Types.java revision 4235:0b74aa85c3c5
1/*
2 * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.code;
27
28import java.lang.ref.SoftReference;
29import java.util.HashSet;
30import java.util.HashMap;
31import java.util.Locale;
32import java.util.Map;
33import java.util.Optional;
34import java.util.Set;
35import java.util.WeakHashMap;
36import java.util.function.BiPredicate;
37import java.util.function.Function;
38import java.util.stream.Collector;
39
40import javax.tools.JavaFileObject;
41
42import com.sun.tools.javac.code.Attribute.RetentionPolicy;
43import com.sun.tools.javac.code.Lint.LintCategory;
44import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
45import com.sun.tools.javac.code.TypeMetadata.Entry.Kind;
46import com.sun.tools.javac.comp.AttrContext;
47import com.sun.tools.javac.comp.Check;
48import com.sun.tools.javac.comp.Enter;
49import com.sun.tools.javac.comp.Env;
50import com.sun.tools.javac.util.*;
51
52import static com.sun.tools.javac.code.BoundKind.*;
53import static com.sun.tools.javac.code.Flags.*;
54import static com.sun.tools.javac.code.Kinds.Kind.*;
55import static com.sun.tools.javac.code.Scope.*;
56import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
57import static com.sun.tools.javac.code.Symbol.*;
58import static com.sun.tools.javac.code.Type.*;
59import static com.sun.tools.javac.code.TypeTag.*;
60import static com.sun.tools.javac.jvm.ClassFile.externalize;
61import com.sun.tools.javac.resources.CompilerProperties.Fragments;
62
63/**
64 * Utility class containing various operations on types.
65 *
66 * <p>Unless other names are more illustrative, the following naming
67 * conventions should be observed in this file:
68 *
69 * <dl>
70 * <dt>t</dt>
71 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
72 * <dt>s</dt>
73 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
74 * <dt>ts</dt>
75 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
76 * <dt>ss</dt>
77 * <dd>A second list of types should be named ss.</dd>
78 * </dl>
79 *
80 * <p><b>This is NOT part of any supported API.
81 * If you write code that depends on this, you do so at your own risk.
82 * This code and its internal interfaces are subject to change or
83 * deletion without notice.</b>
84 */
85public class Types {
86    protected static final Context.Key<Types> typesKey = new Context.Key<>();
87
88    final Symtab syms;
89    final JavacMessages messages;
90    final Names names;
91    final boolean allowObjectToPrimitiveCast;
92    final boolean allowDefaultMethods;
93    final boolean mapCapturesToBounds;
94    final Check chk;
95    final Enter enter;
96    JCDiagnostic.Factory diags;
97    List<Warner> warnStack = List.nil();
98    final Name capturedName;
99    private final FunctionDescriptorLookupError functionDescriptorLookupError;
100
101    public final Warner noWarnings;
102
103    // <editor-fold defaultstate="collapsed" desc="Instantiating">
104    public static Types instance(Context context) {
105        Types instance = context.get(typesKey);
106        if (instance == null)
107            instance = new Types(context);
108        return instance;
109    }
110
111    protected Types(Context context) {
112        context.put(typesKey, this);
113        syms = Symtab.instance(context);
114        names = Names.instance(context);
115        Source source = Source.instance(context);
116        allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
117        allowDefaultMethods = source.allowDefaultMethods();
118        mapCapturesToBounds = source.mapCapturesToBounds();
119        chk = Check.instance(context);
120        enter = Enter.instance(context);
121        capturedName = names.fromString("<captured wildcard>");
122        messages = JavacMessages.instance(context);
123        diags = JCDiagnostic.Factory.instance(context);
124        functionDescriptorLookupError = new FunctionDescriptorLookupError();
125        noWarnings = new Warner(null);
126    }
127    // </editor-fold>
128
129    // <editor-fold defaultstate="collapsed" desc="bounds">
130    /**
131     * Get a wildcard's upper bound, returning non-wildcards unchanged.
132     * @param t a type argument, either a wildcard or a type
133     */
134    public Type wildUpperBound(Type t) {
135        if (t.hasTag(WILDCARD)) {
136            WildcardType w = (WildcardType) t;
137            if (w.isSuperBound())
138                return w.bound == null ? syms.objectType : w.bound.bound;
139            else
140                return wildUpperBound(w.type);
141        }
142        else return t;
143    }
144
145    /**
146     * Get a capture variable's upper bound, returning other types unchanged.
147     * @param t a type
148     */
149    public Type cvarUpperBound(Type t) {
150        if (t.hasTag(TYPEVAR)) {
151            TypeVar v = (TypeVar) t;
152            return v.isCaptured() ? cvarUpperBound(v.bound) : v;
153        }
154        else return t;
155    }
156
157    /**
158     * Get a wildcard's lower bound, returning non-wildcards unchanged.
159     * @param t a type argument, either a wildcard or a type
160     */
161    public Type wildLowerBound(Type t) {
162        if (t.hasTag(WILDCARD)) {
163            WildcardType w = (WildcardType) t;
164            return w.isExtendsBound() ? syms.botType : wildLowerBound(w.type);
165        }
166        else return t;
167    }
168
169    /**
170     * Get a capture variable's lower bound, returning other types unchanged.
171     * @param t a type
172     */
173    public Type cvarLowerBound(Type t) {
174        if (t.hasTag(TYPEVAR) && ((TypeVar) t).isCaptured()) {
175            return cvarLowerBound(t.getLowerBound());
176        }
177        else return t;
178    }
179
180    /**
181     * Recursively skip type-variables until a class/array type is found; capture conversion is then
182     * (optionally) applied to the resulting type. This is useful for i.e. computing a site that is
183     * suitable for a method lookup.
184     */
185    public Type skipTypeVars(Type site, boolean capture) {
186        while (site.hasTag(TYPEVAR)) {
187            site = site.getUpperBound();
188        }
189        return capture ? capture(site) : site;
190    }
191    // </editor-fold>
192
193    // <editor-fold defaultstate="collapsed" desc="isUnbounded">
194    /**
195     * Checks that all the arguments to a class are unbounded
196     * wildcards or something else that doesn't make any restrictions
197     * on the arguments. If a class isUnbounded, a raw super- or
198     * subclass can be cast to it without a warning.
199     * @param t a type
200     * @return true iff the given type is unbounded or raw
201     */
202    public boolean isUnbounded(Type t) {
203        return isUnbounded.visit(t);
204    }
205    // where
206        private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
207
208            public Boolean visitType(Type t, Void ignored) {
209                return true;
210            }
211
212            @Override
213            public Boolean visitClassType(ClassType t, Void ignored) {
214                List<Type> parms = t.tsym.type.allparams();
215                List<Type> args = t.allparams();
216                while (parms.nonEmpty()) {
217                    WildcardType unb = new WildcardType(syms.objectType,
218                                                        BoundKind.UNBOUND,
219                                                        syms.boundClass,
220                                                        (TypeVar)parms.head);
221                    if (!containsType(args.head, unb))
222                        return false;
223                    parms = parms.tail;
224                    args = args.tail;
225                }
226                return true;
227            }
228        };
229    // </editor-fold>
230
231    // <editor-fold defaultstate="collapsed" desc="asSub">
232    /**
233     * Return the least specific subtype of t that starts with symbol
234     * sym.  If none exists, return null.  The least specific subtype
235     * is determined as follows:
236     *
237     * <p>If there is exactly one parameterized instance of sym that is a
238     * subtype of t, that parameterized instance is returned.<br>
239     * Otherwise, if the plain type or raw type `sym' is a subtype of
240     * type t, the type `sym' itself is returned.  Otherwise, null is
241     * returned.
242     */
243    public Type asSub(Type t, Symbol sym) {
244        return asSub.visit(t, sym);
245    }
246    // where
247        private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
248
249            public Type visitType(Type t, Symbol sym) {
250                return null;
251            }
252
253            @Override
254            public Type visitClassType(ClassType t, Symbol sym) {
255                if (t.tsym == sym)
256                    return t;
257                Type base = asSuper(sym.type, t.tsym);
258                if (base == null)
259                    return null;
260                ListBuffer<Type> from = new ListBuffer<>();
261                ListBuffer<Type> to = new ListBuffer<>();
262                try {
263                    adapt(base, t, from, to);
264                } catch (AdaptFailure ex) {
265                    return null;
266                }
267                Type res = subst(sym.type, from.toList(), to.toList());
268                if (!isSubtype(res, t))
269                    return null;
270                ListBuffer<Type> openVars = new ListBuffer<>();
271                for (List<Type> l = sym.type.allparams();
272                     l.nonEmpty(); l = l.tail)
273                    if (res.contains(l.head) && !t.contains(l.head))
274                        openVars.append(l.head);
275                if (openVars.nonEmpty()) {
276                    if (t.isRaw()) {
277                        // The subtype of a raw type is raw
278                        res = erasure(res);
279                    } else {
280                        // Unbound type arguments default to ?
281                        List<Type> opens = openVars.toList();
282                        ListBuffer<Type> qs = new ListBuffer<>();
283                        for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
284                            qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND,
285                                                       syms.boundClass, (TypeVar) iter.head));
286                        }
287                        res = subst(res, opens, qs.toList());
288                    }
289                }
290                return res;
291            }
292
293            @Override
294            public Type visitErrorType(ErrorType t, Symbol sym) {
295                return t;
296            }
297        };
298    // </editor-fold>
299
300    // <editor-fold defaultstate="collapsed" desc="isConvertible">
301    /**
302     * Is t a subtype of or convertible via boxing/unboxing
303     * conversion to s?
304     */
305    public boolean isConvertible(Type t, Type s, Warner warn) {
306        if (t.hasTag(ERROR)) {
307            return true;
308        }
309        boolean tPrimitive = t.isPrimitive();
310        boolean sPrimitive = s.isPrimitive();
311        if (tPrimitive == sPrimitive) {
312            return isSubtypeUnchecked(t, s, warn);
313        }
314        boolean tUndet = t.hasTag(UNDETVAR);
315        boolean sUndet = s.hasTag(UNDETVAR);
316
317        if (tUndet || sUndet) {
318            return tUndet ?
319                    isSubtype(t, boxedTypeOrType(s)) :
320                    isSubtype(boxedTypeOrType(t), s);
321        }
322
323        return tPrimitive
324            ? isSubtype(boxedClass(t).type, s)
325            : isSubtype(unboxedType(t), s);
326    }
327
328    /**
329     * Is t a subtype of or convertible via boxing/unboxing
330     * conversions to s?
331     */
332    public boolean isConvertible(Type t, Type s) {
333        return isConvertible(t, s, noWarnings);
334    }
335    // </editor-fold>
336
337    // <editor-fold defaultstate="collapsed" desc="findSam">
338
339    /**
340     * Exception used to report a function descriptor lookup failure. The exception
341     * wraps a diagnostic that can be used to generate more details error
342     * messages.
343     */
344    public static class FunctionDescriptorLookupError extends RuntimeException {
345        private static final long serialVersionUID = 0;
346
347        JCDiagnostic diagnostic;
348
349        FunctionDescriptorLookupError() {
350            this.diagnostic = null;
351        }
352
353        FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
354            this.diagnostic = diag;
355            return this;
356        }
357
358        public JCDiagnostic getDiagnostic() {
359            return diagnostic;
360        }
361    }
362
363    /**
364     * A cache that keeps track of function descriptors associated with given
365     * functional interfaces.
366     */
367    class DescriptorCache {
368
369        private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<>();
370
371        class FunctionDescriptor {
372            Symbol descSym;
373
374            FunctionDescriptor(Symbol descSym) {
375                this.descSym = descSym;
376            }
377
378            public Symbol getSymbol() {
379                return descSym;
380            }
381
382            public Type getType(Type site) {
383                site = removeWildcards(site);
384                if (!chk.checkValidGenericType(site)) {
385                    //if the inferred functional interface type is not well-formed,
386                    //or if it's not a subtype of the original target, issue an error
387                    throw failure(diags.fragment(Fragments.NoSuitableFunctionalIntfInst(site)));
388                }
389                return memberType(site, descSym);
390            }
391        }
392
393        class Entry {
394            final FunctionDescriptor cachedDescRes;
395            final int prevMark;
396
397            public Entry(FunctionDescriptor cachedDescRes,
398                    int prevMark) {
399                this.cachedDescRes = cachedDescRes;
400                this.prevMark = prevMark;
401            }
402
403            boolean matches(int mark) {
404                return  this.prevMark == mark;
405            }
406        }
407
408        FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
409            Entry e = _map.get(origin);
410            CompoundScope members = membersClosure(origin.type, false);
411            if (e == null ||
412                    !e.matches(members.getMark())) {
413                FunctionDescriptor descRes = findDescriptorInternal(origin, members);
414                _map.put(origin, new Entry(descRes, members.getMark()));
415                return descRes;
416            }
417            else {
418                return e.cachedDescRes;
419            }
420        }
421
422        /**
423         * Compute the function descriptor associated with a given functional interface
424         */
425        public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
426                CompoundScope membersCache) throws FunctionDescriptorLookupError {
427            if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
428                //t must be an interface
429                throw failure("not.a.functional.intf", origin);
430            }
431
432            final ListBuffer<Symbol> abstracts = new ListBuffer<>();
433            for (Symbol sym : membersCache.getSymbols(new DescriptorFilter(origin))) {
434                Type mtype = memberType(origin.type, sym);
435                if (abstracts.isEmpty()) {
436                    abstracts.append(sym);
437                } else if ((sym.name == abstracts.first().name &&
438                        overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
439                    if (!abstracts.stream().filter(msym -> msym.owner.isSubClass(sym.enclClass(), Types.this))
440                            .map(msym -> memberType(origin.type, msym))
441                            .anyMatch(abstractMType -> isSubSignature(abstractMType, mtype))) {
442                        abstracts.append(sym);
443                    }
444                } else {
445                    //the target method(s) should be the only abstract members of t
446                    throw failure("not.a.functional.intf.1",  origin,
447                            diags.fragment(Fragments.IncompatibleAbstracts(Kinds.kindName(origin), origin)));
448                }
449            }
450            if (abstracts.isEmpty()) {
451                //t must define a suitable non-generic method
452                throw failure("not.a.functional.intf.1", origin,
453                            diags.fragment(Fragments.NoAbstracts(Kinds.kindName(origin), origin)));
454            } else if (abstracts.size() == 1) {
455                return new FunctionDescriptor(abstracts.first());
456            } else { // size > 1
457                FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
458                if (descRes == null) {
459                    //we can get here if the functional interface is ill-formed
460                    ListBuffer<JCDiagnostic> descriptors = new ListBuffer<>();
461                    for (Symbol desc : abstracts) {
462                        String key = desc.type.getThrownTypes().nonEmpty() ?
463                                "descriptor.throws" : "descriptor";
464                        descriptors.append(diags.fragment(key, desc.name,
465                                desc.type.getParameterTypes(),
466                                desc.type.getReturnType(),
467                                desc.type.getThrownTypes()));
468                    }
469                    JCDiagnostic msg =
470                            diags.fragment(Fragments.IncompatibleDescsInFunctionalIntf(Kinds.kindName(origin),
471                                                                                       origin));
472                    JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
473                            new JCDiagnostic.MultilineDiagnostic(msg, descriptors.toList());
474                    throw failure(incompatibleDescriptors);
475                }
476                return descRes;
477            }
478        }
479
480        /**
481         * Compute a synthetic type for the target descriptor given a list
482         * of override-equivalent methods in the functional interface type.
483         * The resulting method type is a method type that is override-equivalent
484         * and return-type substitutable with each method in the original list.
485         */
486        private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
487            return mergeAbstracts(methodSyms, origin.type, false)
488                    .map(bestSoFar -> new FunctionDescriptor(bestSoFar.baseSymbol()) {
489                        @Override
490                        public Type getType(Type origin) {
491                            Type mt = memberType(origin, getSymbol());
492                            return createMethodTypeWithThrown(mt, bestSoFar.type.getThrownTypes());
493                        }
494                    }).orElse(null);
495        }
496
497        FunctionDescriptorLookupError failure(String msg, Object... args) {
498            return failure(diags.fragment(msg, args));
499        }
500
501        FunctionDescriptorLookupError failure(JCDiagnostic diag) {
502            return functionDescriptorLookupError.setMessage(diag);
503        }
504    }
505
506    private DescriptorCache descCache = new DescriptorCache();
507
508    /**
509     * Find the method descriptor associated to this class symbol - if the
510     * symbol 'origin' is not a functional interface, an exception is thrown.
511     */
512    public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
513        return descCache.get(origin).getSymbol();
514    }
515
516    /**
517     * Find the type of the method descriptor associated to this class symbol -
518     * if the symbol 'origin' is not a functional interface, an exception is thrown.
519     */
520    public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
521        return descCache.get(origin.tsym).getType(origin);
522    }
523
524    /**
525     * Is given type a functional interface?
526     */
527    public boolean isFunctionalInterface(TypeSymbol tsym) {
528        try {
529            findDescriptorSymbol(tsym);
530            return true;
531        } catch (FunctionDescriptorLookupError ex) {
532            return false;
533        }
534    }
535
536    public boolean isFunctionalInterface(Type site) {
537        try {
538            findDescriptorType(site);
539            return true;
540        } catch (FunctionDescriptorLookupError ex) {
541            return false;
542        }
543    }
544
545    public Type removeWildcards(Type site) {
546        if (site.getTypeArguments().stream().anyMatch(t -> t.hasTag(WILDCARD))) {
547            //compute non-wildcard parameterization - JLS 9.9
548            List<Type> actuals = site.getTypeArguments();
549            List<Type> formals = site.tsym.type.getTypeArguments();
550            ListBuffer<Type> targs = new ListBuffer<>();
551            for (Type formal : formals) {
552                Type actual = actuals.head;
553                Type bound = formal.getUpperBound();
554                if (actuals.head.hasTag(WILDCARD)) {
555                    WildcardType wt = (WildcardType)actual;
556                    //check that bound does not contain other formals
557                    if (bound.containsAny(formals)) {
558                        targs.add(wt.type);
559                    } else {
560                        //compute new type-argument based on declared bound and wildcard bound
561                        switch (wt.kind) {
562                            case UNBOUND:
563                                targs.add(bound);
564                                break;
565                            case EXTENDS:
566                                targs.add(glb(bound, wt.type));
567                                break;
568                            case SUPER:
569                                targs.add(wt.type);
570                                break;
571                            default:
572                                Assert.error("Cannot get here!");
573                        }
574                    }
575                } else {
576                    //not a wildcard - the new type argument remains unchanged
577                    targs.add(actual);
578                }
579                actuals = actuals.tail;
580            }
581            return subst(site.tsym.type, formals, targs.toList());
582        } else {
583            return site;
584        }
585    }
586
587    /**
588     * Create a symbol for a class that implements a given functional interface
589     * and overrides its functional descriptor. This routine is used for two
590     * main purposes: (i) checking well-formedness of a functional interface;
591     * (ii) perform functional interface bridge calculation.
592     */
593    public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, List<Type> targets, long cflags) {
594        if (targets.isEmpty()) {
595            return null;
596        }
597        Symbol descSym = findDescriptorSymbol(targets.head.tsym);
598        Type descType = findDescriptorType(targets.head);
599        ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
600        csym.completer = Completer.NULL_COMPLETER;
601        csym.members_field = WriteableScope.create(csym);
602        MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
603        csym.members_field.enter(instDescSym);
604        Type.ClassType ctype = new Type.ClassType(Type.noType, List.nil(), csym);
605        ctype.supertype_field = syms.objectType;
606        ctype.interfaces_field = targets;
607        csym.type = ctype;
608        csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
609        return csym;
610    }
611
612    /**
613     * Find the minimal set of methods that are overridden by the functional
614     * descriptor in 'origin'. All returned methods are assumed to have different
615     * erased signatures.
616     */
617    public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
618        Assert.check(isFunctionalInterface(origin));
619        Symbol descSym = findDescriptorSymbol(origin);
620        CompoundScope members = membersClosure(origin.type, false);
621        ListBuffer<Symbol> overridden = new ListBuffer<>();
622        outer: for (Symbol m2 : members.getSymbolsByName(descSym.name, bridgeFilter)) {
623            if (m2 == descSym) continue;
624            else if (descSym.overrides(m2, origin, Types.this, false)) {
625                for (Symbol m3 : overridden) {
626                    if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
627                            (m3.overrides(m2, origin, Types.this, false) &&
628                            (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
629                            (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
630                        continue outer;
631                    }
632                }
633                overridden.add(m2);
634            }
635        }
636        return overridden.toList();
637    }
638    //where
639        private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
640            public boolean accepts(Symbol t) {
641                return t.kind == MTH &&
642                        t.name != names.init &&
643                        t.name != names.clinit &&
644                        (t.flags() & SYNTHETIC) == 0;
645            }
646        };
647        private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
648            //a symbol will be completed from a classfile if (a) symbol has
649            //an associated file object with CLASS kind and (b) the symbol has
650            //not been entered
651            if (origin.classfile != null &&
652                    origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
653                    enter.getEnv(origin) == null) {
654                return false;
655            }
656            if (origin == s) {
657                return true;
658            }
659            for (Type t : interfaces(origin.type)) {
660                if (pendingBridges((ClassSymbol)t.tsym, s)) {
661                    return true;
662                }
663            }
664            return false;
665        }
666    // </editor-fold>
667
668   /**
669    * Scope filter used to skip methods that should be ignored (such as methods
670    * overridden by j.l.Object) during function interface conversion interface check
671    */
672    class DescriptorFilter implements Filter<Symbol> {
673
674       TypeSymbol origin;
675
676       DescriptorFilter(TypeSymbol origin) {
677           this.origin = origin;
678       }
679
680       @Override
681       public boolean accepts(Symbol sym) {
682           return sym.kind == MTH &&
683                   (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
684                   !overridesObjectMethod(origin, sym) &&
685                   (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
686       }
687    }
688
689    // <editor-fold defaultstate="collapsed" desc="isSubtype">
690    /**
691     * Is t an unchecked subtype of s?
692     */
693    public boolean isSubtypeUnchecked(Type t, Type s) {
694        return isSubtypeUnchecked(t, s, noWarnings);
695    }
696    /**
697     * Is t an unchecked subtype of s?
698     */
699    public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
700        boolean result = isSubtypeUncheckedInternal(t, s, true, warn);
701        if (result) {
702            checkUnsafeVarargsConversion(t, s, warn);
703        }
704        return result;
705    }
706    //where
707        private boolean isSubtypeUncheckedInternal(Type t, Type s, boolean capture, Warner warn) {
708            if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
709                if (((ArrayType)t).elemtype.isPrimitive()) {
710                    return isSameType(elemtype(t), elemtype(s));
711                } else {
712                    return isSubtypeUncheckedInternal(elemtype(t), elemtype(s), false, warn);
713                }
714            } else if (isSubtype(t, s, capture)) {
715                return true;
716            } else if (t.hasTag(TYPEVAR)) {
717                return isSubtypeUncheckedInternal(t.getUpperBound(), s, false, warn);
718            } else if (!s.isRaw()) {
719                Type t2 = asSuper(t, s.tsym);
720                if (t2 != null && t2.isRaw()) {
721                    if (isReifiable(s)) {
722                        warn.silentWarn(LintCategory.UNCHECKED);
723                    } else {
724                        warn.warn(LintCategory.UNCHECKED);
725                    }
726                    return true;
727                }
728            }
729            return false;
730        }
731
732        private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
733            if (!t.hasTag(ARRAY) || isReifiable(t)) {
734                return;
735            }
736            ArrayType from = (ArrayType)t;
737            boolean shouldWarn = false;
738            switch (s.getTag()) {
739                case ARRAY:
740                    ArrayType to = (ArrayType)s;
741                    shouldWarn = from.isVarargs() &&
742                            !to.isVarargs() &&
743                            !isReifiable(from);
744                    break;
745                case CLASS:
746                    shouldWarn = from.isVarargs();
747                    break;
748            }
749            if (shouldWarn) {
750                warn.warn(LintCategory.VARARGS);
751            }
752        }
753
754    /**
755     * Is t a subtype of s?<br>
756     * (not defined for Method and ForAll types)
757     */
758    final public boolean isSubtype(Type t, Type s) {
759        return isSubtype(t, s, true);
760    }
761    final public boolean isSubtypeNoCapture(Type t, Type s) {
762        return isSubtype(t, s, false);
763    }
764    public boolean isSubtype(Type t, Type s, boolean capture) {
765        if (t.equalsIgnoreMetadata(s))
766            return true;
767        if (s.isPartial())
768            return isSuperType(s, t);
769
770        if (s.isCompound()) {
771            for (Type s2 : interfaces(s).prepend(supertype(s))) {
772                if (!isSubtype(t, s2, capture))
773                    return false;
774            }
775            return true;
776        }
777
778        // Generally, if 's' is a lower-bounded type variable, recur on lower bound; but
779        // for inference variables and intersections, we need to keep 's'
780        // (see JLS 4.10.2 for intersections and 18.2.3 for inference vars)
781        if (!t.hasTag(UNDETVAR) && !t.isCompound()) {
782            // TODO: JDK-8039198, bounds checking sometimes passes in a wildcard as s
783            Type lower = cvarLowerBound(wildLowerBound(s));
784            if (s != lower && !lower.hasTag(BOT))
785                return isSubtype(capture ? capture(t) : t, lower, false);
786        }
787
788        return isSubtype.visit(capture ? capture(t) : t, s);
789    }
790    // where
791        private TypeRelation isSubtype = new TypeRelation()
792        {
793            @Override
794            public Boolean visitType(Type t, Type s) {
795                switch (t.getTag()) {
796                 case BYTE:
797                     return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
798                 case CHAR:
799                     return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
800                 case SHORT: case INT: case LONG:
801                 case FLOAT: case DOUBLE:
802                     return t.getTag().isSubRangeOf(s.getTag());
803                 case BOOLEAN: case VOID:
804                     return t.hasTag(s.getTag());
805                 case TYPEVAR:
806                     return isSubtypeNoCapture(t.getUpperBound(), s);
807                 case BOT:
808                     return
809                         s.hasTag(BOT) || s.hasTag(CLASS) ||
810                         s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
811                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
812                 case NONE:
813                     return false;
814                 default:
815                     throw new AssertionError("isSubtype " + t.getTag());
816                 }
817            }
818
819            private Set<TypePair> cache = new HashSet<>();
820
821            private boolean containsTypeRecursive(Type t, Type s) {
822                TypePair pair = new TypePair(t, s);
823                if (cache.add(pair)) {
824                    try {
825                        return containsType(t.getTypeArguments(),
826                                            s.getTypeArguments());
827                    } finally {
828                        cache.remove(pair);
829                    }
830                } else {
831                    return containsType(t.getTypeArguments(),
832                                        rewriteSupers(s).getTypeArguments());
833                }
834            }
835
836            private Type rewriteSupers(Type t) {
837                if (!t.isParameterized())
838                    return t;
839                ListBuffer<Type> from = new ListBuffer<>();
840                ListBuffer<Type> to = new ListBuffer<>();
841                adaptSelf(t, from, to);
842                if (from.isEmpty())
843                    return t;
844                ListBuffer<Type> rewrite = new ListBuffer<>();
845                boolean changed = false;
846                for (Type orig : to.toList()) {
847                    Type s = rewriteSupers(orig);
848                    if (s.isSuperBound() && !s.isExtendsBound()) {
849                        s = new WildcardType(syms.objectType,
850                                             BoundKind.UNBOUND,
851                                             syms.boundClass,
852                                             s.getMetadata());
853                        changed = true;
854                    } else if (s != orig) {
855                        s = new WildcardType(wildUpperBound(s),
856                                             BoundKind.EXTENDS,
857                                             syms.boundClass,
858                                             s.getMetadata());
859                        changed = true;
860                    }
861                    rewrite.append(s);
862                }
863                if (changed)
864                    return subst(t.tsym.type, from.toList(), rewrite.toList());
865                else
866                    return t;
867            }
868
869            @Override
870            public Boolean visitClassType(ClassType t, Type s) {
871                Type sup = asSuper(t, s.tsym);
872                if (sup == null) return false;
873                // If t is an intersection, sup might not be a class type
874                if (!sup.hasTag(CLASS)) return isSubtypeNoCapture(sup, s);
875                return sup.tsym == s.tsym
876                     // Check type variable containment
877                    && (!s.isParameterized() || containsTypeRecursive(s, sup))
878                    && isSubtypeNoCapture(sup.getEnclosingType(),
879                                          s.getEnclosingType());
880            }
881
882            @Override
883            public Boolean visitArrayType(ArrayType t, Type s) {
884                if (s.hasTag(ARRAY)) {
885                    if (t.elemtype.isPrimitive())
886                        return isSameType(t.elemtype, elemtype(s));
887                    else
888                        return isSubtypeNoCapture(t.elemtype, elemtype(s));
889                }
890
891                if (s.hasTag(CLASS)) {
892                    Name sname = s.tsym.getQualifiedName();
893                    return sname == names.java_lang_Object
894                        || sname == names.java_lang_Cloneable
895                        || sname == names.java_io_Serializable;
896                }
897
898                return false;
899            }
900
901            @Override
902            public Boolean visitUndetVar(UndetVar t, Type s) {
903                //todo: test against origin needed? or replace with substitution?
904                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
905                    return true;
906                } else if (s.hasTag(BOT)) {
907                    //if 's' is 'null' there's no instantiated type U for which
908                    //U <: s (but 'null' itself, which is not a valid type)
909                    return false;
910                }
911
912                t.addBound(InferenceBound.UPPER, s, Types.this);
913                return true;
914            }
915
916            @Override
917            public Boolean visitErrorType(ErrorType t, Type s) {
918                return true;
919            }
920        };
921
922    /**
923     * Is t a subtype of every type in given list `ts'?<br>
924     * (not defined for Method and ForAll types)<br>
925     * Allows unchecked conversions.
926     */
927    public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
928        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
929            if (!isSubtypeUnchecked(t, l.head, warn))
930                return false;
931        return true;
932    }
933
934    /**
935     * Are corresponding elements of ts subtypes of ss?  If lists are
936     * of different length, return false.
937     */
938    public boolean isSubtypes(List<Type> ts, List<Type> ss) {
939        while (ts.tail != null && ss.tail != null
940               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
941               isSubtype(ts.head, ss.head)) {
942            ts = ts.tail;
943            ss = ss.tail;
944        }
945        return ts.tail == null && ss.tail == null;
946        /*inlined: ts.isEmpty() && ss.isEmpty();*/
947    }
948
949    /**
950     * Are corresponding elements of ts subtypes of ss, allowing
951     * unchecked conversions?  If lists are of different length,
952     * return false.
953     **/
954    public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
955        while (ts.tail != null && ss.tail != null
956               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
957               isSubtypeUnchecked(ts.head, ss.head, warn)) {
958            ts = ts.tail;
959            ss = ss.tail;
960        }
961        return ts.tail == null && ss.tail == null;
962        /*inlined: ts.isEmpty() && ss.isEmpty();*/
963    }
964    // </editor-fold>
965
966    // <editor-fold defaultstate="collapsed" desc="isSuperType">
967    /**
968     * Is t a supertype of s?
969     */
970    public boolean isSuperType(Type t, Type s) {
971        switch (t.getTag()) {
972        case ERROR:
973            return true;
974        case UNDETVAR: {
975            UndetVar undet = (UndetVar)t;
976            if (t == s ||
977                undet.qtype == s ||
978                s.hasTag(ERROR) ||
979                s.hasTag(BOT)) {
980                return true;
981            }
982            undet.addBound(InferenceBound.LOWER, s, this);
983            return true;
984        }
985        default:
986            return isSubtype(s, t);
987        }
988    }
989    // </editor-fold>
990
991    // <editor-fold defaultstate="collapsed" desc="isSameType">
992    /**
993     * Are corresponding elements of the lists the same type?  If
994     * lists are of different length, return false.
995     */
996    public boolean isSameTypes(List<Type> ts, List<Type> ss) {
997        return isSameTypes(ts, ss, false);
998    }
999    public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
1000        while (ts.tail != null && ss.tail != null
1001               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1002               isSameType(ts.head, ss.head, strict)) {
1003            ts = ts.tail;
1004            ss = ss.tail;
1005        }
1006        return ts.tail == null && ss.tail == null;
1007        /*inlined: ts.isEmpty() && ss.isEmpty();*/
1008    }
1009
1010    /**
1011     * A polymorphic signature method (JLS 15.12.3) is a method that
1012     *   (i) is declared in the java.lang.invoke.MethodHandle/VarHandle classes;
1013     *  (ii) takes a single variable arity parameter;
1014     * (iii) whose declared type is Object[];
1015     *  (iv) has any return type, Object signifying a polymorphic return type; and
1016     *   (v) is native.
1017    */
1018   public boolean isSignaturePolymorphic(MethodSymbol msym) {
1019       List<Type> argtypes = msym.type.getParameterTypes();
1020       return (msym.flags_field & NATIVE) != 0 &&
1021              (msym.owner == syms.methodHandleType.tsym || msym.owner == syms.varHandleType.tsym) &&
1022               argtypes.length() == 1 &&
1023               argtypes.head.hasTag(TypeTag.ARRAY) &&
1024               ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
1025   }
1026
1027    /**
1028     * Is t the same type as s?
1029     */
1030    public boolean isSameType(Type t, Type s) {
1031        return isSameType(t, s, false);
1032    }
1033    public boolean isSameType(Type t, Type s, boolean strict) {
1034        return strict ?
1035                isSameTypeStrict.visit(t, s) :
1036                isSameTypeLoose.visit(t, s);
1037    }
1038    // where
1039        abstract class SameTypeVisitor extends TypeRelation {
1040
1041            public Boolean visitType(Type t, Type s) {
1042                if (t.equalsIgnoreMetadata(s))
1043                    return true;
1044
1045                if (s.isPartial())
1046                    return visit(s, t);
1047
1048                switch (t.getTag()) {
1049                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1050                case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
1051                    return t.hasTag(s.getTag());
1052                case TYPEVAR: {
1053                    if (s.hasTag(TYPEVAR)) {
1054                        //type-substitution does not preserve type-var types
1055                        //check that type var symbols and bounds are indeed the same
1056                        return sameTypeVars((TypeVar)t, (TypeVar)s);
1057                    }
1058                    else {
1059                        //special case for s == ? super X, where upper(s) = u
1060                        //check that u == t, where u has been set by Type.withTypeVar
1061                        return s.isSuperBound() &&
1062                                !s.isExtendsBound() &&
1063                                visit(t, wildUpperBound(s));
1064                    }
1065                }
1066                default:
1067                    throw new AssertionError("isSameType " + t.getTag());
1068                }
1069            }
1070
1071            abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
1072
1073            @Override
1074            public Boolean visitWildcardType(WildcardType t, Type s) {
1075                if (!s.hasTag(WILDCARD)) {
1076                    return false;
1077                } else {
1078                    WildcardType t2 = (WildcardType)s;
1079                    return (t.kind == t2.kind || (t.isExtendsBound() && s.isExtendsBound())) &&
1080                            isSameType(t.type, t2.type, true);
1081                }
1082            }
1083
1084            @Override
1085            public Boolean visitClassType(ClassType t, Type s) {
1086                if (t == s)
1087                    return true;
1088
1089                if (s.isPartial())
1090                    return visit(s, t);
1091
1092                if (s.isSuperBound() && !s.isExtendsBound())
1093                    return visit(t, wildUpperBound(s)) && visit(t, wildLowerBound(s));
1094
1095                if (t.isCompound() && s.isCompound()) {
1096                    if (!visit(supertype(t), supertype(s)))
1097                        return false;
1098
1099                    Map<Symbol,Type> tMap = new HashMap<>();
1100                    for (Type ti : interfaces(t)) {
1101                        if (tMap.containsKey(ti)) {
1102                            throw new AssertionError("Malformed intersection");
1103                        }
1104                        tMap.put(ti.tsym, ti);
1105                    }
1106                    for (Type si : interfaces(s)) {
1107                        if (!tMap.containsKey(si.tsym))
1108                            return false;
1109                        Type ti = tMap.remove(si.tsym);
1110                        if (!visit(ti, si))
1111                            return false;
1112                    }
1113                    return tMap.isEmpty();
1114                }
1115                return t.tsym == s.tsym
1116                    && visit(t.getEnclosingType(), s.getEnclosingType())
1117                    && containsTypes(t.getTypeArguments(), s.getTypeArguments());
1118            }
1119
1120            abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
1121
1122            @Override
1123            public Boolean visitArrayType(ArrayType t, Type s) {
1124                if (t == s)
1125                    return true;
1126
1127                if (s.isPartial())
1128                    return visit(s, t);
1129
1130                return s.hasTag(ARRAY)
1131                    && containsTypeEquivalent(t.elemtype, elemtype(s));
1132            }
1133
1134            @Override
1135            public Boolean visitMethodType(MethodType t, Type s) {
1136                // isSameType for methods does not take thrown
1137                // exceptions into account!
1138                return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
1139            }
1140
1141            @Override
1142            public Boolean visitPackageType(PackageType t, Type s) {
1143                return t == s;
1144            }
1145
1146            @Override
1147            public Boolean visitForAll(ForAll t, Type s) {
1148                if (!s.hasTag(FORALL)) {
1149                    return false;
1150                }
1151
1152                ForAll forAll = (ForAll)s;
1153                return hasSameBounds(t, forAll)
1154                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
1155            }
1156
1157            @Override
1158            public Boolean visitUndetVar(UndetVar t, Type s) {
1159                if (s.hasTag(WILDCARD)) {
1160                    // FIXME, this might be leftovers from before capture conversion
1161                    return false;
1162                }
1163
1164                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
1165                    return true;
1166                }
1167
1168                t.addBound(InferenceBound.EQ, s, Types.this);
1169
1170                return true;
1171            }
1172
1173            @Override
1174            public Boolean visitErrorType(ErrorType t, Type s) {
1175                return true;
1176            }
1177        }
1178
1179        /**
1180         * Standard type-equality relation - type variables are considered
1181         * equals if they share the same type symbol.
1182         */
1183        TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
1184
1185        private class LooseSameTypeVisitor extends SameTypeVisitor {
1186
1187            /** cache of the type-variable pairs being (recursively) tested. */
1188            private Set<TypePair> cache = new HashSet<>();
1189
1190            @Override
1191            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1192                return tv1.tsym == tv2.tsym && checkSameBounds(tv1, tv2);
1193            }
1194            @Override
1195            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1196                return containsTypeEquivalent(ts1, ts2);
1197            }
1198
1199            /**
1200             * Since type-variable bounds can be recursive, we need to protect against
1201             * infinite loops - where the same bounds are checked over and over recursively.
1202             */
1203            private boolean checkSameBounds(TypeVar tv1, TypeVar tv2) {
1204                TypePair p = new TypePair(tv1, tv2, true);
1205                if (cache.add(p)) {
1206                    try {
1207                        return visit(tv1.getUpperBound(), tv2.getUpperBound());
1208                    } finally {
1209                        cache.remove(p);
1210                    }
1211                } else {
1212                    return false;
1213                }
1214            }
1215        };
1216
1217        /**
1218         * Strict type-equality relation - type variables are considered
1219         * equals if they share the same object identity.
1220         */
1221        TypeRelation isSameTypeStrict = new SameTypeVisitor() {
1222            @Override
1223            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1224                return tv1 == tv2;
1225            }
1226            @Override
1227            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1228                return isSameTypes(ts1, ts2, true);
1229            }
1230
1231            @Override
1232            public Boolean visitWildcardType(WildcardType t, Type s) {
1233                if (!s.hasTag(WILDCARD)) {
1234                    return false;
1235                } else {
1236                    WildcardType t2 = (WildcardType)s;
1237                    return t.kind == t2.kind &&
1238                            isSameType(t.type, t2.type, true);
1239                }
1240            }
1241        };
1242
1243    // </editor-fold>
1244
1245    // <editor-fold defaultstate="collapsed" desc="Contains Type">
1246    public boolean containedBy(Type t, Type s) {
1247        switch (t.getTag()) {
1248        case UNDETVAR:
1249            if (s.hasTag(WILDCARD)) {
1250                UndetVar undetvar = (UndetVar)t;
1251                WildcardType wt = (WildcardType)s;
1252                switch(wt.kind) {
1253                    case UNBOUND:
1254                        break;
1255                    case EXTENDS: {
1256                        Type bound = wildUpperBound(s);
1257                        undetvar.addBound(InferenceBound.UPPER, bound, this);
1258                        break;
1259                    }
1260                    case SUPER: {
1261                        Type bound = wildLowerBound(s);
1262                        undetvar.addBound(InferenceBound.LOWER, bound, this);
1263                        break;
1264                    }
1265                }
1266                return true;
1267            } else {
1268                return isSameType(t, s);
1269            }
1270        case ERROR:
1271            return true;
1272        default:
1273            return containsType(s, t);
1274        }
1275    }
1276
1277    boolean containsType(List<Type> ts, List<Type> ss) {
1278        while (ts.nonEmpty() && ss.nonEmpty()
1279               && containsType(ts.head, ss.head)) {
1280            ts = ts.tail;
1281            ss = ss.tail;
1282        }
1283        return ts.isEmpty() && ss.isEmpty();
1284    }
1285
1286    /**
1287     * Check if t contains s.
1288     *
1289     * <p>T contains S if:
1290     *
1291     * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
1292     *
1293     * <p>This relation is only used by ClassType.isSubtype(), that
1294     * is,
1295     *
1296     * <p>{@code C<S> <: C<T> if T contains S.}
1297     *
1298     * <p>Because of F-bounds, this relation can lead to infinite
1299     * recursion.  Thus we must somehow break that recursion.  Notice
1300     * that containsType() is only called from ClassType.isSubtype().
1301     * Since the arguments have already been checked against their
1302     * bounds, we know:
1303     *
1304     * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
1305     *
1306     * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
1307     *
1308     * @param t a type
1309     * @param s a type
1310     */
1311    public boolean containsType(Type t, Type s) {
1312        return containsType.visit(t, s);
1313    }
1314    // where
1315        private TypeRelation containsType = new TypeRelation() {
1316
1317            public Boolean visitType(Type t, Type s) {
1318                if (s.isPartial())
1319                    return containedBy(s, t);
1320                else
1321                    return isSameType(t, s);
1322            }
1323
1324//            void debugContainsType(WildcardType t, Type s) {
1325//                System.err.println();
1326//                System.err.format(" does %s contain %s?%n", t, s);
1327//                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
1328//                                  wildUpperBound(s), s, t, wildUpperBound(t),
1329//                                  t.isSuperBound()
1330//                                  || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t)));
1331//                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
1332//                                  wildLowerBound(t), t, s, wildLowerBound(s),
1333//                                  t.isExtendsBound()
1334//                                  || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s)));
1335//                System.err.println();
1336//            }
1337
1338            @Override
1339            public Boolean visitWildcardType(WildcardType t, Type s) {
1340                if (s.isPartial())
1341                    return containedBy(s, t);
1342                else {
1343//                    debugContainsType(t, s);
1344                    return isSameWildcard(t, s)
1345                        || isCaptureOf(s, t)
1346                        || ((t.isExtendsBound() || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s))) &&
1347                            (t.isSuperBound() || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t))));
1348                }
1349            }
1350
1351            @Override
1352            public Boolean visitUndetVar(UndetVar t, Type s) {
1353                if (!s.hasTag(WILDCARD)) {
1354                    return isSameType(t, s);
1355                } else {
1356                    return false;
1357                }
1358            }
1359
1360            @Override
1361            public Boolean visitErrorType(ErrorType t, Type s) {
1362                return true;
1363            }
1364        };
1365
1366    public boolean isCaptureOf(Type s, WildcardType t) {
1367        if (!s.hasTag(TYPEVAR) || !((TypeVar)s).isCaptured())
1368            return false;
1369        return isSameWildcard(t, ((CapturedType)s).wildcard);
1370    }
1371
1372    public boolean isSameWildcard(WildcardType t, Type s) {
1373        if (!s.hasTag(WILDCARD))
1374            return false;
1375        WildcardType w = (WildcardType)s;
1376        return w.kind == t.kind && w.type == t.type;
1377    }
1378
1379    public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
1380        while (ts.nonEmpty() && ss.nonEmpty()
1381               && containsTypeEquivalent(ts.head, ss.head)) {
1382            ts = ts.tail;
1383            ss = ss.tail;
1384        }
1385        return ts.isEmpty() && ss.isEmpty();
1386    }
1387    // </editor-fold>
1388
1389    // <editor-fold defaultstate="collapsed" desc="isCastable">
1390    public boolean isCastable(Type t, Type s) {
1391        return isCastable(t, s, noWarnings);
1392    }
1393
1394    /**
1395     * Is t is castable to s?<br>
1396     * s is assumed to be an erased type.<br>
1397     * (not defined for Method and ForAll types).
1398     */
1399    public boolean isCastable(Type t, Type s, Warner warn) {
1400        if (t == s)
1401            return true;
1402        if (t.isPrimitive() != s.isPrimitive()) {
1403            t = skipTypeVars(t, false);
1404            return (isConvertible(t, s, warn)
1405                    || (allowObjectToPrimitiveCast &&
1406                        s.isPrimitive() &&
1407                        isSubtype(boxedClass(s).type, t)));
1408        }
1409        if (warn != warnStack.head) {
1410            try {
1411                warnStack = warnStack.prepend(warn);
1412                checkUnsafeVarargsConversion(t, s, warn);
1413                return isCastable.visit(t,s);
1414            } finally {
1415                warnStack = warnStack.tail;
1416            }
1417        } else {
1418            return isCastable.visit(t,s);
1419        }
1420    }
1421    // where
1422        private TypeRelation isCastable = new TypeRelation() {
1423
1424            public Boolean visitType(Type t, Type s) {
1425                if (s.hasTag(ERROR))
1426                    return true;
1427
1428                switch (t.getTag()) {
1429                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1430                case DOUBLE:
1431                    return s.isNumeric();
1432                case BOOLEAN:
1433                    return s.hasTag(BOOLEAN);
1434                case VOID:
1435                    return false;
1436                case BOT:
1437                    return isSubtype(t, s);
1438                default:
1439                    throw new AssertionError();
1440                }
1441            }
1442
1443            @Override
1444            public Boolean visitWildcardType(WildcardType t, Type s) {
1445                return isCastable(wildUpperBound(t), s, warnStack.head);
1446            }
1447
1448            @Override
1449            public Boolean visitClassType(ClassType t, Type s) {
1450                if (s.hasTag(ERROR) || s.hasTag(BOT))
1451                    return true;
1452
1453                if (s.hasTag(TYPEVAR)) {
1454                    if (isCastable(t, s.getUpperBound(), noWarnings)) {
1455                        warnStack.head.warn(LintCategory.UNCHECKED);
1456                        return true;
1457                    } else {
1458                        return false;
1459                    }
1460                }
1461
1462                if (t.isCompound() || s.isCompound()) {
1463                    return !t.isCompound() ?
1464                            visitCompoundType((ClassType)s, t, true) :
1465                            visitCompoundType(t, s, false);
1466                }
1467
1468                if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
1469                    boolean upcast;
1470                    if ((upcast = isSubtype(erasure(t), erasure(s)))
1471                        || isSubtype(erasure(s), erasure(t))) {
1472                        if (!upcast && s.hasTag(ARRAY)) {
1473                            if (!isReifiable(s))
1474                                warnStack.head.warn(LintCategory.UNCHECKED);
1475                            return true;
1476                        } else if (s.isRaw()) {
1477                            return true;
1478                        } else if (t.isRaw()) {
1479                            if (!isUnbounded(s))
1480                                warnStack.head.warn(LintCategory.UNCHECKED);
1481                            return true;
1482                        }
1483                        // Assume |a| <: |b|
1484                        final Type a = upcast ? t : s;
1485                        final Type b = upcast ? s : t;
1486                        final boolean HIGH = true;
1487                        final boolean LOW = false;
1488                        final boolean DONT_REWRITE_TYPEVARS = false;
1489                        Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
1490                        Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
1491                        Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
1492                        Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
1493                        Type lowSub = asSub(bLow, aLow.tsym);
1494                        Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1495                        if (highSub == null) {
1496                            final boolean REWRITE_TYPEVARS = true;
1497                            aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
1498                            aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
1499                            bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
1500                            bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
1501                            lowSub = asSub(bLow, aLow.tsym);
1502                            highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1503                        }
1504                        if (highSub != null) {
1505                            if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
1506                                Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
1507                            }
1508                            if (!disjointTypes(aHigh.allparams(), highSub.allparams())
1509                                && !disjointTypes(aHigh.allparams(), lowSub.allparams())
1510                                && !disjointTypes(aLow.allparams(), highSub.allparams())
1511                                && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
1512                                if (upcast ? giveWarning(a, b) :
1513                                    giveWarning(b, a))
1514                                    warnStack.head.warn(LintCategory.UNCHECKED);
1515                                return true;
1516                            }
1517                        }
1518                        if (isReifiable(s))
1519                            return isSubtypeUnchecked(a, b);
1520                        else
1521                            return isSubtypeUnchecked(a, b, warnStack.head);
1522                    }
1523
1524                    // Sidecast
1525                    if (s.hasTag(CLASS)) {
1526                        if ((s.tsym.flags() & INTERFACE) != 0) {
1527                            return ((t.tsym.flags() & FINAL) == 0)
1528                                ? sideCast(t, s, warnStack.head)
1529                                : sideCastFinal(t, s, warnStack.head);
1530                        } else if ((t.tsym.flags() & INTERFACE) != 0) {
1531                            return ((s.tsym.flags() & FINAL) == 0)
1532                                ? sideCast(t, s, warnStack.head)
1533                                : sideCastFinal(t, s, warnStack.head);
1534                        } else {
1535                            // unrelated class types
1536                            return false;
1537                        }
1538                    }
1539                }
1540                return false;
1541            }
1542
1543            boolean visitCompoundType(ClassType ct, Type s, boolean reverse) {
1544                Warner warn = noWarnings;
1545                for (Type c : directSupertypes(ct)) {
1546                    warn.clear();
1547                    if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
1548                        return false;
1549                }
1550                if (warn.hasLint(LintCategory.UNCHECKED))
1551                    warnStack.head.warn(LintCategory.UNCHECKED);
1552                return true;
1553            }
1554
1555            @Override
1556            public Boolean visitArrayType(ArrayType t, Type s) {
1557                switch (s.getTag()) {
1558                case ERROR:
1559                case BOT:
1560                    return true;
1561                case TYPEVAR:
1562                    if (isCastable(s, t, noWarnings)) {
1563                        warnStack.head.warn(LintCategory.UNCHECKED);
1564                        return true;
1565                    } else {
1566                        return false;
1567                    }
1568                case CLASS:
1569                    return isSubtype(t, s);
1570                case ARRAY:
1571                    if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
1572                        return elemtype(t).hasTag(elemtype(s).getTag());
1573                    } else {
1574                        return visit(elemtype(t), elemtype(s));
1575                    }
1576                default:
1577                    return false;
1578                }
1579            }
1580
1581            @Override
1582            public Boolean visitTypeVar(TypeVar t, Type s) {
1583                switch (s.getTag()) {
1584                case ERROR:
1585                case BOT:
1586                    return true;
1587                case TYPEVAR:
1588                    if (isSubtype(t, s)) {
1589                        return true;
1590                    } else if (isCastable(t.bound, s, noWarnings)) {
1591                        warnStack.head.warn(LintCategory.UNCHECKED);
1592                        return true;
1593                    } else {
1594                        return false;
1595                    }
1596                default:
1597                    return isCastable(t.bound, s, warnStack.head);
1598                }
1599            }
1600
1601            @Override
1602            public Boolean visitErrorType(ErrorType t, Type s) {
1603                return true;
1604            }
1605        };
1606    // </editor-fold>
1607
1608    // <editor-fold defaultstate="collapsed" desc="disjointTypes">
1609    public boolean disjointTypes(List<Type> ts, List<Type> ss) {
1610        while (ts.tail != null && ss.tail != null) {
1611            if (disjointType(ts.head, ss.head)) return true;
1612            ts = ts.tail;
1613            ss = ss.tail;
1614        }
1615        return false;
1616    }
1617
1618    /**
1619     * Two types or wildcards are considered disjoint if it can be
1620     * proven that no type can be contained in both. It is
1621     * conservative in that it is allowed to say that two types are
1622     * not disjoint, even though they actually are.
1623     *
1624     * The type {@code C<X>} is castable to {@code C<Y>} exactly if
1625     * {@code X} and {@code Y} are not disjoint.
1626     */
1627    public boolean disjointType(Type t, Type s) {
1628        return disjointType.visit(t, s);
1629    }
1630    // where
1631        private TypeRelation disjointType = new TypeRelation() {
1632
1633            private Set<TypePair> cache = new HashSet<>();
1634
1635            @Override
1636            public Boolean visitType(Type t, Type s) {
1637                if (s.hasTag(WILDCARD))
1638                    return visit(s, t);
1639                else
1640                    return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
1641            }
1642
1643            private boolean isCastableRecursive(Type t, Type s) {
1644                TypePair pair = new TypePair(t, s);
1645                if (cache.add(pair)) {
1646                    try {
1647                        return Types.this.isCastable(t, s);
1648                    } finally {
1649                        cache.remove(pair);
1650                    }
1651                } else {
1652                    return true;
1653                }
1654            }
1655
1656            private boolean notSoftSubtypeRecursive(Type t, Type s) {
1657                TypePair pair = new TypePair(t, s);
1658                if (cache.add(pair)) {
1659                    try {
1660                        return Types.this.notSoftSubtype(t, s);
1661                    } finally {
1662                        cache.remove(pair);
1663                    }
1664                } else {
1665                    return false;
1666                }
1667            }
1668
1669            @Override
1670            public Boolean visitWildcardType(WildcardType t, Type s) {
1671                if (t.isUnbound())
1672                    return false;
1673
1674                if (!s.hasTag(WILDCARD)) {
1675                    if (t.isExtendsBound())
1676                        return notSoftSubtypeRecursive(s, t.type);
1677                    else
1678                        return notSoftSubtypeRecursive(t.type, s);
1679                }
1680
1681                if (s.isUnbound())
1682                    return false;
1683
1684                if (t.isExtendsBound()) {
1685                    if (s.isExtendsBound())
1686                        return !isCastableRecursive(t.type, wildUpperBound(s));
1687                    else if (s.isSuperBound())
1688                        return notSoftSubtypeRecursive(wildLowerBound(s), t.type);
1689                } else if (t.isSuperBound()) {
1690                    if (s.isExtendsBound())
1691                        return notSoftSubtypeRecursive(t.type, wildUpperBound(s));
1692                }
1693                return false;
1694            }
1695        };
1696    // </editor-fold>
1697
1698    // <editor-fold defaultstate="collapsed" desc="cvarLowerBounds">
1699    public List<Type> cvarLowerBounds(List<Type> ts) {
1700        return ts.map(cvarLowerBoundMapping);
1701    }
1702        private final TypeMapping<Void> cvarLowerBoundMapping = new TypeMapping<Void>() {
1703            @Override
1704            public Type visitCapturedType(CapturedType t, Void _unused) {
1705                return cvarLowerBound(t);
1706            }
1707        };
1708    // </editor-fold>
1709
1710    // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
1711    /**
1712     * This relation answers the question: is impossible that
1713     * something of type `t' can be a subtype of `s'? This is
1714     * different from the question "is `t' not a subtype of `s'?"
1715     * when type variables are involved: Integer is not a subtype of T
1716     * where {@code <T extends Number>} but it is not true that Integer cannot
1717     * possibly be a subtype of T.
1718     */
1719    public boolean notSoftSubtype(Type t, Type s) {
1720        if (t == s) return false;
1721        if (t.hasTag(TYPEVAR)) {
1722            TypeVar tv = (TypeVar) t;
1723            return !isCastable(tv.bound,
1724                               relaxBound(s),
1725                               noWarnings);
1726        }
1727        if (!s.hasTag(WILDCARD))
1728            s = cvarUpperBound(s);
1729
1730        return !isSubtype(t, relaxBound(s));
1731    }
1732
1733    private Type relaxBound(Type t) {
1734        return (t.hasTag(TYPEVAR)) ?
1735                rewriteQuantifiers(skipTypeVars(t, false), true, true) :
1736                t;
1737    }
1738    // </editor-fold>
1739
1740    // <editor-fold defaultstate="collapsed" desc="isReifiable">
1741    public boolean isReifiable(Type t) {
1742        return isReifiable.visit(t);
1743    }
1744    // where
1745        private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
1746
1747            public Boolean visitType(Type t, Void ignored) {
1748                return true;
1749            }
1750
1751            @Override
1752            public Boolean visitClassType(ClassType t, Void ignored) {
1753                if (t.isCompound())
1754                    return false;
1755                else {
1756                    if (!t.isParameterized())
1757                        return true;
1758
1759                    for (Type param : t.allparams()) {
1760                        if (!param.isUnbound())
1761                            return false;
1762                    }
1763                    return true;
1764                }
1765            }
1766
1767            @Override
1768            public Boolean visitArrayType(ArrayType t, Void ignored) {
1769                return visit(t.elemtype);
1770            }
1771
1772            @Override
1773            public Boolean visitTypeVar(TypeVar t, Void ignored) {
1774                return false;
1775            }
1776        };
1777    // </editor-fold>
1778
1779    // <editor-fold defaultstate="collapsed" desc="Array Utils">
1780    public boolean isArray(Type t) {
1781        while (t.hasTag(WILDCARD))
1782            t = wildUpperBound(t);
1783        return t.hasTag(ARRAY);
1784    }
1785
1786    /**
1787     * The element type of an array.
1788     */
1789    public Type elemtype(Type t) {
1790        switch (t.getTag()) {
1791        case WILDCARD:
1792            return elemtype(wildUpperBound(t));
1793        case ARRAY:
1794            return ((ArrayType)t).elemtype;
1795        case FORALL:
1796            return elemtype(((ForAll)t).qtype);
1797        case ERROR:
1798            return t;
1799        default:
1800            return null;
1801        }
1802    }
1803
1804    public Type elemtypeOrType(Type t) {
1805        Type elemtype = elemtype(t);
1806        return elemtype != null ?
1807            elemtype :
1808            t;
1809    }
1810
1811    /**
1812     * Mapping to take element type of an arraytype
1813     */
1814    private TypeMapping<Void> elemTypeFun = new TypeMapping<Void>() {
1815        @Override
1816        public Type visitArrayType(ArrayType t, Void _unused) {
1817            return t.elemtype;
1818        }
1819
1820        @Override
1821        public Type visitTypeVar(TypeVar t, Void _unused) {
1822            return visit(skipTypeVars(t, false));
1823        }
1824    };
1825
1826    /**
1827     * The number of dimensions of an array type.
1828     */
1829    public int dimensions(Type t) {
1830        int result = 0;
1831        while (t.hasTag(ARRAY)) {
1832            result++;
1833            t = elemtype(t);
1834        }
1835        return result;
1836    }
1837
1838    /**
1839     * Returns an ArrayType with the component type t
1840     *
1841     * @param t The component type of the ArrayType
1842     * @return the ArrayType for the given component
1843     */
1844    public ArrayType makeArrayType(Type t) {
1845        if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
1846            Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
1847        }
1848        return new ArrayType(t, syms.arrayClass);
1849    }
1850    // </editor-fold>
1851
1852    // <editor-fold defaultstate="collapsed" desc="asSuper">
1853    /**
1854     * Return the (most specific) base type of t that starts with the
1855     * given symbol.  If none exists, return null.
1856     *
1857     * Caveat Emptor: Since javac represents the class of all arrays with a singleton
1858     * symbol Symtab.arrayClass, which by being a singleton cannot hold any discriminant,
1859     * this method could yield surprising answers when invoked on arrays. For example when
1860     * invoked with t being byte [] and sym being t.sym itself, asSuper would answer null.
1861     *
1862     * @param t a type
1863     * @param sym a symbol
1864     */
1865    public Type asSuper(Type t, Symbol sym) {
1866        /* Some examples:
1867         *
1868         * (Enum<E>, Comparable) => Comparable<E>
1869         * (c.s.s.d.AttributeTree.ValueKind, Enum) => Enum<c.s.s.d.AttributeTree.ValueKind>
1870         * (c.s.s.t.ExpressionTree, c.s.s.t.Tree) => c.s.s.t.Tree
1871         * (j.u.List<capture#160 of ? extends c.s.s.d.DocTree>, Iterable) =>
1872         *     Iterable<capture#160 of ? extends c.s.s.d.DocTree>
1873         */
1874        if (sym.type == syms.objectType) { //optimization
1875            return syms.objectType;
1876        }
1877        return asSuper.visit(t, sym);
1878    }
1879    // where
1880        private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
1881
1882            public Type visitType(Type t, Symbol sym) {
1883                return null;
1884            }
1885
1886            @Override
1887            public Type visitClassType(ClassType t, Symbol sym) {
1888                if (t.tsym == sym)
1889                    return t;
1890
1891                Type st = supertype(t);
1892                if (st.hasTag(CLASS) || st.hasTag(TYPEVAR)) {
1893                    Type x = asSuper(st, sym);
1894                    if (x != null)
1895                        return x;
1896                }
1897                if ((sym.flags() & INTERFACE) != 0) {
1898                    for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
1899                        if (!l.head.hasTag(ERROR)) {
1900                            Type x = asSuper(l.head, sym);
1901                            if (x != null)
1902                                return x;
1903                        }
1904                    }
1905                }
1906                return null;
1907            }
1908
1909            @Override
1910            public Type visitArrayType(ArrayType t, Symbol sym) {
1911                return isSubtype(t, sym.type) ? sym.type : null;
1912            }
1913
1914            @Override
1915            public Type visitTypeVar(TypeVar t, Symbol sym) {
1916                if (t.tsym == sym)
1917                    return t;
1918                else
1919                    return asSuper(t.bound, sym);
1920            }
1921
1922            @Override
1923            public Type visitErrorType(ErrorType t, Symbol sym) {
1924                return t;
1925            }
1926        };
1927
1928    /**
1929     * Return the base type of t or any of its outer types that starts
1930     * with the given symbol.  If none exists, return null.
1931     *
1932     * @param t a type
1933     * @param sym a symbol
1934     */
1935    public Type asOuterSuper(Type t, Symbol sym) {
1936        switch (t.getTag()) {
1937        case CLASS:
1938            do {
1939                Type s = asSuper(t, sym);
1940                if (s != null) return s;
1941                t = t.getEnclosingType();
1942            } while (t.hasTag(CLASS));
1943            return null;
1944        case ARRAY:
1945            return isSubtype(t, sym.type) ? sym.type : null;
1946        case TYPEVAR:
1947            return asSuper(t, sym);
1948        case ERROR:
1949            return t;
1950        default:
1951            return null;
1952        }
1953    }
1954
1955    /**
1956     * Return the base type of t or any of its enclosing types that
1957     * starts with the given symbol.  If none exists, return null.
1958     *
1959     * @param t a type
1960     * @param sym a symbol
1961     */
1962    public Type asEnclosingSuper(Type t, Symbol sym) {
1963        switch (t.getTag()) {
1964        case CLASS:
1965            do {
1966                Type s = asSuper(t, sym);
1967                if (s != null) return s;
1968                Type outer = t.getEnclosingType();
1969                t = (outer.hasTag(CLASS)) ? outer :
1970                    (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
1971                    Type.noType;
1972            } while (t.hasTag(CLASS));
1973            return null;
1974        case ARRAY:
1975            return isSubtype(t, sym.type) ? sym.type : null;
1976        case TYPEVAR:
1977            return asSuper(t, sym);
1978        case ERROR:
1979            return t;
1980        default:
1981            return null;
1982        }
1983    }
1984    // </editor-fold>
1985
1986    // <editor-fold defaultstate="collapsed" desc="memberType">
1987    /**
1988     * The type of given symbol, seen as a member of t.
1989     *
1990     * @param t a type
1991     * @param sym a symbol
1992     */
1993    public Type memberType(Type t, Symbol sym) {
1994        return (sym.flags() & STATIC) != 0
1995            ? sym.type
1996            : memberType.visit(t, sym);
1997        }
1998    // where
1999        private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
2000
2001            public Type visitType(Type t, Symbol sym) {
2002                return sym.type;
2003            }
2004
2005            @Override
2006            public Type visitWildcardType(WildcardType t, Symbol sym) {
2007                return memberType(wildUpperBound(t), sym);
2008            }
2009
2010            @Override
2011            public Type visitClassType(ClassType t, Symbol sym) {
2012                Symbol owner = sym.owner;
2013                long flags = sym.flags();
2014                if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
2015                    Type base = asOuterSuper(t, owner);
2016                    //if t is an intersection type T = CT & I1 & I2 ... & In
2017                    //its supertypes CT, I1, ... In might contain wildcards
2018                    //so we need to go through capture conversion
2019                    base = t.isCompound() ? capture(base) : base;
2020                    if (base != null) {
2021                        List<Type> ownerParams = owner.type.allparams();
2022                        List<Type> baseParams = base.allparams();
2023                        if (ownerParams.nonEmpty()) {
2024                            if (baseParams.isEmpty()) {
2025                                // then base is a raw type
2026                                return erasure(sym.type);
2027                            } else {
2028                                return subst(sym.type, ownerParams, baseParams);
2029                            }
2030                        }
2031                    }
2032                }
2033                return sym.type;
2034            }
2035
2036            @Override
2037            public Type visitTypeVar(TypeVar t, Symbol sym) {
2038                return memberType(t.bound, sym);
2039            }
2040
2041            @Override
2042            public Type visitErrorType(ErrorType t, Symbol sym) {
2043                return t;
2044            }
2045        };
2046    // </editor-fold>
2047
2048    // <editor-fold defaultstate="collapsed" desc="isAssignable">
2049    public boolean isAssignable(Type t, Type s) {
2050        return isAssignable(t, s, noWarnings);
2051    }
2052
2053    /**
2054     * Is t assignable to s?<br>
2055     * Equivalent to subtype except for constant values and raw
2056     * types.<br>
2057     * (not defined for Method and ForAll types)
2058     */
2059    public boolean isAssignable(Type t, Type s, Warner warn) {
2060        if (t.hasTag(ERROR))
2061            return true;
2062        if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
2063            int value = ((Number)t.constValue()).intValue();
2064            switch (s.getTag()) {
2065            case BYTE:
2066            case CHAR:
2067            case SHORT:
2068            case INT:
2069                if (s.getTag().checkRange(value))
2070                    return true;
2071                break;
2072            case CLASS:
2073                switch (unboxedType(s).getTag()) {
2074                case BYTE:
2075                case CHAR:
2076                case SHORT:
2077                    return isAssignable(t, unboxedType(s), warn);
2078                }
2079                break;
2080            }
2081        }
2082        return isConvertible(t, s, warn);
2083    }
2084    // </editor-fold>
2085
2086    // <editor-fold defaultstate="collapsed" desc="erasure">
2087    /**
2088     * The erasure of t {@code |t|} -- the type that results when all
2089     * type parameters in t are deleted.
2090     */
2091    public Type erasure(Type t) {
2092        return eraseNotNeeded(t) ? t : erasure(t, false);
2093    }
2094    //where
2095    private boolean eraseNotNeeded(Type t) {
2096        // We don't want to erase primitive types and String type as that
2097        // operation is idempotent. Also, erasing these could result in loss
2098        // of information such as constant values attached to such types.
2099        return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
2100    }
2101
2102    private Type erasure(Type t, boolean recurse) {
2103        if (t.isPrimitive()) {
2104            return t; /* fast special case */
2105        } else {
2106            Type out = erasure.visit(t, recurse);
2107            return out;
2108        }
2109    }
2110    // where
2111        private TypeMapping<Boolean> erasure = new StructuralTypeMapping<Boolean>() {
2112            private Type combineMetadata(final Type s,
2113                                         final Type t) {
2114                if (t.getMetadata() != TypeMetadata.EMPTY) {
2115                    switch (s.getKind()) {
2116                        case OTHER:
2117                        case UNION:
2118                        case INTERSECTION:
2119                        case PACKAGE:
2120                        case EXECUTABLE:
2121                        case NONE:
2122                        case VOID:
2123                        case ERROR:
2124                            return s;
2125                        default: return s.cloneWithMetadata(s.getMetadata().without(Kind.ANNOTATIONS));
2126                    }
2127                } else {
2128                    return s;
2129                }
2130            }
2131
2132            public Type visitType(Type t, Boolean recurse) {
2133                if (t.isPrimitive())
2134                    return t; /*fast special case*/
2135                else {
2136                    //other cases already handled
2137                    return combineMetadata(t, t);
2138                }
2139            }
2140
2141            @Override
2142            public Type visitWildcardType(WildcardType t, Boolean recurse) {
2143                Type erased = erasure(wildUpperBound(t), recurse);
2144                return combineMetadata(erased, t);
2145            }
2146
2147            @Override
2148            public Type visitClassType(ClassType t, Boolean recurse) {
2149                Type erased = t.tsym.erasure(Types.this);
2150                if (recurse) {
2151                    erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym,
2152                            t.getMetadata().without(Kind.ANNOTATIONS));
2153                    return erased;
2154                } else {
2155                    return combineMetadata(erased, t);
2156                }
2157            }
2158
2159            @Override
2160            public Type visitTypeVar(TypeVar t, Boolean recurse) {
2161                Type erased = erasure(t.bound, recurse);
2162                return combineMetadata(erased, t);
2163            }
2164        };
2165
2166    public List<Type> erasure(List<Type> ts) {
2167        return erasure.visit(ts, false);
2168    }
2169
2170    public Type erasureRecursive(Type t) {
2171        return erasure(t, true);
2172    }
2173
2174    public List<Type> erasureRecursive(List<Type> ts) {
2175        return erasure.visit(ts, true);
2176    }
2177    // </editor-fold>
2178
2179    // <editor-fold defaultstate="collapsed" desc="makeIntersectionType">
2180    /**
2181     * Make an intersection type from non-empty list of types.  The list should be ordered according to
2182     * {@link TypeSymbol#precedes(TypeSymbol, Types)}. Note that this might cause a symbol completion.
2183     * Hence, this version of makeIntersectionType may not be called during a classfile read.
2184     *
2185     * @param bounds    the types from which the intersection type is formed
2186     */
2187    public IntersectionClassType makeIntersectionType(List<Type> bounds) {
2188        return makeIntersectionType(bounds, bounds.head.tsym.isInterface());
2189    }
2190
2191    /**
2192     * Make an intersection type from non-empty list of types.  The list should be ordered according to
2193     * {@link TypeSymbol#precedes(TypeSymbol, Types)}. This does not cause symbol completion as
2194     * an extra parameter indicates as to whether all bounds are interfaces - in which case the
2195     * supertype is implicitly assumed to be 'Object'.
2196     *
2197     * @param bounds        the types from which the intersection type is formed
2198     * @param allInterfaces are all bounds interface types?
2199     */
2200    public IntersectionClassType makeIntersectionType(List<Type> bounds, boolean allInterfaces) {
2201        Assert.check(bounds.nonEmpty());
2202        Type firstExplicitBound = bounds.head;
2203        if (allInterfaces) {
2204            bounds = bounds.prepend(syms.objectType);
2205        }
2206        ClassSymbol bc =
2207            new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
2208                            Type.moreInfo
2209                                ? names.fromString(bounds.toString())
2210                                : names.empty,
2211                            null,
2212                            syms.noSymbol);
2213        IntersectionClassType intersectionType = new IntersectionClassType(bounds, bc, allInterfaces);
2214        bc.type = intersectionType;
2215        bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
2216                syms.objectType : // error condition, recover
2217                erasure(firstExplicitBound);
2218        bc.members_field = WriteableScope.create(bc);
2219        return intersectionType;
2220    }
2221    // </editor-fold>
2222
2223    // <editor-fold defaultstate="collapsed" desc="supertype">
2224    public Type supertype(Type t) {
2225        return supertype.visit(t);
2226    }
2227    // where
2228        private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
2229
2230            public Type visitType(Type t, Void ignored) {
2231                // A note on wildcards: there is no good way to
2232                // determine a supertype for a super bounded wildcard.
2233                return Type.noType;
2234            }
2235
2236            @Override
2237            public Type visitClassType(ClassType t, Void ignored) {
2238                if (t.supertype_field == null) {
2239                    Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
2240                    // An interface has no superclass; its supertype is Object.
2241                    if (t.isInterface())
2242                        supertype = ((ClassType)t.tsym.type).supertype_field;
2243                    if (t.supertype_field == null) {
2244                        List<Type> actuals = classBound(t).allparams();
2245                        List<Type> formals = t.tsym.type.allparams();
2246                        if (t.hasErasedSupertypes()) {
2247                            t.supertype_field = erasureRecursive(supertype);
2248                        } else if (formals.nonEmpty()) {
2249                            t.supertype_field = subst(supertype, formals, actuals);
2250                        }
2251                        else {
2252                            t.supertype_field = supertype;
2253                        }
2254                    }
2255                }
2256                return t.supertype_field;
2257            }
2258
2259            /**
2260             * The supertype is always a class type. If the type
2261             * variable's bounds start with a class type, this is also
2262             * the supertype.  Otherwise, the supertype is
2263             * java.lang.Object.
2264             */
2265            @Override
2266            public Type visitTypeVar(TypeVar t, Void ignored) {
2267                if (t.bound.hasTag(TYPEVAR) ||
2268                    (!t.bound.isCompound() && !t.bound.isInterface())) {
2269                    return t.bound;
2270                } else {
2271                    return supertype(t.bound);
2272                }
2273            }
2274
2275            @Override
2276            public Type visitArrayType(ArrayType t, Void ignored) {
2277                if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
2278                    return arraySuperType();
2279                else
2280                    return new ArrayType(supertype(t.elemtype), t.tsym);
2281            }
2282
2283            @Override
2284            public Type visitErrorType(ErrorType t, Void ignored) {
2285                return Type.noType;
2286            }
2287        };
2288    // </editor-fold>
2289
2290    // <editor-fold defaultstate="collapsed" desc="interfaces">
2291    /**
2292     * Return the interfaces implemented by this class.
2293     */
2294    public List<Type> interfaces(Type t) {
2295        return interfaces.visit(t);
2296    }
2297    // where
2298        private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
2299
2300            public List<Type> visitType(Type t, Void ignored) {
2301                return List.nil();
2302            }
2303
2304            @Override
2305            public List<Type> visitClassType(ClassType t, Void ignored) {
2306                if (t.interfaces_field == null) {
2307                    List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
2308                    if (t.interfaces_field == null) {
2309                        // If t.interfaces_field is null, then t must
2310                        // be a parameterized type (not to be confused
2311                        // with a generic type declaration).
2312                        // Terminology:
2313                        //    Parameterized type: List<String>
2314                        //    Generic type declaration: class List<E> { ... }
2315                        // So t corresponds to List<String> and
2316                        // t.tsym.type corresponds to List<E>.
2317                        // The reason t must be parameterized type is
2318                        // that completion will happen as a side
2319                        // effect of calling
2320                        // ClassSymbol.getInterfaces.  Since
2321                        // t.interfaces_field is null after
2322                        // completion, we can assume that t is not the
2323                        // type of a class/interface declaration.
2324                        Assert.check(t != t.tsym.type, t);
2325                        List<Type> actuals = t.allparams();
2326                        List<Type> formals = t.tsym.type.allparams();
2327                        if (t.hasErasedSupertypes()) {
2328                            t.interfaces_field = erasureRecursive(interfaces);
2329                        } else if (formals.nonEmpty()) {
2330                            t.interfaces_field = subst(interfaces, formals, actuals);
2331                        }
2332                        else {
2333                            t.interfaces_field = interfaces;
2334                        }
2335                    }
2336                }
2337                return t.interfaces_field;
2338            }
2339
2340            @Override
2341            public List<Type> visitTypeVar(TypeVar t, Void ignored) {
2342                if (t.bound.isCompound())
2343                    return interfaces(t.bound);
2344
2345                if (t.bound.isInterface())
2346                    return List.of(t.bound);
2347
2348                return List.nil();
2349            }
2350        };
2351
2352    public List<Type> directSupertypes(Type t) {
2353        return directSupertypes.visit(t);
2354    }
2355    // where
2356        private final UnaryVisitor<List<Type>> directSupertypes = new UnaryVisitor<List<Type>>() {
2357
2358            public List<Type> visitType(final Type type, final Void ignored) {
2359                if (!type.isIntersection()) {
2360                    final Type sup = supertype(type);
2361                    return (sup == Type.noType || sup == type || sup == null)
2362                        ? interfaces(type)
2363                        : interfaces(type).prepend(sup);
2364                } else {
2365                    return ((IntersectionClassType)type).getExplicitComponents();
2366                }
2367            }
2368        };
2369
2370    public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
2371        for (Type i2 : interfaces(origin.type)) {
2372            if (isym == i2.tsym) return true;
2373        }
2374        return false;
2375    }
2376    // </editor-fold>
2377
2378    // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
2379    Map<Type,Boolean> isDerivedRawCache = new HashMap<>();
2380
2381    public boolean isDerivedRaw(Type t) {
2382        Boolean result = isDerivedRawCache.get(t);
2383        if (result == null) {
2384            result = isDerivedRawInternal(t);
2385            isDerivedRawCache.put(t, result);
2386        }
2387        return result;
2388    }
2389
2390    public boolean isDerivedRawInternal(Type t) {
2391        if (t.isErroneous())
2392            return false;
2393        return
2394            t.isRaw() ||
2395            supertype(t) != Type.noType && isDerivedRaw(supertype(t)) ||
2396            isDerivedRaw(interfaces(t));
2397    }
2398
2399    public boolean isDerivedRaw(List<Type> ts) {
2400        List<Type> l = ts;
2401        while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
2402        return l.nonEmpty();
2403    }
2404    // </editor-fold>
2405
2406    // <editor-fold defaultstate="collapsed" desc="setBounds">
2407    /**
2408     * Same as {@link Types#setBounds(TypeVar, List, boolean)}, except that third parameter is computed directly,
2409     * as follows: if all all bounds are interface types, the computed supertype is Object,otherwise
2410     * the supertype is simply left null (in this case, the supertype is assumed to be the head of
2411     * the bound list passed as second argument). Note that this check might cause a symbol completion.
2412     * Hence, this version of setBounds may not be called during a classfile read.
2413     *
2414     * @param t         a type variable
2415     * @param bounds    the bounds, must be nonempty
2416     */
2417    public void setBounds(TypeVar t, List<Type> bounds) {
2418        setBounds(t, bounds, bounds.head.tsym.isInterface());
2419    }
2420
2421    /**
2422     * Set the bounds field of the given type variable to reflect a (possibly multiple) list of bounds.
2423     * This does not cause symbol completion as an extra parameter indicates as to whether all bounds
2424     * are interfaces - in which case the supertype is implicitly assumed to be 'Object'.
2425     *
2426     * @param t             a type variable
2427     * @param bounds        the bounds, must be nonempty
2428     * @param allInterfaces are all bounds interface types?
2429     */
2430    public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
2431        t.bound = bounds.tail.isEmpty() ?
2432                bounds.head :
2433                makeIntersectionType(bounds, allInterfaces);
2434        t.rank_field = -1;
2435    }
2436    // </editor-fold>
2437
2438    // <editor-fold defaultstate="collapsed" desc="getBounds">
2439    /**
2440     * Return list of bounds of the given type variable.
2441     */
2442    public List<Type> getBounds(TypeVar t) {
2443        if (t.bound.hasTag(NONE))
2444            return List.nil();
2445        else if (t.bound.isErroneous() || !t.bound.isCompound())
2446            return List.of(t.bound);
2447        else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
2448            return interfaces(t).prepend(supertype(t));
2449        else
2450            // No superclass was given in bounds.
2451            // In this case, supertype is Object, erasure is first interface.
2452            return interfaces(t);
2453    }
2454    // </editor-fold>
2455
2456    // <editor-fold defaultstate="collapsed" desc="classBound">
2457    /**
2458     * If the given type is a (possibly selected) type variable,
2459     * return the bounding class of this type, otherwise return the
2460     * type itself.
2461     */
2462    public Type classBound(Type t) {
2463        return classBound.visit(t);
2464    }
2465    // where
2466        private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
2467
2468            public Type visitType(Type t, Void ignored) {
2469                return t;
2470            }
2471
2472            @Override
2473            public Type visitClassType(ClassType t, Void ignored) {
2474                Type outer1 = classBound(t.getEnclosingType());
2475                if (outer1 != t.getEnclosingType())
2476                    return new ClassType(outer1, t.getTypeArguments(), t.tsym,
2477                                         t.getMetadata());
2478                else
2479                    return t;
2480            }
2481
2482            @Override
2483            public Type visitTypeVar(TypeVar t, Void ignored) {
2484                return classBound(supertype(t));
2485            }
2486
2487            @Override
2488            public Type visitErrorType(ErrorType t, Void ignored) {
2489                return t;
2490            }
2491        };
2492    // </editor-fold>
2493
2494    // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
2495    /**
2496     * Returns true iff the first signature is a <em>sub
2497     * signature</em> of the other.  This is <b>not</b> an equivalence
2498     * relation.
2499     *
2500     * @jls section 8.4.2.
2501     * @see #overrideEquivalent(Type t, Type s)
2502     * @param t first signature (possibly raw).
2503     * @param s second signature (could be subjected to erasure).
2504     * @return true if t is a sub signature of s.
2505     */
2506    public boolean isSubSignature(Type t, Type s) {
2507        return isSubSignature(t, s, true);
2508    }
2509
2510    public boolean isSubSignature(Type t, Type s, boolean strict) {
2511        return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
2512    }
2513
2514    /**
2515     * Returns true iff these signatures are related by <em>override
2516     * equivalence</em>.  This is the natural extension of
2517     * isSubSignature to an equivalence relation.
2518     *
2519     * @jls section 8.4.2.
2520     * @see #isSubSignature(Type t, Type s)
2521     * @param t a signature (possible raw, could be subjected to
2522     * erasure).
2523     * @param s a signature (possible raw, could be subjected to
2524     * erasure).
2525     * @return true if either argument is a sub signature of the other.
2526     */
2527    public boolean overrideEquivalent(Type t, Type s) {
2528        return hasSameArgs(t, s) ||
2529            hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
2530    }
2531
2532    public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
2533        for (Symbol sym : syms.objectType.tsym.members().getSymbolsByName(msym.name)) {
2534            if (msym.overrides(sym, origin, Types.this, true)) {
2535                return true;
2536            }
2537        }
2538        return false;
2539    }
2540
2541    /**
2542     * This enum defines the strategy for implementing most specific return type check
2543     * during the most specific and functional interface checks.
2544     */
2545    public enum MostSpecificReturnCheck {
2546        /**
2547         * Return r1 is more specific than r2 if {@code r1 <: r2}. Extra care required for (i) handling
2548         * method type variables (if either method is generic) and (ii) subtyping should be replaced
2549         * by type-equivalence for primitives. This is essentially an inlined version of
2550         * {@link Types#resultSubtype(Type, Type, Warner)}, where the assignability check has been
2551         * replaced with a strict subtyping check.
2552         */
2553        BASIC() {
2554            @Override
2555            public boolean test(Type mt1, Type mt2, Types types) {
2556                List<Type> tvars = mt1.getTypeArguments();
2557                List<Type> svars = mt2.getTypeArguments();
2558                Type t = mt1.getReturnType();
2559                Type s = types.subst(mt2.getReturnType(), svars, tvars);
2560                return types.isSameType(t, s) ||
2561                    !t.isPrimitive() &&
2562                    !s.isPrimitive() &&
2563                    types.isSubtype(t, s);
2564            }
2565        },
2566        /**
2567         * Return r1 is more specific than r2 if r1 is return-type-substitutable for r2.
2568         */
2569        RTS() {
2570            @Override
2571            public boolean test(Type mt1, Type mt2, Types types) {
2572                return types.returnTypeSubstitutable(mt1, mt2);
2573            }
2574        };
2575
2576        public abstract boolean test(Type mt1, Type mt2, Types types);
2577    }
2578
2579    /**
2580     * Merge multiple abstract methods. The preferred method is a method that is a subsignature
2581     * of all the other signatures and whose return type is more specific {@see MostSpecificReturnCheck}.
2582     * The resulting preferred method has a thrown clause that is the intersection of the merged
2583     * methods' clauses.
2584     */
2585    public Optional<Symbol> mergeAbstracts(List<Symbol> ambiguousInOrder, Type site, boolean sigCheck) {
2586        //first check for preconditions
2587        boolean shouldErase = false;
2588        List<Type> erasedParams = ambiguousInOrder.head.erasure(this).getParameterTypes();
2589        for (Symbol s : ambiguousInOrder) {
2590            if ((s.flags() & ABSTRACT) == 0 ||
2591                    (sigCheck && !isSameTypes(erasedParams, s.erasure(this).getParameterTypes()))) {
2592                return Optional.empty();
2593            } else if (s.type.hasTag(FORALL)) {
2594                shouldErase = true;
2595            }
2596        }
2597        //then merge abstracts
2598        for (MostSpecificReturnCheck mostSpecificReturnCheck : MostSpecificReturnCheck.values()) {
2599            outer: for (Symbol s : ambiguousInOrder) {
2600                Type mt = memberType(site, s);
2601                List<Type> allThrown = mt.getThrownTypes();
2602                for (Symbol s2 : ambiguousInOrder) {
2603                    if (s != s2) {
2604                        Type mt2 = memberType(site, s2);
2605                        if (!isSubSignature(mt, mt2) ||
2606                                !mostSpecificReturnCheck.test(mt, mt2, this)) {
2607                            //ambiguity cannot be resolved
2608                            continue outer;
2609                        } else {
2610                            List<Type> thrownTypes2 = mt2.getThrownTypes();
2611                            if (!mt.hasTag(FORALL) && shouldErase) {
2612                                thrownTypes2 = erasure(thrownTypes2);
2613                            } else if (mt.hasTag(FORALL)) {
2614                                //subsignature implies that if most specific is generic, then all other
2615                                //methods are too
2616                                Assert.check(mt2.hasTag(FORALL));
2617                                // if both are generic methods, adjust thrown types ahead of intersection computation
2618                                thrownTypes2 = subst(thrownTypes2, mt2.getTypeArguments(), mt.getTypeArguments());
2619                            }
2620                            allThrown = chk.intersect(allThrown, thrownTypes2);
2621                        }
2622                    }
2623                }
2624                return (allThrown == mt.getThrownTypes()) ?
2625                        Optional.of(s) :
2626                        Optional.of(new MethodSymbol(
2627                                s.flags(),
2628                                s.name,
2629                                createMethodTypeWithThrown(s.type, allThrown),
2630                                s.owner) {
2631                            @Override
2632                            public Symbol baseSymbol() {
2633                                return s;
2634                            }
2635                        });
2636            }
2637        }
2638        return Optional.empty();
2639    }
2640
2641    // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
2642    class ImplementationCache {
2643
2644        private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map = new WeakHashMap<>();
2645
2646        class Entry {
2647            final MethodSymbol cachedImpl;
2648            final Filter<Symbol> implFilter;
2649            final boolean checkResult;
2650            final int prevMark;
2651
2652            public Entry(MethodSymbol cachedImpl,
2653                    Filter<Symbol> scopeFilter,
2654                    boolean checkResult,
2655                    int prevMark) {
2656                this.cachedImpl = cachedImpl;
2657                this.implFilter = scopeFilter;
2658                this.checkResult = checkResult;
2659                this.prevMark = prevMark;
2660            }
2661
2662            boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
2663                return this.implFilter == scopeFilter &&
2664                        this.checkResult == checkResult &&
2665                        this.prevMark == mark;
2666            }
2667        }
2668
2669        MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2670            SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
2671            Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
2672            if (cache == null) {
2673                cache = new HashMap<>();
2674                _map.put(ms, new SoftReference<>(cache));
2675            }
2676            Entry e = cache.get(origin);
2677            CompoundScope members = membersClosure(origin.type, true);
2678            if (e == null ||
2679                    !e.matches(implFilter, checkResult, members.getMark())) {
2680                MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
2681                cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
2682                return impl;
2683            }
2684            else {
2685                return e.cachedImpl;
2686            }
2687        }
2688
2689        private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2690            for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
2691                t = skipTypeVars(t, false);
2692                TypeSymbol c = t.tsym;
2693                Symbol bestSoFar = null;
2694                for (Symbol sym : c.members().getSymbolsByName(ms.name, implFilter)) {
2695                    if (sym != null && sym.overrides(ms, origin, Types.this, checkResult)) {
2696                        bestSoFar = sym;
2697                        if ((sym.flags() & ABSTRACT) == 0) {
2698                            //if concrete impl is found, exit immediately
2699                            break;
2700                        }
2701                    }
2702                }
2703                if (bestSoFar != null) {
2704                    //return either the (only) concrete implementation or the first abstract one
2705                    return (MethodSymbol)bestSoFar;
2706                }
2707            }
2708            return null;
2709        }
2710    }
2711
2712    private ImplementationCache implCache = new ImplementationCache();
2713
2714    public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2715        return implCache.get(ms, origin, checkResult, implFilter);
2716    }
2717    // </editor-fold>
2718
2719    // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
2720    class MembersClosureCache extends SimpleVisitor<Scope.CompoundScope, Void> {
2721
2722        private Map<TypeSymbol, CompoundScope> _map = new HashMap<>();
2723
2724        Set<TypeSymbol> seenTypes = new HashSet<>();
2725
2726        class MembersScope extends CompoundScope {
2727
2728            CompoundScope scope;
2729
2730            public MembersScope(CompoundScope scope) {
2731                super(scope.owner);
2732                this.scope = scope;
2733            }
2734
2735            Filter<Symbol> combine(Filter<Symbol> sf) {
2736                return s -> !s.owner.isInterface() && (sf == null || sf.accepts(s));
2737            }
2738
2739            @Override
2740            public Iterable<Symbol> getSymbols(Filter<Symbol> sf, LookupKind lookupKind) {
2741                return scope.getSymbols(combine(sf), lookupKind);
2742            }
2743
2744            @Override
2745            public Iterable<Symbol> getSymbolsByName(Name name, Filter<Symbol> sf, LookupKind lookupKind) {
2746                return scope.getSymbolsByName(name, combine(sf), lookupKind);
2747            }
2748
2749            @Override
2750            public int getMark() {
2751                return scope.getMark();
2752            }
2753        }
2754
2755        CompoundScope nilScope;
2756
2757        /** members closure visitor methods **/
2758
2759        public CompoundScope visitType(Type t, Void _unused) {
2760            if (nilScope == null) {
2761                nilScope = new CompoundScope(syms.noSymbol);
2762            }
2763            return nilScope;
2764        }
2765
2766        @Override
2767        public CompoundScope visitClassType(ClassType t, Void _unused) {
2768            if (!seenTypes.add(t.tsym)) {
2769                //this is possible when an interface is implemented in multiple
2770                //superclasses, or when a class hierarchy is circular - in such
2771                //cases we don't need to recurse (empty scope is returned)
2772                return new CompoundScope(t.tsym);
2773            }
2774            try {
2775                seenTypes.add(t.tsym);
2776                ClassSymbol csym = (ClassSymbol)t.tsym;
2777                CompoundScope membersClosure = _map.get(csym);
2778                if (membersClosure == null) {
2779                    membersClosure = new CompoundScope(csym);
2780                    for (Type i : interfaces(t)) {
2781                        membersClosure.prependSubScope(visit(i, null));
2782                    }
2783                    membersClosure.prependSubScope(visit(supertype(t), null));
2784                    membersClosure.prependSubScope(csym.members());
2785                    _map.put(csym, membersClosure);
2786                }
2787                return membersClosure;
2788            }
2789            finally {
2790                seenTypes.remove(t.tsym);
2791            }
2792        }
2793
2794        @Override
2795        public CompoundScope visitTypeVar(TypeVar t, Void _unused) {
2796            return visit(t.getUpperBound(), null);
2797        }
2798    }
2799
2800    private MembersClosureCache membersCache = new MembersClosureCache();
2801
2802    public CompoundScope membersClosure(Type site, boolean skipInterface) {
2803        CompoundScope cs = membersCache.visit(site, null);
2804        Assert.checkNonNull(cs, () -> "type " + site);
2805        return skipInterface ? membersCache.new MembersScope(cs) : cs;
2806    }
2807    // </editor-fold>
2808
2809
2810    /** Return first abstract member of class `sym'.
2811     */
2812    public MethodSymbol firstUnimplementedAbstract(ClassSymbol sym) {
2813        try {
2814            return firstUnimplementedAbstractImpl(sym, sym);
2815        } catch (CompletionFailure ex) {
2816            chk.completionError(enter.getEnv(sym).tree.pos(), ex);
2817            return null;
2818        }
2819    }
2820        //where:
2821        private MethodSymbol firstUnimplementedAbstractImpl(ClassSymbol impl, ClassSymbol c) {
2822            MethodSymbol undef = null;
2823            // Do not bother to search in classes that are not abstract,
2824            // since they cannot have abstract members.
2825            if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
2826                Scope s = c.members();
2827                for (Symbol sym : s.getSymbols(NON_RECURSIVE)) {
2828                    if (sym.kind == MTH &&
2829                        (sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
2830                        MethodSymbol absmeth = (MethodSymbol)sym;
2831                        MethodSymbol implmeth = absmeth.implementation(impl, this, true);
2832                        if (implmeth == null || implmeth == absmeth) {
2833                            //look for default implementations
2834                            if (allowDefaultMethods) {
2835                                MethodSymbol prov = interfaceCandidates(impl.type, absmeth).head;
2836                                if (prov != null && prov.overrides(absmeth, impl, this, true)) {
2837                                    implmeth = prov;
2838                                }
2839                            }
2840                        }
2841                        if (implmeth == null || implmeth == absmeth) {
2842                            undef = absmeth;
2843                            break;
2844                        }
2845                    }
2846                }
2847                if (undef == null) {
2848                    Type st = supertype(c.type);
2849                    if (st.hasTag(CLASS))
2850                        undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)st.tsym);
2851                }
2852                for (List<Type> l = interfaces(c.type);
2853                     undef == null && l.nonEmpty();
2854                     l = l.tail) {
2855                    undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)l.head.tsym);
2856                }
2857            }
2858            return undef;
2859        }
2860
2861    public class CandidatesCache {
2862        public Map<Entry, List<MethodSymbol>> cache = new WeakHashMap<>();
2863
2864        class Entry {
2865            Type site;
2866            MethodSymbol msym;
2867
2868            Entry(Type site, MethodSymbol msym) {
2869                this.site = site;
2870                this.msym = msym;
2871            }
2872
2873            @Override
2874            public boolean equals(Object obj) {
2875                if (obj instanceof Entry) {
2876                    Entry e = (Entry)obj;
2877                    return e.msym == msym && isSameType(site, e.site);
2878                } else {
2879                    return false;
2880                }
2881            }
2882
2883            @Override
2884            public int hashCode() {
2885                return Types.this.hashCode(site) & ~msym.hashCode();
2886            }
2887        }
2888
2889        public List<MethodSymbol> get(Entry e) {
2890            return cache.get(e);
2891        }
2892
2893        public void put(Entry e, List<MethodSymbol> msymbols) {
2894            cache.put(e, msymbols);
2895        }
2896    }
2897
2898    public CandidatesCache candidatesCache = new CandidatesCache();
2899
2900    //where
2901    public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
2902        CandidatesCache.Entry e = candidatesCache.new Entry(site, ms);
2903        List<MethodSymbol> candidates = candidatesCache.get(e);
2904        if (candidates == null) {
2905            Filter<Symbol> filter = new MethodFilter(ms, site);
2906            List<MethodSymbol> candidates2 = List.nil();
2907            for (Symbol s : membersClosure(site, false).getSymbols(filter)) {
2908                if (!site.tsym.isInterface() && !s.owner.isInterface()) {
2909                    return List.of((MethodSymbol)s);
2910                } else if (!candidates2.contains(s)) {
2911                    candidates2 = candidates2.prepend((MethodSymbol)s);
2912                }
2913            }
2914            candidates = prune(candidates2);
2915            candidatesCache.put(e, candidates);
2916        }
2917        return candidates;
2918    }
2919
2920    public List<MethodSymbol> prune(List<MethodSymbol> methods) {
2921        ListBuffer<MethodSymbol> methodsMin = new ListBuffer<>();
2922        for (MethodSymbol m1 : methods) {
2923            boolean isMin_m1 = true;
2924            for (MethodSymbol m2 : methods) {
2925                if (m1 == m2) continue;
2926                if (m2.owner != m1.owner &&
2927                        asSuper(m2.owner.type, m1.owner) != null) {
2928                    isMin_m1 = false;
2929                    break;
2930                }
2931            }
2932            if (isMin_m1)
2933                methodsMin.append(m1);
2934        }
2935        return methodsMin.toList();
2936    }
2937    // where
2938            private class MethodFilter implements Filter<Symbol> {
2939
2940                Symbol msym;
2941                Type site;
2942
2943                MethodFilter(Symbol msym, Type site) {
2944                    this.msym = msym;
2945                    this.site = site;
2946                }
2947
2948                public boolean accepts(Symbol s) {
2949                    return s.kind == MTH &&
2950                            s.name == msym.name &&
2951                            (s.flags() & SYNTHETIC) == 0 &&
2952                            s.isInheritedIn(site.tsym, Types.this) &&
2953                            overrideEquivalent(memberType(site, s), memberType(site, msym));
2954                }
2955            }
2956    // </editor-fold>
2957
2958    /**
2959     * Does t have the same arguments as s?  It is assumed that both
2960     * types are (possibly polymorphic) method types.  Monomorphic
2961     * method types "have the same arguments", if their argument lists
2962     * are equal.  Polymorphic method types "have the same arguments",
2963     * if they have the same arguments after renaming all type
2964     * variables of one to corresponding type variables in the other,
2965     * where correspondence is by position in the type parameter list.
2966     */
2967    public boolean hasSameArgs(Type t, Type s) {
2968        return hasSameArgs(t, s, true);
2969    }
2970
2971    public boolean hasSameArgs(Type t, Type s, boolean strict) {
2972        return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
2973    }
2974
2975    private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
2976        return hasSameArgs.visit(t, s);
2977    }
2978    // where
2979        private class HasSameArgs extends TypeRelation {
2980
2981            boolean strict;
2982
2983            public HasSameArgs(boolean strict) {
2984                this.strict = strict;
2985            }
2986
2987            public Boolean visitType(Type t, Type s) {
2988                throw new AssertionError();
2989            }
2990
2991            @Override
2992            public Boolean visitMethodType(MethodType t, Type s) {
2993                return s.hasTag(METHOD)
2994                    && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
2995            }
2996
2997            @Override
2998            public Boolean visitForAll(ForAll t, Type s) {
2999                if (!s.hasTag(FORALL))
3000                    return strict ? false : visitMethodType(t.asMethodType(), s);
3001
3002                ForAll forAll = (ForAll)s;
3003                return hasSameBounds(t, forAll)
3004                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
3005            }
3006
3007            @Override
3008            public Boolean visitErrorType(ErrorType t, Type s) {
3009                return false;
3010            }
3011        }
3012
3013    TypeRelation hasSameArgs_strict = new HasSameArgs(true);
3014        TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
3015
3016    // </editor-fold>
3017
3018    // <editor-fold defaultstate="collapsed" desc="subst">
3019    public List<Type> subst(List<Type> ts,
3020                            List<Type> from,
3021                            List<Type> to) {
3022        return ts.map(new Subst(from, to));
3023    }
3024
3025    /**
3026     * Substitute all occurrences of a type in `from' with the
3027     * corresponding type in `to' in 't'. Match lists `from' and `to'
3028     * from the right: If lists have different length, discard leading
3029     * elements of the longer list.
3030     */
3031    public Type subst(Type t, List<Type> from, List<Type> to) {
3032        return t.map(new Subst(from, to));
3033    }
3034
3035    private class Subst extends StructuralTypeMapping<Void> {
3036        List<Type> from;
3037        List<Type> to;
3038
3039        public Subst(List<Type> from, List<Type> to) {
3040            int fromLength = from.length();
3041            int toLength = to.length();
3042            while (fromLength > toLength) {
3043                fromLength--;
3044                from = from.tail;
3045            }
3046            while (fromLength < toLength) {
3047                toLength--;
3048                to = to.tail;
3049            }
3050            this.from = from;
3051            this.to = to;
3052        }
3053
3054        @Override
3055        public Type visitTypeVar(TypeVar t, Void ignored) {
3056            for (List<Type> from = this.from, to = this.to;
3057                 from.nonEmpty();
3058                 from = from.tail, to = to.tail) {
3059                if (t.equalsIgnoreMetadata(from.head)) {
3060                    return to.head.withTypeVar(t);
3061                }
3062            }
3063            return t;
3064        }
3065
3066        @Override
3067        public Type visitClassType(ClassType t, Void ignored) {
3068            if (!t.isCompound()) {
3069                return super.visitClassType(t, ignored);
3070            } else {
3071                Type st = visit(supertype(t));
3072                List<Type> is = visit(interfaces(t), ignored);
3073                if (st == supertype(t) && is == interfaces(t))
3074                    return t;
3075                else
3076                    return makeIntersectionType(is.prepend(st));
3077            }
3078        }
3079
3080        @Override
3081        public Type visitWildcardType(WildcardType t, Void ignored) {
3082            WildcardType t2 = (WildcardType)super.visitWildcardType(t, ignored);
3083            if (t2 != t && t.isExtendsBound() && t2.type.isExtendsBound()) {
3084                t2.type = wildUpperBound(t2.type);
3085            }
3086            return t2;
3087        }
3088
3089        @Override
3090        public Type visitForAll(ForAll t, Void ignored) {
3091            if (Type.containsAny(to, t.tvars)) {
3092                //perform alpha-renaming of free-variables in 't'
3093                //if 'to' types contain variables that are free in 't'
3094                List<Type> freevars = newInstances(t.tvars);
3095                t = new ForAll(freevars,
3096                               Types.this.subst(t.qtype, t.tvars, freevars));
3097            }
3098            List<Type> tvars1 = substBounds(t.tvars, from, to);
3099            Type qtype1 = visit(t.qtype);
3100            if (tvars1 == t.tvars && qtype1 == t.qtype) {
3101                return t;
3102            } else if (tvars1 == t.tvars) {
3103                return new ForAll(tvars1, qtype1) {
3104                    @Override
3105                    public boolean needsStripping() {
3106                        return true;
3107                    }
3108                };
3109            } else {
3110                return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1)) {
3111                    @Override
3112                    public boolean needsStripping() {
3113                        return true;
3114                    }
3115                };
3116            }
3117        }
3118    }
3119
3120    public List<Type> substBounds(List<Type> tvars,
3121                                  List<Type> from,
3122                                  List<Type> to) {
3123        if (tvars.isEmpty())
3124            return tvars;
3125        ListBuffer<Type> newBoundsBuf = new ListBuffer<>();
3126        boolean changed = false;
3127        // calculate new bounds
3128        for (Type t : tvars) {
3129            TypeVar tv = (TypeVar) t;
3130            Type bound = subst(tv.bound, from, to);
3131            if (bound != tv.bound)
3132                changed = true;
3133            newBoundsBuf.append(bound);
3134        }
3135        if (!changed)
3136            return tvars;
3137        ListBuffer<Type> newTvars = new ListBuffer<>();
3138        // create new type variables without bounds
3139        for (Type t : tvars) {
3140            newTvars.append(new TypeVar(t.tsym, null, syms.botType,
3141                                        t.getMetadata()));
3142        }
3143        // the new bounds should use the new type variables in place
3144        // of the old
3145        List<Type> newBounds = newBoundsBuf.toList();
3146        from = tvars;
3147        to = newTvars.toList();
3148        for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
3149            newBounds.head = subst(newBounds.head, from, to);
3150        }
3151        newBounds = newBoundsBuf.toList();
3152        // set the bounds of new type variables to the new bounds
3153        for (Type t : newTvars.toList()) {
3154            TypeVar tv = (TypeVar) t;
3155            tv.bound = newBounds.head;
3156            newBounds = newBounds.tail;
3157        }
3158        return newTvars.toList();
3159    }
3160
3161    public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
3162        Type bound1 = subst(t.bound, from, to);
3163        if (bound1 == t.bound)
3164            return t;
3165        else {
3166            // create new type variable without bounds
3167            TypeVar tv = new TypeVar(t.tsym, null, syms.botType,
3168                                     t.getMetadata());
3169            // the new bound should use the new type variable in place
3170            // of the old
3171            tv.bound = subst(bound1, List.of(t), List.of(tv));
3172            return tv;
3173        }
3174    }
3175    // </editor-fold>
3176
3177    // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
3178    /**
3179     * Does t have the same bounds for quantified variables as s?
3180     */
3181    public boolean hasSameBounds(ForAll t, ForAll s) {
3182        List<Type> l1 = t.tvars;
3183        List<Type> l2 = s.tvars;
3184        while (l1.nonEmpty() && l2.nonEmpty() &&
3185               isSameType(l1.head.getUpperBound(),
3186                          subst(l2.head.getUpperBound(),
3187                                s.tvars,
3188                                t.tvars))) {
3189            l1 = l1.tail;
3190            l2 = l2.tail;
3191        }
3192        return l1.isEmpty() && l2.isEmpty();
3193    }
3194    // </editor-fold>
3195
3196    // <editor-fold defaultstate="collapsed" desc="newInstances">
3197    /** Create new vector of type variables from list of variables
3198     *  changing all recursive bounds from old to new list.
3199     */
3200    public List<Type> newInstances(List<Type> tvars) {
3201        List<Type> tvars1 = tvars.map(newInstanceFun);
3202        for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
3203            TypeVar tv = (TypeVar) l.head;
3204            tv.bound = subst(tv.bound, tvars, tvars1);
3205        }
3206        return tvars1;
3207    }
3208        private static final TypeMapping<Void> newInstanceFun = new TypeMapping<Void>() {
3209            @Override
3210            public TypeVar visitTypeVar(TypeVar t, Void _unused) {
3211                return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound(), t.getMetadata());
3212            }
3213        };
3214    // </editor-fold>
3215
3216    public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
3217        return original.accept(methodWithParameters, newParams);
3218    }
3219    // where
3220        private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
3221            public Type visitType(Type t, List<Type> newParams) {
3222                throw new IllegalArgumentException("Not a method type: " + t);
3223            }
3224            public Type visitMethodType(MethodType t, List<Type> newParams) {
3225                return new MethodType(newParams, t.restype, t.thrown, t.tsym);
3226            }
3227            public Type visitForAll(ForAll t, List<Type> newParams) {
3228                return new ForAll(t.tvars, t.qtype.accept(this, newParams));
3229            }
3230        };
3231
3232    public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
3233        return original.accept(methodWithThrown, newThrown);
3234    }
3235    // where
3236        private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
3237            public Type visitType(Type t, List<Type> newThrown) {
3238                throw new IllegalArgumentException("Not a method type: " + t);
3239            }
3240            public Type visitMethodType(MethodType t, List<Type> newThrown) {
3241                return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
3242            }
3243            public Type visitForAll(ForAll t, List<Type> newThrown) {
3244                return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
3245            }
3246        };
3247
3248    public Type createMethodTypeWithReturn(Type original, Type newReturn) {
3249        return original.accept(methodWithReturn, newReturn);
3250    }
3251    // where
3252        private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
3253            public Type visitType(Type t, Type newReturn) {
3254                throw new IllegalArgumentException("Not a method type: " + t);
3255            }
3256            public Type visitMethodType(MethodType t, Type newReturn) {
3257                return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym) {
3258                    @Override
3259                    public Type baseType() {
3260                        return t;
3261                    }
3262                };
3263            }
3264            public Type visitForAll(ForAll t, Type newReturn) {
3265                return new ForAll(t.tvars, t.qtype.accept(this, newReturn)) {
3266                    @Override
3267                    public Type baseType() {
3268                        return t;
3269                    }
3270                };
3271            }
3272        };
3273
3274    // <editor-fold defaultstate="collapsed" desc="createErrorType">
3275    public Type createErrorType(Type originalType) {
3276        return new ErrorType(originalType, syms.errSymbol);
3277    }
3278
3279    public Type createErrorType(ClassSymbol c, Type originalType) {
3280        return new ErrorType(c, originalType);
3281    }
3282
3283    public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
3284        return new ErrorType(name, container, originalType);
3285    }
3286    // </editor-fold>
3287
3288    // <editor-fold defaultstate="collapsed" desc="rank">
3289    /**
3290     * The rank of a class is the length of the longest path between
3291     * the class and java.lang.Object in the class inheritance
3292     * graph. Undefined for all but reference types.
3293     */
3294    public int rank(Type t) {
3295        switch(t.getTag()) {
3296        case CLASS: {
3297            ClassType cls = (ClassType)t;
3298            if (cls.rank_field < 0) {
3299                Name fullname = cls.tsym.getQualifiedName();
3300                if (fullname == names.java_lang_Object)
3301                    cls.rank_field = 0;
3302                else {
3303                    int r = rank(supertype(cls));
3304                    for (List<Type> l = interfaces(cls);
3305                         l.nonEmpty();
3306                         l = l.tail) {
3307                        if (rank(l.head) > r)
3308                            r = rank(l.head);
3309                    }
3310                    cls.rank_field = r + 1;
3311                }
3312            }
3313            return cls.rank_field;
3314        }
3315        case TYPEVAR: {
3316            TypeVar tvar = (TypeVar)t;
3317            if (tvar.rank_field < 0) {
3318                int r = rank(supertype(tvar));
3319                for (List<Type> l = interfaces(tvar);
3320                     l.nonEmpty();
3321                     l = l.tail) {
3322                    if (rank(l.head) > r) r = rank(l.head);
3323                }
3324                tvar.rank_field = r + 1;
3325            }
3326            return tvar.rank_field;
3327        }
3328        case ERROR:
3329        case NONE:
3330            return 0;
3331        default:
3332            throw new AssertionError();
3333        }
3334    }
3335    // </editor-fold>
3336
3337    /**
3338     * Helper method for generating a string representation of a given type
3339     * accordingly to a given locale
3340     */
3341    public String toString(Type t, Locale locale) {
3342        return Printer.createStandardPrinter(messages).visit(t, locale);
3343    }
3344
3345    /**
3346     * Helper method for generating a string representation of a given type
3347     * accordingly to a given locale
3348     */
3349    public String toString(Symbol t, Locale locale) {
3350        return Printer.createStandardPrinter(messages).visit(t, locale);
3351    }
3352
3353    // <editor-fold defaultstate="collapsed" desc="toString">
3354    /**
3355     * This toString is slightly more descriptive than the one on Type.
3356     *
3357     * @deprecated Types.toString(Type t, Locale l) provides better support
3358     * for localization
3359     */
3360    @Deprecated
3361    public String toString(Type t) {
3362        if (t.hasTag(FORALL)) {
3363            ForAll forAll = (ForAll)t;
3364            return typaramsString(forAll.tvars) + forAll.qtype;
3365        }
3366        return "" + t;
3367    }
3368    // where
3369        private String typaramsString(List<Type> tvars) {
3370            StringBuilder s = new StringBuilder();
3371            s.append('<');
3372            boolean first = true;
3373            for (Type t : tvars) {
3374                if (!first) s.append(", ");
3375                first = false;
3376                appendTyparamString(((TypeVar)t), s);
3377            }
3378            s.append('>');
3379            return s.toString();
3380        }
3381        private void appendTyparamString(TypeVar t, StringBuilder buf) {
3382            buf.append(t);
3383            if (t.bound == null ||
3384                t.bound.tsym.getQualifiedName() == names.java_lang_Object)
3385                return;
3386            buf.append(" extends "); // Java syntax; no need for i18n
3387            Type bound = t.bound;
3388            if (!bound.isCompound()) {
3389                buf.append(bound);
3390            } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
3391                buf.append(supertype(t));
3392                for (Type intf : interfaces(t)) {
3393                    buf.append('&');
3394                    buf.append(intf);
3395                }
3396            } else {
3397                // No superclass was given in bounds.
3398                // In this case, supertype is Object, erasure is first interface.
3399                boolean first = true;
3400                for (Type intf : interfaces(t)) {
3401                    if (!first) buf.append('&');
3402                    first = false;
3403                    buf.append(intf);
3404                }
3405            }
3406        }
3407    // </editor-fold>
3408
3409    // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
3410    /**
3411     * A cache for closures.
3412     *
3413     * <p>A closure is a list of all the supertypes and interfaces of
3414     * a class or interface type, ordered by ClassSymbol.precedes
3415     * (that is, subclasses come first, arbitrary but fixed
3416     * otherwise).
3417     */
3418    private Map<Type,List<Type>> closureCache = new HashMap<>();
3419
3420    /**
3421     * Returns the closure of a class or interface type.
3422     */
3423    public List<Type> closure(Type t) {
3424        List<Type> cl = closureCache.get(t);
3425        if (cl == null) {
3426            Type st = supertype(t);
3427            if (!t.isCompound()) {
3428                if (st.hasTag(CLASS)) {
3429                    cl = insert(closure(st), t);
3430                } else if (st.hasTag(TYPEVAR)) {
3431                    cl = closure(st).prepend(t);
3432                } else {
3433                    cl = List.of(t);
3434                }
3435            } else {
3436                cl = closure(supertype(t));
3437            }
3438            for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
3439                cl = union(cl, closure(l.head));
3440            closureCache.put(t, cl);
3441        }
3442        return cl;
3443    }
3444
3445    /**
3446     * Collect types into a new closure (using a @code{ClosureHolder})
3447     */
3448    public Collector<Type, ClosureHolder, List<Type>> closureCollector(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3449        return Collector.of(() -> new ClosureHolder(minClosure, shouldSkip),
3450                ClosureHolder::add,
3451                ClosureHolder::merge,
3452                ClosureHolder::closure);
3453    }
3454    //where
3455        class ClosureHolder {
3456            List<Type> closure;
3457            final boolean minClosure;
3458            final BiPredicate<Type, Type> shouldSkip;
3459
3460            ClosureHolder(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3461                this.closure = List.nil();
3462                this.minClosure = minClosure;
3463                this.shouldSkip = shouldSkip;
3464            }
3465
3466            void add(Type type) {
3467                closure = insert(closure, type, shouldSkip);
3468            }
3469
3470            ClosureHolder merge(ClosureHolder other) {
3471                closure = union(closure, other.closure, shouldSkip);
3472                return this;
3473            }
3474
3475            List<Type> closure() {
3476                return minClosure ? closureMin(closure) : closure;
3477            }
3478        }
3479
3480    BiPredicate<Type, Type> basicClosureSkip = (t1, t2) -> t1.tsym == t2.tsym;
3481
3482    /**
3483     * Insert a type in a closure
3484     */
3485    public List<Type> insert(List<Type> cl, Type t, BiPredicate<Type, Type> shouldSkip) {
3486        if (cl.isEmpty()) {
3487            return cl.prepend(t);
3488        } else if (shouldSkip.test(t, cl.head)) {
3489            return cl;
3490        } else if (t.tsym.precedes(cl.head.tsym, this)) {
3491            return cl.prepend(t);
3492        } else {
3493            // t comes after head, or the two are unrelated
3494            return insert(cl.tail, t, shouldSkip).prepend(cl.head);
3495        }
3496    }
3497
3498    public List<Type> insert(List<Type> cl, Type t) {
3499        return insert(cl, t, basicClosureSkip);
3500    }
3501
3502    /**
3503     * Form the union of two closures
3504     */
3505    public List<Type> union(List<Type> cl1, List<Type> cl2, BiPredicate<Type, Type> shouldSkip) {
3506        if (cl1.isEmpty()) {
3507            return cl2;
3508        } else if (cl2.isEmpty()) {
3509            return cl1;
3510        } else if (shouldSkip.test(cl1.head, cl2.head)) {
3511            return union(cl1.tail, cl2.tail, shouldSkip).prepend(cl1.head);
3512        } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
3513            return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
3514        } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
3515            return union(cl1, cl2.tail, shouldSkip).prepend(cl2.head);
3516        } else {
3517            // unrelated types
3518            return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
3519        }
3520    }
3521
3522    public List<Type> union(List<Type> cl1, List<Type> cl2) {
3523        return union(cl1, cl2, basicClosureSkip);
3524    }
3525
3526    /**
3527     * Intersect two closures
3528     */
3529    public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
3530        if (cl1 == cl2)
3531            return cl1;
3532        if (cl1.isEmpty() || cl2.isEmpty())
3533            return List.nil();
3534        if (cl1.head.tsym.precedes(cl2.head.tsym, this))
3535            return intersect(cl1.tail, cl2);
3536        if (cl2.head.tsym.precedes(cl1.head.tsym, this))
3537            return intersect(cl1, cl2.tail);
3538        if (isSameType(cl1.head, cl2.head))
3539            return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
3540        if (cl1.head.tsym == cl2.head.tsym &&
3541            cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
3542            if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
3543                Type merge = merge(cl1.head,cl2.head);
3544                return intersect(cl1.tail, cl2.tail).prepend(merge);
3545            }
3546            if (cl1.head.isRaw() || cl2.head.isRaw())
3547                return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
3548        }
3549        return intersect(cl1.tail, cl2.tail);
3550    }
3551    // where
3552        class TypePair {
3553            final Type t1;
3554            final Type t2;
3555            boolean strict;
3556
3557            TypePair(Type t1, Type t2) {
3558                this(t1, t2, false);
3559            }
3560
3561            TypePair(Type t1, Type t2, boolean strict) {
3562                this.t1 = t1;
3563                this.t2 = t2;
3564                this.strict = strict;
3565            }
3566            @Override
3567            public int hashCode() {
3568                return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
3569            }
3570            @Override
3571            public boolean equals(Object obj) {
3572                if (!(obj instanceof TypePair))
3573                    return false;
3574                TypePair typePair = (TypePair)obj;
3575                return isSameType(t1, typePair.t1, strict)
3576                    && isSameType(t2, typePair.t2, strict);
3577            }
3578        }
3579        Set<TypePair> mergeCache = new HashSet<>();
3580        private Type merge(Type c1, Type c2) {
3581            ClassType class1 = (ClassType) c1;
3582            List<Type> act1 = class1.getTypeArguments();
3583            ClassType class2 = (ClassType) c2;
3584            List<Type> act2 = class2.getTypeArguments();
3585            ListBuffer<Type> merged = new ListBuffer<>();
3586            List<Type> typarams = class1.tsym.type.getTypeArguments();
3587
3588            while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
3589                if (containsType(act1.head, act2.head)) {
3590                    merged.append(act1.head);
3591                } else if (containsType(act2.head, act1.head)) {
3592                    merged.append(act2.head);
3593                } else {
3594                    TypePair pair = new TypePair(c1, c2);
3595                    Type m;
3596                    if (mergeCache.add(pair)) {
3597                        m = new WildcardType(lub(wildUpperBound(act1.head),
3598                                                 wildUpperBound(act2.head)),
3599                                             BoundKind.EXTENDS,
3600                                             syms.boundClass);
3601                        mergeCache.remove(pair);
3602                    } else {
3603                        m = new WildcardType(syms.objectType,
3604                                             BoundKind.UNBOUND,
3605                                             syms.boundClass);
3606                    }
3607                    merged.append(m.withTypeVar(typarams.head));
3608                }
3609                act1 = act1.tail;
3610                act2 = act2.tail;
3611                typarams = typarams.tail;
3612            }
3613            Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
3614            // There is no spec detailing how type annotations are to
3615            // be inherited.  So set it to noAnnotations for now
3616            return new ClassType(class1.getEnclosingType(), merged.toList(),
3617                                 class1.tsym);
3618        }
3619
3620    /**
3621     * Return the minimum type of a closure, a compound type if no
3622     * unique minimum exists.
3623     */
3624    private Type compoundMin(List<Type> cl) {
3625        if (cl.isEmpty()) return syms.objectType;
3626        List<Type> compound = closureMin(cl);
3627        if (compound.isEmpty())
3628            return null;
3629        else if (compound.tail.isEmpty())
3630            return compound.head;
3631        else
3632            return makeIntersectionType(compound);
3633    }
3634
3635    /**
3636     * Return the minimum types of a closure, suitable for computing
3637     * compoundMin or glb.
3638     */
3639    private List<Type> closureMin(List<Type> cl) {
3640        ListBuffer<Type> classes = new ListBuffer<>();
3641        ListBuffer<Type> interfaces = new ListBuffer<>();
3642        Set<Type> toSkip = new HashSet<>();
3643        while (!cl.isEmpty()) {
3644            Type current = cl.head;
3645            boolean keep = !toSkip.contains(current);
3646            if (keep && current.hasTag(TYPEVAR)) {
3647                // skip lower-bounded variables with a subtype in cl.tail
3648                for (Type t : cl.tail) {
3649                    if (isSubtypeNoCapture(t, current)) {
3650                        keep = false;
3651                        break;
3652                    }
3653                }
3654            }
3655            if (keep) {
3656                if (current.isInterface())
3657                    interfaces.append(current);
3658                else
3659                    classes.append(current);
3660                for (Type t : cl.tail) {
3661                    // skip supertypes of 'current' in cl.tail
3662                    if (isSubtypeNoCapture(current, t))
3663                        toSkip.add(t);
3664                }
3665            }
3666            cl = cl.tail;
3667        }
3668        return classes.appendList(interfaces).toList();
3669    }
3670
3671    /**
3672     * Return the least upper bound of list of types.  if the lub does
3673     * not exist return null.
3674     */
3675    public Type lub(List<Type> ts) {
3676        return lub(ts.toArray(new Type[ts.length()]));
3677    }
3678
3679    /**
3680     * Return the least upper bound (lub) of set of types.  If the lub
3681     * does not exist return the type of null (bottom).
3682     */
3683    public Type lub(Type... ts) {
3684        final int UNKNOWN_BOUND = 0;
3685        final int ARRAY_BOUND = 1;
3686        final int CLASS_BOUND = 2;
3687
3688        int[] kinds = new int[ts.length];
3689
3690        int boundkind = UNKNOWN_BOUND;
3691        for (int i = 0 ; i < ts.length ; i++) {
3692            Type t = ts[i];
3693            switch (t.getTag()) {
3694            case CLASS:
3695                boundkind |= kinds[i] = CLASS_BOUND;
3696                break;
3697            case ARRAY:
3698                boundkind |= kinds[i] = ARRAY_BOUND;
3699                break;
3700            case  TYPEVAR:
3701                do {
3702                    t = t.getUpperBound();
3703                } while (t.hasTag(TYPEVAR));
3704                if (t.hasTag(ARRAY)) {
3705                    boundkind |= kinds[i] = ARRAY_BOUND;
3706                } else {
3707                    boundkind |= kinds[i] = CLASS_BOUND;
3708                }
3709                break;
3710            default:
3711                kinds[i] = UNKNOWN_BOUND;
3712                if (t.isPrimitive())
3713                    return syms.errType;
3714            }
3715        }
3716        switch (boundkind) {
3717        case 0:
3718            return syms.botType;
3719
3720        case ARRAY_BOUND:
3721            // calculate lub(A[], B[])
3722            Type[] elements = new Type[ts.length];
3723            for (int i = 0 ; i < ts.length ; i++) {
3724                Type elem = elements[i] = elemTypeFun.apply(ts[i]);
3725                if (elem.isPrimitive()) {
3726                    // if a primitive type is found, then return
3727                    // arraySuperType unless all the types are the
3728                    // same
3729                    Type first = ts[0];
3730                    for (int j = 1 ; j < ts.length ; j++) {
3731                        if (!isSameType(first, ts[j])) {
3732                             // lub(int[], B[]) is Cloneable & Serializable
3733                            return arraySuperType();
3734                        }
3735                    }
3736                    // all the array types are the same, return one
3737                    // lub(int[], int[]) is int[]
3738                    return first;
3739                }
3740            }
3741            // lub(A[], B[]) is lub(A, B)[]
3742            return new ArrayType(lub(elements), syms.arrayClass);
3743
3744        case CLASS_BOUND:
3745            // calculate lub(A, B)
3746            int startIdx = 0;
3747            for (int i = 0; i < ts.length ; i++) {
3748                Type t = ts[i];
3749                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR)) {
3750                    break;
3751                } else {
3752                    startIdx++;
3753                }
3754            }
3755            Assert.check(startIdx < ts.length);
3756            //step 1 - compute erased candidate set (EC)
3757            List<Type> cl = erasedSupertypes(ts[startIdx]);
3758            for (int i = startIdx + 1 ; i < ts.length ; i++) {
3759                Type t = ts[i];
3760                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
3761                    cl = intersect(cl, erasedSupertypes(t));
3762            }
3763            //step 2 - compute minimal erased candidate set (MEC)
3764            List<Type> mec = closureMin(cl);
3765            //step 3 - for each element G in MEC, compute lci(Inv(G))
3766            List<Type> candidates = List.nil();
3767            for (Type erasedSupertype : mec) {
3768                List<Type> lci = List.of(asSuper(ts[startIdx], erasedSupertype.tsym));
3769                for (int i = startIdx + 1 ; i < ts.length ; i++) {
3770                    Type superType = asSuper(ts[i], erasedSupertype.tsym);
3771                    lci = intersect(lci, superType != null ? List.of(superType) : List.nil());
3772                }
3773                candidates = candidates.appendList(lci);
3774            }
3775            //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
3776            //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
3777            return compoundMin(candidates);
3778
3779        default:
3780            // calculate lub(A, B[])
3781            List<Type> classes = List.of(arraySuperType());
3782            for (int i = 0 ; i < ts.length ; i++) {
3783                if (kinds[i] != ARRAY_BOUND) // Filter out any arrays
3784                    classes = classes.prepend(ts[i]);
3785            }
3786            // lub(A, B[]) is lub(A, arraySuperType)
3787            return lub(classes);
3788        }
3789    }
3790    // where
3791        List<Type> erasedSupertypes(Type t) {
3792            ListBuffer<Type> buf = new ListBuffer<>();
3793            for (Type sup : closure(t)) {
3794                if (sup.hasTag(TYPEVAR)) {
3795                    buf.append(sup);
3796                } else {
3797                    buf.append(erasure(sup));
3798                }
3799            }
3800            return buf.toList();
3801        }
3802
3803        private Type arraySuperType = null;
3804        private Type arraySuperType() {
3805            // initialized lazily to avoid problems during compiler startup
3806            if (arraySuperType == null) {
3807                synchronized (this) {
3808                    if (arraySuperType == null) {
3809                        // JLS 10.8: all arrays implement Cloneable and Serializable.
3810                        arraySuperType = makeIntersectionType(List.of(syms.serializableType,
3811                                syms.cloneableType), true);
3812                    }
3813                }
3814            }
3815            return arraySuperType;
3816        }
3817    // </editor-fold>
3818
3819    // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
3820    public Type glb(List<Type> ts) {
3821        Type t1 = ts.head;
3822        for (Type t2 : ts.tail) {
3823            if (t1.isErroneous())
3824                return t1;
3825            t1 = glb(t1, t2);
3826        }
3827        return t1;
3828    }
3829    //where
3830    public Type glb(Type t, Type s) {
3831        if (s == null)
3832            return t;
3833        else if (t.isPrimitive() || s.isPrimitive())
3834            return syms.errType;
3835        else if (isSubtypeNoCapture(t, s))
3836            return t;
3837        else if (isSubtypeNoCapture(s, t))
3838            return s;
3839
3840        List<Type> closure = union(closure(t), closure(s));
3841        return glbFlattened(closure, t);
3842    }
3843    //where
3844    /**
3845     * Perform glb for a list of non-primitive, non-error, non-compound types;
3846     * redundant elements are removed.  Bounds should be ordered according to
3847     * {@link Symbol#precedes(TypeSymbol,Types)}.
3848     *
3849     * @param flatBounds List of type to glb
3850     * @param errT Original type to use if the result is an error type
3851     */
3852    private Type glbFlattened(List<Type> flatBounds, Type errT) {
3853        List<Type> bounds = closureMin(flatBounds);
3854
3855        if (bounds.isEmpty()) {             // length == 0
3856            return syms.objectType;
3857        } else if (bounds.tail.isEmpty()) { // length == 1
3858            return bounds.head;
3859        } else {                            // length > 1
3860            int classCount = 0;
3861            List<Type> cvars = List.nil();
3862            List<Type> lowers = List.nil();
3863            for (Type bound : bounds) {
3864                if (!bound.isInterface()) {
3865                    classCount++;
3866                    Type lower = cvarLowerBound(bound);
3867                    if (bound != lower && !lower.hasTag(BOT)) {
3868                        cvars = cvars.append(bound);
3869                        lowers = lowers.append(lower);
3870                    }
3871                }
3872            }
3873            if (classCount > 1) {
3874                if (lowers.isEmpty()) {
3875                    return createErrorType(errT);
3876                } else {
3877                    // try again with lower bounds included instead of capture variables
3878                    List<Type> newBounds = bounds.diff(cvars).appendList(lowers);
3879                    return glb(newBounds);
3880                }
3881            }
3882        }
3883        return makeIntersectionType(bounds);
3884    }
3885    // </editor-fold>
3886
3887    // <editor-fold defaultstate="collapsed" desc="hashCode">
3888    /**
3889     * Compute a hash code on a type.
3890     */
3891    public int hashCode(Type t) {
3892        return hashCode(t, false);
3893    }
3894
3895    public int hashCode(Type t, boolean strict) {
3896        return strict ?
3897                hashCodeStrictVisitor.visit(t) :
3898                hashCodeVisitor.visit(t);
3899    }
3900    // where
3901        private static final HashCodeVisitor hashCodeVisitor = new HashCodeVisitor();
3902        private static final HashCodeVisitor hashCodeStrictVisitor = new HashCodeVisitor() {
3903            @Override
3904            public Integer visitTypeVar(TypeVar t, Void ignored) {
3905                return System.identityHashCode(t);
3906            }
3907        };
3908
3909        private static class HashCodeVisitor extends UnaryVisitor<Integer> {
3910            public Integer visitType(Type t, Void ignored) {
3911                return t.getTag().ordinal();
3912            }
3913
3914            @Override
3915            public Integer visitClassType(ClassType t, Void ignored) {
3916                int result = visit(t.getEnclosingType());
3917                result *= 127;
3918                result += t.tsym.flatName().hashCode();
3919                for (Type s : t.getTypeArguments()) {
3920                    result *= 127;
3921                    result += visit(s);
3922                }
3923                return result;
3924            }
3925
3926            @Override
3927            public Integer visitMethodType(MethodType t, Void ignored) {
3928                int h = METHOD.ordinal();
3929                for (List<Type> thisargs = t.argtypes;
3930                     thisargs.tail != null;
3931                     thisargs = thisargs.tail)
3932                    h = (h << 5) + visit(thisargs.head);
3933                return (h << 5) + visit(t.restype);
3934            }
3935
3936            @Override
3937            public Integer visitWildcardType(WildcardType t, Void ignored) {
3938                int result = t.kind.hashCode();
3939                if (t.type != null) {
3940                    result *= 127;
3941                    result += visit(t.type);
3942                }
3943                return result;
3944            }
3945
3946            @Override
3947            public Integer visitArrayType(ArrayType t, Void ignored) {
3948                return visit(t.elemtype) + 12;
3949            }
3950
3951            @Override
3952            public Integer visitTypeVar(TypeVar t, Void ignored) {
3953                return System.identityHashCode(t);
3954            }
3955
3956            @Override
3957            public Integer visitUndetVar(UndetVar t, Void ignored) {
3958                return System.identityHashCode(t);
3959            }
3960
3961            @Override
3962            public Integer visitErrorType(ErrorType t, Void ignored) {
3963                return 0;
3964            }
3965        }
3966    // </editor-fold>
3967
3968    // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
3969    /**
3970     * Does t have a result that is a subtype of the result type of s,
3971     * suitable for covariant returns?  It is assumed that both types
3972     * are (possibly polymorphic) method types.  Monomorphic method
3973     * types are handled in the obvious way.  Polymorphic method types
3974     * require renaming all type variables of one to corresponding
3975     * type variables in the other, where correspondence is by
3976     * position in the type parameter list. */
3977    public boolean resultSubtype(Type t, Type s, Warner warner) {
3978        List<Type> tvars = t.getTypeArguments();
3979        List<Type> svars = s.getTypeArguments();
3980        Type tres = t.getReturnType();
3981        Type sres = subst(s.getReturnType(), svars, tvars);
3982        return covariantReturnType(tres, sres, warner);
3983    }
3984
3985    /**
3986     * Return-Type-Substitutable.
3987     * @jls section 8.4.5
3988     */
3989    public boolean returnTypeSubstitutable(Type r1, Type r2) {
3990        if (hasSameArgs(r1, r2))
3991            return resultSubtype(r1, r2, noWarnings);
3992        else
3993            return covariantReturnType(r1.getReturnType(),
3994                                       erasure(r2.getReturnType()),
3995                                       noWarnings);
3996    }
3997
3998    public boolean returnTypeSubstitutable(Type r1,
3999                                           Type r2, Type r2res,
4000                                           Warner warner) {
4001        if (isSameType(r1.getReturnType(), r2res))
4002            return true;
4003        if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
4004            return false;
4005
4006        if (hasSameArgs(r1, r2))
4007            return covariantReturnType(r1.getReturnType(), r2res, warner);
4008        if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
4009            return true;
4010        if (!isSubtype(r1.getReturnType(), erasure(r2res)))
4011            return false;
4012        warner.warn(LintCategory.UNCHECKED);
4013        return true;
4014    }
4015
4016    /**
4017     * Is t an appropriate return type in an overrider for a
4018     * method that returns s?
4019     */
4020    public boolean covariantReturnType(Type t, Type s, Warner warner) {
4021        return
4022            isSameType(t, s) ||
4023            !t.isPrimitive() &&
4024            !s.isPrimitive() &&
4025            isAssignable(t, s, warner);
4026    }
4027    // </editor-fold>
4028
4029    // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
4030    /**
4031     * Return the class that boxes the given primitive.
4032     */
4033    public ClassSymbol boxedClass(Type t) {
4034        return syms.enterClass(syms.java_base, syms.boxedName[t.getTag().ordinal()]);
4035    }
4036
4037    /**
4038     * Return the boxed type if 't' is primitive, otherwise return 't' itself.
4039     */
4040    public Type boxedTypeOrType(Type t) {
4041        return t.isPrimitive() ?
4042            boxedClass(t).type :
4043            t;
4044    }
4045
4046    /**
4047     * Return the primitive type corresponding to a boxed type.
4048     */
4049    public Type unboxedType(Type t) {
4050        for (int i=0; i<syms.boxedName.length; i++) {
4051            Name box = syms.boxedName[i];
4052            if (box != null &&
4053                asSuper(t, syms.enterClass(syms.java_base, box)) != null)
4054                return syms.typeOfTag[i];
4055        }
4056        return Type.noType;
4057    }
4058
4059    /**
4060     * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
4061     */
4062    public Type unboxedTypeOrType(Type t) {
4063        Type unboxedType = unboxedType(t);
4064        return unboxedType.hasTag(NONE) ? t : unboxedType;
4065    }
4066    // </editor-fold>
4067
4068    // <editor-fold defaultstate="collapsed" desc="Capture conversion">
4069    /*
4070     * JLS 5.1.10 Capture Conversion:
4071     *
4072     * Let G name a generic type declaration with n formal type
4073     * parameters A1 ... An with corresponding bounds U1 ... Un. There
4074     * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
4075     * where, for 1 <= i <= n:
4076     *
4077     * + If Ti is a wildcard type argument (4.5.1) of the form ? then
4078     *   Si is a fresh type variable whose upper bound is
4079     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
4080     *   type.
4081     *
4082     * + If Ti is a wildcard type argument of the form ? extends Bi,
4083     *   then Si is a fresh type variable whose upper bound is
4084     *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
4085     *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
4086     *   a compile-time error if for any two classes (not interfaces)
4087     *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
4088     *
4089     * + If Ti is a wildcard type argument of the form ? super Bi,
4090     *   then Si is a fresh type variable whose upper bound is
4091     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
4092     *
4093     * + Otherwise, Si = Ti.
4094     *
4095     * Capture conversion on any type other than a parameterized type
4096     * (4.5) acts as an identity conversion (5.1.1). Capture
4097     * conversions never require a special action at run time and
4098     * therefore never throw an exception at run time.
4099     *
4100     * Capture conversion is not applied recursively.
4101     */
4102    /**
4103     * Capture conversion as specified by the JLS.
4104     */
4105
4106    public List<Type> capture(List<Type> ts) {
4107        List<Type> buf = List.nil();
4108        for (Type t : ts) {
4109            buf = buf.prepend(capture(t));
4110        }
4111        return buf.reverse();
4112    }
4113
4114    public Type capture(Type t) {
4115        if (!t.hasTag(CLASS)) {
4116            return t;
4117        }
4118        if (t.getEnclosingType() != Type.noType) {
4119            Type capturedEncl = capture(t.getEnclosingType());
4120            if (capturedEncl != t.getEnclosingType()) {
4121                Type type1 = memberType(capturedEncl, t.tsym);
4122                t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
4123            }
4124        }
4125        ClassType cls = (ClassType)t;
4126        if (cls.isRaw() || !cls.isParameterized())
4127            return cls;
4128
4129        ClassType G = (ClassType)cls.asElement().asType();
4130        List<Type> A = G.getTypeArguments();
4131        List<Type> T = cls.getTypeArguments();
4132        List<Type> S = freshTypeVariables(T);
4133
4134        List<Type> currentA = A;
4135        List<Type> currentT = T;
4136        List<Type> currentS = S;
4137        boolean captured = false;
4138        while (!currentA.isEmpty() &&
4139               !currentT.isEmpty() &&
4140               !currentS.isEmpty()) {
4141            if (currentS.head != currentT.head) {
4142                captured = true;
4143                WildcardType Ti = (WildcardType)currentT.head;
4144                Type Ui = currentA.head.getUpperBound();
4145                CapturedType Si = (CapturedType)currentS.head;
4146                if (Ui == null)
4147                    Ui = syms.objectType;
4148                switch (Ti.kind) {
4149                case UNBOUND:
4150                    Si.bound = subst(Ui, A, S);
4151                    Si.lower = syms.botType;
4152                    break;
4153                case EXTENDS:
4154                    Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
4155                    Si.lower = syms.botType;
4156                    break;
4157                case SUPER:
4158                    Si.bound = subst(Ui, A, S);
4159                    Si.lower = Ti.getSuperBound();
4160                    break;
4161                }
4162                Type tmpBound = Si.bound.hasTag(UNDETVAR) ? ((UndetVar)Si.bound).qtype : Si.bound;
4163                Type tmpLower = Si.lower.hasTag(UNDETVAR) ? ((UndetVar)Si.lower).qtype : Si.lower;
4164                if (!Si.bound.hasTag(ERROR) &&
4165                    !Si.lower.hasTag(ERROR) &&
4166                    isSameType(tmpBound, tmpLower, false)) {
4167                    currentS.head = Si.bound;
4168                }
4169            }
4170            currentA = currentA.tail;
4171            currentT = currentT.tail;
4172            currentS = currentS.tail;
4173        }
4174        if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
4175            return erasure(t); // some "rare" type involved
4176
4177        if (captured)
4178            return new ClassType(cls.getEnclosingType(), S, cls.tsym,
4179                                 cls.getMetadata());
4180        else
4181            return t;
4182    }
4183    // where
4184        public List<Type> freshTypeVariables(List<Type> types) {
4185            ListBuffer<Type> result = new ListBuffer<>();
4186            for (Type t : types) {
4187                if (t.hasTag(WILDCARD)) {
4188                    Type bound = ((WildcardType)t).getExtendsBound();
4189                    if (bound == null)
4190                        bound = syms.objectType;
4191                    result.append(new CapturedType(capturedName,
4192                                                   syms.noSymbol,
4193                                                   bound,
4194                                                   syms.botType,
4195                                                   (WildcardType)t));
4196                } else {
4197                    result.append(t);
4198                }
4199            }
4200            return result.toList();
4201        }
4202    // </editor-fold>
4203
4204    // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
4205    private boolean sideCast(Type from, Type to, Warner warn) {
4206        // We are casting from type $from$ to type $to$, which are
4207        // non-final unrelated types.  This method
4208        // tries to reject a cast by transferring type parameters
4209        // from $to$ to $from$ by common superinterfaces.
4210        boolean reverse = false;
4211        Type target = to;
4212        if ((to.tsym.flags() & INTERFACE) == 0) {
4213            Assert.check((from.tsym.flags() & INTERFACE) != 0);
4214            reverse = true;
4215            to = from;
4216            from = target;
4217        }
4218        List<Type> commonSupers = superClosure(to, erasure(from));
4219        boolean giveWarning = commonSupers.isEmpty();
4220        // The arguments to the supers could be unified here to
4221        // get a more accurate analysis
4222        while (commonSupers.nonEmpty()) {
4223            Type t1 = asSuper(from, commonSupers.head.tsym);
4224            Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
4225            if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4226                return false;
4227            giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
4228            commonSupers = commonSupers.tail;
4229        }
4230        if (giveWarning && !isReifiable(reverse ? from : to))
4231            warn.warn(LintCategory.UNCHECKED);
4232        return true;
4233    }
4234
4235    private boolean sideCastFinal(Type from, Type to, Warner warn) {
4236        // We are casting from type $from$ to type $to$, which are
4237        // unrelated types one of which is final and the other of
4238        // which is an interface.  This method
4239        // tries to reject a cast by transferring type parameters
4240        // from the final class to the interface.
4241        boolean reverse = false;
4242        Type target = to;
4243        if ((to.tsym.flags() & INTERFACE) == 0) {
4244            Assert.check((from.tsym.flags() & INTERFACE) != 0);
4245            reverse = true;
4246            to = from;
4247            from = target;
4248        }
4249        Assert.check((from.tsym.flags() & FINAL) != 0);
4250        Type t1 = asSuper(from, to.tsym);
4251        if (t1 == null) return false;
4252        Type t2 = to;
4253        if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4254            return false;
4255        if (!isReifiable(target) &&
4256            (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
4257            warn.warn(LintCategory.UNCHECKED);
4258        return true;
4259    }
4260
4261    private boolean giveWarning(Type from, Type to) {
4262        List<Type> bounds = to.isCompound() ?
4263                directSupertypes(to) : List.of(to);
4264        for (Type b : bounds) {
4265            Type subFrom = asSub(from, b.tsym);
4266            if (b.isParameterized() &&
4267                    (!(isUnbounded(b) ||
4268                    isSubtype(from, b) ||
4269                    ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
4270                return true;
4271            }
4272        }
4273        return false;
4274    }
4275
4276    private List<Type> superClosure(Type t, Type s) {
4277        List<Type> cl = List.nil();
4278        for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
4279            if (isSubtype(s, erasure(l.head))) {
4280                cl = insert(cl, l.head);
4281            } else {
4282                cl = union(cl, superClosure(l.head, s));
4283            }
4284        }
4285        return cl;
4286    }
4287
4288    private boolean containsTypeEquivalent(Type t, Type s) {
4289        return isSameType(t, s) || // shortcut
4290            containsType(t, s) && containsType(s, t);
4291    }
4292
4293    // <editor-fold defaultstate="collapsed" desc="adapt">
4294    /**
4295     * Adapt a type by computing a substitution which maps a source
4296     * type to a target type.
4297     *
4298     * @param source    the source type
4299     * @param target    the target type
4300     * @param from      the type variables of the computed substitution
4301     * @param to        the types of the computed substitution.
4302     */
4303    public void adapt(Type source,
4304                       Type target,
4305                       ListBuffer<Type> from,
4306                       ListBuffer<Type> to) throws AdaptFailure {
4307        new Adapter(from, to).adapt(source, target);
4308    }
4309
4310    class Adapter extends SimpleVisitor<Void, Type> {
4311
4312        ListBuffer<Type> from;
4313        ListBuffer<Type> to;
4314        Map<Symbol,Type> mapping;
4315
4316        Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
4317            this.from = from;
4318            this.to = to;
4319            mapping = new HashMap<>();
4320        }
4321
4322        public void adapt(Type source, Type target) throws AdaptFailure {
4323            visit(source, target);
4324            List<Type> fromList = from.toList();
4325            List<Type> toList = to.toList();
4326            while (!fromList.isEmpty()) {
4327                Type val = mapping.get(fromList.head.tsym);
4328                if (toList.head != val)
4329                    toList.head = val;
4330                fromList = fromList.tail;
4331                toList = toList.tail;
4332            }
4333        }
4334
4335        @Override
4336        public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
4337            if (target.hasTag(CLASS))
4338                adaptRecursive(source.allparams(), target.allparams());
4339            return null;
4340        }
4341
4342        @Override
4343        public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
4344            if (target.hasTag(ARRAY))
4345                adaptRecursive(elemtype(source), elemtype(target));
4346            return null;
4347        }
4348
4349        @Override
4350        public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
4351            if (source.isExtendsBound())
4352                adaptRecursive(wildUpperBound(source), wildUpperBound(target));
4353            else if (source.isSuperBound())
4354                adaptRecursive(wildLowerBound(source), wildLowerBound(target));
4355            return null;
4356        }
4357
4358        @Override
4359        public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
4360            // Check to see if there is
4361            // already a mapping for $source$, in which case
4362            // the old mapping will be merged with the new
4363            Type val = mapping.get(source.tsym);
4364            if (val != null) {
4365                if (val.isSuperBound() && target.isSuperBound()) {
4366                    val = isSubtype(wildLowerBound(val), wildLowerBound(target))
4367                        ? target : val;
4368                } else if (val.isExtendsBound() && target.isExtendsBound()) {
4369                    val = isSubtype(wildUpperBound(val), wildUpperBound(target))
4370                        ? val : target;
4371                } else if (!isSameType(val, target)) {
4372                    throw new AdaptFailure();
4373                }
4374            } else {
4375                val = target;
4376                from.append(source);
4377                to.append(target);
4378            }
4379            mapping.put(source.tsym, val);
4380            return null;
4381        }
4382
4383        @Override
4384        public Void visitType(Type source, Type target) {
4385            return null;
4386        }
4387
4388        private Set<TypePair> cache = new HashSet<>();
4389
4390        private void adaptRecursive(Type source, Type target) {
4391            TypePair pair = new TypePair(source, target);
4392            if (cache.add(pair)) {
4393                try {
4394                    visit(source, target);
4395                } finally {
4396                    cache.remove(pair);
4397                }
4398            }
4399        }
4400
4401        private void adaptRecursive(List<Type> source, List<Type> target) {
4402            if (source.length() == target.length()) {
4403                while (source.nonEmpty()) {
4404                    adaptRecursive(source.head, target.head);
4405                    source = source.tail;
4406                    target = target.tail;
4407                }
4408            }
4409        }
4410    }
4411
4412    public static class AdaptFailure extends RuntimeException {
4413        static final long serialVersionUID = -7490231548272701566L;
4414    }
4415
4416    private void adaptSelf(Type t,
4417                           ListBuffer<Type> from,
4418                           ListBuffer<Type> to) {
4419        try {
4420            //if (t.tsym.type != t)
4421                adapt(t.tsym.type, t, from, to);
4422        } catch (AdaptFailure ex) {
4423            // Adapt should never fail calculating a mapping from
4424            // t.tsym.type to t as there can be no merge problem.
4425            throw new AssertionError(ex);
4426        }
4427    }
4428    // </editor-fold>
4429
4430    /**
4431     * Rewrite all type variables (universal quantifiers) in the given
4432     * type to wildcards (existential quantifiers).  This is used to
4433     * determine if a cast is allowed.  For example, if high is true
4434     * and {@code T <: Number}, then {@code List<T>} is rewritten to
4435     * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
4436     * List<? extends Number>} a {@code List<T>} can be cast to {@code
4437     * List<Integer>} with a warning.
4438     * @param t a type
4439     * @param high if true return an upper bound; otherwise a lower
4440     * bound
4441     * @param rewriteTypeVars only rewrite captured wildcards if false;
4442     * otherwise rewrite all type variables
4443     * @return the type rewritten with wildcards (existential
4444     * quantifiers) only
4445     */
4446    private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
4447        return new Rewriter(high, rewriteTypeVars).visit(t);
4448    }
4449
4450    class Rewriter extends UnaryVisitor<Type> {
4451
4452        boolean high;
4453        boolean rewriteTypeVars;
4454
4455        Rewriter(boolean high, boolean rewriteTypeVars) {
4456            this.high = high;
4457            this.rewriteTypeVars = rewriteTypeVars;
4458        }
4459
4460        @Override
4461        public Type visitClassType(ClassType t, Void s) {
4462            ListBuffer<Type> rewritten = new ListBuffer<>();
4463            boolean changed = false;
4464            for (Type arg : t.allparams()) {
4465                Type bound = visit(arg);
4466                if (arg != bound) {
4467                    changed = true;
4468                }
4469                rewritten.append(bound);
4470            }
4471            if (changed)
4472                return subst(t.tsym.type,
4473                        t.tsym.type.allparams(),
4474                        rewritten.toList());
4475            else
4476                return t;
4477        }
4478
4479        public Type visitType(Type t, Void s) {
4480            return t;
4481        }
4482
4483        @Override
4484        public Type visitCapturedType(CapturedType t, Void s) {
4485            Type w_bound = t.wildcard.type;
4486            Type bound = w_bound.contains(t) ?
4487                        erasure(w_bound) :
4488                        visit(w_bound);
4489            return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
4490        }
4491
4492        @Override
4493        public Type visitTypeVar(TypeVar t, Void s) {
4494            if (rewriteTypeVars) {
4495                Type bound = t.bound.contains(t) ?
4496                        erasure(t.bound) :
4497                        visit(t.bound);
4498                return rewriteAsWildcardType(bound, t, EXTENDS);
4499            } else {
4500                return t;
4501            }
4502        }
4503
4504        @Override
4505        public Type visitWildcardType(WildcardType t, Void s) {
4506            Type bound2 = visit(t.type);
4507            return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
4508        }
4509
4510        private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
4511            switch (bk) {
4512               case EXTENDS: return high ?
4513                       makeExtendsWildcard(B(bound), formal) :
4514                       makeExtendsWildcard(syms.objectType, formal);
4515               case SUPER: return high ?
4516                       makeSuperWildcard(syms.botType, formal) :
4517                       makeSuperWildcard(B(bound), formal);
4518               case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
4519               default:
4520                   Assert.error("Invalid bound kind " + bk);
4521                   return null;
4522            }
4523        }
4524
4525        Type B(Type t) {
4526            while (t.hasTag(WILDCARD)) {
4527                WildcardType w = (WildcardType)t;
4528                t = high ?
4529                    w.getExtendsBound() :
4530                    w.getSuperBound();
4531                if (t == null) {
4532                    t = high ? syms.objectType : syms.botType;
4533                }
4534            }
4535            return t;
4536        }
4537    }
4538
4539
4540    /**
4541     * Create a wildcard with the given upper (extends) bound; create
4542     * an unbounded wildcard if bound is Object.
4543     *
4544     * @param bound the upper bound
4545     * @param formal the formal type parameter that will be
4546     * substituted by the wildcard
4547     */
4548    private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
4549        if (bound == syms.objectType) {
4550            return new WildcardType(syms.objectType,
4551                                    BoundKind.UNBOUND,
4552                                    syms.boundClass,
4553                                    formal);
4554        } else {
4555            return new WildcardType(bound,
4556                                    BoundKind.EXTENDS,
4557                                    syms.boundClass,
4558                                    formal);
4559        }
4560    }
4561
4562    /**
4563     * Create a wildcard with the given lower (super) bound; create an
4564     * unbounded wildcard if bound is bottom (type of {@code null}).
4565     *
4566     * @param bound the lower bound
4567     * @param formal the formal type parameter that will be
4568     * substituted by the wildcard
4569     */
4570    private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
4571        if (bound.hasTag(BOT)) {
4572            return new WildcardType(syms.objectType,
4573                                    BoundKind.UNBOUND,
4574                                    syms.boundClass,
4575                                    formal);
4576        } else {
4577            return new WildcardType(bound,
4578                                    BoundKind.SUPER,
4579                                    syms.boundClass,
4580                                    formal);
4581        }
4582    }
4583
4584    /**
4585     * A wrapper for a type that allows use in sets.
4586     */
4587    public static class UniqueType {
4588        public final Type type;
4589        final Types types;
4590
4591        public UniqueType(Type type, Types types) {
4592            this.type = type;
4593            this.types = types;
4594        }
4595
4596        public int hashCode() {
4597            return types.hashCode(type);
4598        }
4599
4600        public boolean equals(Object obj) {
4601            return (obj instanceof UniqueType) &&
4602                types.isSameType(type, ((UniqueType)obj).type);
4603        }
4604
4605        public String toString() {
4606            return type.toString();
4607        }
4608
4609    }
4610    // </editor-fold>
4611
4612    // <editor-fold defaultstate="collapsed" desc="Visitors">
4613    /**
4614     * A default visitor for types.  All visitor methods except
4615     * visitType are implemented by delegating to visitType.  Concrete
4616     * subclasses must provide an implementation of visitType and can
4617     * override other methods as needed.
4618     *
4619     * @param <R> the return type of the operation implemented by this
4620     * visitor; use Void if no return type is needed.
4621     * @param <S> the type of the second argument (the first being the
4622     * type itself) of the operation implemented by this visitor; use
4623     * Void if a second argument is not needed.
4624     */
4625    public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
4626        final public R visit(Type t, S s)               { return t.accept(this, s); }
4627        public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
4628        public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
4629        public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
4630        public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
4631        public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
4632        public R visitModuleType(ModuleType t, S s)     { return visitType(t, s); }
4633        public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
4634        public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
4635        public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
4636        public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
4637        public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
4638    }
4639
4640    /**
4641     * A default visitor for symbols.  All visitor methods except
4642     * visitSymbol are implemented by delegating to visitSymbol.  Concrete
4643     * subclasses must provide an implementation of visitSymbol and can
4644     * override other methods as needed.
4645     *
4646     * @param <R> the return type of the operation implemented by this
4647     * visitor; use Void if no return type is needed.
4648     * @param <S> the type of the second argument (the first being the
4649     * symbol itself) of the operation implemented by this visitor; use
4650     * Void if a second argument is not needed.
4651     */
4652    public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
4653        final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
4654        public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
4655        public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
4656        public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
4657        public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
4658        public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
4659        public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
4660    }
4661
4662    /**
4663     * A <em>simple</em> visitor for types.  This visitor is simple as
4664     * captured wildcards, for-all types (generic methods), and
4665     * undetermined type variables (part of inference) are hidden.
4666     * Captured wildcards are hidden by treating them as type
4667     * variables and the rest are hidden by visiting their qtypes.
4668     *
4669     * @param <R> the return type of the operation implemented by this
4670     * visitor; use Void if no return type is needed.
4671     * @param <S> the type of the second argument (the first being the
4672     * type itself) of the operation implemented by this visitor; use
4673     * Void if a second argument is not needed.
4674     */
4675    public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
4676        @Override
4677        public R visitCapturedType(CapturedType t, S s) {
4678            return visitTypeVar(t, s);
4679        }
4680        @Override
4681        public R visitForAll(ForAll t, S s) {
4682            return visit(t.qtype, s);
4683        }
4684        @Override
4685        public R visitUndetVar(UndetVar t, S s) {
4686            return visit(t.qtype, s);
4687        }
4688    }
4689
4690    /**
4691     * A plain relation on types.  That is a 2-ary function on the
4692     * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
4693     * <!-- In plain text: Type x Type -> Boolean -->
4694     */
4695    public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
4696
4697    /**
4698     * A convenience visitor for implementing operations that only
4699     * require one argument (the type itself), that is, unary
4700     * operations.
4701     *
4702     * @param <R> the return type of the operation implemented by this
4703     * visitor; use Void if no return type is needed.
4704     */
4705    public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
4706        final public R visit(Type t) { return t.accept(this, null); }
4707    }
4708
4709    /**
4710     * A visitor for implementing a mapping from types to types.  The
4711     * default behavior of this class is to implement the identity
4712     * mapping (mapping a type to itself).  This can be overridden in
4713     * subclasses.
4714     *
4715     * @param <S> the type of the second argument (the first being the
4716     * type itself) of this mapping; use Void if a second argument is
4717     * not needed.
4718     */
4719    public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
4720        final public Type visit(Type t) { return t.accept(this, null); }
4721        public Type visitType(Type t, S s) { return t; }
4722    }
4723
4724    /**
4725     * An abstract class for mappings from types to types (see {@link Type#map(TypeMapping)}.
4726     * This class implements the functional interface {@code Function}, that allows it to be used
4727     * fluently in stream-like processing.
4728     */
4729    public static class TypeMapping<S> extends MapVisitor<S> implements Function<Type, Type> {
4730        @Override
4731        public Type apply(Type type) { return visit(type); }
4732
4733        List<Type> visit(List<Type> ts, S s) {
4734            return ts.map(t -> visit(t, s));
4735        }
4736
4737        @Override
4738        public Type visitCapturedType(CapturedType t, S s) {
4739            return visitTypeVar(t, s);
4740        }
4741    }
4742    // </editor-fold>
4743
4744
4745    // <editor-fold defaultstate="collapsed" desc="Annotation support">
4746
4747    public RetentionPolicy getRetention(Attribute.Compound a) {
4748        return getRetention(a.type.tsym);
4749    }
4750
4751    public RetentionPolicy getRetention(TypeSymbol sym) {
4752        RetentionPolicy vis = RetentionPolicy.CLASS; // the default
4753        Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
4754        if (c != null) {
4755            Attribute value = c.member(names.value);
4756            if (value != null && value instanceof Attribute.Enum) {
4757                Name levelName = ((Attribute.Enum)value).value.name;
4758                if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
4759                else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
4760                else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
4761                else ;// /* fail soft */ throw new AssertionError(levelName);
4762            }
4763        }
4764        return vis;
4765    }
4766    // </editor-fold>
4767
4768    // <editor-fold defaultstate="collapsed" desc="Signature Generation">
4769
4770    public static abstract class SignatureGenerator {
4771
4772        private final Types types;
4773
4774        protected abstract void append(char ch);
4775        protected abstract void append(byte[] ba);
4776        protected abstract void append(Name name);
4777        protected void classReference(ClassSymbol c) { /* by default: no-op */ }
4778
4779        protected SignatureGenerator(Types types) {
4780            this.types = types;
4781        }
4782
4783        /**
4784         * Assemble signature of given type in string buffer.
4785         */
4786        public void assembleSig(Type type) {
4787            switch (type.getTag()) {
4788                case BYTE:
4789                    append('B');
4790                    break;
4791                case SHORT:
4792                    append('S');
4793                    break;
4794                case CHAR:
4795                    append('C');
4796                    break;
4797                case INT:
4798                    append('I');
4799                    break;
4800                case LONG:
4801                    append('J');
4802                    break;
4803                case FLOAT:
4804                    append('F');
4805                    break;
4806                case DOUBLE:
4807                    append('D');
4808                    break;
4809                case BOOLEAN:
4810                    append('Z');
4811                    break;
4812                case VOID:
4813                    append('V');
4814                    break;
4815                case CLASS:
4816                    append('L');
4817                    assembleClassSig(type);
4818                    append(';');
4819                    break;
4820                case ARRAY:
4821                    ArrayType at = (ArrayType) type;
4822                    append('[');
4823                    assembleSig(at.elemtype);
4824                    break;
4825                case METHOD:
4826                    MethodType mt = (MethodType) type;
4827                    append('(');
4828                    assembleSig(mt.argtypes);
4829                    append(')');
4830                    assembleSig(mt.restype);
4831                    if (hasTypeVar(mt.thrown)) {
4832                        for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
4833                            append('^');
4834                            assembleSig(l.head);
4835                        }
4836                    }
4837                    break;
4838                case WILDCARD: {
4839                    Type.WildcardType ta = (Type.WildcardType) type;
4840                    switch (ta.kind) {
4841                        case SUPER:
4842                            append('-');
4843                            assembleSig(ta.type);
4844                            break;
4845                        case EXTENDS:
4846                            append('+');
4847                            assembleSig(ta.type);
4848                            break;
4849                        case UNBOUND:
4850                            append('*');
4851                            break;
4852                        default:
4853                            throw new AssertionError(ta.kind);
4854                    }
4855                    break;
4856                }
4857                case TYPEVAR:
4858                    append('T');
4859                    append(type.tsym.name);
4860                    append(';');
4861                    break;
4862                case FORALL:
4863                    Type.ForAll ft = (Type.ForAll) type;
4864                    assembleParamsSig(ft.tvars);
4865                    assembleSig(ft.qtype);
4866                    break;
4867                default:
4868                    throw new AssertionError("typeSig " + type.getTag());
4869            }
4870        }
4871
4872        public boolean hasTypeVar(List<Type> l) {
4873            while (l.nonEmpty()) {
4874                if (l.head.hasTag(TypeTag.TYPEVAR)) {
4875                    return true;
4876                }
4877                l = l.tail;
4878            }
4879            return false;
4880        }
4881
4882        public void assembleClassSig(Type type) {
4883            ClassType ct = (ClassType) type;
4884            ClassSymbol c = (ClassSymbol) ct.tsym;
4885            classReference(c);
4886            Type outer = ct.getEnclosingType();
4887            if (outer.allparams().nonEmpty()) {
4888                boolean rawOuter =
4889                        c.owner.kind == MTH || // either a local class
4890                        c.name == types.names.empty; // or anonymous
4891                assembleClassSig(rawOuter
4892                        ? types.erasure(outer)
4893                        : outer);
4894                append(rawOuter ? '$' : '.');
4895                Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
4896                append(rawOuter
4897                        ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
4898                        : c.name);
4899            } else {
4900                append(externalize(c.flatname));
4901            }
4902            if (ct.getTypeArguments().nonEmpty()) {
4903                append('<');
4904                assembleSig(ct.getTypeArguments());
4905                append('>');
4906            }
4907        }
4908
4909        public void assembleParamsSig(List<Type> typarams) {
4910            append('<');
4911            for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
4912                Type.TypeVar tvar = (Type.TypeVar) ts.head;
4913                append(tvar.tsym.name);
4914                List<Type> bounds = types.getBounds(tvar);
4915                if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
4916                    append(':');
4917                }
4918                for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
4919                    append(':');
4920                    assembleSig(l.head);
4921                }
4922            }
4923            append('>');
4924        }
4925
4926        private void assembleSig(List<Type> types) {
4927            for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
4928                assembleSig(ts.head);
4929            }
4930        }
4931    }
4932    // </editor-fold>
4933
4934    public void newRound() {
4935        descCache._map.clear();
4936        isDerivedRawCache.clear();
4937        implCache._map.clear();
4938        membersCache._map.clear();
4939        closureCache.clear();
4940    }
4941}
4942