Infer.java revision 2855:0bc7ba363b7f
1/*
2 * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.tools.javac.code.Type.TypeMapping;
29import com.sun.tools.javac.tree.JCTree;
30import com.sun.tools.javac.tree.JCTree.JCTypeCast;
31import com.sun.tools.javac.tree.TreeInfo;
32import com.sun.tools.javac.util.*;
33import com.sun.tools.javac.util.GraphUtils.DottableNode;
34import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
35import com.sun.tools.javac.util.List;
36import com.sun.tools.javac.code.*;
37import com.sun.tools.javac.code.Type.*;
38import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
39import com.sun.tools.javac.code.Symbol.*;
40import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
41import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph;
42import com.sun.tools.javac.comp.Infer.GraphSolver.InferenceGraph.Node;
43import com.sun.tools.javac.comp.Resolve.InapplicableMethodException;
44import com.sun.tools.javac.comp.Resolve.VerboseResolutionMode;
45
46import java.io.File;
47import java.io.FileWriter;
48import java.io.IOException;
49import java.util.ArrayList;
50import java.util.Collection;
51import java.util.Collections;
52import java.util.EnumMap;
53import java.util.EnumSet;
54import java.util.HashMap;
55import java.util.HashSet;
56import java.util.LinkedHashSet;
57import java.util.Map;
58import java.util.Properties;
59import java.util.Set;
60
61import static com.sun.tools.javac.code.TypeTag.*;
62
63/** Helper class for type parameter inference, used by the attribution phase.
64 *
65 *  <p><b>This is NOT part of any supported API.
66 *  If you write code that depends on this, you do so at your own risk.
67 *  This code and its internal interfaces are subject to change or
68 *  deletion without notice.</b>
69 */
70public class Infer {
71    protected static final Context.Key<Infer> inferKey = new Context.Key<>();
72
73    Resolve rs;
74    Check chk;
75    Symtab syms;
76    Types types;
77    JCDiagnostic.Factory diags;
78    Log log;
79
80    /** should the graph solver be used? */
81    boolean allowGraphInference;
82
83    /**
84     * folder in which the inference dependency graphs should be written.
85     */
86    final private String dependenciesFolder;
87
88    /**
89     * List of graphs awaiting to be dumped to a file.
90     */
91    private List<String> pendingGraphs;
92
93    public static Infer instance(Context context) {
94        Infer instance = context.get(inferKey);
95        if (instance == null)
96            instance = new Infer(context);
97        return instance;
98    }
99
100    protected Infer(Context context) {
101        context.put(inferKey, this);
102
103        rs = Resolve.instance(context);
104        chk = Check.instance(context);
105        syms = Symtab.instance(context);
106        types = Types.instance(context);
107        diags = JCDiagnostic.Factory.instance(context);
108        log = Log.instance(context);
109        inferenceException = new InferenceException(diags);
110        Options options = Options.instance(context);
111        allowGraphInference = Source.instance(context).allowGraphInference()
112                && options.isUnset("useLegacyInference");
113        dependenciesFolder = options.get("dumpInferenceGraphsTo");
114        pendingGraphs = List.nil();
115    }
116
117    /** A value for prototypes that admit any type, including polymorphic ones. */
118    public static final Type anyPoly = new JCNoType();
119
120   /**
121    * This exception class is design to store a list of diagnostics corresponding
122    * to inference errors that can arise during a method applicability check.
123    */
124    public static class InferenceException extends InapplicableMethodException {
125        private static final long serialVersionUID = 0;
126
127        List<JCDiagnostic> messages = List.nil();
128
129        InferenceException(JCDiagnostic.Factory diags) {
130            super(diags);
131        }
132
133        @Override
134        InapplicableMethodException setMessage() {
135            //no message to set
136            return this;
137        }
138
139        @Override
140        InapplicableMethodException setMessage(JCDiagnostic diag) {
141            messages = messages.append(diag);
142            return this;
143        }
144
145        @Override
146        public JCDiagnostic getDiagnostic() {
147            return messages.head;
148        }
149
150        void clear() {
151            messages = List.nil();
152        }
153    }
154
155    protected final InferenceException inferenceException;
156
157    // <editor-fold defaultstate="collapsed" desc="Inference routines">
158    /**
159     * Main inference entry point - instantiate a generic method type
160     * using given argument types and (possibly) an expected target-type.
161     */
162    Type instantiateMethod( Env<AttrContext> env,
163                            List<Type> tvars,
164                            MethodType mt,
165                            Attr.ResultInfo resultInfo,
166                            MethodSymbol msym,
167                            List<Type> argtypes,
168                            boolean allowBoxing,
169                            boolean useVarargs,
170                            Resolve.MethodResolutionContext resolveContext,
171                            Warner warn) throws InferenceException {
172        //-System.err.println("instantiateMethod(" + tvars + ", " + mt + ", " + argtypes + ")"); //DEBUG
173        final InferenceContext inferenceContext = new InferenceContext(tvars);  //B0
174        inferenceException.clear();
175        try {
176            DeferredAttr.DeferredAttrContext deferredAttrContext =
177                        resolveContext.deferredAttrContext(msym, inferenceContext, resultInfo, warn);
178
179            resolveContext.methodCheck.argumentsAcceptable(env, deferredAttrContext,   //B2
180                    argtypes, mt.getParameterTypes(), warn);
181            if (allowGraphInference &&
182                    resultInfo != null &&
183                    !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
184                //inject return constraints earlier
185                checkWithinBounds(inferenceContext, warn); //propagation
186                Type newRestype = generateReturnConstraints(env.tree, resultInfo,  //B3
187                        mt, inferenceContext);
188                mt = (MethodType)types.createMethodTypeWithReturn(mt, newRestype);
189                //propagate outwards if needed
190                if (resultInfo.checkContext.inferenceContext().free(resultInfo.pt)) {
191                    //propagate inference context outwards and exit
192                    inferenceContext.dupTo(resultInfo.checkContext.inferenceContext());
193                    deferredAttrContext.complete();
194                    return mt;
195                }
196            }
197
198            deferredAttrContext.complete();
199
200            // minimize as yet undetermined type variables
201            if (allowGraphInference) {
202                inferenceContext.solve(warn);
203            } else {
204                inferenceContext.solveLegacy(true, warn, LegacyInferenceSteps.EQ_LOWER.steps); //minimizeInst
205            }
206
207            mt = (MethodType)inferenceContext.asInstType(mt);
208
209            if (!allowGraphInference &&
210                    inferenceContext.restvars().nonEmpty() &&
211                    resultInfo != null &&
212                    !warn.hasNonSilentLint(Lint.LintCategory.UNCHECKED)) {
213                generateReturnConstraints(env.tree, resultInfo, mt, inferenceContext);
214                inferenceContext.solveLegacy(false, warn, LegacyInferenceSteps.EQ_UPPER.steps); //maximizeInst
215                mt = (MethodType)inferenceContext.asInstType(mt);
216            }
217
218            if (resultInfo != null && rs.verboseResolutionMode.contains(VerboseResolutionMode.DEFERRED_INST)) {
219                log.note(env.tree.pos, "deferred.method.inst", msym, mt, resultInfo.pt);
220            }
221
222            // return instantiated version of method type
223            return mt;
224        } finally {
225            if (resultInfo != null || !allowGraphInference) {
226                inferenceContext.notifyChange();
227            } else {
228                inferenceContext.notifyChange(inferenceContext.boundedVars());
229            }
230            if (resultInfo == null) {
231                /* if the is no result info then we can clear the capture types
232                 * cache without affecting any result info check
233                 */
234                inferenceContext.captureTypeCache.clear();
235            }
236            dumpGraphsIfNeeded(env.tree, msym, resolveContext);
237        }
238    }
239
240    private void dumpGraphsIfNeeded(DiagnosticPosition pos, Symbol msym, Resolve.MethodResolutionContext rsContext) {
241        int round = 0;
242        try {
243            for (String graph : pendingGraphs.reverse()) {
244                Assert.checkNonNull(dependenciesFolder);
245                Name name = msym.name == msym.name.table.names.init ?
246                        msym.owner.name : msym.name;
247                String filename = String.format("%s@%s[mode=%s,step=%s]_%d.dot",
248                        name,
249                        pos.getStartPosition(),
250                        rsContext.attrMode(),
251                        rsContext.step,
252                        round);
253                File dotFile = new File(dependenciesFolder, filename);
254                try (FileWriter fw = new FileWriter(dotFile)) {
255                    fw.append(graph);
256                }
257                round++;
258            }
259        } catch (IOException ex) {
260            Assert.error("Error occurred when dumping inference graph: " + ex.getMessage());
261        } finally {
262            pendingGraphs = List.nil();
263        }
264    }
265
266    /**
267     * Generate constraints from the generic method's return type. If the method
268     * call occurs in a context where a type T is expected, use the expected
269     * type to derive more constraints on the generic method inference variables.
270     */
271    Type generateReturnConstraints(JCTree tree, Attr.ResultInfo resultInfo,
272            MethodType mt, InferenceContext inferenceContext) {
273        InferenceContext rsInfoInfContext = resultInfo.checkContext.inferenceContext();
274        Type from = mt.getReturnType();
275        if (mt.getReturnType().containsAny(inferenceContext.inferencevars) &&
276                rsInfoInfContext != emptyContext) {
277            from = types.capture(from);
278            //add synthetic captured ivars
279            for (Type t : from.getTypeArguments()) {
280                if (t.hasTag(TYPEVAR) && ((TypeVar)t).isCaptured()) {
281                    inferenceContext.addVar((TypeVar)t);
282                }
283            }
284        }
285        Type qtype = inferenceContext.asUndetVar(from);
286        Type to = resultInfo.pt;
287
288        if (qtype.hasTag(VOID)) {
289            to = syms.voidType;
290        } else if (to.hasTag(NONE)) {
291            to = from.isPrimitive() ? from : syms.objectType;
292        } else if (qtype.hasTag(UNDETVAR)) {
293            if (resultInfo.pt.isReference()) {
294                to = generateReturnConstraintsUndetVarToReference(
295                        tree, (UndetVar)qtype, to, resultInfo, inferenceContext);
296            } else {
297                if (to.isPrimitive()) {
298                    to = generateReturnConstraintsPrimitive(tree, (UndetVar)qtype, to,
299                        resultInfo, inferenceContext);
300                }
301            }
302        }
303        Assert.check(allowGraphInference || !rsInfoInfContext.free(to),
304                "legacy inference engine cannot handle constraints on both sides of a subtyping assertion");
305        //we need to skip capture?
306        Warner retWarn = new Warner();
307        if (!resultInfo.checkContext.compatible(qtype, rsInfoInfContext.asUndetVar(to), retWarn) ||
308                //unchecked conversion is not allowed in source 7 mode
309                (!allowGraphInference && retWarn.hasLint(Lint.LintCategory.UNCHECKED))) {
310            throw inferenceException
311                    .setMessage("infer.no.conforming.instance.exists",
312                    inferenceContext.restvars(), mt.getReturnType(), to);
313        }
314        return from;
315    }
316
317    private Type generateReturnConstraintsPrimitive(JCTree tree, UndetVar from,
318            Type to, Attr.ResultInfo resultInfo, InferenceContext inferenceContext) {
319        if (!allowGraphInference) {
320            //if legacy, just return boxed type
321            return types.boxedClass(to).type;
322        }
323        //if graph inference we need to skip conflicting boxed bounds...
324        for (Type t : from.getBounds(InferenceBound.EQ, InferenceBound.UPPER,
325                InferenceBound.LOWER)) {
326            Type boundAsPrimitive = types.unboxedType(t);
327            if (boundAsPrimitive == null || boundAsPrimitive.hasTag(NONE)) {
328                continue;
329            }
330            return generateReferenceToTargetConstraint(tree, from, to,
331                    resultInfo, inferenceContext);
332        }
333        return types.boxedClass(to).type;
334    }
335
336    private Type generateReturnConstraintsUndetVarToReference(JCTree tree,
337            UndetVar from, Type to, Attr.ResultInfo resultInfo,
338            InferenceContext inferenceContext) {
339        Type captureOfTo = types.capture(to);
340        /* T is a reference type, but is not a wildcard-parameterized type, and either
341         */
342        if (captureOfTo == to) { //not a wildcard parameterized type
343            /* i) B2 contains a bound of one of the forms alpha = S or S <: alpha,
344             *      where S is a wildcard-parameterized type, or
345             */
346            for (Type t : from.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
347                Type captureOfBound = types.capture(t);
348                if (captureOfBound != t) {
349                    return generateReferenceToTargetConstraint(tree, from, to,
350                            resultInfo, inferenceContext);
351                }
352            }
353
354            /* ii) B2 contains two bounds of the forms S1 <: alpha and S2 <: alpha,
355             * where S1 and S2 have supertypes that are two different
356             * parameterizations of the same generic class or interface.
357             */
358            for (Type aLowerBound : from.getBounds(InferenceBound.LOWER)) {
359                for (Type anotherLowerBound : from.getBounds(InferenceBound.LOWER)) {
360                    if (aLowerBound != anotherLowerBound &&
361                            !inferenceContext.free(aLowerBound) &&
362                            !inferenceContext.free(anotherLowerBound) &&
363                            commonSuperWithDiffParameterization(aLowerBound, anotherLowerBound)) {
364                        return generateReferenceToTargetConstraint(tree, from, to,
365                            resultInfo, inferenceContext);
366                    }
367                }
368            }
369        }
370
371        /* T is a parameterization of a generic class or interface, G,
372         * and B2 contains a bound of one of the forms alpha = S or S <: alpha,
373         * where there exists no type of the form G<...> that is a
374         * supertype of S, but the raw type G is a supertype of S
375         */
376        if (to.isParameterized()) {
377            for (Type t : from.getBounds(InferenceBound.EQ, InferenceBound.LOWER)) {
378                Type sup = types.asSuper(t, to.tsym);
379                if (sup != null && sup.isRaw()) {
380                    return generateReferenceToTargetConstraint(tree, from, to,
381                            resultInfo, inferenceContext);
382                }
383            }
384        }
385        return to;
386    }
387
388    private boolean commonSuperWithDiffParameterization(Type t, Type s) {
389        for (Pair<Type, Type> supers : getParameterizedSupers(t, s)) {
390            if (!types.isSameType(supers.fst, supers.snd)) return true;
391        }
392        return false;
393    }
394
395    private Type generateReferenceToTargetConstraint(JCTree tree, UndetVar from,
396            Type to, Attr.ResultInfo resultInfo,
397            InferenceContext inferenceContext) {
398        inferenceContext.solve(List.of(from.qtype), new Warner());
399        inferenceContext.notifyChange();
400        Type capturedType = resultInfo.checkContext.inferenceContext()
401                .cachedCapture(tree, from.inst, false);
402        if (types.isConvertible(capturedType,
403                resultInfo.checkContext.inferenceContext().asUndetVar(to))) {
404            //effectively skip additional return-type constraint generation (compatibility)
405            return syms.objectType;
406        }
407        return to;
408    }
409
410    /**
411      * Infer cyclic inference variables as described in 15.12.2.8.
412      */
413    private void instantiateAsUninferredVars(List<Type> vars, InferenceContext inferenceContext) {
414        ListBuffer<Type> todo = new ListBuffer<>();
415        //step 1 - create fresh tvars
416        for (Type t : vars) {
417            UndetVar uv = (UndetVar)inferenceContext.asUndetVar(t);
418            List<Type> upperBounds = uv.getBounds(InferenceBound.UPPER);
419            if (Type.containsAny(upperBounds, vars)) {
420                TypeSymbol fresh_tvar = new TypeVariableSymbol(Flags.SYNTHETIC, uv.qtype.tsym.name, null, uv.qtype.tsym.owner);
421                fresh_tvar.type = new TypeVar(fresh_tvar, types.makeIntersectionType(uv.getBounds(InferenceBound.UPPER)), null);
422                todo.append(uv);
423                uv.inst = fresh_tvar.type;
424            } else if (upperBounds.nonEmpty()) {
425                uv.inst = types.glb(upperBounds);
426            } else {
427                uv.inst = syms.objectType;
428            }
429        }
430        //step 2 - replace fresh tvars in their bounds
431        List<Type> formals = vars;
432        for (Type t : todo) {
433            UndetVar uv = (UndetVar)t;
434            TypeVar ct = (TypeVar)uv.inst;
435            ct.bound = types.glb(inferenceContext.asInstTypes(types.getBounds(ct)));
436            if (ct.bound.isErroneous()) {
437                //report inference error if glb fails
438                reportBoundError(uv, BoundErrorKind.BAD_UPPER);
439            }
440            formals = formals.tail;
441        }
442    }
443
444    /**
445     * Compute a synthetic method type corresponding to the requested polymorphic
446     * method signature. The target return type is computed from the immediately
447     * enclosing scope surrounding the polymorphic-signature call.
448     */
449    Type instantiatePolymorphicSignatureInstance(Env<AttrContext> env,
450                                            MethodSymbol spMethod,  // sig. poly. method or null if none
451                                            Resolve.MethodResolutionContext resolveContext,
452                                            List<Type> argtypes) {
453        final Type restype;
454
455        //The return type for a polymorphic signature call is computed from
456        //the enclosing tree E, as follows: if E is a cast, then use the
457        //target type of the cast expression as a return type; if E is an
458        //expression statement, the return type is 'void' - otherwise the
459        //return type is simply 'Object'. A correctness check ensures that
460        //env.next refers to the lexically enclosing environment in which
461        //the polymorphic signature call environment is nested.
462
463        switch (env.next.tree.getTag()) {
464            case TYPECAST:
465                JCTypeCast castTree = (JCTypeCast)env.next.tree;
466                restype = (TreeInfo.skipParens(castTree.expr) == env.tree) ?
467                    castTree.clazz.type :
468                    syms.objectType;
469                break;
470            case EXEC:
471                JCTree.JCExpressionStatement execTree =
472                        (JCTree.JCExpressionStatement)env.next.tree;
473                restype = (TreeInfo.skipParens(execTree.expr) == env.tree) ?
474                    syms.voidType :
475                    syms.objectType;
476                break;
477            default:
478                restype = syms.objectType;
479        }
480
481        List<Type> paramtypes = argtypes.map(new ImplicitArgType(spMethod, resolveContext.step));
482        List<Type> exType = spMethod != null ?
483            spMethod.getThrownTypes() :
484            List.of(syms.throwableType); // make it throw all exceptions
485
486        MethodType mtype = new MethodType(paramtypes,
487                                          restype,
488                                          exType,
489                                          syms.methodClass);
490        return mtype;
491    }
492    //where
493        class ImplicitArgType extends DeferredAttr.DeferredTypeMap {
494
495            public ImplicitArgType(Symbol msym, Resolve.MethodResolutionPhase phase) {
496                (rs.deferredAttr).super(AttrMode.SPECULATIVE, msym, phase);
497            }
498
499            @Override
500            public Type visitClassType(ClassType t, Void aVoid) {
501                return types.erasure(t);
502            }
503
504            @Override
505            public Type visitType(Type t, Void _unused) {
506                if (t.hasTag(DEFERRED)) {
507                    return visit(super.visitType(t, null));
508                } else if (t.hasTag(BOT))
509                    // nulls type as the marker type Null (which has no instances)
510                    // infer as java.lang.Void for now
511                    t = types.boxedClass(syms.voidType).type;
512                return t;
513            }
514        }
515
516    /**
517      * This method is used to infer a suitable target SAM in case the original
518      * SAM type contains one or more wildcards. An inference process is applied
519      * so that wildcard bounds, as well as explicit lambda/method ref parameters
520      * (where applicable) are used to constraint the solution.
521      */
522    public Type instantiateFunctionalInterface(DiagnosticPosition pos, Type funcInterface,
523            List<Type> paramTypes, Check.CheckContext checkContext) {
524        if (types.capture(funcInterface) == funcInterface) {
525            //if capture doesn't change the type then return the target unchanged
526            //(this means the target contains no wildcards!)
527            return funcInterface;
528        } else {
529            Type formalInterface = funcInterface.tsym.type;
530            InferenceContext funcInterfaceContext =
531                    new InferenceContext(funcInterface.tsym.type.getTypeArguments());
532
533            Assert.check(paramTypes != null);
534            //get constraints from explicit params (this is done by
535            //checking that explicit param types are equal to the ones
536            //in the functional interface descriptors)
537            List<Type> descParameterTypes = types.findDescriptorType(formalInterface).getParameterTypes();
538            if (descParameterTypes.size() != paramTypes.size()) {
539                checkContext.report(pos, diags.fragment("incompatible.arg.types.in.lambda"));
540                return types.createErrorType(funcInterface);
541            }
542            for (Type p : descParameterTypes) {
543                if (!types.isSameType(funcInterfaceContext.asUndetVar(p), paramTypes.head)) {
544                    checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
545                    return types.createErrorType(funcInterface);
546                }
547                paramTypes = paramTypes.tail;
548            }
549
550            try {
551                funcInterfaceContext.solve(funcInterfaceContext.boundedVars(), types.noWarnings);
552            } catch (InferenceException ex) {
553                checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
554            }
555
556            List<Type> actualTypeargs = funcInterface.getTypeArguments();
557            for (Type t : funcInterfaceContext.undetvars) {
558                UndetVar uv = (UndetVar)t;
559                if (uv.inst == null) {
560                    uv.inst = actualTypeargs.head;
561                }
562                actualTypeargs = actualTypeargs.tail;
563            }
564
565            Type owntype = funcInterfaceContext.asInstType(formalInterface);
566            if (!chk.checkValidGenericType(owntype)) {
567                //if the inferred functional interface type is not well-formed,
568                //or if it's not a subtype of the original target, issue an error
569                checkContext.report(pos, diags.fragment("no.suitable.functional.intf.inst", funcInterface));
570            }
571            //propagate constraints as per JLS 18.2.1
572            checkContext.compatible(owntype, funcInterface, types.noWarnings);
573            return owntype;
574        }
575    }
576    // </editor-fold>
577
578    // <editor-fold defaultstate="collapsed" desc="Bound checking">
579    /**
580     * Check bounds and perform incorporation
581     */
582    void checkWithinBounds(InferenceContext inferenceContext,
583                             Warner warn) throws InferenceException {
584        MultiUndetVarListener mlistener = new MultiUndetVarListener(inferenceContext.undetvars);
585        List<Type> saved_undet = inferenceContext.save();
586        try {
587            while (true) {
588                mlistener.reset();
589                if (!allowGraphInference) {
590                    //in legacy mode we lack of transitivity, so bound check
591                    //cannot be run in parallel with other incoprporation rounds
592                    for (Type t : inferenceContext.undetvars) {
593                        UndetVar uv = (UndetVar)t;
594                        IncorporationStep.CHECK_BOUNDS.apply(uv, inferenceContext, warn);
595                    }
596                }
597                for (Type t : inferenceContext.undetvars) {
598                    UndetVar uv = (UndetVar)t;
599                    //bound incorporation
600                    EnumSet<IncorporationStep> incorporationSteps = allowGraphInference ?
601                            incorporationStepsGraph : incorporationStepsLegacy;
602                    for (IncorporationStep is : incorporationSteps) {
603                        if (is.accepts(uv, inferenceContext)) {
604                            is.apply(uv, inferenceContext, warn);
605                        }
606                    }
607                }
608                if (!mlistener.changed || !allowGraphInference) break;
609            }
610        }
611        finally {
612            mlistener.detach();
613            if (incorporationCache.size() == MAX_INCORPORATION_STEPS) {
614                inferenceContext.rollback(saved_undet);
615            }
616            incorporationCache.clear();
617        }
618    }
619    //where
620        /**
621         * This listener keeps track of changes on a group of inference variable
622         * bounds. Note: the listener must be detached (calling corresponding
623         * method) to make sure that the underlying inference variable is
624         * left in a clean state.
625         */
626        class MultiUndetVarListener implements UndetVar.UndetVarListener {
627
628            boolean changed;
629            List<Type> undetvars;
630
631            public MultiUndetVarListener(List<Type> undetvars) {
632                this.undetvars = undetvars;
633                for (Type t : undetvars) {
634                    UndetVar uv = (UndetVar)t;
635                    uv.listener = this;
636                }
637            }
638
639            public void varChanged(UndetVar uv, Set<InferenceBound> ibs) {
640                //avoid non-termination
641                if (incorporationCache.size() < MAX_INCORPORATION_STEPS) {
642                    changed = true;
643                }
644            }
645
646            void reset() {
647                changed = false;
648            }
649
650            void detach() {
651                for (Type t : undetvars) {
652                    UndetVar uv = (UndetVar)t;
653                    uv.listener = null;
654                }
655            }
656        }
657
658    /** max number of incorporation rounds */
659        static final int MAX_INCORPORATION_STEPS = 100;
660
661    /* If for two types t and s there is a least upper bound that contains
662     * parameterized types G1, G2 ... Gn, then there exists supertypes of 't' of the form
663     * G1<T1, ..., Tn>, G2<T1, ..., Tn>, ... Gn<T1, ..., Tn> and supertypes of 's' of the form
664     * G1<S1, ..., Sn>, G2<S1, ..., Sn>, ... Gn<S1, ..., Sn> which will be returned by this method.
665     * If no such common supertypes exists then an empty list is returned.
666     *
667     * As an example for the following input:
668     *
669     * t = java.util.ArrayList<java.lang.String>
670     * s = java.util.List<T>
671     *
672     * we get this ouput (singleton list):
673     *
674     * [Pair[java.util.List<java.lang.String>,java.util.List<T>]]
675     */
676    private List<Pair<Type, Type>> getParameterizedSupers(Type t, Type s) {
677        Type lubResult = types.lub(t, s);
678        if (lubResult == syms.errType || lubResult == syms.botType) {
679            return List.nil();
680        }
681        List<Type> supertypesToCheck = lubResult.isIntersection() ?
682                ((IntersectionClassType)lubResult).getComponents() :
683                List.of(lubResult);
684        ListBuffer<Pair<Type, Type>> commonSupertypes = new ListBuffer<>();
685        for (Type sup : supertypesToCheck) {
686            if (sup.isParameterized()) {
687                Type asSuperOfT = asSuper(t, sup);
688                Type asSuperOfS = asSuper(s, sup);
689                commonSupertypes.add(new Pair<>(asSuperOfT, asSuperOfS));
690            }
691        }
692        return commonSupertypes.toList();
693    }
694    //where
695        private Type asSuper(Type t, Type sup) {
696            return (sup.hasTag(ARRAY)) ?
697                    new ArrayType(asSuper(types.elemtype(t), types.elemtype(sup)), syms.arrayClass) :
698                    types.asSuper(t, sup.tsym);
699        }
700
701    /**
702     * This enumeration defines an entry point for doing inference variable
703     * bound incorporation - it can be used to inject custom incorporation
704     * logic into the basic bound checking routine
705     */
706    enum IncorporationStep {
707        /**
708         * Performs basic bound checking - i.e. is the instantiated type for a given
709         * inference variable compatible with its bounds?
710         */
711        CHECK_BOUNDS() {
712            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
713                Infer infer = inferenceContext.infer();
714                uv.substBounds(inferenceContext.inferenceVars(), inferenceContext.instTypes(), infer.types);
715                infer.checkCompatibleUpperBounds(uv, inferenceContext);
716                if (uv.inst != null) {
717                    Type inst = uv.inst;
718                    for (Type u : uv.getBounds(InferenceBound.UPPER)) {
719                        if (!isSubtype(inst, inferenceContext.asUndetVar(u), warn, infer)) {
720                            infer.reportBoundError(uv, BoundErrorKind.UPPER);
721                        }
722                    }
723                    for (Type l : uv.getBounds(InferenceBound.LOWER)) {
724                        if (!isSubtype(inferenceContext.asUndetVar(l), inst, warn, infer)) {
725                            infer.reportBoundError(uv, BoundErrorKind.LOWER);
726                        }
727                    }
728                    for (Type e : uv.getBounds(InferenceBound.EQ)) {
729                        if (!isSameType(inst, inferenceContext.asUndetVar(e), infer)) {
730                            infer.reportBoundError(uv, BoundErrorKind.EQ);
731                        }
732                    }
733                }
734            }
735
736            @Override
737            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
738                //applies to all undetvars
739                return true;
740            }
741        },
742        /**
743         * Check consistency of equality constraints. This is a slightly more aggressive
744         * inference routine that is designed as to maximize compatibility with JDK 7.
745         * Note: this is not used in graph mode.
746         */
747        EQ_CHECK_LEGACY() {
748            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
749                Infer infer = inferenceContext.infer();
750                Type eq = null;
751                for (Type e : uv.getBounds(InferenceBound.EQ)) {
752                    Assert.check(!inferenceContext.free(e));
753                    if (eq != null && !isSameType(e, eq, infer)) {
754                        infer.reportBoundError(uv, BoundErrorKind.EQ);
755                    }
756                    eq = e;
757                    for (Type l : uv.getBounds(InferenceBound.LOWER)) {
758                        Assert.check(!inferenceContext.free(l));
759                        if (!isSubtype(l, e, warn, infer)) {
760                            infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
761                        }
762                    }
763                    for (Type u : uv.getBounds(InferenceBound.UPPER)) {
764                        if (inferenceContext.free(u)) continue;
765                        if (!isSubtype(e, u, warn, infer)) {
766                            infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
767                        }
768                    }
769                }
770            }
771
772            @Override
773            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
774                return !uv.isCaptured() && uv.getBounds(InferenceBound.EQ).nonEmpty();
775            }
776        },
777        /**
778         * Check consistency of equality constraints.
779         */
780        EQ_CHECK() {
781            @Override
782            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
783                Infer infer = inferenceContext.infer();
784                for (Type e : uv.getBounds(InferenceBound.EQ)) {
785                    if (e.containsAny(inferenceContext.inferenceVars())) continue;
786                    for (Type u : uv.getBounds(InferenceBound.UPPER)) {
787                        if (!isSubtype(e, inferenceContext.asUndetVar(u), warn, infer)) {
788                            infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_UPPER);
789                        }
790                    }
791                    for (Type l : uv.getBounds(InferenceBound.LOWER)) {
792                        if (!isSubtype(inferenceContext.asUndetVar(l), e, warn, infer)) {
793                            infer.reportBoundError(uv, BoundErrorKind.BAD_EQ_LOWER);
794                        }
795                    }
796                }
797            }
798
799            @Override
800            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
801                return !uv.isCaptured() && uv.getBounds(InferenceBound.EQ).nonEmpty();
802            }
803        },
804        /**
805         * Given a bound set containing {@code alpha <: T} and {@code alpha :> S}
806         * perform {@code S <: T} (which could lead to new bounds).
807         */
808        CROSS_UPPER_LOWER() {
809            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
810                Infer infer = inferenceContext.infer();
811                for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
812                    for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
813                        isSubtype(inferenceContext.asUndetVar(b2), inferenceContext.asUndetVar(b1), warn , infer);
814                    }
815                }
816            }
817
818            @Override
819            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
820                return !uv.isCaptured() &&
821                        uv.getBounds(InferenceBound.UPPER).nonEmpty() &&
822                        uv.getBounds(InferenceBound.LOWER).nonEmpty();
823            }
824        },
825        /**
826         * Given a bound set containing {@code alpha <: T} and {@code alpha == S}
827         * perform {@code S <: T} (which could lead to new bounds).
828         */
829        CROSS_UPPER_EQ() {
830            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
831                Infer infer = inferenceContext.infer();
832                for (Type b1 : uv.getBounds(InferenceBound.UPPER)) {
833                    for (Type b2 : uv.getBounds(InferenceBound.EQ)) {
834                        isSubtype(inferenceContext.asUndetVar(b2), inferenceContext.asUndetVar(b1), warn, infer);
835                    }
836                }
837            }
838
839            @Override
840            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
841                return !uv.isCaptured() &&
842                        uv.getBounds(InferenceBound.EQ).nonEmpty() &&
843                        uv.getBounds(InferenceBound.UPPER).nonEmpty();
844            }
845        },
846        /**
847         * Given a bound set containing {@code alpha :> S} and {@code alpha == T}
848         * perform {@code S <: T} (which could lead to new bounds).
849         */
850        CROSS_EQ_LOWER() {
851            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
852                Infer infer = inferenceContext.infer();
853                for (Type b1 : uv.getBounds(InferenceBound.EQ)) {
854                    for (Type b2 : uv.getBounds(InferenceBound.LOWER)) {
855                        isSubtype(inferenceContext.asUndetVar(b2), inferenceContext.asUndetVar(b1), warn, infer);
856                    }
857                }
858            }
859
860            @Override
861            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
862                return !uv.isCaptured() &&
863                        uv.getBounds(InferenceBound.EQ).nonEmpty() &&
864                        uv.getBounds(InferenceBound.LOWER).nonEmpty();
865            }
866        },
867        /**
868         * Given a bound set containing {@code alpha <: P<T>} and
869         * {@code alpha <: P<S>} where P is a parameterized type,
870         * perform {@code T = S} (which could lead to new bounds).
871         */
872        CROSS_UPPER_UPPER() {
873            @Override
874            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
875                Infer infer = inferenceContext.infer();
876                List<Type> boundList = uv.getBounds(InferenceBound.UPPER);
877                List<Type> boundListTail = boundList.tail;
878                while (boundList.nonEmpty()) {
879                    List<Type> tmpTail = boundListTail;
880                    while (tmpTail.nonEmpty()) {
881                        Type b1 = boundList.head;
882                        Type b2 = tmpTail.head;
883                        /* This wildcard check is temporary workaround. This code may need to be
884                         * revisited once spec bug JDK-7034922 is fixed.
885                         */
886                        if (b1 != b2 && !b1.hasTag(WILDCARD) && !b2.hasTag(WILDCARD)) {
887                            for (Pair<Type, Type> commonSupers : infer.getParameterizedSupers(b1, b2)) {
888                                List<Type> allParamsSuperBound1 = commonSupers.fst.allparams();
889                                List<Type> allParamsSuperBound2 = commonSupers.snd.allparams();
890                                while (allParamsSuperBound1.nonEmpty() && allParamsSuperBound2.nonEmpty()) {
891                                    //traverse the list of all params comparing them
892                                    if (!allParamsSuperBound1.head.hasTag(WILDCARD) &&
893                                        !allParamsSuperBound2.head.hasTag(WILDCARD)) {
894                                        if (!isSameType(inferenceContext.asUndetVar(allParamsSuperBound1.head),
895                                            inferenceContext.asUndetVar(allParamsSuperBound2.head), infer)) {
896                                            infer.reportBoundError(uv, BoundErrorKind.BAD_UPPER);
897                                        }
898                                    }
899                                    allParamsSuperBound1 = allParamsSuperBound1.tail;
900                                    allParamsSuperBound2 = allParamsSuperBound2.tail;
901                                }
902                                Assert.check(allParamsSuperBound1.isEmpty() && allParamsSuperBound2.isEmpty());
903                            }
904                        }
905                        tmpTail = tmpTail.tail;
906                    }
907                    boundList = boundList.tail;
908                    boundListTail = boundList.tail;
909                }
910            }
911
912            @Override
913            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
914                return !uv.isCaptured() &&
915                        uv.getBounds(InferenceBound.UPPER).nonEmpty();
916            }
917        },
918        /**
919         * Given a bound set containing {@code alpha == S} and {@code alpha == T}
920         * perform {@code S == T} (which could lead to new bounds).
921         */
922        CROSS_EQ_EQ() {
923            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
924                Infer infer = inferenceContext.infer();
925                for (Type b1 : uv.getBounds(InferenceBound.EQ)) {
926                    for (Type b2 : uv.getBounds(InferenceBound.EQ)) {
927                        if (b1 != b2) {
928                            isSameType(inferenceContext.asUndetVar(b2), inferenceContext.asUndetVar(b1), infer);
929                        }
930                    }
931                }
932            }
933
934            @Override
935            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
936                return !uv.isCaptured() &&
937                        uv.getBounds(InferenceBound.EQ).nonEmpty();
938            }
939        },
940        /**
941         * Given a bound set containing {@code alpha <: beta} propagate lower bounds
942         * from alpha to beta; also propagate upper bounds from beta to alpha.
943         */
944        PROP_UPPER() {
945            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
946                Infer infer = inferenceContext.infer();
947                for (Type b : uv.getBounds(InferenceBound.UPPER)) {
948                    if (inferenceContext.inferenceVars().contains(b)) {
949                        UndetVar uv2 = (UndetVar)inferenceContext.asUndetVar(b);
950                        if (uv2.isCaptured()) continue;
951                        //alpha <: beta
952                        //0. set beta :> alpha
953                        addBound(InferenceBound.LOWER, uv2, inferenceContext.asInstType(uv.qtype), infer);
954                        //1. copy alpha's lower to beta's
955                        for (Type l : uv.getBounds(InferenceBound.LOWER)) {
956                            addBound(InferenceBound.LOWER, uv2, inferenceContext.asInstType(l), infer);
957                        }
958                        //2. copy beta's upper to alpha's
959                        for (Type u : uv2.getBounds(InferenceBound.UPPER)) {
960                            addBound(InferenceBound.UPPER, uv, inferenceContext.asInstType(u), infer);
961                        }
962                    }
963                }
964            }
965
966            @Override
967            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
968                return !uv.isCaptured() &&
969                        uv.getBounds(InferenceBound.UPPER).nonEmpty();
970            }
971        },
972        /**
973         * Given a bound set containing {@code alpha :> beta} propagate lower bounds
974         * from beta to alpha; also propagate upper bounds from alpha to beta.
975         */
976        PROP_LOWER() {
977            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
978                Infer infer = inferenceContext.infer();
979                for (Type b : uv.getBounds(InferenceBound.LOWER)) {
980                    if (inferenceContext.inferenceVars().contains(b)) {
981                        UndetVar uv2 = (UndetVar)inferenceContext.asUndetVar(b);
982                        if (uv2.isCaptured()) continue;
983                        //alpha :> beta
984                        //0. set beta <: alpha
985                        addBound(InferenceBound.UPPER, uv2, inferenceContext.asInstType(uv.qtype), infer);
986                        //1. copy alpha's upper to beta's
987                        for (Type u : uv.getBounds(InferenceBound.UPPER)) {
988                            addBound(InferenceBound.UPPER, uv2, inferenceContext.asInstType(u), infer);
989                        }
990                        //2. copy beta's lower to alpha's
991                        for (Type l : uv2.getBounds(InferenceBound.LOWER)) {
992                            addBound(InferenceBound.LOWER, uv, inferenceContext.asInstType(l), infer);
993                        }
994                    }
995                }
996            }
997
998            @Override
999            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
1000                return !uv.isCaptured() &&
1001                        uv.getBounds(InferenceBound.LOWER).nonEmpty();
1002            }
1003        },
1004        /**
1005         * Given a bound set containing {@code alpha == beta} propagate lower/upper
1006         * bounds from alpha to beta and back.
1007         */
1008        PROP_EQ() {
1009            public void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn) {
1010                Infer infer = inferenceContext.infer();
1011                for (Type b : uv.getBounds(InferenceBound.EQ)) {
1012                    if (inferenceContext.inferenceVars().contains(b)) {
1013                        UndetVar uv2 = (UndetVar)inferenceContext.asUndetVar(b);
1014                        if (uv2.isCaptured()) continue;
1015                        //alpha == beta
1016                        //0. set beta == alpha
1017                        addBound(InferenceBound.EQ, uv2, inferenceContext.asInstType(uv.qtype), infer);
1018                        //1. copy all alpha's bounds to beta's
1019                        for (InferenceBound ib : InferenceBound.values()) {
1020                            for (Type b2 : uv.getBounds(ib)) {
1021                                if (b2 != uv2) {
1022                                    addBound(ib, uv2, inferenceContext.asInstType(b2), infer);
1023                                }
1024                            }
1025                        }
1026                        //2. copy all beta's bounds to alpha's
1027                        for (InferenceBound ib : InferenceBound.values()) {
1028                            for (Type b2 : uv2.getBounds(ib)) {
1029                                if (b2 != uv) {
1030                                    addBound(ib, uv, inferenceContext.asInstType(b2), infer);
1031                                }
1032                            }
1033                        }
1034                    }
1035                }
1036            }
1037
1038            @Override
1039            boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
1040                return !uv.isCaptured() &&
1041                        uv.getBounds(InferenceBound.EQ).nonEmpty();
1042            }
1043        };
1044
1045        abstract void apply(UndetVar uv, InferenceContext inferenceContext, Warner warn);
1046
1047        boolean accepts(UndetVar uv, InferenceContext inferenceContext) {
1048            return !uv.isCaptured();
1049        }
1050
1051        boolean isSubtype(Type s, Type t, Warner warn, Infer infer) {
1052            return doIncorporationOp(IncorporationBinaryOpKind.IS_SUBTYPE, s, t, warn, infer);
1053        }
1054
1055        boolean isSameType(Type s, Type t, Infer infer) {
1056            return doIncorporationOp(IncorporationBinaryOpKind.IS_SAME_TYPE, s, t, null, infer);
1057        }
1058
1059        void addBound(InferenceBound ib, UndetVar uv, Type b, Infer infer) {
1060            doIncorporationOp(opFor(ib), uv, b, null, infer);
1061        }
1062
1063        IncorporationBinaryOpKind opFor(InferenceBound boundKind) {
1064            switch (boundKind) {
1065                case EQ:
1066                    return IncorporationBinaryOpKind.ADD_EQ_BOUND;
1067                case LOWER:
1068                    return IncorporationBinaryOpKind.ADD_LOWER_BOUND;
1069                case UPPER:
1070                    return IncorporationBinaryOpKind.ADD_UPPER_BOUND;
1071                default:
1072                    Assert.error("Can't get here!");
1073                    return null;
1074            }
1075        }
1076
1077        boolean doIncorporationOp(IncorporationBinaryOpKind opKind, Type op1, Type op2, Warner warn, Infer infer) {
1078            IncorporationBinaryOp newOp = infer.new IncorporationBinaryOp(opKind, op1, op2);
1079            Boolean res = infer.incorporationCache.get(newOp);
1080            if (res == null) {
1081                infer.incorporationCache.put(newOp, res = newOp.apply(warn));
1082            }
1083            return res;
1084        }
1085    }
1086
1087    /** incorporation steps to be executed when running in legacy mode */
1088    EnumSet<IncorporationStep> incorporationStepsLegacy = EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY);
1089
1090    /** incorporation steps to be executed when running in graph mode */
1091    EnumSet<IncorporationStep> incorporationStepsGraph =
1092            EnumSet.complementOf(EnumSet.of(IncorporationStep.EQ_CHECK_LEGACY));
1093
1094    /**
1095     * Three kinds of basic operation are supported as part of an incorporation step:
1096     * (i) subtype check, (ii) same type check and (iii) bound addition (either
1097     * upper/lower/eq bound).
1098     */
1099    enum IncorporationBinaryOpKind {
1100        IS_SUBTYPE() {
1101            @Override
1102            boolean apply(Type op1, Type op2, Warner warn, Types types) {
1103                return types.isSubtypeUnchecked(op1, op2, warn);
1104            }
1105        },
1106        IS_SAME_TYPE() {
1107            @Override
1108            boolean apply(Type op1, Type op2, Warner warn, Types types) {
1109                return types.isSameType(op1, op2);
1110            }
1111        },
1112        ADD_UPPER_BOUND() {
1113            @Override
1114            boolean apply(Type op1, Type op2, Warner warn, Types types) {
1115                UndetVar uv = (UndetVar)op1;
1116                uv.addBound(InferenceBound.UPPER, op2, types);
1117                return true;
1118            }
1119        },
1120        ADD_LOWER_BOUND() {
1121            @Override
1122            boolean apply(Type op1, Type op2, Warner warn, Types types) {
1123                UndetVar uv = (UndetVar)op1;
1124                uv.addBound(InferenceBound.LOWER, op2, types);
1125                return true;
1126            }
1127        },
1128        ADD_EQ_BOUND() {
1129            @Override
1130            boolean apply(Type op1, Type op2, Warner warn, Types types) {
1131                UndetVar uv = (UndetVar)op1;
1132                uv.addBound(InferenceBound.EQ, op2, types);
1133                return true;
1134            }
1135        };
1136
1137        abstract boolean apply(Type op1, Type op2, Warner warn, Types types);
1138    }
1139
1140    /**
1141     * This class encapsulates a basic incorporation operation; incorporation
1142     * operations takes two type operands and a kind. Each operation performed
1143     * during an incorporation round is stored in a cache, so that operations
1144     * are not executed unnecessarily (which would potentially lead to adding
1145     * same bounds over and over).
1146     */
1147    class IncorporationBinaryOp {
1148
1149        IncorporationBinaryOpKind opKind;
1150        Type op1;
1151        Type op2;
1152
1153        IncorporationBinaryOp(IncorporationBinaryOpKind opKind, Type op1, Type op2) {
1154            this.opKind = opKind;
1155            this.op1 = op1;
1156            this.op2 = op2;
1157        }
1158
1159        @Override
1160        public boolean equals(Object o) {
1161            if (!(o instanceof IncorporationBinaryOp)) {
1162                return false;
1163            } else {
1164                IncorporationBinaryOp that = (IncorporationBinaryOp)o;
1165                return opKind == that.opKind &&
1166                        types.isSameType(op1, that.op1, true) &&
1167                        types.isSameType(op2, that.op2, true);
1168            }
1169        }
1170
1171        @Override
1172        public int hashCode() {
1173            int result = opKind.hashCode();
1174            result *= 127;
1175            result += types.hashCode(op1);
1176            result *= 127;
1177            result += types.hashCode(op2);
1178            return result;
1179        }
1180
1181        boolean apply(Warner warn) {
1182            return opKind.apply(op1, op2, warn, types);
1183        }
1184    }
1185
1186    /** an incorporation cache keeps track of all executed incorporation-related operations */
1187    Map<IncorporationBinaryOp, Boolean> incorporationCache = new HashMap<>();
1188
1189    /**
1190     * Make sure that the upper bounds we got so far lead to a solvable inference
1191     * variable by making sure that a glb exists.
1192     */
1193    void checkCompatibleUpperBounds(UndetVar uv, InferenceContext inferenceContext) {
1194        List<Type> hibounds =
1195                Type.filter(uv.getBounds(InferenceBound.UPPER), new BoundFilter(inferenceContext));
1196        Type hb = null;
1197        if (hibounds.isEmpty())
1198            hb = syms.objectType;
1199        else if (hibounds.tail.isEmpty())
1200            hb = hibounds.head;
1201        else
1202            hb = types.glb(hibounds);
1203        if (hb == null || hb.isErroneous())
1204            reportBoundError(uv, BoundErrorKind.BAD_UPPER);
1205    }
1206    //where
1207        protected static class BoundFilter implements Filter<Type> {
1208
1209            InferenceContext inferenceContext;
1210
1211            public BoundFilter(InferenceContext inferenceContext) {
1212                this.inferenceContext = inferenceContext;
1213            }
1214
1215            @Override
1216            public boolean accepts(Type t) {
1217                return !t.isErroneous() && !inferenceContext.free(t) &&
1218                        !t.hasTag(BOT);
1219            }
1220        }
1221
1222    /**
1223     * This enumeration defines all possible bound-checking related errors.
1224     */
1225    enum BoundErrorKind {
1226        /**
1227         * The (uninstantiated) inference variable has incompatible upper bounds.
1228         */
1229        BAD_UPPER() {
1230            @Override
1231            InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
1232                return ex.setMessage("incompatible.upper.bounds", uv.qtype,
1233                        uv.getBounds(InferenceBound.UPPER));
1234            }
1235        },
1236        /**
1237         * An equality constraint is not compatible with an upper bound.
1238         */
1239        BAD_EQ_UPPER() {
1240            @Override
1241            InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
1242                return ex.setMessage("incompatible.eq.upper.bounds", uv.qtype,
1243                        uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.UPPER));
1244            }
1245        },
1246        /**
1247         * An equality constraint is not compatible with a lower bound.
1248         */
1249        BAD_EQ_LOWER() {
1250            @Override
1251            InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
1252                return ex.setMessage("incompatible.eq.lower.bounds", uv.qtype,
1253                        uv.getBounds(InferenceBound.EQ), uv.getBounds(InferenceBound.LOWER));
1254            }
1255        },
1256        /**
1257         * Instantiated inference variable is not compatible with an upper bound.
1258         */
1259        UPPER() {
1260            @Override
1261            InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
1262                return ex.setMessage("inferred.do.not.conform.to.upper.bounds", uv.inst,
1263                        uv.getBounds(InferenceBound.UPPER));
1264            }
1265        },
1266        /**
1267         * Instantiated inference variable is not compatible with a lower bound.
1268         */
1269        LOWER() {
1270            @Override
1271            InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
1272                return ex.setMessage("inferred.do.not.conform.to.lower.bounds", uv.inst,
1273                        uv.getBounds(InferenceBound.LOWER));
1274            }
1275        },
1276        /**
1277         * Instantiated inference variable is not compatible with an equality constraint.
1278         */
1279        EQ() {
1280            @Override
1281            InapplicableMethodException setMessage(InferenceException ex, UndetVar uv) {
1282                return ex.setMessage("inferred.do.not.conform.to.eq.bounds", uv.inst,
1283                        uv.getBounds(InferenceBound.EQ));
1284            }
1285        };
1286
1287        abstract InapplicableMethodException setMessage(InferenceException ex, UndetVar uv);
1288    }
1289
1290    /**
1291     * Report a bound-checking error of given kind
1292     */
1293    void reportBoundError(UndetVar uv, BoundErrorKind bk) {
1294        throw bk.setMessage(inferenceException, uv);
1295    }
1296    // </editor-fold>
1297
1298    // <editor-fold defaultstate="collapsed" desc="Inference engine">
1299    /**
1300     * Graph inference strategy - act as an input to the inference solver; a strategy is
1301     * composed of two ingredients: (i) find a node to solve in the inference graph,
1302     * and (ii) tell th engine when we are done fixing inference variables
1303     */
1304    interface GraphStrategy {
1305
1306        /**
1307         * A NodeNotFoundException is thrown whenever an inference strategy fails
1308         * to pick the next node to solve in the inference graph.
1309         */
1310        public static class NodeNotFoundException extends RuntimeException {
1311            private static final long serialVersionUID = 0;
1312
1313            InferenceGraph graph;
1314
1315            public NodeNotFoundException(InferenceGraph graph) {
1316                this.graph = graph;
1317            }
1318        }
1319        /**
1320         * Pick the next node (leaf) to solve in the graph
1321         */
1322        Node pickNode(InferenceGraph g) throws NodeNotFoundException;
1323        /**
1324         * Is this the last step?
1325         */
1326        boolean done();
1327    }
1328
1329    /**
1330     * Simple solver strategy class that locates all leaves inside a graph
1331     * and picks the first leaf as the next node to solve
1332     */
1333    abstract class LeafSolver implements GraphStrategy {
1334        public Node pickNode(InferenceGraph g) {
1335            if (g.nodes.isEmpty()) {
1336                //should not happen
1337                throw new NodeNotFoundException(g);
1338            }
1339            return g.nodes.get(0);
1340        }
1341
1342        boolean isSubtype(Type s, Type t, Warner warn, Infer infer) {
1343            return doIncorporationOp(IncorporationBinaryOpKind.IS_SUBTYPE, s, t, warn, infer);
1344        }
1345
1346        boolean isSameType(Type s, Type t, Infer infer) {
1347            return doIncorporationOp(IncorporationBinaryOpKind.IS_SAME_TYPE, s, t, null, infer);
1348        }
1349
1350        void addBound(InferenceBound ib, UndetVar uv, Type b, Infer infer) {
1351            doIncorporationOp(opFor(ib), uv, b, null, infer);
1352        }
1353
1354        IncorporationBinaryOpKind opFor(InferenceBound boundKind) {
1355            switch (boundKind) {
1356                case EQ:
1357                    return IncorporationBinaryOpKind.ADD_EQ_BOUND;
1358                case LOWER:
1359                    return IncorporationBinaryOpKind.ADD_LOWER_BOUND;
1360                case UPPER:
1361                    return IncorporationBinaryOpKind.ADD_UPPER_BOUND;
1362                default:
1363                    Assert.error("Can't get here!");
1364                    return null;
1365            }
1366        }
1367
1368        boolean doIncorporationOp(IncorporationBinaryOpKind opKind, Type op1, Type op2, Warner warn, Infer infer) {
1369            IncorporationBinaryOp newOp = infer.new IncorporationBinaryOp(opKind, op1, op2);
1370            Boolean res = infer.incorporationCache.get(newOp);
1371            if (res == null) {
1372                infer.incorporationCache.put(newOp, res = newOp.apply(warn));
1373            }
1374            return res;
1375        }
1376    }
1377
1378    /**
1379     * This solver uses an heuristic to pick the best leaf - the heuristic
1380     * tries to select the node that has maximal probability to contain one
1381     * or more inference variables in a given list
1382     */
1383    abstract class BestLeafSolver extends LeafSolver {
1384
1385        /** list of ivars of which at least one must be solved */
1386        List<Type> varsToSolve;
1387
1388        BestLeafSolver(List<Type> varsToSolve) {
1389            this.varsToSolve = varsToSolve;
1390        }
1391
1392        /**
1393         * Computes a path that goes from a given node to the leafs in the graph.
1394         * Typically this will start from a node containing a variable in
1395         * {@code varsToSolve}. For any given path, the cost is computed as the total
1396         * number of type-variables that should be eagerly instantiated across that path.
1397         */
1398        Pair<List<Node>, Integer> computeTreeToLeafs(Node n) {
1399            Pair<List<Node>, Integer> cachedPath = treeCache.get(n);
1400            if (cachedPath == null) {
1401                //cache miss
1402                if (n.isLeaf()) {
1403                    //if leaf, stop
1404                    cachedPath = new Pair<>(List.of(n), n.data.length());
1405                } else {
1406                    //if non-leaf, proceed recursively
1407                    Pair<List<Node>, Integer> path = new Pair<>(List.of(n), n.data.length());
1408                    for (Node n2 : n.getAllDependencies()) {
1409                        if (n2 == n) continue;
1410                        Pair<List<Node>, Integer> subpath = computeTreeToLeafs(n2);
1411                        path = new Pair<>(path.fst.prependList(subpath.fst),
1412                                          path.snd + subpath.snd);
1413                    }
1414                    cachedPath = path;
1415                }
1416                //save results in cache
1417                treeCache.put(n, cachedPath);
1418            }
1419            return cachedPath;
1420        }
1421
1422        /** cache used to avoid redundant computation of tree costs */
1423        final Map<Node, Pair<List<Node>, Integer>> treeCache = new HashMap<>();
1424
1425        /** constant value used to mark non-existent paths */
1426        final Pair<List<Node>, Integer> noPath = new Pair<>(null, Integer.MAX_VALUE);
1427
1428        /**
1429         * Pick the leaf that minimize cost
1430         */
1431        @Override
1432        public Node pickNode(final InferenceGraph g) {
1433            treeCache.clear(); //graph changes at every step - cache must be cleared
1434            Pair<List<Node>, Integer> bestPath = noPath;
1435            for (Node n : g.nodes) {
1436                if (!Collections.disjoint(n.data, varsToSolve)) {
1437                    Pair<List<Node>, Integer> path = computeTreeToLeafs(n);
1438                    //discard all paths containing at least a node in the
1439                    //closure computed above
1440                    if (path.snd < bestPath.snd) {
1441                        bestPath = path;
1442                    }
1443                }
1444            }
1445            if (bestPath == noPath) {
1446                //no path leads there
1447                throw new NodeNotFoundException(g);
1448            }
1449            return bestPath.fst.head;
1450        }
1451    }
1452
1453    /**
1454     * The inference process can be thought of as a sequence of steps. Each step
1455     * instantiates an inference variable using a subset of the inference variable
1456     * bounds, if certain condition are met. Decisions such as the sequence in which
1457     * steps are applied, or which steps are to be applied are left to the inference engine.
1458     */
1459    enum InferenceStep {
1460
1461        /**
1462         * Instantiate an inference variables using one of its (ground) equality
1463         * constraints
1464         */
1465        EQ(InferenceBound.EQ) {
1466            @Override
1467            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1468                return filterBounds(uv, inferenceContext).head;
1469            }
1470        },
1471        /**
1472         * Instantiate an inference variables using its (ground) lower bounds. Such
1473         * bounds are merged together using lub().
1474         */
1475        LOWER(InferenceBound.LOWER) {
1476            @Override
1477            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1478                Infer infer = inferenceContext.infer();
1479                List<Type> lobounds = filterBounds(uv, inferenceContext);
1480                //note: lobounds should have at least one element
1481                Type owntype = lobounds.tail.tail == null  ? lobounds.head : infer.types.lub(lobounds);
1482                if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
1483                    throw infer.inferenceException
1484                        .setMessage("no.unique.minimal.instance.exists",
1485                                    uv.qtype, lobounds);
1486                } else {
1487                    return owntype;
1488                }
1489            }
1490        },
1491        /**
1492         * Infer uninstantiated/unbound inference variables occurring in 'throws'
1493         * clause as RuntimeException
1494         */
1495        THROWS(InferenceBound.UPPER) {
1496            @Override
1497            public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1498                if ((t.qtype.tsym.flags() & Flags.THROWS) == 0) {
1499                    //not a throws undet var
1500                    return false;
1501                }
1502                if (t.getBounds(InferenceBound.EQ, InferenceBound.LOWER, InferenceBound.UPPER)
1503                            .diff(t.getDeclaredBounds()).nonEmpty()) {
1504                    //not an unbounded undet var
1505                    return false;
1506                }
1507                Infer infer = inferenceContext.infer();
1508                for (Type db : t.getDeclaredBounds()) {
1509                    if (t.isInterface()) continue;
1510                    if (infer.types.asSuper(infer.syms.runtimeExceptionType, db.tsym) != null) {
1511                        //declared bound is a supertype of RuntimeException
1512                        return true;
1513                    }
1514                }
1515                //declared bound is more specific then RuntimeException - give up
1516                return false;
1517            }
1518
1519            @Override
1520            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1521                return inferenceContext.infer().syms.runtimeExceptionType;
1522            }
1523        },
1524        /**
1525         * Instantiate an inference variables using its (ground) upper bounds. Such
1526         * bounds are merged together using glb().
1527         */
1528        UPPER(InferenceBound.UPPER) {
1529            @Override
1530            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1531                Infer infer = inferenceContext.infer();
1532                List<Type> hibounds = filterBounds(uv, inferenceContext);
1533                //note: hibounds should have at least one element
1534                Type owntype = hibounds.tail.tail == null  ? hibounds.head : infer.types.glb(hibounds);
1535                if (owntype.isPrimitive() || owntype.hasTag(ERROR)) {
1536                    throw infer.inferenceException
1537                        .setMessage("no.unique.maximal.instance.exists",
1538                                    uv.qtype, hibounds);
1539                } else {
1540                    return owntype;
1541                }
1542            }
1543        },
1544        /**
1545         * Like the former; the only difference is that this step can only be applied
1546         * if all upper bounds are ground.
1547         */
1548        UPPER_LEGACY(InferenceBound.UPPER) {
1549            @Override
1550            public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1551                return !inferenceContext.free(t.getBounds(ib)) && !t.isCaptured();
1552            }
1553
1554            @Override
1555            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1556                return UPPER.solve(uv, inferenceContext);
1557            }
1558        },
1559        /**
1560         * Like the former; the only difference is that this step can only be applied
1561         * if all upper/lower bounds are ground.
1562         */
1563        CAPTURED(InferenceBound.UPPER) {
1564            @Override
1565            public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1566                return t.isCaptured() &&
1567                        !inferenceContext.free(t.getBounds(InferenceBound.UPPER, InferenceBound.LOWER));
1568            }
1569
1570            @Override
1571            Type solve(UndetVar uv, InferenceContext inferenceContext) {
1572                Infer infer = inferenceContext.infer();
1573                Type upper = UPPER.filterBounds(uv, inferenceContext).nonEmpty() ?
1574                        UPPER.solve(uv, inferenceContext) :
1575                        infer.syms.objectType;
1576                Type lower = LOWER.filterBounds(uv, inferenceContext).nonEmpty() ?
1577                        LOWER.solve(uv, inferenceContext) :
1578                        infer.syms.botType;
1579                CapturedType prevCaptured = (CapturedType)uv.qtype;
1580                return new CapturedType(prevCaptured.tsym.name, prevCaptured.tsym.owner,
1581                                        upper, lower, prevCaptured.wildcard);
1582            }
1583        };
1584
1585        final InferenceBound ib;
1586
1587        InferenceStep(InferenceBound ib) {
1588            this.ib = ib;
1589        }
1590
1591        /**
1592         * Find an instantiated type for a given inference variable within
1593         * a given inference context
1594         */
1595        abstract Type solve(UndetVar uv, InferenceContext inferenceContext);
1596
1597        /**
1598         * Can the inference variable be instantiated using this step?
1599         */
1600        public boolean accepts(UndetVar t, InferenceContext inferenceContext) {
1601            return filterBounds(t, inferenceContext).nonEmpty() && !t.isCaptured();
1602        }
1603
1604        /**
1605         * Return the subset of ground bounds in a given bound set (i.e. eq/lower/upper)
1606         */
1607        List<Type> filterBounds(UndetVar uv, InferenceContext inferenceContext) {
1608            return Type.filter(uv.getBounds(ib), new BoundFilter(inferenceContext));
1609        }
1610    }
1611
1612    /**
1613     * This enumeration defines the sequence of steps to be applied when the
1614     * solver works in legacy mode. The steps in this enumeration reflect
1615     * the behavior of old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
1616     */
1617    enum LegacyInferenceSteps {
1618
1619        EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
1620        EQ_UPPER(EnumSet.of(InferenceStep.EQ, InferenceStep.UPPER_LEGACY));
1621
1622        final EnumSet<InferenceStep> steps;
1623
1624        LegacyInferenceSteps(EnumSet<InferenceStep> steps) {
1625            this.steps = steps;
1626        }
1627    }
1628
1629    /**
1630     * This enumeration defines the sequence of steps to be applied when the
1631     * graph solver is used. This order is defined so as to maximize compatibility
1632     * w.r.t. old inference routine (see JLS SE 7 15.12.2.7/15.12.2.8).
1633     */
1634    enum GraphInferenceSteps {
1635
1636        EQ(EnumSet.of(InferenceStep.EQ)),
1637        EQ_LOWER(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER)),
1638        EQ_LOWER_THROWS_UPPER_CAPTURED(EnumSet.of(InferenceStep.EQ, InferenceStep.LOWER, InferenceStep.UPPER, InferenceStep.THROWS, InferenceStep.CAPTURED));
1639
1640        final EnumSet<InferenceStep> steps;
1641
1642        GraphInferenceSteps(EnumSet<InferenceStep> steps) {
1643            this.steps = steps;
1644        }
1645    }
1646
1647    /**
1648     * There are two kinds of dependencies between inference variables. The basic
1649     * kind of dependency (or bound dependency) arises when a variable mention
1650     * another variable in one of its bounds. There's also a more subtle kind
1651     * of dependency that arises when a variable 'might' lead to better constraints
1652     * on another variable (this is typically the case with variables holding up
1653     * stuck expressions).
1654     */
1655    enum DependencyKind implements GraphUtils.DependencyKind {
1656
1657        /** bound dependency */
1658        BOUND("dotted"),
1659        /** stuck dependency */
1660        STUCK("dashed");
1661
1662        final String dotSyle;
1663
1664        private DependencyKind(String dotSyle) {
1665            this.dotSyle = dotSyle;
1666        }
1667    }
1668
1669    /**
1670     * This is the graph inference solver - the solver organizes all inference variables in
1671     * a given inference context by bound dependencies - in the general case, such dependencies
1672     * would lead to a cyclic directed graph (hence the name); the dependency info is used to build
1673     * an acyclic graph, where all cyclic variables are bundled together. An inference
1674     * step corresponds to solving a node in the acyclic graph - this is done by
1675     * relying on a given strategy (see GraphStrategy).
1676     */
1677    class GraphSolver {
1678
1679        InferenceContext inferenceContext;
1680        Map<Type, Set<Type>> stuckDeps;
1681        Warner warn;
1682
1683        GraphSolver(InferenceContext inferenceContext, Map<Type, Set<Type>> stuckDeps, Warner warn) {
1684            this.inferenceContext = inferenceContext;
1685            this.stuckDeps = stuckDeps;
1686            this.warn = warn;
1687        }
1688
1689        /**
1690         * Solve variables in a given inference context. The amount of variables
1691         * to be solved, and the way in which the underlying acyclic graph is explored
1692         * depends on the selected solver strategy.
1693         */
1694        void solve(GraphStrategy sstrategy) {
1695            checkWithinBounds(inferenceContext, warn); //initial propagation of bounds
1696            InferenceGraph inferenceGraph = new InferenceGraph(stuckDeps);
1697            while (!sstrategy.done()) {
1698                if (dependenciesFolder != null) {
1699                    //add this graph to the pending queue
1700                    pendingGraphs = pendingGraphs.prepend(inferenceGraph.toDot());
1701                }
1702                InferenceGraph.Node nodeToSolve = sstrategy.pickNode(inferenceGraph);
1703                List<Type> varsToSolve = List.from(nodeToSolve.data);
1704                List<Type> saved_undet = inferenceContext.save();
1705                try {
1706                    //repeat until all variables are solved
1707                    outer: while (Type.containsAny(inferenceContext.restvars(), varsToSolve)) {
1708                        //for each inference phase
1709                        for (GraphInferenceSteps step : GraphInferenceSteps.values()) {
1710                            if (inferenceContext.solveBasic(varsToSolve, step.steps)) {
1711                                checkWithinBounds(inferenceContext, warn);
1712                                continue outer;
1713                            }
1714                        }
1715                        //no progress
1716                        throw inferenceException.setMessage();
1717                    }
1718                }
1719                catch (InferenceException ex) {
1720                    //did we fail because of interdependent ivars?
1721                    inferenceContext.rollback(saved_undet);
1722                    instantiateAsUninferredVars(varsToSolve, inferenceContext);
1723                    checkWithinBounds(inferenceContext, warn);
1724                }
1725                inferenceGraph.deleteNode(nodeToSolve);
1726            }
1727        }
1728
1729        /**
1730         * The dependencies between the inference variables that need to be solved
1731         * form a (possibly cyclic) graph. This class reduces the original dependency graph
1732         * to an acyclic version, where cyclic nodes are folded into a single 'super node'.
1733         */
1734        class InferenceGraph {
1735
1736            /**
1737             * This class represents a node in the graph. Each node corresponds
1738             * to an inference variable and has edges (dependencies) on other
1739             * nodes. The node defines an entry point that can be used to receive
1740             * updates on the structure of the graph this node belongs to (used to
1741             * keep dependencies in sync).
1742             */
1743            class Node extends GraphUtils.TarjanNode<ListBuffer<Type>, Node> implements DottableNode<ListBuffer<Type>, Node> {
1744
1745                /** map listing all dependencies (grouped by kind) */
1746                EnumMap<DependencyKind, Set<Node>> deps;
1747
1748                Node(Type ivar) {
1749                    super(ListBuffer.of(ivar));
1750                    this.deps = new EnumMap<>(DependencyKind.class);
1751                }
1752
1753                @Override
1754                public GraphUtils.DependencyKind[] getSupportedDependencyKinds() {
1755                    return DependencyKind.values();
1756                }
1757
1758                public Iterable<? extends Node> getAllDependencies() {
1759                    return getDependencies(DependencyKind.values());
1760                }
1761
1762                @Override
1763                public Collection<? extends Node> getDependenciesByKind(GraphUtils.DependencyKind dk) {
1764                    return getDependencies((DependencyKind)dk);
1765                }
1766
1767                /**
1768                 * Retrieves all dependencies with given kind(s).
1769                 */
1770                protected Set<Node> getDependencies(DependencyKind... depKinds) {
1771                    Set<Node> buf = new LinkedHashSet<>();
1772                    for (DependencyKind dk : depKinds) {
1773                        Set<Node> depsByKind = deps.get(dk);
1774                        if (depsByKind != null) {
1775                            buf.addAll(depsByKind);
1776                        }
1777                    }
1778                    return buf;
1779                }
1780
1781                /**
1782                 * Adds dependency with given kind.
1783                 */
1784                protected void addDependency(DependencyKind dk, Node depToAdd) {
1785                    Set<Node> depsByKind = deps.get(dk);
1786                    if (depsByKind == null) {
1787                        depsByKind = new LinkedHashSet<>();
1788                        deps.put(dk, depsByKind);
1789                    }
1790                    depsByKind.add(depToAdd);
1791                }
1792
1793                /**
1794                 * Add multiple dependencies of same given kind.
1795                 */
1796                protected void addDependencies(DependencyKind dk, Set<Node> depsToAdd) {
1797                    for (Node n : depsToAdd) {
1798                        addDependency(dk, n);
1799                    }
1800                }
1801
1802                /**
1803                 * Remove a dependency, regardless of its kind.
1804                 */
1805                protected Set<DependencyKind> removeDependency(Node n) {
1806                    Set<DependencyKind> removedKinds = new HashSet<>();
1807                    for (DependencyKind dk : DependencyKind.values()) {
1808                        Set<Node> depsByKind = deps.get(dk);
1809                        if (depsByKind == null) continue;
1810                        if (depsByKind.remove(n)) {
1811                            removedKinds.add(dk);
1812                        }
1813                    }
1814                    return removedKinds;
1815                }
1816
1817                /**
1818                 * Compute closure of a give node, by recursively walking
1819                 * through all its dependencies (of given kinds)
1820                 */
1821                protected Set<Node> closure(DependencyKind... depKinds) {
1822                    boolean progress = true;
1823                    Set<Node> closure = new HashSet<>();
1824                    closure.add(this);
1825                    while (progress) {
1826                        progress = false;
1827                        for (Node n1 : new HashSet<>(closure)) {
1828                            progress = closure.addAll(n1.getDependencies(depKinds));
1829                        }
1830                    }
1831                    return closure;
1832                }
1833
1834                /**
1835                 * Is this node a leaf? This means either the node has no dependencies,
1836                 * or it just has self-dependencies.
1837                 */
1838                protected boolean isLeaf() {
1839                    //no deps, or only one self dep
1840                    Set<Node> allDeps = getDependencies(DependencyKind.BOUND, DependencyKind.STUCK);
1841                    if (allDeps.isEmpty()) return true;
1842                    for (Node n : allDeps) {
1843                        if (n != this) {
1844                            return false;
1845                        }
1846                    }
1847                    return true;
1848                }
1849
1850                /**
1851                 * Merge this node with another node, acquiring its dependencies.
1852                 * This routine is used to merge all cyclic node together and
1853                 * form an acyclic graph.
1854                 */
1855                protected void mergeWith(List<? extends Node> nodes) {
1856                    for (Node n : nodes) {
1857                        Assert.check(n.data.length() == 1, "Attempt to merge a compound node!");
1858                        data.appendList(n.data);
1859                        for (DependencyKind dk : DependencyKind.values()) {
1860                            addDependencies(dk, n.getDependencies(dk));
1861                        }
1862                    }
1863                    //update deps
1864                    EnumMap<DependencyKind, Set<Node>> deps2 = new EnumMap<>(DependencyKind.class);
1865                    for (DependencyKind dk : DependencyKind.values()) {
1866                        for (Node d : getDependencies(dk)) {
1867                            Set<Node> depsByKind = deps2.get(dk);
1868                            if (depsByKind == null) {
1869                                depsByKind = new LinkedHashSet<>();
1870                                deps2.put(dk, depsByKind);
1871                            }
1872                            if (data.contains(d.data.first())) {
1873                                depsByKind.add(this);
1874                            } else {
1875                                depsByKind.add(d);
1876                            }
1877                        }
1878                    }
1879                    deps = deps2;
1880                }
1881
1882                /**
1883                 * Notify all nodes that something has changed in the graph
1884                 * topology.
1885                 */
1886                private void graphChanged(Node from, Node to) {
1887                    for (DependencyKind dk : removeDependency(from)) {
1888                        if (to != null) {
1889                            addDependency(dk, to);
1890                        }
1891                    }
1892                }
1893
1894                @Override
1895                public Properties nodeAttributes() {
1896                    Properties p = new Properties();
1897                    p.put("label", "\"" + toString() + "\"");
1898                    return p;
1899                }
1900
1901                @Override
1902                public Properties dependencyAttributes(Node sink, GraphUtils.DependencyKind dk) {
1903                    Properties p = new Properties();
1904                    p.put("style", ((DependencyKind)dk).dotSyle);
1905                    if (dk == DependencyKind.STUCK) return p;
1906                    else {
1907                        StringBuilder buf = new StringBuilder();
1908                        String sep = "";
1909                        for (Type from : data) {
1910                            UndetVar uv = (UndetVar)inferenceContext.asUndetVar(from);
1911                            for (Type bound : uv.getBounds(InferenceBound.values())) {
1912                                if (bound.containsAny(List.from(sink.data))) {
1913                                    buf.append(sep);
1914                                    buf.append(bound);
1915                                    sep = ",";
1916                                }
1917                            }
1918                        }
1919                        p.put("label", "\"" + buf.toString() + "\"");
1920                    }
1921                    return p;
1922                }
1923            }
1924
1925            /** the nodes in the inference graph */
1926            ArrayList<Node> nodes;
1927
1928            InferenceGraph(Map<Type, Set<Type>> optDeps) {
1929                initNodes(optDeps);
1930            }
1931
1932            /**
1933             * Basic lookup helper for retrieving a graph node given an inference
1934             * variable type.
1935             */
1936            public Node findNode(Type t) {
1937                for (Node n : nodes) {
1938                    if (n.data.contains(t)) {
1939                        return n;
1940                    }
1941                }
1942                return null;
1943            }
1944
1945            /**
1946             * Delete a node from the graph. This update the underlying structure
1947             * of the graph (including dependencies) via listeners updates.
1948             */
1949            public void deleteNode(Node n) {
1950                Assert.check(nodes.contains(n));
1951                nodes.remove(n);
1952                notifyUpdate(n, null);
1953            }
1954
1955            /**
1956             * Notify all nodes of a change in the graph. If the target node is
1957             * {@code null} the source node is assumed to be removed.
1958             */
1959            void notifyUpdate(Node from, Node to) {
1960                for (Node n : nodes) {
1961                    n.graphChanged(from, to);
1962                }
1963            }
1964
1965            /**
1966             * Create the graph nodes. First a simple node is created for every inference
1967             * variables to be solved. Then Tarjan is used to found all connected components
1968             * in the graph. For each component containing more than one node, a super node is
1969             * created, effectively replacing the original cyclic nodes.
1970             */
1971            void initNodes(Map<Type, Set<Type>> stuckDeps) {
1972                //add nodes
1973                nodes = new ArrayList<>();
1974                for (Type t : inferenceContext.restvars()) {
1975                    nodes.add(new Node(t));
1976                }
1977                //add dependencies
1978                for (Node n_i : nodes) {
1979                    Type i = n_i.data.first();
1980                    Set<Type> optDepsByNode = stuckDeps.get(i);
1981                    for (Node n_j : nodes) {
1982                        Type j = n_j.data.first();
1983                        UndetVar uv_i = (UndetVar)inferenceContext.asUndetVar(i);
1984                        if (Type.containsAny(uv_i.getBounds(InferenceBound.values()), List.of(j))) {
1985                            //update i's bound dependencies
1986                            n_i.addDependency(DependencyKind.BOUND, n_j);
1987                        }
1988                        if (optDepsByNode != null && optDepsByNode.contains(j)) {
1989                            //update i's stuck dependencies
1990                            n_i.addDependency(DependencyKind.STUCK, n_j);
1991                        }
1992                    }
1993                }
1994                //merge cyclic nodes
1995                ArrayList<Node> acyclicNodes = new ArrayList<>();
1996                for (List<? extends Node> conSubGraph : GraphUtils.tarjan(nodes)) {
1997                    if (conSubGraph.length() > 1) {
1998                        Node root = conSubGraph.head;
1999                        root.mergeWith(conSubGraph.tail);
2000                        for (Node n : conSubGraph) {
2001                            notifyUpdate(n, root);
2002                        }
2003                    }
2004                    acyclicNodes.add(conSubGraph.head);
2005                }
2006                nodes = acyclicNodes;
2007            }
2008
2009            /**
2010             * Debugging: dot representation of this graph
2011             */
2012            String toDot() {
2013                StringBuilder buf = new StringBuilder();
2014                for (Type t : inferenceContext.undetvars) {
2015                    UndetVar uv = (UndetVar)t;
2016                    buf.append(String.format("var %s - upper bounds = %s, lower bounds = %s, eq bounds = %s\\n",
2017                            uv.qtype, uv.getBounds(InferenceBound.UPPER), uv.getBounds(InferenceBound.LOWER),
2018                            uv.getBounds(InferenceBound.EQ)));
2019                }
2020                return GraphUtils.toDot(nodes, "inferenceGraph" + hashCode(), buf.toString());
2021            }
2022        }
2023    }
2024    // </editor-fold>
2025
2026    // <editor-fold defaultstate="collapsed" desc="Inference context">
2027    /**
2028     * Functional interface for defining inference callbacks. Certain actions
2029     * (i.e. subtyping checks) might need to be redone after all inference variables
2030     * have been fixed.
2031     */
2032    interface FreeTypeListener {
2033        void typesInferred(InferenceContext inferenceContext);
2034    }
2035
2036    /**
2037     * An inference context keeps track of the set of variables that are free
2038     * in the current context. It provides utility methods for opening/closing
2039     * types to their corresponding free/closed forms. It also provide hooks for
2040     * attaching deferred post-inference action (see PendingCheck). Finally,
2041     * it can be used as an entry point for performing upper/lower bound inference
2042     * (see InferenceKind).
2043     */
2044     class InferenceContext {
2045
2046        /** list of inference vars as undet vars */
2047        List<Type> undetvars;
2048
2049        /** list of inference vars in this context */
2050        List<Type> inferencevars;
2051
2052        Map<FreeTypeListener, List<Type>> freeTypeListeners = new HashMap<>();
2053
2054        List<FreeTypeListener> freetypeListeners = List.nil();
2055
2056        public InferenceContext(List<Type> inferencevars) {
2057            this.undetvars = inferencevars.map(fromTypeVarFun);
2058            this.inferencevars = inferencevars;
2059        }
2060        //where
2061            TypeMapping<Void> fromTypeVarFun = new TypeMapping<Void>() {
2062                @Override
2063                public Type visitTypeVar(TypeVar tv, Void aVoid) {
2064                    return new UndetVar(tv, types);
2065                }
2066
2067                @Override
2068                public Type visitCapturedType(CapturedType t, Void aVoid) {
2069                    return new CapturedUndetVar(t, types);
2070                }
2071            };
2072
2073        /**
2074         * add a new inference var to this inference context
2075         */
2076        void addVar(TypeVar t) {
2077            this.undetvars = this.undetvars.prepend(fromTypeVarFun.apply(t));
2078            this.inferencevars = this.inferencevars.prepend(t);
2079        }
2080
2081        /**
2082         * returns the list of free variables (as type-variables) in this
2083         * inference context
2084         */
2085        List<Type> inferenceVars() {
2086            return inferencevars;
2087        }
2088
2089        /**
2090         * returns the list of uninstantiated variables (as type-variables) in this
2091         * inference context
2092         */
2093        List<Type> restvars() {
2094            return filterVars(new Filter<UndetVar>() {
2095                public boolean accepts(UndetVar uv) {
2096                    return uv.inst == null;
2097                }
2098            });
2099        }
2100
2101        /**
2102         * returns the list of instantiated variables (as type-variables) in this
2103         * inference context
2104         */
2105        List<Type> instvars() {
2106            return filterVars(new Filter<UndetVar>() {
2107                public boolean accepts(UndetVar uv) {
2108                    return uv.inst != null;
2109                }
2110            });
2111        }
2112
2113        /**
2114         * Get list of bounded inference variables (where bound is other than
2115         * declared bounds).
2116         */
2117        final List<Type> boundedVars() {
2118            return filterVars(new Filter<UndetVar>() {
2119                public boolean accepts(UndetVar uv) {
2120                    return uv.getBounds(InferenceBound.UPPER)
2121                             .diff(uv.getDeclaredBounds())
2122                             .appendList(uv.getBounds(InferenceBound.EQ, InferenceBound.LOWER)).nonEmpty();
2123                }
2124            });
2125        }
2126
2127        /* Returns the corresponding inference variables.
2128         */
2129        private List<Type> filterVars(Filter<UndetVar> fu) {
2130            ListBuffer<Type> res = new ListBuffer<>();
2131            for (Type t : undetvars) {
2132                UndetVar uv = (UndetVar)t;
2133                if (fu.accepts(uv)) {
2134                    res.append(uv.qtype);
2135                }
2136            }
2137            return res.toList();
2138        }
2139
2140        /**
2141         * is this type free?
2142         */
2143        final boolean free(Type t) {
2144            return t.containsAny(inferencevars);
2145        }
2146
2147        final boolean free(List<Type> ts) {
2148            for (Type t : ts) {
2149                if (free(t)) return true;
2150            }
2151            return false;
2152        }
2153
2154        /**
2155         * Returns a list of free variables in a given type
2156         */
2157        final List<Type> freeVarsIn(Type t) {
2158            ListBuffer<Type> buf = new ListBuffer<>();
2159            for (Type iv : inferenceVars()) {
2160                if (t.contains(iv)) {
2161                    buf.add(iv);
2162                }
2163            }
2164            return buf.toList();
2165        }
2166
2167        final List<Type> freeVarsIn(List<Type> ts) {
2168            ListBuffer<Type> buf = new ListBuffer<>();
2169            for (Type t : ts) {
2170                buf.appendList(freeVarsIn(t));
2171            }
2172            ListBuffer<Type> buf2 = new ListBuffer<>();
2173            for (Type t : buf) {
2174                if (!buf2.contains(t)) {
2175                    buf2.add(t);
2176                }
2177            }
2178            return buf2.toList();
2179        }
2180
2181        /**
2182         * Replace all free variables in a given type with corresponding
2183         * undet vars (used ahead of subtyping/compatibility checks to allow propagation
2184         * of inference constraints).
2185         */
2186        final Type asUndetVar(Type t) {
2187            return types.subst(t, inferencevars, undetvars);
2188        }
2189
2190        final List<Type> asUndetVars(List<Type> ts) {
2191            ListBuffer<Type> buf = new ListBuffer<>();
2192            for (Type t : ts) {
2193                buf.append(asUndetVar(t));
2194            }
2195            return buf.toList();
2196        }
2197
2198        List<Type> instTypes() {
2199            ListBuffer<Type> buf = new ListBuffer<>();
2200            for (Type t : undetvars) {
2201                UndetVar uv = (UndetVar)t;
2202                buf.append(uv.inst != null ? uv.inst : uv.qtype);
2203            }
2204            return buf.toList();
2205        }
2206
2207        /**
2208         * Replace all free variables in a given type with corresponding
2209         * instantiated types - if one or more free variable has not been
2210         * fully instantiated, it will still be available in the resulting type.
2211         */
2212        Type asInstType(Type t) {
2213            return types.subst(t, inferencevars, instTypes());
2214        }
2215
2216        List<Type> asInstTypes(List<Type> ts) {
2217            ListBuffer<Type> buf = new ListBuffer<>();
2218            for (Type t : ts) {
2219                buf.append(asInstType(t));
2220            }
2221            return buf.toList();
2222        }
2223
2224        /**
2225         * Add custom hook for performing post-inference action
2226         */
2227        void addFreeTypeListener(List<Type> types, FreeTypeListener ftl) {
2228            freeTypeListeners.put(ftl, freeVarsIn(types));
2229        }
2230
2231        /**
2232         * Mark the inference context as complete and trigger evaluation
2233         * of all deferred checks.
2234         */
2235        void notifyChange() {
2236            notifyChange(inferencevars.diff(restvars()));
2237        }
2238
2239        void notifyChange(List<Type> inferredVars) {
2240            InferenceException thrownEx = null;
2241            for (Map.Entry<FreeTypeListener, List<Type>> entry :
2242                    new HashMap<>(freeTypeListeners).entrySet()) {
2243                if (!Type.containsAny(entry.getValue(), inferencevars.diff(inferredVars))) {
2244                    try {
2245                        entry.getKey().typesInferred(this);
2246                        freeTypeListeners.remove(entry.getKey());
2247                    } catch (InferenceException ex) {
2248                        if (thrownEx == null) {
2249                            thrownEx = ex;
2250                        }
2251                    }
2252                }
2253            }
2254            //inference exception multiplexing - present any inference exception
2255            //thrown when processing listeners as a single one
2256            if (thrownEx != null) {
2257                throw thrownEx;
2258            }
2259        }
2260
2261        /**
2262         * Save the state of this inference context
2263         */
2264        List<Type> save() {
2265            ListBuffer<Type> buf = new ListBuffer<>();
2266            for (Type t : undetvars) {
2267                UndetVar uv = (UndetVar)t;
2268                UndetVar uv2 = new UndetVar((TypeVar)uv.qtype, types);
2269                for (InferenceBound ib : InferenceBound.values()) {
2270                    for (Type b : uv.getBounds(ib)) {
2271                        uv2.addBound(ib, b, types);
2272                    }
2273                }
2274                uv2.inst = uv.inst;
2275                buf.add(uv2);
2276            }
2277            return buf.toList();
2278        }
2279
2280        /**
2281         * Restore the state of this inference context to the previous known checkpoint
2282         */
2283        void rollback(List<Type> saved_undet) {
2284             Assert.check(saved_undet != null && saved_undet.length() == undetvars.length());
2285            //restore bounds (note: we need to preserve the old instances)
2286            for (Type t : undetvars) {
2287                UndetVar uv = (UndetVar)t;
2288                UndetVar uv_saved = (UndetVar)saved_undet.head;
2289                for (InferenceBound ib : InferenceBound.values()) {
2290                    uv.setBounds(ib, uv_saved.getBounds(ib));
2291                }
2292                uv.inst = uv_saved.inst;
2293                saved_undet = saved_undet.tail;
2294            }
2295        }
2296
2297        /**
2298         * Copy variable in this inference context to the given context
2299         */
2300        void dupTo(final InferenceContext that) {
2301            that.inferencevars = that.inferencevars.appendList(
2302                    inferencevars.diff(that.inferencevars));
2303            that.undetvars = that.undetvars.appendList(
2304                    undetvars.diff(that.undetvars));
2305            //set up listeners to notify original inference contexts as
2306            //propagated vars are inferred in new context
2307            for (Type t : inferencevars) {
2308                that.freeTypeListeners.put(new FreeTypeListener() {
2309                    public void typesInferred(InferenceContext inferenceContext) {
2310                        InferenceContext.this.notifyChange();
2311                    }
2312                }, List.of(t));
2313            }
2314        }
2315
2316        private void solve(GraphStrategy ss, Warner warn) {
2317            solve(ss, new HashMap<Type, Set<Type>>(), warn);
2318        }
2319
2320        /**
2321         * Solve with given graph strategy.
2322         */
2323        private void solve(GraphStrategy ss, Map<Type, Set<Type>> stuckDeps, Warner warn) {
2324            GraphSolver s = new GraphSolver(this, stuckDeps, warn);
2325            s.solve(ss);
2326        }
2327
2328        /**
2329         * Solve all variables in this context.
2330         */
2331        public void solve(Warner warn) {
2332            solve(new LeafSolver() {
2333                public boolean done() {
2334                    return restvars().isEmpty();
2335                }
2336            }, warn);
2337        }
2338
2339        /**
2340         * Solve all variables in the given list.
2341         */
2342        public void solve(final List<Type> vars, Warner warn) {
2343            solve(new BestLeafSolver(vars) {
2344                public boolean done() {
2345                    return !free(asInstTypes(vars));
2346                }
2347            }, warn);
2348        }
2349
2350        /**
2351         * Solve at least one variable in given list.
2352         */
2353        public void solveAny(List<Type> varsToSolve, Map<Type, Set<Type>> optDeps, Warner warn) {
2354            solve(new BestLeafSolver(varsToSolve.intersect(restvars())) {
2355                public boolean done() {
2356                    return instvars().intersect(varsToSolve).nonEmpty();
2357                }
2358            }, optDeps, warn);
2359        }
2360
2361        /**
2362         * Apply a set of inference steps
2363         */
2364        private boolean solveBasic(EnumSet<InferenceStep> steps) {
2365            return solveBasic(inferencevars, steps);
2366        }
2367
2368        private boolean solveBasic(List<Type> varsToSolve, EnumSet<InferenceStep> steps) {
2369            boolean changed = false;
2370            for (Type t : varsToSolve.intersect(restvars())) {
2371                UndetVar uv = (UndetVar)asUndetVar(t);
2372                for (InferenceStep step : steps) {
2373                    if (step.accepts(uv, this)) {
2374                        uv.inst = step.solve(uv, this);
2375                        changed = true;
2376                        break;
2377                    }
2378                }
2379            }
2380            return changed;
2381        }
2382
2383        /**
2384         * Instantiate inference variables in legacy mode (JLS 15.12.2.7, 15.12.2.8).
2385         * During overload resolution, instantiation is done by doing a partial
2386         * inference process using eq/lower bound instantiation. During check,
2387         * we also instantiate any remaining vars by repeatedly using eq/upper
2388         * instantiation, until all variables are solved.
2389         */
2390        public void solveLegacy(boolean partial, Warner warn, EnumSet<InferenceStep> steps) {
2391            while (true) {
2392                boolean stuck = !solveBasic(steps);
2393                if (restvars().isEmpty() || partial) {
2394                    //all variables have been instantiated - exit
2395                    break;
2396                } else if (stuck) {
2397                    //some variables could not be instantiated because of cycles in
2398                    //upper bounds - provide a (possibly recursive) default instantiation
2399                    instantiateAsUninferredVars(restvars(), this);
2400                    break;
2401                } else {
2402                    //some variables have been instantiated - replace newly instantiated
2403                    //variables in remaining upper bounds and continue
2404                    for (Type t : undetvars) {
2405                        UndetVar uv = (UndetVar)t;
2406                        uv.substBounds(inferenceVars(), instTypes(), types);
2407                    }
2408                }
2409            }
2410            checkWithinBounds(this, warn);
2411        }
2412
2413        private Infer infer() {
2414            //back-door to infer
2415            return Infer.this;
2416        }
2417
2418        @Override
2419        public String toString() {
2420            return "Inference vars: " + inferencevars + '\n' +
2421                   "Undet vars: " + undetvars;
2422        }
2423
2424        /* Method Types.capture() generates a new type every time it's applied
2425         * to a wildcard parameterized type. This is intended functionality but
2426         * there are some cases when what you need is not to generate a new
2427         * captured type but to check that a previously generated captured type
2428         * is correct. There are cases when caching a captured type for later
2429         * reuse is sound. In general two captures from the same AST are equal.
2430         * This is why the tree is used as the key of the map below. This map
2431         * stores a Type per AST.
2432         */
2433        Map<JCTree, Type> captureTypeCache = new HashMap<>();
2434
2435        Type cachedCapture(JCTree tree, Type t, boolean readOnly) {
2436            Type captured = captureTypeCache.get(tree);
2437            if (captured != null) {
2438                return captured;
2439            }
2440
2441            Type result = types.capture(t);
2442            if (result != t && !readOnly) { // then t is a wildcard parameterized type
2443                captureTypeCache.put(tree, result);
2444            }
2445            return result;
2446        }
2447    }
2448
2449    final InferenceContext emptyContext = new InferenceContext(List.<Type>nil());
2450    // </editor-fold>
2451}
2452