ArgumentAttr.java revision 4193:c32ca555da54
1/*
2 * Copyright (c) 2015, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.source.tree.LambdaExpressionTree.BodyKind;
29import com.sun.tools.javac.code.Flags;
30import com.sun.tools.javac.code.Symbol;
31import com.sun.tools.javac.code.Symtab;
32import com.sun.tools.javac.code.Type;
33import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
34import com.sun.tools.javac.comp.Attr.ResultInfo;
35import com.sun.tools.javac.comp.Attr.TargetInfo;
36import com.sun.tools.javac.comp.Check.CheckContext;
37import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
38import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
39import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
40import com.sun.tools.javac.comp.DeferredAttr.DeferredTypeCompleter;
41import com.sun.tools.javac.comp.DeferredAttr.LambdaReturnScanner;
42import com.sun.tools.javac.comp.Infer.PartiallyInferredMethodType;
43import com.sun.tools.javac.comp.Resolve.MethodResolutionPhase;
44import com.sun.tools.javac.tree.JCTree;
45import com.sun.tools.javac.tree.JCTree.JCConditional;
46import com.sun.tools.javac.tree.JCTree.JCExpression;
47import com.sun.tools.javac.tree.JCTree.JCLambda;
48import com.sun.tools.javac.tree.JCTree.JCLambda.ParameterKind;
49import com.sun.tools.javac.tree.JCTree.JCMemberReference;
50import com.sun.tools.javac.tree.JCTree.JCMethodInvocation;
51import com.sun.tools.javac.tree.JCTree.JCNewClass;
52import com.sun.tools.javac.tree.JCTree.JCParens;
53import com.sun.tools.javac.tree.JCTree.JCReturn;
54import com.sun.tools.javac.tree.TreeCopier;
55import com.sun.tools.javac.tree.TreeInfo;
56import com.sun.tools.javac.util.Assert;
57import com.sun.tools.javac.util.Context;
58import com.sun.tools.javac.util.DiagnosticSource;
59import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
60import com.sun.tools.javac.util.List;
61import com.sun.tools.javac.util.ListBuffer;
62import com.sun.tools.javac.util.Log;
63
64import java.util.HashMap;
65import java.util.LinkedHashMap;
66import java.util.Map;
67import java.util.Optional;
68import java.util.function.Function;
69import java.util.function.Supplier;
70
71import static com.sun.tools.javac.code.TypeTag.ARRAY;
72import static com.sun.tools.javac.code.TypeTag.DEFERRED;
73import static com.sun.tools.javac.code.TypeTag.FORALL;
74import static com.sun.tools.javac.code.TypeTag.METHOD;
75import static com.sun.tools.javac.code.TypeTag.VOID;
76
77/**
78 * This class performs attribution of method/constructor arguments when target-typing is enabled
79 * (source >= 8); for each argument that is potentially a poly expression, this class builds
80 * a rich representation (see {@link ArgumentType} which can then be used for performing fast overload
81 * checks without requiring multiple attribution passes over the same code.
82 *
83 * The attribution strategy for a given method/constructor argument A is as follows:
84 *
85 * - if A is potentially a poly expression (i.e. diamond instance creation expression), a speculative
86 * pass over A is performed; the results of such speculative attribution are then saved in a special
87 * type, so that enclosing overload resolution can be carried by simply checking compatibility against the
88 * type determined during this speculative pass.
89 *
90 * - if A is a standalone expression, regular atributtion takes place.
91 *
92 * To minimize the speculative work, a cache is used, so that already computed argument types
93 * associated with a given unique source location are never recomputed multiple times.
94 */
95public class ArgumentAttr extends JCTree.Visitor {
96
97    protected static final Context.Key<ArgumentAttr> methodAttrKey = new Context.Key<>();
98
99    private final DeferredAttr deferredAttr;
100    private final Attr attr;
101    private final Symtab syms;
102    private final Log log;
103
104    /** Attribution environment to be used. */
105    private Env<AttrContext> env;
106
107    /** Result of method attribution. */
108    Type result;
109
110    /** Cache for argument types; behavior is influences by the currrently selected cache policy. */
111    Map<UniquePos, ArgumentType<?>> argumentTypeCache = new LinkedHashMap<>();
112
113    public static ArgumentAttr instance(Context context) {
114        ArgumentAttr instance = context.get(methodAttrKey);
115        if (instance == null)
116            instance = new ArgumentAttr(context);
117        return instance;
118    }
119
120    protected ArgumentAttr(Context context) {
121        context.put(methodAttrKey, this);
122        deferredAttr = DeferredAttr.instance(context);
123        attr = Attr.instance(context);
124        syms = Symtab.instance(context);
125        log = Log.instance(context);
126    }
127
128    /**
129     * Set the results of method attribution.
130     */
131    void setResult(JCExpression tree, Type type) {
132        result = type;
133        if (env.info.isSpeculative) {
134            //if we are in a speculative branch we can save the type in the tree itself
135            //as there's no risk of polluting the original tree.
136            tree.type = result;
137        }
138    }
139
140    /**
141     * Checks a type in the speculative tree against a given result; the type can be either a plain
142     * type or an argument type,in which case a more complex check is required.
143     */
144    Type checkSpeculative(JCExpression expr, ResultInfo resultInfo) {
145        return checkSpeculative(expr, expr.type, resultInfo);
146    }
147
148    /**
149     * Checks a type in the speculative tree against a given result; the type can be either a plain
150     * type or an argument type,in which case a more complex check is required.
151     */
152    Type checkSpeculative(DiagnosticPosition pos, Type t, ResultInfo resultInfo) {
153        if (t.hasTag(DEFERRED)) {
154            return ((DeferredType)t).check(resultInfo);
155        } else {
156            return resultInfo.check(pos, t);
157        }
158    }
159
160    /**
161     * Returns a local caching context in which argument types can safely be cached without
162     * the risk of polluting enclosing contexts. This is useful when attempting speculative
163     * attribution of potentially erroneous expressions, which could end up polluting the cache.
164     */
165    LocalCacheContext withLocalCacheContext() {
166        return new LocalCacheContext();
167    }
168
169    /**
170     * Local cache context; this class keeps track of the previous cache and reverts to it
171     * when the {@link LocalCacheContext#leave()} method is called.
172     */
173    class LocalCacheContext {
174        Map<UniquePos, ArgumentType<?>> prevCache;
175
176        public LocalCacheContext() {
177            this.prevCache = argumentTypeCache;
178            argumentTypeCache = new HashMap<>();
179        }
180
181        public void leave() {
182            argumentTypeCache = prevCache;
183        }
184    }
185
186    /**
187     * Main entry point for attributing an argument with given tree and attribution environment.
188     */
189    Type attribArg(JCTree tree, Env<AttrContext> env) {
190        Env<AttrContext> prevEnv = this.env;
191        try {
192            this.env = env;
193            tree.accept(this);
194            return result;
195        } finally {
196            this.env = prevEnv;
197        }
198    }
199
200    @Override
201    public void visitTree(JCTree that) {
202        //delegates to Attr
203        that.accept(attr);
204        result = attr.result;
205    }
206
207    /**
208     * Process a method argument; this method takes care of performing a speculative pass over the
209     * argument tree and calling a well-defined entry point to build the argument type associated
210     * with such tree.
211     */
212    @SuppressWarnings("unchecked")
213    <T extends JCExpression, Z extends ArgumentType<T>> void processArg(T that, Function<T, Z> argumentTypeFactory) {
214        UniquePos pos = new UniquePos(that);
215        processArg(that, () -> {
216            T speculativeTree = (T)deferredAttr.attribSpeculative(that, env, attr.new MethodAttrInfo() {
217                @Override
218                protected boolean needsArgumentAttr(JCTree tree) {
219                    return !new UniquePos(tree).equals(pos);
220                }
221            });
222            return argumentTypeFactory.apply(speculativeTree);
223        });
224    }
225
226    /**
227     * Process a method argument; this method allows the caller to specify a custom speculative attribution
228     * logic (this is used e.g. for lambdas).
229     */
230    @SuppressWarnings("unchecked")
231    <T extends JCExpression, Z extends ArgumentType<T>> void processArg(T that, Supplier<Z> argumentTypeFactory) {
232        UniquePos pos = new UniquePos(that);
233        Z cached = (Z)argumentTypeCache.get(pos);
234        if (cached != null) {
235            //dup existing speculative type
236            setResult(that, cached.dup(that, env));
237        } else {
238            Z res = argumentTypeFactory.get();
239            argumentTypeCache.put(pos, res);
240            setResult(that, res);
241        }
242    }
243
244    @Override
245    public void visitParens(JCParens that) {
246        processArg(that, speculativeTree -> new ParensType(that, env, speculativeTree));
247    }
248
249    @Override
250    public void visitConditional(JCConditional that) {
251        processArg(that, speculativeTree -> new ConditionalType(that, env, speculativeTree));
252    }
253
254    @Override
255    public void visitReference(JCMemberReference tree) {
256        //perform arity-based check
257        Env<AttrContext> localEnv = env.dup(tree);
258        JCExpression exprTree;
259        exprTree = (JCExpression)deferredAttr.attribSpeculative(tree.getQualifierExpression(), localEnv,
260                attr.memberReferenceQualifierResult(tree),
261                withLocalCacheContext());
262        JCMemberReference mref2 = new TreeCopier<Void>(attr.make).copy(tree);
263        mref2.expr = exprTree;
264        Symbol lhsSym = TreeInfo.symbol(exprTree);
265        localEnv.info.selectSuper = lhsSym != null && lhsSym.name == lhsSym.name.table.names._super;
266        Symbol res =
267                attr.rs.getMemberReference(tree, localEnv, mref2,
268                        exprTree.type, tree.name);
269        if (!res.kind.isResolutionError()) {
270            tree.sym = res;
271        }
272        if (res.kind.isResolutionTargetError() ||
273                res.type != null && res.type.hasTag(FORALL) ||
274                (res.flags() & Flags.VARARGS) != 0 ||
275                (TreeInfo.isStaticSelector(exprTree, tree.name.table.names) &&
276                exprTree.type.isRaw() && !exprTree.type.hasTag(ARRAY))) {
277            tree.setOverloadKind(JCMemberReference.OverloadKind.OVERLOADED);
278        } else {
279            tree.setOverloadKind(JCMemberReference.OverloadKind.UNOVERLOADED);
280        }
281        //return a plain old deferred type for this
282        setResult(tree, deferredAttr.new DeferredType(tree, env));
283    }
284
285    @Override
286    public void visitLambda(JCLambda that) {
287        if (that.paramKind == ParameterKind.EXPLICIT) {
288            //if lambda is explicit, we can save info in the corresponding argument type
289            processArg(that, () -> {
290                JCLambda speculativeLambda =
291                        deferredAttr.attribSpeculativeLambda(that, env, attr.methodAttrInfo);
292                return new ExplicitLambdaType(that, env, speculativeLambda);
293            });
294        } else {
295            //otherwise just use a deferred type
296            setResult(that, deferredAttr.new DeferredType(that, env));
297        }
298    }
299
300    @Override
301    public void visitApply(JCMethodInvocation that) {
302        if (that.getTypeArguments().isEmpty()) {
303            processArg(that, speculativeTree -> new ResolvedMethodType(that, env, speculativeTree));
304        } else {
305            //not a poly expression, just call Attr
306            setResult(that, attr.attribTree(that, env, attr.unknownExprInfo));
307        }
308    }
309
310    @Override
311    public void visitNewClass(JCNewClass that) {
312        if (TreeInfo.isDiamond(that)) {
313            processArg(that, speculativeTree -> new ResolvedConstructorType(that, env, speculativeTree));
314        } else {
315            //not a poly expression, just call Attr
316            setResult(that, attr.attribTree(that, env, attr.unknownExprInfo));
317        }
318    }
319
320    /**
321     * An argument type is similar to a plain deferred type; the most important difference is that
322     * the completion logic associated with argument types allows speculative attribution to be skipped
323     * during overload resolution - that is, an argument type always has enough information to
324     * perform an overload check without the need of calling back to Attr. This extra information
325     * is typically stored in the form of a speculative tree.
326     */
327    abstract class ArgumentType<T extends JCExpression> extends DeferredType implements DeferredTypeCompleter {
328
329        /** The speculative tree carrying type information. */
330        T speculativeTree;
331
332        /** Types associated with this argument (one type per possible target result). */
333        Map<ResultInfo, Type> speculativeTypes;
334
335        public ArgumentType(JCExpression tree, Env<AttrContext> env, T speculativeTree, Map<ResultInfo, Type> speculativeTypes) {
336            deferredAttr.super(tree, env);
337            this.speculativeTree = speculativeTree;
338            this.speculativeTypes = speculativeTypes;
339        }
340
341        @Override
342        final DeferredTypeCompleter completer() {
343            return this;
344        }
345
346        @Override
347        final public Type complete(DeferredType dt, ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
348            Assert.check(dt == this);
349            if (deferredAttrContext.mode == AttrMode.SPECULATIVE) {
350                Type t = (resultInfo.pt == Type.recoveryType) ?
351                        deferredAttr.basicCompleter.complete(dt, resultInfo, deferredAttrContext) :
352                        overloadCheck(resultInfo, deferredAttrContext);
353                speculativeTypes.put(resultInfo, t);
354                return t;
355            } else {
356                if (!env.info.isSpeculative) {
357                    argumentTypeCache.remove(new UniquePos(dt.tree));
358                }
359                return deferredAttr.basicCompleter.complete(dt, resultInfo, deferredAttrContext);
360            }
361        }
362
363        @Override
364        Type speculativeType(Symbol msym, MethodResolutionPhase phase) {
365            if (pertinentToApplicability) {
366                for (Map.Entry<ResultInfo, Type> _entry : speculativeTypes.entrySet()) {
367                    DeferredAttrContext deferredAttrContext = _entry.getKey().checkContext.deferredAttrContext();
368                    if (deferredAttrContext.phase == phase && deferredAttrContext.msym == msym) {
369                        return _entry.getValue();
370                    }
371                }
372                return Type.noType;
373            } else {
374                return super.speculativeType(msym, phase);
375            }
376        }
377
378        @Override
379        JCTree speculativeTree(DeferredAttrContext deferredAttrContext) {
380            return pertinentToApplicability ? speculativeTree : super.speculativeTree(deferredAttrContext);
381        }
382
383        /**
384         * Performs an overload check against a given target result.
385         */
386        abstract Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext);
387
388        /**
389         * Creates a copy of this argument type with given tree and environment.
390         */
391        abstract ArgumentType<T> dup(T tree, Env<AttrContext> env);
392    }
393
394    /**
395     * Argument type for parenthesized expression.
396     */
397    class ParensType extends ArgumentType<JCParens> {
398        ParensType(JCExpression tree, Env<AttrContext> env, JCParens speculativeParens) {
399            this(tree, env, speculativeParens, new HashMap<>());
400        }
401
402        ParensType(JCExpression tree, Env<AttrContext> env, JCParens speculativeParens, Map<ResultInfo, Type> speculativeTypes) {
403           super(tree, env, speculativeParens, speculativeTypes);
404        }
405
406        @Override
407        Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
408            return checkSpeculative(speculativeTree.expr, resultInfo);
409        }
410
411        @Override
412        ArgumentType<JCParens> dup(JCParens tree, Env<AttrContext> env) {
413            return new ParensType(tree, env, speculativeTree, speculativeTypes);
414        }
415    }
416
417    /**
418     * Argument type for conditionals.
419     */
420    class ConditionalType extends ArgumentType<JCConditional> {
421        ConditionalType(JCExpression tree, Env<AttrContext> env, JCConditional speculativeCond) {
422            this(tree, env, speculativeCond, new HashMap<>());
423        }
424
425        ConditionalType(JCExpression tree, Env<AttrContext> env, JCConditional speculativeCond, Map<ResultInfo, Type> speculativeTypes) {
426           super(tree, env, speculativeCond, speculativeTypes);
427        }
428
429        @Override
430        Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
431            ResultInfo localInfo = resultInfo.dup(attr.conditionalContext(resultInfo.checkContext));
432            if (speculativeTree.isStandalone()) {
433                return localInfo.check(speculativeTree, speculativeTree.type);
434            } else if (resultInfo.pt.hasTag(VOID)) {
435                //this means we are returning a poly conditional from void-compatible lambda expression
436                resultInfo.checkContext.report(tree, attr.diags.fragment("conditional.target.cant.be.void"));
437                return attr.types.createErrorType(resultInfo.pt);
438            } else {
439                //poly
440                checkSpeculative(speculativeTree.truepart, localInfo);
441                checkSpeculative(speculativeTree.falsepart, localInfo);
442                return localInfo.pt;
443            }
444        }
445
446        @Override
447        ArgumentType<JCConditional> dup(JCConditional tree, Env<AttrContext> env) {
448            return new ConditionalType(tree, env, speculativeTree, speculativeTypes);
449        }
450    }
451
452    /**
453     * Argument type for explicit lambdas.
454     */
455    class ExplicitLambdaType extends ArgumentType<JCLambda> {
456
457        /** List of argument types (lazily populated). */
458        Optional<List<Type>> argtypes = Optional.empty();
459
460        /** List of return expressions (lazily populated). */
461        Optional<List<JCReturn>> returnExpressions = Optional.empty();
462
463        ExplicitLambdaType(JCLambda originalLambda, Env<AttrContext> env, JCLambda speculativeLambda) {
464            this(originalLambda, env, speculativeLambda, new HashMap<>());
465        }
466
467        ExplicitLambdaType(JCLambda originalLambda, Env<AttrContext> env, JCLambda speculativeLambda, Map<ResultInfo, Type> speculativeTypes) {
468            super(originalLambda, env, speculativeLambda, speculativeTypes);
469        }
470
471        /** Compute argument types (if needed). */
472        List<Type> argtypes() {
473            return argtypes.orElseGet(() -> {
474                List<Type> res = TreeInfo.types(speculativeTree.params);
475                argtypes = Optional.of(res);
476                return res;
477            });
478        }
479
480        /** Compute return expressions (if needed). */
481        List<JCReturn> returnExpressions() {
482            return returnExpressions.orElseGet(() -> {
483                final List<JCReturn> res;
484                if (speculativeTree.getBodyKind() == BodyKind.EXPRESSION) {
485                    res = List.of(attr.make.Return((JCExpression)speculativeTree.body));
486                } else {
487                    ListBuffer<JCReturn> returnExpressions = new ListBuffer<>();
488                    new LambdaReturnScanner() {
489                        @Override
490                        public void visitReturn(JCReturn tree) {
491                            returnExpressions.add(tree);
492                        }
493                    }.scan(speculativeTree.body);
494                    res = returnExpressions.toList();
495                }
496                returnExpressions = Optional.of(res);
497                return res;
498            });
499        }
500
501        @Override
502        Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
503            try {
504                //compute target-type; this logic could be shared with Attr
505                TargetInfo targetInfo = attr.getTargetInfo(speculativeTree, resultInfo, argtypes());
506                Type lambdaType = targetInfo.descriptor;
507                Type currentTarget = targetInfo.target;
508                //check compatibility
509                checkLambdaCompatible(lambdaType, resultInfo);
510                return currentTarget;
511            } catch (FunctionDescriptorLookupError ex) {
512                resultInfo.checkContext.report(null, ex.getDiagnostic());
513                return null; //cannot get here
514            }
515        }
516
517        /** Check lambda against given target result */
518        private void checkLambdaCompatible(Type descriptor, ResultInfo resultInfo) {
519            CheckContext checkContext = resultInfo.checkContext;
520            ResultInfo bodyResultInfo = attr.lambdaBodyResult(speculativeTree, descriptor, resultInfo);
521            for (JCReturn ret : returnExpressions()) {
522                Type t = getReturnType(ret);
523                if (speculativeTree.getBodyKind() == BodyKind.EXPRESSION || !t.hasTag(VOID)) {
524                    checkSpeculative(ret.expr, t, bodyResultInfo);
525                }
526            }
527
528            attr.checkLambdaCompatible(speculativeTree, descriptor, checkContext);
529        }
530
531        /** Get the type associated with given return expression. */
532        Type getReturnType(JCReturn ret) {
533            if (ret.expr == null) {
534                return syms.voidType;
535            } else {
536                return ret.expr.type;
537            }
538        }
539
540        @Override
541        ArgumentType<JCLambda> dup(JCLambda tree, Env<AttrContext> env) {
542            return new ExplicitLambdaType(tree, env, speculativeTree, speculativeTypes);
543        }
544    }
545
546    /**
547     * Argument type for methods/constructors.
548     */
549    abstract class ResolvedMemberType<E extends JCExpression> extends ArgumentType<E> {
550
551        public ResolvedMemberType(JCExpression tree, Env<AttrContext> env, E speculativeMethod, Map<ResultInfo, Type> speculativeTypes) {
552            super(tree, env, speculativeMethod, speculativeTypes);
553        }
554
555        @Override
556        Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
557            Type mtype = methodType();
558            ResultInfo localInfo = resultInfo(resultInfo);
559            Type t;
560            if (mtype != null && mtype.hasTag(METHOD) && mtype.isPartial()) {
561                //poly invocation
562                t = ((PartiallyInferredMethodType)mtype).check(localInfo);
563            } else {
564                //standalone invocation
565                t = localInfo.check(tree.pos(), speculativeTree.type);
566            }
567            speculativeTypes.put(localInfo, t);
568            return t;
569        }
570
571        /**
572         * Get the result info to be used for performing an overload check.
573         */
574        abstract ResultInfo resultInfo(ResultInfo resultInfo);
575
576        /**
577         * Get the method type to be used for performing an overload check.
578         */
579        abstract Type methodType();
580    }
581
582    /**
583     * Argument type for methods.
584     */
585    class ResolvedMethodType extends ResolvedMemberType<JCMethodInvocation> {
586
587        public ResolvedMethodType(JCExpression tree, Env<AttrContext> env, JCMethodInvocation speculativeTree) {
588            this(tree, env, speculativeTree, new HashMap<>());
589        }
590
591        public ResolvedMethodType(JCExpression tree, Env<AttrContext> env, JCMethodInvocation speculativeTree, Map<ResultInfo, Type> speculativeTypes) {
592            super(tree, env, speculativeTree, speculativeTypes);
593        }
594
595        @Override
596        ResultInfo resultInfo(ResultInfo resultInfo) {
597            return resultInfo;
598        }
599
600        @Override
601        Type methodType() {
602            return speculativeTree.meth.type;
603        }
604
605        @Override
606        ArgumentType<JCMethodInvocation> dup(JCMethodInvocation tree, Env<AttrContext> env) {
607            return new ResolvedMethodType(tree, env, speculativeTree, speculativeTypes);
608        }
609    }
610
611    /**
612     * Argument type for constructors.
613     */
614    class ResolvedConstructorType extends ResolvedMemberType<JCNewClass> {
615
616        public ResolvedConstructorType(JCExpression tree, Env<AttrContext> env, JCNewClass speculativeTree) {
617            this(tree, env, speculativeTree, new HashMap<>());
618        }
619
620        public ResolvedConstructorType(JCExpression tree, Env<AttrContext> env, JCNewClass speculativeTree, Map<ResultInfo, Type> speculativeTypes) {
621            super(tree, env, speculativeTree, speculativeTypes);
622        }
623
624        @Override
625        ResultInfo resultInfo(ResultInfo resultInfo) {
626            return resultInfo.dup(attr.diamondContext(speculativeTree, speculativeTree.clazz.type.tsym, resultInfo.checkContext));
627        }
628
629        @Override
630        Type methodType() {
631            return (speculativeTree.constructorType != null) ?
632                    speculativeTree.constructorType.baseType() : syms.errType;
633        }
634
635        @Override
636        ArgumentType<JCNewClass> dup(JCNewClass tree, Env<AttrContext> env) {
637            return new ResolvedConstructorType(tree, env, speculativeTree, speculativeTypes);
638        }
639    }
640
641    /**
642     * An instance of this class represents a unique position in a compilation unit. A unique
643     * position is made up of (i) a unique position in a source file (char offset) and (ii)
644     * a source file info.
645     */
646    class UniquePos {
647
648        /** Char offset. */
649        int pos;
650
651        /** Source info. */
652        DiagnosticSource source;
653
654        UniquePos(JCTree tree) {
655            this.pos = tree.pos;
656            this.source = log.currentSource();
657        }
658
659        @Override
660        public int hashCode() {
661            return pos << 16 + source.hashCode();
662        }
663
664        @Override
665        public boolean equals(Object obj) {
666            if (obj instanceof UniquePos) {
667                UniquePos that = (UniquePos)obj;
668                return pos == that.pos && source == that.source;
669            } else {
670                return false;
671            }
672        }
673
674        @Override
675        public String toString() {
676            return source.getFile().getName() + " @ " + source.getLineNumber(pos);
677        }
678    }
679}
680