Types.java revision 3850:8e69054abeeb
1/*
2 * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.code;
27
28import java.lang.ref.SoftReference;
29import java.util.HashSet;
30import java.util.HashMap;
31import java.util.Locale;
32import java.util.Map;
33import java.util.Optional;
34import java.util.Set;
35import java.util.WeakHashMap;
36import java.util.function.BiPredicate;
37import java.util.stream.Collector;
38
39import javax.tools.JavaFileObject;
40
41import com.sun.tools.javac.code.Attribute.RetentionPolicy;
42import com.sun.tools.javac.code.Lint.LintCategory;
43import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
44import com.sun.tools.javac.code.TypeMetadata.Entry.Kind;
45import com.sun.tools.javac.comp.AttrContext;
46import com.sun.tools.javac.comp.Check;
47import com.sun.tools.javac.comp.Enter;
48import com.sun.tools.javac.comp.Env;
49import com.sun.tools.javac.util.*;
50
51import static com.sun.tools.javac.code.BoundKind.*;
52import static com.sun.tools.javac.code.Flags.*;
53import static com.sun.tools.javac.code.Kinds.Kind.*;
54import static com.sun.tools.javac.code.Scope.*;
55import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
56import static com.sun.tools.javac.code.Symbol.*;
57import static com.sun.tools.javac.code.Type.*;
58import static com.sun.tools.javac.code.TypeTag.*;
59import static com.sun.tools.javac.jvm.ClassFile.externalize;
60
61/**
62 * Utility class containing various operations on types.
63 *
64 * <p>Unless other names are more illustrative, the following naming
65 * conventions should be observed in this file:
66 *
67 * <dl>
68 * <dt>t</dt>
69 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
70 * <dt>s</dt>
71 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
72 * <dt>ts</dt>
73 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
74 * <dt>ss</dt>
75 * <dd>A second list of types should be named ss.</dd>
76 * </dl>
77 *
78 * <p><b>This is NOT part of any supported API.
79 * If you write code that depends on this, you do so at your own risk.
80 * This code and its internal interfaces are subject to change or
81 * deletion without notice.</b>
82 */
83public class Types {
84    protected static final Context.Key<Types> typesKey = new Context.Key<>();
85
86    final Symtab syms;
87    final JavacMessages messages;
88    final Names names;
89    final boolean allowObjectToPrimitiveCast;
90    final boolean allowDefaultMethods;
91    final boolean mapCapturesToBounds;
92    final Check chk;
93    final Enter enter;
94    JCDiagnostic.Factory diags;
95    List<Warner> warnStack = List.nil();
96    final Name capturedName;
97    private final FunctionDescriptorLookupError functionDescriptorLookupError;
98
99    public final Warner noWarnings;
100
101    // <editor-fold defaultstate="collapsed" desc="Instantiating">
102    public static Types instance(Context context) {
103        Types instance = context.get(typesKey);
104        if (instance == null)
105            instance = new Types(context);
106        return instance;
107    }
108
109    protected Types(Context context) {
110        context.put(typesKey, this);
111        syms = Symtab.instance(context);
112        names = Names.instance(context);
113        Source source = Source.instance(context);
114        allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
115        allowDefaultMethods = source.allowDefaultMethods();
116        mapCapturesToBounds = source.mapCapturesToBounds();
117        chk = Check.instance(context);
118        enter = Enter.instance(context);
119        capturedName = names.fromString("<captured wildcard>");
120        messages = JavacMessages.instance(context);
121        diags = JCDiagnostic.Factory.instance(context);
122        functionDescriptorLookupError = new FunctionDescriptorLookupError();
123        noWarnings = new Warner(null);
124    }
125    // </editor-fold>
126
127    // <editor-fold defaultstate="collapsed" desc="bounds">
128    /**
129     * Get a wildcard's upper bound, returning non-wildcards unchanged.
130     * @param t a type argument, either a wildcard or a type
131     */
132    public Type wildUpperBound(Type t) {
133        if (t.hasTag(WILDCARD)) {
134            WildcardType w = (WildcardType) t;
135            if (w.isSuperBound())
136                return w.bound == null ? syms.objectType : w.bound.bound;
137            else
138                return wildUpperBound(w.type);
139        }
140        else return t;
141    }
142
143    /**
144     * Get a capture variable's upper bound, returning other types unchanged.
145     * @param t a type
146     */
147    public Type cvarUpperBound(Type t) {
148        if (t.hasTag(TYPEVAR)) {
149            TypeVar v = (TypeVar) t;
150            return v.isCaptured() ? cvarUpperBound(v.bound) : v;
151        }
152        else return t;
153    }
154
155    /**
156     * Get a wildcard's lower bound, returning non-wildcards unchanged.
157     * @param t a type argument, either a wildcard or a type
158     */
159    public Type wildLowerBound(Type t) {
160        if (t.hasTag(WILDCARD)) {
161            WildcardType w = (WildcardType) t;
162            return w.isExtendsBound() ? syms.botType : wildLowerBound(w.type);
163        }
164        else return t;
165    }
166
167    /**
168     * Get a capture variable's lower bound, returning other types unchanged.
169     * @param t a type
170     */
171    public Type cvarLowerBound(Type t) {
172        if (t.hasTag(TYPEVAR) && ((TypeVar) t).isCaptured()) {
173            return cvarLowerBound(t.getLowerBound());
174        }
175        else return t;
176    }
177
178    /**
179     * Recursively skip type-variables until a class/array type is found; capture conversion is then
180     * (optionally) applied to the resulting type. This is useful for i.e. computing a site that is
181     * suitable for a method lookup.
182     */
183    public Type skipTypeVars(Type site, boolean capture) {
184        while (site.hasTag(TYPEVAR)) {
185            site = site.getUpperBound();
186        }
187        return capture ? capture(site) : site;
188    }
189    // </editor-fold>
190
191    // <editor-fold defaultstate="collapsed" desc="isUnbounded">
192    /**
193     * Checks that all the arguments to a class are unbounded
194     * wildcards or something else that doesn't make any restrictions
195     * on the arguments. If a class isUnbounded, a raw super- or
196     * subclass can be cast to it without a warning.
197     * @param t a type
198     * @return true iff the given type is unbounded or raw
199     */
200    public boolean isUnbounded(Type t) {
201        return isUnbounded.visit(t);
202    }
203    // where
204        private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
205
206            public Boolean visitType(Type t, Void ignored) {
207                return true;
208            }
209
210            @Override
211            public Boolean visitClassType(ClassType t, Void ignored) {
212                List<Type> parms = t.tsym.type.allparams();
213                List<Type> args = t.allparams();
214                while (parms.nonEmpty()) {
215                    WildcardType unb = new WildcardType(syms.objectType,
216                                                        BoundKind.UNBOUND,
217                                                        syms.boundClass,
218                                                        (TypeVar)parms.head);
219                    if (!containsType(args.head, unb))
220                        return false;
221                    parms = parms.tail;
222                    args = args.tail;
223                }
224                return true;
225            }
226        };
227    // </editor-fold>
228
229    // <editor-fold defaultstate="collapsed" desc="asSub">
230    /**
231     * Return the least specific subtype of t that starts with symbol
232     * sym.  If none exists, return null.  The least specific subtype
233     * is determined as follows:
234     *
235     * <p>If there is exactly one parameterized instance of sym that is a
236     * subtype of t, that parameterized instance is returned.<br>
237     * Otherwise, if the plain type or raw type `sym' is a subtype of
238     * type t, the type `sym' itself is returned.  Otherwise, null is
239     * returned.
240     */
241    public Type asSub(Type t, Symbol sym) {
242        return asSub.visit(t, sym);
243    }
244    // where
245        private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
246
247            public Type visitType(Type t, Symbol sym) {
248                return null;
249            }
250
251            @Override
252            public Type visitClassType(ClassType t, Symbol sym) {
253                if (t.tsym == sym)
254                    return t;
255                Type base = asSuper(sym.type, t.tsym);
256                if (base == null)
257                    return null;
258                ListBuffer<Type> from = new ListBuffer<>();
259                ListBuffer<Type> to = new ListBuffer<>();
260                try {
261                    adapt(base, t, from, to);
262                } catch (AdaptFailure ex) {
263                    return null;
264                }
265                Type res = subst(sym.type, from.toList(), to.toList());
266                if (!isSubtype(res, t))
267                    return null;
268                ListBuffer<Type> openVars = new ListBuffer<>();
269                for (List<Type> l = sym.type.allparams();
270                     l.nonEmpty(); l = l.tail)
271                    if (res.contains(l.head) && !t.contains(l.head))
272                        openVars.append(l.head);
273                if (openVars.nonEmpty()) {
274                    if (t.isRaw()) {
275                        // The subtype of a raw type is raw
276                        res = erasure(res);
277                    } else {
278                        // Unbound type arguments default to ?
279                        List<Type> opens = openVars.toList();
280                        ListBuffer<Type> qs = new ListBuffer<>();
281                        for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
282                            qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND,
283                                                       syms.boundClass, (TypeVar) iter.head));
284                        }
285                        res = subst(res, opens, qs.toList());
286                    }
287                }
288                return res;
289            }
290
291            @Override
292            public Type visitErrorType(ErrorType t, Symbol sym) {
293                return t;
294            }
295        };
296    // </editor-fold>
297
298    // <editor-fold defaultstate="collapsed" desc="isConvertible">
299    /**
300     * Is t a subtype of or convertible via boxing/unboxing
301     * conversion to s?
302     */
303    public boolean isConvertible(Type t, Type s, Warner warn) {
304        if (t.hasTag(ERROR)) {
305            return true;
306        }
307        boolean tPrimitive = t.isPrimitive();
308        boolean sPrimitive = s.isPrimitive();
309        if (tPrimitive == sPrimitive) {
310            return isSubtypeUnchecked(t, s, warn);
311        }
312        return tPrimitive
313            ? isSubtype(boxedClass(t).type, s)
314            : isSubtype(unboxedType(t), s);
315    }
316
317    /**
318     * Is t a subtype of or convertible via boxing/unboxing
319     * conversions to s?
320     */
321    public boolean isConvertible(Type t, Type s) {
322        return isConvertible(t, s, noWarnings);
323    }
324    // </editor-fold>
325
326    // <editor-fold defaultstate="collapsed" desc="findSam">
327
328    /**
329     * Exception used to report a function descriptor lookup failure. The exception
330     * wraps a diagnostic that can be used to generate more details error
331     * messages.
332     */
333    public static class FunctionDescriptorLookupError extends RuntimeException {
334        private static final long serialVersionUID = 0;
335
336        JCDiagnostic diagnostic;
337
338        FunctionDescriptorLookupError() {
339            this.diagnostic = null;
340        }
341
342        FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
343            this.diagnostic = diag;
344            return this;
345        }
346
347        public JCDiagnostic getDiagnostic() {
348            return diagnostic;
349        }
350    }
351
352    /**
353     * A cache that keeps track of function descriptors associated with given
354     * functional interfaces.
355     */
356    class DescriptorCache {
357
358        private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<>();
359
360        class FunctionDescriptor {
361            Symbol descSym;
362
363            FunctionDescriptor(Symbol descSym) {
364                this.descSym = descSym;
365            }
366
367            public Symbol getSymbol() {
368                return descSym;
369            }
370
371            public Type getType(Type site) {
372                site = removeWildcards(site);
373                if (!chk.checkValidGenericType(site)) {
374                    //if the inferred functional interface type is not well-formed,
375                    //or if it's not a subtype of the original target, issue an error
376                    throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
377                }
378                return memberType(site, descSym);
379            }
380        }
381
382        class Entry {
383            final FunctionDescriptor cachedDescRes;
384            final int prevMark;
385
386            public Entry(FunctionDescriptor cachedDescRes,
387                    int prevMark) {
388                this.cachedDescRes = cachedDescRes;
389                this.prevMark = prevMark;
390            }
391
392            boolean matches(int mark) {
393                return  this.prevMark == mark;
394            }
395        }
396
397        FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
398            Entry e = _map.get(origin);
399            CompoundScope members = membersClosure(origin.type, false);
400            if (e == null ||
401                    !e.matches(members.getMark())) {
402                FunctionDescriptor descRes = findDescriptorInternal(origin, members);
403                _map.put(origin, new Entry(descRes, members.getMark()));
404                return descRes;
405            }
406            else {
407                return e.cachedDescRes;
408            }
409        }
410
411        /**
412         * Compute the function descriptor associated with a given functional interface
413         */
414        public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
415                CompoundScope membersCache) throws FunctionDescriptorLookupError {
416            if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
417                //t must be an interface
418                throw failure("not.a.functional.intf", origin);
419            }
420
421            final ListBuffer<Symbol> abstracts = new ListBuffer<>();
422            for (Symbol sym : membersCache.getSymbols(new DescriptorFilter(origin))) {
423                Type mtype = memberType(origin.type, sym);
424                if (abstracts.isEmpty()) {
425                    abstracts.append(sym);
426                } else if ((sym.name == abstracts.first().name &&
427                        overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
428                    if (!abstracts.stream().filter(msym -> msym.owner.isSubClass(sym.enclClass(), Types.this))
429                            .map(msym -> memberType(origin.type, msym))
430                            .anyMatch(abstractMType -> isSubSignature(abstractMType, mtype))) {
431                        abstracts.append(sym);
432                    }
433                } else {
434                    //the target method(s) should be the only abstract members of t
435                    throw failure("not.a.functional.intf.1",  origin,
436                            diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
437                }
438            }
439            if (abstracts.isEmpty()) {
440                //t must define a suitable non-generic method
441                throw failure("not.a.functional.intf.1", origin,
442                            diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
443            } else if (abstracts.size() == 1) {
444                return new FunctionDescriptor(abstracts.first());
445            } else { // size > 1
446                FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
447                if (descRes == null) {
448                    //we can get here if the functional interface is ill-formed
449                    ListBuffer<JCDiagnostic> descriptors = new ListBuffer<>();
450                    for (Symbol desc : abstracts) {
451                        String key = desc.type.getThrownTypes().nonEmpty() ?
452                                "descriptor.throws" : "descriptor";
453                        descriptors.append(diags.fragment(key, desc.name,
454                                desc.type.getParameterTypes(),
455                                desc.type.getReturnType(),
456                                desc.type.getThrownTypes()));
457                    }
458                    JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
459                            new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
460                            Kinds.kindName(origin), origin), descriptors.toList());
461                    throw failure(incompatibleDescriptors);
462                }
463                return descRes;
464            }
465        }
466
467        /**
468         * Compute a synthetic type for the target descriptor given a list
469         * of override-equivalent methods in the functional interface type.
470         * The resulting method type is a method type that is override-equivalent
471         * and return-type substitutable with each method in the original list.
472         */
473        private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
474            return mergeAbstracts(methodSyms, origin.type, false)
475                    .map(bestSoFar -> new FunctionDescriptor(bestSoFar.baseSymbol()) {
476                        @Override
477                        public Type getType(Type origin) {
478                            Type mt = memberType(origin, getSymbol());
479                            return createMethodTypeWithThrown(mt, bestSoFar.type.getThrownTypes());
480                        }
481                    }).orElse(null);
482        }
483
484        FunctionDescriptorLookupError failure(String msg, Object... args) {
485            return failure(diags.fragment(msg, args));
486        }
487
488        FunctionDescriptorLookupError failure(JCDiagnostic diag) {
489            return functionDescriptorLookupError.setMessage(diag);
490        }
491    }
492
493    private DescriptorCache descCache = new DescriptorCache();
494
495    /**
496     * Find the method descriptor associated to this class symbol - if the
497     * symbol 'origin' is not a functional interface, an exception is thrown.
498     */
499    public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
500        return descCache.get(origin).getSymbol();
501    }
502
503    /**
504     * Find the type of the method descriptor associated to this class symbol -
505     * if the symbol 'origin' is not a functional interface, an exception is thrown.
506     */
507    public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
508        return descCache.get(origin.tsym).getType(origin);
509    }
510
511    /**
512     * Is given type a functional interface?
513     */
514    public boolean isFunctionalInterface(TypeSymbol tsym) {
515        try {
516            findDescriptorSymbol(tsym);
517            return true;
518        } catch (FunctionDescriptorLookupError ex) {
519            return false;
520        }
521    }
522
523    public boolean isFunctionalInterface(Type site) {
524        try {
525            findDescriptorType(site);
526            return true;
527        } catch (FunctionDescriptorLookupError ex) {
528            return false;
529        }
530    }
531
532    public Type removeWildcards(Type site) {
533        if (site.getTypeArguments().stream().anyMatch(t -> t.hasTag(WILDCARD))) {
534            //compute non-wildcard parameterization - JLS 9.9
535            List<Type> actuals = site.getTypeArguments();
536            List<Type> formals = site.tsym.type.getTypeArguments();
537            ListBuffer<Type> targs = new ListBuffer<>();
538            for (Type formal : formals) {
539                Type actual = actuals.head;
540                Type bound = formal.getUpperBound();
541                if (actuals.head.hasTag(WILDCARD)) {
542                    WildcardType wt = (WildcardType)actual;
543                    //check that bound does not contain other formals
544                    if (bound.containsAny(formals)) {
545                        targs.add(wt.type);
546                    } else {
547                        //compute new type-argument based on declared bound and wildcard bound
548                        switch (wt.kind) {
549                            case UNBOUND:
550                                targs.add(bound);
551                                break;
552                            case EXTENDS:
553                                targs.add(glb(bound, wt.type));
554                                break;
555                            case SUPER:
556                                targs.add(wt.type);
557                                break;
558                            default:
559                                Assert.error("Cannot get here!");
560                        }
561                    }
562                } else {
563                    //not a wildcard - the new type argument remains unchanged
564                    targs.add(actual);
565                }
566                actuals = actuals.tail;
567            }
568            return subst(site.tsym.type, formals, targs.toList());
569        } else {
570            return site;
571        }
572    }
573
574    /**
575     * Create a symbol for a class that implements a given functional interface
576     * and overrides its functional descriptor. This routine is used for two
577     * main purposes: (i) checking well-formedness of a functional interface;
578     * (ii) perform functional interface bridge calculation.
579     */
580    public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, List<Type> targets, long cflags) {
581        if (targets.isEmpty()) {
582            return null;
583        }
584        Symbol descSym = findDescriptorSymbol(targets.head.tsym);
585        Type descType = findDescriptorType(targets.head);
586        ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
587        csym.completer = Completer.NULL_COMPLETER;
588        csym.members_field = WriteableScope.create(csym);
589        MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
590        csym.members_field.enter(instDescSym);
591        Type.ClassType ctype = new Type.ClassType(Type.noType, List.nil(), csym);
592        ctype.supertype_field = syms.objectType;
593        ctype.interfaces_field = targets;
594        csym.type = ctype;
595        csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
596        return csym;
597    }
598
599    /**
600     * Find the minimal set of methods that are overridden by the functional
601     * descriptor in 'origin'. All returned methods are assumed to have different
602     * erased signatures.
603     */
604    public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
605        Assert.check(isFunctionalInterface(origin));
606        Symbol descSym = findDescriptorSymbol(origin);
607        CompoundScope members = membersClosure(origin.type, false);
608        ListBuffer<Symbol> overridden = new ListBuffer<>();
609        outer: for (Symbol m2 : members.getSymbolsByName(descSym.name, bridgeFilter)) {
610            if (m2 == descSym) continue;
611            else if (descSym.overrides(m2, origin, Types.this, false)) {
612                for (Symbol m3 : overridden) {
613                    if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
614                            (m3.overrides(m2, origin, Types.this, false) &&
615                            (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
616                            (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
617                        continue outer;
618                    }
619                }
620                overridden.add(m2);
621            }
622        }
623        return overridden.toList();
624    }
625    //where
626        private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
627            public boolean accepts(Symbol t) {
628                return t.kind == MTH &&
629                        t.name != names.init &&
630                        t.name != names.clinit &&
631                        (t.flags() & SYNTHETIC) == 0;
632            }
633        };
634        private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
635            //a symbol will be completed from a classfile if (a) symbol has
636            //an associated file object with CLASS kind and (b) the symbol has
637            //not been entered
638            if (origin.classfile != null &&
639                    origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
640                    enter.getEnv(origin) == null) {
641                return false;
642            }
643            if (origin == s) {
644                return true;
645            }
646            for (Type t : interfaces(origin.type)) {
647                if (pendingBridges((ClassSymbol)t.tsym, s)) {
648                    return true;
649                }
650            }
651            return false;
652        }
653    // </editor-fold>
654
655   /**
656    * Scope filter used to skip methods that should be ignored (such as methods
657    * overridden by j.l.Object) during function interface conversion interface check
658    */
659    class DescriptorFilter implements Filter<Symbol> {
660
661       TypeSymbol origin;
662
663       DescriptorFilter(TypeSymbol origin) {
664           this.origin = origin;
665       }
666
667       @Override
668       public boolean accepts(Symbol sym) {
669           return sym.kind == MTH &&
670                   (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
671                   !overridesObjectMethod(origin, sym) &&
672                   (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
673       }
674    }
675
676    // <editor-fold defaultstate="collapsed" desc="isSubtype">
677    /**
678     * Is t an unchecked subtype of s?
679     */
680    public boolean isSubtypeUnchecked(Type t, Type s) {
681        return isSubtypeUnchecked(t, s, noWarnings);
682    }
683    /**
684     * Is t an unchecked subtype of s?
685     */
686    public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
687        boolean result = isSubtypeUncheckedInternal(t, s, true, warn);
688        if (result) {
689            checkUnsafeVarargsConversion(t, s, warn);
690        }
691        return result;
692    }
693    //where
694        private boolean isSubtypeUncheckedInternal(Type t, Type s, boolean capture, Warner warn) {
695            if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
696                if (((ArrayType)t).elemtype.isPrimitive()) {
697                    return isSameType(elemtype(t), elemtype(s));
698                } else {
699                    return isSubtypeUncheckedInternal(elemtype(t), elemtype(s), false, warn);
700                }
701            } else if (isSubtype(t, s, capture)) {
702                return true;
703            } else if (t.hasTag(TYPEVAR)) {
704                return isSubtypeUncheckedInternal(t.getUpperBound(), s, false, warn);
705            } else if (!s.isRaw()) {
706                Type t2 = asSuper(t, s.tsym);
707                if (t2 != null && t2.isRaw()) {
708                    if (isReifiable(s)) {
709                        warn.silentWarn(LintCategory.UNCHECKED);
710                    } else {
711                        warn.warn(LintCategory.UNCHECKED);
712                    }
713                    return true;
714                }
715            }
716            return false;
717        }
718
719        private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
720            if (!t.hasTag(ARRAY) || isReifiable(t)) {
721                return;
722            }
723            ArrayType from = (ArrayType)t;
724            boolean shouldWarn = false;
725            switch (s.getTag()) {
726                case ARRAY:
727                    ArrayType to = (ArrayType)s;
728                    shouldWarn = from.isVarargs() &&
729                            !to.isVarargs() &&
730                            !isReifiable(from);
731                    break;
732                case CLASS:
733                    shouldWarn = from.isVarargs();
734                    break;
735            }
736            if (shouldWarn) {
737                warn.warn(LintCategory.VARARGS);
738            }
739        }
740
741    /**
742     * Is t a subtype of s?<br>
743     * (not defined for Method and ForAll types)
744     */
745    final public boolean isSubtype(Type t, Type s) {
746        return isSubtype(t, s, true);
747    }
748    final public boolean isSubtypeNoCapture(Type t, Type s) {
749        return isSubtype(t, s, false);
750    }
751    public boolean isSubtype(Type t, Type s, boolean capture) {
752        if (t.equalsIgnoreMetadata(s))
753            return true;
754        if (s.isPartial())
755            return isSuperType(s, t);
756
757        if (s.isCompound()) {
758            for (Type s2 : interfaces(s).prepend(supertype(s))) {
759                if (!isSubtype(t, s2, capture))
760                    return false;
761            }
762            return true;
763        }
764
765        // Generally, if 's' is a lower-bounded type variable, recur on lower bound; but
766        // for inference variables and intersections, we need to keep 's'
767        // (see JLS 4.10.2 for intersections and 18.2.3 for inference vars)
768        if (!t.hasTag(UNDETVAR) && !t.isCompound()) {
769            // TODO: JDK-8039198, bounds checking sometimes passes in a wildcard as s
770            Type lower = cvarLowerBound(wildLowerBound(s));
771            if (s != lower && !lower.hasTag(BOT))
772                return isSubtype(capture ? capture(t) : t, lower, false);
773        }
774
775        return isSubtype.visit(capture ? capture(t) : t, s);
776    }
777    // where
778        private TypeRelation isSubtype = new TypeRelation()
779        {
780            @Override
781            public Boolean visitType(Type t, Type s) {
782                switch (t.getTag()) {
783                 case BYTE:
784                     return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
785                 case CHAR:
786                     return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
787                 case SHORT: case INT: case LONG:
788                 case FLOAT: case DOUBLE:
789                     return t.getTag().isSubRangeOf(s.getTag());
790                 case BOOLEAN: case VOID:
791                     return t.hasTag(s.getTag());
792                 case TYPEVAR:
793                     return isSubtypeNoCapture(t.getUpperBound(), s);
794                 case BOT:
795                     return
796                         s.hasTag(BOT) || s.hasTag(CLASS) ||
797                         s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
798                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
799                 case NONE:
800                     return false;
801                 default:
802                     throw new AssertionError("isSubtype " + t.getTag());
803                 }
804            }
805
806            private Set<TypePair> cache = new HashSet<>();
807
808            private boolean containsTypeRecursive(Type t, Type s) {
809                TypePair pair = new TypePair(t, s);
810                if (cache.add(pair)) {
811                    try {
812                        return containsType(t.getTypeArguments(),
813                                            s.getTypeArguments());
814                    } finally {
815                        cache.remove(pair);
816                    }
817                } else {
818                    return containsType(t.getTypeArguments(),
819                                        rewriteSupers(s).getTypeArguments());
820                }
821            }
822
823            private Type rewriteSupers(Type t) {
824                if (!t.isParameterized())
825                    return t;
826                ListBuffer<Type> from = new ListBuffer<>();
827                ListBuffer<Type> to = new ListBuffer<>();
828                adaptSelf(t, from, to);
829                if (from.isEmpty())
830                    return t;
831                ListBuffer<Type> rewrite = new ListBuffer<>();
832                boolean changed = false;
833                for (Type orig : to.toList()) {
834                    Type s = rewriteSupers(orig);
835                    if (s.isSuperBound() && !s.isExtendsBound()) {
836                        s = new WildcardType(syms.objectType,
837                                             BoundKind.UNBOUND,
838                                             syms.boundClass,
839                                             s.getMetadata());
840                        changed = true;
841                    } else if (s != orig) {
842                        s = new WildcardType(wildUpperBound(s),
843                                             BoundKind.EXTENDS,
844                                             syms.boundClass,
845                                             s.getMetadata());
846                        changed = true;
847                    }
848                    rewrite.append(s);
849                }
850                if (changed)
851                    return subst(t.tsym.type, from.toList(), rewrite.toList());
852                else
853                    return t;
854            }
855
856            @Override
857            public Boolean visitClassType(ClassType t, Type s) {
858                Type sup = asSuper(t, s.tsym);
859                if (sup == null) return false;
860                // If t is an intersection, sup might not be a class type
861                if (!sup.hasTag(CLASS)) return isSubtypeNoCapture(sup, s);
862                return sup.tsym == s.tsym
863                     // Check type variable containment
864                    && (!s.isParameterized() || containsTypeRecursive(s, sup))
865                    && isSubtypeNoCapture(sup.getEnclosingType(),
866                                          s.getEnclosingType());
867            }
868
869            @Override
870            public Boolean visitArrayType(ArrayType t, Type s) {
871                if (s.hasTag(ARRAY)) {
872                    if (t.elemtype.isPrimitive())
873                        return isSameType(t.elemtype, elemtype(s));
874                    else
875                        return isSubtypeNoCapture(t.elemtype, elemtype(s));
876                }
877
878                if (s.hasTag(CLASS)) {
879                    Name sname = s.tsym.getQualifiedName();
880                    return sname == names.java_lang_Object
881                        || sname == names.java_lang_Cloneable
882                        || sname == names.java_io_Serializable;
883                }
884
885                return false;
886            }
887
888            @Override
889            public Boolean visitUndetVar(UndetVar t, Type s) {
890                //todo: test against origin needed? or replace with substitution?
891                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
892                    return true;
893                } else if (s.hasTag(BOT)) {
894                    //if 's' is 'null' there's no instantiated type U for which
895                    //U <: s (but 'null' itself, which is not a valid type)
896                    return false;
897                }
898
899                t.addBound(InferenceBound.UPPER, s, Types.this);
900                return true;
901            }
902
903            @Override
904            public Boolean visitErrorType(ErrorType t, Type s) {
905                return true;
906            }
907        };
908
909    /**
910     * Is t a subtype of every type in given list `ts'?<br>
911     * (not defined for Method and ForAll types)<br>
912     * Allows unchecked conversions.
913     */
914    public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
915        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
916            if (!isSubtypeUnchecked(t, l.head, warn))
917                return false;
918        return true;
919    }
920
921    /**
922     * Are corresponding elements of ts subtypes of ss?  If lists are
923     * of different length, return false.
924     */
925    public boolean isSubtypes(List<Type> ts, List<Type> ss) {
926        while (ts.tail != null && ss.tail != null
927               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
928               isSubtype(ts.head, ss.head)) {
929            ts = ts.tail;
930            ss = ss.tail;
931        }
932        return ts.tail == null && ss.tail == null;
933        /*inlined: ts.isEmpty() && ss.isEmpty();*/
934    }
935
936    /**
937     * Are corresponding elements of ts subtypes of ss, allowing
938     * unchecked conversions?  If lists are of different length,
939     * return false.
940     **/
941    public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
942        while (ts.tail != null && ss.tail != null
943               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
944               isSubtypeUnchecked(ts.head, ss.head, warn)) {
945            ts = ts.tail;
946            ss = ss.tail;
947        }
948        return ts.tail == null && ss.tail == null;
949        /*inlined: ts.isEmpty() && ss.isEmpty();*/
950    }
951    // </editor-fold>
952
953    // <editor-fold defaultstate="collapsed" desc="isSuperType">
954    /**
955     * Is t a supertype of s?
956     */
957    public boolean isSuperType(Type t, Type s) {
958        switch (t.getTag()) {
959        case ERROR:
960            return true;
961        case UNDETVAR: {
962            UndetVar undet = (UndetVar)t;
963            if (t == s ||
964                undet.qtype == s ||
965                s.hasTag(ERROR) ||
966                s.hasTag(BOT)) {
967                return true;
968            }
969            undet.addBound(InferenceBound.LOWER, s, this);
970            return true;
971        }
972        default:
973            return isSubtype(s, t);
974        }
975    }
976    // </editor-fold>
977
978    // <editor-fold defaultstate="collapsed" desc="isSameType">
979    /**
980     * Are corresponding elements of the lists the same type?  If
981     * lists are of different length, return false.
982     */
983    public boolean isSameTypes(List<Type> ts, List<Type> ss) {
984        return isSameTypes(ts, ss, false);
985    }
986    public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
987        while (ts.tail != null && ss.tail != null
988               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
989               isSameType(ts.head, ss.head, strict)) {
990            ts = ts.tail;
991            ss = ss.tail;
992        }
993        return ts.tail == null && ss.tail == null;
994        /*inlined: ts.isEmpty() && ss.isEmpty();*/
995    }
996
997    /**
998     * A polymorphic signature method (JLS 15.12.3) is a method that
999     *   (i) is declared in the java.lang.invoke.MethodHandle/VarHandle classes;
1000     *  (ii) takes a single variable arity parameter;
1001     * (iii) whose declared type is Object[];
1002     *  (iv) has any return type, Object signifying a polymorphic return type; and
1003     *   (v) is native.
1004    */
1005   public boolean isSignaturePolymorphic(MethodSymbol msym) {
1006       List<Type> argtypes = msym.type.getParameterTypes();
1007       return (msym.flags_field & NATIVE) != 0 &&
1008              (msym.owner == syms.methodHandleType.tsym || msym.owner == syms.varHandleType.tsym) &&
1009               argtypes.length() == 1 &&
1010               argtypes.head.hasTag(TypeTag.ARRAY) &&
1011               ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
1012   }
1013
1014    /**
1015     * Is t the same type as s?
1016     */
1017    public boolean isSameType(Type t, Type s) {
1018        return isSameType(t, s, false);
1019    }
1020    public boolean isSameType(Type t, Type s, boolean strict) {
1021        return strict ?
1022                isSameTypeStrict.visit(t, s) :
1023                isSameTypeLoose.visit(t, s);
1024    }
1025    // where
1026        abstract class SameTypeVisitor extends TypeRelation {
1027
1028            public Boolean visitType(Type t, Type s) {
1029                if (t.equalsIgnoreMetadata(s))
1030                    return true;
1031
1032                if (s.isPartial())
1033                    return visit(s, t);
1034
1035                switch (t.getTag()) {
1036                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1037                case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
1038                    return t.hasTag(s.getTag());
1039                case TYPEVAR: {
1040                    if (s.hasTag(TYPEVAR)) {
1041                        //type-substitution does not preserve type-var types
1042                        //check that type var symbols and bounds are indeed the same
1043                        return sameTypeVars((TypeVar)t, (TypeVar)s);
1044                    }
1045                    else {
1046                        //special case for s == ? super X, where upper(s) = u
1047                        //check that u == t, where u has been set by Type.withTypeVar
1048                        return s.isSuperBound() &&
1049                                !s.isExtendsBound() &&
1050                                visit(t, wildUpperBound(s));
1051                    }
1052                }
1053                default:
1054                    throw new AssertionError("isSameType " + t.getTag());
1055                }
1056            }
1057
1058            abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
1059
1060            @Override
1061            public Boolean visitWildcardType(WildcardType t, Type s) {
1062                if (!s.hasTag(WILDCARD)) {
1063                    return false;
1064                } else {
1065                    WildcardType t2 = (WildcardType)s;
1066                    return (t.kind == t2.kind || (t.isExtendsBound() && s.isExtendsBound())) &&
1067                            isSameType(t.type, t2.type, true);
1068                }
1069            }
1070
1071            @Override
1072            public Boolean visitClassType(ClassType t, Type s) {
1073                if (t == s)
1074                    return true;
1075
1076                if (s.isPartial())
1077                    return visit(s, t);
1078
1079                if (s.isSuperBound() && !s.isExtendsBound())
1080                    return visit(t, wildUpperBound(s)) && visit(t, wildLowerBound(s));
1081
1082                if (t.isCompound() && s.isCompound()) {
1083                    if (!visit(supertype(t), supertype(s)))
1084                        return false;
1085
1086                    Map<Symbol,Type> tMap = new HashMap<>();
1087                    for (Type ti : interfaces(t)) {
1088                        if (tMap.containsKey(ti)) {
1089                            throw new AssertionError("Malformed intersection");
1090                        }
1091                        tMap.put(ti.tsym, ti);
1092                    }
1093                    for (Type si : interfaces(s)) {
1094                        if (!tMap.containsKey(si.tsym))
1095                            return false;
1096                        Type ti = tMap.remove(si.tsym);
1097                        if (!visit(ti, si))
1098                            return false;
1099                    }
1100                    return tMap.isEmpty();
1101                }
1102                return t.tsym == s.tsym
1103                    && visit(t.getEnclosingType(), s.getEnclosingType())
1104                    && containsTypes(t.getTypeArguments(), s.getTypeArguments());
1105            }
1106
1107            abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
1108
1109            @Override
1110            public Boolean visitArrayType(ArrayType t, Type s) {
1111                if (t == s)
1112                    return true;
1113
1114                if (s.isPartial())
1115                    return visit(s, t);
1116
1117                return s.hasTag(ARRAY)
1118                    && containsTypeEquivalent(t.elemtype, elemtype(s));
1119            }
1120
1121            @Override
1122            public Boolean visitMethodType(MethodType t, Type s) {
1123                // isSameType for methods does not take thrown
1124                // exceptions into account!
1125                return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
1126            }
1127
1128            @Override
1129            public Boolean visitPackageType(PackageType t, Type s) {
1130                return t == s;
1131            }
1132
1133            @Override
1134            public Boolean visitForAll(ForAll t, Type s) {
1135                if (!s.hasTag(FORALL)) {
1136                    return false;
1137                }
1138
1139                ForAll forAll = (ForAll)s;
1140                return hasSameBounds(t, forAll)
1141                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
1142            }
1143
1144            @Override
1145            public Boolean visitUndetVar(UndetVar t, Type s) {
1146                if (s.hasTag(WILDCARD)) {
1147                    // FIXME, this might be leftovers from before capture conversion
1148                    return false;
1149                }
1150
1151                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
1152                    return true;
1153                }
1154
1155                t.addBound(InferenceBound.EQ, s, Types.this);
1156
1157                return true;
1158            }
1159
1160            @Override
1161            public Boolean visitErrorType(ErrorType t, Type s) {
1162                return true;
1163            }
1164        }
1165
1166        /**
1167         * Standard type-equality relation - type variables are considered
1168         * equals if they share the same type symbol.
1169         */
1170        TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
1171
1172        private class LooseSameTypeVisitor extends SameTypeVisitor {
1173
1174            /** cache of the type-variable pairs being (recursively) tested. */
1175            private Set<TypePair> cache = new HashSet<>();
1176
1177            @Override
1178            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1179                return tv1.tsym == tv2.tsym && checkSameBounds(tv1, tv2);
1180            }
1181            @Override
1182            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1183                return containsTypeEquivalent(ts1, ts2);
1184            }
1185
1186            /**
1187             * Since type-variable bounds can be recursive, we need to protect against
1188             * infinite loops - where the same bounds are checked over and over recursively.
1189             */
1190            private boolean checkSameBounds(TypeVar tv1, TypeVar tv2) {
1191                TypePair p = new TypePair(tv1, tv2, true);
1192                if (cache.add(p)) {
1193                    try {
1194                        return visit(tv1.getUpperBound(), tv2.getUpperBound());
1195                    } finally {
1196                        cache.remove(p);
1197                    }
1198                } else {
1199                    return false;
1200                }
1201            }
1202        };
1203
1204        /**
1205         * Strict type-equality relation - type variables are considered
1206         * equals if they share the same object identity.
1207         */
1208        TypeRelation isSameTypeStrict = new SameTypeVisitor() {
1209            @Override
1210            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1211                return tv1 == tv2;
1212            }
1213            @Override
1214            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1215                return isSameTypes(ts1, ts2, true);
1216            }
1217
1218            @Override
1219            public Boolean visitWildcardType(WildcardType t, Type s) {
1220                if (!s.hasTag(WILDCARD)) {
1221                    return false;
1222                } else {
1223                    WildcardType t2 = (WildcardType)s;
1224                    return t.kind == t2.kind &&
1225                            isSameType(t.type, t2.type, true);
1226                }
1227            }
1228        };
1229
1230    // </editor-fold>
1231
1232    // <editor-fold defaultstate="collapsed" desc="Contains Type">
1233    public boolean containedBy(Type t, Type s) {
1234        switch (t.getTag()) {
1235        case UNDETVAR:
1236            if (s.hasTag(WILDCARD)) {
1237                UndetVar undetvar = (UndetVar)t;
1238                WildcardType wt = (WildcardType)s;
1239                switch(wt.kind) {
1240                    case UNBOUND:
1241                        break;
1242                    case EXTENDS: {
1243                        Type bound = wildUpperBound(s);
1244                        undetvar.addBound(InferenceBound.UPPER, bound, this);
1245                        break;
1246                    }
1247                    case SUPER: {
1248                        Type bound = wildLowerBound(s);
1249                        undetvar.addBound(InferenceBound.LOWER, bound, this);
1250                        break;
1251                    }
1252                }
1253                return true;
1254            } else {
1255                return isSameType(t, s);
1256            }
1257        case ERROR:
1258            return true;
1259        default:
1260            return containsType(s, t);
1261        }
1262    }
1263
1264    boolean containsType(List<Type> ts, List<Type> ss) {
1265        while (ts.nonEmpty() && ss.nonEmpty()
1266               && containsType(ts.head, ss.head)) {
1267            ts = ts.tail;
1268            ss = ss.tail;
1269        }
1270        return ts.isEmpty() && ss.isEmpty();
1271    }
1272
1273    /**
1274     * Check if t contains s.
1275     *
1276     * <p>T contains S if:
1277     *
1278     * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
1279     *
1280     * <p>This relation is only used by ClassType.isSubtype(), that
1281     * is,
1282     *
1283     * <p>{@code C<S> <: C<T> if T contains S.}
1284     *
1285     * <p>Because of F-bounds, this relation can lead to infinite
1286     * recursion.  Thus we must somehow break that recursion.  Notice
1287     * that containsType() is only called from ClassType.isSubtype().
1288     * Since the arguments have already been checked against their
1289     * bounds, we know:
1290     *
1291     * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
1292     *
1293     * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
1294     *
1295     * @param t a type
1296     * @param s a type
1297     */
1298    public boolean containsType(Type t, Type s) {
1299        return containsType.visit(t, s);
1300    }
1301    // where
1302        private TypeRelation containsType = new TypeRelation() {
1303
1304            public Boolean visitType(Type t, Type s) {
1305                if (s.isPartial())
1306                    return containedBy(s, t);
1307                else
1308                    return isSameType(t, s);
1309            }
1310
1311//            void debugContainsType(WildcardType t, Type s) {
1312//                System.err.println();
1313//                System.err.format(" does %s contain %s?%n", t, s);
1314//                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
1315//                                  wildUpperBound(s), s, t, wildUpperBound(t),
1316//                                  t.isSuperBound()
1317//                                  || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t)));
1318//                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
1319//                                  wildLowerBound(t), t, s, wildLowerBound(s),
1320//                                  t.isExtendsBound()
1321//                                  || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s)));
1322//                System.err.println();
1323//            }
1324
1325            @Override
1326            public Boolean visitWildcardType(WildcardType t, Type s) {
1327                if (s.isPartial())
1328                    return containedBy(s, t);
1329                else {
1330//                    debugContainsType(t, s);
1331                    return isSameWildcard(t, s)
1332                        || isCaptureOf(s, t)
1333                        || ((t.isExtendsBound() || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s))) &&
1334                            (t.isSuperBound() || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t))));
1335                }
1336            }
1337
1338            @Override
1339            public Boolean visitUndetVar(UndetVar t, Type s) {
1340                if (!s.hasTag(WILDCARD)) {
1341                    return isSameType(t, s);
1342                } else {
1343                    return false;
1344                }
1345            }
1346
1347            @Override
1348            public Boolean visitErrorType(ErrorType t, Type s) {
1349                return true;
1350            }
1351        };
1352
1353    public boolean isCaptureOf(Type s, WildcardType t) {
1354        if (!s.hasTag(TYPEVAR) || !((TypeVar)s).isCaptured())
1355            return false;
1356        return isSameWildcard(t, ((CapturedType)s).wildcard);
1357    }
1358
1359    public boolean isSameWildcard(WildcardType t, Type s) {
1360        if (!s.hasTag(WILDCARD))
1361            return false;
1362        WildcardType w = (WildcardType)s;
1363        return w.kind == t.kind && w.type == t.type;
1364    }
1365
1366    public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
1367        while (ts.nonEmpty() && ss.nonEmpty()
1368               && containsTypeEquivalent(ts.head, ss.head)) {
1369            ts = ts.tail;
1370            ss = ss.tail;
1371        }
1372        return ts.isEmpty() && ss.isEmpty();
1373    }
1374    // </editor-fold>
1375
1376    // <editor-fold defaultstate="collapsed" desc="isCastable">
1377    public boolean isCastable(Type t, Type s) {
1378        return isCastable(t, s, noWarnings);
1379    }
1380
1381    /**
1382     * Is t is castable to s?<br>
1383     * s is assumed to be an erased type.<br>
1384     * (not defined for Method and ForAll types).
1385     */
1386    public boolean isCastable(Type t, Type s, Warner warn) {
1387        if (t == s)
1388            return true;
1389        if (t.isPrimitive() != s.isPrimitive()) {
1390            t = skipTypeVars(t, false);
1391            return (isConvertible(t, s, warn)
1392                    || (allowObjectToPrimitiveCast &&
1393                        s.isPrimitive() &&
1394                        isSubtype(boxedClass(s).type, t)));
1395        }
1396        if (warn != warnStack.head) {
1397            try {
1398                warnStack = warnStack.prepend(warn);
1399                checkUnsafeVarargsConversion(t, s, warn);
1400                return isCastable.visit(t,s);
1401            } finally {
1402                warnStack = warnStack.tail;
1403            }
1404        } else {
1405            return isCastable.visit(t,s);
1406        }
1407    }
1408    // where
1409        private TypeRelation isCastable = new TypeRelation() {
1410
1411            public Boolean visitType(Type t, Type s) {
1412                if (s.hasTag(ERROR))
1413                    return true;
1414
1415                switch (t.getTag()) {
1416                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1417                case DOUBLE:
1418                    return s.isNumeric();
1419                case BOOLEAN:
1420                    return s.hasTag(BOOLEAN);
1421                case VOID:
1422                    return false;
1423                case BOT:
1424                    return isSubtype(t, s);
1425                default:
1426                    throw new AssertionError();
1427                }
1428            }
1429
1430            @Override
1431            public Boolean visitWildcardType(WildcardType t, Type s) {
1432                return isCastable(wildUpperBound(t), s, warnStack.head);
1433            }
1434
1435            @Override
1436            public Boolean visitClassType(ClassType t, Type s) {
1437                if (s.hasTag(ERROR) || s.hasTag(BOT))
1438                    return true;
1439
1440                if (s.hasTag(TYPEVAR)) {
1441                    if (isCastable(t, s.getUpperBound(), noWarnings)) {
1442                        warnStack.head.warn(LintCategory.UNCHECKED);
1443                        return true;
1444                    } else {
1445                        return false;
1446                    }
1447                }
1448
1449                if (t.isCompound() || s.isCompound()) {
1450                    return !t.isCompound() ?
1451                            visitCompoundType((ClassType)s, t, true) :
1452                            visitCompoundType(t, s, false);
1453                }
1454
1455                if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
1456                    boolean upcast;
1457                    if ((upcast = isSubtype(erasure(t), erasure(s)))
1458                        || isSubtype(erasure(s), erasure(t))) {
1459                        if (!upcast && s.hasTag(ARRAY)) {
1460                            if (!isReifiable(s))
1461                                warnStack.head.warn(LintCategory.UNCHECKED);
1462                            return true;
1463                        } else if (s.isRaw()) {
1464                            return true;
1465                        } else if (t.isRaw()) {
1466                            if (!isUnbounded(s))
1467                                warnStack.head.warn(LintCategory.UNCHECKED);
1468                            return true;
1469                        }
1470                        // Assume |a| <: |b|
1471                        final Type a = upcast ? t : s;
1472                        final Type b = upcast ? s : t;
1473                        final boolean HIGH = true;
1474                        final boolean LOW = false;
1475                        final boolean DONT_REWRITE_TYPEVARS = false;
1476                        Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
1477                        Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
1478                        Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
1479                        Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
1480                        Type lowSub = asSub(bLow, aLow.tsym);
1481                        Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1482                        if (highSub == null) {
1483                            final boolean REWRITE_TYPEVARS = true;
1484                            aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
1485                            aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
1486                            bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
1487                            bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
1488                            lowSub = asSub(bLow, aLow.tsym);
1489                            highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1490                        }
1491                        if (highSub != null) {
1492                            if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
1493                                Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
1494                            }
1495                            if (!disjointTypes(aHigh.allparams(), highSub.allparams())
1496                                && !disjointTypes(aHigh.allparams(), lowSub.allparams())
1497                                && !disjointTypes(aLow.allparams(), highSub.allparams())
1498                                && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
1499                                if (upcast ? giveWarning(a, b) :
1500                                    giveWarning(b, a))
1501                                    warnStack.head.warn(LintCategory.UNCHECKED);
1502                                return true;
1503                            }
1504                        }
1505                        if (isReifiable(s))
1506                            return isSubtypeUnchecked(a, b);
1507                        else
1508                            return isSubtypeUnchecked(a, b, warnStack.head);
1509                    }
1510
1511                    // Sidecast
1512                    if (s.hasTag(CLASS)) {
1513                        if ((s.tsym.flags() & INTERFACE) != 0) {
1514                            return ((t.tsym.flags() & FINAL) == 0)
1515                                ? sideCast(t, s, warnStack.head)
1516                                : sideCastFinal(t, s, warnStack.head);
1517                        } else if ((t.tsym.flags() & INTERFACE) != 0) {
1518                            return ((s.tsym.flags() & FINAL) == 0)
1519                                ? sideCast(t, s, warnStack.head)
1520                                : sideCastFinal(t, s, warnStack.head);
1521                        } else {
1522                            // unrelated class types
1523                            return false;
1524                        }
1525                    }
1526                }
1527                return false;
1528            }
1529
1530            boolean visitCompoundType(ClassType ct, Type s, boolean reverse) {
1531                Warner warn = noWarnings;
1532                for (Type c : directSupertypes(ct)) {
1533                    warn.clear();
1534                    if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
1535                        return false;
1536                }
1537                if (warn.hasLint(LintCategory.UNCHECKED))
1538                    warnStack.head.warn(LintCategory.UNCHECKED);
1539                return true;
1540            }
1541
1542            @Override
1543            public Boolean visitArrayType(ArrayType t, Type s) {
1544                switch (s.getTag()) {
1545                case ERROR:
1546                case BOT:
1547                    return true;
1548                case TYPEVAR:
1549                    if (isCastable(s, t, noWarnings)) {
1550                        warnStack.head.warn(LintCategory.UNCHECKED);
1551                        return true;
1552                    } else {
1553                        return false;
1554                    }
1555                case CLASS:
1556                    return isSubtype(t, s);
1557                case ARRAY:
1558                    if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
1559                        return elemtype(t).hasTag(elemtype(s).getTag());
1560                    } else {
1561                        return visit(elemtype(t), elemtype(s));
1562                    }
1563                default:
1564                    return false;
1565                }
1566            }
1567
1568            @Override
1569            public Boolean visitTypeVar(TypeVar t, Type s) {
1570                switch (s.getTag()) {
1571                case ERROR:
1572                case BOT:
1573                    return true;
1574                case TYPEVAR:
1575                    if (isSubtype(t, s)) {
1576                        return true;
1577                    } else if (isCastable(t.bound, s, noWarnings)) {
1578                        warnStack.head.warn(LintCategory.UNCHECKED);
1579                        return true;
1580                    } else {
1581                        return false;
1582                    }
1583                default:
1584                    return isCastable(t.bound, s, warnStack.head);
1585                }
1586            }
1587
1588            @Override
1589            public Boolean visitErrorType(ErrorType t, Type s) {
1590                return true;
1591            }
1592        };
1593    // </editor-fold>
1594
1595    // <editor-fold defaultstate="collapsed" desc="disjointTypes">
1596    public boolean disjointTypes(List<Type> ts, List<Type> ss) {
1597        while (ts.tail != null && ss.tail != null) {
1598            if (disjointType(ts.head, ss.head)) return true;
1599            ts = ts.tail;
1600            ss = ss.tail;
1601        }
1602        return false;
1603    }
1604
1605    /**
1606     * Two types or wildcards are considered disjoint if it can be
1607     * proven that no type can be contained in both. It is
1608     * conservative in that it is allowed to say that two types are
1609     * not disjoint, even though they actually are.
1610     *
1611     * The type {@code C<X>} is castable to {@code C<Y>} exactly if
1612     * {@code X} and {@code Y} are not disjoint.
1613     */
1614    public boolean disjointType(Type t, Type s) {
1615        return disjointType.visit(t, s);
1616    }
1617    // where
1618        private TypeRelation disjointType = new TypeRelation() {
1619
1620            private Set<TypePair> cache = new HashSet<>();
1621
1622            @Override
1623            public Boolean visitType(Type t, Type s) {
1624                if (s.hasTag(WILDCARD))
1625                    return visit(s, t);
1626                else
1627                    return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
1628            }
1629
1630            private boolean isCastableRecursive(Type t, Type s) {
1631                TypePair pair = new TypePair(t, s);
1632                if (cache.add(pair)) {
1633                    try {
1634                        return Types.this.isCastable(t, s);
1635                    } finally {
1636                        cache.remove(pair);
1637                    }
1638                } else {
1639                    return true;
1640                }
1641            }
1642
1643            private boolean notSoftSubtypeRecursive(Type t, Type s) {
1644                TypePair pair = new TypePair(t, s);
1645                if (cache.add(pair)) {
1646                    try {
1647                        return Types.this.notSoftSubtype(t, s);
1648                    } finally {
1649                        cache.remove(pair);
1650                    }
1651                } else {
1652                    return false;
1653                }
1654            }
1655
1656            @Override
1657            public Boolean visitWildcardType(WildcardType t, Type s) {
1658                if (t.isUnbound())
1659                    return false;
1660
1661                if (!s.hasTag(WILDCARD)) {
1662                    if (t.isExtendsBound())
1663                        return notSoftSubtypeRecursive(s, t.type);
1664                    else
1665                        return notSoftSubtypeRecursive(t.type, s);
1666                }
1667
1668                if (s.isUnbound())
1669                    return false;
1670
1671                if (t.isExtendsBound()) {
1672                    if (s.isExtendsBound())
1673                        return !isCastableRecursive(t.type, wildUpperBound(s));
1674                    else if (s.isSuperBound())
1675                        return notSoftSubtypeRecursive(wildLowerBound(s), t.type);
1676                } else if (t.isSuperBound()) {
1677                    if (s.isExtendsBound())
1678                        return notSoftSubtypeRecursive(t.type, wildUpperBound(s));
1679                }
1680                return false;
1681            }
1682        };
1683    // </editor-fold>
1684
1685    // <editor-fold defaultstate="collapsed" desc="cvarLowerBounds">
1686    public List<Type> cvarLowerBounds(List<Type> ts) {
1687        return ts.map(cvarLowerBoundMapping);
1688    }
1689        private final TypeMapping<Void> cvarLowerBoundMapping = new TypeMapping<Void>() {
1690            @Override
1691            public Type visitCapturedType(CapturedType t, Void _unused) {
1692                return cvarLowerBound(t);
1693            }
1694        };
1695    // </editor-fold>
1696
1697    // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
1698    /**
1699     * This relation answers the question: is impossible that
1700     * something of type `t' can be a subtype of `s'? This is
1701     * different from the question "is `t' not a subtype of `s'?"
1702     * when type variables are involved: Integer is not a subtype of T
1703     * where {@code <T extends Number>} but it is not true that Integer cannot
1704     * possibly be a subtype of T.
1705     */
1706    public boolean notSoftSubtype(Type t, Type s) {
1707        if (t == s) return false;
1708        if (t.hasTag(TYPEVAR)) {
1709            TypeVar tv = (TypeVar) t;
1710            return !isCastable(tv.bound,
1711                               relaxBound(s),
1712                               noWarnings);
1713        }
1714        if (!s.hasTag(WILDCARD))
1715            s = cvarUpperBound(s);
1716
1717        return !isSubtype(t, relaxBound(s));
1718    }
1719
1720    private Type relaxBound(Type t) {
1721        return (t.hasTag(TYPEVAR)) ?
1722                rewriteQuantifiers(skipTypeVars(t, false), true, true) :
1723                t;
1724    }
1725    // </editor-fold>
1726
1727    // <editor-fold defaultstate="collapsed" desc="isReifiable">
1728    public boolean isReifiable(Type t) {
1729        return isReifiable.visit(t);
1730    }
1731    // where
1732        private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
1733
1734            public Boolean visitType(Type t, Void ignored) {
1735                return true;
1736            }
1737
1738            @Override
1739            public Boolean visitClassType(ClassType t, Void ignored) {
1740                if (t.isCompound())
1741                    return false;
1742                else {
1743                    if (!t.isParameterized())
1744                        return true;
1745
1746                    for (Type param : t.allparams()) {
1747                        if (!param.isUnbound())
1748                            return false;
1749                    }
1750                    return true;
1751                }
1752            }
1753
1754            @Override
1755            public Boolean visitArrayType(ArrayType t, Void ignored) {
1756                return visit(t.elemtype);
1757            }
1758
1759            @Override
1760            public Boolean visitTypeVar(TypeVar t, Void ignored) {
1761                return false;
1762            }
1763        };
1764    // </editor-fold>
1765
1766    // <editor-fold defaultstate="collapsed" desc="Array Utils">
1767    public boolean isArray(Type t) {
1768        while (t.hasTag(WILDCARD))
1769            t = wildUpperBound(t);
1770        return t.hasTag(ARRAY);
1771    }
1772
1773    /**
1774     * The element type of an array.
1775     */
1776    public Type elemtype(Type t) {
1777        switch (t.getTag()) {
1778        case WILDCARD:
1779            return elemtype(wildUpperBound(t));
1780        case ARRAY:
1781            return ((ArrayType)t).elemtype;
1782        case FORALL:
1783            return elemtype(((ForAll)t).qtype);
1784        case ERROR:
1785            return t;
1786        default:
1787            return null;
1788        }
1789    }
1790
1791    public Type elemtypeOrType(Type t) {
1792        Type elemtype = elemtype(t);
1793        return elemtype != null ?
1794            elemtype :
1795            t;
1796    }
1797
1798    /**
1799     * Mapping to take element type of an arraytype
1800     */
1801    private TypeMapping<Void> elemTypeFun = new TypeMapping<Void>() {
1802        @Override
1803        public Type visitArrayType(ArrayType t, Void _unused) {
1804            return t.elemtype;
1805        }
1806
1807        @Override
1808        public Type visitTypeVar(TypeVar t, Void _unused) {
1809            return visit(skipTypeVars(t, false));
1810        }
1811    };
1812
1813    /**
1814     * The number of dimensions of an array type.
1815     */
1816    public int dimensions(Type t) {
1817        int result = 0;
1818        while (t.hasTag(ARRAY)) {
1819            result++;
1820            t = elemtype(t);
1821        }
1822        return result;
1823    }
1824
1825    /**
1826     * Returns an ArrayType with the component type t
1827     *
1828     * @param t The component type of the ArrayType
1829     * @return the ArrayType for the given component
1830     */
1831    public ArrayType makeArrayType(Type t) {
1832        if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
1833            Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
1834        }
1835        return new ArrayType(t, syms.arrayClass);
1836    }
1837    // </editor-fold>
1838
1839    // <editor-fold defaultstate="collapsed" desc="asSuper">
1840    /**
1841     * Return the (most specific) base type of t that starts with the
1842     * given symbol.  If none exists, return null.
1843     *
1844     * Caveat Emptor: Since javac represents the class of all arrays with a singleton
1845     * symbol Symtab.arrayClass, which by being a singleton cannot hold any discriminant,
1846     * this method could yield surprising answers when invoked on arrays. For example when
1847     * invoked with t being byte [] and sym being t.sym itself, asSuper would answer null.
1848     *
1849     * @param t a type
1850     * @param sym a symbol
1851     */
1852    public Type asSuper(Type t, Symbol sym) {
1853        /* Some examples:
1854         *
1855         * (Enum<E>, Comparable) => Comparable<E>
1856         * (c.s.s.d.AttributeTree.ValueKind, Enum) => Enum<c.s.s.d.AttributeTree.ValueKind>
1857         * (c.s.s.t.ExpressionTree, c.s.s.t.Tree) => c.s.s.t.Tree
1858         * (j.u.List<capture#160 of ? extends c.s.s.d.DocTree>, Iterable) =>
1859         *     Iterable<capture#160 of ? extends c.s.s.d.DocTree>
1860         */
1861        if (sym.type == syms.objectType) { //optimization
1862            return syms.objectType;
1863        }
1864        return asSuper.visit(t, sym);
1865    }
1866    // where
1867        private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
1868
1869            public Type visitType(Type t, Symbol sym) {
1870                return null;
1871            }
1872
1873            @Override
1874            public Type visitClassType(ClassType t, Symbol sym) {
1875                if (t.tsym == sym)
1876                    return t;
1877
1878                Type st = supertype(t);
1879                if (st.hasTag(CLASS) || st.hasTag(TYPEVAR)) {
1880                    Type x = asSuper(st, sym);
1881                    if (x != null)
1882                        return x;
1883                }
1884                if ((sym.flags() & INTERFACE) != 0) {
1885                    for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
1886                        if (!l.head.hasTag(ERROR)) {
1887                            Type x = asSuper(l.head, sym);
1888                            if (x != null)
1889                                return x;
1890                        }
1891                    }
1892                }
1893                return null;
1894            }
1895
1896            @Override
1897            public Type visitArrayType(ArrayType t, Symbol sym) {
1898                return isSubtype(t, sym.type) ? sym.type : null;
1899            }
1900
1901            @Override
1902            public Type visitTypeVar(TypeVar t, Symbol sym) {
1903                if (t.tsym == sym)
1904                    return t;
1905                else
1906                    return asSuper(t.bound, sym);
1907            }
1908
1909            @Override
1910            public Type visitErrorType(ErrorType t, Symbol sym) {
1911                return t;
1912            }
1913        };
1914
1915    /**
1916     * Return the base type of t or any of its outer types that starts
1917     * with the given symbol.  If none exists, return null.
1918     *
1919     * @param t a type
1920     * @param sym a symbol
1921     */
1922    public Type asOuterSuper(Type t, Symbol sym) {
1923        switch (t.getTag()) {
1924        case CLASS:
1925            do {
1926                Type s = asSuper(t, sym);
1927                if (s != null) return s;
1928                t = t.getEnclosingType();
1929            } while (t.hasTag(CLASS));
1930            return null;
1931        case ARRAY:
1932            return isSubtype(t, sym.type) ? sym.type : null;
1933        case TYPEVAR:
1934            return asSuper(t, sym);
1935        case ERROR:
1936            return t;
1937        default:
1938            return null;
1939        }
1940    }
1941
1942    /**
1943     * Return the base type of t or any of its enclosing types that
1944     * starts with the given symbol.  If none exists, return null.
1945     *
1946     * @param t a type
1947     * @param sym a symbol
1948     */
1949    public Type asEnclosingSuper(Type t, Symbol sym) {
1950        switch (t.getTag()) {
1951        case CLASS:
1952            do {
1953                Type s = asSuper(t, sym);
1954                if (s != null) return s;
1955                Type outer = t.getEnclosingType();
1956                t = (outer.hasTag(CLASS)) ? outer :
1957                    (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
1958                    Type.noType;
1959            } while (t.hasTag(CLASS));
1960            return null;
1961        case ARRAY:
1962            return isSubtype(t, sym.type) ? sym.type : null;
1963        case TYPEVAR:
1964            return asSuper(t, sym);
1965        case ERROR:
1966            return t;
1967        default:
1968            return null;
1969        }
1970    }
1971    // </editor-fold>
1972
1973    // <editor-fold defaultstate="collapsed" desc="memberType">
1974    /**
1975     * The type of given symbol, seen as a member of t.
1976     *
1977     * @param t a type
1978     * @param sym a symbol
1979     */
1980    public Type memberType(Type t, Symbol sym) {
1981        return (sym.flags() & STATIC) != 0
1982            ? sym.type
1983            : memberType.visit(t, sym);
1984        }
1985    // where
1986        private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
1987
1988            public Type visitType(Type t, Symbol sym) {
1989                return sym.type;
1990            }
1991
1992            @Override
1993            public Type visitWildcardType(WildcardType t, Symbol sym) {
1994                return memberType(wildUpperBound(t), sym);
1995            }
1996
1997            @Override
1998            public Type visitClassType(ClassType t, Symbol sym) {
1999                Symbol owner = sym.owner;
2000                long flags = sym.flags();
2001                if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
2002                    Type base = asOuterSuper(t, owner);
2003                    //if t is an intersection type T = CT & I1 & I2 ... & In
2004                    //its supertypes CT, I1, ... In might contain wildcards
2005                    //so we need to go through capture conversion
2006                    base = t.isCompound() ? capture(base) : base;
2007                    if (base != null) {
2008                        List<Type> ownerParams = owner.type.allparams();
2009                        List<Type> baseParams = base.allparams();
2010                        if (ownerParams.nonEmpty()) {
2011                            if (baseParams.isEmpty()) {
2012                                // then base is a raw type
2013                                return erasure(sym.type);
2014                            } else {
2015                                return subst(sym.type, ownerParams, baseParams);
2016                            }
2017                        }
2018                    }
2019                }
2020                return sym.type;
2021            }
2022
2023            @Override
2024            public Type visitTypeVar(TypeVar t, Symbol sym) {
2025                return memberType(t.bound, sym);
2026            }
2027
2028            @Override
2029            public Type visitErrorType(ErrorType t, Symbol sym) {
2030                return t;
2031            }
2032        };
2033    // </editor-fold>
2034
2035    // <editor-fold defaultstate="collapsed" desc="isAssignable">
2036    public boolean isAssignable(Type t, Type s) {
2037        return isAssignable(t, s, noWarnings);
2038    }
2039
2040    /**
2041     * Is t assignable to s?<br>
2042     * Equivalent to subtype except for constant values and raw
2043     * types.<br>
2044     * (not defined for Method and ForAll types)
2045     */
2046    public boolean isAssignable(Type t, Type s, Warner warn) {
2047        if (t.hasTag(ERROR))
2048            return true;
2049        if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
2050            int value = ((Number)t.constValue()).intValue();
2051            switch (s.getTag()) {
2052            case BYTE:
2053            case CHAR:
2054            case SHORT:
2055            case INT:
2056                if (s.getTag().checkRange(value))
2057                    return true;
2058                break;
2059            case CLASS:
2060                switch (unboxedType(s).getTag()) {
2061                case BYTE:
2062                case CHAR:
2063                case SHORT:
2064                    return isAssignable(t, unboxedType(s), warn);
2065                }
2066                break;
2067            }
2068        }
2069        return isConvertible(t, s, warn);
2070    }
2071    // </editor-fold>
2072
2073    // <editor-fold defaultstate="collapsed" desc="erasure">
2074    /**
2075     * The erasure of t {@code |t|} -- the type that results when all
2076     * type parameters in t are deleted.
2077     */
2078    public Type erasure(Type t) {
2079        return eraseNotNeeded(t) ? t : erasure(t, false);
2080    }
2081    //where
2082    private boolean eraseNotNeeded(Type t) {
2083        // We don't want to erase primitive types and String type as that
2084        // operation is idempotent. Also, erasing these could result in loss
2085        // of information such as constant values attached to such types.
2086        return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
2087    }
2088
2089    private Type erasure(Type t, boolean recurse) {
2090        if (t.isPrimitive()) {
2091            return t; /* fast special case */
2092        } else {
2093            Type out = erasure.visit(t, recurse);
2094            return out;
2095        }
2096        }
2097    // where
2098        private TypeMapping<Boolean> erasure = new TypeMapping<Boolean>() {
2099            private Type combineMetadata(final Type s,
2100                                         final Type t) {
2101                if (t.getMetadata() != TypeMetadata.EMPTY) {
2102                    switch (s.getKind()) {
2103                        case OTHER:
2104                        case UNION:
2105                        case INTERSECTION:
2106                        case PACKAGE:
2107                        case EXECUTABLE:
2108                        case NONE:
2109                        case VOID:
2110                        case ERROR:
2111                            return s;
2112                        default: return s.cloneWithMetadata(s.getMetadata().without(Kind.ANNOTATIONS));
2113                    }
2114                } else {
2115                    return s;
2116                }
2117            }
2118
2119            public Type visitType(Type t, Boolean recurse) {
2120                if (t.isPrimitive())
2121                    return t; /*fast special case*/
2122                else {
2123                    //other cases already handled
2124                    return combineMetadata(t, t);
2125                }
2126            }
2127
2128            @Override
2129            public Type visitWildcardType(WildcardType t, Boolean recurse) {
2130                Type erased = erasure(wildUpperBound(t), recurse);
2131                return combineMetadata(erased, t);
2132            }
2133
2134            @Override
2135            public Type visitClassType(ClassType t, Boolean recurse) {
2136                Type erased = t.tsym.erasure(Types.this);
2137                if (recurse) {
2138                    erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym,
2139                            t.getMetadata().without(Kind.ANNOTATIONS));
2140                    return erased;
2141                } else {
2142                    return combineMetadata(erased, t);
2143                }
2144            }
2145
2146            @Override
2147            public Type visitTypeVar(TypeVar t, Boolean recurse) {
2148                Type erased = erasure(t.bound, recurse);
2149                return combineMetadata(erased, t);
2150            }
2151        };
2152
2153    public List<Type> erasure(List<Type> ts) {
2154        return erasure.visit(ts, false);
2155    }
2156
2157    public Type erasureRecursive(Type t) {
2158        return erasure(t, true);
2159    }
2160
2161    public List<Type> erasureRecursive(List<Type> ts) {
2162        return erasure.visit(ts, true);
2163    }
2164    // </editor-fold>
2165
2166    // <editor-fold defaultstate="collapsed" desc="makeIntersectionType">
2167    /**
2168     * Make an intersection type from non-empty list of types.  The list should be ordered according to
2169     * {@link TypeSymbol#precedes(TypeSymbol, Types)}. Note that this might cause a symbol completion.
2170     * Hence, this version of makeIntersectionType may not be called during a classfile read.
2171     *
2172     * @param bounds    the types from which the intersection type is formed
2173     */
2174    public IntersectionClassType makeIntersectionType(List<Type> bounds) {
2175        return makeIntersectionType(bounds, bounds.head.tsym.isInterface());
2176    }
2177
2178    /**
2179     * Make an intersection type from non-empty list of types.  The list should be ordered according to
2180     * {@link TypeSymbol#precedes(TypeSymbol, Types)}. This does not cause symbol completion as
2181     * an extra parameter indicates as to whether all bounds are interfaces - in which case the
2182     * supertype is implicitly assumed to be 'Object'.
2183     *
2184     * @param bounds        the types from which the intersection type is formed
2185     * @param allInterfaces are all bounds interface types?
2186     */
2187    public IntersectionClassType makeIntersectionType(List<Type> bounds, boolean allInterfaces) {
2188        Assert.check(bounds.nonEmpty());
2189        Type firstExplicitBound = bounds.head;
2190        if (allInterfaces) {
2191            bounds = bounds.prepend(syms.objectType);
2192        }
2193        ClassSymbol bc =
2194            new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
2195                            Type.moreInfo
2196                                ? names.fromString(bounds.toString())
2197                                : names.empty,
2198                            null,
2199                            syms.noSymbol);
2200        IntersectionClassType intersectionType = new IntersectionClassType(bounds, bc, allInterfaces);
2201        bc.type = intersectionType;
2202        bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
2203                syms.objectType : // error condition, recover
2204                erasure(firstExplicitBound);
2205        bc.members_field = WriteableScope.create(bc);
2206        return intersectionType;
2207    }
2208    // </editor-fold>
2209
2210    // <editor-fold defaultstate="collapsed" desc="supertype">
2211    public Type supertype(Type t) {
2212        return supertype.visit(t);
2213    }
2214    // where
2215        private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
2216
2217            public Type visitType(Type t, Void ignored) {
2218                // A note on wildcards: there is no good way to
2219                // determine a supertype for a super bounded wildcard.
2220                return Type.noType;
2221            }
2222
2223            @Override
2224            public Type visitClassType(ClassType t, Void ignored) {
2225                if (t.supertype_field == null) {
2226                    Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
2227                    // An interface has no superclass; its supertype is Object.
2228                    if (t.isInterface())
2229                        supertype = ((ClassType)t.tsym.type).supertype_field;
2230                    if (t.supertype_field == null) {
2231                        List<Type> actuals = classBound(t).allparams();
2232                        List<Type> formals = t.tsym.type.allparams();
2233                        if (t.hasErasedSupertypes()) {
2234                            t.supertype_field = erasureRecursive(supertype);
2235                        } else if (formals.nonEmpty()) {
2236                            t.supertype_field = subst(supertype, formals, actuals);
2237                        }
2238                        else {
2239                            t.supertype_field = supertype;
2240                        }
2241                    }
2242                }
2243                return t.supertype_field;
2244            }
2245
2246            /**
2247             * The supertype is always a class type. If the type
2248             * variable's bounds start with a class type, this is also
2249             * the supertype.  Otherwise, the supertype is
2250             * java.lang.Object.
2251             */
2252            @Override
2253            public Type visitTypeVar(TypeVar t, Void ignored) {
2254                if (t.bound.hasTag(TYPEVAR) ||
2255                    (!t.bound.isCompound() && !t.bound.isInterface())) {
2256                    return t.bound;
2257                } else {
2258                    return supertype(t.bound);
2259                }
2260            }
2261
2262            @Override
2263            public Type visitArrayType(ArrayType t, Void ignored) {
2264                if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
2265                    return arraySuperType();
2266                else
2267                    return new ArrayType(supertype(t.elemtype), t.tsym);
2268            }
2269
2270            @Override
2271            public Type visitErrorType(ErrorType t, Void ignored) {
2272                return Type.noType;
2273            }
2274        };
2275    // </editor-fold>
2276
2277    // <editor-fold defaultstate="collapsed" desc="interfaces">
2278    /**
2279     * Return the interfaces implemented by this class.
2280     */
2281    public List<Type> interfaces(Type t) {
2282        return interfaces.visit(t);
2283    }
2284    // where
2285        private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
2286
2287            public List<Type> visitType(Type t, Void ignored) {
2288                return List.nil();
2289            }
2290
2291            @Override
2292            public List<Type> visitClassType(ClassType t, Void ignored) {
2293                if (t.interfaces_field == null) {
2294                    List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
2295                    if (t.interfaces_field == null) {
2296                        // If t.interfaces_field is null, then t must
2297                        // be a parameterized type (not to be confused
2298                        // with a generic type declaration).
2299                        // Terminology:
2300                        //    Parameterized type: List<String>
2301                        //    Generic type declaration: class List<E> { ... }
2302                        // So t corresponds to List<String> and
2303                        // t.tsym.type corresponds to List<E>.
2304                        // The reason t must be parameterized type is
2305                        // that completion will happen as a side
2306                        // effect of calling
2307                        // ClassSymbol.getInterfaces.  Since
2308                        // t.interfaces_field is null after
2309                        // completion, we can assume that t is not the
2310                        // type of a class/interface declaration.
2311                        Assert.check(t != t.tsym.type, t);
2312                        List<Type> actuals = t.allparams();
2313                        List<Type> formals = t.tsym.type.allparams();
2314                        if (t.hasErasedSupertypes()) {
2315                            t.interfaces_field = erasureRecursive(interfaces);
2316                        } else if (formals.nonEmpty()) {
2317                            t.interfaces_field = subst(interfaces, formals, actuals);
2318                        }
2319                        else {
2320                            t.interfaces_field = interfaces;
2321                        }
2322                    }
2323                }
2324                return t.interfaces_field;
2325            }
2326
2327            @Override
2328            public List<Type> visitTypeVar(TypeVar t, Void ignored) {
2329                if (t.bound.isCompound())
2330                    return interfaces(t.bound);
2331
2332                if (t.bound.isInterface())
2333                    return List.of(t.bound);
2334
2335                return List.nil();
2336            }
2337        };
2338
2339    public List<Type> directSupertypes(Type t) {
2340        return directSupertypes.visit(t);
2341    }
2342    // where
2343        private final UnaryVisitor<List<Type>> directSupertypes = new UnaryVisitor<List<Type>>() {
2344
2345            public List<Type> visitType(final Type type, final Void ignored) {
2346                if (!type.isIntersection()) {
2347                    final Type sup = supertype(type);
2348                    return (sup == Type.noType || sup == type || sup == null)
2349                        ? interfaces(type)
2350                        : interfaces(type).prepend(sup);
2351                } else {
2352                    return ((IntersectionClassType)type).getExplicitComponents();
2353                }
2354            }
2355        };
2356
2357    public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
2358        for (Type i2 : interfaces(origin.type)) {
2359            if (isym == i2.tsym) return true;
2360        }
2361        return false;
2362    }
2363    // </editor-fold>
2364
2365    // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
2366    Map<Type,Boolean> isDerivedRawCache = new HashMap<>();
2367
2368    public boolean isDerivedRaw(Type t) {
2369        Boolean result = isDerivedRawCache.get(t);
2370        if (result == null) {
2371            result = isDerivedRawInternal(t);
2372            isDerivedRawCache.put(t, result);
2373        }
2374        return result;
2375    }
2376
2377    public boolean isDerivedRawInternal(Type t) {
2378        if (t.isErroneous())
2379            return false;
2380        return
2381            t.isRaw() ||
2382            supertype(t) != Type.noType && isDerivedRaw(supertype(t)) ||
2383            isDerivedRaw(interfaces(t));
2384    }
2385
2386    public boolean isDerivedRaw(List<Type> ts) {
2387        List<Type> l = ts;
2388        while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
2389        return l.nonEmpty();
2390    }
2391    // </editor-fold>
2392
2393    // <editor-fold defaultstate="collapsed" desc="setBounds">
2394    /**
2395     * Same as {@link Types#setBounds(TypeVar, List, boolean)}, except that third parameter is computed directly,
2396     * as follows: if all all bounds are interface types, the computed supertype is Object,otherwise
2397     * the supertype is simply left null (in this case, the supertype is assumed to be the head of
2398     * the bound list passed as second argument). Note that this check might cause a symbol completion.
2399     * Hence, this version of setBounds may not be called during a classfile read.
2400     *
2401     * @param t         a type variable
2402     * @param bounds    the bounds, must be nonempty
2403     */
2404    public void setBounds(TypeVar t, List<Type> bounds) {
2405        setBounds(t, bounds, bounds.head.tsym.isInterface());
2406    }
2407
2408    /**
2409     * Set the bounds field of the given type variable to reflect a (possibly multiple) list of bounds.
2410     * This does not cause symbol completion as an extra parameter indicates as to whether all bounds
2411     * are interfaces - in which case the supertype is implicitly assumed to be 'Object'.
2412     *
2413     * @param t             a type variable
2414     * @param bounds        the bounds, must be nonempty
2415     * @param allInterfaces are all bounds interface types?
2416     */
2417    public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
2418        t.bound = bounds.tail.isEmpty() ?
2419                bounds.head :
2420                makeIntersectionType(bounds, allInterfaces);
2421        t.rank_field = -1;
2422    }
2423    // </editor-fold>
2424
2425    // <editor-fold defaultstate="collapsed" desc="getBounds">
2426    /**
2427     * Return list of bounds of the given type variable.
2428     */
2429    public List<Type> getBounds(TypeVar t) {
2430        if (t.bound.hasTag(NONE))
2431            return List.nil();
2432        else if (t.bound.isErroneous() || !t.bound.isCompound())
2433            return List.of(t.bound);
2434        else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
2435            return interfaces(t).prepend(supertype(t));
2436        else
2437            // No superclass was given in bounds.
2438            // In this case, supertype is Object, erasure is first interface.
2439            return interfaces(t);
2440    }
2441    // </editor-fold>
2442
2443    // <editor-fold defaultstate="collapsed" desc="classBound">
2444    /**
2445     * If the given type is a (possibly selected) type variable,
2446     * return the bounding class of this type, otherwise return the
2447     * type itself.
2448     */
2449    public Type classBound(Type t) {
2450        return classBound.visit(t);
2451    }
2452    // where
2453        private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
2454
2455            public Type visitType(Type t, Void ignored) {
2456                return t;
2457            }
2458
2459            @Override
2460            public Type visitClassType(ClassType t, Void ignored) {
2461                Type outer1 = classBound(t.getEnclosingType());
2462                if (outer1 != t.getEnclosingType())
2463                    return new ClassType(outer1, t.getTypeArguments(), t.tsym,
2464                                         t.getMetadata());
2465                else
2466                    return t;
2467            }
2468
2469            @Override
2470            public Type visitTypeVar(TypeVar t, Void ignored) {
2471                return classBound(supertype(t));
2472            }
2473
2474            @Override
2475            public Type visitErrorType(ErrorType t, Void ignored) {
2476                return t;
2477            }
2478        };
2479    // </editor-fold>
2480
2481    // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
2482    /**
2483     * Returns true iff the first signature is a <em>sub
2484     * signature</em> of the other.  This is <b>not</b> an equivalence
2485     * relation.
2486     *
2487     * @jls section 8.4.2.
2488     * @see #overrideEquivalent(Type t, Type s)
2489     * @param t first signature (possibly raw).
2490     * @param s second signature (could be subjected to erasure).
2491     * @return true if t is a sub signature of s.
2492     */
2493    public boolean isSubSignature(Type t, Type s) {
2494        return isSubSignature(t, s, true);
2495    }
2496
2497    public boolean isSubSignature(Type t, Type s, boolean strict) {
2498        return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
2499    }
2500
2501    /**
2502     * Returns true iff these signatures are related by <em>override
2503     * equivalence</em>.  This is the natural extension of
2504     * isSubSignature to an equivalence relation.
2505     *
2506     * @jls section 8.4.2.
2507     * @see #isSubSignature(Type t, Type s)
2508     * @param t a signature (possible raw, could be subjected to
2509     * erasure).
2510     * @param s a signature (possible raw, could be subjected to
2511     * erasure).
2512     * @return true if either argument is a sub signature of the other.
2513     */
2514    public boolean overrideEquivalent(Type t, Type s) {
2515        return hasSameArgs(t, s) ||
2516            hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
2517    }
2518
2519    public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
2520        for (Symbol sym : syms.objectType.tsym.members().getSymbolsByName(msym.name)) {
2521            if (msym.overrides(sym, origin, Types.this, true)) {
2522                return true;
2523            }
2524        }
2525        return false;
2526    }
2527
2528    /**
2529     * This enum defines the strategy for implementing most specific return type check
2530     * during the most specific and functional interface checks.
2531     */
2532    public enum MostSpecificReturnCheck {
2533        /**
2534         * Return r1 is more specific than r2 if {@code r1 <: r2}. Extra care required for (i) handling
2535         * method type variables (if either method is generic) and (ii) subtyping should be replaced
2536         * by type-equivalence for primitives. This is essentially an inlined version of
2537         * {@link Types#resultSubtype(Type, Type, Warner)}, where the assignability check has been
2538         * replaced with a strict subtyping check.
2539         */
2540        BASIC() {
2541            @Override
2542            public boolean test(Type mt1, Type mt2, Types types) {
2543                List<Type> tvars = mt1.getTypeArguments();
2544                List<Type> svars = mt2.getTypeArguments();
2545                Type t = mt1.getReturnType();
2546                Type s = types.subst(mt2.getReturnType(), svars, tvars);
2547                return types.isSameType(t, s) ||
2548                    !t.isPrimitive() &&
2549                    !s.isPrimitive() &&
2550                    types.isSubtype(t, s);
2551            }
2552        },
2553        /**
2554         * Return r1 is more specific than r2 if r1 is return-type-substitutable for r2.
2555         */
2556        RTS() {
2557            @Override
2558            public boolean test(Type mt1, Type mt2, Types types) {
2559                return types.returnTypeSubstitutable(mt1, mt2);
2560            }
2561        };
2562
2563        public abstract boolean test(Type mt1, Type mt2, Types types);
2564    }
2565
2566    /**
2567     * Merge multiple abstract methods. The preferred method is a method that is a subsignature
2568     * of all the other signatures and whose return type is more specific {@see MostSpecificReturnCheck}.
2569     * The resulting preferred method has a thrown clause that is the intersection of the merged
2570     * methods' clauses.
2571     */
2572    public Optional<Symbol> mergeAbstracts(List<Symbol> ambiguousInOrder, Type site, boolean sigCheck) {
2573        //first check for preconditions
2574        boolean shouldErase = false;
2575        List<Type> erasedParams = ambiguousInOrder.head.erasure(this).getParameterTypes();
2576        for (Symbol s : ambiguousInOrder) {
2577            if ((s.flags() & ABSTRACT) == 0 ||
2578                    (sigCheck && !isSameTypes(erasedParams, s.erasure(this).getParameterTypes()))) {
2579                return Optional.empty();
2580            } else if (s.type.hasTag(FORALL)) {
2581                shouldErase = true;
2582            }
2583        }
2584        //then merge abstracts
2585        for (MostSpecificReturnCheck mostSpecificReturnCheck : MostSpecificReturnCheck.values()) {
2586            outer: for (Symbol s : ambiguousInOrder) {
2587                Type mt = memberType(site, s);
2588                List<Type> allThrown = mt.getThrownTypes();
2589                for (Symbol s2 : ambiguousInOrder) {
2590                    if (s != s2) {
2591                        Type mt2 = memberType(site, s2);
2592                        if (!isSubSignature(mt, mt2) ||
2593                                !mostSpecificReturnCheck.test(mt, mt2, this)) {
2594                            //ambiguity cannot be resolved
2595                            continue outer;
2596                        } else {
2597                            List<Type> thrownTypes2 = mt2.getThrownTypes();
2598                            if (!mt.hasTag(FORALL) && shouldErase) {
2599                                thrownTypes2 = erasure(thrownTypes2);
2600                            } else if (mt.hasTag(FORALL)) {
2601                                //subsignature implies that if most specific is generic, then all other
2602                                //methods are too
2603                                Assert.check(mt2.hasTag(FORALL));
2604                                // if both are generic methods, adjust thrown types ahead of intersection computation
2605                                thrownTypes2 = subst(thrownTypes2, mt2.getTypeArguments(), mt.getTypeArguments());
2606                            }
2607                            allThrown = chk.intersect(allThrown, thrownTypes2);
2608                        }
2609                    }
2610                }
2611                return (allThrown == mt.getThrownTypes()) ?
2612                        Optional.of(s) :
2613                        Optional.of(new MethodSymbol(
2614                                s.flags(),
2615                                s.name,
2616                                createMethodTypeWithThrown(s.type, allThrown),
2617                                s.owner) {
2618                            @Override
2619                            public Symbol baseSymbol() {
2620                                return s;
2621                            }
2622                        });
2623            }
2624        }
2625        return Optional.empty();
2626    }
2627
2628    // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
2629    class ImplementationCache {
2630
2631        private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map = new WeakHashMap<>();
2632
2633        class Entry {
2634            final MethodSymbol cachedImpl;
2635            final Filter<Symbol> implFilter;
2636            final boolean checkResult;
2637            final int prevMark;
2638
2639            public Entry(MethodSymbol cachedImpl,
2640                    Filter<Symbol> scopeFilter,
2641                    boolean checkResult,
2642                    int prevMark) {
2643                this.cachedImpl = cachedImpl;
2644                this.implFilter = scopeFilter;
2645                this.checkResult = checkResult;
2646                this.prevMark = prevMark;
2647            }
2648
2649            boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
2650                return this.implFilter == scopeFilter &&
2651                        this.checkResult == checkResult &&
2652                        this.prevMark == mark;
2653            }
2654        }
2655
2656        MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2657            SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
2658            Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
2659            if (cache == null) {
2660                cache = new HashMap<>();
2661                _map.put(ms, new SoftReference<>(cache));
2662            }
2663            Entry e = cache.get(origin);
2664            CompoundScope members = membersClosure(origin.type, true);
2665            if (e == null ||
2666                    !e.matches(implFilter, checkResult, members.getMark())) {
2667                MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
2668                cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
2669                return impl;
2670            }
2671            else {
2672                return e.cachedImpl;
2673            }
2674        }
2675
2676        private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2677            for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
2678                t = skipTypeVars(t, false);
2679                TypeSymbol c = t.tsym;
2680                Symbol bestSoFar = null;
2681                for (Symbol sym : c.members().getSymbolsByName(ms.name, implFilter)) {
2682                    if (sym != null && sym.overrides(ms, origin, Types.this, checkResult)) {
2683                        bestSoFar = sym;
2684                        if ((sym.flags() & ABSTRACT) == 0) {
2685                            //if concrete impl is found, exit immediately
2686                            break;
2687                        }
2688                    }
2689                }
2690                if (bestSoFar != null) {
2691                    //return either the (only) concrete implementation or the first abstract one
2692                    return (MethodSymbol)bestSoFar;
2693                }
2694            }
2695            return null;
2696        }
2697    }
2698
2699    private ImplementationCache implCache = new ImplementationCache();
2700
2701    public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2702        return implCache.get(ms, origin, checkResult, implFilter);
2703    }
2704    // </editor-fold>
2705
2706    // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
2707    class MembersClosureCache extends SimpleVisitor<Scope.CompoundScope, Void> {
2708
2709        private Map<TypeSymbol, CompoundScope> _map = new HashMap<>();
2710
2711        Set<TypeSymbol> seenTypes = new HashSet<>();
2712
2713        class MembersScope extends CompoundScope {
2714
2715            CompoundScope scope;
2716
2717            public MembersScope(CompoundScope scope) {
2718                super(scope.owner);
2719                this.scope = scope;
2720            }
2721
2722            Filter<Symbol> combine(Filter<Symbol> sf) {
2723                return s -> !s.owner.isInterface() && (sf == null || sf.accepts(s));
2724            }
2725
2726            @Override
2727            public Iterable<Symbol> getSymbols(Filter<Symbol> sf, LookupKind lookupKind) {
2728                return scope.getSymbols(combine(sf), lookupKind);
2729            }
2730
2731            @Override
2732            public Iterable<Symbol> getSymbolsByName(Name name, Filter<Symbol> sf, LookupKind lookupKind) {
2733                return scope.getSymbolsByName(name, combine(sf), lookupKind);
2734            }
2735
2736            @Override
2737            public int getMark() {
2738                return scope.getMark();
2739            }
2740        }
2741
2742        CompoundScope nilScope;
2743
2744        /** members closure visitor methods **/
2745
2746        public CompoundScope visitType(Type t, Void _unused) {
2747            if (nilScope == null) {
2748                nilScope = new CompoundScope(syms.noSymbol);
2749            }
2750            return nilScope;
2751        }
2752
2753        @Override
2754        public CompoundScope visitClassType(ClassType t, Void _unused) {
2755            if (!seenTypes.add(t.tsym)) {
2756                //this is possible when an interface is implemented in multiple
2757                //superclasses, or when a class hierarchy is circular - in such
2758                //cases we don't need to recurse (empty scope is returned)
2759                return new CompoundScope(t.tsym);
2760            }
2761            try {
2762                seenTypes.add(t.tsym);
2763                ClassSymbol csym = (ClassSymbol)t.tsym;
2764                CompoundScope membersClosure = _map.get(csym);
2765                if (membersClosure == null) {
2766                    membersClosure = new CompoundScope(csym);
2767                    for (Type i : interfaces(t)) {
2768                        membersClosure.prependSubScope(visit(i, null));
2769                    }
2770                    membersClosure.prependSubScope(visit(supertype(t), null));
2771                    membersClosure.prependSubScope(csym.members());
2772                    _map.put(csym, membersClosure);
2773                }
2774                return membersClosure;
2775            }
2776            finally {
2777                seenTypes.remove(t.tsym);
2778            }
2779        }
2780
2781        @Override
2782        public CompoundScope visitTypeVar(TypeVar t, Void _unused) {
2783            return visit(t.getUpperBound(), null);
2784        }
2785    }
2786
2787    private MembersClosureCache membersCache = new MembersClosureCache();
2788
2789    public CompoundScope membersClosure(Type site, boolean skipInterface) {
2790        CompoundScope cs = membersCache.visit(site, null);
2791        Assert.checkNonNull(cs, () -> "type " + site);
2792        return skipInterface ? membersCache.new MembersScope(cs) : cs;
2793    }
2794    // </editor-fold>
2795
2796
2797    /** Return first abstract member of class `sym'.
2798     */
2799    public MethodSymbol firstUnimplementedAbstract(ClassSymbol sym) {
2800        try {
2801            return firstUnimplementedAbstractImpl(sym, sym);
2802        } catch (CompletionFailure ex) {
2803            chk.completionError(enter.getEnv(sym).tree.pos(), ex);
2804            return null;
2805        }
2806    }
2807        //where:
2808        private MethodSymbol firstUnimplementedAbstractImpl(ClassSymbol impl, ClassSymbol c) {
2809            MethodSymbol undef = null;
2810            // Do not bother to search in classes that are not abstract,
2811            // since they cannot have abstract members.
2812            if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
2813                Scope s = c.members();
2814                for (Symbol sym : s.getSymbols(NON_RECURSIVE)) {
2815                    if (sym.kind == MTH &&
2816                        (sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
2817                        MethodSymbol absmeth = (MethodSymbol)sym;
2818                        MethodSymbol implmeth = absmeth.implementation(impl, this, true);
2819                        if (implmeth == null || implmeth == absmeth) {
2820                            //look for default implementations
2821                            if (allowDefaultMethods) {
2822                                MethodSymbol prov = interfaceCandidates(impl.type, absmeth).head;
2823                                if (prov != null && prov.overrides(absmeth, impl, this, true)) {
2824                                    implmeth = prov;
2825                                }
2826                            }
2827                        }
2828                        if (implmeth == null || implmeth == absmeth) {
2829                            undef = absmeth;
2830                            break;
2831                        }
2832                    }
2833                }
2834                if (undef == null) {
2835                    Type st = supertype(c.type);
2836                    if (st.hasTag(CLASS))
2837                        undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)st.tsym);
2838                }
2839                for (List<Type> l = interfaces(c.type);
2840                     undef == null && l.nonEmpty();
2841                     l = l.tail) {
2842                    undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)l.head.tsym);
2843                }
2844            }
2845            return undef;
2846        }
2847
2848    public class CandidatesCache {
2849        public Map<Entry, List<MethodSymbol>> cache = new WeakHashMap<>();
2850
2851        class Entry {
2852            Type site;
2853            MethodSymbol msym;
2854
2855            Entry(Type site, MethodSymbol msym) {
2856                this.site = site;
2857                this.msym = msym;
2858            }
2859
2860            @Override
2861            public boolean equals(Object obj) {
2862                if (obj instanceof Entry) {
2863                    Entry e = (Entry)obj;
2864                    return e.msym == msym && isSameType(site, e.site);
2865                } else {
2866                    return false;
2867                }
2868            }
2869
2870            @Override
2871            public int hashCode() {
2872                return Types.this.hashCode(site) & ~msym.hashCode();
2873            }
2874        }
2875
2876        public List<MethodSymbol> get(Entry e) {
2877            return cache.get(e);
2878        }
2879
2880        public void put(Entry e, List<MethodSymbol> msymbols) {
2881            cache.put(e, msymbols);
2882        }
2883    }
2884
2885    public CandidatesCache candidatesCache = new CandidatesCache();
2886
2887    //where
2888    public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
2889        CandidatesCache.Entry e = candidatesCache.new Entry(site, ms);
2890        List<MethodSymbol> candidates = candidatesCache.get(e);
2891        if (candidates == null) {
2892            Filter<Symbol> filter = new MethodFilter(ms, site);
2893            List<MethodSymbol> candidates2 = List.nil();
2894            for (Symbol s : membersClosure(site, false).getSymbols(filter)) {
2895                if (!site.tsym.isInterface() && !s.owner.isInterface()) {
2896                    return List.of((MethodSymbol)s);
2897                } else if (!candidates2.contains(s)) {
2898                    candidates2 = candidates2.prepend((MethodSymbol)s);
2899                }
2900            }
2901            candidates = prune(candidates2);
2902            candidatesCache.put(e, candidates);
2903        }
2904        return candidates;
2905    }
2906
2907    public List<MethodSymbol> prune(List<MethodSymbol> methods) {
2908        ListBuffer<MethodSymbol> methodsMin = new ListBuffer<>();
2909        for (MethodSymbol m1 : methods) {
2910            boolean isMin_m1 = true;
2911            for (MethodSymbol m2 : methods) {
2912                if (m1 == m2) continue;
2913                if (m2.owner != m1.owner &&
2914                        asSuper(m2.owner.type, m1.owner) != null) {
2915                    isMin_m1 = false;
2916                    break;
2917                }
2918            }
2919            if (isMin_m1)
2920                methodsMin.append(m1);
2921        }
2922        return methodsMin.toList();
2923    }
2924    // where
2925            private class MethodFilter implements Filter<Symbol> {
2926
2927                Symbol msym;
2928                Type site;
2929
2930                MethodFilter(Symbol msym, Type site) {
2931                    this.msym = msym;
2932                    this.site = site;
2933                }
2934
2935                public boolean accepts(Symbol s) {
2936                    return s.kind == MTH &&
2937                            s.name == msym.name &&
2938                            (s.flags() & SYNTHETIC) == 0 &&
2939                            s.isInheritedIn(site.tsym, Types.this) &&
2940                            overrideEquivalent(memberType(site, s), memberType(site, msym));
2941                }
2942            }
2943    // </editor-fold>
2944
2945    /**
2946     * Does t have the same arguments as s?  It is assumed that both
2947     * types are (possibly polymorphic) method types.  Monomorphic
2948     * method types "have the same arguments", if their argument lists
2949     * are equal.  Polymorphic method types "have the same arguments",
2950     * if they have the same arguments after renaming all type
2951     * variables of one to corresponding type variables in the other,
2952     * where correspondence is by position in the type parameter list.
2953     */
2954    public boolean hasSameArgs(Type t, Type s) {
2955        return hasSameArgs(t, s, true);
2956    }
2957
2958    public boolean hasSameArgs(Type t, Type s, boolean strict) {
2959        return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
2960    }
2961
2962    private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
2963        return hasSameArgs.visit(t, s);
2964    }
2965    // where
2966        private class HasSameArgs extends TypeRelation {
2967
2968            boolean strict;
2969
2970            public HasSameArgs(boolean strict) {
2971                this.strict = strict;
2972            }
2973
2974            public Boolean visitType(Type t, Type s) {
2975                throw new AssertionError();
2976            }
2977
2978            @Override
2979            public Boolean visitMethodType(MethodType t, Type s) {
2980                return s.hasTag(METHOD)
2981                    && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
2982            }
2983
2984            @Override
2985            public Boolean visitForAll(ForAll t, Type s) {
2986                if (!s.hasTag(FORALL))
2987                    return strict ? false : visitMethodType(t.asMethodType(), s);
2988
2989                ForAll forAll = (ForAll)s;
2990                return hasSameBounds(t, forAll)
2991                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
2992            }
2993
2994            @Override
2995            public Boolean visitErrorType(ErrorType t, Type s) {
2996                return false;
2997            }
2998        }
2999
3000    TypeRelation hasSameArgs_strict = new HasSameArgs(true);
3001        TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
3002
3003    // </editor-fold>
3004
3005    // <editor-fold defaultstate="collapsed" desc="subst">
3006    public List<Type> subst(List<Type> ts,
3007                            List<Type> from,
3008                            List<Type> to) {
3009        return ts.map(new Subst(from, to));
3010    }
3011
3012    /**
3013     * Substitute all occurrences of a type in `from' with the
3014     * corresponding type in `to' in 't'. Match lists `from' and `to'
3015     * from the right: If lists have different length, discard leading
3016     * elements of the longer list.
3017     */
3018    public Type subst(Type t, List<Type> from, List<Type> to) {
3019        return t.map(new Subst(from, to));
3020    }
3021
3022    private class Subst extends TypeMapping<Void> {
3023        List<Type> from;
3024        List<Type> to;
3025
3026        public Subst(List<Type> from, List<Type> to) {
3027            int fromLength = from.length();
3028            int toLength = to.length();
3029            while (fromLength > toLength) {
3030                fromLength--;
3031                from = from.tail;
3032            }
3033            while (fromLength < toLength) {
3034                toLength--;
3035                to = to.tail;
3036            }
3037            this.from = from;
3038            this.to = to;
3039        }
3040
3041        @Override
3042        public Type visitTypeVar(TypeVar t, Void ignored) {
3043            for (List<Type> from = this.from, to = this.to;
3044                 from.nonEmpty();
3045                 from = from.tail, to = to.tail) {
3046                if (t.equalsIgnoreMetadata(from.head)) {
3047                    return to.head.withTypeVar(t);
3048                }
3049            }
3050            return t;
3051        }
3052
3053        @Override
3054        public Type visitClassType(ClassType t, Void ignored) {
3055            if (!t.isCompound()) {
3056                return super.visitClassType(t, ignored);
3057            } else {
3058                Type st = visit(supertype(t));
3059                List<Type> is = visit(interfaces(t), ignored);
3060                if (st == supertype(t) && is == interfaces(t))
3061                    return t;
3062                else
3063                    return makeIntersectionType(is.prepend(st));
3064            }
3065        }
3066
3067        @Override
3068        public Type visitWildcardType(WildcardType t, Void ignored) {
3069            WildcardType t2 = (WildcardType)super.visitWildcardType(t, ignored);
3070            if (t2 != t && t.isExtendsBound() && t2.type.isExtendsBound()) {
3071                t2.type = wildUpperBound(t2.type);
3072            }
3073            return t2;
3074        }
3075
3076        @Override
3077        public Type visitForAll(ForAll t, Void ignored) {
3078            if (Type.containsAny(to, t.tvars)) {
3079                //perform alpha-renaming of free-variables in 't'
3080                //if 'to' types contain variables that are free in 't'
3081                List<Type> freevars = newInstances(t.tvars);
3082                t = new ForAll(freevars,
3083                               Types.this.subst(t.qtype, t.tvars, freevars));
3084            }
3085            List<Type> tvars1 = substBounds(t.tvars, from, to);
3086            Type qtype1 = visit(t.qtype);
3087            if (tvars1 == t.tvars && qtype1 == t.qtype) {
3088                return t;
3089            } else if (tvars1 == t.tvars) {
3090                return new ForAll(tvars1, qtype1) {
3091                    @Override
3092                    public boolean needsStripping() {
3093                        return true;
3094                    }
3095                };
3096            } else {
3097                return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1)) {
3098                    @Override
3099                    public boolean needsStripping() {
3100                        return true;
3101                    }
3102                };
3103            }
3104        }
3105    }
3106
3107    public List<Type> substBounds(List<Type> tvars,
3108                                  List<Type> from,
3109                                  List<Type> to) {
3110        if (tvars.isEmpty())
3111            return tvars;
3112        ListBuffer<Type> newBoundsBuf = new ListBuffer<>();
3113        boolean changed = false;
3114        // calculate new bounds
3115        for (Type t : tvars) {
3116            TypeVar tv = (TypeVar) t;
3117            Type bound = subst(tv.bound, from, to);
3118            if (bound != tv.bound)
3119                changed = true;
3120            newBoundsBuf.append(bound);
3121        }
3122        if (!changed)
3123            return tvars;
3124        ListBuffer<Type> newTvars = new ListBuffer<>();
3125        // create new type variables without bounds
3126        for (Type t : tvars) {
3127            newTvars.append(new TypeVar(t.tsym, null, syms.botType,
3128                                        t.getMetadata()));
3129        }
3130        // the new bounds should use the new type variables in place
3131        // of the old
3132        List<Type> newBounds = newBoundsBuf.toList();
3133        from = tvars;
3134        to = newTvars.toList();
3135        for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
3136            newBounds.head = subst(newBounds.head, from, to);
3137        }
3138        newBounds = newBoundsBuf.toList();
3139        // set the bounds of new type variables to the new bounds
3140        for (Type t : newTvars.toList()) {
3141            TypeVar tv = (TypeVar) t;
3142            tv.bound = newBounds.head;
3143            newBounds = newBounds.tail;
3144        }
3145        return newTvars.toList();
3146    }
3147
3148    public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
3149        Type bound1 = subst(t.bound, from, to);
3150        if (bound1 == t.bound)
3151            return t;
3152        else {
3153            // create new type variable without bounds
3154            TypeVar tv = new TypeVar(t.tsym, null, syms.botType,
3155                                     t.getMetadata());
3156            // the new bound should use the new type variable in place
3157            // of the old
3158            tv.bound = subst(bound1, List.of(t), List.of(tv));
3159            return tv;
3160        }
3161    }
3162    // </editor-fold>
3163
3164    // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
3165    /**
3166     * Does t have the same bounds for quantified variables as s?
3167     */
3168    public boolean hasSameBounds(ForAll t, ForAll s) {
3169        List<Type> l1 = t.tvars;
3170        List<Type> l2 = s.tvars;
3171        while (l1.nonEmpty() && l2.nonEmpty() &&
3172               isSameType(l1.head.getUpperBound(),
3173                          subst(l2.head.getUpperBound(),
3174                                s.tvars,
3175                                t.tvars))) {
3176            l1 = l1.tail;
3177            l2 = l2.tail;
3178        }
3179        return l1.isEmpty() && l2.isEmpty();
3180    }
3181    // </editor-fold>
3182
3183    // <editor-fold defaultstate="collapsed" desc="newInstances">
3184    /** Create new vector of type variables from list of variables
3185     *  changing all recursive bounds from old to new list.
3186     */
3187    public List<Type> newInstances(List<Type> tvars) {
3188        List<Type> tvars1 = tvars.map(newInstanceFun);
3189        for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
3190            TypeVar tv = (TypeVar) l.head;
3191            tv.bound = subst(tv.bound, tvars, tvars1);
3192        }
3193        return tvars1;
3194    }
3195        private static final TypeMapping<Void> newInstanceFun = new TypeMapping<Void>() {
3196            @Override
3197            public TypeVar visitTypeVar(TypeVar t, Void _unused) {
3198                return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound(), t.getMetadata());
3199            }
3200        };
3201    // </editor-fold>
3202
3203    public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
3204        return original.accept(methodWithParameters, newParams);
3205    }
3206    // where
3207        private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
3208            public Type visitType(Type t, List<Type> newParams) {
3209                throw new IllegalArgumentException("Not a method type: " + t);
3210            }
3211            public Type visitMethodType(MethodType t, List<Type> newParams) {
3212                return new MethodType(newParams, t.restype, t.thrown, t.tsym);
3213            }
3214            public Type visitForAll(ForAll t, List<Type> newParams) {
3215                return new ForAll(t.tvars, t.qtype.accept(this, newParams));
3216            }
3217        };
3218
3219    public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
3220        return original.accept(methodWithThrown, newThrown);
3221    }
3222    // where
3223        private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
3224            public Type visitType(Type t, List<Type> newThrown) {
3225                throw new IllegalArgumentException("Not a method type: " + t);
3226            }
3227            public Type visitMethodType(MethodType t, List<Type> newThrown) {
3228                return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
3229            }
3230            public Type visitForAll(ForAll t, List<Type> newThrown) {
3231                return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
3232            }
3233        };
3234
3235    public Type createMethodTypeWithReturn(Type original, Type newReturn) {
3236        return original.accept(methodWithReturn, newReturn);
3237    }
3238    // where
3239        private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
3240            public Type visitType(Type t, Type newReturn) {
3241                throw new IllegalArgumentException("Not a method type: " + t);
3242            }
3243            public Type visitMethodType(MethodType t, Type newReturn) {
3244                return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym) {
3245                    @Override
3246                    public Type baseType() {
3247                        return t;
3248                    }
3249                };
3250            }
3251            public Type visitForAll(ForAll t, Type newReturn) {
3252                return new ForAll(t.tvars, t.qtype.accept(this, newReturn)) {
3253                    @Override
3254                    public Type baseType() {
3255                        return t;
3256                    }
3257                };
3258            }
3259        };
3260
3261    // <editor-fold defaultstate="collapsed" desc="createErrorType">
3262    public Type createErrorType(Type originalType) {
3263        return new ErrorType(originalType, syms.errSymbol);
3264    }
3265
3266    public Type createErrorType(ClassSymbol c, Type originalType) {
3267        return new ErrorType(c, originalType);
3268    }
3269
3270    public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
3271        return new ErrorType(name, container, originalType);
3272    }
3273    // </editor-fold>
3274
3275    // <editor-fold defaultstate="collapsed" desc="rank">
3276    /**
3277     * The rank of a class is the length of the longest path between
3278     * the class and java.lang.Object in the class inheritance
3279     * graph. Undefined for all but reference types.
3280     */
3281    public int rank(Type t) {
3282        switch(t.getTag()) {
3283        case CLASS: {
3284            ClassType cls = (ClassType)t;
3285            if (cls.rank_field < 0) {
3286                Name fullname = cls.tsym.getQualifiedName();
3287                if (fullname == names.java_lang_Object)
3288                    cls.rank_field = 0;
3289                else {
3290                    int r = rank(supertype(cls));
3291                    for (List<Type> l = interfaces(cls);
3292                         l.nonEmpty();
3293                         l = l.tail) {
3294                        if (rank(l.head) > r)
3295                            r = rank(l.head);
3296                    }
3297                    cls.rank_field = r + 1;
3298                }
3299            }
3300            return cls.rank_field;
3301        }
3302        case TYPEVAR: {
3303            TypeVar tvar = (TypeVar)t;
3304            if (tvar.rank_field < 0) {
3305                int r = rank(supertype(tvar));
3306                for (List<Type> l = interfaces(tvar);
3307                     l.nonEmpty();
3308                     l = l.tail) {
3309                    if (rank(l.head) > r) r = rank(l.head);
3310                }
3311                tvar.rank_field = r + 1;
3312            }
3313            return tvar.rank_field;
3314        }
3315        case ERROR:
3316        case NONE:
3317            return 0;
3318        default:
3319            throw new AssertionError();
3320        }
3321    }
3322    // </editor-fold>
3323
3324    /**
3325     * Helper method for generating a string representation of a given type
3326     * accordingly to a given locale
3327     */
3328    public String toString(Type t, Locale locale) {
3329        return Printer.createStandardPrinter(messages).visit(t, locale);
3330    }
3331
3332    /**
3333     * Helper method for generating a string representation of a given type
3334     * accordingly to a given locale
3335     */
3336    public String toString(Symbol t, Locale locale) {
3337        return Printer.createStandardPrinter(messages).visit(t, locale);
3338    }
3339
3340    // <editor-fold defaultstate="collapsed" desc="toString">
3341    /**
3342     * This toString is slightly more descriptive than the one on Type.
3343     *
3344     * @deprecated Types.toString(Type t, Locale l) provides better support
3345     * for localization
3346     */
3347    @Deprecated
3348    public String toString(Type t) {
3349        if (t.hasTag(FORALL)) {
3350            ForAll forAll = (ForAll)t;
3351            return typaramsString(forAll.tvars) + forAll.qtype;
3352        }
3353        return "" + t;
3354    }
3355    // where
3356        private String typaramsString(List<Type> tvars) {
3357            StringBuilder s = new StringBuilder();
3358            s.append('<');
3359            boolean first = true;
3360            for (Type t : tvars) {
3361                if (!first) s.append(", ");
3362                first = false;
3363                appendTyparamString(((TypeVar)t), s);
3364            }
3365            s.append('>');
3366            return s.toString();
3367        }
3368        private void appendTyparamString(TypeVar t, StringBuilder buf) {
3369            buf.append(t);
3370            if (t.bound == null ||
3371                t.bound.tsym.getQualifiedName() == names.java_lang_Object)
3372                return;
3373            buf.append(" extends "); // Java syntax; no need for i18n
3374            Type bound = t.bound;
3375            if (!bound.isCompound()) {
3376                buf.append(bound);
3377            } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
3378                buf.append(supertype(t));
3379                for (Type intf : interfaces(t)) {
3380                    buf.append('&');
3381                    buf.append(intf);
3382                }
3383            } else {
3384                // No superclass was given in bounds.
3385                // In this case, supertype is Object, erasure is first interface.
3386                boolean first = true;
3387                for (Type intf : interfaces(t)) {
3388                    if (!first) buf.append('&');
3389                    first = false;
3390                    buf.append(intf);
3391                }
3392            }
3393        }
3394    // </editor-fold>
3395
3396    // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
3397    /**
3398     * A cache for closures.
3399     *
3400     * <p>A closure is a list of all the supertypes and interfaces of
3401     * a class or interface type, ordered by ClassSymbol.precedes
3402     * (that is, subclasses come first, arbitrary but fixed
3403     * otherwise).
3404     */
3405    private Map<Type,List<Type>> closureCache = new HashMap<>();
3406
3407    /**
3408     * Returns the closure of a class or interface type.
3409     */
3410    public List<Type> closure(Type t) {
3411        List<Type> cl = closureCache.get(t);
3412        if (cl == null) {
3413            Type st = supertype(t);
3414            if (!t.isCompound()) {
3415                if (st.hasTag(CLASS)) {
3416                    cl = insert(closure(st), t);
3417                } else if (st.hasTag(TYPEVAR)) {
3418                    cl = closure(st).prepend(t);
3419                } else {
3420                    cl = List.of(t);
3421                }
3422            } else {
3423                cl = closure(supertype(t));
3424            }
3425            for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
3426                cl = union(cl, closure(l.head));
3427            closureCache.put(t, cl);
3428        }
3429        return cl;
3430    }
3431
3432    /**
3433     * Collect types into a new closure (using a @code{ClosureHolder})
3434     */
3435    public Collector<Type, ClosureHolder, List<Type>> closureCollector(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3436        return Collector.of(() -> new ClosureHolder(minClosure, shouldSkip),
3437                ClosureHolder::add,
3438                ClosureHolder::merge,
3439                ClosureHolder::closure);
3440    }
3441    //where
3442        class ClosureHolder {
3443            List<Type> closure;
3444            final boolean minClosure;
3445            final BiPredicate<Type, Type> shouldSkip;
3446
3447            ClosureHolder(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3448                this.closure = List.nil();
3449                this.minClosure = minClosure;
3450                this.shouldSkip = shouldSkip;
3451            }
3452
3453            void add(Type type) {
3454                closure = insert(closure, type, shouldSkip);
3455            }
3456
3457            ClosureHolder merge(ClosureHolder other) {
3458                closure = union(closure, other.closure, shouldSkip);
3459                return this;
3460            }
3461
3462            List<Type> closure() {
3463                return minClosure ? closureMin(closure) : closure;
3464            }
3465        }
3466
3467    BiPredicate<Type, Type> basicClosureSkip = (t1, t2) -> t1.tsym == t2.tsym;
3468
3469    /**
3470     * Insert a type in a closure
3471     */
3472    public List<Type> insert(List<Type> cl, Type t, BiPredicate<Type, Type> shouldSkip) {
3473        if (cl.isEmpty()) {
3474            return cl.prepend(t);
3475        } else if (shouldSkip.test(t, cl.head)) {
3476            return cl;
3477        } else if (t.tsym.precedes(cl.head.tsym, this)) {
3478            return cl.prepend(t);
3479        } else {
3480            // t comes after head, or the two are unrelated
3481            return insert(cl.tail, t, shouldSkip).prepend(cl.head);
3482        }
3483    }
3484
3485    public List<Type> insert(List<Type> cl, Type t) {
3486        return insert(cl, t, basicClosureSkip);
3487    }
3488
3489    /**
3490     * Form the union of two closures
3491     */
3492    public List<Type> union(List<Type> cl1, List<Type> cl2, BiPredicate<Type, Type> shouldSkip) {
3493        if (cl1.isEmpty()) {
3494            return cl2;
3495        } else if (cl2.isEmpty()) {
3496            return cl1;
3497        } else if (shouldSkip.test(cl1.head, cl2.head)) {
3498            return union(cl1.tail, cl2.tail, shouldSkip).prepend(cl1.head);
3499        } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
3500            return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
3501        } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
3502            return union(cl1, cl2.tail, shouldSkip).prepend(cl2.head);
3503        } else {
3504            // unrelated types
3505            return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
3506        }
3507    }
3508
3509    public List<Type> union(List<Type> cl1, List<Type> cl2) {
3510        return union(cl1, cl2, basicClosureSkip);
3511    }
3512
3513    /**
3514     * Intersect two closures
3515     */
3516    public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
3517        if (cl1 == cl2)
3518            return cl1;
3519        if (cl1.isEmpty() || cl2.isEmpty())
3520            return List.nil();
3521        if (cl1.head.tsym.precedes(cl2.head.tsym, this))
3522            return intersect(cl1.tail, cl2);
3523        if (cl2.head.tsym.precedes(cl1.head.tsym, this))
3524            return intersect(cl1, cl2.tail);
3525        if (isSameType(cl1.head, cl2.head))
3526            return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
3527        if (cl1.head.tsym == cl2.head.tsym &&
3528            cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
3529            if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
3530                Type merge = merge(cl1.head,cl2.head);
3531                return intersect(cl1.tail, cl2.tail).prepend(merge);
3532            }
3533            if (cl1.head.isRaw() || cl2.head.isRaw())
3534                return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
3535        }
3536        return intersect(cl1.tail, cl2.tail);
3537    }
3538    // where
3539        class TypePair {
3540            final Type t1;
3541            final Type t2;
3542            boolean strict;
3543
3544            TypePair(Type t1, Type t2) {
3545                this(t1, t2, false);
3546            }
3547
3548            TypePair(Type t1, Type t2, boolean strict) {
3549                this.t1 = t1;
3550                this.t2 = t2;
3551                this.strict = strict;
3552            }
3553            @Override
3554            public int hashCode() {
3555                return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
3556            }
3557            @Override
3558            public boolean equals(Object obj) {
3559                if (!(obj instanceof TypePair))
3560                    return false;
3561                TypePair typePair = (TypePair)obj;
3562                return isSameType(t1, typePair.t1, strict)
3563                    && isSameType(t2, typePair.t2, strict);
3564            }
3565        }
3566        Set<TypePair> mergeCache = new HashSet<>();
3567        private Type merge(Type c1, Type c2) {
3568            ClassType class1 = (ClassType) c1;
3569            List<Type> act1 = class1.getTypeArguments();
3570            ClassType class2 = (ClassType) c2;
3571            List<Type> act2 = class2.getTypeArguments();
3572            ListBuffer<Type> merged = new ListBuffer<>();
3573            List<Type> typarams = class1.tsym.type.getTypeArguments();
3574
3575            while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
3576                if (containsType(act1.head, act2.head)) {
3577                    merged.append(act1.head);
3578                } else if (containsType(act2.head, act1.head)) {
3579                    merged.append(act2.head);
3580                } else {
3581                    TypePair pair = new TypePair(c1, c2);
3582                    Type m;
3583                    if (mergeCache.add(pair)) {
3584                        m = new WildcardType(lub(wildUpperBound(act1.head),
3585                                                 wildUpperBound(act2.head)),
3586                                             BoundKind.EXTENDS,
3587                                             syms.boundClass);
3588                        mergeCache.remove(pair);
3589                    } else {
3590                        m = new WildcardType(syms.objectType,
3591                                             BoundKind.UNBOUND,
3592                                             syms.boundClass);
3593                    }
3594                    merged.append(m.withTypeVar(typarams.head));
3595                }
3596                act1 = act1.tail;
3597                act2 = act2.tail;
3598                typarams = typarams.tail;
3599            }
3600            Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
3601            // There is no spec detailing how type annotations are to
3602            // be inherited.  So set it to noAnnotations for now
3603            return new ClassType(class1.getEnclosingType(), merged.toList(),
3604                                 class1.tsym);
3605        }
3606
3607    /**
3608     * Return the minimum type of a closure, a compound type if no
3609     * unique minimum exists.
3610     */
3611    private Type compoundMin(List<Type> cl) {
3612        if (cl.isEmpty()) return syms.objectType;
3613        List<Type> compound = closureMin(cl);
3614        if (compound.isEmpty())
3615            return null;
3616        else if (compound.tail.isEmpty())
3617            return compound.head;
3618        else
3619            return makeIntersectionType(compound);
3620    }
3621
3622    /**
3623     * Return the minimum types of a closure, suitable for computing
3624     * compoundMin or glb.
3625     */
3626    private List<Type> closureMin(List<Type> cl) {
3627        ListBuffer<Type> classes = new ListBuffer<>();
3628        ListBuffer<Type> interfaces = new ListBuffer<>();
3629        Set<Type> toSkip = new HashSet<>();
3630        while (!cl.isEmpty()) {
3631            Type current = cl.head;
3632            boolean keep = !toSkip.contains(current);
3633            if (keep && current.hasTag(TYPEVAR)) {
3634                // skip lower-bounded variables with a subtype in cl.tail
3635                for (Type t : cl.tail) {
3636                    if (isSubtypeNoCapture(t, current)) {
3637                        keep = false;
3638                        break;
3639                    }
3640                }
3641            }
3642            if (keep) {
3643                if (current.isInterface())
3644                    interfaces.append(current);
3645                else
3646                    classes.append(current);
3647                for (Type t : cl.tail) {
3648                    // skip supertypes of 'current' in cl.tail
3649                    if (isSubtypeNoCapture(current, t))
3650                        toSkip.add(t);
3651                }
3652            }
3653            cl = cl.tail;
3654        }
3655        return classes.appendList(interfaces).toList();
3656    }
3657
3658    /**
3659     * Return the least upper bound of list of types.  if the lub does
3660     * not exist return null.
3661     */
3662    public Type lub(List<Type> ts) {
3663        return lub(ts.toArray(new Type[ts.length()]));
3664    }
3665
3666    /**
3667     * Return the least upper bound (lub) of set of types.  If the lub
3668     * does not exist return the type of null (bottom).
3669     */
3670    public Type lub(Type... ts) {
3671        final int UNKNOWN_BOUND = 0;
3672        final int ARRAY_BOUND = 1;
3673        final int CLASS_BOUND = 2;
3674
3675        int[] kinds = new int[ts.length];
3676
3677        int boundkind = UNKNOWN_BOUND;
3678        for (int i = 0 ; i < ts.length ; i++) {
3679            Type t = ts[i];
3680            switch (t.getTag()) {
3681            case CLASS:
3682                boundkind |= kinds[i] = CLASS_BOUND;
3683                break;
3684            case ARRAY:
3685                boundkind |= kinds[i] = ARRAY_BOUND;
3686                break;
3687            case  TYPEVAR:
3688                do {
3689                    t = t.getUpperBound();
3690                } while (t.hasTag(TYPEVAR));
3691                if (t.hasTag(ARRAY)) {
3692                    boundkind |= kinds[i] = ARRAY_BOUND;
3693                } else {
3694                    boundkind |= kinds[i] = CLASS_BOUND;
3695                }
3696                break;
3697            default:
3698                kinds[i] = UNKNOWN_BOUND;
3699                if (t.isPrimitive())
3700                    return syms.errType;
3701            }
3702        }
3703        switch (boundkind) {
3704        case 0:
3705            return syms.botType;
3706
3707        case ARRAY_BOUND:
3708            // calculate lub(A[], B[])
3709            Type[] elements = new Type[ts.length];
3710            for (int i = 0 ; i < ts.length ; i++) {
3711                Type elem = elements[i] = elemTypeFun.apply(ts[i]);
3712                if (elem.isPrimitive()) {
3713                    // if a primitive type is found, then return
3714                    // arraySuperType unless all the types are the
3715                    // same
3716                    Type first = ts[0];
3717                    for (int j = 1 ; j < ts.length ; j++) {
3718                        if (!isSameType(first, ts[j])) {
3719                             // lub(int[], B[]) is Cloneable & Serializable
3720                            return arraySuperType();
3721                        }
3722                    }
3723                    // all the array types are the same, return one
3724                    // lub(int[], int[]) is int[]
3725                    return first;
3726                }
3727            }
3728            // lub(A[], B[]) is lub(A, B)[]
3729            return new ArrayType(lub(elements), syms.arrayClass);
3730
3731        case CLASS_BOUND:
3732            // calculate lub(A, B)
3733            int startIdx = 0;
3734            for (int i = 0; i < ts.length ; i++) {
3735                Type t = ts[i];
3736                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR)) {
3737                    break;
3738                } else {
3739                    startIdx++;
3740                }
3741            }
3742            Assert.check(startIdx < ts.length);
3743            //step 1 - compute erased candidate set (EC)
3744            List<Type> cl = erasedSupertypes(ts[startIdx]);
3745            for (int i = startIdx + 1 ; i < ts.length ; i++) {
3746                Type t = ts[i];
3747                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
3748                    cl = intersect(cl, erasedSupertypes(t));
3749            }
3750            //step 2 - compute minimal erased candidate set (MEC)
3751            List<Type> mec = closureMin(cl);
3752            //step 3 - for each element G in MEC, compute lci(Inv(G))
3753            List<Type> candidates = List.nil();
3754            for (Type erasedSupertype : mec) {
3755                List<Type> lci = List.of(asSuper(ts[startIdx], erasedSupertype.tsym));
3756                for (int i = startIdx + 1 ; i < ts.length ; i++) {
3757                    Type superType = asSuper(ts[i], erasedSupertype.tsym);
3758                    lci = intersect(lci, superType != null ? List.of(superType) : List.nil());
3759                }
3760                candidates = candidates.appendList(lci);
3761            }
3762            //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
3763            //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
3764            return compoundMin(candidates);
3765
3766        default:
3767            // calculate lub(A, B[])
3768            List<Type> classes = List.of(arraySuperType());
3769            for (int i = 0 ; i < ts.length ; i++) {
3770                if (kinds[i] != ARRAY_BOUND) // Filter out any arrays
3771                    classes = classes.prepend(ts[i]);
3772            }
3773            // lub(A, B[]) is lub(A, arraySuperType)
3774            return lub(classes);
3775        }
3776    }
3777    // where
3778        List<Type> erasedSupertypes(Type t) {
3779            ListBuffer<Type> buf = new ListBuffer<>();
3780            for (Type sup : closure(t)) {
3781                if (sup.hasTag(TYPEVAR)) {
3782                    buf.append(sup);
3783                } else {
3784                    buf.append(erasure(sup));
3785                }
3786            }
3787            return buf.toList();
3788        }
3789
3790        private Type arraySuperType = null;
3791        private Type arraySuperType() {
3792            // initialized lazily to avoid problems during compiler startup
3793            if (arraySuperType == null) {
3794                synchronized (this) {
3795                    if (arraySuperType == null) {
3796                        // JLS 10.8: all arrays implement Cloneable and Serializable.
3797                        arraySuperType = makeIntersectionType(List.of(syms.serializableType,
3798                                syms.cloneableType), true);
3799                    }
3800                }
3801            }
3802            return arraySuperType;
3803        }
3804    // </editor-fold>
3805
3806    // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
3807    public Type glb(List<Type> ts) {
3808        Type t1 = ts.head;
3809        for (Type t2 : ts.tail) {
3810            if (t1.isErroneous())
3811                return t1;
3812            t1 = glb(t1, t2);
3813        }
3814        return t1;
3815    }
3816    //where
3817    public Type glb(Type t, Type s) {
3818        if (s == null)
3819            return t;
3820        else if (t.isPrimitive() || s.isPrimitive())
3821            return syms.errType;
3822        else if (isSubtypeNoCapture(t, s))
3823            return t;
3824        else if (isSubtypeNoCapture(s, t))
3825            return s;
3826
3827        List<Type> closure = union(closure(t), closure(s));
3828        return glbFlattened(closure, t);
3829    }
3830    //where
3831    /**
3832     * Perform glb for a list of non-primitive, non-error, non-compound types;
3833     * redundant elements are removed.  Bounds should be ordered according to
3834     * {@link Symbol#precedes(TypeSymbol,Types)}.
3835     *
3836     * @param flatBounds List of type to glb
3837     * @param errT Original type to use if the result is an error type
3838     */
3839    private Type glbFlattened(List<Type> flatBounds, Type errT) {
3840        List<Type> bounds = closureMin(flatBounds);
3841
3842        if (bounds.isEmpty()) {             // length == 0
3843            return syms.objectType;
3844        } else if (bounds.tail.isEmpty()) { // length == 1
3845            return bounds.head;
3846        } else {                            // length > 1
3847            int classCount = 0;
3848            List<Type> lowers = List.nil();
3849            for (Type bound : bounds) {
3850                if (!bound.isInterface()) {
3851                    classCount++;
3852                    Type lower = cvarLowerBound(bound);
3853                    if (bound != lower && !lower.hasTag(BOT))
3854                        lowers = insert(lowers, lower);
3855                }
3856            }
3857            if (classCount > 1) {
3858                if (lowers.isEmpty())
3859                    return createErrorType(errT);
3860                else
3861                    return glbFlattened(union(bounds, lowers), errT);
3862            }
3863        }
3864        return makeIntersectionType(bounds);
3865    }
3866    // </editor-fold>
3867
3868    // <editor-fold defaultstate="collapsed" desc="hashCode">
3869    /**
3870     * Compute a hash code on a type.
3871     */
3872    public int hashCode(Type t) {
3873        return hashCode(t, false);
3874    }
3875
3876    public int hashCode(Type t, boolean strict) {
3877        return strict ?
3878                hashCodeStrictVisitor.visit(t) :
3879                hashCodeVisitor.visit(t);
3880    }
3881    // where
3882        private static final HashCodeVisitor hashCodeVisitor = new HashCodeVisitor();
3883        private static final HashCodeVisitor hashCodeStrictVisitor = new HashCodeVisitor() {
3884            @Override
3885            public Integer visitTypeVar(TypeVar t, Void ignored) {
3886                return System.identityHashCode(t);
3887            }
3888        };
3889
3890        private static class HashCodeVisitor extends UnaryVisitor<Integer> {
3891            public Integer visitType(Type t, Void ignored) {
3892                return t.getTag().ordinal();
3893            }
3894
3895            @Override
3896            public Integer visitClassType(ClassType t, Void ignored) {
3897                int result = visit(t.getEnclosingType());
3898                result *= 127;
3899                result += t.tsym.flatName().hashCode();
3900                for (Type s : t.getTypeArguments()) {
3901                    result *= 127;
3902                    result += visit(s);
3903                }
3904                return result;
3905            }
3906
3907            @Override
3908            public Integer visitMethodType(MethodType t, Void ignored) {
3909                int h = METHOD.ordinal();
3910                for (List<Type> thisargs = t.argtypes;
3911                     thisargs.tail != null;
3912                     thisargs = thisargs.tail)
3913                    h = (h << 5) + visit(thisargs.head);
3914                return (h << 5) + visit(t.restype);
3915            }
3916
3917            @Override
3918            public Integer visitWildcardType(WildcardType t, Void ignored) {
3919                int result = t.kind.hashCode();
3920                if (t.type != null) {
3921                    result *= 127;
3922                    result += visit(t.type);
3923                }
3924                return result;
3925            }
3926
3927            @Override
3928            public Integer visitArrayType(ArrayType t, Void ignored) {
3929                return visit(t.elemtype) + 12;
3930            }
3931
3932            @Override
3933            public Integer visitTypeVar(TypeVar t, Void ignored) {
3934                return System.identityHashCode(t);
3935            }
3936
3937            @Override
3938            public Integer visitUndetVar(UndetVar t, Void ignored) {
3939                return System.identityHashCode(t);
3940            }
3941
3942            @Override
3943            public Integer visitErrorType(ErrorType t, Void ignored) {
3944                return 0;
3945            }
3946        }
3947    // </editor-fold>
3948
3949    // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
3950    /**
3951     * Does t have a result that is a subtype of the result type of s,
3952     * suitable for covariant returns?  It is assumed that both types
3953     * are (possibly polymorphic) method types.  Monomorphic method
3954     * types are handled in the obvious way.  Polymorphic method types
3955     * require renaming all type variables of one to corresponding
3956     * type variables in the other, where correspondence is by
3957     * position in the type parameter list. */
3958    public boolean resultSubtype(Type t, Type s, Warner warner) {
3959        List<Type> tvars = t.getTypeArguments();
3960        List<Type> svars = s.getTypeArguments();
3961        Type tres = t.getReturnType();
3962        Type sres = subst(s.getReturnType(), svars, tvars);
3963        return covariantReturnType(tres, sres, warner);
3964    }
3965
3966    /**
3967     * Return-Type-Substitutable.
3968     * @jls section 8.4.5
3969     */
3970    public boolean returnTypeSubstitutable(Type r1, Type r2) {
3971        if (hasSameArgs(r1, r2))
3972            return resultSubtype(r1, r2, noWarnings);
3973        else
3974            return covariantReturnType(r1.getReturnType(),
3975                                       erasure(r2.getReturnType()),
3976                                       noWarnings);
3977    }
3978
3979    public boolean returnTypeSubstitutable(Type r1,
3980                                           Type r2, Type r2res,
3981                                           Warner warner) {
3982        if (isSameType(r1.getReturnType(), r2res))
3983            return true;
3984        if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
3985            return false;
3986
3987        if (hasSameArgs(r1, r2))
3988            return covariantReturnType(r1.getReturnType(), r2res, warner);
3989        if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
3990            return true;
3991        if (!isSubtype(r1.getReturnType(), erasure(r2res)))
3992            return false;
3993        warner.warn(LintCategory.UNCHECKED);
3994        return true;
3995    }
3996
3997    /**
3998     * Is t an appropriate return type in an overrider for a
3999     * method that returns s?
4000     */
4001    public boolean covariantReturnType(Type t, Type s, Warner warner) {
4002        return
4003            isSameType(t, s) ||
4004            !t.isPrimitive() &&
4005            !s.isPrimitive() &&
4006            isAssignable(t, s, warner);
4007    }
4008    // </editor-fold>
4009
4010    // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
4011    /**
4012     * Return the class that boxes the given primitive.
4013     */
4014    public ClassSymbol boxedClass(Type t) {
4015        return syms.enterClass(syms.java_base, syms.boxedName[t.getTag().ordinal()]);
4016    }
4017
4018    /**
4019     * Return the boxed type if 't' is primitive, otherwise return 't' itself.
4020     */
4021    public Type boxedTypeOrType(Type t) {
4022        return t.isPrimitive() ?
4023            boxedClass(t).type :
4024            t;
4025    }
4026
4027    /**
4028     * Return the primitive type corresponding to a boxed type.
4029     */
4030    public Type unboxedType(Type t) {
4031        for (int i=0; i<syms.boxedName.length; i++) {
4032            Name box = syms.boxedName[i];
4033            if (box != null &&
4034                asSuper(t, syms.enterClass(syms.java_base, box)) != null)
4035                return syms.typeOfTag[i];
4036        }
4037        return Type.noType;
4038    }
4039
4040    /**
4041     * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
4042     */
4043    public Type unboxedTypeOrType(Type t) {
4044        Type unboxedType = unboxedType(t);
4045        return unboxedType.hasTag(NONE) ? t : unboxedType;
4046    }
4047    // </editor-fold>
4048
4049    // <editor-fold defaultstate="collapsed" desc="Capture conversion">
4050    /*
4051     * JLS 5.1.10 Capture Conversion:
4052     *
4053     * Let G name a generic type declaration with n formal type
4054     * parameters A1 ... An with corresponding bounds U1 ... Un. There
4055     * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
4056     * where, for 1 <= i <= n:
4057     *
4058     * + If Ti is a wildcard type argument (4.5.1) of the form ? then
4059     *   Si is a fresh type variable whose upper bound is
4060     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
4061     *   type.
4062     *
4063     * + If Ti is a wildcard type argument of the form ? extends Bi,
4064     *   then Si is a fresh type variable whose upper bound is
4065     *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
4066     *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
4067     *   a compile-time error if for any two classes (not interfaces)
4068     *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
4069     *
4070     * + If Ti is a wildcard type argument of the form ? super Bi,
4071     *   then Si is a fresh type variable whose upper bound is
4072     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
4073     *
4074     * + Otherwise, Si = Ti.
4075     *
4076     * Capture conversion on any type other than a parameterized type
4077     * (4.5) acts as an identity conversion (5.1.1). Capture
4078     * conversions never require a special action at run time and
4079     * therefore never throw an exception at run time.
4080     *
4081     * Capture conversion is not applied recursively.
4082     */
4083    /**
4084     * Capture conversion as specified by the JLS.
4085     */
4086
4087    public List<Type> capture(List<Type> ts) {
4088        List<Type> buf = List.nil();
4089        for (Type t : ts) {
4090            buf = buf.prepend(capture(t));
4091        }
4092        return buf.reverse();
4093    }
4094
4095    public Type capture(Type t) {
4096        if (!t.hasTag(CLASS)) {
4097            return t;
4098        }
4099        if (t.getEnclosingType() != Type.noType) {
4100            Type capturedEncl = capture(t.getEnclosingType());
4101            if (capturedEncl != t.getEnclosingType()) {
4102                Type type1 = memberType(capturedEncl, t.tsym);
4103                t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
4104            }
4105        }
4106        ClassType cls = (ClassType)t;
4107        if (cls.isRaw() || !cls.isParameterized())
4108            return cls;
4109
4110        ClassType G = (ClassType)cls.asElement().asType();
4111        List<Type> A = G.getTypeArguments();
4112        List<Type> T = cls.getTypeArguments();
4113        List<Type> S = freshTypeVariables(T);
4114
4115        List<Type> currentA = A;
4116        List<Type> currentT = T;
4117        List<Type> currentS = S;
4118        boolean captured = false;
4119        while (!currentA.isEmpty() &&
4120               !currentT.isEmpty() &&
4121               !currentS.isEmpty()) {
4122            if (currentS.head != currentT.head) {
4123                captured = true;
4124                WildcardType Ti = (WildcardType)currentT.head;
4125                Type Ui = currentA.head.getUpperBound();
4126                CapturedType Si = (CapturedType)currentS.head;
4127                if (Ui == null)
4128                    Ui = syms.objectType;
4129                switch (Ti.kind) {
4130                case UNBOUND:
4131                    Si.bound = subst(Ui, A, S);
4132                    Si.lower = syms.botType;
4133                    break;
4134                case EXTENDS:
4135                    Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
4136                    Si.lower = syms.botType;
4137                    break;
4138                case SUPER:
4139                    Si.bound = subst(Ui, A, S);
4140                    Si.lower = Ti.getSuperBound();
4141                    break;
4142                }
4143                Type tmpBound = Si.bound.hasTag(UNDETVAR) ? ((UndetVar)Si.bound).qtype : Si.bound;
4144                Type tmpLower = Si.lower.hasTag(UNDETVAR) ? ((UndetVar)Si.lower).qtype : Si.lower;
4145                if (!Si.bound.hasTag(ERROR) &&
4146                    !Si.lower.hasTag(ERROR) &&
4147                    isSameType(tmpBound, tmpLower, false)) {
4148                    currentS.head = Si.bound;
4149                }
4150            }
4151            currentA = currentA.tail;
4152            currentT = currentT.tail;
4153            currentS = currentS.tail;
4154        }
4155        if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
4156            return erasure(t); // some "rare" type involved
4157
4158        if (captured)
4159            return new ClassType(cls.getEnclosingType(), S, cls.tsym,
4160                                 cls.getMetadata());
4161        else
4162            return t;
4163    }
4164    // where
4165        public List<Type> freshTypeVariables(List<Type> types) {
4166            ListBuffer<Type> result = new ListBuffer<>();
4167            for (Type t : types) {
4168                if (t.hasTag(WILDCARD)) {
4169                    Type bound = ((WildcardType)t).getExtendsBound();
4170                    if (bound == null)
4171                        bound = syms.objectType;
4172                    result.append(new CapturedType(capturedName,
4173                                                   syms.noSymbol,
4174                                                   bound,
4175                                                   syms.botType,
4176                                                   (WildcardType)t));
4177                } else {
4178                    result.append(t);
4179                }
4180            }
4181            return result.toList();
4182        }
4183    // </editor-fold>
4184
4185    // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
4186    private boolean sideCast(Type from, Type to, Warner warn) {
4187        // We are casting from type $from$ to type $to$, which are
4188        // non-final unrelated types.  This method
4189        // tries to reject a cast by transferring type parameters
4190        // from $to$ to $from$ by common superinterfaces.
4191        boolean reverse = false;
4192        Type target = to;
4193        if ((to.tsym.flags() & INTERFACE) == 0) {
4194            Assert.check((from.tsym.flags() & INTERFACE) != 0);
4195            reverse = true;
4196            to = from;
4197            from = target;
4198        }
4199        List<Type> commonSupers = superClosure(to, erasure(from));
4200        boolean giveWarning = commonSupers.isEmpty();
4201        // The arguments to the supers could be unified here to
4202        // get a more accurate analysis
4203        while (commonSupers.nonEmpty()) {
4204            Type t1 = asSuper(from, commonSupers.head.tsym);
4205            Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
4206            if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4207                return false;
4208            giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
4209            commonSupers = commonSupers.tail;
4210        }
4211        if (giveWarning && !isReifiable(reverse ? from : to))
4212            warn.warn(LintCategory.UNCHECKED);
4213        return true;
4214    }
4215
4216    private boolean sideCastFinal(Type from, Type to, Warner warn) {
4217        // We are casting from type $from$ to type $to$, which are
4218        // unrelated types one of which is final and the other of
4219        // which is an interface.  This method
4220        // tries to reject a cast by transferring type parameters
4221        // from the final class to the interface.
4222        boolean reverse = false;
4223        Type target = to;
4224        if ((to.tsym.flags() & INTERFACE) == 0) {
4225            Assert.check((from.tsym.flags() & INTERFACE) != 0);
4226            reverse = true;
4227            to = from;
4228            from = target;
4229        }
4230        Assert.check((from.tsym.flags() & FINAL) != 0);
4231        Type t1 = asSuper(from, to.tsym);
4232        if (t1 == null) return false;
4233        Type t2 = to;
4234        if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4235            return false;
4236        if (!isReifiable(target) &&
4237            (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
4238            warn.warn(LintCategory.UNCHECKED);
4239        return true;
4240    }
4241
4242    private boolean giveWarning(Type from, Type to) {
4243        List<Type> bounds = to.isCompound() ?
4244                directSupertypes(to) : List.of(to);
4245        for (Type b : bounds) {
4246            Type subFrom = asSub(from, b.tsym);
4247            if (b.isParameterized() &&
4248                    (!(isUnbounded(b) ||
4249                    isSubtype(from, b) ||
4250                    ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
4251                return true;
4252            }
4253        }
4254        return false;
4255    }
4256
4257    private List<Type> superClosure(Type t, Type s) {
4258        List<Type> cl = List.nil();
4259        for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
4260            if (isSubtype(s, erasure(l.head))) {
4261                cl = insert(cl, l.head);
4262            } else {
4263                cl = union(cl, superClosure(l.head, s));
4264            }
4265        }
4266        return cl;
4267    }
4268
4269    private boolean containsTypeEquivalent(Type t, Type s) {
4270        return isSameType(t, s) || // shortcut
4271            containsType(t, s) && containsType(s, t);
4272    }
4273
4274    // <editor-fold defaultstate="collapsed" desc="adapt">
4275    /**
4276     * Adapt a type by computing a substitution which maps a source
4277     * type to a target type.
4278     *
4279     * @param source    the source type
4280     * @param target    the target type
4281     * @param from      the type variables of the computed substitution
4282     * @param to        the types of the computed substitution.
4283     */
4284    public void adapt(Type source,
4285                       Type target,
4286                       ListBuffer<Type> from,
4287                       ListBuffer<Type> to) throws AdaptFailure {
4288        new Adapter(from, to).adapt(source, target);
4289    }
4290
4291    class Adapter extends SimpleVisitor<Void, Type> {
4292
4293        ListBuffer<Type> from;
4294        ListBuffer<Type> to;
4295        Map<Symbol,Type> mapping;
4296
4297        Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
4298            this.from = from;
4299            this.to = to;
4300            mapping = new HashMap<>();
4301        }
4302
4303        public void adapt(Type source, Type target) throws AdaptFailure {
4304            visit(source, target);
4305            List<Type> fromList = from.toList();
4306            List<Type> toList = to.toList();
4307            while (!fromList.isEmpty()) {
4308                Type val = mapping.get(fromList.head.tsym);
4309                if (toList.head != val)
4310                    toList.head = val;
4311                fromList = fromList.tail;
4312                toList = toList.tail;
4313            }
4314        }
4315
4316        @Override
4317        public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
4318            if (target.hasTag(CLASS))
4319                adaptRecursive(source.allparams(), target.allparams());
4320            return null;
4321        }
4322
4323        @Override
4324        public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
4325            if (target.hasTag(ARRAY))
4326                adaptRecursive(elemtype(source), elemtype(target));
4327            return null;
4328        }
4329
4330        @Override
4331        public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
4332            if (source.isExtendsBound())
4333                adaptRecursive(wildUpperBound(source), wildUpperBound(target));
4334            else if (source.isSuperBound())
4335                adaptRecursive(wildLowerBound(source), wildLowerBound(target));
4336            return null;
4337        }
4338
4339        @Override
4340        public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
4341            // Check to see if there is
4342            // already a mapping for $source$, in which case
4343            // the old mapping will be merged with the new
4344            Type val = mapping.get(source.tsym);
4345            if (val != null) {
4346                if (val.isSuperBound() && target.isSuperBound()) {
4347                    val = isSubtype(wildLowerBound(val), wildLowerBound(target))
4348                        ? target : val;
4349                } else if (val.isExtendsBound() && target.isExtendsBound()) {
4350                    val = isSubtype(wildUpperBound(val), wildUpperBound(target))
4351                        ? val : target;
4352                } else if (!isSameType(val, target)) {
4353                    throw new AdaptFailure();
4354                }
4355            } else {
4356                val = target;
4357                from.append(source);
4358                to.append(target);
4359            }
4360            mapping.put(source.tsym, val);
4361            return null;
4362        }
4363
4364        @Override
4365        public Void visitType(Type source, Type target) {
4366            return null;
4367        }
4368
4369        private Set<TypePair> cache = new HashSet<>();
4370
4371        private void adaptRecursive(Type source, Type target) {
4372            TypePair pair = new TypePair(source, target);
4373            if (cache.add(pair)) {
4374                try {
4375                    visit(source, target);
4376                } finally {
4377                    cache.remove(pair);
4378                }
4379            }
4380        }
4381
4382        private void adaptRecursive(List<Type> source, List<Type> target) {
4383            if (source.length() == target.length()) {
4384                while (source.nonEmpty()) {
4385                    adaptRecursive(source.head, target.head);
4386                    source = source.tail;
4387                    target = target.tail;
4388                }
4389            }
4390        }
4391    }
4392
4393    public static class AdaptFailure extends RuntimeException {
4394        static final long serialVersionUID = -7490231548272701566L;
4395    }
4396
4397    private void adaptSelf(Type t,
4398                           ListBuffer<Type> from,
4399                           ListBuffer<Type> to) {
4400        try {
4401            //if (t.tsym.type != t)
4402                adapt(t.tsym.type, t, from, to);
4403        } catch (AdaptFailure ex) {
4404            // Adapt should never fail calculating a mapping from
4405            // t.tsym.type to t as there can be no merge problem.
4406            throw new AssertionError(ex);
4407        }
4408    }
4409    // </editor-fold>
4410
4411    /**
4412     * Rewrite all type variables (universal quantifiers) in the given
4413     * type to wildcards (existential quantifiers).  This is used to
4414     * determine if a cast is allowed.  For example, if high is true
4415     * and {@code T <: Number}, then {@code List<T>} is rewritten to
4416     * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
4417     * List<? extends Number>} a {@code List<T>} can be cast to {@code
4418     * List<Integer>} with a warning.
4419     * @param t a type
4420     * @param high if true return an upper bound; otherwise a lower
4421     * bound
4422     * @param rewriteTypeVars only rewrite captured wildcards if false;
4423     * otherwise rewrite all type variables
4424     * @return the type rewritten with wildcards (existential
4425     * quantifiers) only
4426     */
4427    private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
4428        return new Rewriter(high, rewriteTypeVars).visit(t);
4429    }
4430
4431    class Rewriter extends UnaryVisitor<Type> {
4432
4433        boolean high;
4434        boolean rewriteTypeVars;
4435
4436        Rewriter(boolean high, boolean rewriteTypeVars) {
4437            this.high = high;
4438            this.rewriteTypeVars = rewriteTypeVars;
4439        }
4440
4441        @Override
4442        public Type visitClassType(ClassType t, Void s) {
4443            ListBuffer<Type> rewritten = new ListBuffer<>();
4444            boolean changed = false;
4445            for (Type arg : t.allparams()) {
4446                Type bound = visit(arg);
4447                if (arg != bound) {
4448                    changed = true;
4449                }
4450                rewritten.append(bound);
4451            }
4452            if (changed)
4453                return subst(t.tsym.type,
4454                        t.tsym.type.allparams(),
4455                        rewritten.toList());
4456            else
4457                return t;
4458        }
4459
4460        public Type visitType(Type t, Void s) {
4461            return t;
4462        }
4463
4464        @Override
4465        public Type visitCapturedType(CapturedType t, Void s) {
4466            Type w_bound = t.wildcard.type;
4467            Type bound = w_bound.contains(t) ?
4468                        erasure(w_bound) :
4469                        visit(w_bound);
4470            return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
4471        }
4472
4473        @Override
4474        public Type visitTypeVar(TypeVar t, Void s) {
4475            if (rewriteTypeVars) {
4476                Type bound = t.bound.contains(t) ?
4477                        erasure(t.bound) :
4478                        visit(t.bound);
4479                return rewriteAsWildcardType(bound, t, EXTENDS);
4480            } else {
4481                return t;
4482            }
4483        }
4484
4485        @Override
4486        public Type visitWildcardType(WildcardType t, Void s) {
4487            Type bound2 = visit(t.type);
4488            return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
4489        }
4490
4491        private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
4492            switch (bk) {
4493               case EXTENDS: return high ?
4494                       makeExtendsWildcard(B(bound), formal) :
4495                       makeExtendsWildcard(syms.objectType, formal);
4496               case SUPER: return high ?
4497                       makeSuperWildcard(syms.botType, formal) :
4498                       makeSuperWildcard(B(bound), formal);
4499               case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
4500               default:
4501                   Assert.error("Invalid bound kind " + bk);
4502                   return null;
4503            }
4504        }
4505
4506        Type B(Type t) {
4507            while (t.hasTag(WILDCARD)) {
4508                WildcardType w = (WildcardType)t;
4509                t = high ?
4510                    w.getExtendsBound() :
4511                    w.getSuperBound();
4512                if (t == null) {
4513                    t = high ? syms.objectType : syms.botType;
4514                }
4515            }
4516            return t;
4517        }
4518    }
4519
4520
4521    /**
4522     * Create a wildcard with the given upper (extends) bound; create
4523     * an unbounded wildcard if bound is Object.
4524     *
4525     * @param bound the upper bound
4526     * @param formal the formal type parameter that will be
4527     * substituted by the wildcard
4528     */
4529    private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
4530        if (bound == syms.objectType) {
4531            return new WildcardType(syms.objectType,
4532                                    BoundKind.UNBOUND,
4533                                    syms.boundClass,
4534                                    formal);
4535        } else {
4536            return new WildcardType(bound,
4537                                    BoundKind.EXTENDS,
4538                                    syms.boundClass,
4539                                    formal);
4540        }
4541    }
4542
4543    /**
4544     * Create a wildcard with the given lower (super) bound; create an
4545     * unbounded wildcard if bound is bottom (type of {@code null}).
4546     *
4547     * @param bound the lower bound
4548     * @param formal the formal type parameter that will be
4549     * substituted by the wildcard
4550     */
4551    private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
4552        if (bound.hasTag(BOT)) {
4553            return new WildcardType(syms.objectType,
4554                                    BoundKind.UNBOUND,
4555                                    syms.boundClass,
4556                                    formal);
4557        } else {
4558            return new WildcardType(bound,
4559                                    BoundKind.SUPER,
4560                                    syms.boundClass,
4561                                    formal);
4562        }
4563    }
4564
4565    /**
4566     * A wrapper for a type that allows use in sets.
4567     */
4568    public static class UniqueType {
4569        public final Type type;
4570        final Types types;
4571
4572        public UniqueType(Type type, Types types) {
4573            this.type = type;
4574            this.types = types;
4575        }
4576
4577        public int hashCode() {
4578            return types.hashCode(type);
4579        }
4580
4581        public boolean equals(Object obj) {
4582            return (obj instanceof UniqueType) &&
4583                types.isSameType(type, ((UniqueType)obj).type);
4584        }
4585
4586        public String toString() {
4587            return type.toString();
4588        }
4589
4590    }
4591    // </editor-fold>
4592
4593    // <editor-fold defaultstate="collapsed" desc="Visitors">
4594    /**
4595     * A default visitor for types.  All visitor methods except
4596     * visitType are implemented by delegating to visitType.  Concrete
4597     * subclasses must provide an implementation of visitType and can
4598     * override other methods as needed.
4599     *
4600     * @param <R> the return type of the operation implemented by this
4601     * visitor; use Void if no return type is needed.
4602     * @param <S> the type of the second argument (the first being the
4603     * type itself) of the operation implemented by this visitor; use
4604     * Void if a second argument is not needed.
4605     */
4606    public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
4607        final public R visit(Type t, S s)               { return t.accept(this, s); }
4608        public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
4609        public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
4610        public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
4611        public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
4612        public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
4613        public R visitModuleType(ModuleType t, S s)     { return visitType(t, s); }
4614        public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
4615        public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
4616        public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
4617        public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
4618        public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
4619    }
4620
4621    /**
4622     * A default visitor for symbols.  All visitor methods except
4623     * visitSymbol are implemented by delegating to visitSymbol.  Concrete
4624     * subclasses must provide an implementation of visitSymbol and can
4625     * override other methods as needed.
4626     *
4627     * @param <R> the return type of the operation implemented by this
4628     * visitor; use Void if no return type is needed.
4629     * @param <S> the type of the second argument (the first being the
4630     * symbol itself) of the operation implemented by this visitor; use
4631     * Void if a second argument is not needed.
4632     */
4633    public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
4634        final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
4635        public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
4636        public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
4637        public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
4638        public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
4639        public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
4640        public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
4641    }
4642
4643    /**
4644     * A <em>simple</em> visitor for types.  This visitor is simple as
4645     * captured wildcards, for-all types (generic methods), and
4646     * undetermined type variables (part of inference) are hidden.
4647     * Captured wildcards are hidden by treating them as type
4648     * variables and the rest are hidden by visiting their qtypes.
4649     *
4650     * @param <R> the return type of the operation implemented by this
4651     * visitor; use Void if no return type is needed.
4652     * @param <S> the type of the second argument (the first being the
4653     * type itself) of the operation implemented by this visitor; use
4654     * Void if a second argument is not needed.
4655     */
4656    public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
4657        @Override
4658        public R visitCapturedType(CapturedType t, S s) {
4659            return visitTypeVar(t, s);
4660        }
4661        @Override
4662        public R visitForAll(ForAll t, S s) {
4663            return visit(t.qtype, s);
4664        }
4665        @Override
4666        public R visitUndetVar(UndetVar t, S s) {
4667            return visit(t.qtype, s);
4668        }
4669    }
4670
4671    /**
4672     * A plain relation on types.  That is a 2-ary function on the
4673     * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
4674     * <!-- In plain text: Type x Type -> Boolean -->
4675     */
4676    public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
4677
4678    /**
4679     * A convenience visitor for implementing operations that only
4680     * require one argument (the type itself), that is, unary
4681     * operations.
4682     *
4683     * @param <R> the return type of the operation implemented by this
4684     * visitor; use Void if no return type is needed.
4685     */
4686    public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
4687        final public R visit(Type t) { return t.accept(this, null); }
4688    }
4689
4690    /**
4691     * A visitor for implementing a mapping from types to types.  The
4692     * default behavior of this class is to implement the identity
4693     * mapping (mapping a type to itself).  This can be overridden in
4694     * subclasses.
4695     *
4696     * @param <S> the type of the second argument (the first being the
4697     * type itself) of this mapping; use Void if a second argument is
4698     * not needed.
4699     */
4700    public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
4701        final public Type visit(Type t) { return t.accept(this, null); }
4702        public Type visitType(Type t, S s) { return t; }
4703    }
4704    // </editor-fold>
4705
4706
4707    // <editor-fold defaultstate="collapsed" desc="Annotation support">
4708
4709    public RetentionPolicy getRetention(Attribute.Compound a) {
4710        return getRetention(a.type.tsym);
4711    }
4712
4713    public RetentionPolicy getRetention(TypeSymbol sym) {
4714        RetentionPolicy vis = RetentionPolicy.CLASS; // the default
4715        Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
4716        if (c != null) {
4717            Attribute value = c.member(names.value);
4718            if (value != null && value instanceof Attribute.Enum) {
4719                Name levelName = ((Attribute.Enum)value).value.name;
4720                if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
4721                else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
4722                else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
4723                else ;// /* fail soft */ throw new AssertionError(levelName);
4724            }
4725        }
4726        return vis;
4727    }
4728    // </editor-fold>
4729
4730    // <editor-fold defaultstate="collapsed" desc="Signature Generation">
4731
4732    public static abstract class SignatureGenerator {
4733
4734        private final Types types;
4735
4736        protected abstract void append(char ch);
4737        protected abstract void append(byte[] ba);
4738        protected abstract void append(Name name);
4739        protected void classReference(ClassSymbol c) { /* by default: no-op */ }
4740
4741        protected SignatureGenerator(Types types) {
4742            this.types = types;
4743        }
4744
4745        /**
4746         * Assemble signature of given type in string buffer.
4747         */
4748        public void assembleSig(Type type) {
4749            switch (type.getTag()) {
4750                case BYTE:
4751                    append('B');
4752                    break;
4753                case SHORT:
4754                    append('S');
4755                    break;
4756                case CHAR:
4757                    append('C');
4758                    break;
4759                case INT:
4760                    append('I');
4761                    break;
4762                case LONG:
4763                    append('J');
4764                    break;
4765                case FLOAT:
4766                    append('F');
4767                    break;
4768                case DOUBLE:
4769                    append('D');
4770                    break;
4771                case BOOLEAN:
4772                    append('Z');
4773                    break;
4774                case VOID:
4775                    append('V');
4776                    break;
4777                case CLASS:
4778                    append('L');
4779                    assembleClassSig(type);
4780                    append(';');
4781                    break;
4782                case ARRAY:
4783                    ArrayType at = (ArrayType) type;
4784                    append('[');
4785                    assembleSig(at.elemtype);
4786                    break;
4787                case METHOD:
4788                    MethodType mt = (MethodType) type;
4789                    append('(');
4790                    assembleSig(mt.argtypes);
4791                    append(')');
4792                    assembleSig(mt.restype);
4793                    if (hasTypeVar(mt.thrown)) {
4794                        for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
4795                            append('^');
4796                            assembleSig(l.head);
4797                        }
4798                    }
4799                    break;
4800                case WILDCARD: {
4801                    Type.WildcardType ta = (Type.WildcardType) type;
4802                    switch (ta.kind) {
4803                        case SUPER:
4804                            append('-');
4805                            assembleSig(ta.type);
4806                            break;
4807                        case EXTENDS:
4808                            append('+');
4809                            assembleSig(ta.type);
4810                            break;
4811                        case UNBOUND:
4812                            append('*');
4813                            break;
4814                        default:
4815                            throw new AssertionError(ta.kind);
4816                    }
4817                    break;
4818                }
4819                case TYPEVAR:
4820                    append('T');
4821                    append(type.tsym.name);
4822                    append(';');
4823                    break;
4824                case FORALL:
4825                    Type.ForAll ft = (Type.ForAll) type;
4826                    assembleParamsSig(ft.tvars);
4827                    assembleSig(ft.qtype);
4828                    break;
4829                default:
4830                    throw new AssertionError("typeSig " + type.getTag());
4831            }
4832        }
4833
4834        public boolean hasTypeVar(List<Type> l) {
4835            while (l.nonEmpty()) {
4836                if (l.head.hasTag(TypeTag.TYPEVAR)) {
4837                    return true;
4838                }
4839                l = l.tail;
4840            }
4841            return false;
4842        }
4843
4844        public void assembleClassSig(Type type) {
4845            ClassType ct = (ClassType) type;
4846            ClassSymbol c = (ClassSymbol) ct.tsym;
4847            classReference(c);
4848            Type outer = ct.getEnclosingType();
4849            if (outer.allparams().nonEmpty()) {
4850                boolean rawOuter =
4851                        c.owner.kind == MTH || // either a local class
4852                        c.name == types.names.empty; // or anonymous
4853                assembleClassSig(rawOuter
4854                        ? types.erasure(outer)
4855                        : outer);
4856                append(rawOuter ? '$' : '.');
4857                Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
4858                append(rawOuter
4859                        ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
4860                        : c.name);
4861            } else {
4862                append(externalize(c.flatname));
4863            }
4864            if (ct.getTypeArguments().nonEmpty()) {
4865                append('<');
4866                assembleSig(ct.getTypeArguments());
4867                append('>');
4868            }
4869        }
4870
4871        public void assembleParamsSig(List<Type> typarams) {
4872            append('<');
4873            for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
4874                Type.TypeVar tvar = (Type.TypeVar) ts.head;
4875                append(tvar.tsym.name);
4876                List<Type> bounds = types.getBounds(tvar);
4877                if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
4878                    append(':');
4879                }
4880                for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
4881                    append(':');
4882                    assembleSig(l.head);
4883                }
4884            }
4885            append('>');
4886        }
4887
4888        private void assembleSig(List<Type> types) {
4889            for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
4890                assembleSig(ts.head);
4891            }
4892        }
4893    }
4894    // </editor-fold>
4895
4896    public void newRound() {
4897        descCache._map.clear();
4898        isDerivedRawCache.clear();
4899        implCache._map.clear();
4900        membersCache._map.clear();
4901        closureCache.clear();
4902    }
4903}
4904