DeferredAttr.java revision 3031:286fc9270404
1/*
2 * Copyright (c) 2012, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.source.tree.LambdaExpressionTree.BodyKind;
29import com.sun.source.tree.NewClassTree;
30import com.sun.tools.javac.code.*;
31import com.sun.tools.javac.code.Type.TypeMapping;
32import com.sun.tools.javac.comp.ArgumentAttr.CachePolicy;
33import com.sun.tools.javac.comp.Resolve.ResolveError;
34import com.sun.tools.javac.resources.CompilerProperties.Fragments;
35import com.sun.tools.javac.tree.*;
36import com.sun.tools.javac.util.*;
37import com.sun.tools.javac.util.DefinedBy.Api;
38import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
39import com.sun.tools.javac.code.Symbol.*;
40import com.sun.tools.javac.comp.Attr.ResultInfo;
41import com.sun.tools.javac.comp.Resolve.MethodResolutionPhase;
42import com.sun.tools.javac.tree.JCTree.*;
43import com.sun.tools.javac.util.JCDiagnostic.DiagnosticType;
44import com.sun.tools.javac.util.Log.DeferredDiagnosticHandler;
45
46import java.util.ArrayList;
47import java.util.Collections;
48import java.util.EnumSet;
49import java.util.LinkedHashMap;
50import java.util.LinkedHashSet;
51import java.util.Map;
52import java.util.Set;
53import java.util.WeakHashMap;
54import java.util.function.Function;
55
56import static com.sun.tools.javac.code.TypeTag.*;
57import static com.sun.tools.javac.tree.JCTree.Tag.*;
58
59/**
60 * This is an helper class that is used to perform deferred type-analysis.
61 * Each time a poly expression occurs in argument position, javac attributes it
62 * with a temporary 'deferred type' that is checked (possibly multiple times)
63 * against an expected formal type.
64 *
65 *  <p><b>This is NOT part of any supported API.
66 *  If you write code that depends on this, you do so at your own risk.
67 *  This code and its internal interfaces are subject to change or
68 *  deletion without notice.</b>
69 */
70public class DeferredAttr extends JCTree.Visitor {
71    protected static final Context.Key<DeferredAttr> deferredAttrKey = new Context.Key<>();
72
73    final Attr attr;
74    final ArgumentAttr argumentAttr;
75    final Check chk;
76    final JCDiagnostic.Factory diags;
77    final Enter enter;
78    final Infer infer;
79    final Resolve rs;
80    final Log log;
81    final Symtab syms;
82    final TreeMaker make;
83    final TreeCopier<Void> treeCopier;
84    final TypeMapping<Void> deferredCopier;
85    final Types types;
86    final Flow flow;
87    final Names names;
88    final TypeEnvs typeEnvs;
89
90    public static DeferredAttr instance(Context context) {
91        DeferredAttr instance = context.get(deferredAttrKey);
92        if (instance == null)
93            instance = new DeferredAttr(context);
94        return instance;
95    }
96
97    protected DeferredAttr(Context context) {
98        context.put(deferredAttrKey, this);
99        attr = Attr.instance(context);
100        argumentAttr = ArgumentAttr.instance(context);
101        chk = Check.instance(context);
102        diags = JCDiagnostic.Factory.instance(context);
103        enter = Enter.instance(context);
104        infer = Infer.instance(context);
105        rs = Resolve.instance(context);
106        log = Log.instance(context);
107        syms = Symtab.instance(context);
108        make = TreeMaker.instance(context);
109        types = Types.instance(context);
110        flow = Flow.instance(context);
111        names = Names.instance(context);
112        stuckTree = make.Ident(names.empty).setType(Type.stuckType);
113        typeEnvs = TypeEnvs.instance(context);
114        emptyDeferredAttrContext =
115            new DeferredAttrContext(AttrMode.CHECK, null, MethodResolutionPhase.BOX, infer.emptyContext, null, null) {
116                @Override
117                void addDeferredAttrNode(DeferredType dt, ResultInfo ri, DeferredStuckPolicy deferredStuckPolicy) {
118                    Assert.error("Empty deferred context!");
119                }
120                @Override
121                void complete() {
122                    Assert.error("Empty deferred context!");
123                }
124
125                @Override
126                public String toString() {
127                    return "Empty deferred context!";
128                }
129            };
130
131        // For speculative attribution, skip the class definition in <>.
132        treeCopier =
133            new TreeCopier<Void>(make) {
134                @Override @DefinedBy(Api.COMPILER_TREE)
135                public JCTree visitNewClass(NewClassTree node, Void p) {
136                    JCNewClass t = (JCNewClass) node;
137                    if (TreeInfo.isDiamond(t)) {
138                        JCExpression encl = copy(t.encl, p);
139                        List<JCExpression> typeargs = copy(t.typeargs, p);
140                        JCExpression clazz = copy(t.clazz, p);
141                        List<JCExpression> args = copy(t.args, p);
142                        JCClassDecl def = null;
143                        return make.at(t.pos).NewClass(encl, typeargs, clazz, args, def);
144                    } else {
145                        return super.visitNewClass(node, p);
146                    }
147                }
148            };
149        deferredCopier = new TypeMapping<Void> () {
150                @Override
151                public Type visitType(Type t, Void v) {
152                    if (t.hasTag(DEFERRED)) {
153                        DeferredType dt = (DeferredType) t;
154                        return new DeferredType(treeCopier.copy(dt.tree), dt.env);
155                    }
156                    return t;
157                }
158            };
159    }
160
161    /** shared tree for stuck expressions */
162    final JCTree stuckTree;
163
164    /**
165     * This type represents a deferred type. A deferred type starts off with
166     * no information on the underlying expression type. Such info needs to be
167     * discovered through type-checking the deferred type against a target-type.
168     * Every deferred type keeps a pointer to the AST node from which it originated.
169     */
170    public class DeferredType extends Type {
171
172        public JCExpression tree;
173        Env<AttrContext> env;
174        AttrMode mode;
175        SpeculativeCache speculativeCache;
176
177        DeferredType(JCExpression tree, Env<AttrContext> env) {
178            super(null, TypeMetadata.EMPTY);
179            this.tree = tree;
180            this.env = attr.copyEnv(env);
181            this.speculativeCache = new SpeculativeCache();
182        }
183
184        @Override
185        public DeferredType cloneWithMetadata(TypeMetadata md) {
186            throw new AssertionError("Cannot add metadata to a deferred type");
187        }
188
189        @Override
190        public TypeTag getTag() {
191            return DEFERRED;
192        }
193
194        @Override @DefinedBy(Api.LANGUAGE_MODEL)
195        public String toString() {
196            return "DeferredType";
197        }
198
199        /**
200         * A speculative cache is used to keep track of all overload resolution rounds
201         * that triggered speculative attribution on a given deferred type. Each entry
202         * stores a pointer to the speculative tree and the resolution phase in which the entry
203         * has been added.
204         */
205        class SpeculativeCache {
206
207            private Map<Symbol, List<Entry>> cache = new WeakHashMap<>();
208
209            class Entry {
210                JCTree speculativeTree;
211                ResultInfo resultInfo;
212
213                public Entry(JCTree speculativeTree, ResultInfo resultInfo) {
214                    this.speculativeTree = speculativeTree;
215                    this.resultInfo = resultInfo;
216                }
217
218                boolean matches(MethodResolutionPhase phase) {
219                    return resultInfo.checkContext.deferredAttrContext().phase == phase;
220                }
221            }
222
223            /**
224             * Retrieve a speculative cache entry corresponding to given symbol
225             * and resolution phase
226             */
227            Entry get(Symbol msym, MethodResolutionPhase phase) {
228                List<Entry> entries = cache.get(msym);
229                if (entries == null) return null;
230                for (Entry e : entries) {
231                    if (e.matches(phase)) return e;
232                }
233                return null;
234            }
235
236            /**
237             * Stores a speculative cache entry corresponding to given symbol
238             * and resolution phase
239             */
240            void put(JCTree speculativeTree, ResultInfo resultInfo) {
241                Symbol msym = resultInfo.checkContext.deferredAttrContext().msym;
242                List<Entry> entries = cache.get(msym);
243                if (entries == null) {
244                    entries = List.nil();
245                }
246                cache.put(msym, entries.prepend(new Entry(speculativeTree, resultInfo)));
247            }
248        }
249
250        /**
251         * Get the type that has been computed during a speculative attribution round
252         */
253        Type speculativeType(Symbol msym, MethodResolutionPhase phase) {
254            SpeculativeCache.Entry e = speculativeCache.get(msym, phase);
255            return e != null ? e.speculativeTree.type : Type.noType;
256        }
257
258        JCTree speculativeTree(DeferredAttrContext deferredAttrContext) {
259            DeferredType.SpeculativeCache.Entry e = speculativeCache.get(deferredAttrContext.msym, deferredAttrContext.phase);
260            return e != null ? e.speculativeTree : stuckTree;
261        }
262
263        DeferredTypeCompleter completer() {
264            return basicCompleter;
265        }
266
267        /**
268         * Check a deferred type against a potential target-type. Depending on
269         * the current attribution mode, a normal vs. speculative attribution
270         * round is performed on the underlying AST node. There can be only one
271         * speculative round for a given target method symbol; moreover, a normal
272         * attribution round must follow one or more speculative rounds.
273         */
274        Type check(ResultInfo resultInfo) {
275            DeferredStuckPolicy deferredStuckPolicy;
276            if (resultInfo.pt.hasTag(NONE) || resultInfo.pt.isErroneous()) {
277                deferredStuckPolicy = dummyStuckPolicy;
278            } else if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.SPECULATIVE ||
279                    resultInfo.checkContext.deferredAttrContext().insideOverloadPhase()) {
280                deferredStuckPolicy = new OverloadStuckPolicy(resultInfo, this);
281            } else {
282                deferredStuckPolicy = new CheckStuckPolicy(resultInfo, this);
283            }
284            return check(resultInfo, deferredStuckPolicy, completer());
285        }
286
287        private Type check(ResultInfo resultInfo, DeferredStuckPolicy deferredStuckPolicy,
288                DeferredTypeCompleter deferredTypeCompleter) {
289            DeferredAttrContext deferredAttrContext =
290                    resultInfo.checkContext.deferredAttrContext();
291            Assert.check(deferredAttrContext != emptyDeferredAttrContext);
292            if (deferredStuckPolicy.isStuck()) {
293                deferredAttrContext.addDeferredAttrNode(this, resultInfo, deferredStuckPolicy);
294                return Type.noType;
295            } else {
296                try {
297                    return deferredTypeCompleter.complete(this, resultInfo, deferredAttrContext);
298                } finally {
299                    mode = deferredAttrContext.mode;
300                }
301            }
302        }
303    }
304
305    /**
306     * A completer for deferred types. Defines an entry point for type-checking
307     * a deferred type.
308     */
309    interface DeferredTypeCompleter {
310        /**
311         * Entry point for type-checking a deferred type. Depending on the
312         * circumstances, type-checking could amount to full attribution
313         * or partial structural check (aka potential applicability).
314         */
315        Type complete(DeferredType dt, ResultInfo resultInfo, DeferredAttrContext deferredAttrContext);
316    }
317
318
319    /**
320     * A basic completer for deferred types. This completer type-checks a deferred type
321     * using attribution; depending on the attribution mode, this could be either standard
322     * or speculative attribution.
323     */
324    DeferredTypeCompleter basicCompleter = new DeferredTypeCompleter() {
325        public Type complete(DeferredType dt, ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
326            switch (deferredAttrContext.mode) {
327                case SPECULATIVE:
328                    //Note: if a symbol is imported twice we might do two identical
329                    //speculative rounds...
330                    Assert.check(dt.mode == null || dt.mode == AttrMode.SPECULATIVE);
331                    JCTree speculativeTree = attribSpeculative(dt.tree, dt.env, resultInfo);
332                    dt.speculativeCache.put(speculativeTree, resultInfo);
333                    return speculativeTree.type;
334                case CHECK:
335                    Assert.check(dt.mode != null);
336                    return attr.attribTree(dt.tree, dt.env, resultInfo);
337            }
338            Assert.error();
339            return null;
340        }
341    };
342
343    /**
344     * Policy for detecting stuck expressions. Different criteria might cause
345     * an expression to be judged as stuck, depending on whether the check
346     * is performed during overload resolution or after most specific.
347     */
348    interface DeferredStuckPolicy {
349        /**
350         * Has the policy detected that a given expression should be considered stuck?
351         */
352        boolean isStuck();
353        /**
354         * Get the set of inference variables a given expression depends upon.
355         */
356        Set<Type> stuckVars();
357        /**
358         * Get the set of inference variables which might get new constraints
359         * if a given expression is being type-checked.
360         */
361        Set<Type> depVars();
362    }
363
364    /**
365     * Basic stuck policy; an expression is never considered to be stuck.
366     */
367    DeferredStuckPolicy dummyStuckPolicy = new DeferredStuckPolicy() {
368        @Override
369        public boolean isStuck() {
370            return false;
371        }
372        @Override
373        public Set<Type> stuckVars() {
374            return Collections.emptySet();
375        }
376        @Override
377        public Set<Type> depVars() {
378            return Collections.emptySet();
379        }
380    };
381
382    /**
383     * The 'mode' in which the deferred type is to be type-checked
384     */
385    public enum AttrMode {
386        /**
387         * A speculative type-checking round is used during overload resolution
388         * mainly to generate constraints on inference variables. Side-effects
389         * arising from type-checking the expression associated with the deferred
390         * type are reversed after the speculative round finishes. This means the
391         * expression tree will be left in a blank state.
392         */
393        SPECULATIVE,
394        /**
395         * This is the plain type-checking mode. Produces side-effects on the underlying AST node
396         */
397        CHECK
398    }
399
400    /**
401     * Performs speculative attribution of a lambda body and returns the speculative lambda tree,
402     * in the absence of a target-type. Since {@link Attr#visitLambda(JCLambda)} cannot type-check
403     * lambda bodies w/o a suitable target-type, this routine 'unrolls' the lambda by turning it
404     * into a regular block, speculatively type-checks the block and then puts back the pieces.
405     */
406    JCLambda attribSpeculativeLambda(JCLambda that, Env<AttrContext> env, ResultInfo resultInfo) {
407        ListBuffer<JCStatement> stats = new ListBuffer<>();
408        stats.addAll(that.params);
409        if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
410            stats.add(make.Return((JCExpression)that.body));
411        } else {
412            stats.add((JCBlock)that.body);
413        }
414        JCBlock lambdaBlock = make.Block(0, stats.toList());
415        Env<AttrContext> localEnv = attr.lambdaEnv(that, env);
416        try {
417            localEnv.info.returnResult = resultInfo;
418            JCBlock speculativeTree = (JCBlock)attribSpeculative(lambdaBlock, localEnv, resultInfo);
419            List<JCVariableDecl> args = speculativeTree.getStatements().stream()
420                    .filter(s -> s.hasTag(Tag.VARDEF))
421                    .map(t -> (JCVariableDecl)t)
422                    .collect(List.collector());
423            JCTree lambdaBody = speculativeTree.getStatements().last();
424            if (lambdaBody.hasTag(Tag.RETURN)) {
425                lambdaBody = ((JCReturn)lambdaBody).expr;
426            }
427            JCLambda speculativeLambda = make.Lambda(args, lambdaBody);
428            attr.preFlow(speculativeLambda);
429            flow.analyzeLambda(env, speculativeLambda, make, false);
430            return speculativeLambda;
431        } finally {
432            localEnv.info.scope.leave();
433        }
434    }
435
436    /**
437     * Routine that performs speculative type-checking; the input AST node is
438     * cloned (to avoid side-effects cause by Attr) and compiler state is
439     * restored after type-checking. All diagnostics (but critical ones) are
440     * disabled during speculative type-checking.
441     */
442    JCTree attribSpeculative(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
443        return attribSpeculative(tree, env, resultInfo, treeCopier,
444                (newTree)->new DeferredAttrDiagHandler(log, newTree));
445    }
446
447    <Z> JCTree attribSpeculative(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo, TreeCopier<Z> deferredCopier,
448                                 Function<JCTree, DeferredDiagnosticHandler> diagHandlerCreator) {
449        final JCTree newTree = deferredCopier.copy(tree);
450        Env<AttrContext> speculativeEnv = env.dup(newTree, env.info.dup(env.info.scope.dupUnshared(env.info.scope.owner)));
451        speculativeEnv.info.isSpeculative = true;
452        Log.DeferredDiagnosticHandler deferredDiagnosticHandler = diagHandlerCreator.apply(newTree);
453        try {
454            attr.attribTree(newTree, speculativeEnv, resultInfo);
455            unenterScanner.scan(newTree);
456            return newTree;
457        } finally {
458            unenterScanner.scan(newTree);
459            log.popDiagnosticHandler(deferredDiagnosticHandler);
460        }
461    }
462    //where
463        protected UnenterScanner unenterScanner = new UnenterScanner();
464
465        class UnenterScanner extends TreeScanner {
466            @Override
467            public void visitClassDef(JCClassDecl tree) {
468                ClassSymbol csym = tree.sym;
469                //if something went wrong during method applicability check
470                //it is possible that nested expressions inside argument expression
471                //are left unchecked - in such cases there's nothing to clean up.
472                if (csym == null) return;
473                typeEnvs.remove(csym);
474                chk.compiled.remove(csym.flatname);
475                syms.classes.remove(csym.flatname);
476                super.visitClassDef(tree);
477            }
478        }
479
480        static class DeferredAttrDiagHandler extends Log.DeferredDiagnosticHandler {
481
482            static class PosScanner extends TreeScanner {
483                DiagnosticPosition pos;
484                boolean found = false;
485
486                PosScanner(DiagnosticPosition pos) {
487                    this.pos = pos;
488                }
489
490                @Override
491                public void scan(JCTree tree) {
492                    if (tree != null &&
493                            tree.pos() == pos) {
494                        found = true;
495                    }
496                    super.scan(tree);
497                }
498            }
499
500            DeferredAttrDiagHandler(Log log, JCTree newTree) {
501                super(log, new Filter<JCDiagnostic>() {
502                    public boolean accepts(JCDiagnostic d) {
503                        PosScanner posScanner = new PosScanner(d.getDiagnosticPosition());
504                        posScanner.scan(newTree);
505                        return posScanner.found;
506                    }
507                });
508            }
509        }
510
511    /**
512     * A deferred context is created on each method check. A deferred context is
513     * used to keep track of information associated with the method check, such as
514     * the symbol of the method being checked, the overload resolution phase,
515     * the kind of attribution mode to be applied to deferred types and so forth.
516     * As deferred types are processed (by the method check routine) stuck AST nodes
517     * are added (as new deferred attribution nodes) to this context. The complete()
518     * routine makes sure that all pending nodes are properly processed, by
519     * progressively instantiating all inference variables on which one or more
520     * deferred attribution node is stuck.
521     */
522    class DeferredAttrContext {
523
524        /** attribution mode */
525        final AttrMode mode;
526
527        /** symbol of the method being checked */
528        final Symbol msym;
529
530        /** method resolution step */
531        final Resolve.MethodResolutionPhase phase;
532
533        /** inference context */
534        final InferenceContext inferenceContext;
535
536        /** parent deferred context */
537        final DeferredAttrContext parent;
538
539        /** Warner object to report warnings */
540        final Warner warn;
541
542        /** list of deferred attribution nodes to be processed */
543        ArrayList<DeferredAttrNode> deferredAttrNodes = new ArrayList<>();
544
545        DeferredAttrContext(AttrMode mode, Symbol msym, MethodResolutionPhase phase,
546                InferenceContext inferenceContext, DeferredAttrContext parent, Warner warn) {
547            this.mode = mode;
548            this.msym = msym;
549            this.phase = phase;
550            this.parent = parent;
551            this.warn = warn;
552            this.inferenceContext = inferenceContext;
553        }
554
555        /**
556         * Adds a node to the list of deferred attribution nodes - used by Resolve.rawCheckArgumentsApplicable
557         * Nodes added this way act as 'roots' for the out-of-order method checking process.
558         */
559        void addDeferredAttrNode(final DeferredType dt, ResultInfo resultInfo,
560                DeferredStuckPolicy deferredStuckPolicy) {
561            deferredAttrNodes.add(new DeferredAttrNode(dt, resultInfo, deferredStuckPolicy));
562        }
563
564        /**
565         * Incrementally process all nodes, by skipping 'stuck' nodes and attributing
566         * 'unstuck' ones. If at any point no progress can be made (no 'unstuck' nodes)
567         * some inference variable might get eagerly instantiated so that all nodes
568         * can be type-checked.
569         */
570        void complete() {
571            while (!deferredAttrNodes.isEmpty()) {
572                Map<Type, Set<Type>> depVarsMap = new LinkedHashMap<>();
573                List<Type> stuckVars = List.nil();
574                boolean progress = false;
575                //scan a defensive copy of the node list - this is because a deferred
576                //attribution round can add new nodes to the list
577                for (DeferredAttrNode deferredAttrNode : List.from(deferredAttrNodes)) {
578                    if (!deferredAttrNode.process(this)) {
579                        List<Type> restStuckVars =
580                                List.from(deferredAttrNode.deferredStuckPolicy.stuckVars())
581                                .intersect(inferenceContext.restvars());
582                        stuckVars = stuckVars.prependList(restStuckVars);
583                        //update dependency map
584                        for (Type t : List.from(deferredAttrNode.deferredStuckPolicy.depVars())
585                                .intersect(inferenceContext.restvars())) {
586                            Set<Type> prevDeps = depVarsMap.get(t);
587                            if (prevDeps == null) {
588                                prevDeps = new LinkedHashSet<>();
589                                depVarsMap.put(t, prevDeps);
590                            }
591                            prevDeps.addAll(restStuckVars);
592                        }
593                    } else {
594                        deferredAttrNodes.remove(deferredAttrNode);
595                        progress = true;
596                    }
597                }
598                if (!progress) {
599                    if (insideOverloadPhase()) {
600                        for (DeferredAttrNode deferredNode: deferredAttrNodes) {
601                            deferredNode.dt.tree.type = Type.noType;
602                        }
603                        return;
604                    }
605                    //remove all variables that have already been instantiated
606                    //from the list of stuck variables
607                    try {
608                        inferenceContext.solveAny(stuckVars, depVarsMap, warn);
609                        inferenceContext.notifyChange();
610                    } catch (Infer.GraphStrategy.NodeNotFoundException ex) {
611                        //this means that we are in speculative mode and the
612                        //set of contraints are too tight for progess to be made.
613                        //Just leave the remaining expressions as stuck.
614                        break;
615                    }
616                }
617            }
618        }
619
620        public boolean insideOverloadPhase() {
621            DeferredAttrContext dac = this;
622            if (dac == emptyDeferredAttrContext) {
623                return false;
624            }
625            if (dac.mode == AttrMode.SPECULATIVE) {
626                return true;
627            }
628            return dac.parent.insideOverloadPhase();
629        }
630    }
631
632    /**
633     * Class representing a deferred attribution node. It keeps track of
634     * a deferred type, along with the expected target type information.
635     */
636    class DeferredAttrNode {
637
638        /** underlying deferred type */
639        DeferredType dt;
640
641        /** underlying target type information */
642        ResultInfo resultInfo;
643
644        /** stuck policy associated with this node */
645        DeferredStuckPolicy deferredStuckPolicy;
646
647        DeferredAttrNode(DeferredType dt, ResultInfo resultInfo, DeferredStuckPolicy deferredStuckPolicy) {
648            this.dt = dt;
649            this.resultInfo = resultInfo;
650            this.deferredStuckPolicy = deferredStuckPolicy;
651        }
652
653        /**
654         * Process a deferred attribution node.
655         * Invariant: a stuck node cannot be processed.
656         */
657        @SuppressWarnings("fallthrough")
658        boolean process(final DeferredAttrContext deferredAttrContext) {
659            switch (deferredAttrContext.mode) {
660                case SPECULATIVE:
661                    if (deferredStuckPolicy.isStuck()) {
662                        dt.check(resultInfo, dummyStuckPolicy, new StructuralStuckChecker());
663                        return true;
664                    } else {
665                        Assert.error("Cannot get here");
666                    }
667                case CHECK:
668                    if (deferredStuckPolicy.isStuck()) {
669                        //stuck expression - see if we can propagate
670                        if (deferredAttrContext.parent != emptyDeferredAttrContext &&
671                                Type.containsAny(deferredAttrContext.parent.inferenceContext.inferencevars,
672                                        List.from(deferredStuckPolicy.stuckVars()))) {
673                            deferredAttrContext.parent.addDeferredAttrNode(dt,
674                                    resultInfo.dup(new Check.NestedCheckContext(resultInfo.checkContext) {
675                                @Override
676                                public InferenceContext inferenceContext() {
677                                    return deferredAttrContext.parent.inferenceContext;
678                                }
679                                @Override
680                                public DeferredAttrContext deferredAttrContext() {
681                                    return deferredAttrContext.parent;
682                                }
683                            }), deferredStuckPolicy);
684                            dt.tree.type = Type.stuckType;
685                            return true;
686                        } else {
687                            return false;
688                        }
689                    } else {
690                        Assert.check(!deferredAttrContext.insideOverloadPhase(),
691                                "attribution shouldn't be happening here");
692                        ResultInfo instResultInfo =
693                                resultInfo.dup(deferredAttrContext.inferenceContext.asInstType(resultInfo.pt));
694                        dt.check(instResultInfo, dummyStuckPolicy, basicCompleter);
695                        return true;
696                    }
697                default:
698                    throw new AssertionError("Bad mode");
699            }
700        }
701
702        /**
703         * Structural checker for stuck expressions
704         */
705        class StructuralStuckChecker extends TreeScanner implements DeferredTypeCompleter {
706
707            ResultInfo resultInfo;
708            InferenceContext inferenceContext;
709            Env<AttrContext> env;
710
711            public Type complete(DeferredType dt, ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
712                this.resultInfo = resultInfo;
713                this.inferenceContext = deferredAttrContext.inferenceContext;
714                this.env = dt.env;
715                dt.tree.accept(this);
716                dt.speculativeCache.put(stuckTree, resultInfo);
717                return Type.noType;
718            }
719
720            @Override
721            public void visitLambda(JCLambda tree) {
722                Check.CheckContext checkContext = resultInfo.checkContext;
723                Type pt = resultInfo.pt;
724                if (!inferenceContext.inferencevars.contains(pt)) {
725                    //must be a functional descriptor
726                    Type descriptorType = null;
727                    try {
728                        descriptorType = types.findDescriptorType(pt);
729                    } catch (Types.FunctionDescriptorLookupError ex) {
730                        checkContext.report(null, ex.getDiagnostic());
731                    }
732
733                    if (descriptorType.getParameterTypes().length() != tree.params.length()) {
734                        checkContext.report(tree,
735                                diags.fragment("incompatible.arg.types.in.lambda"));
736                    }
737
738                    Type currentReturnType = descriptorType.getReturnType();
739                    boolean returnTypeIsVoid = currentReturnType.hasTag(VOID);
740                    if (tree.getBodyKind() == BodyKind.EXPRESSION) {
741                        boolean isExpressionCompatible = !returnTypeIsVoid ||
742                            TreeInfo.isExpressionStatement((JCExpression)tree.getBody());
743                        if (!isExpressionCompatible) {
744                            resultInfo.checkContext.report(tree.pos(),
745                                diags.fragment("incompatible.ret.type.in.lambda",
746                                    diags.fragment("missing.ret.val", currentReturnType)));
747                        }
748                    } else {
749                        LambdaBodyStructChecker lambdaBodyChecker =
750                                new LambdaBodyStructChecker();
751
752                        tree.body.accept(lambdaBodyChecker);
753                        boolean isVoidCompatible = lambdaBodyChecker.isVoidCompatible;
754
755                        if (returnTypeIsVoid) {
756                            if (!isVoidCompatible) {
757                                resultInfo.checkContext.report(tree.pos(),
758                                    diags.fragment("unexpected.ret.val"));
759                            }
760                        } else {
761                            boolean isValueCompatible = lambdaBodyChecker.isPotentiallyValueCompatible
762                                && !canLambdaBodyCompleteNormally(tree);
763                            if (!isValueCompatible && !isVoidCompatible) {
764                                log.error(tree.body.pos(),
765                                    "lambda.body.neither.value.nor.void.compatible");
766                            }
767
768                            if (!isValueCompatible) {
769                                resultInfo.checkContext.report(tree.pos(),
770                                    diags.fragment("incompatible.ret.type.in.lambda",
771                                        diags.fragment("missing.ret.val", currentReturnType)));
772                            }
773                        }
774                    }
775                }
776            }
777
778            boolean canLambdaBodyCompleteNormally(JCLambda tree) {
779                List<JCVariableDecl> oldParams = tree.params;
780                CachePolicy prevPolicy = argumentAttr.withCachePolicy(CachePolicy.NO_CACHE);
781                try {
782                    tree.params = tree.params.stream()
783                            .map(vd -> make.VarDef(vd.mods, vd.name, make.Erroneous(), null))
784                            .collect(List.collector());
785                    return attribSpeculativeLambda(tree, env, attr.unknownExprInfo).canCompleteNormally;
786                } finally {
787                    argumentAttr.withCachePolicy(prevPolicy);
788                    tree.params = oldParams;
789                }
790            }
791
792            @Override
793            public void visitNewClass(JCNewClass tree) {
794                //do nothing
795            }
796
797            @Override
798            public void visitApply(JCMethodInvocation tree) {
799                //do nothing
800            }
801
802            @Override
803            public void visitReference(JCMemberReference tree) {
804                Check.CheckContext checkContext = resultInfo.checkContext;
805                Type pt = resultInfo.pt;
806                if (!inferenceContext.inferencevars.contains(pt)) {
807                    try {
808                        types.findDescriptorType(pt);
809                    } catch (Types.FunctionDescriptorLookupError ex) {
810                        checkContext.report(null, ex.getDiagnostic());
811                    }
812                    Env<AttrContext> localEnv = env.dup(tree);
813                    JCExpression exprTree = (JCExpression)attribSpeculative(tree.getQualifierExpression(), localEnv,
814                            attr.memberReferenceQualifierResult(tree));
815                    ListBuffer<Type> argtypes = new ListBuffer<>();
816                    for (Type t : types.findDescriptorType(pt).getParameterTypes()) {
817                        argtypes.append(Type.noType);
818                    }
819                    JCMemberReference mref2 = new TreeCopier<Void>(make).copy(tree);
820                    mref2.expr = exprTree;
821                    Symbol lookupSym =
822                            rs.resolveMemberReference(localEnv, mref2, exprTree.type,
823                                    tree.name, argtypes.toList(), List.nil(), rs.arityMethodCheck,
824                                    inferenceContext, rs.structuralReferenceChooser).fst;
825                    switch (lookupSym.kind) {
826                        case WRONG_MTH:
827                        case WRONG_MTHS:
828                            //note: as argtypes are erroneous types, type-errors must
829                            //have been caused by arity mismatch
830                            checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInMref));
831                            break;
832                        case ABSENT_MTH:
833                        case STATICERR:
834                            //if no method found, or method found with wrong staticness, report better message
835                            checkContext.report(tree, ((ResolveError)lookupSym).getDiagnostic(DiagnosticType.FRAGMENT,
836                                    tree, exprTree.type.tsym, exprTree.type, tree.name, argtypes.toList(), List.nil()));
837                            break;
838                    }
839                }
840            }
841        }
842
843        /* This visitor looks for return statements, its analysis will determine if
844         * a lambda body is void or value compatible. We must analyze return
845         * statements contained in the lambda body only, thus any return statement
846         * contained in an inner class or inner lambda body, should be ignored.
847         */
848        class LambdaBodyStructChecker extends TreeScanner {
849            boolean isVoidCompatible = true;
850            boolean isPotentiallyValueCompatible = true;
851
852            @Override
853            public void visitClassDef(JCClassDecl tree) {
854                // do nothing
855            }
856
857            @Override
858            public void visitLambda(JCLambda tree) {
859                // do nothing
860            }
861
862            @Override
863            public void visitNewClass(JCNewClass tree) {
864                // do nothing
865            }
866
867            @Override
868            public void visitReturn(JCReturn tree) {
869                if (tree.expr != null) {
870                    isVoidCompatible = false;
871                } else {
872                    isPotentiallyValueCompatible = false;
873                }
874            }
875        }
876    }
877
878    /** an empty deferred attribution context - all methods throw exceptions */
879    final DeferredAttrContext emptyDeferredAttrContext;
880
881    /**
882     * Map a list of types possibly containing one or more deferred types
883     * into a list of ordinary types. Each deferred type D is mapped into a type T,
884     * where T is computed by retrieving the type that has already been
885     * computed for D during a previous deferred attribution round of the given kind.
886     */
887    class DeferredTypeMap extends TypeMapping<Void> {
888        DeferredAttrContext deferredAttrContext;
889
890        protected DeferredTypeMap(AttrMode mode, Symbol msym, MethodResolutionPhase phase) {
891            this.deferredAttrContext = new DeferredAttrContext(mode, msym, phase,
892                    infer.emptyContext, emptyDeferredAttrContext, types.noWarnings);
893        }
894
895        @Override
896        public Type visitType(Type t, Void _unused) {
897            if (!t.hasTag(DEFERRED)) {
898                return super.visitType(t, null);
899            } else {
900                DeferredType dt = (DeferredType)t;
901                return typeOf(dt);
902            }
903        }
904
905        protected Type typeOf(DeferredType dt) {
906            switch (deferredAttrContext.mode) {
907                case CHECK:
908                    return dt.tree.type == null ? Type.noType : dt.tree.type;
909                case SPECULATIVE:
910                    return dt.speculativeType(deferredAttrContext.msym, deferredAttrContext.phase);
911            }
912            Assert.error();
913            return null;
914        }
915    }
916
917    /**
918     * Specialized recovery deferred mapping.
919     * Each deferred type D is mapped into a type T, where T is computed either by
920     * (i) retrieving the type that has already been computed for D during a previous
921     * attribution round (as before), or (ii) by synthesizing a new type R for D
922     * (the latter step is useful in a recovery scenario).
923     */
924    public class RecoveryDeferredTypeMap extends DeferredTypeMap {
925
926        public RecoveryDeferredTypeMap(AttrMode mode, Symbol msym, MethodResolutionPhase phase) {
927            super(mode, msym, phase != null ? phase : MethodResolutionPhase.BOX);
928        }
929
930        @Override
931        protected Type typeOf(DeferredType dt) {
932            Type owntype = super.typeOf(dt);
933            return owntype == Type.noType ?
934                        recover(dt) : owntype;
935        }
936
937        /**
938         * Synthesize a type for a deferred type that hasn't been previously
939         * reduced to an ordinary type. Functional deferred types and conditionals
940         * are mapped to themselves, in order to have a richer diagnostic
941         * representation. Remaining deferred types are attributed using
942         * a default expected type (j.l.Object).
943         */
944        private Type recover(DeferredType dt) {
945            dt.check(attr.new RecoveryInfo(deferredAttrContext) {
946                @Override
947                protected Type check(DiagnosticPosition pos, Type found) {
948                    return chk.checkNonVoid(pos, super.check(pos, found));
949                }
950            });
951            return super.visit(dt);
952        }
953    }
954
955    /**
956     * A special tree scanner that would only visit portions of a given tree.
957     * The set of nodes visited by the scanner can be customized at construction-time.
958     */
959    abstract static class FilterScanner extends com.sun.tools.javac.tree.TreeScanner {
960
961        final Filter<JCTree> treeFilter;
962
963        FilterScanner(final Set<JCTree.Tag> validTags) {
964            this.treeFilter = new Filter<JCTree>() {
965                public boolean accepts(JCTree t) {
966                    return validTags.contains(t.getTag());
967                }
968            };
969        }
970
971        @Override
972        public void scan(JCTree tree) {
973            if (tree != null) {
974                if (treeFilter.accepts(tree)) {
975                    super.scan(tree);
976                } else {
977                    skip(tree);
978                }
979            }
980        }
981
982        /**
983         * handler that is executed when a node has been discarded
984         */
985        void skip(JCTree tree) {}
986    }
987
988    /**
989     * A tree scanner suitable for visiting the target-type dependent nodes of
990     * a given argument expression.
991     */
992    static class PolyScanner extends FilterScanner {
993
994        PolyScanner() {
995            super(EnumSet.of(CONDEXPR, PARENS, LAMBDA, REFERENCE));
996        }
997    }
998
999    /**
1000     * A tree scanner suitable for visiting the target-type dependent nodes nested
1001     * within a lambda expression body.
1002     */
1003    static class LambdaReturnScanner extends FilterScanner {
1004
1005        LambdaReturnScanner() {
1006            super(EnumSet.of(BLOCK, CASE, CATCH, DOLOOP, FOREACHLOOP,
1007                    FORLOOP, IF, RETURN, SYNCHRONIZED, SWITCH, TRY, WHILELOOP));
1008        }
1009    }
1010
1011    /**
1012     * This visitor is used to check that structural expressions conform
1013     * to their target - this step is required as inference could end up
1014     * inferring types that make some of the nested expressions incompatible
1015     * with their corresponding instantiated target
1016     */
1017    class CheckStuckPolicy extends PolyScanner implements DeferredStuckPolicy, Infer.FreeTypeListener {
1018
1019        Type pt;
1020        InferenceContext inferenceContext;
1021        Set<Type> stuckVars = new LinkedHashSet<>();
1022        Set<Type> depVars = new LinkedHashSet<>();
1023
1024        @Override
1025        public boolean isStuck() {
1026            return !stuckVars.isEmpty();
1027        }
1028
1029        @Override
1030        public Set<Type> stuckVars() {
1031            return stuckVars;
1032        }
1033
1034        @Override
1035        public Set<Type> depVars() {
1036            return depVars;
1037        }
1038
1039        public CheckStuckPolicy(ResultInfo resultInfo, DeferredType dt) {
1040            this.pt = resultInfo.pt;
1041            this.inferenceContext = resultInfo.checkContext.inferenceContext();
1042            scan(dt.tree);
1043            if (!stuckVars.isEmpty()) {
1044                resultInfo.checkContext.inferenceContext()
1045                        .addFreeTypeListener(List.from(stuckVars), this);
1046            }
1047        }
1048
1049        @Override
1050        public void typesInferred(InferenceContext inferenceContext) {
1051            stuckVars.clear();
1052        }
1053
1054        @Override
1055        public void visitLambda(JCLambda tree) {
1056            if (inferenceContext.inferenceVars().contains(pt)) {
1057                stuckVars.add(pt);
1058            }
1059            if (!types.isFunctionalInterface(pt)) {
1060                return;
1061            }
1062            Type descType = types.findDescriptorType(pt);
1063            List<Type> freeArgVars = inferenceContext.freeVarsIn(descType.getParameterTypes());
1064            if (tree.paramKind == JCLambda.ParameterKind.IMPLICIT &&
1065                    freeArgVars.nonEmpty()) {
1066                stuckVars.addAll(freeArgVars);
1067                depVars.addAll(inferenceContext.freeVarsIn(descType.getReturnType()));
1068            }
1069            scanLambdaBody(tree, descType.getReturnType());
1070        }
1071
1072        @Override
1073        public void visitReference(JCMemberReference tree) {
1074            scan(tree.expr);
1075            if (inferenceContext.inferenceVars().contains(pt)) {
1076                stuckVars.add(pt);
1077                return;
1078            }
1079            if (!types.isFunctionalInterface(pt)) {
1080                return;
1081            }
1082
1083            Type descType = types.findDescriptorType(pt);
1084            List<Type> freeArgVars = inferenceContext.freeVarsIn(descType.getParameterTypes());
1085            if (freeArgVars.nonEmpty() &&
1086                    tree.overloadKind == JCMemberReference.OverloadKind.OVERLOADED) {
1087                stuckVars.addAll(freeArgVars);
1088                depVars.addAll(inferenceContext.freeVarsIn(descType.getReturnType()));
1089            }
1090        }
1091
1092        void scanLambdaBody(JCLambda lambda, final Type pt) {
1093            if (lambda.getBodyKind() == JCTree.JCLambda.BodyKind.EXPRESSION) {
1094                Type prevPt = this.pt;
1095                try {
1096                    this.pt = pt;
1097                    scan(lambda.body);
1098                } finally {
1099                    this.pt = prevPt;
1100                }
1101            } else {
1102                LambdaReturnScanner lambdaScanner = new LambdaReturnScanner() {
1103                    @Override
1104                    public void visitReturn(JCReturn tree) {
1105                        if (tree.expr != null) {
1106                            Type prevPt = CheckStuckPolicy.this.pt;
1107                            try {
1108                                CheckStuckPolicy.this.pt = pt;
1109                                CheckStuckPolicy.this.scan(tree.expr);
1110                            } finally {
1111                                CheckStuckPolicy.this.pt = prevPt;
1112                            }
1113                        }
1114                    }
1115                };
1116                lambdaScanner.scan(lambda.body);
1117            }
1118        }
1119    }
1120
1121    /**
1122     * This visitor is used to check that structural expressions conform
1123     * to their target - this step is required as inference could end up
1124     * inferring types that make some of the nested expressions incompatible
1125     * with their corresponding instantiated target
1126     */
1127    class OverloadStuckPolicy extends CheckStuckPolicy implements DeferredStuckPolicy {
1128
1129        boolean stuck;
1130
1131        @Override
1132        public boolean isStuck() {
1133            return super.isStuck() || stuck;
1134        }
1135
1136        public OverloadStuckPolicy(ResultInfo resultInfo, DeferredType dt) {
1137            super(resultInfo, dt);
1138        }
1139
1140        @Override
1141        public void visitLambda(JCLambda tree) {
1142            super.visitLambda(tree);
1143            if (tree.paramKind == JCLambda.ParameterKind.IMPLICIT) {
1144                stuck = true;
1145            }
1146        }
1147
1148        @Override
1149        public void visitReference(JCMemberReference tree) {
1150            super.visitReference(tree);
1151            if (tree.overloadKind == JCMemberReference.OverloadKind.OVERLOADED) {
1152                stuck = true;
1153            }
1154        }
1155    }
1156}
1157