type b : uv.getBounds(to)) {
769                    b = typeFunc.apply(inferenceContext, b);
770                    if (optFilter != null && optFilter.test(inferenceContext, b)) continue;
771                    boolean success = checkBound(t, b, from, to, warn);
772                    if (!success) {
773                        report(from, to);
774                    }
775                }
776            }
777        }
778
779        /**
780         * The list of bound kinds to be checked.
781         */
782        EnumSet<InferenceBound> boundsToCheck() {
783            return (from == InferenceBound.EQ) ?
784                            EnumSet.allOf(InferenceBound.class) :
785                            EnumSet.complementOf(EnumSet.of(from));
786        }
787
788        /**
789         * Is source type 's' compatible with target type 't' given source and target bound kinds?
790         */
791        boolean checkBound(Type s, Type t, InferenceBound ib_s, InferenceBound ib_t, Warner warn) {
792            if (ib_s.lessThan(ib_t)) {
793                return isSubtype(s, t, warn);
794            } else if (ib_t.lessThan(ib_s)) {
795                return isSubtype(t, s, warn);
796            } else {
797                return isSameType(s, t);
798            }
799        }
800
801        /**
802         * Report a bound check error.
803         */
804        void report(InferenceBound from, InferenceBound to) {
805            //this is a workaround to preserve compatibility with existing messages
806            if (from == to) {
807                reportBoundError(uv, from);
808            } else if (from == InferenceBound.LOWER || to == InferenceBound.EQ) {
809                reportBoundError(uv, to, from);
810            } else {
811                reportBoundError(uv, from, to);
812            }
813        }
814
815        @Override
816        public String toString() {
817            return String.format("%s[undet=%s,t=%s,bound=%s]", getClass().getSimpleName(), uv.qtype, t, from);
818        }
819    }
820
821    /**
822     * Custom check executed by the legacy incorporation engine. Newly added bounds are checked
823     * against existing eq bounds.
824     */
825    class EqCheckLegacy extends CheckBounds {
826        EqCheckLegacy(UndetVar uv, Type t, InferenceBound from) {
827            super(uv, t, InferenceContext::asInstType, InferenceContext::free, from);
828        }
829
830        @Override
831        public IncorporationAction dup(UndetVar that) {
832            return new EqCheckLegacy(that, t, from);
833        }
834
835        @Override
836        EnumSet<InferenceBound> boundsToCheck() {
837            return (from == InferenceBound.EQ) ?
838                            EnumSet.allOf(InferenceBound.class) :
839                            EnumSet.of(InferenceBound.EQ);
840        }
841    }
842
843    /**
844     * Check that the inferred type conforms to all bounds.
845     */
846    class CheckInst extends CheckBounds {
847
848        EnumSet<InferenceBound> to;
849
850        CheckInst(UndetVar uv, InferenceBound ib, InferenceBound... rest) {
851            this(uv, EnumSet.of(ib, rest));
852        }
853
854        CheckInst(UndetVar uv, EnumSet<InferenceBound> to) {
855            super(uv, uv.getInst(), InferenceBound.EQ);
856            this.to = to;
857        }
858
859        @Override
860        public IncorporationAction dup(UndetVar that) {
861            return new CheckInst(that, to);
862        }
863
864        @Override
865        EnumSet<InferenceBound> boundsToCheck() {
866            return to;
867        }
868
869        @Override
870        void report(InferenceBound from, InferenceBound to) {
871            reportInstError(uv, to);
872        }
873    }
874
875    /**
876     * Replace undetvars in bounds and check that the inferred type conforms to all bounds.
877     */
878    class SubstBounds extends CheckInst {
879        SubstBounds(UndetVar uv) {
880            super(uv, InferenceBound.LOWER, InferenceBound.EQ, InferenceBound.UPPER);
881        }
882
883        @Override
884        public IncorporationAction dup(UndetVar that) {
885            return new SubstBounds(that);
886        }
887
888        @Override
889        void apply(InferenceContext inferenceContext, Warner warn) {
890            for (Type undet : inferenceContext.undetvars) {
891                //we could filter out variables not mentioning uv2...
892                UndetVar uv2 = (UndetVar)undet;
893                uv2.substBounds(List.of(uv.qtype), List.of(uv.getInst()), types);
894                checkCompatibleUpperBounds(uv2, inferenceContext);
895            }
896            super.apply(inferenceContext, warn);
897        }
898
899        /**
900         * Make sure that the upper bounds we got so far lead to a solvable inference
901         * variable by making sure that a glb exists.
902         */
903        void checkCompatibleUpperBounds(UndetVar uv, InferenceContext inferenceContext) {
904            List<Type> hibounds =
905                    Type.filter(uv.getBounds(InferenceBound.UPPER), new BoundFilter(inferenceContext));
906            final Type hb;
907            if (hibounds.isEmpty())
908                hb = syms.objectType;
909            else if (hibounds.tail.isEmpty())
910                hb = hibounds.head;
911            else
912                hb = types.glb(hibounds);
913            if (hb == null || hb.isErroneous())
914                reportBoundError(uv, InferenceBound.UPPER);
915        }
916    }
917
918    /**
919     * Perform pairwise comparison between common generic supertypes of two upper bounds.
920     */
921    class CheckUpperBounds extends IncorporationAction {
922
923        public CheckUpperBounds(UndetVar uv, Type t) {
924            super(uv, t);
925        }
926
927        @Override
928        public IncorporationAction dup(UndetVar that) {
929            return new CheckUpperBounds(that, t);
930        }
931
932        @Override
933        void apply(InferenceContext inferenceContext, Warner warn) {
934            List<Type> boundList = uv.getBounds(InferenceBound.UPPER).stream()
935                    .collect(types.closureCollector(true, types::isSameType));
936            for (Type b2 : boundList) {
937                if (t == b2) continue;
938                    /* This wildcard check is temporary workaround. This code may need to be
939                     * revisited once spec bug JDK-7034922 is fixed.
940                     */
941                if (t != b2 && !t.hasTag(WILDCARD) && !b2.hasTag(WILDCARD)) {
942                    for (Pair<Type, Type> commonSupers : getParameterizedSupers(t, b2)) {
943                        List<Type> allParamsSuperBound1 = commonSupers.fst.allparams();
944                        List<Type> allParamsSuperBound2 = commonSupers.snd.allparams();
945                        while (allParamsSuperBound1.nonEmpty() && allParamsSuperBound2.nonEmpty()) {
946                            //traverse the list of all params comparing them
947                            if (!allParamsSuperBound1.head.hasTag(WILDCARD) &&
948                                    !allParamsSuperBound2.head.hasTag(WILDCARD)) {
949                                if (!isSameType(inferenceContext.asUndetVar(allParamsSuperBound1.head),
950                                        inferenceContext.asUndetVar(allParamsSuperBound2.head))) {
951                                    reportBoundError(uv, InferenceBound.UPPER);
952                                }
953                            }
954                            allParamsSuperBound1 = allParamsSuperBound1.tail;
955                            allParamsSuperBound2 = allParamsSuperBound2.tail;
956                        }
957                        Assert.check(allParamsSuperBound1.isEmpty() && allParamsSuperBound2.isEmpty());
958                    }
959                }
960            }
961        }
962    }
963
964    /**
965     * Perform propagation of bounds. Given a constraint of the kind {@code alpha <: T}, three
966     * kind of propagation occur:
967     *
968     * <li>T is copied into all matching bounds (i.e. lower/eq bounds) B of alpha such that B=beta (forward propagation)</li>
969     * <li>if T=beta, matching bounds (i.e. upper bounds) of beta are copied into alpha (backwards propagation)</li>
970     * <li>if T=beta, sets a symmetric bound on beta (i.e. beta :> alpha) (symmetric propagation) </li>
971     */
972    class PropagateBounds extends IncorporationAction {
973
974        InferenceBound ib;
975
976        public PropagateBounds(UndetVar uv, Type t, InferenceBound ib) {
977            super(uv, t);
978            this.ib = ib;
979        }
980
981        @Override
982        public IncorporationAction dup(UndetVar that) {
983            return new PropagateBounds(that, t, ib);
984        }
985
986        void apply(InferenceContext inferenceContext, Warner warner) {
987            Type undetT = inferenceContext.asUndetVar(t);
988            if (undetT.hasTag(UNDETVAR) && !((UndetVar)undetT).isCaptured()) {
989                UndetVar uv2 = (UndetVar)undetT;
990                //symmetric propagation
991                uv2.addBound(ib.complement(), uv, types);
992                //backwards propagation
993                for (InferenceBound ib2 : backwards()) {
994                    for (Type b : uv2.getBounds(ib2)) {
995                        uv.addBound(ib2, b, types);
996                    }
997                }
998            }
999            //forward propagation
1000            for (InferenceBound ib2 : forward()) {
1001                for (Type l : uv.getBounds(ib2)) {
1002                    Type undet = inferenceContext.asUndetVar(l);
1003                    if (undet.hasTag(TypeTag.UNDETVAR) && !((UndetVar)undet).isCaptured()) {
1004                        UndetVar uv2 = (UndetVar)undet;
1005                        uv2.addBound(ib, inferenceContext.asInstType(t), types);
1006                    }
1007                }
1008            }
1009        }
1010
1011        EnumSet<InferenceBound> forward() {
1012            return (ib == InferenceBound.EQ) ?
1013                    EnumSet.of(InferenceBound.EQ) : EnumSet.complementOf(EnumSet.of(ib));
1014        }
1015
1016        EnumSet<InferenceBound> backwards() {
1017            return (ib == InferenceBound.EQ) ?
1018                    EnumSet.allOf(InferenceBound.class) : EnumSet.of(ib);
1019        }
1020
1021        @Override
1022        public String toString() {
1023            return String.format("%s[undet=%s,t=%s,bound=%s]", getClass().getSimpleName(), uv.qtype, t, ib);
1024        }
1025    }
1026
1027    /**
1028     * This class models an incorporation engine. The engine is responsible for listening to
1029     * changes in inference variables and register incorporation actions accordingly.
1030     */
1031    abstract class AbstractIncorporationEngine implements UndetVarListener {
1032
1033        @Override
1034        public void varInstantiated(UndetVar uv) {
1035            uv.incorporationActions.addFirst(new SubstBounds(uv));
1036        }
1037
1038        @Override
1039        public void varBoundChanged(UndetVar uv, InferenceBound ib, Type bound, boolean update) {
1040            if (uv.isCaptured()) return;
1041            uv.incorporationActions.addAll(getIncorporationActions(uv, ib, bound, update));
1042        }
1043
1044        abstract List<IncorporationAction> getIncorporationActions(UndetVar uv, InferenceBound ib, Type t, boolean update);
1045    }
1046
1047    /**
1048     * A legacy incorporation engine. Used for source <= 7.
1049     */
1050    AbstractIncorporationEngine legacyEngine = new AbstractIncorporationEngine() {
1051
1052        List<IncorporationAction> getIncorporationActions(UndetVar uv, InferenceBound ib, Type t, boolean update) {
1053            ListBuffer<IncorporationAction> actions = new ListBuffer<>();
1054            Type inst = uv.getInst();
1055            if (inst != null) {
1056                actions.add(new CheckInst(uv, ib));
1057            }
1058            actions.add(new EqCheckLegacy(uv, t, ib));
1059            return actions.toList();
1060        }
1061    };
1062
1063    /**
1064     * The standard incorporation engine. Used for source >= 8.
1065     */
1066    AbstractIncorporationEngine graphEngine = new AbstractIncorporationEngine() {
1067
1068        @Override
1069        List<IncorporationAction> getIncorporationActions(UndetVar uv, InferenceBound ib, Type t, boolean update) {
1070            ListBuffer<IncorporationAction> actions = new ListBuffer<>();
1071            Type inst = uv.getInst();
1072            if (inst != null) {
1073                actions.add(new CheckInst(uv, ib));
1074            }
1075            actions.add(new CheckBounds(uv, t, ib));
1076
1077            if (update) {
1078                return actions.toList();
1079            }
1080
1081            if (ib == InferenceBound.UPPER) {
1082                actions.add(new CheckUpperBounds(uv, t));
1083            }
1084
1085            actions.add(new PropagateBounds(uv, t, ib));
1086
1087            return actions.toList();
1088        }
1089    };
1090
1091    /**
1092     * Get the incorporation engine to be used in this compilation.
1093     */
1094    AbstractIncorporationEngine incorporationEngine() {
1095        return allowGraphInference ? graphEngine : legacyEngine;
1096    }
1097
1098    /** max number of incorporation rounds. */
1099    static final int MAX_INCORPORATION_STEPS = 10000;
1100
1101    /**
1102     * Check bounds and perform incorporation.
1103     */
1104    void doIncorporation(InferenceContext inferenceContext, Warner warn) throws InferenceException {
1105        try {
1106            boolean progress = true;
1107            int round = 0;
1108            while (progress && round < MAX_INCORPORATION_STEPS) {
1109                progress = false;
1110                for (Type t : inferenceContext.undetvars) {
1111                    UndetVar uv = (UndetVar)t;
1112                    if (!uv.incorporationActions.isEmpty()) {
1113                        progress = true;
1114                        uv.incorporationActions.removeFirst().apply(inferenceContext, warn);
1115                    }
1116                }
1117                round++;
1118            }
1119        } finally {
1120            incorporationCache.clear();
1121        }
1122    }
1123
1124    /* If for two types t and s there is a least upper bound that contains
1125     * parameterized types G1, G2 ... Gn, then there exists supertypes of 't' of the form
1126     * G1<T1, ..., Tn>, G2<T1, ..., Tn>, ... Gn<T1, ..., Tn> and supertypes of 's' of the form
1127     * G1<S1, ..., Sn>, G2<S1, ..., Sn>, ... Gn<S1, ..., Sn> which will be returned by this method.
1128     * If no such common supertypes exists then an empty list is returned.
1129     *
1130     * As an example for the following input:
1131     *
1132     * t = java.util.ArrayList<java.lang.String>
1133     * s = java.util.List<T>
1134     *
1135     * we get this ouput (singleton list):
1136     *
1137     * [Pair[java.util.List<java.lang.String>,java.util.List<T>]]
1138     */
1139    private List<Pair<Type, Type>> getParameterizedSupers(Type t, Type s) {
1140        Type lubResult = types.lub(t, s);
1141        if (lubResult == syms.errType || lubResult == syms.botType) {
1142            return List.nil();
1143        }
1144        List<Type> supertypesToCheck = lubResult.isIntersection() ?
1145                ((IntersectionClassType)lubResult).getComponents() :
1146                List.of(lubResult);
1147        ListBuffer<Pair<Type, Type>> commonSupertypes = new ListBuffer<>();
1148        for (Type sup : supertypesToCheck) {
1149            if (sup.isParameterized()) {
1150                Type asSuperOfT = asSuper(t, sup);
1151                Type asSuperOfS = asSuper(s, sup);
1152                commonSupertypes.add(new Pair<>(asSuperOfT, asSuperOfS));
1153            }
1154        }
1155        return commonSupertypes.toList();
1156    }
1157    //where
1158        private Type asSuper(Type t, Type sup) {
1159            return (sup.hasTag(ARRAY)) ?
1160                    new ArrayType(asSuper(types.elemtype(t), types.elemtype(sup)), syms.arrayClass) :
1161                    types.asSuper(t, sup.tsym);
1162        }
1163
1164    boolean doIncorporationOp(IncorporationBinaryOpKind opKind, Type op1, Type op2, Warner warn) {
1165            IncorporationBinaryOp newOp = new IncorporationBinaryOp(opKind, op1, op2);
1166            Boolean res = incorporationCache.get(newOp);
1167            if (res == null) {
1168                incorporationCache.put(newOp, res = newOp.apply(warn));
1169            }
1170            return res;
1171        }
1172
1173    /**
1174     * Three kinds of basic operation are supported as part of an incorporation step:
1175     * (i) subtype check, (ii) same type check and (iii) bound addition (either
1176     * upper/lower/eq bound).
1177     */
1178    enum IncorporationBinaryOpKind {
1179        IS_SUBTYPE() {
1180            @Override
1181            boolean apply(Type op1, Type op2, Warner warn, Types types) {
1182                return types.isSubtypeUnchecked(op1, op2, warn);
1183            }
1184        },
1185        IS_SAME_TYPE() {
1186            @Override
1187            boolean apply(Type op1, Type op2, Warner warn, Types types) {
1188                return types.isSameType(op1, op2);
1189            }
1190        };
1191
1192        abstract boolean apply(Type op1, Type op2, Warner warn, Types types);
1193    }
1194
1195    /**
1196     * This class encapsulates a basic incorporation operation; incorporation
1197     * operations takes two type operands and a kind. Each operation performed
1198     * during an incorporation round is stored in a cache, so that operations
1199     * are not executed unnecessarily (which would potentially lead to adding
1200     * same bounds over and over).
1201     */
1202    class IncorporationBinaryOp {
1203
1204        IncorporationBinaryOpKind opKind;
1205        Type op1;
1206        Type op2;
1207
1208        IncorporationBinaryOp(IncorporationBinaryOpKind opKind, Type op1, Type op2) {
1209            this.opKind = opKind;
1210            this.op1 = op1;
1211            this.op2 = op2;
1212        }
1213
1214        @Override
1215        public boolean equals(Object o) {
1216            if (!(o instanceof IncorporationBinaryOp)) {
1217                return false;
1218            } else {
1219                IncorporationBinaryOp that = (IncorporationBinaryOp)o;
1220                return opKind == that.opKind &&
1221                        types.isSameType(op1, that.op1, true) &&
1222                        types.isSameType(op2, that.op2, true);
1223            }
1224        }
1225
1226        @Override
1227        public int hashCode() {
1228            int result = opKind.hashCode();
1229            result *= 127;
1230            result += types.hashCode(op1);
1231            result *= 127;
1232            result += types.hashCode(op2);
1233            return result;
1234        }
1235
1236        boolean apply(Warner warn) {
1237            return opKind.apply(op1, op2, warn, types);
1238        }
1239    }
1240
1241    /** an incorporation cache keeps track of all executed incorporation-related operations */
1242    Map<IncorporationBinaryOp, Boolean> incorporationCache = new HashMap<>();
1243
1244    protected static class BoundFilter implements Filter<Type> {
1245
1246        InferenceContext inferenceContext;
1247
1248        public BoundFilter(InferenceContext inferenceContext) {
1249            this.inferenceContext = inferenceContext;
1250        }
1251
1252        @Override
1253        public boolean accepts(Type t) {
1254            return !t.isErroneous() && !inferenceContext.free(t) &&
1255                    !t.hasTag(BOT);
1256        }
1257    }
1258
1259    /**
1260     * Incorporation error: mismatch between inferred type and given bound.
1261     */
1262    void reportInstError(UndetVar uv, InferenceBound ib) {
1263        reportInferenceError(
1264                String.format("inferred.do.not.conform.to.%s.bounds", StringUtils.toLowerCase(ib.name())),
1265                uv.getInst(),
1266                uv.getBounds(ib));
1267    }
1268
1269    /**
1270     * Incorporation error: mismatch between two (or more) bounds of same kind.
1271     */
1272    void reportBoundError(UndetVar uv, InferenceBound ib) {
1273        reportInferenceError(
1274                String.format("incompatible.%s.bounds", StringUtils.toLowerCase(ib.name())),
1275                uv.qtype,
1276                uv.getBounds(ib));
1277    }
1278
1279    /**
1280     * Incorporation error: mismatch between two (or more) bounds of different kinds.
1281     */
1282    void reportBoundError(UndetVar uv, InferenceBound ib1, InferenceBound ib2) {
1283        reportInferenceError(
1284                String.format("incompatible.%s.%s.bounds",
1285                        StringUtils.toLowerCase(ib1.name()),
1286                        StringUtils.toLowerCase(ib2.name())),
1287                uv.qtype,
1288                uv.getBounds(ib1),
1289                uv.getBounds(ib2));
1290    }
1291
1292    /**
1293     * Helper method: reports an inference error.
1294     */
1295    void reportInferenceError(String key, Object... args) {
1296        throw inferenceException.setMessage(key, args);
1297    }
1298    // </editor-fold>
1299
1300    // <editor-fold defaultstate="collapsed" desc="Inference engine">
1301    /**
1302     * Graph inference strategy - act as an input to the inference solver; a strategy is
1303     * composed of two ingredients: (i) find a node to solve in the inference graph,
1304     * and (ii) tell th engine when we are done fixing inference variables
1305     */
1306    interface GraphStrategy {
1307
1308        /**
1309         * A NodeNotFoundException is thrown whenever an inference strategy fails
1310         * to pick the next node to solve in the inference graph.
1311         */
1312        public static class NodeNotFoundException extends RuntimeException {
1313            private static final long serialVersionUID = 0;
1314
1315            InferenceGraph graph;
1316
1317            public NodeNotFoundException(InferenceGraph graph) {
1318                this.graph = graph;
1319            }
1320        }
1321        /**
1322         * Pick the next node (leaf) to solve in the graph
1323         */
1324        Node pickNode(InferenceGraph g) throws NodeNotFoundException;
1325        /**
1326         * Is this the last step?
1327         */
1328        boolean done();
1329    }
1330
1331    /**
1332     * Simple solver strategy class that locates all leaves inside a graph
1333     * and picks the first leaf as the next node to solve
1334     */
1335    abstract class LeafSolver implements GraphStrategy {
1336        public Node pickNode(InferenceGraph g) {
1337            if (g.nodes.isEmpty()) {
1338                //should not happen
1339                throw new NodeNotFoundException(g);
1340            }
1341            return g.nodes.get(0);
1342        }
1343    }
1344
1345    /**
1346     * This solver uses an heuristic to pick the best leaf - the heuristic
1347     * tries to select the node that has maximal probability to contain one
1348     * or more inference variables in a given list
1349     */
1350    abstract class BestLeafSolver extends LeafSolver {
1351
1352        /** list of ivars of which at least one must be solved */
1353        List<Type> varsToSolve;
1354
1355        BestLeafSolver(List<Type> varsToSolve) {
1356            this.varsToSolve = varsToSolve;
1357        }
1358
1359        /**
1360         * Computes a path that goes from a given node to the leafs in the graph.
1361         * Typically this will start from a node containing a variable in
1362         * {@code varsToSolve}. For any given path, the cost is computed as the total
1363         * number of type-variables that should be eagerly instantiated across that path.
1364         */
1365        Pair<List<Node>, Integer> computeTreeToLeafs(Node n) {
1366            Pair<List<Node>, Integer> cachedPath = treeCache.get(n);
1367            if (cachedPath == null) {
1368                //cache miss
1369                if (n.isLeaf()) {
1370                    //if leaf, stop
1371                    cachedPath = new Pair<>(List.of(n), n.data.length());
1372                } else {
1373                    //if non-leaf, proceed recursively
1374                    Pair<List<Node>, Integer> path = new Pair<>(List.of(n), n.data.length());
1375                    for (Node n2 : n.getAllDependencies()) {
1376                        if (n2 == n) continue;
1377                        Pair<List<Node>, Integer> subpath = computeTreeToLeafs(n2);
1378                        path = new Pair<>(path.fst.prependList(subpath.fst),
1379                                          path.snd + subpath.snd);
1380                    }
1381                    cachedPath = path;
1382                }
1383                //save results in cache
1384                treeCache.put(n, cachedPath);
1385            }
1386            return cachedPath;
1387        }
1388
1389        /** cache used to avoid redundant computation of tree costs */
1390        final Map<Node, Pair<List<Node>, Integer>> treeCache = new HashMap<>();
1391
1392        /** constant value used to mark non-existent paths */
1393        final Pair<List<Node>, Integer> noPath = new Pair<>(null, Integer.MAX_VALUE);
1394
1395        /**
1396         * Pick the leaf that minimize cost
1397         */
1398        @Override
1399        public Node pickNode(final InferenceGraph g) {
1400            treeCache.clear(); //graph changes at every step - cache must be cleared
1401            Pair<List<Node>, Integer> bestPath = noPath;
1402            for (Node n : g.nodes) {
1403                if (!Collections.disjoint(n.data, varsToSolve)) {
1404                    Pair<List<Node>, Integer> path = computeTreeToLeafs(n);
1405                    //discard all paths containing at least a node in the
1406                    //closure computed above
1407                    if (path.snd < bestPath.snd) {
1408                        bestPath = path;
1409                    }
1410                }
1411            }
1412            if (bestPath == noPath) {
1413                //no path leads there
1414                throw new NodeNotFoundException(g);
1415            }
1416            return bestPath.fst.head;
1417        }
1418    }
1419
1420    /**
1421     * The inference process can be thought of as a sequence of steps. Each step
1422     * instantiates an inference variable using a subset of the inference variable
1423     * bounds, if certain condition are met. Decisions such as the sequence in which
1424     * steps are applied, or which steps are to be applied are left to the inference engine.
1425     */
1426    enum InferenceStep {
1427
1428        /**
1429         * Instantiate an inference variables using one of its (ground) equality
1430         * constraints
1431         */
1432        EQ(InferenceBound.EQ) {
1433            @Override
1434            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1435                return filterBounds(uv, inferenceContext).head;
1436            }
1437        },
1438        /**
1439         * Instantiate an inference variables using its (ground) lower bounds. Such
1440         * bounds are merged together using lub().
1441         */
1442        LOWER(InferenceBound.LOWER) {
1443            @Override
1444            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1445                Infer infer = inferenceContext.infer;
1446                List<Type> lobounds = filterBounds(uv, inferenceContext);
1447                //note: lobounds should have at least one element
1448                Type owntype = lobounds.tail.tail == null  ? lobounds.head : infer.types.lub(lobounds);
1449                if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
1450                    throw infer.inferenceException
1451                        .setMessage("no.unique.minimal.instance.exists",
1452                                    uv.qtype, lobounds);
1453                } else {
1454                    return owntype;
1455                }
1456            }
1457        },
1458        /**
1459         * Infer uninstantiated/unbound inference variables occurring in 'throws'
1460         * clause as RuntimeException
1461         */
1462        THROWS(InferenceBound.UPPER) {
1463            @Override
1464            public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1465                if (!t.isThrows()) {
1466                    //not a throws undet var
1467                    return false;
1468                }
1469                Types types = inferenceContext.types;
1470                Symtab syms = inferenceContext.infer.syms;
1471                return t.getBounds(InferenceBound.UPPER).stream()
1472                        .filter(b -> !inferenceContext.free(b))
1473                        .allMatch(u -> types.isSubtype(syms.runtimeExceptionType, u));
1474            }
1475
1476            @Override
1477            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1478                return inferenceContext.infer.syms.runtimeExceptionType;
1479            }
1480        },
1481        /**
1482         * Instantiate an inference variables using its (ground) upper bounds. Such
1483         * bounds are merged together using glb().
1484         */
1485        UPPER(InferenceBound.UPPER) {
1486            @Override
1487            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1488                Infer infer = inferenceContext.infer;
1489                List<Type> hibounds = filterBounds(uv, inferenceContext);
1490                //note: hibounds should have at least one element
1491                Type owntype = hibounds.tail.tail == null  ? hibounds.head : infer.types.glb(hibounds);
1492                if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
1493                    throw infer.inferenceException
1494                        .setMessage("no.unique.maximal.instance.exists",
1495                                    uv.qtype, hibounds);
1496                } else {
1497                    return owntype;
1498                }
1499            }
1500        },
1501        /**
1502         * Like the former; the only difference is that this step can only be applied
1503         * if all upper bounds are ground.
1504         */
1505        UPPER_LEGACY(InferenceBound.UPPER) {
1506            @Override
1507            public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1508                return !inferenceContext.free(t.getBounds(ib)) && !t.isCaptured();
1509            }
1510
1511            @Override
1512            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1513                return UPPER.solve(uv, inferenceContext);
1514            }
1515        },
1516        /**
1517         * Like the former; the only difference is that this step can only be applied
1518         * if all upper/lower bounds are ground.
1519         */
1520        CAPTURED(InferenceBound.UPPER) {
1521            @Override
1522            public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1523                return t.isCaptured() &&
1524                        !inferenceContext.free(t.getBounds(InferenceBound.UPPER, InferenceBound.LOWER));
1525            }
1526
1527            @Override
1528            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1529                Infer infer = inferenceContext.infer;
1530                Type upper = UPPER.filterBounds(uv, inferenceContext).nonEmpty() ?
1531                        UPPER.solve(uv, inferenceContext) :
1532                        infer.syms.objectType;
1533                Type lower = LOWER.filterBounds(uv, inferenceContext).nonEmpty() ?
1534                        LOWER.solve(uv, inferenceContext) :
1535                        infer.syms.botType;
1536                CapturedType prevCaptured = (CapturedType)uv.qtype;
1537                return new CapturedType(prevCaptured.tsym.name, prevCaptured.tsym.owner,
1538                                        upper, lower, prevCaptured.wildcard);
1539            }
1540        };
1541
1542        final InferenceBound ib;
1543
1544        InferenceStep(InferenceBound ib) {
1545            this.ib = ib;
1546        }
1547
1548        /**
1549         * Find an instantiated type for a given inference variable within
1550         * a given inference context
1551         */
1552        abstract Type solve(UndetVar uv, InferenceContext inferenceContext);
1553
1554        /**
1555         * Can the inference variable be instantiated using this step?
1556         */
1557        public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1558            return filterBounds(t, inferenceContext).nonEmpty() && !t.isCaptured();
1559        }
1560
1561        /**
1562         * Return the subset of ground bounds in a given bound set (i.e. eq/lower/upper)
1563         */
1564        List<Type> filterBounds(UndetVar uv, InferenceContext inferenceContext) {
1565            return Type.filter(uv.getBounds(ib), new BoundFilter(inferenceContext));
1566        }
1567    }
1568
1569    /**
1570     * This enumeration defines the sequence of steps to be applied when the
1571     * solver works in legacy mode. The steps in this enumeration reflect
1572     * the behavior of old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
1573     */
1574    enum LegacyInferenceSteps {
1575
1576        EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
1577        EQ_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.UPPER_LEGACY));
1578
1579        final EnumSet<InferenceStep> steps;
1580
1581        LegacyInferenceSteps(EnumSet<InferenceStep> steps) {
1582            this.steps = steps;
1583        }
1584    }
1585
1586    /**
1587     * This enumeration defines the sequence of steps to be applied when the
1588     * graph solver is used. This order is defined so as to maximize compatibility
1589     * w.r.t. old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
1590     */
1591    enum GraphInferenceSteps {
1592
1593        EQ(EnumSet.of(InferenceStep.EQ)),
1594        EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
1595        EQ_LOWER_THROWS_UPPER_CAPTURED(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER, InferenceStep.UPPER, InferenceStep.THROWS, InferenceStep.CAPTURED));
1596
1597        final EnumSet<InferenceStep> steps;
1598
1599        GraphInferenceSteps(EnumSet<InferenceStep> steps) {
1600            this.steps = steps;
1601        }
1602    }
1603
1604    /**
1605     * There are two kinds of dependencies between inference variables. The basic
1606     * kind of dependency (or bound dependency) arises when a variable mention
1607     * another variable in one of its bounds. There's also a more subtle kind
1608     * of dependency that arises when a variable 'might' lead to better constraints
1609     * on another variable (this is typically the case with variables holding up
1610     * stuck expressions).
1611     */
1612    enum DependencyKind implements GraphUtils.DependencyKind {
1613
1614        /** bound dependency */
1615        BOUND("dotted"),
1616        /** stuck dependency */
1617        STUCK("dashed");
1618
1619        final String dotSyle;
1620
1621        private DependencyKind(String dotSyle) {
1622            this.dotSyle = dotSyle;
1623        }
1624    }
1625
1626    /**
1627     * This is the graph inference solver - the solver organizes all inference variables in
1628     * a given inference context by bound dependencies - in the general case, such dependencies
1629     * would lead to a cyclic directed graph (hence the name); the dependency info is used to build
1630     * an acyclic graph, where all cyclic variables are bundled together. An inference
1631     * step corresponds to solving a node in the acyclic graph - this is done by
1632     * relying on a given strategy (see GraphStrategy).
1633     */
1634    class GraphSolver {
1635
1636        InferenceContext inferenceContext;
1637        Warner warn;
1638
1639        GraphSolver(InferenceContext inferenceContext, Warner warn) {
1640            this.inferenceContext = inferenceContext;
1641            this.warn = warn;
1642        }
1643
1644        /**
1645         * Solve variables in a given inference context. The amount of variables
1646         * to be solved, and the way in which the underlying acyclic graph is explored
1647         * depends on the selected solver strategy.
1648         */
1649        void solve(GraphStrategy sstrategy) {
1650            doIncorporation(inferenceContext, warn); //initial propagation of bounds
1651            InferenceGraph inferenceGraph = new InferenceGraph();
1652            while (!sstrategy.done()) {
1653                if (dependenciesFolder != null) {
1654                    //add this graph to the pending queue
1655                    pendingGraphs = pendingGraphs.prepend(inferenceGraph.toDot());
1656                }
1657                InferenceGraph.Node nodeToSolve = sstrategy.pickNode(inferenceGraph);
1658                List<Type> varsToSolve = List.from(nodeToSolve.data);
1659                List<Type> saved_undet = inferenceContext.save();
1660                try {
1661                    //repeat until all variables are solved
1662                    outer: while (Type.containsAny(inferenceContext.restvars(), varsToSolve)) {
1663                        //for each inference phase
1664                        for (GraphInferenceSteps step : GraphInferenceSteps.values()) {
1665                            if (inferenceContext.solveBasic(varsToSolve, step.steps).nonEmpty()) {
1666                                doIncorporation(inferenceContext, warn);
1667                                continue outer;
1668                            }
1669                        }
1670                        //no progress
1671                        throw inferenceException.setMessage();
1672                    }
1673                }
1674                catch (InferenceException ex) {
1675                    //did we fail because of interdependent ivars?
1676                    inferenceContext.rollback(saved_undet);
1677                    instantiateAsUninferredVars(varsToSolve, inferenceContext);
1678                    doIncorporation(inferenceContext, warn);
1679                }
1680                inferenceGraph.deleteNode(nodeToSolve);
1681            }
1682        }
1683
1684        /**
1685         * The dependencies between the inference variables that need to be solved
1686         * form a (possibly cyclic) graph. This class reduces the original dependency graph
1687         * to an acyclic version, where cyclic nodes are folded into a single 'super node'.
1688         */
1689        class InferenceGraph {
1690
1691            /**
1692             * This class represents a node in the graph. Each node corresponds
1693             * to an inference variable and has edges (dependencies) on other
1694             * nodes. The node defines an entry point that can be used to receive
1695             * updates on the structure of the graph this node belongs to (used to
1696             * keep dependencies in sync).
1697             */
1698            class Node extends GraphUtils.TarjanNode<ListBuffer<Type>, Node> implements DottableNode<ListBuffer<Type>, Node> {
1699
1700                /** node dependencies */
1701                Set<Node> deps;
1702
1703                Node(Type ivar) {
1704                    super(ListBuffer.of(ivar));
1705                    this.deps = new HashSet<>();
1706                }
1707
1708                @Override
1709                public GraphUtils.DependencyKind[] getSupportedDependencyKinds() {
1710                    return new GraphUtils.DependencyKind[] { DependencyKind.BOUND };
1711                }
1712
1713                public Iterable<? extends Node> getAllDependencies() {
1714                    return deps;
1715                }
1716
1717                @Override
1718                public Collection<? extends Node> getDependenciesByKind(GraphUtils.DependencyKind dk) {
1719                    if (dk == DependencyKind.BOUND) {
1720                        return deps;
1721                    } else {
1722                        throw new IllegalStateException();
1723                    }
1724                }
1725
1726                /**
1727                 * Adds dependency with given kind.
1728                 */
1729                protected void addDependency(Node depToAdd) {
1730                    deps.add(depToAdd);
1731                }
1732
1733                /**
1734                 * Add multiple dependencies of same given kind.
1735                 */
1736                protected void addDependencies(Set<Node> depsToAdd) {
1737                    for (Node n : depsToAdd) {
1738                        addDependency(n);
1739                    }
1740                }
1741
1742                /**
1743                 * Remove a dependency, regardless of its kind.
1744                 */
1745                protected boolean removeDependency(Node n) {
1746                    return deps.remove(n);
1747                }
1748
1749                /**
1750                 * Compute closure of a give node, by recursively walking
1751                 * through all its dependencies (of given kinds)
1752                 */
1753                protected Set<Node> closure() {
1754                    boolean progress = true;
1755                    Set<Node> closure = new HashSet<>();
1756                    closure.add(this);
1757                    while (progress) {
1758                        progress = false;
1759                        for (Node n1 : new HashSet<>(closure)) {
1760                            progress = closure.addAll(n1.deps);
1761                        }
1762                    }
1763                    return closure;
1764                }
1765
1766                /**
1767                 * Is this node a leaf? This means either the node has no dependencies,
1768                 * or it just has self-dependencies.
1769                 */
1770                protected boolean isLeaf() {
1771                    //no deps, or only one self dep
1772                    if (deps.isEmpty()) return true;
1773                    for (Node n : deps) {
1774                        if (n != this) {
1775                            return false;
1776                        }
1777                    }
1778                    return true;
1779                }
1780
1781                /**
1782                 * Merge this node with another node, acquiring its dependencies.
1783                 * This routine is used to merge all cyclic node together and
1784                 * form an acyclic graph.
1785                 */
1786                protected void mergeWith(List<? extends Node> nodes) {
1787                    for (Node n : nodes) {
1788                        Assert.check(n.data.length() == 1, "Attempt to merge a compound node!");
1789                        data.appendList(n.data);
1790                        addDependencies(n.deps);
1791                    }
1792                    //update deps
1793                    Set<Node> deps2 = new HashSet<>();
1794                    for (Node d : deps) {
1795                        if (data.contains(d.data.first())) {
1796                            deps2.add(this);
1797                        } else {
1798                            deps2.add(d);
1799                        }
1800                    }
1801                    deps = deps2;
1802                }
1803
1804                /**
1805                 * Notify all nodes that something has changed in the graph
1806                 * topology.
1807                 */
1808                private void graphChanged(Node from, Node to) {
1809                    if (removeDependency(from)) {
1810                        if (to != null) {
1811                            addDependency(to);
1812                        }
1813                    }
1814                }
1815
1816                @Override
1817                public Properties nodeAttributes() {
1818                    Properties p = new Properties();
1819                    p.put("label", "\"" + toString() + "\"");
1820                    return p;
1821                }
1822
1823                @Override
1824                public Properties dependencyAttributes(Node sink, GraphUtils.DependencyKind dk) {
1825                    Properties p = new Properties();
1826                    p.put("style", ((DependencyKind)dk).dotSyle);
1827                    StringBuilder buf = new StringBuilder();
1828                    String sep = "";
1829                    for (Type from : data) {
1830                        UndetVar uv = (UndetVar)inferenceContext.asUndetVar(from);
1831                        for (Type bound : uv.getBounds(InferenceBound.values())) {
1832                            if (bound.containsAny(List.from(sink.data))) {
1833                                buf.append(sep);
1834                                buf.append(bound);
1835                                sep = ",";
1836                            }
1837                        }
1838                    }
1839                    p.put("label", "\"" + buf.toString() + "\"");
1840                    return p;
1841                }
1842            }
1843
1844            /** the nodes in the inference graph */
1845            ArrayList<Node> nodes;
1846
1847            InferenceGraph() {
1848                initNodes();
1849            }
1850
1851            /**
1852             * Basic lookup helper for retrieving a graph node given an inference
1853             * variable type.
1854             */
1855            public Node findNode(Type t) {
1856                for (Node n : nodes) {
1857                    if (n.data.contains(t)) {
1858                        return n;
1859                    }
1860                }
1861                return null;
1862            }
1863
1864            /**
1865             * Delete a node from the graph. This update the underlying structure
1866             * of the graph (including dependencies) via listeners updates.
1867             */
1868            public void deleteNode(Node n) {
1869                Assert.check(nodes.contains(n));
1870                nodes.remove(n);
1871                notifyUpdate(n, null);
1872            }
1873
1874            /**
1875             * Notify all nodes of a change in the graph. If the target node is
1876             * {@code null} the source node is assumed to be removed.
1877             */
1878            void notifyUpdate(Node from, Node to) {
1879                for (Node n : nodes) {
1880                    n.graphChanged(from, to);
1881                }
1882            }
1883
1884            /**
1885             * Create the graph nodes. First a simple node is created for every inference
1886             * variables to be solved. Then Tarjan is used to found all connected components
1887             * in the graph. For each component containing more than one node, a super node is
1888             * created, effectively replacing the original cyclic nodes.
1889             */
1890            void initNodes() {
1891                //add nodes
1892                nodes = new ArrayList<>();
1893                for (Type t : inferenceContext.restvars()) {
1894                    nodes.add(new Node(t));
1895                }
1896                //add dependencies
1897                for (Node n_i : nodes) {
1898                    Type i = n_i.data.first();
1899                    for (Node n_j : nodes) {
1900                        Type j = n_j.data.first();
1901                        UndetVar uv_i = (UndetVar)inferenceContext.asUndetVar(i);
1902                        if (Type.containsAny(uv_i.getBounds(InferenceBound.values()), List.of(j))) {
1903                            //update i's bound dependencies
1904                            n_i.addDependency(n_j);
1905                        }
1906                    }
1907                }
1908                //merge cyclic nodes
1909                ArrayList<Node> acyclicNodes = new ArrayList<>();
1910                for (List<? extends Node> conSubGraph : GraphUtils.tarjan(nodes)) {
1911                    if (conSubGraph.length() > 1) {
1912                        Node root = conSubGraph.head;
1913                        root.mergeWith(conSubGraph.tail);
1914                        for (Node n : conSubGraph) {
1915                            notifyUpdate(n, root);
1916                        }
1917                    }
1918                    acyclicNodes.add(conSubGraph.head);
1919                }
1920                nodes = acyclicNodes;
1921            }
1922
1923            /**
1924             * Debugging: dot representation of this graph
1925             */
1926            String toDot() {
1927                StringBuilder buf = new StringBuilder();
1928                for (Type t : inferenceContext.undetvars) {
1929                    UndetVar uv = (UndetVar)t;
1930                    buf.append(String.format("var %s - upper bounds = %s, lower bounds = %s, eq bounds = %s\\n",
1931                            uv.qtype, uv.getBounds(InferenceBound.UPPER), uv.getBounds(InferenceBound.LOWER),
1932                            uv.getBounds(InferenceBound.EQ)));
1933                }
1934                return GraphUtils.toDot(nodes, "inferenceGraph" + hashCode(), buf.toString());
1935            }
1936        }
1937    }
1938    // </editor-fold>
1939
1940    // <editor-fold defaultstate="collapsed" desc="Inference context">
1941    /**
1942     * Functional interface for defining inference callbacks. Certain actions
1943     * (i.e. subtyping checks) might need to be redone after all inference variables
1944     * have been fixed.
1945     */
1946    interface FreeTypeListener {
1947        void typesInferred(InferenceContext inferenceContext);
1948    }
1949
1950    final InferenceContext emptyContext;
1951    // </editor-fold>
1952}
1953