Types.java revision 3323:680712ce0386
1/*
2 * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.code;
27
28import java.lang.ref.SoftReference;
29import java.util.HashSet;
30import java.util.HashMap;
31import java.util.Locale;
32import java.util.Map;
33import java.util.Set;
34import java.util.WeakHashMap;
35import java.util.function.BiPredicate;
36import java.util.stream.Collector;
37
38import javax.tools.JavaFileObject;
39
40import com.sun.tools.javac.code.Attribute.RetentionPolicy;
41import com.sun.tools.javac.code.Lint.LintCategory;
42import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
43import com.sun.tools.javac.code.TypeMetadata.Entry.Kind;
44import com.sun.tools.javac.comp.AttrContext;
45import com.sun.tools.javac.comp.Check;
46import com.sun.tools.javac.comp.Enter;
47import com.sun.tools.javac.comp.Env;
48import com.sun.tools.javac.util.*;
49
50import static com.sun.tools.javac.code.BoundKind.*;
51import static com.sun.tools.javac.code.Flags.*;
52import static com.sun.tools.javac.code.Kinds.Kind.*;
53import static com.sun.tools.javac.code.Scope.*;
54import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
55import static com.sun.tools.javac.code.Symbol.*;
56import static com.sun.tools.javac.code.Type.*;
57import static com.sun.tools.javac.code.TypeTag.*;
58import static com.sun.tools.javac.jvm.ClassFile.externalize;
59
60/**
61 * Utility class containing various operations on types.
62 *
63 * <p>Unless other names are more illustrative, the following naming
64 * conventions should be observed in this file:
65 *
66 * <dl>
67 * <dt>t</dt>
68 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
69 * <dt>s</dt>
70 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
71 * <dt>ts</dt>
72 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
73 * <dt>ss</dt>
74 * <dd>A second list of types should be named ss.</dd>
75 * </dl>
76 *
77 * <p><b>This is NOT part of any supported API.
78 * If you write code that depends on this, you do so at your own risk.
79 * This code and its internal interfaces are subject to change or
80 * deletion without notice.</b>
81 */
82public class Types {
83    protected static final Context.Key<Types> typesKey = new Context.Key<>();
84
85    final Symtab syms;
86    final JavacMessages messages;
87    final Names names;
88    final boolean allowObjectToPrimitiveCast;
89    final boolean allowDefaultMethods;
90    final Check chk;
91    final Enter enter;
92    JCDiagnostic.Factory diags;
93    List<Warner> warnStack = List.nil();
94    final Name capturedName;
95    private final FunctionDescriptorLookupError functionDescriptorLookupError;
96
97    public final Warner noWarnings;
98
99    // <editor-fold defaultstate="collapsed" desc="Instantiating">
100    public static Types instance(Context context) {
101        Types instance = context.get(typesKey);
102        if (instance == null)
103            instance = new Types(context);
104        return instance;
105    }
106
107    protected Types(Context context) {
108        context.put(typesKey, this);
109        syms = Symtab.instance(context);
110        names = Names.instance(context);
111        Source source = Source.instance(context);
112        allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
113        allowDefaultMethods = source.allowDefaultMethods();
114        chk = Check.instance(context);
115        enter = Enter.instance(context);
116        capturedName = names.fromString("<captured wildcard>");
117        messages = JavacMessages.instance(context);
118        diags = JCDiagnostic.Factory.instance(context);
119        functionDescriptorLookupError = new FunctionDescriptorLookupError();
120        noWarnings = new Warner(null);
121    }
122    // </editor-fold>
123
124    // <editor-fold defaultstate="collapsed" desc="bounds">
125    /**
126     * Get a wildcard's upper bound, returning non-wildcards unchanged.
127     * @param t a type argument, either a wildcard or a type
128     */
129    public Type wildUpperBound(Type t) {
130        if (t.hasTag(WILDCARD)) {
131            WildcardType w = (WildcardType) t;
132            if (w.isSuperBound())
133                return w.bound == null ? syms.objectType : w.bound.bound;
134            else
135                return wildUpperBound(w.type);
136        }
137        else return t;
138    }
139
140    /**
141     * Get a capture variable's upper bound, returning other types unchanged.
142     * @param t a type
143     */
144    public Type cvarUpperBound(Type t) {
145        if (t.hasTag(TYPEVAR)) {
146            TypeVar v = (TypeVar) t;
147            return v.isCaptured() ? cvarUpperBound(v.bound) : v;
148        }
149        else return t;
150    }
151
152    /**
153     * Get a wildcard's lower bound, returning non-wildcards unchanged.
154     * @param t a type argument, either a wildcard or a type
155     */
156    public Type wildLowerBound(Type t) {
157        if (t.hasTag(WILDCARD)) {
158            WildcardType w = (WildcardType) t;
159            return w.isExtendsBound() ? syms.botType : wildLowerBound(w.type);
160        }
161        else return t;
162    }
163
164    /**
165     * Get a capture variable's lower bound, returning other types unchanged.
166     * @param t a type
167     */
168    public Type cvarLowerBound(Type t) {
169        if (t.hasTag(TYPEVAR) && ((TypeVar) t).isCaptured()) {
170            return cvarLowerBound(t.getLowerBound());
171        }
172        else return t;
173    }
174
175    /**
176     * Recursively skip type-variables until a class/array type is found; capture conversion is then
177     * (optionally) applied to the resulting type. This is useful for i.e. computing a site that is
178     * suitable for a method lookup.
179     */
180    public Type skipTypeVars(Type site, boolean capture) {
181        while (site.hasTag(TYPEVAR)) {
182            site = site.getUpperBound();
183        }
184        return capture ? capture(site) : site;
185    }
186    // </editor-fold>
187
188    // <editor-fold defaultstate="collapsed" desc="isUnbounded">
189    /**
190     * Checks that all the arguments to a class are unbounded
191     * wildcards or something else that doesn't make any restrictions
192     * on the arguments. If a class isUnbounded, a raw super- or
193     * subclass can be cast to it without a warning.
194     * @param t a type
195     * @return true iff the given type is unbounded or raw
196     */
197    public boolean isUnbounded(Type t) {
198        return isUnbounded.visit(t);
199    }
200    // where
201        private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
202
203            public Boolean visitType(Type t, Void ignored) {
204                return true;
205            }
206
207            @Override
208            public Boolean visitClassType(ClassType t, Void ignored) {
209                List<Type> parms = t.tsym.type.allparams();
210                List<Type> args = t.allparams();
211                while (parms.nonEmpty()) {
212                    WildcardType unb = new WildcardType(syms.objectType,
213                                                        BoundKind.UNBOUND,
214                                                        syms.boundClass,
215                                                        (TypeVar)parms.head);
216                    if (!containsType(args.head, unb))
217                        return false;
218                    parms = parms.tail;
219                    args = args.tail;
220                }
221                return true;
222            }
223        };
224    // </editor-fold>
225
226    // <editor-fold defaultstate="collapsed" desc="asSub">
227    /**
228     * Return the least specific subtype of t that starts with symbol
229     * sym.  If none exists, return null.  The least specific subtype
230     * is determined as follows:
231     *
232     * <p>If there is exactly one parameterized instance of sym that is a
233     * subtype of t, that parameterized instance is returned.<br>
234     * Otherwise, if the plain type or raw type `sym' is a subtype of
235     * type t, the type `sym' itself is returned.  Otherwise, null is
236     * returned.
237     */
238    public Type asSub(Type t, Symbol sym) {
239        return asSub.visit(t, sym);
240    }
241    // where
242        private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
243
244            public Type visitType(Type t, Symbol sym) {
245                return null;
246            }
247
248            @Override
249            public Type visitClassType(ClassType t, Symbol sym) {
250                if (t.tsym == sym)
251                    return t;
252                Type base = asSuper(sym.type, t.tsym);
253                if (base == null)
254                    return null;
255                ListBuffer<Type> from = new ListBuffer<>();
256                ListBuffer<Type> to = new ListBuffer<>();
257                try {
258                    adapt(base, t, from, to);
259                } catch (AdaptFailure ex) {
260                    return null;
261                }
262                Type res = subst(sym.type, from.toList(), to.toList());
263                if (!isSubtype(res, t))
264                    return null;
265                ListBuffer<Type> openVars = new ListBuffer<>();
266                for (List<Type> l = sym.type.allparams();
267                     l.nonEmpty(); l = l.tail)
268                    if (res.contains(l.head) && !t.contains(l.head))
269                        openVars.append(l.head);
270                if (openVars.nonEmpty()) {
271                    if (t.isRaw()) {
272                        // The subtype of a raw type is raw
273                        res = erasure(res);
274                    } else {
275                        // Unbound type arguments default to ?
276                        List<Type> opens = openVars.toList();
277                        ListBuffer<Type> qs = new ListBuffer<>();
278                        for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
279                            qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND,
280                                                       syms.boundClass, (TypeVar) iter.head));
281                        }
282                        res = subst(res, opens, qs.toList());
283                    }
284                }
285                return res;
286            }
287
288            @Override
289            public Type visitErrorType(ErrorType t, Symbol sym) {
290                return t;
291            }
292        };
293    // </editor-fold>
294
295    // <editor-fold defaultstate="collapsed" desc="isConvertible">
296    /**
297     * Is t a subtype of or convertible via boxing/unboxing
298     * conversion to s?
299     */
300    public boolean isConvertible(Type t, Type s, Warner warn) {
301        if (t.hasTag(ERROR)) {
302            return true;
303        }
304        boolean tPrimitive = t.isPrimitive();
305        boolean sPrimitive = s.isPrimitive();
306        if (tPrimitive == sPrimitive) {
307            return isSubtypeUnchecked(t, s, warn);
308        }
309        return tPrimitive
310            ? isSubtype(boxedClass(t).type, s)
311            : isSubtype(unboxedType(t), s);
312    }
313
314    /**
315     * Is t a subtype of or convertible via boxing/unboxing
316     * conversions to s?
317     */
318    public boolean isConvertible(Type t, Type s) {
319        return isConvertible(t, s, noWarnings);
320    }
321    // </editor-fold>
322
323    // <editor-fold defaultstate="collapsed" desc="findSam">
324
325    /**
326     * Exception used to report a function descriptor lookup failure. The exception
327     * wraps a diagnostic that can be used to generate more details error
328     * messages.
329     */
330    public static class FunctionDescriptorLookupError extends RuntimeException {
331        private static final long serialVersionUID = 0;
332
333        JCDiagnostic diagnostic;
334
335        FunctionDescriptorLookupError() {
336            this.diagnostic = null;
337        }
338
339        FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
340            this.diagnostic = diag;
341            return this;
342        }
343
344        public JCDiagnostic getDiagnostic() {
345            return diagnostic;
346        }
347    }
348
349    /**
350     * A cache that keeps track of function descriptors associated with given
351     * functional interfaces.
352     */
353    class DescriptorCache {
354
355        private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<>();
356
357        class FunctionDescriptor {
358            Symbol descSym;
359
360            FunctionDescriptor(Symbol descSym) {
361                this.descSym = descSym;
362            }
363
364            public Symbol getSymbol() {
365                return descSym;
366            }
367
368            public Type getType(Type site) {
369                site = removeWildcards(site);
370                if (!chk.checkValidGenericType(site)) {
371                    //if the inferred functional interface type is not well-formed,
372                    //or if it's not a subtype of the original target, issue an error
373                    throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
374                }
375                return memberType(site, descSym);
376            }
377        }
378
379        class Entry {
380            final FunctionDescriptor cachedDescRes;
381            final int prevMark;
382
383            public Entry(FunctionDescriptor cachedDescRes,
384                    int prevMark) {
385                this.cachedDescRes = cachedDescRes;
386                this.prevMark = prevMark;
387            }
388
389            boolean matches(int mark) {
390                return  this.prevMark == mark;
391            }
392        }
393
394        FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
395            Entry e = _map.get(origin);
396            CompoundScope members = membersClosure(origin.type, false);
397            if (e == null ||
398                    !e.matches(members.getMark())) {
399                FunctionDescriptor descRes = findDescriptorInternal(origin, members);
400                _map.put(origin, new Entry(descRes, members.getMark()));
401                return descRes;
402            }
403            else {
404                return e.cachedDescRes;
405            }
406        }
407
408        /**
409         * Compute the function descriptor associated with a given functional interface
410         */
411        public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
412                CompoundScope membersCache) throws FunctionDescriptorLookupError {
413            if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
414                //t must be an interface
415                throw failure("not.a.functional.intf", origin);
416            }
417
418            final ListBuffer<Symbol> abstracts = new ListBuffer<>();
419            for (Symbol sym : membersCache.getSymbols(new DescriptorFilter(origin))) {
420                Type mtype = memberType(origin.type, sym);
421                if (abstracts.isEmpty() ||
422                        (sym.name == abstracts.first().name &&
423                        overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
424                    abstracts.append(sym);
425                } else {
426                    //the target method(s) should be the only abstract members of t
427                    throw failure("not.a.functional.intf.1",  origin,
428                            diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
429                }
430            }
431            if (abstracts.isEmpty()) {
432                //t must define a suitable non-generic method
433                throw failure("not.a.functional.intf.1", origin,
434                            diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
435            } else if (abstracts.size() == 1) {
436                return new FunctionDescriptor(abstracts.first());
437            } else { // size > 1
438                FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
439                if (descRes == null) {
440                    //we can get here if the functional interface is ill-formed
441                    ListBuffer<JCDiagnostic> descriptors = new ListBuffer<>();
442                    for (Symbol desc : abstracts) {
443                        String key = desc.type.getThrownTypes().nonEmpty() ?
444                                "descriptor.throws" : "descriptor";
445                        descriptors.append(diags.fragment(key, desc.name,
446                                desc.type.getParameterTypes(),
447                                desc.type.getReturnType(),
448                                desc.type.getThrownTypes()));
449                    }
450                    JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
451                            new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
452                            Kinds.kindName(origin), origin), descriptors.toList());
453                    throw failure(incompatibleDescriptors);
454                }
455                return descRes;
456            }
457        }
458
459        /**
460         * Compute a synthetic type for the target descriptor given a list
461         * of override-equivalent methods in the functional interface type.
462         * The resulting method type is a method type that is override-equivalent
463         * and return-type substitutable with each method in the original list.
464         */
465        private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
466            //pick argument types - simply take the signature that is a
467            //subsignature of all other signatures in the list (as per JLS 8.4.2)
468            List<Symbol> mostSpecific = List.nil();
469            outer: for (Symbol msym1 : methodSyms) {
470                Type mt1 = memberType(origin.type, msym1);
471                for (Symbol msym2 : methodSyms) {
472                    Type mt2 = memberType(origin.type, msym2);
473                    if (!isSubSignature(mt1, mt2)) {
474                        continue outer;
475                    }
476                }
477                mostSpecific = mostSpecific.prepend(msym1);
478            }
479            if (mostSpecific.isEmpty()) {
480                return null;
481            }
482
483
484            //pick return types - this is done in two phases: (i) first, the most
485            //specific return type is chosen using strict subtyping; if this fails,
486            //a second attempt is made using return type substitutability (see JLS 8.4.5)
487            boolean phase2 = false;
488            Symbol bestSoFar = null;
489            while (bestSoFar == null) {
490                outer: for (Symbol msym1 : mostSpecific) {
491                    Type mt1 = memberType(origin.type, msym1);
492                    for (Symbol msym2 : methodSyms) {
493                        Type mt2 = memberType(origin.type, msym2);
494                        if (phase2 ?
495                                !returnTypeSubstitutable(mt1, mt2) :
496                                !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
497                            continue outer;
498                        }
499                    }
500                    bestSoFar = msym1;
501                }
502                if (phase2) {
503                    break;
504                } else {
505                    phase2 = true;
506                }
507            }
508            if (bestSoFar == null) return null;
509
510            //merge thrown types - form the intersection of all the thrown types in
511            //all the signatures in the list
512            boolean toErase = !bestSoFar.type.hasTag(FORALL);
513            List<Type> thrown = null;
514            Type mt1 = memberType(origin.type, bestSoFar);
515            for (Symbol msym2 : methodSyms) {
516                Type mt2 = memberType(origin.type, msym2);
517                List<Type> thrown_mt2 = mt2.getThrownTypes();
518                if (toErase) {
519                    thrown_mt2 = erasure(thrown_mt2);
520                } else {
521                    /* If bestSoFar is generic then all the methods are generic.
522                     * The opposite is not true: a non generic method can override
523                     * a generic method (raw override) so it's safe to cast mt1 and
524                     * mt2 to ForAll.
525                     */
526                    ForAll fa1 = (ForAll)mt1;
527                    ForAll fa2 = (ForAll)mt2;
528                    thrown_mt2 = subst(thrown_mt2, fa2.tvars, fa1.tvars);
529                }
530                thrown = (thrown == null) ?
531                    thrown_mt2 :
532                    chk.intersect(thrown_mt2, thrown);
533            }
534
535            final List<Type> thrown1 = thrown;
536            return new FunctionDescriptor(bestSoFar) {
537                @Override
538                public Type getType(Type origin) {
539                    Type mt = memberType(origin, getSymbol());
540                    return createMethodTypeWithThrown(mt, thrown1);
541                }
542            };
543        }
544
545        boolean isSubtypeInternal(Type s, Type t) {
546            return (s.isPrimitive() && t.isPrimitive()) ?
547                    isSameType(t, s) :
548                    isSubtype(s, t);
549        }
550
551        FunctionDescriptorLookupError failure(String msg, Object... args) {
552            return failure(diags.fragment(msg, args));
553        }
554
555        FunctionDescriptorLookupError failure(JCDiagnostic diag) {
556            return functionDescriptorLookupError.setMessage(diag);
557        }
558    }
559
560    private DescriptorCache descCache = new DescriptorCache();
561
562    /**
563     * Find the method descriptor associated to this class symbol - if the
564     * symbol 'origin' is not a functional interface, an exception is thrown.
565     */
566    public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
567        return descCache.get(origin).getSymbol();
568    }
569
570    /**
571     * Find the type of the method descriptor associated to this class symbol -
572     * if the symbol 'origin' is not a functional interface, an exception is thrown.
573     */
574    public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
575        return descCache.get(origin.tsym).getType(origin);
576    }
577
578    /**
579     * Is given type a functional interface?
580     */
581    public boolean isFunctionalInterface(TypeSymbol tsym) {
582        try {
583            findDescriptorSymbol(tsym);
584            return true;
585        } catch (FunctionDescriptorLookupError ex) {
586            return false;
587        }
588    }
589
590    public boolean isFunctionalInterface(Type site) {
591        try {
592            findDescriptorType(site);
593            return true;
594        } catch (FunctionDescriptorLookupError ex) {
595            return false;
596        }
597    }
598
599    public Type removeWildcards(Type site) {
600        if (site.getTypeArguments().stream().anyMatch(t -> t.hasTag(WILDCARD))) {
601            //compute non-wildcard parameterization - JLS 9.9
602            List<Type> actuals = site.getTypeArguments();
603            List<Type> formals = site.tsym.type.getTypeArguments();
604            ListBuffer<Type> targs = new ListBuffer<>();
605            for (Type formal : formals) {
606                Type actual = actuals.head;
607                Type bound = formal.getUpperBound();
608                if (actuals.head.hasTag(WILDCARD)) {
609                    WildcardType wt = (WildcardType)actual;
610                    //check that bound does not contain other formals
611                    if (bound.containsAny(formals)) {
612                        targs.add(wt.type);
613                    } else {
614                        //compute new type-argument based on declared bound and wildcard bound
615                        switch (wt.kind) {
616                            case UNBOUND:
617                                targs.add(bound);
618                                break;
619                            case EXTENDS:
620                                targs.add(glb(bound, wt.type));
621                                break;
622                            case SUPER:
623                                targs.add(wt.type);
624                                break;
625                            default:
626                                Assert.error("Cannot get here!");
627                        }
628                    }
629                } else {
630                    //not a wildcard - the new type argument remains unchanged
631                    targs.add(actual);
632                }
633                actuals = actuals.tail;
634            }
635            return subst(site.tsym.type, formals, targs.toList());
636        } else {
637            return site;
638        }
639    }
640
641    /**
642     * Create a symbol for a class that implements a given functional interface
643     * and overrides its functional descriptor. This routine is used for two
644     * main purposes: (i) checking well-formedness of a functional interface;
645     * (ii) perform functional interface bridge calculation.
646     */
647    public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, List<Type> targets, long cflags) {
648        if (targets.isEmpty()) {
649            return null;
650        }
651        Symbol descSym = findDescriptorSymbol(targets.head.tsym);
652        Type descType = findDescriptorType(targets.head);
653        ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
654        csym.completer = Completer.NULL_COMPLETER;
655        csym.members_field = WriteableScope.create(csym);
656        MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
657        csym.members_field.enter(instDescSym);
658        Type.ClassType ctype = new Type.ClassType(Type.noType, List.<Type>nil(), csym);
659        ctype.supertype_field = syms.objectType;
660        ctype.interfaces_field = targets;
661        csym.type = ctype;
662        csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
663        return csym;
664    }
665
666    /**
667     * Find the minimal set of methods that are overridden by the functional
668     * descriptor in 'origin'. All returned methods are assumed to have different
669     * erased signatures.
670     */
671    public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
672        Assert.check(isFunctionalInterface(origin));
673        Symbol descSym = findDescriptorSymbol(origin);
674        CompoundScope members = membersClosure(origin.type, false);
675        ListBuffer<Symbol> overridden = new ListBuffer<>();
676        outer: for (Symbol m2 : members.getSymbolsByName(descSym.name, bridgeFilter)) {
677            if (m2 == descSym) continue;
678            else if (descSym.overrides(m2, origin, Types.this, false)) {
679                for (Symbol m3 : overridden) {
680                    if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
681                            (m3.overrides(m2, origin, Types.this, false) &&
682                            (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
683                            (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
684                        continue outer;
685                    }
686                }
687                overridden.add(m2);
688            }
689        }
690        return overridden.toList();
691    }
692    //where
693        private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
694            public boolean accepts(Symbol t) {
695                return t.kind == MTH &&
696                        t.name != names.init &&
697                        t.name != names.clinit &&
698                        (t.flags() & SYNTHETIC) == 0;
699            }
700        };
701        private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
702            //a symbol will be completed from a classfile if (a) symbol has
703            //an associated file object with CLASS kind and (b) the symbol has
704            //not been entered
705            if (origin.classfile != null &&
706                    origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
707                    enter.getEnv(origin) == null) {
708                return false;
709            }
710            if (origin == s) {
711                return true;
712            }
713            for (Type t : interfaces(origin.type)) {
714                if (pendingBridges((ClassSymbol)t.tsym, s)) {
715                    return true;
716                }
717            }
718            return false;
719        }
720    // </editor-fold>
721
722   /**
723    * Scope filter used to skip methods that should be ignored (such as methods
724    * overridden by j.l.Object) during function interface conversion interface check
725    */
726    class DescriptorFilter implements Filter<Symbol> {
727
728       TypeSymbol origin;
729
730       DescriptorFilter(TypeSymbol origin) {
731           this.origin = origin;
732       }
733
734       @Override
735       public boolean accepts(Symbol sym) {
736           return sym.kind == MTH &&
737                   (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
738                   !overridesObjectMethod(origin, sym) &&
739                   (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
740       }
741    }
742
743    // <editor-fold defaultstate="collapsed" desc="isSubtype">
744    /**
745     * Is t an unchecked subtype of s?
746     */
747    public boolean isSubtypeUnchecked(Type t, Type s) {
748        return isSubtypeUnchecked(t, s, noWarnings);
749    }
750    /**
751     * Is t an unchecked subtype of s?
752     */
753    public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
754        boolean result = isSubtypeUncheckedInternal(t, s, warn);
755        if (result) {
756            checkUnsafeVarargsConversion(t, s, warn);
757        }
758        return result;
759    }
760    //where
761        private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
762            if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
763                if (((ArrayType)t).elemtype.isPrimitive()) {
764                    return isSameType(elemtype(t), elemtype(s));
765                } else {
766                    return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
767                }
768            } else if (isSubtype(t, s)) {
769                return true;
770            } else if (t.hasTag(TYPEVAR)) {
771                return isSubtypeUnchecked(t.getUpperBound(), s, warn);
772            } else if (!s.isRaw()) {
773                Type t2 = asSuper(t, s.tsym);
774                if (t2 != null && t2.isRaw()) {
775                    if (isReifiable(s)) {
776                        warn.silentWarn(LintCategory.UNCHECKED);
777                    } else {
778                        warn.warn(LintCategory.UNCHECKED);
779                    }
780                    return true;
781                }
782            }
783            return false;
784        }
785
786        private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
787            if (!t.hasTag(ARRAY) || isReifiable(t)) {
788                return;
789            }
790            ArrayType from = (ArrayType)t;
791            boolean shouldWarn = false;
792            switch (s.getTag()) {
793                case ARRAY:
794                    ArrayType to = (ArrayType)s;
795                    shouldWarn = from.isVarargs() &&
796                            !to.isVarargs() &&
797                            !isReifiable(from);
798                    break;
799                case CLASS:
800                    shouldWarn = from.isVarargs();
801                    break;
802            }
803            if (shouldWarn) {
804                warn.warn(LintCategory.VARARGS);
805            }
806        }
807
808    /**
809     * Is t a subtype of s?<br>
810     * (not defined for Method and ForAll types)
811     */
812    final public boolean isSubtype(Type t, Type s) {
813        return isSubtype(t, s, true);
814    }
815    final public boolean isSubtypeNoCapture(Type t, Type s) {
816        return isSubtype(t, s, false);
817    }
818    public boolean isSubtype(Type t, Type s, boolean capture) {
819        if (t.equalsIgnoreMetadata(s))
820            return true;
821        if (s.isPartial())
822            return isSuperType(s, t);
823
824        if (s.isCompound()) {
825            for (Type s2 : interfaces(s).prepend(supertype(s))) {
826                if (!isSubtype(t, s2, capture))
827                    return false;
828            }
829            return true;
830        }
831
832        // Generally, if 's' is a lower-bounded type variable, recur on lower bound; but
833        // for inference variables and intersections, we need to keep 's'
834        // (see JLS 4.10.2 for intersections and 18.2.3 for inference vars)
835        if (!t.hasTag(UNDETVAR) && !t.isCompound()) {
836            // TODO: JDK-8039198, bounds checking sometimes passes in a wildcard as s
837            Type lower = cvarLowerBound(wildLowerBound(s));
838            if (s != lower && !lower.hasTag(BOT))
839                return isSubtype(capture ? capture(t) : t, lower, false);
840        }
841
842        return isSubtype.visit(capture ? capture(t) : t, s);
843    }
844    // where
845        private TypeRelation isSubtype = new TypeRelation()
846        {
847            @Override
848            public Boolean visitType(Type t, Type s) {
849                switch (t.getTag()) {
850                 case BYTE:
851                     return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
852                 case CHAR:
853                     return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
854                 case SHORT: case INT: case LONG:
855                 case FLOAT: case DOUBLE:
856                     return t.getTag().isSubRangeOf(s.getTag());
857                 case BOOLEAN: case VOID:
858                     return t.hasTag(s.getTag());
859                 case TYPEVAR:
860                     return isSubtypeNoCapture(t.getUpperBound(), s);
861                 case BOT:
862                     return
863                         s.hasTag(BOT) || s.hasTag(CLASS) ||
864                         s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
865                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
866                 case NONE:
867                     return false;
868                 default:
869                     throw new AssertionError("isSubtype " + t.getTag());
870                 }
871            }
872
873            private Set<TypePair> cache = new HashSet<>();
874
875            private boolean containsTypeRecursive(Type t, Type s) {
876                TypePair pair = new TypePair(t, s);
877                if (cache.add(pair)) {
878                    try {
879                        return containsType(t.getTypeArguments(),
880                                            s.getTypeArguments());
881                    } finally {
882                        cache.remove(pair);
883                    }
884                } else {
885                    return containsType(t.getTypeArguments(),
886                                        rewriteSupers(s).getTypeArguments());
887                }
888            }
889
890            private Type rewriteSupers(Type t) {
891                if (!t.isParameterized())
892                    return t;
893                ListBuffer<Type> from = new ListBuffer<>();
894                ListBuffer<Type> to = new ListBuffer<>();
895                adaptSelf(t, from, to);
896                if (from.isEmpty())
897                    return t;
898                ListBuffer<Type> rewrite = new ListBuffer<>();
899                boolean changed = false;
900                for (Type orig : to.toList()) {
901                    Type s = rewriteSupers(orig);
902                    if (s.isSuperBound() && !s.isExtendsBound()) {
903                        s = new WildcardType(syms.objectType,
904                                             BoundKind.UNBOUND,
905                                             syms.boundClass,
906                                             s.getMetadata());
907                        changed = true;
908                    } else if (s != orig) {
909                        s = new WildcardType(wildUpperBound(s),
910                                             BoundKind.EXTENDS,
911                                             syms.boundClass,
912                                             s.getMetadata());
913                        changed = true;
914                    }
915                    rewrite.append(s);
916                }
917                if (changed)
918                    return subst(t.tsym.type, from.toList(), rewrite.toList());
919                else
920                    return t;
921            }
922
923            @Override
924            public Boolean visitClassType(ClassType t, Type s) {
925                Type sup = asSuper(t, s.tsym);
926                if (sup == null) return false;
927                // If t is an intersection, sup might not be a class type
928                if (!sup.hasTag(CLASS)) return isSubtypeNoCapture(sup, s);
929                return sup.tsym == s.tsym
930                     // Check type variable containment
931                    && (!s.isParameterized() || containsTypeRecursive(s, sup))
932                    && isSubtypeNoCapture(sup.getEnclosingType(),
933                                          s.getEnclosingType());
934            }
935
936            @Override
937            public Boolean visitArrayType(ArrayType t, Type s) {
938                if (s.hasTag(ARRAY)) {
939                    if (t.elemtype.isPrimitive())
940                        return isSameType(t.elemtype, elemtype(s));
941                    else
942                        return isSubtypeNoCapture(t.elemtype, elemtype(s));
943                }
944
945                if (s.hasTag(CLASS)) {
946                    Name sname = s.tsym.getQualifiedName();
947                    return sname == names.java_lang_Object
948                        || sname == names.java_lang_Cloneable
949                        || sname == names.java_io_Serializable;
950                }
951
952                return false;
953            }
954
955            @Override
956            public Boolean visitUndetVar(UndetVar t, Type s) {
957                //todo: test against origin needed? or replace with substitution?
958                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
959                    return true;
960                } else if (s.hasTag(BOT)) {
961                    //if 's' is 'null' there's no instantiated type U for which
962                    //U <: s (but 'null' itself, which is not a valid type)
963                    return false;
964                }
965
966                t.addBound(InferenceBound.UPPER, s, Types.this);
967                return true;
968            }
969
970            @Override
971            public Boolean visitErrorType(ErrorType t, Type s) {
972                return true;
973            }
974        };
975
976    /**
977     * Is t a subtype of every type in given list `ts'?<br>
978     * (not defined for Method and ForAll types)<br>
979     * Allows unchecked conversions.
980     */
981    public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
982        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
983            if (!isSubtypeUnchecked(t, l.head, warn))
984                return false;
985        return true;
986    }
987
988    /**
989     * Are corresponding elements of ts subtypes of ss?  If lists are
990     * of different length, return false.
991     */
992    public boolean isSubtypes(List<Type> ts, List<Type> ss) {
993        while (ts.tail != null && ss.tail != null
994               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
995               isSubtype(ts.head, ss.head)) {
996            ts = ts.tail;
997            ss = ss.tail;
998        }
999        return ts.tail == null && ss.tail == null;
1000        /*inlined: ts.isEmpty() && ss.isEmpty();*/
1001    }
1002
1003    /**
1004     * Are corresponding elements of ts subtypes of ss, allowing
1005     * unchecked conversions?  If lists are of different length,
1006     * return false.
1007     **/
1008    public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
1009        while (ts.tail != null && ss.tail != null
1010               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1011               isSubtypeUnchecked(ts.head, ss.head, warn)) {
1012            ts = ts.tail;
1013            ss = ss.tail;
1014        }
1015        return ts.tail == null && ss.tail == null;
1016        /*inlined: ts.isEmpty() && ss.isEmpty();*/
1017    }
1018    // </editor-fold>
1019
1020    // <editor-fold defaultstate="collapsed" desc="isSuperType">
1021    /**
1022     * Is t a supertype of s?
1023     */
1024    public boolean isSuperType(Type t, Type s) {
1025        switch (t.getTag()) {
1026        case ERROR:
1027            return true;
1028        case UNDETVAR: {
1029            UndetVar undet = (UndetVar)t;
1030            if (t == s ||
1031                undet.qtype == s ||
1032                s.hasTag(ERROR) ||
1033                s.hasTag(BOT)) {
1034                return true;
1035            }
1036            undet.addBound(InferenceBound.LOWER, s, this);
1037            return true;
1038        }
1039        default:
1040            return isSubtype(s, t);
1041        }
1042    }
1043    // </editor-fold>
1044
1045    // <editor-fold defaultstate="collapsed" desc="isSameType">
1046    /**
1047     * Are corresponding elements of the lists the same type?  If
1048     * lists are of different length, return false.
1049     */
1050    public boolean isSameTypes(List<Type> ts, List<Type> ss) {
1051        return isSameTypes(ts, ss, false);
1052    }
1053    public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
1054        while (ts.tail != null && ss.tail != null
1055               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1056               isSameType(ts.head, ss.head, strict)) {
1057            ts = ts.tail;
1058            ss = ss.tail;
1059        }
1060        return ts.tail == null && ss.tail == null;
1061        /*inlined: ts.isEmpty() && ss.isEmpty();*/
1062    }
1063
1064    /**
1065     * A polymorphic signature method (JLS 15.12.3) is a method that
1066     *   (i) is declared in the java.lang.invoke.MethodHandle/VarHandle classes;
1067     *  (ii) takes a single variable arity parameter;
1068     * (iii) whose declared type is Object[];
1069     *  (iv) has any return type, Object signifying a polymorphic return type; and
1070     *   (v) is native.
1071    */
1072   public boolean isSignaturePolymorphic(MethodSymbol msym) {
1073       List<Type> argtypes = msym.type.getParameterTypes();
1074       return (msym.flags_field & NATIVE) != 0 &&
1075              (msym.owner == syms.methodHandleType.tsym || msym.owner == syms.varHandleType.tsym) &&
1076               argtypes.tail.tail == null &&
1077               argtypes.head.hasTag(TypeTag.ARRAY) &&
1078               ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
1079   }
1080
1081    /**
1082     * Is t the same type as s?
1083     */
1084    public boolean isSameType(Type t, Type s) {
1085        return isSameType(t, s, false);
1086    }
1087    public boolean isSameType(Type t, Type s, boolean strict) {
1088        return strict ?
1089                isSameTypeStrict.visit(t, s) :
1090                isSameTypeLoose.visit(t, s);
1091    }
1092    // where
1093        abstract class SameTypeVisitor extends TypeRelation {
1094
1095            public Boolean visitType(Type t, Type s) {
1096                if (t.equalsIgnoreMetadata(s))
1097                    return true;
1098
1099                if (s.isPartial())
1100                    return visit(s, t);
1101
1102                switch (t.getTag()) {
1103                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1104                case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
1105                    return t.hasTag(s.getTag());
1106                case TYPEVAR: {
1107                    if (s.hasTag(TYPEVAR)) {
1108                        //type-substitution does not preserve type-var types
1109                        //check that type var symbols and bounds are indeed the same
1110                        return sameTypeVars((TypeVar)t, (TypeVar)s);
1111                    }
1112                    else {
1113                        //special case for s == ? super X, where upper(s) = u
1114                        //check that u == t, where u has been set by Type.withTypeVar
1115                        return s.isSuperBound() &&
1116                                !s.isExtendsBound() &&
1117                                visit(t, wildUpperBound(s));
1118                    }
1119                }
1120                default:
1121                    throw new AssertionError("isSameType " + t.getTag());
1122                }
1123            }
1124
1125            abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
1126
1127            @Override
1128            public Boolean visitWildcardType(WildcardType t, Type s) {
1129                if (s.isPartial())
1130                    return visit(s, t);
1131                else
1132                    return false;
1133            }
1134
1135            @Override
1136            public Boolean visitClassType(ClassType t, Type s) {
1137                if (t == s)
1138                    return true;
1139
1140                if (s.isPartial())
1141                    return visit(s, t);
1142
1143                if (s.isSuperBound() && !s.isExtendsBound())
1144                    return visit(t, wildUpperBound(s)) && visit(t, wildLowerBound(s));
1145
1146                if (t.isCompound() && s.isCompound()) {
1147                    if (!visit(supertype(t), supertype(s)))
1148                        return false;
1149
1150                    Map<Symbol,Type> tMap = new HashMap<>();
1151                    for (Type ti : interfaces(t)) {
1152                        if (tMap.containsKey(ti)) {
1153                            throw new AssertionError("Malformed intersection");
1154                        }
1155                        tMap.put(ti.tsym, ti);
1156                    }
1157                    for (Type si : interfaces(s)) {
1158                        if (!tMap.containsKey(si.tsym))
1159                            return false;
1160                        Type ti = tMap.remove(si.tsym);
1161                        if (!visit(ti, si))
1162                            return false;
1163                    }
1164                    return tMap.isEmpty();
1165                }
1166                return t.tsym == s.tsym
1167                    && visit(t.getEnclosingType(), s.getEnclosingType())
1168                    && containsTypes(t.getTypeArguments(), s.getTypeArguments());
1169            }
1170
1171            abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
1172
1173            @Override
1174            public Boolean visitArrayType(ArrayType t, Type s) {
1175                if (t == s)
1176                    return true;
1177
1178                if (s.isPartial())
1179                    return visit(s, t);
1180
1181                return s.hasTag(ARRAY)
1182                    && containsTypeEquivalent(t.elemtype, elemtype(s));
1183            }
1184
1185            @Override
1186            public Boolean visitMethodType(MethodType t, Type s) {
1187                // isSameType for methods does not take thrown
1188                // exceptions into account!
1189                return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
1190            }
1191
1192            @Override
1193            public Boolean visitPackageType(PackageType t, Type s) {
1194                return t == s;
1195            }
1196
1197            @Override
1198            public Boolean visitForAll(ForAll t, Type s) {
1199                if (!s.hasTag(FORALL)) {
1200                    return false;
1201                }
1202
1203                ForAll forAll = (ForAll)s;
1204                return hasSameBounds(t, forAll)
1205                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
1206            }
1207
1208            @Override
1209            public Boolean visitUndetVar(UndetVar t, Type s) {
1210                if (s.hasTag(WILDCARD)) {
1211                    // FIXME, this might be leftovers from before capture conversion
1212                    return false;
1213                }
1214
1215                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
1216                    return true;
1217                }
1218
1219                t.addBound(InferenceBound.EQ, s, Types.this);
1220
1221                return true;
1222            }
1223
1224            @Override
1225            public Boolean visitErrorType(ErrorType t, Type s) {
1226                return true;
1227            }
1228        }
1229
1230        /**
1231         * Standard type-equality relation - type variables are considered
1232         * equals if they share the same type symbol.
1233         */
1234        TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
1235
1236        private class LooseSameTypeVisitor extends SameTypeVisitor {
1237
1238            /** cache of the type-variable pairs being (recursively) tested. */
1239            private Set<TypePair> cache = new HashSet<>();
1240
1241            @Override
1242            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1243                return tv1.tsym == tv2.tsym && checkSameBounds(tv1, tv2);
1244            }
1245            @Override
1246            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1247                return containsTypeEquivalent(ts1, ts2);
1248            }
1249
1250            /**
1251             * Since type-variable bounds can be recursive, we need to protect against
1252             * infinite loops - where the same bounds are checked over and over recursively.
1253             */
1254            private boolean checkSameBounds(TypeVar tv1, TypeVar tv2) {
1255                TypePair p = new TypePair(tv1, tv2, true);
1256                if (cache.add(p)) {
1257                    try {
1258                        return visit(tv1.getUpperBound(), tv2.getUpperBound());
1259                    } finally {
1260                        cache.remove(p);
1261                    }
1262                } else {
1263                    return false;
1264                }
1265            }
1266        };
1267
1268        /**
1269         * Strict type-equality relation - type variables are considered
1270         * equals if they share the same object identity.
1271         */
1272        TypeRelation isSameTypeStrict = new SameTypeVisitor() {
1273            @Override
1274            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1275                return tv1 == tv2;
1276            }
1277            @Override
1278            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1279                return isSameTypes(ts1, ts2, true);
1280            }
1281
1282            @Override
1283            public Boolean visitWildcardType(WildcardType t, Type s) {
1284                if (!s.hasTag(WILDCARD)) {
1285                    return false;
1286                } else {
1287                    WildcardType t2 = (WildcardType)s;
1288                    return t.kind == t2.kind &&
1289                            isSameType(t.type, t2.type, true);
1290                }
1291            }
1292        };
1293
1294    // </editor-fold>
1295
1296    // <editor-fold defaultstate="collapsed" desc="Contains Type">
1297    public boolean containedBy(Type t, Type s) {
1298        switch (t.getTag()) {
1299        case UNDETVAR:
1300            if (s.hasTag(WILDCARD)) {
1301                UndetVar undetvar = (UndetVar)t;
1302                WildcardType wt = (WildcardType)s;
1303                switch(wt.kind) {
1304                    case UNBOUND:
1305                        break;
1306                    case EXTENDS: {
1307                        Type bound = wildUpperBound(s);
1308                        undetvar.addBound(InferenceBound.UPPER, bound, this);
1309                        break;
1310                    }
1311                    case SUPER: {
1312                        Type bound = wildLowerBound(s);
1313                        undetvar.addBound(InferenceBound.LOWER, bound, this);
1314                        break;
1315                    }
1316                }
1317                return true;
1318            } else {
1319                return isSameType(t, s);
1320            }
1321        case ERROR:
1322            return true;
1323        default:
1324            return containsType(s, t);
1325        }
1326    }
1327
1328    boolean containsType(List<Type> ts, List<Type> ss) {
1329        while (ts.nonEmpty() && ss.nonEmpty()
1330               && containsType(ts.head, ss.head)) {
1331            ts = ts.tail;
1332            ss = ss.tail;
1333        }
1334        return ts.isEmpty() && ss.isEmpty();
1335    }
1336
1337    /**
1338     * Check if t contains s.
1339     *
1340     * <p>T contains S if:
1341     *
1342     * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
1343     *
1344     * <p>This relation is only used by ClassType.isSubtype(), that
1345     * is,
1346     *
1347     * <p>{@code C<S> <: C<T> if T contains S.}
1348     *
1349     * <p>Because of F-bounds, this relation can lead to infinite
1350     * recursion.  Thus we must somehow break that recursion.  Notice
1351     * that containsType() is only called from ClassType.isSubtype().
1352     * Since the arguments have already been checked against their
1353     * bounds, we know:
1354     *
1355     * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
1356     *
1357     * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
1358     *
1359     * @param t a type
1360     * @param s a type
1361     */
1362    public boolean containsType(Type t, Type s) {
1363        return containsType.visit(t, s);
1364    }
1365    // where
1366        private TypeRelation containsType = new TypeRelation() {
1367
1368            public Boolean visitType(Type t, Type s) {
1369                if (s.isPartial())
1370                    return containedBy(s, t);
1371                else
1372                    return isSameType(t, s);
1373            }
1374
1375//            void debugContainsType(WildcardType t, Type s) {
1376//                System.err.println();
1377//                System.err.format(" does %s contain %s?%n", t, s);
1378//                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
1379//                                  wildUpperBound(s), s, t, wildUpperBound(t),
1380//                                  t.isSuperBound()
1381//                                  || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t)));
1382//                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
1383//                                  wildLowerBound(t), t, s, wildLowerBound(s),
1384//                                  t.isExtendsBound()
1385//                                  || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s)));
1386//                System.err.println();
1387//            }
1388
1389            @Override
1390            public Boolean visitWildcardType(WildcardType t, Type s) {
1391                if (s.isPartial())
1392                    return containedBy(s, t);
1393                else {
1394//                    debugContainsType(t, s);
1395                    return isSameWildcard(t, s)
1396                        || isCaptureOf(s, t)
1397                        || ((t.isExtendsBound() || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s))) &&
1398                            (t.isSuperBound() || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t))));
1399                }
1400            }
1401
1402            @Override
1403            public Boolean visitUndetVar(UndetVar t, Type s) {
1404                if (!s.hasTag(WILDCARD)) {
1405                    return isSameType(t, s);
1406                } else {
1407                    return false;
1408                }
1409            }
1410
1411            @Override
1412            public Boolean visitErrorType(ErrorType t, Type s) {
1413                return true;
1414            }
1415        };
1416
1417    public boolean isCaptureOf(Type s, WildcardType t) {
1418        if (!s.hasTag(TYPEVAR) || !((TypeVar)s).isCaptured())
1419            return false;
1420        return isSameWildcard(t, ((CapturedType)s).wildcard);
1421    }
1422
1423    public boolean isSameWildcard(WildcardType t, Type s) {
1424        if (!s.hasTag(WILDCARD))
1425            return false;
1426        WildcardType w = (WildcardType)s;
1427        return w.kind == t.kind && w.type == t.type;
1428    }
1429
1430    public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
1431        while (ts.nonEmpty() && ss.nonEmpty()
1432               && containsTypeEquivalent(ts.head, ss.head)) {
1433            ts = ts.tail;
1434            ss = ss.tail;
1435        }
1436        return ts.isEmpty() && ss.isEmpty();
1437    }
1438    // </editor-fold>
1439
1440    // <editor-fold defaultstate="collapsed" desc="isCastable">
1441    public boolean isCastable(Type t, Type s) {
1442        return isCastable(t, s, noWarnings);
1443    }
1444
1445    /**
1446     * Is t is castable to s?<br>
1447     * s is assumed to be an erased type.<br>
1448     * (not defined for Method and ForAll types).
1449     */
1450    public boolean isCastable(Type t, Type s, Warner warn) {
1451        if (t == s)
1452            return true;
1453        if (t.isPrimitive() != s.isPrimitive()) {
1454            t = skipTypeVars(t, false);
1455            return (isConvertible(t, s, warn)
1456                    || (allowObjectToPrimitiveCast &&
1457                        s.isPrimitive() &&
1458                        isSubtype(boxedClass(s).type, t)));
1459        }
1460        if (warn != warnStack.head) {
1461            try {
1462                warnStack = warnStack.prepend(warn);
1463                checkUnsafeVarargsConversion(t, s, warn);
1464                return isCastable.visit(t,s);
1465            } finally {
1466                warnStack = warnStack.tail;
1467            }
1468        } else {
1469            return isCastable.visit(t,s);
1470        }
1471    }
1472    // where
1473        private TypeRelation isCastable = new TypeRelation() {
1474
1475            public Boolean visitType(Type t, Type s) {
1476                if (s.hasTag(ERROR))
1477                    return true;
1478
1479                switch (t.getTag()) {
1480                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1481                case DOUBLE:
1482                    return s.isNumeric();
1483                case BOOLEAN:
1484                    return s.hasTag(BOOLEAN);
1485                case VOID:
1486                    return false;
1487                case BOT:
1488                    return isSubtype(t, s);
1489                default:
1490                    throw new AssertionError();
1491                }
1492            }
1493
1494            @Override
1495            public Boolean visitWildcardType(WildcardType t, Type s) {
1496                return isCastable(wildUpperBound(t), s, warnStack.head);
1497            }
1498
1499            @Override
1500            public Boolean visitClassType(ClassType t, Type s) {
1501                if (s.hasTag(ERROR) || s.hasTag(BOT))
1502                    return true;
1503
1504                if (s.hasTag(TYPEVAR)) {
1505                    if (isCastable(t, s.getUpperBound(), noWarnings)) {
1506                        warnStack.head.warn(LintCategory.UNCHECKED);
1507                        return true;
1508                    } else {
1509                        return false;
1510                    }
1511                }
1512
1513                if (t.isCompound() || s.isCompound()) {
1514                    return !t.isCompound() ?
1515                            visitCompoundType((ClassType)s, t, true) :
1516                            visitCompoundType(t, s, false);
1517                }
1518
1519                if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
1520                    boolean upcast;
1521                    if ((upcast = isSubtype(erasure(t), erasure(s)))
1522                        || isSubtype(erasure(s), erasure(t))) {
1523                        if (!upcast && s.hasTag(ARRAY)) {
1524                            if (!isReifiable(s))
1525                                warnStack.head.warn(LintCategory.UNCHECKED);
1526                            return true;
1527                        } else if (s.isRaw()) {
1528                            return true;
1529                        } else if (t.isRaw()) {
1530                            if (!isUnbounded(s))
1531                                warnStack.head.warn(LintCategory.UNCHECKED);
1532                            return true;
1533                        }
1534                        // Assume |a| <: |b|
1535                        final Type a = upcast ? t : s;
1536                        final Type b = upcast ? s : t;
1537                        final boolean HIGH = true;
1538                        final boolean LOW = false;
1539                        final boolean DONT_REWRITE_TYPEVARS = false;
1540                        Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
1541                        Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
1542                        Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
1543                        Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
1544                        Type lowSub = asSub(bLow, aLow.tsym);
1545                        Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1546                        if (highSub == null) {
1547                            final boolean REWRITE_TYPEVARS = true;
1548                            aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
1549                            aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
1550                            bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
1551                            bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
1552                            lowSub = asSub(bLow, aLow.tsym);
1553                            highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1554                        }
1555                        if (highSub != null) {
1556                            if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
1557                                Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
1558                            }
1559                            if (!disjointTypes(aHigh.allparams(), highSub.allparams())
1560                                && !disjointTypes(aHigh.allparams(), lowSub.allparams())
1561                                && !disjointTypes(aLow.allparams(), highSub.allparams())
1562                                && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
1563                                if (upcast ? giveWarning(a, b) :
1564                                    giveWarning(b, a))
1565                                    warnStack.head.warn(LintCategory.UNCHECKED);
1566                                return true;
1567                            }
1568                        }
1569                        if (isReifiable(s))
1570                            return isSubtypeUnchecked(a, b);
1571                        else
1572                            return isSubtypeUnchecked(a, b, warnStack.head);
1573                    }
1574
1575                    // Sidecast
1576                    if (s.hasTag(CLASS)) {
1577                        if ((s.tsym.flags() & INTERFACE) != 0) {
1578                            return ((t.tsym.flags() & FINAL) == 0)
1579                                ? sideCast(t, s, warnStack.head)
1580                                : sideCastFinal(t, s, warnStack.head);
1581                        } else if ((t.tsym.flags() & INTERFACE) != 0) {
1582                            return ((s.tsym.flags() & FINAL) == 0)
1583                                ? sideCast(t, s, warnStack.head)
1584                                : sideCastFinal(t, s, warnStack.head);
1585                        } else {
1586                            // unrelated class types
1587                            return false;
1588                        }
1589                    }
1590                }
1591                return false;
1592            }
1593
1594            boolean visitCompoundType(ClassType ct, Type s, boolean reverse) {
1595                Warner warn = noWarnings;
1596                for (Type c : directSupertypes(ct)) {
1597                    warn.clear();
1598                    if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
1599                        return false;
1600                }
1601                if (warn.hasLint(LintCategory.UNCHECKED))
1602                    warnStack.head.warn(LintCategory.UNCHECKED);
1603                return true;
1604            }
1605
1606            @Override
1607            public Boolean visitArrayType(ArrayType t, Type s) {
1608                switch (s.getTag()) {
1609                case ERROR:
1610                case BOT:
1611                    return true;
1612                case TYPEVAR:
1613                    if (isCastable(s, t, noWarnings)) {
1614                        warnStack.head.warn(LintCategory.UNCHECKED);
1615                        return true;
1616                    } else {
1617                        return false;
1618                    }
1619                case CLASS:
1620                    return isSubtype(t, s);
1621                case ARRAY:
1622                    if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
1623                        return elemtype(t).hasTag(elemtype(s).getTag());
1624                    } else {
1625                        return visit(elemtype(t), elemtype(s));
1626                    }
1627                default:
1628                    return false;
1629                }
1630            }
1631
1632            @Override
1633            public Boolean visitTypeVar(TypeVar t, Type s) {
1634                switch (s.getTag()) {
1635                case ERROR:
1636                case BOT:
1637                    return true;
1638                case TYPEVAR:
1639                    if (isSubtype(t, s)) {
1640                        return true;
1641                    } else if (isCastable(t.bound, s, noWarnings)) {
1642                        warnStack.head.warn(LintCategory.UNCHECKED);
1643                        return true;
1644                    } else {
1645                        return false;
1646                    }
1647                default:
1648                    return isCastable(t.bound, s, warnStack.head);
1649                }
1650            }
1651
1652            @Override
1653            public Boolean visitErrorType(ErrorType t, Type s) {
1654                return true;
1655            }
1656        };
1657    // </editor-fold>
1658
1659    // <editor-fold defaultstate="collapsed" desc="disjointTypes">
1660    public boolean disjointTypes(List<Type> ts, List<Type> ss) {
1661        while (ts.tail != null && ss.tail != null) {
1662            if (disjointType(ts.head, ss.head)) return true;
1663            ts = ts.tail;
1664            ss = ss.tail;
1665        }
1666        return false;
1667    }
1668
1669    /**
1670     * Two types or wildcards are considered disjoint if it can be
1671     * proven that no type can be contained in both. It is
1672     * conservative in that it is allowed to say that two types are
1673     * not disjoint, even though they actually are.
1674     *
1675     * The type {@code C<X>} is castable to {@code C<Y>} exactly if
1676     * {@code X} and {@code Y} are not disjoint.
1677     */
1678    public boolean disjointType(Type t, Type s) {
1679        return disjointType.visit(t, s);
1680    }
1681    // where
1682        private TypeRelation disjointType = new TypeRelation() {
1683
1684            private Set<TypePair> cache = new HashSet<>();
1685
1686            @Override
1687            public Boolean visitType(Type t, Type s) {
1688                if (s.hasTag(WILDCARD))
1689                    return visit(s, t);
1690                else
1691                    return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
1692            }
1693
1694            private boolean isCastableRecursive(Type t, Type s) {
1695                TypePair pair = new TypePair(t, s);
1696                if (cache.add(pair)) {
1697                    try {
1698                        return Types.this.isCastable(t, s);
1699                    } finally {
1700                        cache.remove(pair);
1701                    }
1702                } else {
1703                    return true;
1704                }
1705            }
1706
1707            private boolean notSoftSubtypeRecursive(Type t, Type s) {
1708                TypePair pair = new TypePair(t, s);
1709                if (cache.add(pair)) {
1710                    try {
1711                        return Types.this.notSoftSubtype(t, s);
1712                    } finally {
1713                        cache.remove(pair);
1714                    }
1715                } else {
1716                    return false;
1717                }
1718            }
1719
1720            @Override
1721            public Boolean visitWildcardType(WildcardType t, Type s) {
1722                if (t.isUnbound())
1723                    return false;
1724
1725                if (!s.hasTag(WILDCARD)) {
1726                    if (t.isExtendsBound())
1727                        return notSoftSubtypeRecursive(s, t.type);
1728                    else
1729                        return notSoftSubtypeRecursive(t.type, s);
1730                }
1731
1732                if (s.isUnbound())
1733                    return false;
1734
1735                if (t.isExtendsBound()) {
1736                    if (s.isExtendsBound())
1737                        return !isCastableRecursive(t.type, wildUpperBound(s));
1738                    else if (s.isSuperBound())
1739                        return notSoftSubtypeRecursive(wildLowerBound(s), t.type);
1740                } else if (t.isSuperBound()) {
1741                    if (s.isExtendsBound())
1742                        return notSoftSubtypeRecursive(t.type, wildUpperBound(s));
1743                }
1744                return false;
1745            }
1746        };
1747    // </editor-fold>
1748
1749    // <editor-fold defaultstate="collapsed" desc="cvarLowerBounds">
1750    public List<Type> cvarLowerBounds(List<Type> ts) {
1751        return ts.map(cvarLowerBoundMapping);
1752    }
1753        private final TypeMapping<Void> cvarLowerBoundMapping = new TypeMapping<Void>() {
1754            @Override
1755            public Type visitCapturedType(CapturedType t, Void _unused) {
1756                return cvarLowerBound(t);
1757            }
1758        };
1759    // </editor-fold>
1760
1761    // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
1762    /**
1763     * This relation answers the question: is impossible that
1764     * something of type `t' can be a subtype of `s'? This is
1765     * different from the question "is `t' not a subtype of `s'?"
1766     * when type variables are involved: Integer is not a subtype of T
1767     * where {@code <T extends Number>} but it is not true that Integer cannot
1768     * possibly be a subtype of T.
1769     */
1770    public boolean notSoftSubtype(Type t, Type s) {
1771        if (t == s) return false;
1772        if (t.hasTag(TYPEVAR)) {
1773            TypeVar tv = (TypeVar) t;
1774            return !isCastable(tv.bound,
1775                               relaxBound(s),
1776                               noWarnings);
1777        }
1778        if (!s.hasTag(WILDCARD))
1779            s = cvarUpperBound(s);
1780
1781        return !isSubtype(t, relaxBound(s));
1782    }
1783
1784    private Type relaxBound(Type t) {
1785        return (t.hasTag(TYPEVAR)) ?
1786                rewriteQuantifiers(skipTypeVars(t, false), true, true) :
1787                t;
1788    }
1789    // </editor-fold>
1790
1791    // <editor-fold defaultstate="collapsed" desc="isReifiable">
1792    public boolean isReifiable(Type t) {
1793        return isReifiable.visit(t);
1794    }
1795    // where
1796        private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
1797
1798            public Boolean visitType(Type t, Void ignored) {
1799                return true;
1800            }
1801
1802            @Override
1803            public Boolean visitClassType(ClassType t, Void ignored) {
1804                if (t.isCompound())
1805                    return false;
1806                else {
1807                    if (!t.isParameterized())
1808                        return true;
1809
1810                    for (Type param : t.allparams()) {
1811                        if (!param.isUnbound())
1812                            return false;
1813                    }
1814                    return true;
1815                }
1816            }
1817
1818            @Override
1819            public Boolean visitArrayType(ArrayType t, Void ignored) {
1820                return visit(t.elemtype);
1821            }
1822
1823            @Override
1824            public Boolean visitTypeVar(TypeVar t, Void ignored) {
1825                return false;
1826            }
1827        };
1828    // </editor-fold>
1829
1830    // <editor-fold defaultstate="collapsed" desc="Array Utils">
1831    public boolean isArray(Type t) {
1832        while (t.hasTag(WILDCARD))
1833            t = wildUpperBound(t);
1834        return t.hasTag(ARRAY);
1835    }
1836
1837    /**
1838     * The element type of an array.
1839     */
1840    public Type elemtype(Type t) {
1841        switch (t.getTag()) {
1842        case WILDCARD:
1843            return elemtype(wildUpperBound(t));
1844        case ARRAY:
1845            return ((ArrayType)t).elemtype;
1846        case FORALL:
1847            return elemtype(((ForAll)t).qtype);
1848        case ERROR:
1849            return t;
1850        default:
1851            return null;
1852        }
1853    }
1854
1855    public Type elemtypeOrType(Type t) {
1856        Type elemtype = elemtype(t);
1857        return elemtype != null ?
1858            elemtype :
1859            t;
1860    }
1861
1862    /**
1863     * Mapping to take element type of an arraytype
1864     */
1865    private TypeMapping<Void> elemTypeFun = new TypeMapping<Void>() {
1866        @Override
1867        public Type visitArrayType(ArrayType t, Void _unused) {
1868            return t.elemtype;
1869        }
1870
1871        @Override
1872        public Type visitTypeVar(TypeVar t, Void _unused) {
1873            return visit(skipTypeVars(t, false));
1874        }
1875    };
1876
1877    /**
1878     * The number of dimensions of an array type.
1879     */
1880    public int dimensions(Type t) {
1881        int result = 0;
1882        while (t.hasTag(ARRAY)) {
1883            result++;
1884            t = elemtype(t);
1885        }
1886        return result;
1887    }
1888
1889    /**
1890     * Returns an ArrayType with the component type t
1891     *
1892     * @param t The component type of the ArrayType
1893     * @return the ArrayType for the given component
1894     */
1895    public ArrayType makeArrayType(Type t) {
1896        if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
1897            Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
1898        }
1899        return new ArrayType(t, syms.arrayClass);
1900    }
1901    // </editor-fold>
1902
1903    // <editor-fold defaultstate="collapsed" desc="asSuper">
1904    /**
1905     * Return the (most specific) base type of t that starts with the
1906     * given symbol.  If none exists, return null.
1907     *
1908     * Caveat Emptor: Since javac represents the class of all arrays with a singleton
1909     * symbol Symtab.arrayClass, which by being a singleton cannot hold any discriminant,
1910     * this method could yield surprising answers when invoked on arrays. For example when
1911     * invoked with t being byte [] and sym being t.sym itself, asSuper would answer null.
1912     *
1913     * @param t a type
1914     * @param sym a symbol
1915     */
1916    public Type asSuper(Type t, Symbol sym) {
1917        /* Some examples:
1918         *
1919         * (Enum<E>, Comparable) => Comparable<E>
1920         * (c.s.s.d.AttributeTree.ValueKind, Enum) => Enum<c.s.s.d.AttributeTree.ValueKind>
1921         * (c.s.s.t.ExpressionTree, c.s.s.t.Tree) => c.s.s.t.Tree
1922         * (j.u.List<capture#160 of ? extends c.s.s.d.DocTree>, Iterable) =>
1923         *     Iterable<capture#160 of ? extends c.s.s.d.DocTree>
1924         */
1925        if (sym.type == syms.objectType) { //optimization
1926            return syms.objectType;
1927        }
1928        return asSuper.visit(t, sym);
1929    }
1930    // where
1931        private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
1932
1933            public Type visitType(Type t, Symbol sym) {
1934                return null;
1935            }
1936
1937            @Override
1938            public Type visitClassType(ClassType t, Symbol sym) {
1939                if (t.tsym == sym)
1940                    return t;
1941
1942                Type st = supertype(t);
1943                if (st.hasTag(CLASS) || st.hasTag(TYPEVAR)) {
1944                    Type x = asSuper(st, sym);
1945                    if (x != null)
1946                        return x;
1947                }
1948                if ((sym.flags() & INTERFACE) != 0) {
1949                    for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
1950                        if (!l.head.hasTag(ERROR)) {
1951                            Type x = asSuper(l.head, sym);
1952                            if (x != null)
1953                                return x;
1954                        }
1955                    }
1956                }
1957                return null;
1958            }
1959
1960            @Override
1961            public Type visitArrayType(ArrayType t, Symbol sym) {
1962                return isSubtype(t, sym.type) ? sym.type : null;
1963            }
1964
1965            @Override
1966            public Type visitTypeVar(TypeVar t, Symbol sym) {
1967                if (t.tsym == sym)
1968                    return t;
1969                else
1970                    return asSuper(t.bound, sym);
1971            }
1972
1973            @Override
1974            public Type visitErrorType(ErrorType t, Symbol sym) {
1975                return t;
1976            }
1977        };
1978
1979    /**
1980     * Return the base type of t or any of its outer types that starts
1981     * with the given symbol.  If none exists, return null.
1982     *
1983     * @param t a type
1984     * @param sym a symbol
1985     */
1986    public Type asOuterSuper(Type t, Symbol sym) {
1987        switch (t.getTag()) {
1988        case CLASS:
1989            do {
1990                Type s = asSuper(t, sym);
1991                if (s != null) return s;
1992                t = t.getEnclosingType();
1993            } while (t.hasTag(CLASS));
1994            return null;
1995        case ARRAY:
1996            return isSubtype(t, sym.type) ? sym.type : null;
1997        case TYPEVAR:
1998            return asSuper(t, sym);
1999        case ERROR:
2000            return t;
2001        default:
2002            return null;
2003        }
2004    }
2005
2006    /**
2007     * Return the base type of t or any of its enclosing types that
2008     * starts with the given symbol.  If none exists, return null.
2009     *
2010     * @param t a type
2011     * @param sym a symbol
2012     */
2013    public Type asEnclosingSuper(Type t, Symbol sym) {
2014        switch (t.getTag()) {
2015        case CLASS:
2016            do {
2017                Type s = asSuper(t, sym);
2018                if (s != null) return s;
2019                Type outer = t.getEnclosingType();
2020                t = (outer.hasTag(CLASS)) ? outer :
2021                    (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
2022                    Type.noType;
2023            } while (t.hasTag(CLASS));
2024            return null;
2025        case ARRAY:
2026            return isSubtype(t, sym.type) ? sym.type : null;
2027        case TYPEVAR:
2028            return asSuper(t, sym);
2029        case ERROR:
2030            return t;
2031        default:
2032            return null;
2033        }
2034    }
2035    // </editor-fold>
2036
2037    // <editor-fold defaultstate="collapsed" desc="memberType">
2038    /**
2039     * The type of given symbol, seen as a member of t.
2040     *
2041     * @param t a type
2042     * @param sym a symbol
2043     */
2044    public Type memberType(Type t, Symbol sym) {
2045        return (sym.flags() & STATIC) != 0
2046            ? sym.type
2047            : memberType.visit(t, sym);
2048        }
2049    // where
2050        private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
2051
2052            public Type visitType(Type t, Symbol sym) {
2053                return sym.type;
2054            }
2055
2056            @Override
2057            public Type visitWildcardType(WildcardType t, Symbol sym) {
2058                return memberType(wildUpperBound(t), sym);
2059            }
2060
2061            @Override
2062            public Type visitClassType(ClassType t, Symbol sym) {
2063                Symbol owner = sym.owner;
2064                long flags = sym.flags();
2065                if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
2066                    Type base = asOuterSuper(t, owner);
2067                    //if t is an intersection type T = CT & I1 & I2 ... & In
2068                    //its supertypes CT, I1, ... In might contain wildcards
2069                    //so we need to go through capture conversion
2070                    base = t.isCompound() ? capture(base) : base;
2071                    if (base != null) {
2072                        List<Type> ownerParams = owner.type.allparams();
2073                        List<Type> baseParams = base.allparams();
2074                        if (ownerParams.nonEmpty()) {
2075                            if (baseParams.isEmpty()) {
2076                                // then base is a raw type
2077                                return erasure(sym.type);
2078                            } else {
2079                                return subst(sym.type, ownerParams, baseParams);
2080                            }
2081                        }
2082                    }
2083                }
2084                return sym.type;
2085            }
2086
2087            @Override
2088            public Type visitTypeVar(TypeVar t, Symbol sym) {
2089                return memberType(t.bound, sym);
2090            }
2091
2092            @Override
2093            public Type visitErrorType(ErrorType t, Symbol sym) {
2094                return t;
2095            }
2096        };
2097    // </editor-fold>
2098
2099    // <editor-fold defaultstate="collapsed" desc="isAssignable">
2100    public boolean isAssignable(Type t, Type s) {
2101        return isAssignable(t, s, noWarnings);
2102    }
2103
2104    /**
2105     * Is t assignable to s?<br>
2106     * Equivalent to subtype except for constant values and raw
2107     * types.<br>
2108     * (not defined for Method and ForAll types)
2109     */
2110    public boolean isAssignable(Type t, Type s, Warner warn) {
2111        if (t.hasTag(ERROR))
2112            return true;
2113        if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
2114            int value = ((Number)t.constValue()).intValue();
2115            switch (s.getTag()) {
2116            case BYTE:
2117                if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
2118                    return true;
2119                break;
2120            case CHAR:
2121                if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
2122                    return true;
2123                break;
2124            case SHORT:
2125                if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
2126                    return true;
2127                break;
2128            case INT:
2129                return true;
2130            case CLASS:
2131                switch (unboxedType(s).getTag()) {
2132                case BYTE:
2133                case CHAR:
2134                case SHORT:
2135                    return isAssignable(t, unboxedType(s), warn);
2136                }
2137                break;
2138            }
2139        }
2140        return isConvertible(t, s, warn);
2141    }
2142    // </editor-fold>
2143
2144    // <editor-fold defaultstate="collapsed" desc="erasure">
2145    /**
2146     * The erasure of t {@code |t|} -- the type that results when all
2147     * type parameters in t are deleted.
2148     */
2149    public Type erasure(Type t) {
2150        return eraseNotNeeded(t) ? t : erasure(t, false);
2151    }
2152    //where
2153    private boolean eraseNotNeeded(Type t) {
2154        // We don't want to erase primitive types and String type as that
2155        // operation is idempotent. Also, erasing these could result in loss
2156        // of information such as constant values attached to such types.
2157        return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
2158    }
2159
2160    private Type erasure(Type t, boolean recurse) {
2161        if (t.isPrimitive()) {
2162            return t; /* fast special case */
2163        } else {
2164            Type out = erasure.visit(t, recurse);
2165            return out;
2166        }
2167        }
2168    // where
2169        private TypeMapping<Boolean> erasure = new TypeMapping<Boolean>() {
2170            private Type combineMetadata(final Type s,
2171                                         final Type t) {
2172                if (t.getMetadata() != TypeMetadata.EMPTY) {
2173                    switch (s.getKind()) {
2174                        case OTHER:
2175                        case UNION:
2176                        case INTERSECTION:
2177                        case PACKAGE:
2178                        case EXECUTABLE:
2179                        case NONE:
2180                        case VOID:
2181                        case ERROR:
2182                            return s;
2183                        default: return s.cloneWithMetadata(s.getMetadata().without(Kind.ANNOTATIONS));
2184                    }
2185                } else {
2186                    return s;
2187                }
2188            }
2189
2190            public Type visitType(Type t, Boolean recurse) {
2191                if (t.isPrimitive())
2192                    return t; /*fast special case*/
2193                else {
2194                    //other cases already handled
2195                    return combineMetadata(t, t);
2196                }
2197            }
2198
2199            @Override
2200            public Type visitWildcardType(WildcardType t, Boolean recurse) {
2201                Type erased = erasure(wildUpperBound(t), recurse);
2202                return combineMetadata(erased, t);
2203            }
2204
2205            @Override
2206            public Type visitClassType(ClassType t, Boolean recurse) {
2207                Type erased = t.tsym.erasure(Types.this);
2208                if (recurse) {
2209                    erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym,
2210                            t.getMetadata().without(Kind.ANNOTATIONS));
2211                    return erased;
2212                } else {
2213                    return combineMetadata(erased, t);
2214                }
2215            }
2216
2217            @Override
2218            public Type visitTypeVar(TypeVar t, Boolean recurse) {
2219                Type erased = erasure(t.bound, recurse);
2220                return combineMetadata(erased, t);
2221            }
2222        };
2223
2224    public List<Type> erasure(List<Type> ts) {
2225        return erasure.visit(ts, false);
2226    }
2227
2228    public Type erasureRecursive(Type t) {
2229        return erasure(t, true);
2230    }
2231
2232    public List<Type> erasureRecursive(List<Type> ts) {
2233        return erasure.visit(ts, true);
2234    }
2235    // </editor-fold>
2236
2237    // <editor-fold defaultstate="collapsed" desc="makeIntersectionType">
2238    /**
2239     * Make an intersection type from non-empty list of types.  The list should be ordered according to
2240     * {@link TypeSymbol#precedes(TypeSymbol, Types)}. Note that this might cause a symbol completion.
2241     * Hence, this version of makeIntersectionType may not be called during a classfile read.
2242     *
2243     * @param bounds    the types from which the intersection type is formed
2244     */
2245    public IntersectionClassType makeIntersectionType(List<Type> bounds) {
2246        return makeIntersectionType(bounds, bounds.head.tsym.isInterface());
2247    }
2248
2249    /**
2250     * Make an intersection type from non-empty list of types.  The list should be ordered according to
2251     * {@link TypeSymbol#precedes(TypeSymbol, Types)}. This does not cause symbol completion as
2252     * an extra parameter indicates as to whether all bounds are interfaces - in which case the
2253     * supertype is implicitly assumed to be 'Object'.
2254     *
2255     * @param bounds        the types from which the intersection type is formed
2256     * @param allInterfaces are all bounds interface types?
2257     */
2258    public IntersectionClassType makeIntersectionType(List<Type> bounds, boolean allInterfaces) {
2259        Assert.check(bounds.nonEmpty());
2260        Type firstExplicitBound = bounds.head;
2261        if (allInterfaces) {
2262            bounds = bounds.prepend(syms.objectType);
2263        }
2264        ClassSymbol bc =
2265            new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
2266                            Type.moreInfo
2267                                ? names.fromString(bounds.toString())
2268                                : names.empty,
2269                            null,
2270                            syms.noSymbol);
2271        IntersectionClassType intersectionType = new IntersectionClassType(bounds, bc, allInterfaces);
2272        bc.type = intersectionType;
2273        bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
2274                syms.objectType : // error condition, recover
2275                erasure(firstExplicitBound);
2276        bc.members_field = WriteableScope.create(bc);
2277        return intersectionType;
2278    }
2279    // </editor-fold>
2280
2281    // <editor-fold defaultstate="collapsed" desc="supertype">
2282    public Type supertype(Type t) {
2283        return supertype.visit(t);
2284    }
2285    // where
2286        private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
2287
2288            public Type visitType(Type t, Void ignored) {
2289                // A note on wildcards: there is no good way to
2290                // determine a supertype for a super bounded wildcard.
2291                return Type.noType;
2292            }
2293
2294            @Override
2295            public Type visitClassType(ClassType t, Void ignored) {
2296                if (t.supertype_field == null) {
2297                    Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
2298                    // An interface has no superclass; its supertype is Object.
2299                    if (t.isInterface())
2300                        supertype = ((ClassType)t.tsym.type).supertype_field;
2301                    if (t.supertype_field == null) {
2302                        List<Type> actuals = classBound(t).allparams();
2303                        List<Type> formals = t.tsym.type.allparams();
2304                        if (t.hasErasedSupertypes()) {
2305                            t.supertype_field = erasureRecursive(supertype);
2306                        } else if (formals.nonEmpty()) {
2307                            t.supertype_field = subst(supertype, formals, actuals);
2308                        }
2309                        else {
2310                            t.supertype_field = supertype;
2311                        }
2312                    }
2313                }
2314                return t.supertype_field;
2315            }
2316
2317            /**
2318             * The supertype is always a class type. If the type
2319             * variable's bounds start with a class type, this is also
2320             * the supertype.  Otherwise, the supertype is
2321             * java.lang.Object.
2322             */
2323            @Override
2324            public Type visitTypeVar(TypeVar t, Void ignored) {
2325                if (t.bound.hasTag(TYPEVAR) ||
2326                    (!t.bound.isCompound() && !t.bound.isInterface())) {
2327                    return t.bound;
2328                } else {
2329                    return supertype(t.bound);
2330                }
2331            }
2332
2333            @Override
2334            public Type visitArrayType(ArrayType t, Void ignored) {
2335                if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
2336                    return arraySuperType();
2337                else
2338                    return new ArrayType(supertype(t.elemtype), t.tsym);
2339            }
2340
2341            @Override
2342            public Type visitErrorType(ErrorType t, Void ignored) {
2343                return Type.noType;
2344            }
2345        };
2346    // </editor-fold>
2347
2348    // <editor-fold defaultstate="collapsed" desc="interfaces">
2349    /**
2350     * Return the interfaces implemented by this class.
2351     */
2352    public List<Type> interfaces(Type t) {
2353        return interfaces.visit(t);
2354    }
2355    // where
2356        private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
2357
2358            public List<Type> visitType(Type t, Void ignored) {
2359                return List.nil();
2360            }
2361
2362            @Override
2363            public List<Type> visitClassType(ClassType t, Void ignored) {
2364                if (t.interfaces_field == null) {
2365                    List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
2366                    if (t.interfaces_field == null) {
2367                        // If t.interfaces_field is null, then t must
2368                        // be a parameterized type (not to be confused
2369                        // with a generic type declaration).
2370                        // Terminology:
2371                        //    Parameterized type: List<String>
2372                        //    Generic type declaration: class List<E> { ... }
2373                        // So t corresponds to List<String> and
2374                        // t.tsym.type corresponds to List<E>.
2375                        // The reason t must be parameterized type is
2376                        // that completion will happen as a side
2377                        // effect of calling
2378                        // ClassSymbol.getInterfaces.  Since
2379                        // t.interfaces_field is null after
2380                        // completion, we can assume that t is not the
2381                        // type of a class/interface declaration.
2382                        Assert.check(t != t.tsym.type, t);
2383                        List<Type> actuals = t.allparams();
2384                        List<Type> formals = t.tsym.type.allparams();
2385                        if (t.hasErasedSupertypes()) {
2386                            t.interfaces_field = erasureRecursive(interfaces);
2387                        } else if (formals.nonEmpty()) {
2388                            t.interfaces_field = subst(interfaces, formals, actuals);
2389                        }
2390                        else {
2391                            t.interfaces_field = interfaces;
2392                        }
2393                    }
2394                }
2395                return t.interfaces_field;
2396            }
2397
2398            @Override
2399            public List<Type> visitTypeVar(TypeVar t, Void ignored) {
2400                if (t.bound.isCompound())
2401                    return interfaces(t.bound);
2402
2403                if (t.bound.isInterface())
2404                    return List.of(t.bound);
2405
2406                return List.nil();
2407            }
2408        };
2409
2410    public List<Type> directSupertypes(Type t) {
2411        return directSupertypes.visit(t);
2412    }
2413    // where
2414        private final UnaryVisitor<List<Type>> directSupertypes = new UnaryVisitor<List<Type>>() {
2415
2416            public List<Type> visitType(final Type type, final Void ignored) {
2417                if (!type.isIntersection()) {
2418                    final Type sup = supertype(type);
2419                    return (sup == Type.noType || sup == type || sup == null)
2420                        ? interfaces(type)
2421                        : interfaces(type).prepend(sup);
2422                } else {
2423                    return ((IntersectionClassType)type).getExplicitComponents();
2424                }
2425            }
2426        };
2427
2428    public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
2429        for (Type i2 : interfaces(origin.type)) {
2430            if (isym == i2.tsym) return true;
2431        }
2432        return false;
2433    }
2434    // </editor-fold>
2435
2436    // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
2437    Map<Type,Boolean> isDerivedRawCache = new HashMap<>();
2438
2439    public boolean isDerivedRaw(Type t) {
2440        Boolean result = isDerivedRawCache.get(t);
2441        if (result == null) {
2442            result = isDerivedRawInternal(t);
2443            isDerivedRawCache.put(t, result);
2444        }
2445        return result;
2446    }
2447
2448    public boolean isDerivedRawInternal(Type t) {
2449        if (t.isErroneous())
2450            return false;
2451        return
2452            t.isRaw() ||
2453            supertype(t) != Type.noType && isDerivedRaw(supertype(t)) ||
2454            isDerivedRaw(interfaces(t));
2455    }
2456
2457    public boolean isDerivedRaw(List<Type> ts) {
2458        List<Type> l = ts;
2459        while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
2460        return l.nonEmpty();
2461    }
2462    // </editor-fold>
2463
2464    // <editor-fold defaultstate="collapsed" desc="setBounds">
2465    /**
2466     * Same as {@link Types#setBounds(TypeVar, List, boolean)}, except that third parameter is computed directly,
2467     * as follows: if all all bounds are interface types, the computed supertype is Object,otherwise
2468     * the supertype is simply left null (in this case, the supertype is assumed to be the head of
2469     * the bound list passed as second argument). Note that this check might cause a symbol completion.
2470     * Hence, this version of setBounds may not be called during a classfile read.
2471     *
2472     * @param t         a type variable
2473     * @param bounds    the bounds, must be nonempty
2474     */
2475    public void setBounds(TypeVar t, List<Type> bounds) {
2476        setBounds(t, bounds, bounds.head.tsym.isInterface());
2477    }
2478
2479    /**
2480     * Set the bounds field of the given type variable to reflect a (possibly multiple) list of bounds.
2481     * This does not cause symbol completion as an extra parameter indicates as to whether all bounds
2482     * are interfaces - in which case the supertype is implicitly assumed to be 'Object'.
2483     *
2484     * @param t             a type variable
2485     * @param bounds        the bounds, must be nonempty
2486     * @param allInterfaces are all bounds interface types?
2487     */
2488    public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
2489        t.bound = bounds.tail.isEmpty() ?
2490                bounds.head :
2491                makeIntersectionType(bounds, allInterfaces);
2492        t.rank_field = -1;
2493    }
2494    // </editor-fold>
2495
2496    // <editor-fold defaultstate="collapsed" desc="getBounds">
2497    /**
2498     * Return list of bounds of the given type variable.
2499     */
2500    public List<Type> getBounds(TypeVar t) {
2501        if (t.bound.hasTag(NONE))
2502            return List.nil();
2503        else if (t.bound.isErroneous() || !t.bound.isCompound())
2504            return List.of(t.bound);
2505        else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
2506            return interfaces(t).prepend(supertype(t));
2507        else
2508            // No superclass was given in bounds.
2509            // In this case, supertype is Object, erasure is first interface.
2510            return interfaces(t);
2511    }
2512    // </editor-fold>
2513
2514    // <editor-fold defaultstate="collapsed" desc="classBound">
2515    /**
2516     * If the given type is a (possibly selected) type variable,
2517     * return the bounding class of this type, otherwise return the
2518     * type itself.
2519     */
2520    public Type classBound(Type t) {
2521        return classBound.visit(t);
2522    }
2523    // where
2524        private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
2525
2526            public Type visitType(Type t, Void ignored) {
2527                return t;
2528            }
2529
2530            @Override
2531            public Type visitClassType(ClassType t, Void ignored) {
2532                Type outer1 = classBound(t.getEnclosingType());
2533                if (outer1 != t.getEnclosingType())
2534                    return new ClassType(outer1, t.getTypeArguments(), t.tsym,
2535                                         t.getMetadata());
2536                else
2537                    return t;
2538            }
2539
2540            @Override
2541            public Type visitTypeVar(TypeVar t, Void ignored) {
2542                return classBound(supertype(t));
2543            }
2544
2545            @Override
2546            public Type visitErrorType(ErrorType t, Void ignored) {
2547                return t;
2548            }
2549        };
2550    // </editor-fold>
2551
2552    // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
2553    /**
2554     * Returns true iff the first signature is a <em>sub
2555     * signature</em> of the other.  This is <b>not</b> an equivalence
2556     * relation.
2557     *
2558     * @jls section 8.4.2.
2559     * @see #overrideEquivalent(Type t, Type s)
2560     * @param t first signature (possibly raw).
2561     * @param s second signature (could be subjected to erasure).
2562     * @return true if t is a sub signature of s.
2563     */
2564    public boolean isSubSignature(Type t, Type s) {
2565        return isSubSignature(t, s, true);
2566    }
2567
2568    public boolean isSubSignature(Type t, Type s, boolean strict) {
2569        return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
2570    }
2571
2572    /**
2573     * Returns true iff these signatures are related by <em>override
2574     * equivalence</em>.  This is the natural extension of
2575     * isSubSignature to an equivalence relation.
2576     *
2577     * @jls section 8.4.2.
2578     * @see #isSubSignature(Type t, Type s)
2579     * @param t a signature (possible raw, could be subjected to
2580     * erasure).
2581     * @param s a signature (possible raw, could be subjected to
2582     * erasure).
2583     * @return true if either argument is a sub signature of the other.
2584     */
2585    public boolean overrideEquivalent(Type t, Type s) {
2586        return hasSameArgs(t, s) ||
2587            hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
2588    }
2589
2590    public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
2591        for (Symbol sym : syms.objectType.tsym.members().getSymbolsByName(msym.name)) {
2592            if (msym.overrides(sym, origin, Types.this, true)) {
2593                return true;
2594            }
2595        }
2596        return false;
2597    }
2598
2599    // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
2600    class ImplementationCache {
2601
2602        private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map = new WeakHashMap<>();
2603
2604        class Entry {
2605            final MethodSymbol cachedImpl;
2606            final Filter<Symbol> implFilter;
2607            final boolean checkResult;
2608            final int prevMark;
2609
2610            public Entry(MethodSymbol cachedImpl,
2611                    Filter<Symbol> scopeFilter,
2612                    boolean checkResult,
2613                    int prevMark) {
2614                this.cachedImpl = cachedImpl;
2615                this.implFilter = scopeFilter;
2616                this.checkResult = checkResult;
2617                this.prevMark = prevMark;
2618            }
2619
2620            boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
2621                return this.implFilter == scopeFilter &&
2622                        this.checkResult == checkResult &&
2623                        this.prevMark == mark;
2624            }
2625        }
2626
2627        MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2628            SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
2629            Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
2630            if (cache == null) {
2631                cache = new HashMap<>();
2632                _map.put(ms, new SoftReference<>(cache));
2633            }
2634            Entry e = cache.get(origin);
2635            CompoundScope members = membersClosure(origin.type, true);
2636            if (e == null ||
2637                    !e.matches(implFilter, checkResult, members.getMark())) {
2638                MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
2639                cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
2640                return impl;
2641            }
2642            else {
2643                return e.cachedImpl;
2644            }
2645        }
2646
2647        private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2648            for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
2649                t = skipTypeVars(t, false);
2650                TypeSymbol c = t.tsym;
2651                Symbol bestSoFar = null;
2652                for (Symbol sym : c.members().getSymbolsByName(ms.name, implFilter)) {
2653                    if (sym != null && sym.overrides(ms, origin, Types.this, checkResult)) {
2654                        bestSoFar = sym;
2655                        if ((sym.flags() & ABSTRACT) == 0) {
2656                            //if concrete impl is found, exit immediately
2657                            break;
2658                        }
2659                    }
2660                }
2661                if (bestSoFar != null) {
2662                    //return either the (only) concrete implementation or the first abstract one
2663                    return (MethodSymbol)bestSoFar;
2664                }
2665            }
2666            return null;
2667        }
2668    }
2669
2670    private ImplementationCache implCache = new ImplementationCache();
2671
2672    public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2673        return implCache.get(ms, origin, checkResult, implFilter);
2674    }
2675    // </editor-fold>
2676
2677    // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
2678    class MembersClosureCache extends SimpleVisitor<Scope.CompoundScope, Void> {
2679
2680        private Map<TypeSymbol, CompoundScope> _map = new HashMap<>();
2681
2682        Set<TypeSymbol> seenTypes = new HashSet<>();
2683
2684        class MembersScope extends CompoundScope {
2685
2686            CompoundScope scope;
2687
2688            public MembersScope(CompoundScope scope) {
2689                super(scope.owner);
2690                this.scope = scope;
2691            }
2692
2693            Filter<Symbol> combine(Filter<Symbol> sf) {
2694                return s -> !s.owner.isInterface() && (sf == null || sf.accepts(s));
2695            }
2696
2697            @Override
2698            public Iterable<Symbol> getSymbols(Filter<Symbol> sf, LookupKind lookupKind) {
2699                return scope.getSymbols(combine(sf), lookupKind);
2700            }
2701
2702            @Override
2703            public Iterable<Symbol> getSymbolsByName(Name name, Filter<Symbol> sf, LookupKind lookupKind) {
2704                return scope.getSymbolsByName(name, combine(sf), lookupKind);
2705            }
2706
2707            @Override
2708            public int getMark() {
2709                return scope.getMark();
2710            }
2711        }
2712
2713        CompoundScope nilScope;
2714
2715        /** members closure visitor methods **/
2716
2717        public CompoundScope visitType(Type t, Void _unused) {
2718            if (nilScope == null) {
2719                nilScope = new CompoundScope(syms.noSymbol);
2720            }
2721            return nilScope;
2722        }
2723
2724        @Override
2725        public CompoundScope visitClassType(ClassType t, Void _unused) {
2726            if (!seenTypes.add(t.tsym)) {
2727                //this is possible when an interface is implemented in multiple
2728                //superclasses, or when a class hierarchy is circular - in such
2729                //cases we don't need to recurse (empty scope is returned)
2730                return new CompoundScope(t.tsym);
2731            }
2732            try {
2733                seenTypes.add(t.tsym);
2734                ClassSymbol csym = (ClassSymbol)t.tsym;
2735                CompoundScope membersClosure = _map.get(csym);
2736                if (membersClosure == null) {
2737                    membersClosure = new CompoundScope(csym);
2738                    for (Type i : interfaces(t)) {
2739                        membersClosure.prependSubScope(visit(i, null));
2740                    }
2741                    membersClosure.prependSubScope(visit(supertype(t), null));
2742                    membersClosure.prependSubScope(csym.members());
2743                    _map.put(csym, membersClosure);
2744                }
2745                return membersClosure;
2746            }
2747            finally {
2748                seenTypes.remove(t.tsym);
2749            }
2750        }
2751
2752        @Override
2753        public CompoundScope visitTypeVar(TypeVar t, Void _unused) {
2754            return visit(t.getUpperBound(), null);
2755        }
2756    }
2757
2758    private MembersClosureCache membersCache = new MembersClosureCache();
2759
2760    public CompoundScope membersClosure(Type site, boolean skipInterface) {
2761        CompoundScope cs = membersCache.visit(site, null);
2762        Assert.checkNonNull(cs, () -> "type " + site);
2763        return skipInterface ? membersCache.new MembersScope(cs) : cs;
2764    }
2765    // </editor-fold>
2766
2767
2768    /** Return first abstract member of class `sym'.
2769     */
2770    public MethodSymbol firstUnimplementedAbstract(ClassSymbol sym) {
2771        try {
2772            return firstUnimplementedAbstractImpl(sym, sym);
2773        } catch (CompletionFailure ex) {
2774            chk.completionError(enter.getEnv(sym).tree.pos(), ex);
2775            return null;
2776        }
2777    }
2778        //where:
2779        private MethodSymbol firstUnimplementedAbstractImpl(ClassSymbol impl, ClassSymbol c) {
2780            MethodSymbol undef = null;
2781            // Do not bother to search in classes that are not abstract,
2782            // since they cannot have abstract members.
2783            if (c == impl || (c.flags() & (ABSTRACT | INTERFACE)) != 0) {
2784                Scope s = c.members();
2785                for (Symbol sym : s.getSymbols(NON_RECURSIVE)) {
2786                    if (sym.kind == MTH &&
2787                        (sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
2788                        MethodSymbol absmeth = (MethodSymbol)sym;
2789                        MethodSymbol implmeth = absmeth.implementation(impl, this, true);
2790                        if (implmeth == null || implmeth == absmeth) {
2791                            //look for default implementations
2792                            if (allowDefaultMethods) {
2793                                MethodSymbol prov = interfaceCandidates(impl.type, absmeth).head;
2794                                if (prov != null && prov.overrides(absmeth, impl, this, true)) {
2795                                    implmeth = prov;
2796                                }
2797                            }
2798                        }
2799                        if (implmeth == null || implmeth == absmeth) {
2800                            undef = absmeth;
2801                            break;
2802                        }
2803                    }
2804                }
2805                if (undef == null) {
2806                    Type st = supertype(c.type);
2807                    if (st.hasTag(CLASS))
2808                        undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)st.tsym);
2809                }
2810                for (List<Type> l = interfaces(c.type);
2811                     undef == null && l.nonEmpty();
2812                     l = l.tail) {
2813                    undef = firstUnimplementedAbstractImpl(impl, (ClassSymbol)l.head.tsym);
2814                }
2815            }
2816            return undef;
2817        }
2818
2819
2820    //where
2821    public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
2822        Filter<Symbol> filter = new MethodFilter(ms, site);
2823        List<MethodSymbol> candidates = List.nil();
2824            for (Symbol s : membersClosure(site, false).getSymbols(filter)) {
2825                if (!site.tsym.isInterface() && !s.owner.isInterface()) {
2826                    return List.of((MethodSymbol)s);
2827                } else if (!candidates.contains(s)) {
2828                    candidates = candidates.prepend((MethodSymbol)s);
2829                }
2830            }
2831            return prune(candidates);
2832        }
2833
2834    public List<MethodSymbol> prune(List<MethodSymbol> methods) {
2835        ListBuffer<MethodSymbol> methodsMin = new ListBuffer<>();
2836        for (MethodSymbol m1 : methods) {
2837            boolean isMin_m1 = true;
2838            for (MethodSymbol m2 : methods) {
2839                if (m1 == m2) continue;
2840                if (m2.owner != m1.owner &&
2841                        asSuper(m2.owner.type, m1.owner) != null) {
2842                    isMin_m1 = false;
2843                    break;
2844                }
2845            }
2846            if (isMin_m1)
2847                methodsMin.append(m1);
2848        }
2849        return methodsMin.toList();
2850    }
2851    // where
2852            private class MethodFilter implements Filter<Symbol> {
2853
2854                Symbol msym;
2855                Type site;
2856
2857                MethodFilter(Symbol msym, Type site) {
2858                    this.msym = msym;
2859                    this.site = site;
2860                }
2861
2862                public boolean accepts(Symbol s) {
2863                    return s.kind == MTH &&
2864                            s.name == msym.name &&
2865                            (s.flags() & SYNTHETIC) == 0 &&
2866                            s.isInheritedIn(site.tsym, Types.this) &&
2867                            overrideEquivalent(memberType(site, s), memberType(site, msym));
2868                }
2869            }
2870    // </editor-fold>
2871
2872    /**
2873     * Does t have the same arguments as s?  It is assumed that both
2874     * types are (possibly polymorphic) method types.  Monomorphic
2875     * method types "have the same arguments", if their argument lists
2876     * are equal.  Polymorphic method types "have the same arguments",
2877     * if they have the same arguments after renaming all type
2878     * variables of one to corresponding type variables in the other,
2879     * where correspondence is by position in the type parameter list.
2880     */
2881    public boolean hasSameArgs(Type t, Type s) {
2882        return hasSameArgs(t, s, true);
2883    }
2884
2885    public boolean hasSameArgs(Type t, Type s, boolean strict) {
2886        return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
2887    }
2888
2889    private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
2890        return hasSameArgs.visit(t, s);
2891    }
2892    // where
2893        private class HasSameArgs extends TypeRelation {
2894
2895            boolean strict;
2896
2897            public HasSameArgs(boolean strict) {
2898                this.strict = strict;
2899            }
2900
2901            public Boolean visitType(Type t, Type s) {
2902                throw new AssertionError();
2903            }
2904
2905            @Override
2906            public Boolean visitMethodType(MethodType t, Type s) {
2907                return s.hasTag(METHOD)
2908                    && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
2909            }
2910
2911            @Override
2912            public Boolean visitForAll(ForAll t, Type s) {
2913                if (!s.hasTag(FORALL))
2914                    return strict ? false : visitMethodType(t.asMethodType(), s);
2915
2916                ForAll forAll = (ForAll)s;
2917                return hasSameBounds(t, forAll)
2918                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
2919            }
2920
2921            @Override
2922            public Boolean visitErrorType(ErrorType t, Type s) {
2923                return false;
2924            }
2925        }
2926
2927    TypeRelation hasSameArgs_strict = new HasSameArgs(true);
2928        TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
2929
2930    // </editor-fold>
2931
2932    // <editor-fold defaultstate="collapsed" desc="subst">
2933    public List<Type> subst(List<Type> ts,
2934                            List<Type> from,
2935                            List<Type> to) {
2936        return ts.map(new Subst(from, to));
2937    }
2938
2939    /**
2940     * Substitute all occurrences of a type in `from' with the
2941     * corresponding type in `to' in 't'. Match lists `from' and `to'
2942     * from the right: If lists have different length, discard leading
2943     * elements of the longer list.
2944     */
2945    public Type subst(Type t, List<Type> from, List<Type> to) {
2946        return t.map(new Subst(from, to));
2947    }
2948
2949    private class Subst extends TypeMapping<Void> {
2950        List<Type> from;
2951        List<Type> to;
2952
2953        public Subst(List<Type> from, List<Type> to) {
2954            int fromLength = from.length();
2955            int toLength = to.length();
2956            while (fromLength > toLength) {
2957                fromLength--;
2958                from = from.tail;
2959            }
2960            while (fromLength < toLength) {
2961                toLength--;
2962                to = to.tail;
2963            }
2964            this.from = from;
2965            this.to = to;
2966        }
2967
2968        @Override
2969        public Type visitTypeVar(TypeVar t, Void ignored) {
2970            for (List<Type> from = this.from, to = this.to;
2971                 from.nonEmpty();
2972                 from = from.tail, to = to.tail) {
2973                if (t.equalsIgnoreMetadata(from.head)) {
2974                    return to.head.withTypeVar(t);
2975                }
2976            }
2977            return t;
2978        }
2979
2980        @Override
2981        public Type visitClassType(ClassType t, Void ignored) {
2982            if (!t.isCompound()) {
2983                return super.visitClassType(t, ignored);
2984            } else {
2985                Type st = visit(supertype(t));
2986                List<Type> is = visit(interfaces(t), ignored);
2987                if (st == supertype(t) && is == interfaces(t))
2988                    return t;
2989                else
2990                    return makeIntersectionType(is.prepend(st));
2991            }
2992        }
2993
2994        @Override
2995        public Type visitWildcardType(WildcardType t, Void ignored) {
2996            WildcardType t2 = (WildcardType)super.visitWildcardType(t, ignored);
2997            if (t2 != t && t.isExtendsBound() && t2.type.isExtendsBound()) {
2998                t2.type = wildUpperBound(t2.type);
2999            }
3000            return t2;
3001        }
3002
3003        @Override
3004        public Type visitForAll(ForAll t, Void ignored) {
3005            if (Type.containsAny(to, t.tvars)) {
3006                //perform alpha-renaming of free-variables in 't'
3007                //if 'to' types contain variables that are free in 't'
3008                List<Type> freevars = newInstances(t.tvars);
3009                t = new ForAll(freevars,
3010                               Types.this.subst(t.qtype, t.tvars, freevars));
3011            }
3012            List<Type> tvars1 = substBounds(t.tvars, from, to);
3013            Type qtype1 = visit(t.qtype);
3014            if (tvars1 == t.tvars && qtype1 == t.qtype) {
3015                return t;
3016            } else if (tvars1 == t.tvars) {
3017                return new ForAll(tvars1, qtype1) {
3018                    @Override
3019                    public boolean needsStripping() {
3020                        return true;
3021                    }
3022                };
3023            } else {
3024                return new ForAll(tvars1, Types.this.subst(qtype1, t.tvars, tvars1)) {
3025                    @Override
3026                    public boolean needsStripping() {
3027                        return true;
3028                    }
3029                };
3030            }
3031        }
3032    }
3033
3034    public List<Type> substBounds(List<Type> tvars,
3035                                  List<Type> from,
3036                                  List<Type> to) {
3037        if (tvars.isEmpty())
3038            return tvars;
3039        ListBuffer<Type> newBoundsBuf = new ListBuffer<>();
3040        boolean changed = false;
3041        // calculate new bounds
3042        for (Type t : tvars) {
3043            TypeVar tv = (TypeVar) t;
3044            Type bound = subst(tv.bound, from, to);
3045            if (bound != tv.bound)
3046                changed = true;
3047            newBoundsBuf.append(bound);
3048        }
3049        if (!changed)
3050            return tvars;
3051        ListBuffer<Type> newTvars = new ListBuffer<>();
3052        // create new type variables without bounds
3053        for (Type t : tvars) {
3054            newTvars.append(new TypeVar(t.tsym, null, syms.botType,
3055                                        t.getMetadata()));
3056        }
3057        // the new bounds should use the new type variables in place
3058        // of the old
3059        List<Type> newBounds = newBoundsBuf.toList();
3060        from = tvars;
3061        to = newTvars.toList();
3062        for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
3063            newBounds.head = subst(newBounds.head, from, to);
3064        }
3065        newBounds = newBoundsBuf.toList();
3066        // set the bounds of new type variables to the new bounds
3067        for (Type t : newTvars.toList()) {
3068            TypeVar tv = (TypeVar) t;
3069            tv.bound = newBounds.head;
3070            newBounds = newBounds.tail;
3071        }
3072        return newTvars.toList();
3073    }
3074
3075    public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
3076        Type bound1 = subst(t.bound, from, to);
3077        if (bound1 == t.bound)
3078            return t;
3079        else {
3080            // create new type variable without bounds
3081            TypeVar tv = new TypeVar(t.tsym, null, syms.botType,
3082                                     t.getMetadata());
3083            // the new bound should use the new type variable in place
3084            // of the old
3085            tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
3086            return tv;
3087        }
3088    }
3089    // </editor-fold>
3090
3091    // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
3092    /**
3093     * Does t have the same bounds for quantified variables as s?
3094     */
3095    public boolean hasSameBounds(ForAll t, ForAll s) {
3096        List<Type> l1 = t.tvars;
3097        List<Type> l2 = s.tvars;
3098        while (l1.nonEmpty() && l2.nonEmpty() &&
3099               isSameType(l1.head.getUpperBound(),
3100                          subst(l2.head.getUpperBound(),
3101                                s.tvars,
3102                                t.tvars))) {
3103            l1 = l1.tail;
3104            l2 = l2.tail;
3105        }
3106        return l1.isEmpty() && l2.isEmpty();
3107    }
3108    // </editor-fold>
3109
3110    // <editor-fold defaultstate="collapsed" desc="newInstances">
3111    /** Create new vector of type variables from list of variables
3112     *  changing all recursive bounds from old to new list.
3113     */
3114    public List<Type> newInstances(List<Type> tvars) {
3115        List<Type> tvars1 = tvars.map(newInstanceFun);
3116        for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
3117            TypeVar tv = (TypeVar) l.head;
3118            tv.bound = subst(tv.bound, tvars, tvars1);
3119        }
3120        return tvars1;
3121    }
3122        private static final TypeMapping<Void> newInstanceFun = new TypeMapping<Void>() {
3123            @Override
3124            public TypeVar visitTypeVar(TypeVar t, Void _unused) {
3125                return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound(), t.getMetadata());
3126            }
3127        };
3128    // </editor-fold>
3129
3130    public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
3131        return original.accept(methodWithParameters, newParams);
3132    }
3133    // where
3134        private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
3135            public Type visitType(Type t, List<Type> newParams) {
3136                throw new IllegalArgumentException("Not a method type: " + t);
3137            }
3138            public Type visitMethodType(MethodType t, List<Type> newParams) {
3139                return new MethodType(newParams, t.restype, t.thrown, t.tsym);
3140            }
3141            public Type visitForAll(ForAll t, List<Type> newParams) {
3142                return new ForAll(t.tvars, t.qtype.accept(this, newParams));
3143            }
3144        };
3145
3146    public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
3147        return original.accept(methodWithThrown, newThrown);
3148    }
3149    // where
3150        private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
3151            public Type visitType(Type t, List<Type> newThrown) {
3152                throw new IllegalArgumentException("Not a method type: " + t);
3153            }
3154            public Type visitMethodType(MethodType t, List<Type> newThrown) {
3155                return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
3156            }
3157            public Type visitForAll(ForAll t, List<Type> newThrown) {
3158                return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
3159            }
3160        };
3161
3162    public Type createMethodTypeWithReturn(Type original, Type newReturn) {
3163        return original.accept(methodWithReturn, newReturn);
3164    }
3165    // where
3166        private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
3167            public Type visitType(Type t, Type newReturn) {
3168                throw new IllegalArgumentException("Not a method type: " + t);
3169            }
3170            public Type visitMethodType(MethodType t, Type newReturn) {
3171                return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym) {
3172                    @Override
3173                    public Type baseType() {
3174                        return t;
3175                    }
3176                };
3177            }
3178            public Type visitForAll(ForAll t, Type newReturn) {
3179                return new ForAll(t.tvars, t.qtype.accept(this, newReturn)) {
3180                    @Override
3181                    public Type baseType() {
3182                        return t;
3183                    }
3184                };
3185            }
3186        };
3187
3188    // <editor-fold defaultstate="collapsed" desc="createErrorType">
3189    public Type createErrorType(Type originalType) {
3190        return new ErrorType(originalType, syms.errSymbol);
3191    }
3192
3193    public Type createErrorType(ClassSymbol c, Type originalType) {
3194        return new ErrorType(c, originalType);
3195    }
3196
3197    public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
3198        return new ErrorType(name, container, originalType);
3199    }
3200    // </editor-fold>
3201
3202    // <editor-fold defaultstate="collapsed" desc="rank">
3203    /**
3204     * The rank of a class is the length of the longest path between
3205     * the class and java.lang.Object in the class inheritance
3206     * graph. Undefined for all but reference types.
3207     */
3208    public int rank(Type t) {
3209        switch(t.getTag()) {
3210        case CLASS: {
3211            ClassType cls = (ClassType)t;
3212            if (cls.rank_field < 0) {
3213                Name fullname = cls.tsym.getQualifiedName();
3214                if (fullname == names.java_lang_Object)
3215                    cls.rank_field = 0;
3216                else {
3217                    int r = rank(supertype(cls));
3218                    for (List<Type> l = interfaces(cls);
3219                         l.nonEmpty();
3220                         l = l.tail) {
3221                        if (rank(l.head) > r)
3222                            r = rank(l.head);
3223                    }
3224                    cls.rank_field = r + 1;
3225                }
3226            }
3227            return cls.rank_field;
3228        }
3229        case TYPEVAR: {
3230            TypeVar tvar = (TypeVar)t;
3231            if (tvar.rank_field < 0) {
3232                int r = rank(supertype(tvar));
3233                for (List<Type> l = interfaces(tvar);
3234                     l.nonEmpty();
3235                     l = l.tail) {
3236                    if (rank(l.head) > r) r = rank(l.head);
3237                }
3238                tvar.rank_field = r + 1;
3239            }
3240            return tvar.rank_field;
3241        }
3242        case ERROR:
3243        case NONE:
3244            return 0;
3245        default:
3246            throw new AssertionError();
3247        }
3248    }
3249    // </editor-fold>
3250
3251    /**
3252     * Helper method for generating a string representation of a given type
3253     * accordingly to a given locale
3254     */
3255    public String toString(Type t, Locale locale) {
3256        return Printer.createStandardPrinter(messages).visit(t, locale);
3257    }
3258
3259    /**
3260     * Helper method for generating a string representation of a given type
3261     * accordingly to a given locale
3262     */
3263    public String toString(Symbol t, Locale locale) {
3264        return Printer.createStandardPrinter(messages).visit(t, locale);
3265    }
3266
3267    // <editor-fold defaultstate="collapsed" desc="toString">
3268    /**
3269     * This toString is slightly more descriptive than the one on Type.
3270     *
3271     * @deprecated Types.toString(Type t, Locale l) provides better support
3272     * for localization
3273     */
3274    @Deprecated
3275    public String toString(Type t) {
3276        if (t.hasTag(FORALL)) {
3277            ForAll forAll = (ForAll)t;
3278            return typaramsString(forAll.tvars) + forAll.qtype;
3279        }
3280        return "" + t;
3281    }
3282    // where
3283        private String typaramsString(List<Type> tvars) {
3284            StringBuilder s = new StringBuilder();
3285            s.append('<');
3286            boolean first = true;
3287            for (Type t : tvars) {
3288                if (!first) s.append(", ");
3289                first = false;
3290                appendTyparamString(((TypeVar)t), s);
3291            }
3292            s.append('>');
3293            return s.toString();
3294        }
3295        private void appendTyparamString(TypeVar t, StringBuilder buf) {
3296            buf.append(t);
3297            if (t.bound == null ||
3298                t.bound.tsym.getQualifiedName() == names.java_lang_Object)
3299                return;
3300            buf.append(" extends "); // Java syntax; no need for i18n
3301            Type bound = t.bound;
3302            if (!bound.isCompound()) {
3303                buf.append(bound);
3304            } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
3305                buf.append(supertype(t));
3306                for (Type intf : interfaces(t)) {
3307                    buf.append('&');
3308                    buf.append(intf);
3309                }
3310            } else {
3311                // No superclass was given in bounds.
3312                // In this case, supertype is Object, erasure is first interface.
3313                boolean first = true;
3314                for (Type intf : interfaces(t)) {
3315                    if (!first) buf.append('&');
3316                    first = false;
3317                    buf.append(intf);
3318                }
3319            }
3320        }
3321    // </editor-fold>
3322
3323    // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
3324    /**
3325     * A cache for closures.
3326     *
3327     * <p>A closure is a list of all the supertypes and interfaces of
3328     * a class or interface type, ordered by ClassSymbol.precedes
3329     * (that is, subclasses come first, arbitrary but fixed
3330     * otherwise).
3331     */
3332    private Map<Type,List<Type>> closureCache = new HashMap<>();
3333
3334    /**
3335     * Returns the closure of a class or interface type.
3336     */
3337    public List<Type> closure(Type t) {
3338        List<Type> cl = closureCache.get(t);
3339        if (cl == null) {
3340            Type st = supertype(t);
3341            if (!t.isCompound()) {
3342                if (st.hasTag(CLASS)) {
3343                    cl = insert(closure(st), t);
3344                } else if (st.hasTag(TYPEVAR)) {
3345                    cl = closure(st).prepend(t);
3346                } else {
3347                    cl = List.of(t);
3348                }
3349            } else {
3350                cl = closure(supertype(t));
3351            }
3352            for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
3353                cl = union(cl, closure(l.head));
3354            closureCache.put(t, cl);
3355        }
3356        return cl;
3357    }
3358
3359    /**
3360     * Collect types into a new closure (using a @code{ClosureHolder})
3361     */
3362    public Collector<Type, ClosureHolder, List<Type>> closureCollector(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3363        return Collector.of(() -> new ClosureHolder(minClosure, shouldSkip),
3364                ClosureHolder::add,
3365                ClosureHolder::merge,
3366                ClosureHolder::closure);
3367    }
3368    //where
3369        class ClosureHolder {
3370            List<Type> closure;
3371            final boolean minClosure;
3372            final BiPredicate<Type, Type> shouldSkip;
3373
3374            ClosureHolder(boolean minClosure, BiPredicate<Type, Type> shouldSkip) {
3375                this.closure = List.nil();
3376                this.minClosure = minClosure;
3377                this.shouldSkip = shouldSkip;
3378            }
3379
3380            void add(Type type) {
3381                closure = insert(closure, type, shouldSkip);
3382            }
3383
3384            ClosureHolder merge(ClosureHolder other) {
3385                closure = union(closure, other.closure, shouldSkip);
3386                return this;
3387            }
3388
3389            List<Type> closure() {
3390                return minClosure ? closureMin(closure) : closure;
3391            }
3392        }
3393
3394    BiPredicate<Type, Type> basicClosureSkip = (t1, t2) -> t1.tsym == t2.tsym;
3395
3396    /**
3397     * Insert a type in a closure
3398     */
3399    public List<Type> insert(List<Type> cl, Type t, BiPredicate<Type, Type> shouldSkip) {
3400        if (cl.isEmpty()) {
3401            return cl.prepend(t);
3402        } else if (shouldSkip.test(t, cl.head)) {
3403            return cl;
3404        } else if (t.tsym.precedes(cl.head.tsym, this)) {
3405            return cl.prepend(t);
3406        } else {
3407            // t comes after head, or the two are unrelated
3408            return insert(cl.tail, t, shouldSkip).prepend(cl.head);
3409        }
3410    }
3411
3412    public List<Type> insert(List<Type> cl, Type t) {
3413        return insert(cl, t, basicClosureSkip);
3414    }
3415
3416    /**
3417     * Form the union of two closures
3418     */
3419    public List<Type> union(List<Type> cl1, List<Type> cl2, BiPredicate<Type, Type> shouldSkip) {
3420        if (cl1.isEmpty()) {
3421            return cl2;
3422        } else if (cl2.isEmpty()) {
3423            return cl1;
3424        } else if (shouldSkip.test(cl1.head, cl2.head)) {
3425            return union(cl1.tail, cl2.tail, shouldSkip).prepend(cl1.head);
3426        } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
3427            return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
3428        } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
3429            return union(cl1, cl2.tail, shouldSkip).prepend(cl2.head);
3430        } else {
3431            // unrelated types
3432            return union(cl1.tail, cl2, shouldSkip).prepend(cl1.head);
3433        }
3434    }
3435
3436    public List<Type> union(List<Type> cl1, List<Type> cl2) {
3437        return union(cl1, cl2, basicClosureSkip);
3438    }
3439
3440    /**
3441     * Intersect two closures
3442     */
3443    public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
3444        if (cl1 == cl2)
3445            return cl1;
3446        if (cl1.isEmpty() || cl2.isEmpty())
3447            return List.nil();
3448        if (cl1.head.tsym.precedes(cl2.head.tsym, this))
3449            return intersect(cl1.tail, cl2);
3450        if (cl2.head.tsym.precedes(cl1.head.tsym, this))
3451            return intersect(cl1, cl2.tail);
3452        if (isSameType(cl1.head, cl2.head))
3453            return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
3454        if (cl1.head.tsym == cl2.head.tsym &&
3455            cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
3456            if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
3457                Type merge = merge(cl1.head,cl2.head);
3458                return intersect(cl1.tail, cl2.tail).prepend(merge);
3459            }
3460            if (cl1.head.isRaw() || cl2.head.isRaw())
3461                return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
3462        }
3463        return intersect(cl1.tail, cl2.tail);
3464    }
3465    // where
3466        class TypePair {
3467            final Type t1;
3468            final Type t2;
3469            boolean strict;
3470
3471            TypePair(Type t1, Type t2) {
3472                this(t1, t2, false);
3473            }
3474
3475            TypePair(Type t1, Type t2, boolean strict) {
3476                this.t1 = t1;
3477                this.t2 = t2;
3478                this.strict = strict;
3479            }
3480            @Override
3481            public int hashCode() {
3482                return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
3483            }
3484            @Override
3485            public boolean equals(Object obj) {
3486                if (!(obj instanceof TypePair))
3487                    return false;
3488                TypePair typePair = (TypePair)obj;
3489                return isSameType(t1, typePair.t1, strict)
3490                    && isSameType(t2, typePair.t2, strict);
3491            }
3492        }
3493        Set<TypePair> mergeCache = new HashSet<>();
3494        private Type merge(Type c1, Type c2) {
3495            ClassType class1 = (ClassType) c1;
3496            List<Type> act1 = class1.getTypeArguments();
3497            ClassType class2 = (ClassType) c2;
3498            List<Type> act2 = class2.getTypeArguments();
3499            ListBuffer<Type> merged = new ListBuffer<>();
3500            List<Type> typarams = class1.tsym.type.getTypeArguments();
3501
3502            while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
3503                if (containsType(act1.head, act2.head)) {
3504                    merged.append(act1.head);
3505                } else if (containsType(act2.head, act1.head)) {
3506                    merged.append(act2.head);
3507                } else {
3508                    TypePair pair = new TypePair(c1, c2);
3509                    Type m;
3510                    if (mergeCache.add(pair)) {
3511                        m = new WildcardType(lub(wildUpperBound(act1.head),
3512                                                 wildUpperBound(act2.head)),
3513                                             BoundKind.EXTENDS,
3514                                             syms.boundClass);
3515                        mergeCache.remove(pair);
3516                    } else {
3517                        m = new WildcardType(syms.objectType,
3518                                             BoundKind.UNBOUND,
3519                                             syms.boundClass);
3520                    }
3521                    merged.append(m.withTypeVar(typarams.head));
3522                }
3523                act1 = act1.tail;
3524                act2 = act2.tail;
3525                typarams = typarams.tail;
3526            }
3527            Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
3528            // There is no spec detailing how type annotations are to
3529            // be inherited.  So set it to noAnnotations for now
3530            return new ClassType(class1.getEnclosingType(), merged.toList(),
3531                                 class1.tsym);
3532        }
3533
3534    /**
3535     * Return the minimum type of a closure, a compound type if no
3536     * unique minimum exists.
3537     */
3538    private Type compoundMin(List<Type> cl) {
3539        if (cl.isEmpty()) return syms.objectType;
3540        List<Type> compound = closureMin(cl);
3541        if (compound.isEmpty())
3542            return null;
3543        else if (compound.tail.isEmpty())
3544            return compound.head;
3545        else
3546            return makeIntersectionType(compound);
3547    }
3548
3549    /**
3550     * Return the minimum types of a closure, suitable for computing
3551     * compoundMin or glb.
3552     */
3553    private List<Type> closureMin(List<Type> cl) {
3554        ListBuffer<Type> classes = new ListBuffer<>();
3555        ListBuffer<Type> interfaces = new ListBuffer<>();
3556        Set<Type> toSkip = new HashSet<>();
3557        while (!cl.isEmpty()) {
3558            Type current = cl.head;
3559            boolean keep = !toSkip.contains(current);
3560            if (keep && current.hasTag(TYPEVAR)) {
3561                // skip lower-bounded variables with a subtype in cl.tail
3562                for (Type t : cl.tail) {
3563                    if (isSubtypeNoCapture(t, current)) {
3564                        keep = false;
3565                        break;
3566                    }
3567                }
3568            }
3569            if (keep) {
3570                if (current.isInterface())
3571                    interfaces.append(current);
3572                else
3573                    classes.append(current);
3574                for (Type t : cl.tail) {
3575                    // skip supertypes of 'current' in cl.tail
3576                    if (isSubtypeNoCapture(current, t))
3577                        toSkip.add(t);
3578                }
3579            }
3580            cl = cl.tail;
3581        }
3582        return classes.appendList(interfaces).toList();
3583    }
3584
3585    /**
3586     * Return the least upper bound of list of types.  if the lub does
3587     * not exist return null.
3588     */
3589    public Type lub(List<Type> ts) {
3590        return lub(ts.toArray(new Type[ts.length()]));
3591    }
3592
3593    /**
3594     * Return the least upper bound (lub) of set of types.  If the lub
3595     * does not exist return the type of null (bottom).
3596     */
3597    public Type lub(Type... ts) {
3598        final int UNKNOWN_BOUND = 0;
3599        final int ARRAY_BOUND = 1;
3600        final int CLASS_BOUND = 2;
3601
3602        int[] kinds = new int[ts.length];
3603
3604        int boundkind = UNKNOWN_BOUND;
3605        for (int i = 0 ; i < ts.length ; i++) {
3606            Type t = ts[i];
3607            switch (t.getTag()) {
3608            case CLASS:
3609                boundkind |= kinds[i] = CLASS_BOUND;
3610                break;
3611            case ARRAY:
3612                boundkind |= kinds[i] = ARRAY_BOUND;
3613                break;
3614            case  TYPEVAR:
3615                do {
3616                    t = t.getUpperBound();
3617                } while (t.hasTag(TYPEVAR));
3618                if (t.hasTag(ARRAY)) {
3619                    boundkind |= kinds[i] = ARRAY_BOUND;
3620                } else {
3621                    boundkind |= kinds[i] = CLASS_BOUND;
3622                }
3623                break;
3624            default:
3625                kinds[i] = UNKNOWN_BOUND;
3626                if (t.isPrimitive())
3627                    return syms.errType;
3628            }
3629        }
3630        switch (boundkind) {
3631        case 0:
3632            return syms.botType;
3633
3634        case ARRAY_BOUND:
3635            // calculate lub(A[], B[])
3636            Type[] elements = new Type[ts.length];
3637            for (int i = 0 ; i < ts.length ; i++) {
3638                Type elem = elements[i] = elemTypeFun.apply(ts[i]);
3639                if (elem.isPrimitive()) {
3640                    // if a primitive type is found, then return
3641                    // arraySuperType unless all the types are the
3642                    // same
3643                    Type first = ts[0];
3644                    for (int j = 1 ; j < ts.length ; j++) {
3645                        if (!isSameType(first, ts[j])) {
3646                             // lub(int[], B[]) is Cloneable & Serializable
3647                            return arraySuperType();
3648                        }
3649                    }
3650                    // all the array types are the same, return one
3651                    // lub(int[], int[]) is int[]
3652                    return first;
3653                }
3654            }
3655            // lub(A[], B[]) is lub(A, B)[]
3656            return new ArrayType(lub(elements), syms.arrayClass);
3657
3658        case CLASS_BOUND:
3659            // calculate lub(A, B)
3660            int startIdx = 0;
3661            for (int i = 0; i < ts.length ; i++) {
3662                Type t = ts[i];
3663                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR)) {
3664                    break;
3665                } else {
3666                    startIdx++;
3667                }
3668            }
3669            Assert.check(startIdx < ts.length);
3670            //step 1 - compute erased candidate set (EC)
3671            List<Type> cl = erasedSupertypes(ts[startIdx]);
3672            for (int i = startIdx + 1 ; i < ts.length ; i++) {
3673                Type t = ts[i];
3674                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
3675                    cl = intersect(cl, erasedSupertypes(t));
3676            }
3677            //step 2 - compute minimal erased candidate set (MEC)
3678            List<Type> mec = closureMin(cl);
3679            //step 3 - for each element G in MEC, compute lci(Inv(G))
3680            List<Type> candidates = List.nil();
3681            for (Type erasedSupertype : mec) {
3682                List<Type> lci = List.of(asSuper(ts[startIdx], erasedSupertype.tsym));
3683                for (int i = startIdx + 1 ; i < ts.length ; i++) {
3684                    Type superType = asSuper(ts[i], erasedSupertype.tsym);
3685                    lci = intersect(lci, superType != null ? List.of(superType) : List.<Type>nil());
3686                }
3687                candidates = candidates.appendList(lci);
3688            }
3689            //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
3690            //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
3691            return compoundMin(candidates);
3692
3693        default:
3694            // calculate lub(A, B[])
3695            List<Type> classes = List.of(arraySuperType());
3696            for (int i = 0 ; i < ts.length ; i++) {
3697                if (kinds[i] != ARRAY_BOUND) // Filter out any arrays
3698                    classes = classes.prepend(ts[i]);
3699            }
3700            // lub(A, B[]) is lub(A, arraySuperType)
3701            return lub(classes);
3702        }
3703    }
3704    // where
3705        List<Type> erasedSupertypes(Type t) {
3706            ListBuffer<Type> buf = new ListBuffer<>();
3707            for (Type sup : closure(t)) {
3708                if (sup.hasTag(TYPEVAR)) {
3709                    buf.append(sup);
3710                } else {
3711                    buf.append(erasure(sup));
3712                }
3713            }
3714            return buf.toList();
3715        }
3716
3717        private Type arraySuperType = null;
3718        private Type arraySuperType() {
3719            // initialized lazily to avoid problems during compiler startup
3720            if (arraySuperType == null) {
3721                synchronized (this) {
3722                    if (arraySuperType == null) {
3723                        // JLS 10.8: all arrays implement Cloneable and Serializable.
3724                        arraySuperType = makeIntersectionType(List.of(syms.serializableType,
3725                                syms.cloneableType), true);
3726                    }
3727                }
3728            }
3729            return arraySuperType;
3730        }
3731    // </editor-fold>
3732
3733    // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
3734    public Type glb(List<Type> ts) {
3735        Type t1 = ts.head;
3736        for (Type t2 : ts.tail) {
3737            if (t1.isErroneous())
3738                return t1;
3739            t1 = glb(t1, t2);
3740        }
3741        return t1;
3742    }
3743    //where
3744    public Type glb(Type t, Type s) {
3745        if (s == null)
3746            return t;
3747        else if (t.isPrimitive() || s.isPrimitive())
3748            return syms.errType;
3749        else if (isSubtypeNoCapture(t, s))
3750            return t;
3751        else if (isSubtypeNoCapture(s, t))
3752            return s;
3753
3754        List<Type> closure = union(closure(t), closure(s));
3755        return glbFlattened(closure, t);
3756    }
3757    //where
3758    /**
3759     * Perform glb for a list of non-primitive, non-error, non-compound types;
3760     * redundant elements are removed.  Bounds should be ordered according to
3761     * {@link Symbol#precedes(TypeSymbol,Types)}.
3762     *
3763     * @param flatBounds List of type to glb
3764     * @param errT Original type to use if the result is an error type
3765     */
3766    private Type glbFlattened(List<Type> flatBounds, Type errT) {
3767        List<Type> bounds = closureMin(flatBounds);
3768
3769        if (bounds.isEmpty()) {             // length == 0
3770            return syms.objectType;
3771        } else if (bounds.tail.isEmpty()) { // length == 1
3772            return bounds.head;
3773        } else {                            // length > 1
3774            int classCount = 0;
3775            List<Type> lowers = List.nil();
3776            for (Type bound : bounds) {
3777                if (!bound.isInterface()) {
3778                    classCount++;
3779                    Type lower = cvarLowerBound(bound);
3780                    if (bound != lower && !lower.hasTag(BOT))
3781                        lowers = insert(lowers, lower);
3782                }
3783            }
3784            if (classCount > 1) {
3785                if (lowers.isEmpty())
3786                    return createErrorType(errT);
3787                else
3788                    return glbFlattened(union(bounds, lowers), errT);
3789            }
3790        }
3791        return makeIntersectionType(bounds);
3792    }
3793    // </editor-fold>
3794
3795    // <editor-fold defaultstate="collapsed" desc="hashCode">
3796    /**
3797     * Compute a hash code on a type.
3798     */
3799    public int hashCode(Type t) {
3800        return hashCode(t, false);
3801    }
3802
3803    public int hashCode(Type t, boolean strict) {
3804        return strict ?
3805                hashCodeStrictVisitor.visit(t) :
3806                hashCodeVisitor.visit(t);
3807    }
3808    // where
3809        private static final HashCodeVisitor hashCodeVisitor = new HashCodeVisitor();
3810        private static final HashCodeVisitor hashCodeStrictVisitor = new HashCodeVisitor() {
3811            @Override
3812            public Integer visitTypeVar(TypeVar t, Void ignored) {
3813                return System.identityHashCode(t);
3814            }
3815        };
3816
3817        private static class HashCodeVisitor extends UnaryVisitor<Integer> {
3818            public Integer visitType(Type t, Void ignored) {
3819                return t.getTag().ordinal();
3820            }
3821
3822            @Override
3823            public Integer visitClassType(ClassType t, Void ignored) {
3824                int result = visit(t.getEnclosingType());
3825                result *= 127;
3826                result += t.tsym.flatName().hashCode();
3827                for (Type s : t.getTypeArguments()) {
3828                    result *= 127;
3829                    result += visit(s);
3830                }
3831                return result;
3832            }
3833
3834            @Override
3835            public Integer visitMethodType(MethodType t, Void ignored) {
3836                int h = METHOD.ordinal();
3837                for (List<Type> thisargs = t.argtypes;
3838                     thisargs.tail != null;
3839                     thisargs = thisargs.tail)
3840                    h = (h << 5) + visit(thisargs.head);
3841                return (h << 5) + visit(t.restype);
3842            }
3843
3844            @Override
3845            public Integer visitWildcardType(WildcardType t, Void ignored) {
3846                int result = t.kind.hashCode();
3847                if (t.type != null) {
3848                    result *= 127;
3849                    result += visit(t.type);
3850                }
3851                return result;
3852            }
3853
3854            @Override
3855            public Integer visitArrayType(ArrayType t, Void ignored) {
3856                return visit(t.elemtype) + 12;
3857            }
3858
3859            @Override
3860            public Integer visitTypeVar(TypeVar t, Void ignored) {
3861                return System.identityHashCode(t);
3862            }
3863
3864            @Override
3865            public Integer visitUndetVar(UndetVar t, Void ignored) {
3866                return System.identityHashCode(t);
3867            }
3868
3869            @Override
3870            public Integer visitErrorType(ErrorType t, Void ignored) {
3871                return 0;
3872            }
3873        }
3874    // </editor-fold>
3875
3876    // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
3877    /**
3878     * Does t have a result that is a subtype of the result type of s,
3879     * suitable for covariant returns?  It is assumed that both types
3880     * are (possibly polymorphic) method types.  Monomorphic method
3881     * types are handled in the obvious way.  Polymorphic method types
3882     * require renaming all type variables of one to corresponding
3883     * type variables in the other, where correspondence is by
3884     * position in the type parameter list. */
3885    public boolean resultSubtype(Type t, Type s, Warner warner) {
3886        List<Type> tvars = t.getTypeArguments();
3887        List<Type> svars = s.getTypeArguments();
3888        Type tres = t.getReturnType();
3889        Type sres = subst(s.getReturnType(), svars, tvars);
3890        return covariantReturnType(tres, sres, warner);
3891    }
3892
3893    /**
3894     * Return-Type-Substitutable.
3895     * @jls section 8.4.5
3896     */
3897    public boolean returnTypeSubstitutable(Type r1, Type r2) {
3898        if (hasSameArgs(r1, r2))
3899            return resultSubtype(r1, r2, noWarnings);
3900        else
3901            return covariantReturnType(r1.getReturnType(),
3902                                       erasure(r2.getReturnType()),
3903                                       noWarnings);
3904    }
3905
3906    public boolean returnTypeSubstitutable(Type r1,
3907                                           Type r2, Type r2res,
3908                                           Warner warner) {
3909        if (isSameType(r1.getReturnType(), r2res))
3910            return true;
3911        if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
3912            return false;
3913
3914        if (hasSameArgs(r1, r2))
3915            return covariantReturnType(r1.getReturnType(), r2res, warner);
3916        if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
3917            return true;
3918        if (!isSubtype(r1.getReturnType(), erasure(r2res)))
3919            return false;
3920        warner.warn(LintCategory.UNCHECKED);
3921        return true;
3922    }
3923
3924    /**
3925     * Is t an appropriate return type in an overrider for a
3926     * method that returns s?
3927     */
3928    public boolean covariantReturnType(Type t, Type s, Warner warner) {
3929        return
3930            isSameType(t, s) ||
3931            !t.isPrimitive() &&
3932            !s.isPrimitive() &&
3933            isAssignable(t, s, warner);
3934    }
3935    // </editor-fold>
3936
3937    // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
3938    /**
3939     * Return the class that boxes the given primitive.
3940     */
3941    public ClassSymbol boxedClass(Type t) {
3942        return syms.enterClass(syms.boxedName[t.getTag().ordinal()]);
3943    }
3944
3945    /**
3946     * Return the boxed type if 't' is primitive, otherwise return 't' itself.
3947     */
3948    public Type boxedTypeOrType(Type t) {
3949        return t.isPrimitive() ?
3950            boxedClass(t).type :
3951            t;
3952    }
3953
3954    /**
3955     * Return the primitive type corresponding to a boxed type.
3956     */
3957    public Type unboxedType(Type t) {
3958        for (int i=0; i<syms.boxedName.length; i++) {
3959            Name box = syms.boxedName[i];
3960            if (box != null &&
3961                asSuper(t, syms.enterClass(box)) != null)
3962                return syms.typeOfTag[i];
3963        }
3964        return Type.noType;
3965    }
3966
3967    /**
3968     * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
3969     */
3970    public Type unboxedTypeOrType(Type t) {
3971        Type unboxedType = unboxedType(t);
3972        return unboxedType.hasTag(NONE) ? t : unboxedType;
3973    }
3974    // </editor-fold>
3975
3976    // <editor-fold defaultstate="collapsed" desc="Capture conversion">
3977    /*
3978     * JLS 5.1.10 Capture Conversion:
3979     *
3980     * Let G name a generic type declaration with n formal type
3981     * parameters A1 ... An with corresponding bounds U1 ... Un. There
3982     * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
3983     * where, for 1 <= i <= n:
3984     *
3985     * + If Ti is a wildcard type argument (4.5.1) of the form ? then
3986     *   Si is a fresh type variable whose upper bound is
3987     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
3988     *   type.
3989     *
3990     * + If Ti is a wildcard type argument of the form ? extends Bi,
3991     *   then Si is a fresh type variable whose upper bound is
3992     *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
3993     *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
3994     *   a compile-time error if for any two classes (not interfaces)
3995     *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
3996     *
3997     * + If Ti is a wildcard type argument of the form ? super Bi,
3998     *   then Si is a fresh type variable whose upper bound is
3999     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
4000     *
4001     * + Otherwise, Si = Ti.
4002     *
4003     * Capture conversion on any type other than a parameterized type
4004     * (4.5) acts as an identity conversion (5.1.1). Capture
4005     * conversions never require a special action at run time and
4006     * therefore never throw an exception at run time.
4007     *
4008     * Capture conversion is not applied recursively.
4009     */
4010    /**
4011     * Capture conversion as specified by the JLS.
4012     */
4013
4014    public List<Type> capture(List<Type> ts) {
4015        List<Type> buf = List.nil();
4016        for (Type t : ts) {
4017            buf = buf.prepend(capture(t));
4018        }
4019        return buf.reverse();
4020    }
4021
4022    public Type capture(Type t) {
4023        if (!t.hasTag(CLASS)) {
4024            return t;
4025        }
4026        if (t.getEnclosingType() != Type.noType) {
4027            Type capturedEncl = capture(t.getEnclosingType());
4028            if (capturedEncl != t.getEnclosingType()) {
4029                Type type1 = memberType(capturedEncl, t.tsym);
4030                t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
4031            }
4032        }
4033        ClassType cls = (ClassType)t;
4034        if (cls.isRaw() || !cls.isParameterized())
4035            return cls;
4036
4037        ClassType G = (ClassType)cls.asElement().asType();
4038        List<Type> A = G.getTypeArguments();
4039        List<Type> T = cls.getTypeArguments();
4040        List<Type> S = freshTypeVariables(T);
4041
4042        List<Type> currentA = A;
4043        List<Type> currentT = T;
4044        List<Type> currentS = S;
4045        boolean captured = false;
4046        while (!currentA.isEmpty() &&
4047               !currentT.isEmpty() &&
4048               !currentS.isEmpty()) {
4049            if (currentS.head != currentT.head) {
4050                captured = true;
4051                WildcardType Ti = (WildcardType)currentT.head;
4052                Type Ui = currentA.head.getUpperBound();
4053                CapturedType Si = (CapturedType)currentS.head;
4054                if (Ui == null)
4055                    Ui = syms.objectType;
4056                switch (Ti.kind) {
4057                case UNBOUND:
4058                    Si.bound = subst(Ui, A, S);
4059                    Si.lower = syms.botType;
4060                    break;
4061                case EXTENDS:
4062                    Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
4063                    Si.lower = syms.botType;
4064                    break;
4065                case SUPER:
4066                    Si.bound = subst(Ui, A, S);
4067                    Si.lower = Ti.getSuperBound();
4068                    break;
4069                }
4070                Type tmpBound = Si.bound.hasTag(UNDETVAR) ? ((UndetVar)Si.bound).qtype : Si.bound;
4071                Type tmpLower = Si.lower.hasTag(UNDETVAR) ? ((UndetVar)Si.lower).qtype : Si.lower;
4072                if (!Si.bound.hasTag(ERROR) &&
4073                    !Si.lower.hasTag(ERROR) &&
4074                    isSameType(tmpBound, tmpLower, false)) {
4075                    currentS.head = Si.bound;
4076                }
4077            }
4078            currentA = currentA.tail;
4079            currentT = currentT.tail;
4080            currentS = currentS.tail;
4081        }
4082        if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
4083            return erasure(t); // some "rare" type involved
4084
4085        if (captured)
4086            return new ClassType(cls.getEnclosingType(), S, cls.tsym,
4087                                 cls.getMetadata());
4088        else
4089            return t;
4090    }
4091    // where
4092        public List<Type> freshTypeVariables(List<Type> types) {
4093            ListBuffer<Type> result = new ListBuffer<>();
4094            for (Type t : types) {
4095                if (t.hasTag(WILDCARD)) {
4096                    Type bound = ((WildcardType)t).getExtendsBound();
4097                    if (bound == null)
4098                        bound = syms.objectType;
4099                    result.append(new CapturedType(capturedName,
4100                                                   syms.noSymbol,
4101                                                   bound,
4102                                                   syms.botType,
4103                                                   (WildcardType)t));
4104                } else {
4105                    result.append(t);
4106                }
4107            }
4108            return result.toList();
4109        }
4110    // </editor-fold>
4111
4112    // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
4113    private boolean sideCast(Type from, Type to, Warner warn) {
4114        // We are casting from type $from$ to type $to$, which are
4115        // non-final unrelated types.  This method
4116        // tries to reject a cast by transferring type parameters
4117        // from $to$ to $from$ by common superinterfaces.
4118        boolean reverse = false;
4119        Type target = to;
4120        if ((to.tsym.flags() & INTERFACE) == 0) {
4121            Assert.check((from.tsym.flags() & INTERFACE) != 0);
4122            reverse = true;
4123            to = from;
4124            from = target;
4125        }
4126        List<Type> commonSupers = superClosure(to, erasure(from));
4127        boolean giveWarning = commonSupers.isEmpty();
4128        // The arguments to the supers could be unified here to
4129        // get a more accurate analysis
4130        while (commonSupers.nonEmpty()) {
4131            Type t1 = asSuper(from, commonSupers.head.tsym);
4132            Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
4133            if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4134                return false;
4135            giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
4136            commonSupers = commonSupers.tail;
4137        }
4138        if (giveWarning && !isReifiable(reverse ? from : to))
4139            warn.warn(LintCategory.UNCHECKED);
4140        return true;
4141    }
4142
4143    private boolean sideCastFinal(Type from, Type to, Warner warn) {
4144        // We are casting from type $from$ to type $to$, which are
4145        // unrelated types one of which is final and the other of
4146        // which is an interface.  This method
4147        // tries to reject a cast by transferring type parameters
4148        // from the final class to the interface.
4149        boolean reverse = false;
4150        Type target = to;
4151        if ((to.tsym.flags() & INTERFACE) == 0) {
4152            Assert.check((from.tsym.flags() & INTERFACE) != 0);
4153            reverse = true;
4154            to = from;
4155            from = target;
4156        }
4157        Assert.check((from.tsym.flags() & FINAL) != 0);
4158        Type t1 = asSuper(from, to.tsym);
4159        if (t1 == null) return false;
4160        Type t2 = to;
4161        if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4162            return false;
4163        if (!isReifiable(target) &&
4164            (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
4165            warn.warn(LintCategory.UNCHECKED);
4166        return true;
4167    }
4168
4169    private boolean giveWarning(Type from, Type to) {
4170        List<Type> bounds = to.isCompound() ?
4171                directSupertypes(to) : List.of(to);
4172        for (Type b : bounds) {
4173            Type subFrom = asSub(from, b.tsym);
4174            if (b.isParameterized() &&
4175                    (!(isUnbounded(b) ||
4176                    isSubtype(from, b) ||
4177                    ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
4178                return true;
4179            }
4180        }
4181        return false;
4182    }
4183
4184    private List<Type> superClosure(Type t, Type s) {
4185        List<Type> cl = List.nil();
4186        for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
4187            if (isSubtype(s, erasure(l.head))) {
4188                cl = insert(cl, l.head);
4189            } else {
4190                cl = union(cl, superClosure(l.head, s));
4191            }
4192        }
4193        return cl;
4194    }
4195
4196    private boolean containsTypeEquivalent(Type t, Type s) {
4197        return isSameType(t, s) || // shortcut
4198            containsType(t, s) && containsType(s, t);
4199    }
4200
4201    // <editor-fold defaultstate="collapsed" desc="adapt">
4202    /**
4203     * Adapt a type by computing a substitution which maps a source
4204     * type to a target type.
4205     *
4206     * @param source    the source type
4207     * @param target    the target type
4208     * @param from      the type variables of the computed substitution
4209     * @param to        the types of the computed substitution.
4210     */
4211    public void adapt(Type source,
4212                       Type target,
4213                       ListBuffer<Type> from,
4214                       ListBuffer<Type> to) throws AdaptFailure {
4215        new Adapter(from, to).adapt(source, target);
4216    }
4217
4218    class Adapter extends SimpleVisitor<Void, Type> {
4219
4220        ListBuffer<Type> from;
4221        ListBuffer<Type> to;
4222        Map<Symbol,Type> mapping;
4223
4224        Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
4225            this.from = from;
4226            this.to = to;
4227            mapping = new HashMap<>();
4228        }
4229
4230        public void adapt(Type source, Type target) throws AdaptFailure {
4231            visit(source, target);
4232            List<Type> fromList = from.toList();
4233            List<Type> toList = to.toList();
4234            while (!fromList.isEmpty()) {
4235                Type val = mapping.get(fromList.head.tsym);
4236                if (toList.head != val)
4237                    toList.head = val;
4238                fromList = fromList.tail;
4239                toList = toList.tail;
4240            }
4241        }
4242
4243        @Override
4244        public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
4245            if (target.hasTag(CLASS))
4246                adaptRecursive(source.allparams(), target.allparams());
4247            return null;
4248        }
4249
4250        @Override
4251        public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
4252            if (target.hasTag(ARRAY))
4253                adaptRecursive(elemtype(source), elemtype(target));
4254            return null;
4255        }
4256
4257        @Override
4258        public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
4259            if (source.isExtendsBound())
4260                adaptRecursive(wildUpperBound(source), wildUpperBound(target));
4261            else if (source.isSuperBound())
4262                adaptRecursive(wildLowerBound(source), wildLowerBound(target));
4263            return null;
4264        }
4265
4266        @Override
4267        public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
4268            // Check to see if there is
4269            // already a mapping for $source$, in which case
4270            // the old mapping will be merged with the new
4271            Type val = mapping.get(source.tsym);
4272            if (val != null) {
4273                if (val.isSuperBound() && target.isSuperBound()) {
4274                    val = isSubtype(wildLowerBound(val), wildLowerBound(target))
4275                        ? target : val;
4276                } else if (val.isExtendsBound() && target.isExtendsBound()) {
4277                    val = isSubtype(wildUpperBound(val), wildUpperBound(target))
4278                        ? val : target;
4279                } else if (!isSameType(val, target)) {
4280                    throw new AdaptFailure();
4281                }
4282            } else {
4283                val = target;
4284                from.append(source);
4285                to.append(target);
4286            }
4287            mapping.put(source.tsym, val);
4288            return null;
4289        }
4290
4291        @Override
4292        public Void visitType(Type source, Type target) {
4293            return null;
4294        }
4295
4296        private Set<TypePair> cache = new HashSet<>();
4297
4298        private void adaptRecursive(Type source, Type target) {
4299            TypePair pair = new TypePair(source, target);
4300            if (cache.add(pair)) {
4301                try {
4302                    visit(source, target);
4303                } finally {
4304                    cache.remove(pair);
4305                }
4306            }
4307        }
4308
4309        private void adaptRecursive(List<Type> source, List<Type> target) {
4310            if (source.length() == target.length()) {
4311                while (source.nonEmpty()) {
4312                    adaptRecursive(source.head, target.head);
4313                    source = source.tail;
4314                    target = target.tail;
4315                }
4316            }
4317        }
4318    }
4319
4320    public static class AdaptFailure extends RuntimeException {
4321        static final long serialVersionUID = -7490231548272701566L;
4322    }
4323
4324    private void adaptSelf(Type t,
4325                           ListBuffer<Type> from,
4326                           ListBuffer<Type> to) {
4327        try {
4328            //if (t.tsym.type != t)
4329                adapt(t.tsym.type, t, from, to);
4330        } catch (AdaptFailure ex) {
4331            // Adapt should never fail calculating a mapping from
4332            // t.tsym.type to t as there can be no merge problem.
4333            throw new AssertionError(ex);
4334        }
4335    }
4336    // </editor-fold>
4337
4338    /**
4339     * Rewrite all type variables (universal quantifiers) in the given
4340     * type to wildcards (existential quantifiers).  This is used to
4341     * determine if a cast is allowed.  For example, if high is true
4342     * and {@code T <: Number}, then {@code List<T>} is rewritten to
4343     * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
4344     * List<? extends Number>} a {@code List<T>} can be cast to {@code
4345     * List<Integer>} with a warning.
4346     * @param t a type
4347     * @param high if true return an upper bound; otherwise a lower
4348     * bound
4349     * @param rewriteTypeVars only rewrite captured wildcards if false;
4350     * otherwise rewrite all type variables
4351     * @return the type rewritten with wildcards (existential
4352     * quantifiers) only
4353     */
4354    private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
4355        return new Rewriter(high, rewriteTypeVars).visit(t);
4356    }
4357
4358    class Rewriter extends UnaryVisitor<Type> {
4359
4360        boolean high;
4361        boolean rewriteTypeVars;
4362
4363        Rewriter(boolean high, boolean rewriteTypeVars) {
4364            this.high = high;
4365            this.rewriteTypeVars = rewriteTypeVars;
4366        }
4367
4368        @Override
4369        public Type visitClassType(ClassType t, Void s) {
4370            ListBuffer<Type> rewritten = new ListBuffer<>();
4371            boolean changed = false;
4372            for (Type arg : t.allparams()) {
4373                Type bound = visit(arg);
4374                if (arg != bound) {
4375                    changed = true;
4376                }
4377                rewritten.append(bound);
4378            }
4379            if (changed)
4380                return subst(t.tsym.type,
4381                        t.tsym.type.allparams(),
4382                        rewritten.toList());
4383            else
4384                return t;
4385        }
4386
4387        public Type visitType(Type t, Void s) {
4388            return t;
4389        }
4390
4391        @Override
4392        public Type visitCapturedType(CapturedType t, Void s) {
4393            Type w_bound = t.wildcard.type;
4394            Type bound = w_bound.contains(t) ?
4395                        erasure(w_bound) :
4396                        visit(w_bound);
4397            return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
4398        }
4399
4400        @Override
4401        public Type visitTypeVar(TypeVar t, Void s) {
4402            if (rewriteTypeVars) {
4403                Type bound = t.bound.contains(t) ?
4404                        erasure(t.bound) :
4405                        visit(t.bound);
4406                return rewriteAsWildcardType(bound, t, EXTENDS);
4407            } else {
4408                return t;
4409            }
4410        }
4411
4412        @Override
4413        public Type visitWildcardType(WildcardType t, Void s) {
4414            Type bound2 = visit(t.type);
4415            return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
4416        }
4417
4418        private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
4419            switch (bk) {
4420               case EXTENDS: return high ?
4421                       makeExtendsWildcard(B(bound), formal) :
4422                       makeExtendsWildcard(syms.objectType, formal);
4423               case SUPER: return high ?
4424                       makeSuperWildcard(syms.botType, formal) :
4425                       makeSuperWildcard(B(bound), formal);
4426               case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
4427               default:
4428                   Assert.error("Invalid bound kind " + bk);
4429                   return null;
4430            }
4431        }
4432
4433        Type B(Type t) {
4434            while (t.hasTag(WILDCARD)) {
4435                WildcardType w = (WildcardType)t;
4436                t = high ?
4437                    w.getExtendsBound() :
4438                    w.getSuperBound();
4439                if (t == null) {
4440                    t = high ? syms.objectType : syms.botType;
4441                }
4442            }
4443            return t;
4444        }
4445    }
4446
4447
4448    /**
4449     * Create a wildcard with the given upper (extends) bound; create
4450     * an unbounded wildcard if bound is Object.
4451     *
4452     * @param bound the upper bound
4453     * @param formal the formal type parameter that will be
4454     * substituted by the wildcard
4455     */
4456    private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
4457        if (bound == syms.objectType) {
4458            return new WildcardType(syms.objectType,
4459                                    BoundKind.UNBOUND,
4460                                    syms.boundClass,
4461                                    formal);
4462        } else {
4463            return new WildcardType(bound,
4464                                    BoundKind.EXTENDS,
4465                                    syms.boundClass,
4466                                    formal);
4467        }
4468    }
4469
4470    /**
4471     * Create a wildcard with the given lower (super) bound; create an
4472     * unbounded wildcard if bound is bottom (type of {@code null}).
4473     *
4474     * @param bound the lower bound
4475     * @param formal the formal type parameter that will be
4476     * substituted by the wildcard
4477     */
4478    private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
4479        if (bound.hasTag(BOT)) {
4480            return new WildcardType(syms.objectType,
4481                                    BoundKind.UNBOUND,
4482                                    syms.boundClass,
4483                                    formal);
4484        } else {
4485            return new WildcardType(bound,
4486                                    BoundKind.SUPER,
4487                                    syms.boundClass,
4488                                    formal);
4489        }
4490    }
4491
4492    /**
4493     * A wrapper for a type that allows use in sets.
4494     */
4495    public static class UniqueType {
4496        public final Type type;
4497        final Types types;
4498
4499        public UniqueType(Type type, Types types) {
4500            this.type = type;
4501            this.types = types;
4502        }
4503
4504        public int hashCode() {
4505            return types.hashCode(type);
4506        }
4507
4508        public boolean equals(Object obj) {
4509            return (obj instanceof UniqueType) &&
4510                types.isSameType(type, ((UniqueType)obj).type);
4511        }
4512
4513        public String toString() {
4514            return type.toString();
4515        }
4516
4517    }
4518    // </editor-fold>
4519
4520    // <editor-fold defaultstate="collapsed" desc="Visitors">
4521    /**
4522     * A default visitor for types.  All visitor methods except
4523     * visitType are implemented by delegating to visitType.  Concrete
4524     * subclasses must provide an implementation of visitType and can
4525     * override other methods as needed.
4526     *
4527     * @param <R> the return type of the operation implemented by this
4528     * visitor; use Void if no return type is needed.
4529     * @param <S> the type of the second argument (the first being the
4530     * type itself) of the operation implemented by this visitor; use
4531     * Void if a second argument is not needed.
4532     */
4533    public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
4534        final public R visit(Type t, S s)               { return t.accept(this, s); }
4535        public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
4536        public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
4537        public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
4538        public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
4539        public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
4540        public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
4541        public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
4542        public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
4543        public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
4544        public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
4545    }
4546
4547    /**
4548     * A default visitor for symbols.  All visitor methods except
4549     * visitSymbol are implemented by delegating to visitSymbol.  Concrete
4550     * subclasses must provide an implementation of visitSymbol and can
4551     * override other methods as needed.
4552     *
4553     * @param <R> the return type of the operation implemented by this
4554     * visitor; use Void if no return type is needed.
4555     * @param <S> the type of the second argument (the first being the
4556     * symbol itself) of the operation implemented by this visitor; use
4557     * Void if a second argument is not needed.
4558     */
4559    public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
4560        final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
4561        public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
4562        public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
4563        public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
4564        public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
4565        public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
4566        public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
4567    }
4568
4569    /**
4570     * A <em>simple</em> visitor for types.  This visitor is simple as
4571     * captured wildcards, for-all types (generic methods), and
4572     * undetermined type variables (part of inference) are hidden.
4573     * Captured wildcards are hidden by treating them as type
4574     * variables and the rest are hidden by visiting their qtypes.
4575     *
4576     * @param <R> the return type of the operation implemented by this
4577     * visitor; use Void if no return type is needed.
4578     * @param <S> the type of the second argument (the first being the
4579     * type itself) of the operation implemented by this visitor; use
4580     * Void if a second argument is not needed.
4581     */
4582    public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
4583        @Override
4584        public R visitCapturedType(CapturedType t, S s) {
4585            return visitTypeVar(t, s);
4586        }
4587        @Override
4588        public R visitForAll(ForAll t, S s) {
4589            return visit(t.qtype, s);
4590        }
4591        @Override
4592        public R visitUndetVar(UndetVar t, S s) {
4593            return visit(t.qtype, s);
4594        }
4595    }
4596
4597    /**
4598     * A plain relation on types.  That is a 2-ary function on the
4599     * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
4600     * <!-- In plain text: Type x Type -> Boolean -->
4601     */
4602    public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
4603
4604    /**
4605     * A convenience visitor for implementing operations that only
4606     * require one argument (the type itself), that is, unary
4607     * operations.
4608     *
4609     * @param <R> the return type of the operation implemented by this
4610     * visitor; use Void if no return type is needed.
4611     */
4612    public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
4613        final public R visit(Type t) { return t.accept(this, null); }
4614    }
4615
4616    /**
4617     * A visitor for implementing a mapping from types to types.  The
4618     * default behavior of this class is to implement the identity
4619     * mapping (mapping a type to itself).  This can be overridden in
4620     * subclasses.
4621     *
4622     * @param <S> the type of the second argument (the first being the
4623     * type itself) of this mapping; use Void if a second argument is
4624     * not needed.
4625     */
4626    public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
4627        final public Type visit(Type t) { return t.accept(this, null); }
4628        public Type visitType(Type t, S s) { return t; }
4629    }
4630    // </editor-fold>
4631
4632
4633    // <editor-fold defaultstate="collapsed" desc="Annotation support">
4634
4635    public RetentionPolicy getRetention(Attribute.Compound a) {
4636        return getRetention(a.type.tsym);
4637    }
4638
4639    public RetentionPolicy getRetention(TypeSymbol sym) {
4640        RetentionPolicy vis = RetentionPolicy.CLASS; // the default
4641        Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
4642        if (c != null) {
4643            Attribute value = c.member(names.value);
4644            if (value != null && value instanceof Attribute.Enum) {
4645                Name levelName = ((Attribute.Enum)value).value.name;
4646                if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
4647                else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
4648                else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
4649                else ;// /* fail soft */ throw new AssertionError(levelName);
4650            }
4651        }
4652        return vis;
4653    }
4654    // </editor-fold>
4655
4656    // <editor-fold defaultstate="collapsed" desc="Signature Generation">
4657
4658    public static abstract class SignatureGenerator {
4659
4660        private final Types types;
4661
4662        protected abstract void append(char ch);
4663        protected abstract void append(byte[] ba);
4664        protected abstract void append(Name name);
4665        protected void classReference(ClassSymbol c) { /* by default: no-op */ }
4666
4667        protected SignatureGenerator(Types types) {
4668            this.types = types;
4669        }
4670
4671        /**
4672         * Assemble signature of given type in string buffer.
4673         */
4674        public void assembleSig(Type type) {
4675            switch (type.getTag()) {
4676                case BYTE:
4677                    append('B');
4678                    break;
4679                case SHORT:
4680                    append('S');
4681                    break;
4682                case CHAR:
4683                    append('C');
4684                    break;
4685                case INT:
4686                    append('I');
4687                    break;
4688                case LONG:
4689                    append('J');
4690                    break;
4691                case FLOAT:
4692                    append('F');
4693                    break;
4694                case DOUBLE:
4695                    append('D');
4696                    break;
4697                case BOOLEAN:
4698                    append('Z');
4699                    break;
4700                case VOID:
4701                    append('V');
4702                    break;
4703                case CLASS:
4704                    append('L');
4705                    assembleClassSig(type);
4706                    append(';');
4707                    break;
4708                case ARRAY:
4709                    ArrayType at = (ArrayType) type;
4710                    append('[');
4711                    assembleSig(at.elemtype);
4712                    break;
4713                case METHOD:
4714                    MethodType mt = (MethodType) type;
4715                    append('(');
4716                    assembleSig(mt.argtypes);
4717                    append(')');
4718                    assembleSig(mt.restype);
4719                    if (hasTypeVar(mt.thrown)) {
4720                        for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
4721                            append('^');
4722                            assembleSig(l.head);
4723                        }
4724                    }
4725                    break;
4726                case WILDCARD: {
4727                    Type.WildcardType ta = (Type.WildcardType) type;
4728                    switch (ta.kind) {
4729                        case SUPER:
4730                            append('-');
4731                            assembleSig(ta.type);
4732                            break;
4733                        case EXTENDS:
4734                            append('+');
4735                            assembleSig(ta.type);
4736                            break;
4737                        case UNBOUND:
4738                            append('*');
4739                            break;
4740                        default:
4741                            throw new AssertionError(ta.kind);
4742                    }
4743                    break;
4744                }
4745                case TYPEVAR:
4746                    append('T');
4747                    append(type.tsym.name);
4748                    append(';');
4749                    break;
4750                case FORALL:
4751                    Type.ForAll ft = (Type.ForAll) type;
4752                    assembleParamsSig(ft.tvars);
4753                    assembleSig(ft.qtype);
4754                    break;
4755                default:
4756                    throw new AssertionError("typeSig " + type.getTag());
4757            }
4758        }
4759
4760        public boolean hasTypeVar(List<Type> l) {
4761            while (l.nonEmpty()) {
4762                if (l.head.hasTag(TypeTag.TYPEVAR)) {
4763                    return true;
4764                }
4765                l = l.tail;
4766            }
4767            return false;
4768        }
4769
4770        public void assembleClassSig(Type type) {
4771            ClassType ct = (ClassType) type;
4772            ClassSymbol c = (ClassSymbol) ct.tsym;
4773            classReference(c);
4774            Type outer = ct.getEnclosingType();
4775            if (outer.allparams().nonEmpty()) {
4776                boolean rawOuter =
4777                        c.owner.kind == MTH || // either a local class
4778                        c.name == types.names.empty; // or anonymous
4779                assembleClassSig(rawOuter
4780                        ? types.erasure(outer)
4781                        : outer);
4782                append(rawOuter ? '$' : '.');
4783                Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
4784                append(rawOuter
4785                        ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
4786                        : c.name);
4787            } else {
4788                append(externalize(c.flatname));
4789            }
4790            if (ct.getTypeArguments().nonEmpty()) {
4791                append('<');
4792                assembleSig(ct.getTypeArguments());
4793                append('>');
4794            }
4795        }
4796
4797        public void assembleParamsSig(List<Type> typarams) {
4798            append('<');
4799            for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
4800                Type.TypeVar tvar = (Type.TypeVar) ts.head;
4801                append(tvar.tsym.name);
4802                List<Type> bounds = types.getBounds(tvar);
4803                if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
4804                    append(':');
4805                }
4806                for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
4807                    append(':');
4808                    assembleSig(l.head);
4809                }
4810            }
4811            append('>');
4812        }
4813
4814        private void assembleSig(List<Type> types) {
4815            for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
4816                assembleSig(ts.head);
4817            }
4818        }
4819    }
4820    // </editor-fold>
4821
4822    public void newRound() {
4823        descCache._map.clear();
4824        isDerivedRawCache.clear();
4825        implCache._map.clear();
4826        membersCache._map.clear();
4827        closureCache.clear();
4828    }
4829}
4830