ArgumentAttr.java revision 3031:286fc9270404
1/*
2 * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.comp;
27
28import com.sun.source.tree.LambdaExpressionTree.BodyKind;
29import com.sun.tools.javac.code.Flags;
30import com.sun.tools.javac.code.Symbol;
31import com.sun.tools.javac.code.Symtab;
32import com.sun.tools.javac.code.Type;
33import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
34import com.sun.tools.javac.comp.Attr.ResultInfo;
35import com.sun.tools.javac.comp.Attr.TargetInfo;
36import com.sun.tools.javac.comp.Check.CheckContext;
37import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
38import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
39import com.sun.tools.javac.comp.DeferredAttr.DeferredType;
40import com.sun.tools.javac.comp.DeferredAttr.DeferredTypeCompleter;
41import com.sun.tools.javac.comp.DeferredAttr.LambdaReturnScanner;
42import com.sun.tools.javac.comp.Infer.PartiallyInferredMethodType;
43import com.sun.tools.javac.comp.Resolve.MethodResolutionPhase;
44import com.sun.tools.javac.tree.JCTree;
45import com.sun.tools.javac.tree.JCTree.JCConditional;
46import com.sun.tools.javac.tree.JCTree.JCExpression;
47import com.sun.tools.javac.tree.JCTree.JCLambda;
48import com.sun.tools.javac.tree.JCTree.JCLambda.ParameterKind;
49import com.sun.tools.javac.tree.JCTree.JCMemberReference;
50import com.sun.tools.javac.tree.JCTree.JCMethodInvocation;
51import com.sun.tools.javac.tree.JCTree.JCNewClass;
52import com.sun.tools.javac.tree.JCTree.JCParens;
53import com.sun.tools.javac.tree.JCTree.JCReturn;
54import com.sun.tools.javac.tree.TreeCopier;
55import com.sun.tools.javac.tree.TreeInfo;
56import com.sun.tools.javac.util.Assert;
57import com.sun.tools.javac.util.Context;
58import com.sun.tools.javac.util.DiagnosticSource;
59import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
60import com.sun.tools.javac.util.List;
61import com.sun.tools.javac.util.ListBuffer;
62import com.sun.tools.javac.util.Log;
63
64import java.util.HashMap;
65import java.util.LinkedHashMap;
66import java.util.Map;
67import java.util.Optional;
68import java.util.function.Function;
69import java.util.function.Supplier;
70
71import static com.sun.tools.javac.code.TypeTag.DEFERRED;
72import static com.sun.tools.javac.code.TypeTag.FORALL;
73import static com.sun.tools.javac.code.TypeTag.METHOD;
74import static com.sun.tools.javac.code.TypeTag.VOID;
75
76/**
77 * This class performs attribution of method/constructor arguments when target-typing is enabled
78 * (source >= 8); for each argument that is potentially a poly expression, this class builds
79 * a rich representation (see {@link ArgumentType} which can then be used for performing fast overload
80 * checks without requiring multiple attribution passes over the same code.
81 *
82 * The attribution strategy for a given method/constructor argument A is as follows:
83 *
84 * - if A is potentially a poly expression (i.e. diamond instance creation expression), a speculative
85 * pass over A is performed; the results of such speculative attribution are then saved in a special
86 * type, so that enclosing overload resolution can be carried by simply checking compatibility against the
87 * type determined during this speculative pass.
88 *
89 * - if A is a standalone expression, regular atributtion takes place.
90 *
91 * To minimize the speculative work, a cache is used, so that already computed argument types
92 * associated with a given unique source location are never recomputed multiple times.
93 */
94public class ArgumentAttr extends JCTree.Visitor {
95
96    protected static final Context.Key<ArgumentAttr> methodAttrKey = new Context.Key<>();
97
98    private final DeferredAttr deferredAttr;
99    private final Attr attr;
100    private final Symtab syms;
101    private final Log log;
102
103    /** Attribution environment to be used. */
104    private Env<AttrContext> env;
105
106    /** Result of method attribution. */
107    private Type result;
108
109    /** Cache for argument types; behavior is influences by the currrently selected cache policy. */
110    Map<UniquePos, ArgumentType<?>> argumentTypeCache = new LinkedHashMap<>();
111
112    /** Cache policy: should argument types be cached? */
113    private CachePolicy cachePolicy = CachePolicy.CACHE;
114
115    public static ArgumentAttr instance(Context context) {
116        ArgumentAttr instance = context.get(methodAttrKey);
117        if (instance == null)
118            instance = new ArgumentAttr(context);
119        return instance;
120    }
121
122    protected ArgumentAttr(Context context) {
123        context.put(methodAttrKey, this);
124        deferredAttr = DeferredAttr.instance(context);
125        attr = Attr.instance(context);
126        syms = Symtab.instance(context);
127        log = Log.instance(context);
128    }
129
130    /**
131     * Set the results of method attribution.
132     */
133    void setResult(JCExpression tree, Type type) {
134        result = type;
135        if (env.info.isSpeculative) {
136            //if we are in a speculative branch we can save the type in the tree itself
137            //as there's no risk of polluting the original tree.
138            tree.type = result;
139        }
140    }
141
142    /**
143     * Checks a type in the speculative tree against a given result; the type can be either a plain
144     * type or an argument type,in which case a more complex check is required.
145     */
146    Type checkSpeculative(JCExpression expr, ResultInfo resultInfo) {
147        return checkSpeculative(expr, expr.type, resultInfo);
148    }
149
150    /**
151     * Checks a type in the speculative tree against a given result; the type can be either a plain
152     * type or an argument type,in which case a more complex check is required.
153     */
154    Type checkSpeculative(DiagnosticPosition pos, Type t, ResultInfo resultInfo) {
155        if (t.hasTag(DEFERRED)) {
156            return ((DeferredType)t).check(resultInfo);
157        } else {
158            return resultInfo.check(pos, t);
159        }
160    }
161
162    /**
163     * Sets given ache policy and returns current policy.
164     */
165    CachePolicy withCachePolicy(CachePolicy newPolicy) {
166        CachePolicy oldPolicy = this.cachePolicy;
167        this.cachePolicy = newPolicy;
168        return oldPolicy;
169    }
170
171    /**
172     * Main entry point for attributing an argument with given tree and attribution environment.
173     */
174    Type attribArg(JCTree tree, Env<AttrContext> env) {
175        Env<AttrContext> prevEnv = this.env;
176        try {
177            this.env = env;
178            tree.accept(this);
179            return result;
180        } finally {
181            this.env = prevEnv;
182        }
183    }
184
185    @Override
186    public void visitTree(JCTree that) {
187        //delegates to Attr
188        that.accept(attr);
189        result = attr.result;
190    }
191
192    /**
193     * Process a method argument; this method takes care of performing a speculative pass over the
194     * argument tree and calling a well-defined entry point to build the argument type associated
195     * with such tree.
196     */
197    @SuppressWarnings("unchecked")
198    <T extends JCExpression, Z extends ArgumentType<T>> void processArg(T that, Function<T, Z> argumentTypeFactory) {
199        UniquePos pos = new UniquePos(that);
200        processArg(that, () -> {
201            T speculativeTree = (T)deferredAttr.attribSpeculative(that, env, attr.new MethodAttrInfo() {
202                @Override
203                protected void attr(JCTree tree, Env<AttrContext> env) {
204                    //avoid speculative attribution loops
205                    if (!new UniquePos(tree).equals(pos)) {
206                        super.attr(tree, env);
207                    } else {
208                        visitTree(tree);
209                    }
210                }
211            });
212            return argumentTypeFactory.apply(speculativeTree);
213        });
214    }
215
216    /**
217     * Process a method argument; this method allows the caller to specify a custom speculative attribution
218     * logic (this is used e.g. for lambdas).
219     */
220    @SuppressWarnings("unchecked")
221    <T extends JCExpression, Z extends ArgumentType<T>> void processArg(T that, Supplier<Z> argumentTypeFactory) {
222        UniquePos pos = new UniquePos(that);
223        Z cached = (Z)argumentTypeCache.get(pos);
224        if (cached != null) {
225            //dup existing speculative type
226            setResult(that, cached.dup(that, env));
227        } else {
228            Z res = argumentTypeFactory.get();
229            if (cachePolicy == CachePolicy.CACHE) {
230                argumentTypeCache.put(pos, res);
231            }
232            setResult(that, res);
233        }
234    }
235
236    @Override
237    public void visitParens(JCParens that) {
238        processArg(that, speculativeTree -> new ParensType(that, env, speculativeTree));
239    }
240
241    @Override
242    public void visitConditional(JCConditional that) {
243        processArg(that, speculativeTree -> new ConditionalType(that, env, speculativeTree));
244    }
245
246    @Override
247    public void visitReference(JCMemberReference tree) {
248        //perform arity-based check
249        Env<AttrContext> localEnv = env.dup(tree);
250        JCExpression exprTree = (JCExpression)deferredAttr.attribSpeculative(tree.getQualifierExpression(), localEnv,
251                attr.memberReferenceQualifierResult(tree));
252        JCMemberReference mref2 = new TreeCopier<Void>(attr.make).copy(tree);
253        mref2.expr = exprTree;
254        Symbol res =
255                attr.rs.getMemberReference(tree, localEnv, mref2,
256                        exprTree.type, tree.name);
257        if (!res.kind.isResolutionError()) {
258            tree.sym = res;
259        }
260        if (res.kind.isResolutionTargetError() ||
261                res.type != null && res.type.hasTag(FORALL) ||
262                (res.flags() & Flags.VARARGS) != 0 ||
263                (TreeInfo.isStaticSelector(exprTree, tree.name.table.names) &&
264                exprTree.type.isRaw())) {
265            tree.overloadKind = JCMemberReference.OverloadKind.OVERLOADED;
266        } else {
267            tree.overloadKind = JCMemberReference.OverloadKind.UNOVERLOADED;
268        }
269        //return a plain old deferred type for this
270        setResult(tree, deferredAttr.new DeferredType(tree, env));
271    }
272
273    @Override
274    public void visitLambda(JCLambda that) {
275        if (that.paramKind == ParameterKind.EXPLICIT) {
276            //if lambda is explicit, we can save info in the corresponding argument type
277            processArg(that, () -> {
278                JCLambda speculativeLambda =
279                        deferredAttr.attribSpeculativeLambda(that, env, attr.methodAttrInfo);
280                return new ExplicitLambdaType(that, env, speculativeLambda);
281            });
282        } else {
283            //otherwise just use a deferred type
284            setResult(that, deferredAttr.new DeferredType(that, env));
285        }
286    }
287
288    @Override
289    public void visitApply(JCMethodInvocation that) {
290        if (that.getTypeArguments().isEmpty()) {
291            processArg(that, speculativeTree -> new ResolvedMethodType(that, env, speculativeTree));
292        } else {
293            //not a poly expression, just call Attr
294            setResult(that, attr.attribTree(that, env, attr.unknownExprInfo));
295        }
296    }
297
298    @Override
299    public void visitNewClass(JCNewClass that) {
300        if (TreeInfo.isDiamond(that)) {
301            processArg(that, speculativeTree -> new ResolvedConstructorType(that, env, speculativeTree));
302        } else {
303            //not a poly expression, just call Attr
304            setResult(that, attr.attribTree(that, env, attr.unknownExprInfo));
305        }
306    }
307
308    /**
309     * An argument type is similar to a plain deferred type; the most important difference is that
310     * the completion logic associated with argument types allows speculative attribution to be skipped
311     * during overload resolution - that is, an argument type always has enough information to
312     * perform an overload check without the need of calling back to Attr. This extra information
313     * is typically stored in the form of a speculative tree.
314     */
315    abstract class ArgumentType<T extends JCExpression> extends DeferredType implements DeferredTypeCompleter {
316
317        /** The speculative tree carrying type information. */
318        T speculativeTree;
319
320        /** Types associated with this argument (one type per possible target result). */
321        Map<ResultInfo, Type> speculativeTypes;
322
323        public ArgumentType(JCExpression tree, Env<AttrContext> env, T speculativeTree, Map<ResultInfo, Type> speculativeTypes) {
324            deferredAttr.super(tree, env);
325            this.speculativeTree = speculativeTree;
326            this.speculativeTypes = speculativeTypes;
327        }
328
329        @Override
330        final DeferredTypeCompleter completer() {
331            return this;
332        }
333
334        @Override
335        final public Type complete(DeferredType dt, ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
336            Assert.check(dt == this);
337            if (deferredAttrContext.mode == AttrMode.SPECULATIVE) {
338                Type t = (resultInfo.pt == Type.recoveryType) ?
339                        deferredAttr.basicCompleter.complete(dt, resultInfo, deferredAttrContext) :
340                        overloadCheck(resultInfo, deferredAttrContext);
341                speculativeTypes.put(resultInfo, t);
342                return t;
343            } else {
344                if (!env.info.isSpeculative && cachePolicy == CachePolicy.CACHE) {
345                    argumentTypeCache.remove(new UniquePos(dt.tree));
346                }
347                return deferredAttr.basicCompleter.complete(dt, resultInfo, deferredAttrContext);
348            }
349        }
350
351        @Override
352        Type speculativeType(Symbol msym, MethodResolutionPhase phase) {
353            for (Map.Entry<ResultInfo, Type> _entry : speculativeTypes.entrySet()) {
354                DeferredAttrContext deferredAttrContext = _entry.getKey().checkContext.deferredAttrContext();
355                if (deferredAttrContext.phase == phase && deferredAttrContext.msym == msym) {
356                    return _entry.getValue();
357                }
358            }
359            return Type.noType;
360        }
361
362        @Override
363        JCTree speculativeTree(DeferredAttrContext deferredAttrContext) {
364            return speculativeTree;
365        }
366
367        /**
368         * Performs an overload check against a given target result.
369         */
370        abstract Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext);
371
372        /**
373         * Creates a copy of this argument type with given tree and environment.
374         */
375        abstract ArgumentType<T> dup(T tree, Env<AttrContext> env);
376    }
377
378    /**
379     * Argument type for parenthesized expression.
380     */
381    class ParensType extends ArgumentType<JCParens> {
382        ParensType(JCExpression tree, Env<AttrContext> env, JCParens speculativeParens) {
383            this(tree, env, speculativeParens, new HashMap<>());
384        }
385
386        ParensType(JCExpression tree, Env<AttrContext> env, JCParens speculativeParens, Map<ResultInfo, Type> speculativeTypes) {
387           super(tree, env, speculativeParens, speculativeTypes);
388        }
389
390        @Override
391        Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
392            return checkSpeculative(speculativeTree.expr, resultInfo);
393        }
394
395        @Override
396        ArgumentType<JCParens> dup(JCParens tree, Env<AttrContext> env) {
397            return new ParensType(tree, env, speculativeTree, speculativeTypes);
398        }
399    }
400
401    /**
402     * Argument type for conditionals.
403     */
404    class ConditionalType extends ArgumentType<JCConditional> {
405        ConditionalType(JCExpression tree, Env<AttrContext> env, JCConditional speculativeCond) {
406            this(tree, env, speculativeCond, new HashMap<>());
407        }
408
409        ConditionalType(JCExpression tree, Env<AttrContext> env, JCConditional speculativeCond, Map<ResultInfo, Type> speculativeTypes) {
410           super(tree, env, speculativeCond, speculativeTypes);
411        }
412
413        @Override
414        Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
415            ResultInfo localInfo = resultInfo.dup(attr.conditionalContext(resultInfo.checkContext));
416            if (speculativeTree.isStandalone()) {
417                return localInfo.check(speculativeTree, speculativeTree.type);
418            } else if (resultInfo.pt.hasTag(VOID)) {
419                //this means we are returning a poly conditional from void-compatible lambda expression
420                resultInfo.checkContext.report(tree, attr.diags.fragment("conditional.target.cant.be.void"));
421                return attr.types.createErrorType(resultInfo.pt);
422            } else {
423                //poly
424                checkSpeculative(speculativeTree.truepart, localInfo);
425                checkSpeculative(speculativeTree.falsepart, localInfo);
426                return localInfo.pt;
427            }
428        }
429
430        @Override
431        ArgumentType<JCConditional> dup(JCConditional tree, Env<AttrContext> env) {
432            return new ConditionalType(tree, env, speculativeTree, speculativeTypes);
433        }
434    }
435
436    /**
437     * Argument type for explicit lambdas.
438     */
439    class ExplicitLambdaType extends ArgumentType<JCLambda> {
440
441        /** List of argument types (lazily populated). */
442        Optional<List<Type>> argtypes = Optional.empty();
443
444        /** List of return expressions (lazily populated). */
445        Optional<List<JCReturn>> returnExpressions = Optional.empty();
446
447        ExplicitLambdaType(JCLambda originalLambda, Env<AttrContext> env, JCLambda speculativeLambda) {
448            this(originalLambda, env, speculativeLambda, new HashMap<>());
449        }
450
451        ExplicitLambdaType(JCLambda originalLambda, Env<AttrContext> env, JCLambda speculativeLambda, Map<ResultInfo, Type> speculativeTypes) {
452            super(originalLambda, env, speculativeLambda, speculativeTypes);
453        }
454
455        /** Compute argument types (if needed). */
456        List<Type> argtypes() {
457            return argtypes.orElseGet(() -> {
458                List<Type> res = TreeInfo.types(speculativeTree.params);
459                argtypes = Optional.of(res);
460                return res;
461            });
462        }
463
464        /** Compute return expressions (if needed). */
465        List<JCReturn> returnExpressions() {
466            return returnExpressions.orElseGet(() -> {
467                final List<JCReturn> res;
468                if (speculativeTree.getBodyKind() == BodyKind.EXPRESSION) {
469                    res = List.of(attr.make.Return((JCExpression)speculativeTree.body));
470                } else {
471                    ListBuffer<JCReturn> returnExpressions = new ListBuffer<>();
472                    new LambdaReturnScanner() {
473                        @Override
474                        public void visitReturn(JCReturn tree) {
475                            returnExpressions.add(tree);
476                        }
477                    }.scan(speculativeTree.body);
478                    res = returnExpressions.toList();
479                }
480                returnExpressions = Optional.of(res);
481                return res;
482            });
483        }
484
485        @Override
486        Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
487            try {
488                //compute target-type; this logic could be shared with Attr
489                TargetInfo targetInfo = attr.getTargetInfo(speculativeTree, resultInfo, argtypes());
490                Type lambdaType = targetInfo.descriptor;
491                Type currentTarget = targetInfo.target;
492                //check compatibility
493                checkLambdaCompatible(lambdaType, resultInfo);
494                return currentTarget;
495            } catch (FunctionDescriptorLookupError ex) {
496                resultInfo.checkContext.report(null, ex.getDiagnostic());
497                return null; //cannot get here
498            }
499        }
500
501        /** Check lambda against given target result */
502        private void checkLambdaCompatible(Type descriptor, ResultInfo resultInfo) {
503            CheckContext checkContext = resultInfo.checkContext;
504            ResultInfo bodyResultInfo = attr.lambdaBodyResult(speculativeTree, descriptor, resultInfo);
505            for (JCReturn ret : returnExpressions()) {
506                Type t = getReturnType(ret);
507                if (speculativeTree.getBodyKind() == BodyKind.EXPRESSION || !t.hasTag(VOID)) {
508                    checkSpeculative(ret.expr, t, bodyResultInfo);
509                }
510            }
511
512            attr.checkLambdaCompatible(speculativeTree, descriptor, checkContext);
513        }
514
515        /** Get the type associated with given return expression. */
516        Type getReturnType(JCReturn ret) {
517            if (ret.expr == null) {
518                return syms.voidType;
519            } else {
520                return ret.expr.type;
521            }
522        }
523
524        @Override
525        ArgumentType<JCLambda> dup(JCLambda tree, Env<AttrContext> env) {
526            return new ExplicitLambdaType(tree, env, speculativeTree, speculativeTypes);
527        }
528    }
529
530    /**
531     * Argument type for methods/constructors.
532     */
533    abstract class ResolvedMemberType<E extends JCExpression> extends ArgumentType<E> {
534
535        public ResolvedMemberType(JCExpression tree, Env<AttrContext> env, E speculativeMethod, Map<ResultInfo, Type> speculativeTypes) {
536            super(tree, env, speculativeMethod, speculativeTypes);
537        }
538
539        @Override
540        Type overloadCheck(ResultInfo resultInfo, DeferredAttrContext deferredAttrContext) {
541            Type mtype = methodType();
542            ResultInfo localInfo = resultInfo(resultInfo);
543            if (mtype != null && mtype.hasTag(METHOD) && mtype.isPartial()) {
544                Type t = ((PartiallyInferredMethodType)mtype).check(localInfo);
545                if (!deferredAttrContext.inferenceContext.free(localInfo.pt)) {
546                    speculativeTypes.put(localInfo, t);
547                    return localInfo.check(tree.pos(), t);
548                } else {
549                    return t;
550                }
551            } else {
552                Type t = localInfo.check(tree.pos(), speculativeTree.type);
553                speculativeTypes.put(localInfo, t);
554                return t;
555            }
556        }
557
558        /**
559         * Get the result info to be used for performing an overload check.
560         */
561        abstract ResultInfo resultInfo(ResultInfo resultInfo);
562
563        /**
564         * Get the method type to be used for performing an overload check.
565         */
566        abstract Type methodType();
567    }
568
569    /**
570     * Argument type for methods.
571     */
572    class ResolvedMethodType extends ResolvedMemberType<JCMethodInvocation> {
573
574        public ResolvedMethodType(JCExpression tree, Env<AttrContext> env, JCMethodInvocation speculativeTree) {
575            this(tree, env, speculativeTree, new HashMap<>());
576        }
577
578        public ResolvedMethodType(JCExpression tree, Env<AttrContext> env, JCMethodInvocation speculativeTree, Map<ResultInfo, Type> speculativeTypes) {
579            super(tree, env, speculativeTree, speculativeTypes);
580        }
581
582        @Override
583        ResultInfo resultInfo(ResultInfo resultInfo) {
584            return resultInfo;
585        }
586
587        @Override
588        Type methodType() {
589            return speculativeTree.meth.type;
590        }
591
592        @Override
593        ArgumentType<JCMethodInvocation> dup(JCMethodInvocation tree, Env<AttrContext> env) {
594            return new ResolvedMethodType(tree, env, speculativeTree, speculativeTypes);
595        }
596    }
597
598    /**
599     * Argument type for constructors.
600     */
601    class ResolvedConstructorType extends ResolvedMemberType<JCNewClass> {
602
603        public ResolvedConstructorType(JCExpression tree, Env<AttrContext> env, JCNewClass speculativeTree) {
604            this(tree, env, speculativeTree, new HashMap<>());
605        }
606
607        public ResolvedConstructorType(JCExpression tree, Env<AttrContext> env, JCNewClass speculativeTree, Map<ResultInfo, Type> speculativeTypes) {
608            super(tree, env, speculativeTree, speculativeTypes);
609        }
610
611        @Override
612        ResultInfo resultInfo(ResultInfo resultInfo) {
613            return resultInfo.dup(attr.diamondContext(speculativeTree, speculativeTree.clazz.type.tsym, resultInfo.checkContext));
614        }
615
616        @Override
617        Type methodType() {
618            return (speculativeTree.constructorType != null) ?
619                    speculativeTree.constructorType.baseType() : syms.errType;
620        }
621
622        @Override
623        ArgumentType<JCNewClass> dup(JCNewClass tree, Env<AttrContext> env) {
624            return new ResolvedConstructorType(tree, env, speculativeTree, speculativeTypes);
625        }
626    }
627
628    /**
629     * An instance of this class represents a unique position in a compilation unit. A unique
630     * position is made up of (i) a unique position in a source file (char offset) and (ii)
631     * a source file info.
632     */
633    class UniquePos {
634
635        /** Char offset. */
636        int pos;
637
638        /** Source info. */
639        DiagnosticSource source;
640
641        UniquePos(JCTree tree) {
642            this.pos = tree.pos;
643            this.source = log.currentSource();
644        }
645
646        @Override
647        public int hashCode() {
648            return pos << 16 + source.hashCode();
649        }
650
651        @Override
652        public boolean equals(Object obj) {
653            if (obj instanceof UniquePos) {
654                UniquePos that = (UniquePos)obj;
655                return pos == that.pos && source == that.source;
656            } else {
657                return false;
658            }
659        }
660
661        @Override
662        public String toString() {
663            return source.getFile().getName() + " @ " + source.getLineNumber(pos);
664        }
665    }
666
667    /**
668     * Argument type caching policy.
669     */
670    enum CachePolicy {
671        /** Cache argument types. */
672        CACHE,
673        /**
674         * Don't cache argument types. This is useful when performing speculative attribution on
675         * a tree that is known to contain erroneous info.
676         */
677        NO_CACHE;
678    }
679}
680