Types.java revision 2786:143e819d5ddc
1/*
2 * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package com.sun.tools.javac.code;
27
28import java.lang.ref.SoftReference;
29import java.util.HashSet;
30import java.util.HashMap;
31import java.util.Locale;
32import java.util.Map;
33import java.util.Set;
34import java.util.WeakHashMap;
35
36import javax.tools.JavaFileObject;
37
38import com.sun.tools.javac.code.Attribute.RetentionPolicy;
39import com.sun.tools.javac.code.Lint.LintCategory;
40import com.sun.tools.javac.code.Type.UndetVar.InferenceBound;
41import com.sun.tools.javac.comp.AttrContext;
42import com.sun.tools.javac.comp.Check;
43import com.sun.tools.javac.comp.Enter;
44import com.sun.tools.javac.comp.Env;
45import com.sun.tools.javac.util.*;
46
47import static com.sun.tools.javac.code.BoundKind.*;
48import static com.sun.tools.javac.code.Flags.*;
49import static com.sun.tools.javac.code.Kinds.Kind.*;
50import static com.sun.tools.javac.code.Scope.*;
51import static com.sun.tools.javac.code.Symbol.*;
52import static com.sun.tools.javac.code.Type.*;
53import static com.sun.tools.javac.code.TypeTag.*;
54import static com.sun.tools.javac.jvm.ClassFile.externalize;
55
56/**
57 * Utility class containing various operations on types.
58 *
59 * <p>Unless other names are more illustrative, the following naming
60 * conventions should be observed in this file:
61 *
62 * <dl>
63 * <dt>t</dt>
64 * <dd>If the first argument to an operation is a type, it should be named t.</dd>
65 * <dt>s</dt>
66 * <dd>Similarly, if the second argument to an operation is a type, it should be named s.</dd>
67 * <dt>ts</dt>
68 * <dd>If an operations takes a list of types, the first should be named ts.</dd>
69 * <dt>ss</dt>
70 * <dd>A second list of types should be named ss.</dd>
71 * </dl>
72 *
73 * <p><b>This is NOT part of any supported API.
74 * If you write code that depends on this, you do so at your own risk.
75 * This code and its internal interfaces are subject to change or
76 * deletion without notice.</b>
77 */
78public class Types {
79    protected static final Context.Key<Types> typesKey = new Context.Key<>();
80
81    final Symtab syms;
82    final JavacMessages messages;
83    final Names names;
84    final boolean allowObjectToPrimitiveCast;
85    final Check chk;
86    final Enter enter;
87    JCDiagnostic.Factory diags;
88    List<Warner> warnStack = List.nil();
89    final Name capturedName;
90    private final FunctionDescriptorLookupError functionDescriptorLookupError;
91
92    public final Warner noWarnings;
93
94    // <editor-fold defaultstate="collapsed" desc="Instantiating">
95    public static Types instance(Context context) {
96        Types instance = context.get(typesKey);
97        if (instance == null)
98            instance = new Types(context);
99        return instance;
100    }
101
102    protected Types(Context context) {
103        context.put(typesKey, this);
104        syms = Symtab.instance(context);
105        names = Names.instance(context);
106        Source source = Source.instance(context);
107        allowObjectToPrimitiveCast = source.allowObjectToPrimitiveCast();
108        chk = Check.instance(context);
109        enter = Enter.instance(context);
110        capturedName = names.fromString("<captured wildcard>");
111        messages = JavacMessages.instance(context);
112        diags = JCDiagnostic.Factory.instance(context);
113        functionDescriptorLookupError = new FunctionDescriptorLookupError();
114        noWarnings = new Warner(null);
115    }
116    // </editor-fold>
117
118    // <editor-fold defaultstate="collapsed" desc="bounds">
119    /**
120     * Get a wildcard's upper bound, returning non-wildcards unchanged.
121     * @param t a type argument, either a wildcard or a type
122     */
123    public Type wildUpperBound(Type t) {
124        if (t.hasTag(WILDCARD)) {
125            WildcardType w = (WildcardType) t;
126            if (w.isSuperBound())
127                return w.bound == null ? syms.objectType : w.bound.bound;
128            else
129                return wildUpperBound(w.type);
130        }
131        else return t;
132    }
133
134    /**
135     * Get a capture variable's upper bound, returning other types unchanged.
136     * @param t a type
137     */
138    public Type cvarUpperBound(Type t) {
139        if (t.hasTag(TYPEVAR)) {
140            TypeVar v = (TypeVar) t;
141            return v.isCaptured() ? cvarUpperBound(v.bound) : v;
142        }
143        else return t;
144    }
145
146    /**
147     * Get a wildcard's lower bound, returning non-wildcards unchanged.
148     * @param t a type argument, either a wildcard or a type
149     */
150    public Type wildLowerBound(Type t) {
151        if (t.hasTag(WILDCARD)) {
152            WildcardType w = (WildcardType) t;
153            return w.isExtendsBound() ? syms.botType : wildLowerBound(w.type);
154        }
155        else return t;
156    }
157
158    /**
159     * Get a capture variable's lower bound, returning other types unchanged.
160     * @param t a type
161     */
162    public Type cvarLowerBound(Type t) {
163        if (t.hasTag(TYPEVAR) && ((TypeVar) t).isCaptured()) {
164            return cvarLowerBound(t.getLowerBound());
165        }
166        else return t;
167    }
168    // </editor-fold>
169
170    // <editor-fold defaultstate="collapsed" desc="isUnbounded">
171    /**
172     * Checks that all the arguments to a class are unbounded
173     * wildcards or something else that doesn't make any restrictions
174     * on the arguments. If a class isUnbounded, a raw super- or
175     * subclass can be cast to it without a warning.
176     * @param t a type
177     * @return true iff the given type is unbounded or raw
178     */
179    public boolean isUnbounded(Type t) {
180        return isUnbounded.visit(t);
181    }
182    // where
183        private final UnaryVisitor<Boolean> isUnbounded = new UnaryVisitor<Boolean>() {
184
185            public Boolean visitType(Type t, Void ignored) {
186                return true;
187            }
188
189            @Override
190            public Boolean visitClassType(ClassType t, Void ignored) {
191                List<Type> parms = t.tsym.type.allparams();
192                List<Type> args = t.allparams();
193                while (parms.nonEmpty()) {
194                    WildcardType unb = new WildcardType(syms.objectType,
195                                                        BoundKind.UNBOUND,
196                                                        syms.boundClass,
197                                                        (TypeVar)parms.head);
198                    if (!containsType(args.head, unb))
199                        return false;
200                    parms = parms.tail;
201                    args = args.tail;
202                }
203                return true;
204            }
205        };
206    // </editor-fold>
207
208    // <editor-fold defaultstate="collapsed" desc="asSub">
209    /**
210     * Return the least specific subtype of t that starts with symbol
211     * sym.  If none exists, return null.  The least specific subtype
212     * is determined as follows:
213     *
214     * <p>If there is exactly one parameterized instance of sym that is a
215     * subtype of t, that parameterized instance is returned.<br>
216     * Otherwise, if the plain type or raw type `sym' is a subtype of
217     * type t, the type `sym' itself is returned.  Otherwise, null is
218     * returned.
219     */
220    public Type asSub(Type t, Symbol sym) {
221        return asSub.visit(t, sym);
222    }
223    // where
224        private final SimpleVisitor<Type,Symbol> asSub = new SimpleVisitor<Type,Symbol>() {
225
226            public Type visitType(Type t, Symbol sym) {
227                return null;
228            }
229
230            @Override
231            public Type visitClassType(ClassType t, Symbol sym) {
232                if (t.tsym == sym)
233                    return t;
234                Type base = asSuper(sym.type, t.tsym);
235                if (base == null)
236                    return null;
237                ListBuffer<Type> from = new ListBuffer<>();
238                ListBuffer<Type> to = new ListBuffer<>();
239                try {
240                    adapt(base, t, from, to);
241                } catch (AdaptFailure ex) {
242                    return null;
243                }
244                Type res = subst(sym.type, from.toList(), to.toList());
245                if (!isSubtype(res, t))
246                    return null;
247                ListBuffer<Type> openVars = new ListBuffer<>();
248                for (List<Type> l = sym.type.allparams();
249                     l.nonEmpty(); l = l.tail)
250                    if (res.contains(l.head) && !t.contains(l.head))
251                        openVars.append(l.head);
252                if (openVars.nonEmpty()) {
253                    if (t.isRaw()) {
254                        // The subtype of a raw type is raw
255                        res = erasure(res);
256                    } else {
257                        // Unbound type arguments default to ?
258                        List<Type> opens = openVars.toList();
259                        ListBuffer<Type> qs = new ListBuffer<>();
260                        for (List<Type> iter = opens; iter.nonEmpty(); iter = iter.tail) {
261                            qs.append(new WildcardType(syms.objectType, BoundKind.UNBOUND,
262                                                       syms.boundClass, (TypeVar) iter.head));
263                        }
264                        res = subst(res, opens, qs.toList());
265                    }
266                }
267                return res;
268            }
269
270            @Override
271            public Type visitErrorType(ErrorType t, Symbol sym) {
272                return t;
273            }
274        };
275    // </editor-fold>
276
277    // <editor-fold defaultstate="collapsed" desc="isConvertible">
278    /**
279     * Is t a subtype of or convertible via boxing/unboxing
280     * conversion to s?
281     */
282    public boolean isConvertible(Type t, Type s, Warner warn) {
283        if (t.hasTag(ERROR)) {
284            return true;
285        }
286        boolean tPrimitive = t.isPrimitive();
287        boolean sPrimitive = s.isPrimitive();
288        if (tPrimitive == sPrimitive) {
289            return isSubtypeUnchecked(t, s, warn);
290        }
291        return tPrimitive
292            ? isSubtype(boxedClass(t).type, s)
293            : isSubtype(unboxedType(t), s);
294    }
295
296    /**
297     * Is t a subtype of or convertible via boxing/unboxing
298     * conversions to s?
299     */
300    public boolean isConvertible(Type t, Type s) {
301        return isConvertible(t, s, noWarnings);
302    }
303    // </editor-fold>
304
305    // <editor-fold defaultstate="collapsed" desc="findSam">
306
307    /**
308     * Exception used to report a function descriptor lookup failure. The exception
309     * wraps a diagnostic that can be used to generate more details error
310     * messages.
311     */
312    public static class FunctionDescriptorLookupError extends RuntimeException {
313        private static final long serialVersionUID = 0;
314
315        JCDiagnostic diagnostic;
316
317        FunctionDescriptorLookupError() {
318            this.diagnostic = null;
319        }
320
321        FunctionDescriptorLookupError setMessage(JCDiagnostic diag) {
322            this.diagnostic = diag;
323            return this;
324        }
325
326        public JCDiagnostic getDiagnostic() {
327            return diagnostic;
328        }
329    }
330
331    /**
332     * A cache that keeps track of function descriptors associated with given
333     * functional interfaces.
334     */
335    class DescriptorCache {
336
337        private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<>();
338
339        class FunctionDescriptor {
340            Symbol descSym;
341
342            FunctionDescriptor(Symbol descSym) {
343                this.descSym = descSym;
344            }
345
346            public Symbol getSymbol() {
347                return descSym;
348            }
349
350            public Type getType(Type site) {
351                site = removeWildcards(site);
352                if (!chk.checkValidGenericType(site)) {
353                    //if the inferred functional interface type is not well-formed,
354                    //or if it's not a subtype of the original target, issue an error
355                    throw failure(diags.fragment("no.suitable.functional.intf.inst", site));
356                }
357                return memberType(site, descSym);
358            }
359        }
360
361        class Entry {
362            final FunctionDescriptor cachedDescRes;
363            final int prevMark;
364
365            public Entry(FunctionDescriptor cachedDescRes,
366                    int prevMark) {
367                this.cachedDescRes = cachedDescRes;
368                this.prevMark = prevMark;
369            }
370
371            boolean matches(int mark) {
372                return  this.prevMark == mark;
373            }
374        }
375
376        FunctionDescriptor get(TypeSymbol origin) throws FunctionDescriptorLookupError {
377            Entry e = _map.get(origin);
378            CompoundScope members = membersClosure(origin.type, false);
379            if (e == null ||
380                    !e.matches(members.getMark())) {
381                FunctionDescriptor descRes = findDescriptorInternal(origin, members);
382                _map.put(origin, new Entry(descRes, members.getMark()));
383                return descRes;
384            }
385            else {
386                return e.cachedDescRes;
387            }
388        }
389
390        /**
391         * Compute the function descriptor associated with a given functional interface
392         */
393        public FunctionDescriptor findDescriptorInternal(TypeSymbol origin,
394                CompoundScope membersCache) throws FunctionDescriptorLookupError {
395            if (!origin.isInterface() || (origin.flags() & ANNOTATION) != 0) {
396                //t must be an interface
397                throw failure("not.a.functional.intf", origin);
398            }
399
400            final ListBuffer<Symbol> abstracts = new ListBuffer<>();
401            for (Symbol sym : membersCache.getSymbols(new DescriptorFilter(origin))) {
402                Type mtype = memberType(origin.type, sym);
403                if (abstracts.isEmpty() ||
404                        (sym.name == abstracts.first().name &&
405                        overrideEquivalent(mtype, memberType(origin.type, abstracts.first())))) {
406                    abstracts.append(sym);
407                } else {
408                    //the target method(s) should be the only abstract members of t
409                    throw failure("not.a.functional.intf.1",  origin,
410                            diags.fragment("incompatible.abstracts", Kinds.kindName(origin), origin));
411                }
412            }
413            if (abstracts.isEmpty()) {
414                //t must define a suitable non-generic method
415                throw failure("not.a.functional.intf.1", origin,
416                            diags.fragment("no.abstracts", Kinds.kindName(origin), origin));
417            } else if (abstracts.size() == 1) {
418                return new FunctionDescriptor(abstracts.first());
419            } else { // size > 1
420                FunctionDescriptor descRes = mergeDescriptors(origin, abstracts.toList());
421                if (descRes == null) {
422                    //we can get here if the functional interface is ill-formed
423                    ListBuffer<JCDiagnostic> descriptors = new ListBuffer<>();
424                    for (Symbol desc : abstracts) {
425                        String key = desc.type.getThrownTypes().nonEmpty() ?
426                                "descriptor.throws" : "descriptor";
427                        descriptors.append(diags.fragment(key, desc.name,
428                                desc.type.getParameterTypes(),
429                                desc.type.getReturnType(),
430                                desc.type.getThrownTypes()));
431                    }
432                    JCDiagnostic.MultilineDiagnostic incompatibleDescriptors =
433                            new JCDiagnostic.MultilineDiagnostic(diags.fragment("incompatible.descs.in.functional.intf",
434                            Kinds.kindName(origin), origin), descriptors.toList());
435                    throw failure(incompatibleDescriptors);
436                }
437                return descRes;
438            }
439        }
440
441        /**
442         * Compute a synthetic type for the target descriptor given a list
443         * of override-equivalent methods in the functional interface type.
444         * The resulting method type is a method type that is override-equivalent
445         * and return-type substitutable with each method in the original list.
446         */
447        private FunctionDescriptor mergeDescriptors(TypeSymbol origin, List<Symbol> methodSyms) {
448            //pick argument types - simply take the signature that is a
449            //subsignature of all other signatures in the list (as per JLS 8.4.2)
450            List<Symbol> mostSpecific = List.nil();
451            outer: for (Symbol msym1 : methodSyms) {
452                Type mt1 = memberType(origin.type, msym1);
453                for (Symbol msym2 : methodSyms) {
454                    Type mt2 = memberType(origin.type, msym2);
455                    if (!isSubSignature(mt1, mt2)) {
456                        continue outer;
457                    }
458                }
459                mostSpecific = mostSpecific.prepend(msym1);
460            }
461            if (mostSpecific.isEmpty()) {
462                return null;
463            }
464
465
466            //pick return types - this is done in two phases: (i) first, the most
467            //specific return type is chosen using strict subtyping; if this fails,
468            //a second attempt is made using return type substitutability (see JLS 8.4.5)
469            boolean phase2 = false;
470            Symbol bestSoFar = null;
471            while (bestSoFar == null) {
472                outer: for (Symbol msym1 : mostSpecific) {
473                    Type mt1 = memberType(origin.type, msym1);
474                    for (Symbol msym2 : methodSyms) {
475                        Type mt2 = memberType(origin.type, msym2);
476                        if (phase2 ?
477                                !returnTypeSubstitutable(mt1, mt2) :
478                                !isSubtypeInternal(mt1.getReturnType(), mt2.getReturnType())) {
479                            continue outer;
480                        }
481                    }
482                    bestSoFar = msym1;
483                }
484                if (phase2) {
485                    break;
486                } else {
487                    phase2 = true;
488                }
489            }
490            if (bestSoFar == null) return null;
491
492            //merge thrown types - form the intersection of all the thrown types in
493            //all the signatures in the list
494            boolean toErase = !bestSoFar.type.hasTag(FORALL);
495            List<Type> thrown = null;
496            Type mt1 = memberType(origin.type, bestSoFar);
497            for (Symbol msym2 : methodSyms) {
498                Type mt2 = memberType(origin.type, msym2);
499                List<Type> thrown_mt2 = mt2.getThrownTypes();
500                if (toErase) {
501                    thrown_mt2 = erasure(thrown_mt2);
502                } else {
503                    /* If bestSoFar is generic then all the methods are generic.
504                     * The opposite is not true: a non generic method can override
505                     * a generic method (raw override) so it's safe to cast mt1 and
506                     * mt2 to ForAll.
507                     */
508                    ForAll fa1 = (ForAll)mt1;
509                    ForAll fa2 = (ForAll)mt2;
510                    thrown_mt2 = subst(thrown_mt2, fa2.tvars, fa1.tvars);
511                }
512                thrown = (thrown == null) ?
513                    thrown_mt2 :
514                    chk.intersect(thrown_mt2, thrown);
515            }
516
517            final List<Type> thrown1 = thrown;
518            return new FunctionDescriptor(bestSoFar) {
519                @Override
520                public Type getType(Type origin) {
521                    Type mt = memberType(origin, getSymbol());
522                    return createMethodTypeWithThrown(mt, thrown1);
523                }
524            };
525        }
526
527        boolean isSubtypeInternal(Type s, Type t) {
528            return (s.isPrimitive() && t.isPrimitive()) ?
529                    isSameType(t, s) :
530                    isSubtype(s, t);
531        }
532
533        FunctionDescriptorLookupError failure(String msg, Object... args) {
534            return failure(diags.fragment(msg, args));
535        }
536
537        FunctionDescriptorLookupError failure(JCDiagnostic diag) {
538            return functionDescriptorLookupError.setMessage(diag);
539        }
540    }
541
542    private DescriptorCache descCache = new DescriptorCache();
543
544    /**
545     * Find the method descriptor associated to this class symbol - if the
546     * symbol 'origin' is not a functional interface, an exception is thrown.
547     */
548    public Symbol findDescriptorSymbol(TypeSymbol origin) throws FunctionDescriptorLookupError {
549        return descCache.get(origin).getSymbol();
550    }
551
552    /**
553     * Find the type of the method descriptor associated to this class symbol -
554     * if the symbol 'origin' is not a functional interface, an exception is thrown.
555     */
556    public Type findDescriptorType(Type origin) throws FunctionDescriptorLookupError {
557        return descCache.get(origin.tsym).getType(origin);
558    }
559
560    /**
561     * Is given type a functional interface?
562     */
563    public boolean isFunctionalInterface(TypeSymbol tsym) {
564        try {
565            findDescriptorSymbol(tsym);
566            return true;
567        } catch (FunctionDescriptorLookupError ex) {
568            return false;
569        }
570    }
571
572    public boolean isFunctionalInterface(Type site) {
573        try {
574            findDescriptorType(site);
575            return true;
576        } catch (FunctionDescriptorLookupError ex) {
577            return false;
578        }
579    }
580
581    public Type removeWildcards(Type site) {
582        Type capturedSite = capture(site);
583        if (capturedSite != site) {
584            Type formalInterface = site.tsym.type;
585            ListBuffer<Type> typeargs = new ListBuffer<>();
586            List<Type> actualTypeargs = site.getTypeArguments();
587            List<Type> capturedTypeargs = capturedSite.getTypeArguments();
588            //simply replace the wildcards with its bound
589            for (Type t : formalInterface.getTypeArguments()) {
590                if (actualTypeargs.head.hasTag(WILDCARD)) {
591                    WildcardType wt = (WildcardType)actualTypeargs.head;
592                    Type bound;
593                    switch (wt.kind) {
594                        case EXTENDS:
595                        case UNBOUND:
596                            CapturedType capVar = (CapturedType)capturedTypeargs.head;
597                            //use declared bound if it doesn't depend on formal type-args
598                            bound = capVar.bound.containsAny(capturedSite.getTypeArguments()) ?
599                                    wt.type : capVar.bound;
600                            break;
601                        default:
602                            bound = wt.type;
603                    }
604                    typeargs.append(bound);
605                } else {
606                    typeargs.append(actualTypeargs.head);
607                }
608                actualTypeargs = actualTypeargs.tail;
609                capturedTypeargs = capturedTypeargs.tail;
610            }
611            return subst(formalInterface, formalInterface.getTypeArguments(), typeargs.toList());
612        } else {
613            return site;
614        }
615    }
616
617    /**
618     * Create a symbol for a class that implements a given functional interface
619     * and overrides its functional descriptor. This routine is used for two
620     * main purposes: (i) checking well-formedness of a functional interface;
621     * (ii) perform functional interface bridge calculation.
622     */
623    public ClassSymbol makeFunctionalInterfaceClass(Env<AttrContext> env, Name name, List<Type> targets, long cflags) {
624        if (targets.isEmpty()) {
625            return null;
626        }
627        Symbol descSym = findDescriptorSymbol(targets.head.tsym);
628        Type descType = findDescriptorType(targets.head);
629        ClassSymbol csym = new ClassSymbol(cflags, name, env.enclClass.sym.outermostClass());
630        csym.completer = null;
631        csym.members_field = WriteableScope.create(csym);
632        MethodSymbol instDescSym = new MethodSymbol(descSym.flags(), descSym.name, descType, csym);
633        csym.members_field.enter(instDescSym);
634        Type.ClassType ctype = new Type.ClassType(Type.noType, List.<Type>nil(), csym);
635        ctype.supertype_field = syms.objectType;
636        ctype.interfaces_field = targets;
637        csym.type = ctype;
638        csym.sourcefile = ((ClassSymbol)csym.owner).sourcefile;
639        return csym;
640    }
641
642    /**
643     * Find the minimal set of methods that are overridden by the functional
644     * descriptor in 'origin'. All returned methods are assumed to have different
645     * erased signatures.
646     */
647    public List<Symbol> functionalInterfaceBridges(TypeSymbol origin) {
648        Assert.check(isFunctionalInterface(origin));
649        Symbol descSym = findDescriptorSymbol(origin);
650        CompoundScope members = membersClosure(origin.type, false);
651        ListBuffer<Symbol> overridden = new ListBuffer<>();
652        outer: for (Symbol m2 : members.getSymbolsByName(descSym.name, bridgeFilter)) {
653            if (m2 == descSym) continue;
654            else if (descSym.overrides(m2, origin, Types.this, false)) {
655                for (Symbol m3 : overridden) {
656                    if (isSameType(m3.erasure(Types.this), m2.erasure(Types.this)) ||
657                            (m3.overrides(m2, origin, Types.this, false) &&
658                            (pendingBridges((ClassSymbol)origin, m3.enclClass()) ||
659                            (((MethodSymbol)m2).binaryImplementation((ClassSymbol)m3.owner, Types.this) != null)))) {
660                        continue outer;
661                    }
662                }
663                overridden.add(m2);
664            }
665        }
666        return overridden.toList();
667    }
668    //where
669        private Filter<Symbol> bridgeFilter = new Filter<Symbol>() {
670            public boolean accepts(Symbol t) {
671                return t.kind == MTH &&
672                        t.name != names.init &&
673                        t.name != names.clinit &&
674                        (t.flags() & SYNTHETIC) == 0;
675            }
676        };
677        private boolean pendingBridges(ClassSymbol origin, TypeSymbol s) {
678            //a symbol will be completed from a classfile if (a) symbol has
679            //an associated file object with CLASS kind and (b) the symbol has
680            //not been entered
681            if (origin.classfile != null &&
682                    origin.classfile.getKind() == JavaFileObject.Kind.CLASS &&
683                    enter.getEnv(origin) == null) {
684                return false;
685            }
686            if (origin == s) {
687                return true;
688            }
689            for (Type t : interfaces(origin.type)) {
690                if (pendingBridges((ClassSymbol)t.tsym, s)) {
691                    return true;
692                }
693            }
694            return false;
695        }
696    // </editor-fold>
697
698   /**
699    * Scope filter used to skip methods that should be ignored (such as methods
700    * overridden by j.l.Object) during function interface conversion interface check
701    */
702    class DescriptorFilter implements Filter<Symbol> {
703
704       TypeSymbol origin;
705
706       DescriptorFilter(TypeSymbol origin) {
707           this.origin = origin;
708       }
709
710       @Override
711       public boolean accepts(Symbol sym) {
712           return sym.kind == MTH &&
713                   (sym.flags() & (ABSTRACT | DEFAULT)) == ABSTRACT &&
714                   !overridesObjectMethod(origin, sym) &&
715                   (interfaceCandidates(origin.type, (MethodSymbol)sym).head.flags() & DEFAULT) == 0;
716       }
717    }
718
719    // <editor-fold defaultstate="collapsed" desc="isSubtype">
720    /**
721     * Is t an unchecked subtype of s?
722     */
723    public boolean isSubtypeUnchecked(Type t, Type s) {
724        return isSubtypeUnchecked(t, s, noWarnings);
725    }
726    /**
727     * Is t an unchecked subtype of s?
728     */
729    public boolean isSubtypeUnchecked(Type t, Type s, Warner warn) {
730        boolean result = isSubtypeUncheckedInternal(t, s, warn);
731        if (result) {
732            checkUnsafeVarargsConversion(t, s, warn);
733        }
734        return result;
735    }
736    //where
737        private boolean isSubtypeUncheckedInternal(Type t, Type s, Warner warn) {
738            if (t.hasTag(ARRAY) && s.hasTag(ARRAY)) {
739                if (((ArrayType)t).elemtype.isPrimitive()) {
740                    return isSameType(elemtype(t), elemtype(s));
741                } else {
742                    return isSubtypeUnchecked(elemtype(t), elemtype(s), warn);
743                }
744            } else if (isSubtype(t, s)) {
745                return true;
746            } else if (t.hasTag(TYPEVAR)) {
747                return isSubtypeUnchecked(t.getUpperBound(), s, warn);
748            } else if (!s.isRaw()) {
749                Type t2 = asSuper(t, s.tsym);
750                if (t2 != null && t2.isRaw()) {
751                    if (isReifiable(s)) {
752                        warn.silentWarn(LintCategory.UNCHECKED);
753                    } else {
754                        warn.warn(LintCategory.UNCHECKED);
755                    }
756                    return true;
757                }
758            }
759            return false;
760        }
761
762        private void checkUnsafeVarargsConversion(Type t, Type s, Warner warn) {
763            if (!t.hasTag(ARRAY) || isReifiable(t)) {
764                return;
765            }
766            ArrayType from = (ArrayType)t;
767            boolean shouldWarn = false;
768            switch (s.getTag()) {
769                case ARRAY:
770                    ArrayType to = (ArrayType)s;
771                    shouldWarn = from.isVarargs() &&
772                            !to.isVarargs() &&
773                            !isReifiable(from);
774                    break;
775                case CLASS:
776                    shouldWarn = from.isVarargs();
777                    break;
778            }
779            if (shouldWarn) {
780                warn.warn(LintCategory.VARARGS);
781            }
782        }
783
784    /**
785     * Is t a subtype of s?<br>
786     * (not defined for Method and ForAll types)
787     */
788    final public boolean isSubtype(Type t, Type s) {
789        return isSubtype(t, s, true);
790    }
791    final public boolean isSubtypeNoCapture(Type t, Type s) {
792        return isSubtype(t, s, false);
793    }
794    public boolean isSubtype(Type t, Type s, boolean capture) {
795        if (t == s)
796            return true;
797        if (s.isPartial())
798            return isSuperType(s, t);
799
800        if (s.isCompound()) {
801            for (Type s2 : interfaces(s).prepend(supertype(s))) {
802                if (!isSubtype(t, s2, capture))
803                    return false;
804            }
805            return true;
806        }
807
808        // Generally, if 's' is a lower-bounded type variable, recur on lower bound; but
809        // for inference variables and intersections, we need to keep 's'
810        // (see JLS 4.10.2 for intersections and 18.2.3 for inference vars)
811        if (!t.hasTag(UNDETVAR) && !t.isCompound()) {
812            // TODO: JDK-8039198, bounds checking sometimes passes in a wildcard as s
813            Type lower = cvarLowerBound(wildLowerBound(s));
814            if (s != lower && !lower.hasTag(BOT))
815                return isSubtype(capture ? capture(t) : t, lower, false);
816        }
817
818        return isSubtype.visit(capture ? capture(t) : t, s);
819    }
820    // where
821        private TypeRelation isSubtype = new TypeRelation()
822        {
823            @Override
824            public Boolean visitType(Type t, Type s) {
825                switch (t.getTag()) {
826                 case BYTE:
827                     return (!s.hasTag(CHAR) && t.getTag().isSubRangeOf(s.getTag()));
828                 case CHAR:
829                     return (!s.hasTag(SHORT) && t.getTag().isSubRangeOf(s.getTag()));
830                 case SHORT: case INT: case LONG:
831                 case FLOAT: case DOUBLE:
832                     return t.getTag().isSubRangeOf(s.getTag());
833                 case BOOLEAN: case VOID:
834                     return t.hasTag(s.getTag());
835                 case TYPEVAR:
836                     return isSubtypeNoCapture(t.getUpperBound(), s);
837                 case BOT:
838                     return
839                         s.hasTag(BOT) || s.hasTag(CLASS) ||
840                         s.hasTag(ARRAY) || s.hasTag(TYPEVAR);
841                 case WILDCARD: //we shouldn't be here - avoids crash (see 7034495)
842                 case NONE:
843                     return false;
844                 default:
845                     throw new AssertionError("isSubtype " + t.getTag());
846                 }
847            }
848
849            private Set<TypePair> cache = new HashSet<>();
850
851            private boolean containsTypeRecursive(Type t, Type s) {
852                TypePair pair = new TypePair(t, s);
853                if (cache.add(pair)) {
854                    try {
855                        return containsType(t.getTypeArguments(),
856                                            s.getTypeArguments());
857                    } finally {
858                        cache.remove(pair);
859                    }
860                } else {
861                    return containsType(t.getTypeArguments(),
862                                        rewriteSupers(s).getTypeArguments());
863                }
864            }
865
866            private Type rewriteSupers(Type t) {
867                if (!t.isParameterized())
868                    return t;
869                ListBuffer<Type> from = new ListBuffer<>();
870                ListBuffer<Type> to = new ListBuffer<>();
871                adaptSelf(t, from, to);
872                if (from.isEmpty())
873                    return t;
874                ListBuffer<Type> rewrite = new ListBuffer<>();
875                boolean changed = false;
876                for (Type orig : to.toList()) {
877                    Type s = rewriteSupers(orig);
878                    if (s.isSuperBound() && !s.isExtendsBound()) {
879                        s = new WildcardType(syms.objectType,
880                                             BoundKind.UNBOUND,
881                                             syms.boundClass,
882                                             s.getMetadata());
883                        changed = true;
884                    } else if (s != orig) {
885                        s = new WildcardType(wildUpperBound(s),
886                                             BoundKind.EXTENDS,
887                                             syms.boundClass,
888                                             s.getMetadata());
889                        changed = true;
890                    }
891                    rewrite.append(s);
892                }
893                if (changed)
894                    return subst(t.tsym.type, from.toList(), rewrite.toList());
895                else
896                    return t;
897            }
898
899            @Override
900            public Boolean visitClassType(ClassType t, Type s) {
901                Type sup = asSuper(t, s.tsym);
902                if (sup == null) return false;
903                // If t is an intersection, sup might not be a class type
904                if (!sup.hasTag(CLASS)) return isSubtypeNoCapture(sup, s);
905                return sup.tsym == s.tsym
906                     // Check type variable containment
907                    && (!s.isParameterized() || containsTypeRecursive(s, sup))
908                    && isSubtypeNoCapture(sup.getEnclosingType(),
909                                          s.getEnclosingType());
910            }
911
912            @Override
913            public Boolean visitArrayType(ArrayType t, Type s) {
914                if (s.hasTag(ARRAY)) {
915                    if (t.elemtype.isPrimitive())
916                        return isSameType(t.elemtype, elemtype(s));
917                    else
918                        return isSubtypeNoCapture(t.elemtype, elemtype(s));
919                }
920
921                if (s.hasTag(CLASS)) {
922                    Name sname = s.tsym.getQualifiedName();
923                    return sname == names.java_lang_Object
924                        || sname == names.java_lang_Cloneable
925                        || sname == names.java_io_Serializable;
926                }
927
928                return false;
929            }
930
931            @Override
932            public Boolean visitUndetVar(UndetVar t, Type s) {
933                //todo: test against origin needed? or replace with substitution?
934                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
935                    return true;
936                } else if (s.hasTag(BOT)) {
937                    //if 's' is 'null' there's no instantiated type U for which
938                    //U <: s (but 'null' itself, which is not a valid type)
939                    return false;
940                }
941
942                t.addBound(InferenceBound.UPPER, s, Types.this);
943                return true;
944            }
945
946            @Override
947            public Boolean visitErrorType(ErrorType t, Type s) {
948                return true;
949            }
950        };
951
952    /**
953     * Is t a subtype of every type in given list `ts'?<br>
954     * (not defined for Method and ForAll types)<br>
955     * Allows unchecked conversions.
956     */
957    public boolean isSubtypeUnchecked(Type t, List<Type> ts, Warner warn) {
958        for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
959            if (!isSubtypeUnchecked(t, l.head, warn))
960                return false;
961        return true;
962    }
963
964    /**
965     * Are corresponding elements of ts subtypes of ss?  If lists are
966     * of different length, return false.
967     */
968    public boolean isSubtypes(List<Type> ts, List<Type> ss) {
969        while (ts.tail != null && ss.tail != null
970               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
971               isSubtype(ts.head, ss.head)) {
972            ts = ts.tail;
973            ss = ss.tail;
974        }
975        return ts.tail == null && ss.tail == null;
976        /*inlined: ts.isEmpty() && ss.isEmpty();*/
977    }
978
979    /**
980     * Are corresponding elements of ts subtypes of ss, allowing
981     * unchecked conversions?  If lists are of different length,
982     * return false.
983     **/
984    public boolean isSubtypesUnchecked(List<Type> ts, List<Type> ss, Warner warn) {
985        while (ts.tail != null && ss.tail != null
986               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
987               isSubtypeUnchecked(ts.head, ss.head, warn)) {
988            ts = ts.tail;
989            ss = ss.tail;
990        }
991        return ts.tail == null && ss.tail == null;
992        /*inlined: ts.isEmpty() && ss.isEmpty();*/
993    }
994    // </editor-fold>
995
996    // <editor-fold defaultstate="collapsed" desc="isSuperType">
997    /**
998     * Is t a supertype of s?
999     */
1000    public boolean isSuperType(Type t, Type s) {
1001        switch (t.getTag()) {
1002        case ERROR:
1003            return true;
1004        case UNDETVAR: {
1005            UndetVar undet = (UndetVar)t;
1006            if (t == s ||
1007                undet.qtype == s ||
1008                s.hasTag(ERROR) ||
1009                s.hasTag(BOT)) {
1010                return true;
1011            }
1012            undet.addBound(InferenceBound.LOWER, s, this);
1013            return true;
1014        }
1015        default:
1016            return isSubtype(s, t);
1017        }
1018    }
1019    // </editor-fold>
1020
1021    // <editor-fold defaultstate="collapsed" desc="isSameType">
1022    /**
1023     * Are corresponding elements of the lists the same type?  If
1024     * lists are of different length, return false.
1025     */
1026    public boolean isSameTypes(List<Type> ts, List<Type> ss) {
1027        return isSameTypes(ts, ss, false);
1028    }
1029    public boolean isSameTypes(List<Type> ts, List<Type> ss, boolean strict) {
1030        while (ts.tail != null && ss.tail != null
1031               /*inlined: ts.nonEmpty() && ss.nonEmpty()*/ &&
1032               isSameType(ts.head, ss.head, strict)) {
1033            ts = ts.tail;
1034            ss = ss.tail;
1035        }
1036        return ts.tail == null && ss.tail == null;
1037        /*inlined: ts.isEmpty() && ss.isEmpty();*/
1038    }
1039
1040    /**
1041    * A polymorphic signature method (JLS SE 7, 8.4.1) is a method that
1042    * (i) is declared in the java.lang.invoke.MethodHandle class, (ii) takes
1043    * a single variable arity parameter (iii) whose declared type is Object[],
1044    * (iv) has a return type of Object and (v) is native.
1045    */
1046   public boolean isSignaturePolymorphic(MethodSymbol msym) {
1047       List<Type> argtypes = msym.type.getParameterTypes();
1048       return (msym.flags_field & NATIVE) != 0 &&
1049               msym.owner == syms.methodHandleType.tsym &&
1050               argtypes.tail.tail == null &&
1051               argtypes.head.hasTag(TypeTag.ARRAY) &&
1052               msym.type.getReturnType().tsym == syms.objectType.tsym &&
1053               ((ArrayType)argtypes.head).elemtype.tsym == syms.objectType.tsym;
1054   }
1055
1056    /**
1057     * Is t the same type as s?
1058     */
1059    public boolean isSameType(Type t, Type s) {
1060        return isSameType(t, s, false);
1061    }
1062    public boolean isSameType(Type t, Type s, boolean strict) {
1063        return strict ?
1064                isSameTypeStrict.visit(t, s) :
1065                isSameTypeLoose.visit(t, s);
1066    }
1067    public boolean isSameAnnotatedType(Type t, Type s) {
1068        return isSameAnnotatedType.visit(t, s);
1069    }
1070    // where
1071        abstract class SameTypeVisitor extends TypeRelation {
1072
1073            public Boolean visitType(Type t, Type s) {
1074                if (t == s)
1075                    return true;
1076
1077                if (s.isPartial())
1078                    return visit(s, t);
1079
1080                switch (t.getTag()) {
1081                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1082                case DOUBLE: case BOOLEAN: case VOID: case BOT: case NONE:
1083                    return t.hasTag(s.getTag());
1084                case TYPEVAR: {
1085                    if (s.hasTag(TYPEVAR)) {
1086                        //type-substitution does not preserve type-var types
1087                        //check that type var symbols and bounds are indeed the same
1088                        return sameTypeVars((TypeVar)t, (TypeVar)s);
1089                    }
1090                    else {
1091                        //special case for s == ? super X, where upper(s) = u
1092                        //check that u == t, where u has been set by Type.withTypeVar
1093                        return s.isSuperBound() &&
1094                                !s.isExtendsBound() &&
1095                                visit(t, wildUpperBound(s));
1096                    }
1097                }
1098                default:
1099                    throw new AssertionError("isSameType " + t.getTag());
1100                }
1101            }
1102
1103            abstract boolean sameTypeVars(TypeVar tv1, TypeVar tv2);
1104
1105            @Override
1106            public Boolean visitWildcardType(WildcardType t, Type s) {
1107                if (s.isPartial())
1108                    return visit(s, t);
1109                else
1110                    return false;
1111            }
1112
1113            @Override
1114            public Boolean visitClassType(ClassType t, Type s) {
1115                if (t == s)
1116                    return true;
1117
1118                if (s.isPartial())
1119                    return visit(s, t);
1120
1121                if (s.isSuperBound() && !s.isExtendsBound())
1122                    return visit(t, wildUpperBound(s)) && visit(t, wildLowerBound(s));
1123
1124                if (t.isCompound() && s.isCompound()) {
1125                    if (!visit(supertype(t), supertype(s)))
1126                        return false;
1127
1128                    HashSet<UniqueType> set = new HashSet<>();
1129                    for (Type x : interfaces(t))
1130                        set.add(new UniqueType(x, Types.this));
1131                    for (Type x : interfaces(s)) {
1132                        if (!set.remove(new UniqueType(x, Types.this)))
1133                            return false;
1134                    }
1135                    return (set.isEmpty());
1136                }
1137                return t.tsym == s.tsym
1138                    && visit(t.getEnclosingType(), s.getEnclosingType())
1139                    && containsTypes(t.getTypeArguments(), s.getTypeArguments());
1140            }
1141
1142            abstract protected boolean containsTypes(List<Type> ts1, List<Type> ts2);
1143
1144            @Override
1145            public Boolean visitArrayType(ArrayType t, Type s) {
1146                if (t == s)
1147                    return true;
1148
1149                if (s.isPartial())
1150                    return visit(s, t);
1151
1152                return s.hasTag(ARRAY)
1153                    && containsTypeEquivalent(t.elemtype, elemtype(s));
1154            }
1155
1156            @Override
1157            public Boolean visitMethodType(MethodType t, Type s) {
1158                // isSameType for methods does not take thrown
1159                // exceptions into account!
1160                return hasSameArgs(t, s) && visit(t.getReturnType(), s.getReturnType());
1161            }
1162
1163            @Override
1164            public Boolean visitPackageType(PackageType t, Type s) {
1165                return t == s;
1166            }
1167
1168            @Override
1169            public Boolean visitForAll(ForAll t, Type s) {
1170                if (!s.hasTag(FORALL)) {
1171                    return false;
1172                }
1173
1174                ForAll forAll = (ForAll)s;
1175                return hasSameBounds(t, forAll)
1176                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
1177            }
1178
1179            @Override
1180            public Boolean visitUndetVar(UndetVar t, Type s) {
1181                if (s.hasTag(WILDCARD)) {
1182                    // FIXME, this might be leftovers from before capture conversion
1183                    return false;
1184                }
1185
1186                if (t == s || t.qtype == s || s.hasTag(ERROR) || s.hasTag(UNKNOWN)) {
1187                    return true;
1188                }
1189
1190                t.addBound(InferenceBound.EQ, s, Types.this);
1191
1192                return true;
1193            }
1194
1195            @Override
1196            public Boolean visitErrorType(ErrorType t, Type s) {
1197                return true;
1198            }
1199        }
1200
1201        /**
1202         * Standard type-equality relation - type variables are considered
1203         * equals if they share the same type symbol.
1204         */
1205        TypeRelation isSameTypeLoose = new LooseSameTypeVisitor();
1206
1207        private class LooseSameTypeVisitor extends SameTypeVisitor {
1208
1209            /** cache of the type-variable pairs being (recursively) tested. */
1210            private Set<TypePair> cache = new HashSet<>();
1211
1212            @Override
1213            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1214                return tv1.tsym == tv2.tsym && checkSameBounds(tv1, tv2);
1215            }
1216            @Override
1217            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1218                return containsTypeEquivalent(ts1, ts2);
1219            }
1220
1221            /**
1222             * Since type-variable bounds can be recursive, we need to protect against
1223             * infinite loops - where the same bounds are checked over and over recursively.
1224             */
1225            private boolean checkSameBounds(TypeVar tv1, TypeVar tv2) {
1226                TypePair p = new TypePair(tv1, tv2, true);
1227                if (cache.add(p)) {
1228                    try {
1229                        return visit(tv1.getUpperBound(), tv2.getUpperBound());
1230                    } finally {
1231                        cache.remove(p);
1232                    }
1233                } else {
1234                    return false;
1235                }
1236            }
1237        };
1238
1239        /**
1240         * Strict type-equality relation - type variables are considered
1241         * equals if they share the same object identity.
1242         */
1243        TypeRelation isSameTypeStrict = new SameTypeVisitor() {
1244            @Override
1245            boolean sameTypeVars(TypeVar tv1, TypeVar tv2) {
1246                return tv1 == tv2;
1247            }
1248            @Override
1249            protected boolean containsTypes(List<Type> ts1, List<Type> ts2) {
1250                return isSameTypes(ts1, ts2, true);
1251            }
1252
1253            @Override
1254            public Boolean visitWildcardType(WildcardType t, Type s) {
1255                if (!s.hasTag(WILDCARD)) {
1256                    return false;
1257                } else {
1258                    WildcardType t2 = (WildcardType)s;
1259                    return t.kind == t2.kind &&
1260                            isSameType(t.type, t2.type, true);
1261                }
1262            }
1263        };
1264
1265    // </editor-fold>
1266
1267    TypeRelation isSameAnnotatedType = new LooseSameTypeVisitor() {
1268            private Boolean compareAnnotations(Type t1, Type t2) {
1269                List<Attribute.TypeCompound> annos1 = t1.getAnnotationMirrors();
1270                List<Attribute.TypeCompound> annos2 = t2.getAnnotationMirrors();
1271                return annos1.containsAll(annos2) && annos2.containsAll(annos1);
1272            }
1273
1274            @Override
1275            public Boolean visitType(Type t, Type s) {
1276                return compareAnnotations(t, s) && super.visitType(t, s);
1277            }
1278
1279            @Override
1280            public Boolean visitWildcardType(WildcardType t, Type s) {
1281                return compareAnnotations(t, s) && super.visitWildcardType(t, s);
1282            }
1283
1284            @Override
1285            public Boolean visitClassType(ClassType t, Type s) {
1286                return compareAnnotations(t, s) && super.visitClassType(t, s);
1287            }
1288
1289            @Override
1290            public Boolean visitArrayType(ArrayType t, Type s) {
1291                return compareAnnotations(t, s) && super.visitArrayType(t, s);
1292            }
1293
1294            @Override
1295            public Boolean visitForAll(ForAll t, Type s) {
1296                return compareAnnotations(t, s) && super.visitForAll(t, s);
1297            }
1298        };
1299
1300    // <editor-fold defaultstate="collapsed" desc="Contains Type">
1301    public boolean containedBy(Type t, Type s) {
1302        switch (t.getTag()) {
1303        case UNDETVAR:
1304            if (s.hasTag(WILDCARD)) {
1305                UndetVar undetvar = (UndetVar)t;
1306                WildcardType wt = (WildcardType)s;
1307                switch(wt.kind) {
1308                    case UNBOUND:
1309                        break;
1310                    case EXTENDS: {
1311                        Type bound = wildUpperBound(s);
1312                        undetvar.addBound(InferenceBound.UPPER, bound, this);
1313                        break;
1314                    }
1315                    case SUPER: {
1316                        Type bound = wildLowerBound(s);
1317                        undetvar.addBound(InferenceBound.LOWER, bound, this);
1318                        break;
1319                    }
1320                }
1321                return true;
1322            } else {
1323                return isSameType(t, s);
1324            }
1325        case ERROR:
1326            return true;
1327        default:
1328            return containsType(s, t);
1329        }
1330    }
1331
1332    boolean containsType(List<Type> ts, List<Type> ss) {
1333        while (ts.nonEmpty() && ss.nonEmpty()
1334               && containsType(ts.head, ss.head)) {
1335            ts = ts.tail;
1336            ss = ss.tail;
1337        }
1338        return ts.isEmpty() && ss.isEmpty();
1339    }
1340
1341    /**
1342     * Check if t contains s.
1343     *
1344     * <p>T contains S if:
1345     *
1346     * <p>{@code L(T) <: L(S) && U(S) <: U(T)}
1347     *
1348     * <p>This relation is only used by ClassType.isSubtype(), that
1349     * is,
1350     *
1351     * <p>{@code C<S> <: C<T> if T contains S.}
1352     *
1353     * <p>Because of F-bounds, this relation can lead to infinite
1354     * recursion.  Thus we must somehow break that recursion.  Notice
1355     * that containsType() is only called from ClassType.isSubtype().
1356     * Since the arguments have already been checked against their
1357     * bounds, we know:
1358     *
1359     * <p>{@code U(S) <: U(T) if T is "super" bound (U(T) *is* the bound)}
1360     *
1361     * <p>{@code L(T) <: L(S) if T is "extends" bound (L(T) is bottom)}
1362     *
1363     * @param t a type
1364     * @param s a type
1365     */
1366    public boolean containsType(Type t, Type s) {
1367        return containsType.visit(t, s);
1368    }
1369    // where
1370        private TypeRelation containsType = new TypeRelation() {
1371
1372            public Boolean visitType(Type t, Type s) {
1373                if (s.isPartial())
1374                    return containedBy(s, t);
1375                else
1376                    return isSameType(t, s);
1377            }
1378
1379//            void debugContainsType(WildcardType t, Type s) {
1380//                System.err.println();
1381//                System.err.format(" does %s contain %s?%n", t, s);
1382//                System.err.format(" %s U(%s) <: U(%s) %s = %s%n",
1383//                                  wildUpperBound(s), s, t, wildUpperBound(t),
1384//                                  t.isSuperBound()
1385//                                  || isSubtypeNoCapture(wildUpperBound(s), wildUpperBound(t)));
1386//                System.err.format(" %s L(%s) <: L(%s) %s = %s%n",
1387//                                  wildLowerBound(t), t, s, wildLowerBound(s),
1388//                                  t.isExtendsBound()
1389//                                  || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s)));
1390//                System.err.println();
1391//            }
1392
1393            @Override
1394            public Boolean visitWildcardType(WildcardType t, Type s) {
1395                if (s.isPartial())
1396                    return containedBy(s, t);
1397                else {
1398//                    debugContainsType(t, s);
1399                    return isSameWildcard(t, s)
1400                        || isCaptureOf(s, t)
1401                        || ((t.isExtendsBound() || isSubtypeNoCapture(wildLowerBound(t), wildLowerBound(s))) &&
1402                            // TODO: JDK-8039214, cvarUpperBound call here is incorrect
1403                            (t.isSuperBound() || isSubtypeNoCapture(cvarUpperBound(wildUpperBound(s)), wildUpperBound(t))));
1404                }
1405            }
1406
1407            @Override
1408            public Boolean visitUndetVar(UndetVar t, Type s) {
1409                if (!s.hasTag(WILDCARD)) {
1410                    return isSameType(t, s);
1411                } else {
1412                    return false;
1413                }
1414            }
1415
1416            @Override
1417            public Boolean visitErrorType(ErrorType t, Type s) {
1418                return true;
1419            }
1420        };
1421
1422    public boolean isCaptureOf(Type s, WildcardType t) {
1423        if (!s.hasTag(TYPEVAR) || !((TypeVar)s).isCaptured())
1424            return false;
1425        return isSameWildcard(t, ((CapturedType)s).wildcard);
1426    }
1427
1428    public boolean isSameWildcard(WildcardType t, Type s) {
1429        if (!s.hasTag(WILDCARD))
1430            return false;
1431        WildcardType w = (WildcardType)s;
1432        return w.kind == t.kind && w.type == t.type;
1433    }
1434
1435    public boolean containsTypeEquivalent(List<Type> ts, List<Type> ss) {
1436        while (ts.nonEmpty() && ss.nonEmpty()
1437               && containsTypeEquivalent(ts.head, ss.head)) {
1438            ts = ts.tail;
1439            ss = ss.tail;
1440        }
1441        return ts.isEmpty() && ss.isEmpty();
1442    }
1443    // </editor-fold>
1444
1445    /**
1446     * Can t and s be compared for equality?  Any primitive ==
1447     * primitive or primitive == object comparisons here are an error.
1448     * Unboxing and correct primitive == primitive comparisons are
1449     * already dealt with in Attr.visitBinary.
1450     *
1451     */
1452    public boolean isEqualityComparable(Type s, Type t, Warner warn) {
1453        if (t.isNumeric() && s.isNumeric())
1454            return true;
1455
1456        boolean tPrimitive = t.isPrimitive();
1457        boolean sPrimitive = s.isPrimitive();
1458        if (!tPrimitive && !sPrimitive) {
1459            return isCastable(s, t, warn) || isCastable(t, s, warn);
1460        } else {
1461            return false;
1462        }
1463    }
1464
1465    // <editor-fold defaultstate="collapsed" desc="isCastable">
1466    public boolean isCastable(Type t, Type s) {
1467        return isCastable(t, s, noWarnings);
1468    }
1469
1470    /**
1471     * Is t is castable to s?<br>
1472     * s is assumed to be an erased type.<br>
1473     * (not defined for Method and ForAll types).
1474     */
1475    public boolean isCastable(Type t, Type s, Warner warn) {
1476        if (t == s)
1477            return true;
1478
1479        if (t.isPrimitive() != s.isPrimitive())
1480            return (isConvertible(t, s, warn)
1481                    || (allowObjectToPrimitiveCast &&
1482                        s.isPrimitive() &&
1483                        isSubtype(boxedClass(s).type, t)));
1484        if (warn != warnStack.head) {
1485            try {
1486                warnStack = warnStack.prepend(warn);
1487                checkUnsafeVarargsConversion(t, s, warn);
1488                return isCastable.visit(t,s);
1489            } finally {
1490                warnStack = warnStack.tail;
1491            }
1492        } else {
1493            return isCastable.visit(t,s);
1494        }
1495    }
1496    // where
1497        private TypeRelation isCastable = new TypeRelation() {
1498
1499            public Boolean visitType(Type t, Type s) {
1500                if (s.hasTag(ERROR))
1501                    return true;
1502
1503                switch (t.getTag()) {
1504                case BYTE: case CHAR: case SHORT: case INT: case LONG: case FLOAT:
1505                case DOUBLE:
1506                    return s.isNumeric();
1507                case BOOLEAN:
1508                    return s.hasTag(BOOLEAN);
1509                case VOID:
1510                    return false;
1511                case BOT:
1512                    return isSubtype(t, s);
1513                default:
1514                    throw new AssertionError();
1515                }
1516            }
1517
1518            @Override
1519            public Boolean visitWildcardType(WildcardType t, Type s) {
1520                return isCastable(wildUpperBound(t), s, warnStack.head);
1521            }
1522
1523            @Override
1524            public Boolean visitClassType(ClassType t, Type s) {
1525                if (s.hasTag(ERROR) || s.hasTag(BOT))
1526                    return true;
1527
1528                if (s.hasTag(TYPEVAR)) {
1529                    if (isCastable(t, s.getUpperBound(), noWarnings)) {
1530                        warnStack.head.warn(LintCategory.UNCHECKED);
1531                        return true;
1532                    } else {
1533                        return false;
1534                    }
1535                }
1536
1537                if (t.isCompound() || s.isCompound()) {
1538                    return !t.isCompound() ?
1539                            visitIntersectionType((IntersectionClassType)s, t, true) :
1540                            visitIntersectionType((IntersectionClassType)t, s, false);
1541                }
1542
1543                if (s.hasTag(CLASS) || s.hasTag(ARRAY)) {
1544                    boolean upcast;
1545                    if ((upcast = isSubtype(erasure(t), erasure(s)))
1546                        || isSubtype(erasure(s), erasure(t))) {
1547                        if (!upcast && s.hasTag(ARRAY)) {
1548                            if (!isReifiable(s))
1549                                warnStack.head.warn(LintCategory.UNCHECKED);
1550                            return true;
1551                        } else if (s.isRaw()) {
1552                            return true;
1553                        } else if (t.isRaw()) {
1554                            if (!isUnbounded(s))
1555                                warnStack.head.warn(LintCategory.UNCHECKED);
1556                            return true;
1557                        }
1558                        // Assume |a| <: |b|
1559                        final Type a = upcast ? t : s;
1560                        final Type b = upcast ? s : t;
1561                        final boolean HIGH = true;
1562                        final boolean LOW = false;
1563                        final boolean DONT_REWRITE_TYPEVARS = false;
1564                        Type aHigh = rewriteQuantifiers(a, HIGH, DONT_REWRITE_TYPEVARS);
1565                        Type aLow  = rewriteQuantifiers(a, LOW,  DONT_REWRITE_TYPEVARS);
1566                        Type bHigh = rewriteQuantifiers(b, HIGH, DONT_REWRITE_TYPEVARS);
1567                        Type bLow  = rewriteQuantifiers(b, LOW,  DONT_REWRITE_TYPEVARS);
1568                        Type lowSub = asSub(bLow, aLow.tsym);
1569                        Type highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1570                        if (highSub == null) {
1571                            final boolean REWRITE_TYPEVARS = true;
1572                            aHigh = rewriteQuantifiers(a, HIGH, REWRITE_TYPEVARS);
1573                            aLow  = rewriteQuantifiers(a, LOW,  REWRITE_TYPEVARS);
1574                            bHigh = rewriteQuantifiers(b, HIGH, REWRITE_TYPEVARS);
1575                            bLow  = rewriteQuantifiers(b, LOW,  REWRITE_TYPEVARS);
1576                            lowSub = asSub(bLow, aLow.tsym);
1577                            highSub = (lowSub == null) ? null : asSub(bHigh, aHigh.tsym);
1578                        }
1579                        if (highSub != null) {
1580                            if (!(a.tsym == highSub.tsym && a.tsym == lowSub.tsym)) {
1581                                Assert.error(a.tsym + " != " + highSub.tsym + " != " + lowSub.tsym);
1582                            }
1583                            if (!disjointTypes(aHigh.allparams(), highSub.allparams())
1584                                && !disjointTypes(aHigh.allparams(), lowSub.allparams())
1585                                && !disjointTypes(aLow.allparams(), highSub.allparams())
1586                                && !disjointTypes(aLow.allparams(), lowSub.allparams())) {
1587                                if (upcast ? giveWarning(a, b) :
1588                                    giveWarning(b, a))
1589                                    warnStack.head.warn(LintCategory.UNCHECKED);
1590                                return true;
1591                            }
1592                        }
1593                        if (isReifiable(s))
1594                            return isSubtypeUnchecked(a, b);
1595                        else
1596                            return isSubtypeUnchecked(a, b, warnStack.head);
1597                    }
1598
1599                    // Sidecast
1600                    if (s.hasTag(CLASS)) {
1601                        if ((s.tsym.flags() & INTERFACE) != 0) {
1602                            return ((t.tsym.flags() & FINAL) == 0)
1603                                ? sideCast(t, s, warnStack.head)
1604                                : sideCastFinal(t, s, warnStack.head);
1605                        } else if ((t.tsym.flags() & INTERFACE) != 0) {
1606                            return ((s.tsym.flags() & FINAL) == 0)
1607                                ? sideCast(t, s, warnStack.head)
1608                                : sideCastFinal(t, s, warnStack.head);
1609                        } else {
1610                            // unrelated class types
1611                            return false;
1612                        }
1613                    }
1614                }
1615                return false;
1616            }
1617
1618            boolean visitIntersectionType(IntersectionClassType ict, Type s, boolean reverse) {
1619                Warner warn = noWarnings;
1620                for (Type c : ict.getComponents()) {
1621                    warn.clear();
1622                    if (reverse ? !isCastable(s, c, warn) : !isCastable(c, s, warn))
1623                        return false;
1624                }
1625                if (warn.hasLint(LintCategory.UNCHECKED))
1626                    warnStack.head.warn(LintCategory.UNCHECKED);
1627                return true;
1628            }
1629
1630            @Override
1631            public Boolean visitArrayType(ArrayType t, Type s) {
1632                switch (s.getTag()) {
1633                case ERROR:
1634                case BOT:
1635                    return true;
1636                case TYPEVAR:
1637                    if (isCastable(s, t, noWarnings)) {
1638                        warnStack.head.warn(LintCategory.UNCHECKED);
1639                        return true;
1640                    } else {
1641                        return false;
1642                    }
1643                case CLASS:
1644                    return isSubtype(t, s);
1645                case ARRAY:
1646                    if (elemtype(t).isPrimitive() || elemtype(s).isPrimitive()) {
1647                        return elemtype(t).hasTag(elemtype(s).getTag());
1648                    } else {
1649                        return visit(elemtype(t), elemtype(s));
1650                    }
1651                default:
1652                    return false;
1653                }
1654            }
1655
1656            @Override
1657            public Boolean visitTypeVar(TypeVar t, Type s) {
1658                switch (s.getTag()) {
1659                case ERROR:
1660                case BOT:
1661                    return true;
1662                case TYPEVAR:
1663                    if (isSubtype(t, s)) {
1664                        return true;
1665                    } else if (isCastable(t.bound, s, noWarnings)) {
1666                        warnStack.head.warn(LintCategory.UNCHECKED);
1667                        return true;
1668                    } else {
1669                        return false;
1670                    }
1671                default:
1672                    return isCastable(t.bound, s, warnStack.head);
1673                }
1674            }
1675
1676            @Override
1677            public Boolean visitErrorType(ErrorType t, Type s) {
1678                return true;
1679            }
1680        };
1681    // </editor-fold>
1682
1683    // <editor-fold defaultstate="collapsed" desc="disjointTypes">
1684    public boolean disjointTypes(List<Type> ts, List<Type> ss) {
1685        while (ts.tail != null && ss.tail != null) {
1686            if (disjointType(ts.head, ss.head)) return true;
1687            ts = ts.tail;
1688            ss = ss.tail;
1689        }
1690        return false;
1691    }
1692
1693    /**
1694     * Two types or wildcards are considered disjoint if it can be
1695     * proven that no type can be contained in both. It is
1696     * conservative in that it is allowed to say that two types are
1697     * not disjoint, even though they actually are.
1698     *
1699     * The type {@code C<X>} is castable to {@code C<Y>} exactly if
1700     * {@code X} and {@code Y} are not disjoint.
1701     */
1702    public boolean disjointType(Type t, Type s) {
1703        return disjointType.visit(t, s);
1704    }
1705    // where
1706        private TypeRelation disjointType = new TypeRelation() {
1707
1708            private Set<TypePair> cache = new HashSet<>();
1709
1710            @Override
1711            public Boolean visitType(Type t, Type s) {
1712                if (s.hasTag(WILDCARD))
1713                    return visit(s, t);
1714                else
1715                    return notSoftSubtypeRecursive(t, s) || notSoftSubtypeRecursive(s, t);
1716            }
1717
1718            private boolean isCastableRecursive(Type t, Type s) {
1719                TypePair pair = new TypePair(t, s);
1720                if (cache.add(pair)) {
1721                    try {
1722                        return Types.this.isCastable(t, s);
1723                    } finally {
1724                        cache.remove(pair);
1725                    }
1726                } else {
1727                    return true;
1728                }
1729            }
1730
1731            private boolean notSoftSubtypeRecursive(Type t, Type s) {
1732                TypePair pair = new TypePair(t, s);
1733                if (cache.add(pair)) {
1734                    try {
1735                        return Types.this.notSoftSubtype(t, s);
1736                    } finally {
1737                        cache.remove(pair);
1738                    }
1739                } else {
1740                    return false;
1741                }
1742            }
1743
1744            @Override
1745            public Boolean visitWildcardType(WildcardType t, Type s) {
1746                if (t.isUnbound())
1747                    return false;
1748
1749                if (!s.hasTag(WILDCARD)) {
1750                    if (t.isExtendsBound())
1751                        return notSoftSubtypeRecursive(s, t.type);
1752                    else
1753                        return notSoftSubtypeRecursive(t.type, s);
1754                }
1755
1756                if (s.isUnbound())
1757                    return false;
1758
1759                if (t.isExtendsBound()) {
1760                    if (s.isExtendsBound())
1761                        return !isCastableRecursive(t.type, wildUpperBound(s));
1762                    else if (s.isSuperBound())
1763                        return notSoftSubtypeRecursive(wildLowerBound(s), t.type);
1764                } else if (t.isSuperBound()) {
1765                    if (s.isExtendsBound())
1766                        return notSoftSubtypeRecursive(t.type, wildUpperBound(s));
1767                }
1768                return false;
1769            }
1770        };
1771    // </editor-fold>
1772
1773    // <editor-fold defaultstate="collapsed" desc="cvarLowerBounds">
1774    public List<Type> cvarLowerBounds(List<Type> ts) {
1775        return map(ts, cvarLowerBoundMapping);
1776    }
1777    private final Mapping cvarLowerBoundMapping = new Mapping("cvarLowerBound") {
1778            public Type apply(Type t) {
1779                return cvarLowerBound(t);
1780            }
1781        };
1782    // </editor-fold>
1783
1784    // <editor-fold defaultstate="collapsed" desc="notSoftSubtype">
1785    /**
1786     * This relation answers the question: is impossible that
1787     * something of type `t' can be a subtype of `s'? This is
1788     * different from the question "is `t' not a subtype of `s'?"
1789     * when type variables are involved: Integer is not a subtype of T
1790     * where {@code <T extends Number>} but it is not true that Integer cannot
1791     * possibly be a subtype of T.
1792     */
1793    public boolean notSoftSubtype(Type t, Type s) {
1794        if (t == s) return false;
1795        if (t.hasTag(TYPEVAR)) {
1796            TypeVar tv = (TypeVar) t;
1797            return !isCastable(tv.bound,
1798                               relaxBound(s),
1799                               noWarnings);
1800        }
1801        if (!s.hasTag(WILDCARD))
1802            s = cvarUpperBound(s);
1803
1804        return !isSubtype(t, relaxBound(s));
1805    }
1806
1807    private Type relaxBound(Type t) {
1808        if (t.hasTag(TYPEVAR)) {
1809            while (t.hasTag(TYPEVAR))
1810                t = t.getUpperBound();
1811            t = rewriteQuantifiers(t, true, true);
1812        }
1813        return t;
1814    }
1815    // </editor-fold>
1816
1817    // <editor-fold defaultstate="collapsed" desc="isReifiable">
1818    public boolean isReifiable(Type t) {
1819        return isReifiable.visit(t);
1820    }
1821    // where
1822        private UnaryVisitor<Boolean> isReifiable = new UnaryVisitor<Boolean>() {
1823
1824            public Boolean visitType(Type t, Void ignored) {
1825                return true;
1826            }
1827
1828            @Override
1829            public Boolean visitClassType(ClassType t, Void ignored) {
1830                if (t.isCompound())
1831                    return false;
1832                else {
1833                    if (!t.isParameterized())
1834                        return true;
1835
1836                    for (Type param : t.allparams()) {
1837                        if (!param.isUnbound())
1838                            return false;
1839                    }
1840                    return true;
1841                }
1842            }
1843
1844            @Override
1845            public Boolean visitArrayType(ArrayType t, Void ignored) {
1846                return visit(t.elemtype);
1847            }
1848
1849            @Override
1850            public Boolean visitTypeVar(TypeVar t, Void ignored) {
1851                return false;
1852            }
1853        };
1854    // </editor-fold>
1855
1856    // <editor-fold defaultstate="collapsed" desc="Array Utils">
1857    public boolean isArray(Type t) {
1858        while (t.hasTag(WILDCARD))
1859            t = wildUpperBound(t);
1860        return t.hasTag(ARRAY);
1861    }
1862
1863    /**
1864     * The element type of an array.
1865     */
1866    public Type elemtype(Type t) {
1867        switch (t.getTag()) {
1868        case WILDCARD:
1869            return elemtype(wildUpperBound(t));
1870        case ARRAY:
1871            return ((ArrayType)t).elemtype;
1872        case FORALL:
1873            return elemtype(((ForAll)t).qtype);
1874        case ERROR:
1875            return t;
1876        default:
1877            return null;
1878        }
1879    }
1880
1881    public Type elemtypeOrType(Type t) {
1882        Type elemtype = elemtype(t);
1883        return elemtype != null ?
1884            elemtype :
1885            t;
1886    }
1887
1888    /**
1889     * Mapping to take element type of an arraytype
1890     */
1891    private Mapping elemTypeFun = new Mapping ("elemTypeFun") {
1892        public Type apply(Type t) {
1893            while (t.hasTag(TYPEVAR)) {
1894                t = t.getUpperBound();
1895            }
1896            return elemtype(t);
1897        }
1898    };
1899
1900    /**
1901     * The number of dimensions of an array type.
1902     */
1903    public int dimensions(Type t) {
1904        int result = 0;
1905        while (t.hasTag(ARRAY)) {
1906            result++;
1907            t = elemtype(t);
1908        }
1909        return result;
1910    }
1911
1912    /**
1913     * Returns an ArrayType with the component type t
1914     *
1915     * @param t The component type of the ArrayType
1916     * @return the ArrayType for the given component
1917     */
1918    public ArrayType makeArrayType(Type t) {
1919        if (t.hasTag(VOID) || t.hasTag(PACKAGE)) {
1920            Assert.error("Type t must not be a VOID or PACKAGE type, " + t.toString());
1921        }
1922        return new ArrayType(t, syms.arrayClass);
1923    }
1924    // </editor-fold>
1925
1926    // <editor-fold defaultstate="collapsed" desc="asSuper">
1927    /**
1928     * Return the (most specific) base type of t that starts with the
1929     * given symbol.  If none exists, return null.
1930     *
1931     * @param t a type
1932     * @param sym a symbol
1933     */
1934    public Type asSuper(Type t, Symbol sym) {
1935        /* Some examples:
1936         *
1937         * (Enum<E>, Comparable) => Comparable<E>
1938         * (c.s.s.d.AttributeTree.ValueKind, Enum) => Enum<c.s.s.d.AttributeTree.ValueKind>
1939         * (c.s.s.t.ExpressionTree, c.s.s.t.Tree) => c.s.s.t.Tree
1940         * (j.u.List<capture#160 of ? extends c.s.s.d.DocTree>, Iterable) =>
1941         *     Iterable<capture#160 of ? extends c.s.s.d.DocTree>
1942         */
1943        if (sym.type == syms.objectType) { //optimization
1944            return syms.objectType;
1945        }
1946        return asSuper.visit(t, sym);
1947    }
1948    // where
1949        private SimpleVisitor<Type,Symbol> asSuper = new SimpleVisitor<Type,Symbol>() {
1950
1951            public Type visitType(Type t, Symbol sym) {
1952                return null;
1953            }
1954
1955            @Override
1956            public Type visitClassType(ClassType t, Symbol sym) {
1957                if (t.tsym == sym)
1958                    return t;
1959
1960                Type st = supertype(t);
1961                if (st.hasTag(CLASS) || st.hasTag(TYPEVAR)) {
1962                    Type x = asSuper(st, sym);
1963                    if (x != null)
1964                        return x;
1965                }
1966                if ((sym.flags() & INTERFACE) != 0) {
1967                    for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
1968                        if (!l.head.hasTag(ERROR)) {
1969                            Type x = asSuper(l.head, sym);
1970                            if (x != null)
1971                                return x;
1972                        }
1973                    }
1974                }
1975                return null;
1976            }
1977
1978            @Override
1979            public Type visitArrayType(ArrayType t, Symbol sym) {
1980                return isSubtype(t, sym.type) ? sym.type : null;
1981            }
1982
1983            @Override
1984            public Type visitTypeVar(TypeVar t, Symbol sym) {
1985                if (t.tsym == sym)
1986                    return t;
1987                else
1988                    return asSuper(t.bound, sym);
1989            }
1990
1991            @Override
1992            public Type visitErrorType(ErrorType t, Symbol sym) {
1993                return t;
1994            }
1995        };
1996
1997    /**
1998     * Return the base type of t or any of its outer types that starts
1999     * with the given symbol.  If none exists, return null.
2000     *
2001     * @param t a type
2002     * @param sym a symbol
2003     */
2004    public Type asOuterSuper(Type t, Symbol sym) {
2005        switch (t.getTag()) {
2006        case CLASS:
2007            do {
2008                Type s = asSuper(t, sym);
2009                if (s != null) return s;
2010                t = t.getEnclosingType();
2011            } while (t.hasTag(CLASS));
2012            return null;
2013        case ARRAY:
2014            return isSubtype(t, sym.type) ? sym.type : null;
2015        case TYPEVAR:
2016            return asSuper(t, sym);
2017        case ERROR:
2018            return t;
2019        default:
2020            return null;
2021        }
2022    }
2023
2024    /**
2025     * Return the base type of t or any of its enclosing types that
2026     * starts with the given symbol.  If none exists, return null.
2027     *
2028     * @param t a type
2029     * @param sym a symbol
2030     */
2031    public Type asEnclosingSuper(Type t, Symbol sym) {
2032        switch (t.getTag()) {
2033        case CLASS:
2034            do {
2035                Type s = asSuper(t, sym);
2036                if (s != null) return s;
2037                Type outer = t.getEnclosingType();
2038                t = (outer.hasTag(CLASS)) ? outer :
2039                    (t.tsym.owner.enclClass() != null) ? t.tsym.owner.enclClass().type :
2040                    Type.noType;
2041            } while (t.hasTag(CLASS));
2042            return null;
2043        case ARRAY:
2044            return isSubtype(t, sym.type) ? sym.type : null;
2045        case TYPEVAR:
2046            return asSuper(t, sym);
2047        case ERROR:
2048            return t;
2049        default:
2050            return null;
2051        }
2052    }
2053    // </editor-fold>
2054
2055    // <editor-fold defaultstate="collapsed" desc="memberType">
2056    /**
2057     * The type of given symbol, seen as a member of t.
2058     *
2059     * @param t a type
2060     * @param sym a symbol
2061     */
2062    public Type memberType(Type t, Symbol sym) {
2063        return (sym.flags() & STATIC) != 0
2064            ? sym.type
2065            : memberType.visit(t, sym);
2066        }
2067    // where
2068        private SimpleVisitor<Type,Symbol> memberType = new SimpleVisitor<Type,Symbol>() {
2069
2070            public Type visitType(Type t, Symbol sym) {
2071                return sym.type;
2072            }
2073
2074            @Override
2075            public Type visitWildcardType(WildcardType t, Symbol sym) {
2076                return memberType(wildUpperBound(t), sym);
2077            }
2078
2079            @Override
2080            public Type visitClassType(ClassType t, Symbol sym) {
2081                Symbol owner = sym.owner;
2082                long flags = sym.flags();
2083                if (((flags & STATIC) == 0) && owner.type.isParameterized()) {
2084                    Type base = asOuterSuper(t, owner);
2085                    //if t is an intersection type T = CT & I1 & I2 ... & In
2086                    //its supertypes CT, I1, ... In might contain wildcards
2087                    //so we need to go through capture conversion
2088                    base = t.isCompound() ? capture(base) : base;
2089                    if (base != null) {
2090                        List<Type> ownerParams = owner.type.allparams();
2091                        List<Type> baseParams = base.allparams();
2092                        if (ownerParams.nonEmpty()) {
2093                            if (baseParams.isEmpty()) {
2094                                // then base is a raw type
2095                                return erasure(sym.type);
2096                            } else {
2097                                return subst(sym.type, ownerParams, baseParams);
2098                            }
2099                        }
2100                    }
2101                }
2102                return sym.type;
2103            }
2104
2105            @Override
2106            public Type visitTypeVar(TypeVar t, Symbol sym) {
2107                return memberType(t.bound, sym);
2108            }
2109
2110            @Override
2111            public Type visitErrorType(ErrorType t, Symbol sym) {
2112                return t;
2113            }
2114        };
2115    // </editor-fold>
2116
2117    // <editor-fold defaultstate="collapsed" desc="isAssignable">
2118    public boolean isAssignable(Type t, Type s) {
2119        return isAssignable(t, s, noWarnings);
2120    }
2121
2122    /**
2123     * Is t assignable to s?<br>
2124     * Equivalent to subtype except for constant values and raw
2125     * types.<br>
2126     * (not defined for Method and ForAll types)
2127     */
2128    public boolean isAssignable(Type t, Type s, Warner warn) {
2129        if (t.hasTag(ERROR))
2130            return true;
2131        if (t.getTag().isSubRangeOf(INT) && t.constValue() != null) {
2132            int value = ((Number)t.constValue()).intValue();
2133            switch (s.getTag()) {
2134            case BYTE:
2135                if (Byte.MIN_VALUE <= value && value <= Byte.MAX_VALUE)
2136                    return true;
2137                break;
2138            case CHAR:
2139                if (Character.MIN_VALUE <= value && value <= Character.MAX_VALUE)
2140                    return true;
2141                break;
2142            case SHORT:
2143                if (Short.MIN_VALUE <= value && value <= Short.MAX_VALUE)
2144                    return true;
2145                break;
2146            case INT:
2147                return true;
2148            case CLASS:
2149                switch (unboxedType(s).getTag()) {
2150                case BYTE:
2151                case CHAR:
2152                case SHORT:
2153                    return isAssignable(t, unboxedType(s), warn);
2154                }
2155                break;
2156            }
2157        }
2158        return isConvertible(t, s, warn);
2159    }
2160    // </editor-fold>
2161
2162    // <editor-fold defaultstate="collapsed" desc="erasure">
2163    /**
2164     * The erasure of t {@code |t|} -- the type that results when all
2165     * type parameters in t are deleted.
2166     */
2167    public Type erasure(Type t) {
2168        return eraseNotNeeded(t)? t : erasure(t, false);
2169    }
2170    //where
2171    private boolean eraseNotNeeded(Type t) {
2172        // We don't want to erase primitive types and String type as that
2173        // operation is idempotent. Also, erasing these could result in loss
2174        // of information such as constant values attached to such types.
2175        return (t.isPrimitive()) || (syms.stringType.tsym == t.tsym);
2176    }
2177
2178    private Type erasure(Type t, boolean recurse) {
2179        if (t.isPrimitive()) {
2180            return t; /* fast special case */
2181        } else {
2182            Type out = erasure.visit(t, recurse);
2183            return out;
2184        }
2185        }
2186    // where
2187        private SimpleVisitor<Type, Boolean> erasure = new SimpleVisitor<Type, Boolean>() {
2188            private Type combineMetadata(final Type ty,
2189                                         final TypeMetadata md) {
2190                if (!md.isEmpty()) {
2191                    switch (ty.getKind()) {
2192                    default: return ty.clone(ty.metadata.combine(md));
2193                    case OTHER:
2194                    case UNION:
2195                    case INTERSECTION:
2196                    case PACKAGE:
2197                    case EXECUTABLE:
2198                    case NONE:
2199                    case VOID:
2200                    case ERROR:
2201                        return ty;
2202                    }
2203                } else {
2204                    return ty;
2205                }
2206            }
2207
2208            public Type visitType(Type t, Boolean recurse) {
2209                if (t.isPrimitive())
2210                    return t; /*fast special case*/
2211                else {
2212                    Type erased = t.map(recurse ? erasureRecFun : erasureFun);
2213                    return combineMetadata(erased, t.getMetadata());
2214                }
2215            }
2216
2217            @Override
2218            public Type visitClassType(ClassType t, Boolean recurse) {
2219                Type erased = t.tsym.erasure(Types.this);
2220                if (recurse) {
2221                    erased = new ErasedClassType(erased.getEnclosingType(),erased.tsym, t.getMetadata());
2222                    return erased;
2223                } else {
2224                    return combineMetadata(erased, t.getMetadata());
2225                }
2226            }
2227
2228            @Override
2229            public Type visitTypeVar(TypeVar t, Boolean recurse) {
2230                Type erased = erasure(t.bound, recurse);
2231                return combineMetadata(erased, t.getMetadata());
2232            }
2233
2234            @Override
2235            public Type visitErrorType(ErrorType t, Boolean recurse) {
2236                return t;
2237            }
2238        };
2239
2240    private Mapping erasureFun = new Mapping ("erasure") {
2241            public Type apply(Type t) { return erasure(t); }
2242        };
2243
2244    private Mapping erasureRecFun = new Mapping ("erasureRecursive") {
2245        public Type apply(Type t) { return erasureRecursive(t); }
2246    };
2247
2248    public List<Type> erasure(List<Type> ts) {
2249        return Type.map(ts, erasureFun);
2250    }
2251
2252    public Type erasureRecursive(Type t) {
2253        return erasure(t, true);
2254    }
2255
2256    public List<Type> erasureRecursive(List<Type> ts) {
2257        return Type.map(ts, erasureRecFun);
2258    }
2259    // </editor-fold>
2260
2261    // <editor-fold defaultstate="collapsed" desc="makeCompoundType">
2262    /**
2263     * Make a compound type from non-empty list of types.  The list should be
2264     * ordered according to {@link Symbol#precedes(TypeSymbol,Types)}.
2265     *
2266     * @param bounds            the types from which the compound type is formed
2267     * @param supertype         is objectType if all bounds are interfaces,
2268     *                          null otherwise.
2269     */
2270    public Type makeCompoundType(List<Type> bounds) {
2271        return makeCompoundType(bounds, bounds.head.tsym.isInterface());
2272    }
2273    public Type makeCompoundType(List<Type> bounds, boolean allInterfaces) {
2274        Assert.check(bounds.nonEmpty());
2275        Type firstExplicitBound = bounds.head;
2276        if (allInterfaces) {
2277            bounds = bounds.prepend(syms.objectType);
2278        }
2279        ClassSymbol bc =
2280            new ClassSymbol(ABSTRACT|PUBLIC|SYNTHETIC|COMPOUND|ACYCLIC,
2281                            Type.moreInfo
2282                                ? names.fromString(bounds.toString())
2283                                : names.empty,
2284                            null,
2285                            syms.noSymbol);
2286        bc.type = new IntersectionClassType(bounds, bc, allInterfaces);
2287        bc.erasure_field = (bounds.head.hasTag(TYPEVAR)) ?
2288                syms.objectType : // error condition, recover
2289                erasure(firstExplicitBound);
2290        bc.members_field = WriteableScope.create(bc);
2291        return bc.type;
2292    }
2293
2294    /**
2295     * A convenience wrapper for {@link #makeCompoundType(List)}; the
2296     * arguments are converted to a list and passed to the other
2297     * method.  Note that this might cause a symbol completion.
2298     * Hence, this version of makeCompoundType may not be called
2299     * during a classfile read.
2300     */
2301    public Type makeCompoundType(Type bound1, Type bound2) {
2302        return makeCompoundType(List.of(bound1, bound2));
2303    }
2304    // </editor-fold>
2305
2306    // <editor-fold defaultstate="collapsed" desc="supertype">
2307    public Type supertype(Type t) {
2308        return supertype.visit(t);
2309    }
2310    // where
2311        private UnaryVisitor<Type> supertype = new UnaryVisitor<Type>() {
2312
2313            public Type visitType(Type t, Void ignored) {
2314                // A note on wildcards: there is no good way to
2315                // determine a supertype for a super bounded wildcard.
2316                return Type.noType;
2317            }
2318
2319            @Override
2320            public Type visitClassType(ClassType t, Void ignored) {
2321                if (t.supertype_field == null) {
2322                    Type supertype = ((ClassSymbol)t.tsym).getSuperclass();
2323                    // An interface has no superclass; its supertype is Object.
2324                    if (t.isInterface())
2325                        supertype = ((ClassType)t.tsym.type).supertype_field;
2326                    if (t.supertype_field == null) {
2327                        List<Type> actuals = classBound(t).allparams();
2328                        List<Type> formals = t.tsym.type.allparams();
2329                        if (t.hasErasedSupertypes()) {
2330                            t.supertype_field = erasureRecursive(supertype);
2331                        } else if (formals.nonEmpty()) {
2332                            t.supertype_field = subst(supertype, formals, actuals);
2333                        }
2334                        else {
2335                            t.supertype_field = supertype;
2336                        }
2337                    }
2338                }
2339                return t.supertype_field;
2340            }
2341
2342            /**
2343             * The supertype is always a class type. If the type
2344             * variable's bounds start with a class type, this is also
2345             * the supertype.  Otherwise, the supertype is
2346             * java.lang.Object.
2347             */
2348            @Override
2349            public Type visitTypeVar(TypeVar t, Void ignored) {
2350                if (t.bound.hasTag(TYPEVAR) ||
2351                    (!t.bound.isCompound() && !t.bound.isInterface())) {
2352                    return t.bound;
2353                } else {
2354                    return supertype(t.bound);
2355                }
2356            }
2357
2358            @Override
2359            public Type visitArrayType(ArrayType t, Void ignored) {
2360                if (t.elemtype.isPrimitive() || isSameType(t.elemtype, syms.objectType))
2361                    return arraySuperType();
2362                else
2363                    return new ArrayType(supertype(t.elemtype), t.tsym);
2364            }
2365
2366            @Override
2367            public Type visitErrorType(ErrorType t, Void ignored) {
2368                return Type.noType;
2369            }
2370        };
2371    // </editor-fold>
2372
2373    // <editor-fold defaultstate="collapsed" desc="interfaces">
2374    /**
2375     * Return the interfaces implemented by this class.
2376     */
2377    public List<Type> interfaces(Type t) {
2378        return interfaces.visit(t);
2379    }
2380    // where
2381        private UnaryVisitor<List<Type>> interfaces = new UnaryVisitor<List<Type>>() {
2382
2383            public List<Type> visitType(Type t, Void ignored) {
2384                return List.nil();
2385            }
2386
2387            @Override
2388            public List<Type> visitClassType(ClassType t, Void ignored) {
2389                if (t.interfaces_field == null) {
2390                    List<Type> interfaces = ((ClassSymbol)t.tsym).getInterfaces();
2391                    if (t.interfaces_field == null) {
2392                        // If t.interfaces_field is null, then t must
2393                        // be a parameterized type (not to be confused
2394                        // with a generic type declaration).
2395                        // Terminology:
2396                        //    Parameterized type: List<String>
2397                        //    Generic type declaration: class List<E> { ... }
2398                        // So t corresponds to List<String> and
2399                        // t.tsym.type corresponds to List<E>.
2400                        // The reason t must be parameterized type is
2401                        // that completion will happen as a side
2402                        // effect of calling
2403                        // ClassSymbol.getInterfaces.  Since
2404                        // t.interfaces_field is null after
2405                        // completion, we can assume that t is not the
2406                        // type of a class/interface declaration.
2407                        Assert.check(t != t.tsym.type, t);
2408                        List<Type> actuals = t.allparams();
2409                        List<Type> formals = t.tsym.type.allparams();
2410                        if (t.hasErasedSupertypes()) {
2411                            t.interfaces_field = erasureRecursive(interfaces);
2412                        } else if (formals.nonEmpty()) {
2413                            t.interfaces_field = subst(interfaces, formals, actuals);
2414                        }
2415                        else {
2416                            t.interfaces_field = interfaces;
2417                        }
2418                    }
2419                }
2420                return t.interfaces_field;
2421            }
2422
2423            @Override
2424            public List<Type> visitTypeVar(TypeVar t, Void ignored) {
2425                if (t.bound.isCompound())
2426                    return interfaces(t.bound);
2427
2428                if (t.bound.isInterface())
2429                    return List.of(t.bound);
2430
2431                return List.nil();
2432            }
2433        };
2434
2435    public List<Type> directSupertypes(Type t) {
2436        return directSupertypes.visit(t);
2437    }
2438    // where
2439        private final UnaryVisitor<List<Type>> directSupertypes = new UnaryVisitor<List<Type>>() {
2440
2441            public List<Type> visitType(final Type type, final Void ignored) {
2442                if (!type.isCompound()) {
2443                    final Type sup = supertype(type);
2444                    return (sup == Type.noType || sup == type || sup == null)
2445                        ? interfaces(type)
2446                        : interfaces(type).prepend(sup);
2447                } else {
2448                    return visitIntersectionType((IntersectionClassType) type);
2449                }
2450            }
2451
2452            private List<Type> visitIntersectionType(final IntersectionClassType it) {
2453                return it.getExplicitComponents();
2454            }
2455
2456        };
2457
2458    public boolean isDirectSuperInterface(TypeSymbol isym, TypeSymbol origin) {
2459        for (Type i2 : interfaces(origin.type)) {
2460            if (isym == i2.tsym) return true;
2461        }
2462        return false;
2463    }
2464    // </editor-fold>
2465
2466    // <editor-fold defaultstate="collapsed" desc="isDerivedRaw">
2467    Map<Type,Boolean> isDerivedRawCache = new HashMap<>();
2468
2469    public boolean isDerivedRaw(Type t) {
2470        Boolean result = isDerivedRawCache.get(t);
2471        if (result == null) {
2472            result = isDerivedRawInternal(t);
2473            isDerivedRawCache.put(t, result);
2474        }
2475        return result;
2476    }
2477
2478    public boolean isDerivedRawInternal(Type t) {
2479        if (t.isErroneous())
2480            return false;
2481        return
2482            t.isRaw() ||
2483            supertype(t) != Type.noType && isDerivedRaw(supertype(t)) ||
2484            isDerivedRaw(interfaces(t));
2485    }
2486
2487    public boolean isDerivedRaw(List<Type> ts) {
2488        List<Type> l = ts;
2489        while (l.nonEmpty() && !isDerivedRaw(l.head)) l = l.tail;
2490        return l.nonEmpty();
2491    }
2492    // </editor-fold>
2493
2494    // <editor-fold defaultstate="collapsed" desc="setBounds">
2495    /**
2496     * Set the bounds field of the given type variable to reflect a
2497     * (possibly multiple) list of bounds.
2498     * @param t                 a type variable
2499     * @param bounds            the bounds, must be nonempty
2500     * @param supertype         is objectType if all bounds are interfaces,
2501     *                          null otherwise.
2502     */
2503    public void setBounds(TypeVar t, List<Type> bounds) {
2504        setBounds(t, bounds, bounds.head.tsym.isInterface());
2505    }
2506
2507    /**
2508     * Same as {@link #setBounds(Type.TypeVar,List,Type)}, except that
2509     * third parameter is computed directly, as follows: if all
2510     * all bounds are interface types, the computed supertype is Object,
2511     * otherwise the supertype is simply left null (in this case, the supertype
2512     * is assumed to be the head of the bound list passed as second argument).
2513     * Note that this check might cause a symbol completion. Hence, this version of
2514     * setBounds may not be called during a classfile read.
2515     */
2516    public void setBounds(TypeVar t, List<Type> bounds, boolean allInterfaces) {
2517        t.bound = bounds.tail.isEmpty() ?
2518                bounds.head :
2519                makeCompoundType(bounds, allInterfaces);
2520        t.rank_field = -1;
2521    }
2522    // </editor-fold>
2523
2524    // <editor-fold defaultstate="collapsed" desc="getBounds">
2525    /**
2526     * Return list of bounds of the given type variable.
2527     */
2528    public List<Type> getBounds(TypeVar t) {
2529        if (t.bound.hasTag(NONE))
2530            return List.nil();
2531        else if (t.bound.isErroneous() || !t.bound.isCompound())
2532            return List.of(t.bound);
2533        else if ((erasure(t).tsym.flags() & INTERFACE) == 0)
2534            return interfaces(t).prepend(supertype(t));
2535        else
2536            // No superclass was given in bounds.
2537            // In this case, supertype is Object, erasure is first interface.
2538            return interfaces(t);
2539    }
2540    // </editor-fold>
2541
2542    // <editor-fold defaultstate="collapsed" desc="classBound">
2543    /**
2544     * If the given type is a (possibly selected) type variable,
2545     * return the bounding class of this type, otherwise return the
2546     * type itself.
2547     */
2548    public Type classBound(Type t) {
2549        return classBound.visit(t);
2550    }
2551    // where
2552        private UnaryVisitor<Type> classBound = new UnaryVisitor<Type>() {
2553
2554            public Type visitType(Type t, Void ignored) {
2555                return t;
2556            }
2557
2558            @Override
2559            public Type visitClassType(ClassType t, Void ignored) {
2560                Type outer1 = classBound(t.getEnclosingType());
2561                if (outer1 != t.getEnclosingType())
2562                    return new ClassType(outer1, t.getTypeArguments(), t.tsym,
2563                                         t.getMetadata());
2564                else
2565                    return t;
2566            }
2567
2568            @Override
2569            public Type visitTypeVar(TypeVar t, Void ignored) {
2570                return classBound(supertype(t));
2571            }
2572
2573            @Override
2574            public Type visitErrorType(ErrorType t, Void ignored) {
2575                return t;
2576            }
2577        };
2578    // </editor-fold>
2579
2580    // <editor-fold defaultstate="collapsed" desc="sub signature / override equivalence">
2581    /**
2582     * Returns true iff the first signature is a <em>sub
2583     * signature</em> of the other.  This is <b>not</b> an equivalence
2584     * relation.
2585     *
2586     * @jls section 8.4.2.
2587     * @see #overrideEquivalent(Type t, Type s)
2588     * @param t first signature (possibly raw).
2589     * @param s second signature (could be subjected to erasure).
2590     * @return true if t is a sub signature of s.
2591     */
2592    public boolean isSubSignature(Type t, Type s) {
2593        return isSubSignature(t, s, true);
2594    }
2595
2596    public boolean isSubSignature(Type t, Type s, boolean strict) {
2597        return hasSameArgs(t, s, strict) || hasSameArgs(t, erasure(s), strict);
2598    }
2599
2600    /**
2601     * Returns true iff these signatures are related by <em>override
2602     * equivalence</em>.  This is the natural extension of
2603     * isSubSignature to an equivalence relation.
2604     *
2605     * @jls section 8.4.2.
2606     * @see #isSubSignature(Type t, Type s)
2607     * @param t a signature (possible raw, could be subjected to
2608     * erasure).
2609     * @param s a signature (possible raw, could be subjected to
2610     * erasure).
2611     * @return true if either argument is a sub signature of the other.
2612     */
2613    public boolean overrideEquivalent(Type t, Type s) {
2614        return hasSameArgs(t, s) ||
2615            hasSameArgs(t, erasure(s)) || hasSameArgs(erasure(t), s);
2616    }
2617
2618    public boolean overridesObjectMethod(TypeSymbol origin, Symbol msym) {
2619        for (Symbol sym : syms.objectType.tsym.members().getSymbolsByName(msym.name)) {
2620            if (msym.overrides(sym, origin, Types.this, true)) {
2621                return true;
2622            }
2623        }
2624        return false;
2625    }
2626
2627    // <editor-fold defaultstate="collapsed" desc="Determining method implementation in given site">
2628    class ImplementationCache {
2629
2630        private WeakHashMap<MethodSymbol, SoftReference<Map<TypeSymbol, Entry>>> _map = new WeakHashMap<>();
2631
2632        class Entry {
2633            final MethodSymbol cachedImpl;
2634            final Filter<Symbol> implFilter;
2635            final boolean checkResult;
2636            final int prevMark;
2637
2638            public Entry(MethodSymbol cachedImpl,
2639                    Filter<Symbol> scopeFilter,
2640                    boolean checkResult,
2641                    int prevMark) {
2642                this.cachedImpl = cachedImpl;
2643                this.implFilter = scopeFilter;
2644                this.checkResult = checkResult;
2645                this.prevMark = prevMark;
2646            }
2647
2648            boolean matches(Filter<Symbol> scopeFilter, boolean checkResult, int mark) {
2649                return this.implFilter == scopeFilter &&
2650                        this.checkResult == checkResult &&
2651                        this.prevMark == mark;
2652            }
2653        }
2654
2655        MethodSymbol get(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2656            SoftReference<Map<TypeSymbol, Entry>> ref_cache = _map.get(ms);
2657            Map<TypeSymbol, Entry> cache = ref_cache != null ? ref_cache.get() : null;
2658            if (cache == null) {
2659                cache = new HashMap<>();
2660                _map.put(ms, new SoftReference<>(cache));
2661            }
2662            Entry e = cache.get(origin);
2663            CompoundScope members = membersClosure(origin.type, true);
2664            if (e == null ||
2665                    !e.matches(implFilter, checkResult, members.getMark())) {
2666                MethodSymbol impl = implementationInternal(ms, origin, checkResult, implFilter);
2667                cache.put(origin, new Entry(impl, implFilter, checkResult, members.getMark()));
2668                return impl;
2669            }
2670            else {
2671                return e.cachedImpl;
2672            }
2673        }
2674
2675        private MethodSymbol implementationInternal(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2676            for (Type t = origin.type; t.hasTag(CLASS) || t.hasTag(TYPEVAR); t = supertype(t)) {
2677                while (t.hasTag(TYPEVAR))
2678                    t = t.getUpperBound();
2679                TypeSymbol c = t.tsym;
2680                Symbol bestSoFar = null;
2681                for (Symbol sym : c.members().getSymbolsByName(ms.name, implFilter)) {
2682                    if (sym != null && sym.overrides(ms, origin, Types.this, checkResult)) {
2683                        bestSoFar = sym;
2684                        if ((sym.flags() & ABSTRACT) == 0) {
2685                            //if concrete impl is found, exit immediately
2686                            break;
2687                        }
2688                    }
2689                }
2690                if (bestSoFar != null) {
2691                    //return either the (only) concrete implementation or the first abstract one
2692                    return (MethodSymbol)bestSoFar;
2693                }
2694            }
2695            return null;
2696        }
2697    }
2698
2699    private ImplementationCache implCache = new ImplementationCache();
2700
2701    public MethodSymbol implementation(MethodSymbol ms, TypeSymbol origin, boolean checkResult, Filter<Symbol> implFilter) {
2702        return implCache.get(ms, origin, checkResult, implFilter);
2703    }
2704    // </editor-fold>
2705
2706    // <editor-fold defaultstate="collapsed" desc="compute transitive closure of all members in given site">
2707    class MembersClosureCache extends SimpleVisitor<CompoundScope, Boolean> {
2708
2709        private WeakHashMap<TypeSymbol, Entry> _map = new WeakHashMap<>();
2710
2711        class Entry {
2712            final boolean skipInterfaces;
2713            final CompoundScope compoundScope;
2714
2715            public Entry(boolean skipInterfaces, CompoundScope compoundScope) {
2716                this.skipInterfaces = skipInterfaces;
2717                this.compoundScope = compoundScope;
2718            }
2719
2720            boolean matches(boolean skipInterfaces) {
2721                return this.skipInterfaces == skipInterfaces;
2722            }
2723        }
2724
2725        List<TypeSymbol> seenTypes = List.nil();
2726
2727        /** members closure visitor methods **/
2728
2729        public CompoundScope visitType(Type t, Boolean skipInterface) {
2730            return null;
2731        }
2732
2733        @Override
2734        public CompoundScope visitClassType(ClassType t, Boolean skipInterface) {
2735            if (seenTypes.contains(t.tsym)) {
2736                //this is possible when an interface is implemented in multiple
2737                //superclasses, or when a classs hierarchy is circular - in such
2738                //cases we don't need to recurse (empty scope is returned)
2739                return new CompoundScope(t.tsym);
2740            }
2741            try {
2742                seenTypes = seenTypes.prepend(t.tsym);
2743                ClassSymbol csym = (ClassSymbol)t.tsym;
2744                Entry e = _map.get(csym);
2745                if (e == null || !e.matches(skipInterface)) {
2746                    CompoundScope membersClosure = new CompoundScope(csym);
2747                    if (!skipInterface) {
2748                        for (Type i : interfaces(t)) {
2749                            membersClosure.prependSubScope(visit(i, skipInterface));
2750                        }
2751                    }
2752                    membersClosure.prependSubScope(visit(supertype(t), skipInterface));
2753                    membersClosure.prependSubScope(csym.members());
2754                    e = new Entry(skipInterface, membersClosure);
2755                    _map.put(csym, e);
2756                }
2757                return e.compoundScope;
2758            }
2759            finally {
2760                seenTypes = seenTypes.tail;
2761            }
2762        }
2763
2764        @Override
2765        public CompoundScope visitTypeVar(TypeVar t, Boolean skipInterface) {
2766            return visit(t.getUpperBound(), skipInterface);
2767        }
2768    }
2769
2770    private MembersClosureCache membersCache = new MembersClosureCache();
2771
2772    public CompoundScope membersClosure(Type site, boolean skipInterface) {
2773        return membersCache.visit(site, skipInterface);
2774    }
2775    // </editor-fold>
2776
2777
2778    //where
2779    public List<MethodSymbol> interfaceCandidates(Type site, MethodSymbol ms) {
2780        Filter<Symbol> filter = new MethodFilter(ms, site);
2781        List<MethodSymbol> candidates = List.nil();
2782            for (Symbol s : membersClosure(site, false).getSymbols(filter)) {
2783                if (!site.tsym.isInterface() && !s.owner.isInterface()) {
2784                    return List.of((MethodSymbol)s);
2785                } else if (!candidates.contains(s)) {
2786                    candidates = candidates.prepend((MethodSymbol)s);
2787                }
2788            }
2789            return prune(candidates);
2790        }
2791
2792    public List<MethodSymbol> prune(List<MethodSymbol> methods) {
2793        ListBuffer<MethodSymbol> methodsMin = new ListBuffer<>();
2794        for (MethodSymbol m1 : methods) {
2795            boolean isMin_m1 = true;
2796            for (MethodSymbol m2 : methods) {
2797                if (m1 == m2) continue;
2798                if (m2.owner != m1.owner &&
2799                        asSuper(m2.owner.type, m1.owner) != null) {
2800                    isMin_m1 = false;
2801                    break;
2802                }
2803            }
2804            if (isMin_m1)
2805                methodsMin.append(m1);
2806        }
2807        return methodsMin.toList();
2808    }
2809    // where
2810            private class MethodFilter implements Filter<Symbol> {
2811
2812                Symbol msym;
2813                Type site;
2814
2815                MethodFilter(Symbol msym, Type site) {
2816                    this.msym = msym;
2817                    this.site = site;
2818                }
2819
2820                public boolean accepts(Symbol s) {
2821                    return s.kind == MTH &&
2822                            s.name == msym.name &&
2823                            (s.flags() & SYNTHETIC) == 0 &&
2824                            s.isInheritedIn(site.tsym, Types.this) &&
2825                            overrideEquivalent(memberType(site, s), memberType(site, msym));
2826                }
2827            }
2828    // </editor-fold>
2829
2830    /**
2831     * Does t have the same arguments as s?  It is assumed that both
2832     * types are (possibly polymorphic) method types.  Monomorphic
2833     * method types "have the same arguments", if their argument lists
2834     * are equal.  Polymorphic method types "have the same arguments",
2835     * if they have the same arguments after renaming all type
2836     * variables of one to corresponding type variables in the other,
2837     * where correspondence is by position in the type parameter list.
2838     */
2839    public boolean hasSameArgs(Type t, Type s) {
2840        return hasSameArgs(t, s, true);
2841    }
2842
2843    public boolean hasSameArgs(Type t, Type s, boolean strict) {
2844        return hasSameArgs(t, s, strict ? hasSameArgs_strict : hasSameArgs_nonstrict);
2845    }
2846
2847    private boolean hasSameArgs(Type t, Type s, TypeRelation hasSameArgs) {
2848        return hasSameArgs.visit(t, s);
2849    }
2850    // where
2851        private class HasSameArgs extends TypeRelation {
2852
2853            boolean strict;
2854
2855            public HasSameArgs(boolean strict) {
2856                this.strict = strict;
2857            }
2858
2859            public Boolean visitType(Type t, Type s) {
2860                throw new AssertionError();
2861            }
2862
2863            @Override
2864            public Boolean visitMethodType(MethodType t, Type s) {
2865                return s.hasTag(METHOD)
2866                    && containsTypeEquivalent(t.argtypes, s.getParameterTypes());
2867            }
2868
2869            @Override
2870            public Boolean visitForAll(ForAll t, Type s) {
2871                if (!s.hasTag(FORALL))
2872                    return strict ? false : visitMethodType(t.asMethodType(), s);
2873
2874                ForAll forAll = (ForAll)s;
2875                return hasSameBounds(t, forAll)
2876                    && visit(t.qtype, subst(forAll.qtype, forAll.tvars, t.tvars));
2877            }
2878
2879            @Override
2880            public Boolean visitErrorType(ErrorType t, Type s) {
2881                return false;
2882            }
2883        }
2884
2885    TypeRelation hasSameArgs_strict = new HasSameArgs(true);
2886        TypeRelation hasSameArgs_nonstrict = new HasSameArgs(false);
2887
2888    // </editor-fold>
2889
2890    // <editor-fold defaultstate="collapsed" desc="subst">
2891    public List<Type> subst(List<Type> ts,
2892                            List<Type> from,
2893                            List<Type> to) {
2894        return new Subst(from, to).subst(ts);
2895    }
2896
2897    /**
2898     * Substitute all occurrences of a type in `from' with the
2899     * corresponding type in `to' in 't'. Match lists `from' and `to'
2900     * from the right: If lists have different length, discard leading
2901     * elements of the longer list.
2902     */
2903    public Type subst(Type t, List<Type> from, List<Type> to) {
2904        return new Subst(from, to).subst(t);
2905    }
2906
2907    private class Subst extends UnaryVisitor<Type> {
2908        List<Type> from;
2909        List<Type> to;
2910
2911        public Subst(List<Type> from, List<Type> to) {
2912            int fromLength = from.length();
2913            int toLength = to.length();
2914            while (fromLength > toLength) {
2915                fromLength--;
2916                from = from.tail;
2917            }
2918            while (fromLength < toLength) {
2919                toLength--;
2920                to = to.tail;
2921            }
2922            this.from = from;
2923            this.to = to;
2924        }
2925
2926        Type subst(Type t) {
2927            if (from.tail == null)
2928                return t;
2929            else
2930                return visit(t);
2931            }
2932
2933        List<Type> subst(List<Type> ts) {
2934            if (from.tail == null)
2935                return ts;
2936            boolean wild = false;
2937            if (ts.nonEmpty() && from.nonEmpty()) {
2938                Type head1 = subst(ts.head);
2939                List<Type> tail1 = subst(ts.tail);
2940                if (head1 != ts.head || tail1 != ts.tail)
2941                    return tail1.prepend(head1);
2942            }
2943            return ts;
2944        }
2945
2946        public Type visitType(Type t, Void ignored) {
2947            return t;
2948        }
2949
2950        @Override
2951        public Type visitMethodType(MethodType t, Void ignored) {
2952            List<Type> argtypes = subst(t.argtypes);
2953            Type restype = subst(t.restype);
2954            List<Type> thrown = subst(t.thrown);
2955            if (argtypes == t.argtypes &&
2956                restype == t.restype &&
2957                thrown == t.thrown)
2958                return t;
2959            else
2960                return new MethodType(argtypes, restype, thrown, t.tsym);
2961        }
2962
2963        @Override
2964        public Type visitTypeVar(TypeVar t, Void ignored) {
2965            for (List<Type> from = this.from, to = this.to;
2966                 from.nonEmpty();
2967                 from = from.tail, to = to.tail) {
2968                if (t == from.head) {
2969                    return to.head.withTypeVar(t);
2970                }
2971            }
2972            return t;
2973        }
2974
2975        @Override
2976        public Type visitUndetVar(UndetVar t, Void ignored) {
2977            //do nothing - we should not replace inside undet variables
2978            return t;
2979        }
2980
2981        @Override
2982        public Type visitClassType(ClassType t, Void ignored) {
2983            if (!t.isCompound()) {
2984                List<Type> typarams = t.getTypeArguments();
2985                List<Type> typarams1 = subst(typarams);
2986                Type outer = t.getEnclosingType();
2987                Type outer1 = subst(outer);
2988                if (typarams1 == typarams && outer1 == outer)
2989                    return t;
2990                else
2991                    return new ClassType(outer1, typarams1, t.tsym,
2992                                         t.getMetadata());
2993            } else {
2994                Type st = subst(supertype(t));
2995                List<Type> is = subst(interfaces(t));
2996                if (st == supertype(t) && is == interfaces(t))
2997                    return t;
2998                else
2999                    return makeCompoundType(is.prepend(st));
3000            }
3001        }
3002
3003        @Override
3004        public Type visitWildcardType(WildcardType t, Void ignored) {
3005            Type bound = t.type;
3006            if (t.kind != BoundKind.UNBOUND)
3007                bound = subst(bound);
3008            if (bound == t.type) {
3009                return t;
3010            } else {
3011                if (t.isExtendsBound() && bound.isExtendsBound())
3012                    bound = wildUpperBound(bound);
3013                return new WildcardType(bound, t.kind, syms.boundClass,
3014                                        t.bound, t.getMetadata());
3015            }
3016        }
3017
3018        @Override
3019        public Type visitArrayType(ArrayType t, Void ignored) {
3020            Type elemtype = subst(t.elemtype);
3021            if (elemtype == t.elemtype)
3022                return t;
3023            else
3024                return new ArrayType(elemtype, t.tsym, t.getMetadata());
3025        }
3026
3027        @Override
3028        public Type visitForAll(ForAll t, Void ignored) {
3029            if (Type.containsAny(to, t.tvars)) {
3030                //perform alpha-renaming of free-variables in 't'
3031                //if 'to' types contain variables that are free in 't'
3032                List<Type> freevars = newInstances(t.tvars);
3033                t = new ForAll(freevars,
3034                               Types.this.subst(t.qtype, t.tvars, freevars));
3035            }
3036            List<Type> tvars1 = substBounds(t.tvars, from, to);
3037            Type qtype1 = subst(t.qtype);
3038            if (tvars1 == t.tvars && qtype1 == t.qtype) {
3039                return t;
3040            } else if (tvars1 == t.tvars) {
3041                return new ForAll(tvars1, qtype1);
3042            } else {
3043                return new ForAll(tvars1,
3044                                  Types.this.subst(qtype1, t.tvars, tvars1));
3045            }
3046        }
3047
3048        @Override
3049        public Type visitErrorType(ErrorType t, Void ignored) {
3050            return t;
3051        }
3052    }
3053
3054    public List<Type> substBounds(List<Type> tvars,
3055                                  List<Type> from,
3056                                  List<Type> to) {
3057        if (tvars.isEmpty())
3058            return tvars;
3059        ListBuffer<Type> newBoundsBuf = new ListBuffer<>();
3060        boolean changed = false;
3061        // calculate new bounds
3062        for (Type t : tvars) {
3063            TypeVar tv = (TypeVar) t;
3064            Type bound = subst(tv.bound, from, to);
3065            if (bound != tv.bound)
3066                changed = true;
3067            newBoundsBuf.append(bound);
3068        }
3069        if (!changed)
3070            return tvars;
3071        ListBuffer<Type> newTvars = new ListBuffer<>();
3072        // create new type variables without bounds
3073        for (Type t : tvars) {
3074            newTvars.append(new TypeVar(t.tsym, null, syms.botType,
3075                                        t.getMetadata()));
3076        }
3077        // the new bounds should use the new type variables in place
3078        // of the old
3079        List<Type> newBounds = newBoundsBuf.toList();
3080        from = tvars;
3081        to = newTvars.toList();
3082        for (; !newBounds.isEmpty(); newBounds = newBounds.tail) {
3083            newBounds.head = subst(newBounds.head, from, to);
3084        }
3085        newBounds = newBoundsBuf.toList();
3086        // set the bounds of new type variables to the new bounds
3087        for (Type t : newTvars.toList()) {
3088            TypeVar tv = (TypeVar) t;
3089            tv.bound = newBounds.head;
3090            newBounds = newBounds.tail;
3091        }
3092        return newTvars.toList();
3093    }
3094
3095    public TypeVar substBound(TypeVar t, List<Type> from, List<Type> to) {
3096        Type bound1 = subst(t.bound, from, to);
3097        if (bound1 == t.bound)
3098            return t;
3099        else {
3100            // create new type variable without bounds
3101            TypeVar tv = new TypeVar(t.tsym, null, syms.botType,
3102                                     t.getMetadata());
3103            // the new bound should use the new type variable in place
3104            // of the old
3105            tv.bound = subst(bound1, List.<Type>of(t), List.<Type>of(tv));
3106            return tv;
3107        }
3108    }
3109    // </editor-fold>
3110
3111    // <editor-fold defaultstate="collapsed" desc="hasSameBounds">
3112    /**
3113     * Does t have the same bounds for quantified variables as s?
3114     */
3115    public boolean hasSameBounds(ForAll t, ForAll s) {
3116        List<Type> l1 = t.tvars;
3117        List<Type> l2 = s.tvars;
3118        while (l1.nonEmpty() && l2.nonEmpty() &&
3119               isSameType(l1.head.getUpperBound(),
3120                          subst(l2.head.getUpperBound(),
3121                                s.tvars,
3122                                t.tvars))) {
3123            l1 = l1.tail;
3124            l2 = l2.tail;
3125        }
3126        return l1.isEmpty() && l2.isEmpty();
3127    }
3128    // </editor-fold>
3129
3130    // <editor-fold defaultstate="collapsed" desc="newInstances">
3131    /** Create new vector of type variables from list of variables
3132     *  changing all recursive bounds from old to new list.
3133     */
3134    public List<Type> newInstances(List<Type> tvars) {
3135        List<Type> tvars1 = Type.map(tvars, newInstanceFun);
3136        for (List<Type> l = tvars1; l.nonEmpty(); l = l.tail) {
3137            TypeVar tv = (TypeVar) l.head;
3138            tv.bound = subst(tv.bound, tvars, tvars1);
3139        }
3140        return tvars1;
3141    }
3142    private static final Mapping newInstanceFun = new Mapping("newInstanceFun") {
3143            public Type apply(Type t) { return new TypeVar(t.tsym, t.getUpperBound(), t.getLowerBound(), t.getMetadata()); }
3144        };
3145    // </editor-fold>
3146
3147    public Type createMethodTypeWithParameters(Type original, List<Type> newParams) {
3148        return original.accept(methodWithParameters, newParams);
3149    }
3150    // where
3151        private final MapVisitor<List<Type>> methodWithParameters = new MapVisitor<List<Type>>() {
3152            public Type visitType(Type t, List<Type> newParams) {
3153                throw new IllegalArgumentException("Not a method type: " + t);
3154            }
3155            public Type visitMethodType(MethodType t, List<Type> newParams) {
3156                return new MethodType(newParams, t.restype, t.thrown, t.tsym);
3157            }
3158            public Type visitForAll(ForAll t, List<Type> newParams) {
3159                return new ForAll(t.tvars, t.qtype.accept(this, newParams));
3160            }
3161        };
3162
3163    public Type createMethodTypeWithThrown(Type original, List<Type> newThrown) {
3164        return original.accept(methodWithThrown, newThrown);
3165    }
3166    // where
3167        private final MapVisitor<List<Type>> methodWithThrown = new MapVisitor<List<Type>>() {
3168            public Type visitType(Type t, List<Type> newThrown) {
3169                throw new IllegalArgumentException("Not a method type: " + t);
3170            }
3171            public Type visitMethodType(MethodType t, List<Type> newThrown) {
3172                return new MethodType(t.argtypes, t.restype, newThrown, t.tsym);
3173            }
3174            public Type visitForAll(ForAll t, List<Type> newThrown) {
3175                return new ForAll(t.tvars, t.qtype.accept(this, newThrown));
3176            }
3177        };
3178
3179    public Type createMethodTypeWithReturn(Type original, Type newReturn) {
3180        return original.accept(methodWithReturn, newReturn);
3181    }
3182    // where
3183        private final MapVisitor<Type> methodWithReturn = new MapVisitor<Type>() {
3184            public Type visitType(Type t, Type newReturn) {
3185                throw new IllegalArgumentException("Not a method type: " + t);
3186            }
3187            public Type visitMethodType(MethodType t, Type newReturn) {
3188                return new MethodType(t.argtypes, newReturn, t.thrown, t.tsym);
3189            }
3190            public Type visitForAll(ForAll t, Type newReturn) {
3191                return new ForAll(t.tvars, t.qtype.accept(this, newReturn));
3192            }
3193        };
3194
3195    // <editor-fold defaultstate="collapsed" desc="createErrorType">
3196    public Type createErrorType(Type originalType) {
3197        return new ErrorType(originalType, syms.errSymbol);
3198    }
3199
3200    public Type createErrorType(ClassSymbol c, Type originalType) {
3201        return new ErrorType(c, originalType);
3202    }
3203
3204    public Type createErrorType(Name name, TypeSymbol container, Type originalType) {
3205        return new ErrorType(name, container, originalType);
3206    }
3207    // </editor-fold>
3208
3209    // <editor-fold defaultstate="collapsed" desc="rank">
3210    /**
3211     * The rank of a class is the length of the longest path between
3212     * the class and java.lang.Object in the class inheritance
3213     * graph. Undefined for all but reference types.
3214     */
3215    public int rank(Type t) {
3216        switch(t.getTag()) {
3217        case CLASS: {
3218            ClassType cls = (ClassType)t;
3219            if (cls.rank_field < 0) {
3220                Name fullname = cls.tsym.getQualifiedName();
3221                if (fullname == names.java_lang_Object)
3222                    cls.rank_field = 0;
3223                else {
3224                    int r = rank(supertype(cls));
3225                    for (List<Type> l = interfaces(cls);
3226                         l.nonEmpty();
3227                         l = l.tail) {
3228                        if (rank(l.head) > r)
3229                            r = rank(l.head);
3230                    }
3231                    cls.rank_field = r + 1;
3232                }
3233            }
3234            return cls.rank_field;
3235        }
3236        case TYPEVAR: {
3237            TypeVar tvar = (TypeVar)t;
3238            if (tvar.rank_field < 0) {
3239                int r = rank(supertype(tvar));
3240                for (List<Type> l = interfaces(tvar);
3241                     l.nonEmpty();
3242                     l = l.tail) {
3243                    if (rank(l.head) > r) r = rank(l.head);
3244                }
3245                tvar.rank_field = r + 1;
3246            }
3247            return tvar.rank_field;
3248        }
3249        case ERROR:
3250        case NONE:
3251            return 0;
3252        default:
3253            throw new AssertionError();
3254        }
3255    }
3256    // </editor-fold>
3257
3258    /**
3259     * Helper method for generating a string representation of a given type
3260     * accordingly to a given locale
3261     */
3262    public String toString(Type t, Locale locale) {
3263        return Printer.createStandardPrinter(messages).visit(t, locale);
3264    }
3265
3266    /**
3267     * Helper method for generating a string representation of a given type
3268     * accordingly to a given locale
3269     */
3270    public String toString(Symbol t, Locale locale) {
3271        return Printer.createStandardPrinter(messages).visit(t, locale);
3272    }
3273
3274    // <editor-fold defaultstate="collapsed" desc="toString">
3275    /**
3276     * This toString is slightly more descriptive than the one on Type.
3277     *
3278     * @deprecated Types.toString(Type t, Locale l) provides better support
3279     * for localization
3280     */
3281    @Deprecated
3282    public String toString(Type t) {
3283        if (t.hasTag(FORALL)) {
3284            ForAll forAll = (ForAll)t;
3285            return typaramsString(forAll.tvars) + forAll.qtype;
3286        }
3287        return "" + t;
3288    }
3289    // where
3290        private String typaramsString(List<Type> tvars) {
3291            StringBuilder s = new StringBuilder();
3292            s.append('<');
3293            boolean first = true;
3294            for (Type t : tvars) {
3295                if (!first) s.append(", ");
3296                first = false;
3297                appendTyparamString(((TypeVar)t), s);
3298            }
3299            s.append('>');
3300            return s.toString();
3301        }
3302        private void appendTyparamString(TypeVar t, StringBuilder buf) {
3303            buf.append(t);
3304            if (t.bound == null ||
3305                t.bound.tsym.getQualifiedName() == names.java_lang_Object)
3306                return;
3307            buf.append(" extends "); // Java syntax; no need for i18n
3308            Type bound = t.bound;
3309            if (!bound.isCompound()) {
3310                buf.append(bound);
3311            } else if ((erasure(t).tsym.flags() & INTERFACE) == 0) {
3312                buf.append(supertype(t));
3313                for (Type intf : interfaces(t)) {
3314                    buf.append('&');
3315                    buf.append(intf);
3316                }
3317            } else {
3318                // No superclass was given in bounds.
3319                // In this case, supertype is Object, erasure is first interface.
3320                boolean first = true;
3321                for (Type intf : interfaces(t)) {
3322                    if (!first) buf.append('&');
3323                    first = false;
3324                    buf.append(intf);
3325                }
3326            }
3327        }
3328    // </editor-fold>
3329
3330    // <editor-fold defaultstate="collapsed" desc="Determining least upper bounds of types">
3331    /**
3332     * A cache for closures.
3333     *
3334     * <p>A closure is a list of all the supertypes and interfaces of
3335     * a class or interface type, ordered by ClassSymbol.precedes
3336     * (that is, subclasses come first, arbitrary but fixed
3337     * otherwise).
3338     */
3339    private Map<Type,List<Type>> closureCache = new HashMap<>();
3340
3341    /**
3342     * Returns the closure of a class or interface type.
3343     */
3344    public List<Type> closure(Type t) {
3345        List<Type> cl = closureCache.get(t);
3346        if (cl == null) {
3347            Type st = supertype(t);
3348            if (!t.isCompound()) {
3349                if (st.hasTag(CLASS)) {
3350                    cl = insert(closure(st), t);
3351                } else if (st.hasTag(TYPEVAR)) {
3352                    cl = closure(st).prepend(t);
3353                } else {
3354                    cl = List.of(t);
3355                }
3356            } else {
3357                cl = closure(supertype(t));
3358            }
3359            for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail)
3360                cl = union(cl, closure(l.head));
3361            closureCache.put(t, cl);
3362        }
3363        return cl;
3364    }
3365
3366    /**
3367     * Insert a type in a closure
3368     */
3369    public List<Type> insert(List<Type> cl, Type t) {
3370        if (cl.isEmpty()) {
3371            return cl.prepend(t);
3372        } else if (t.tsym == cl.head.tsym) {
3373            return cl;
3374        } else if (t.tsym.precedes(cl.head.tsym, this)) {
3375            return cl.prepend(t);
3376        } else {
3377            // t comes after head, or the two are unrelated
3378            return insert(cl.tail, t).prepend(cl.head);
3379        }
3380    }
3381
3382    /**
3383     * Form the union of two closures
3384     */
3385    public List<Type> union(List<Type> cl1, List<Type> cl2) {
3386        if (cl1.isEmpty()) {
3387            return cl2;
3388        } else if (cl2.isEmpty()) {
3389            return cl1;
3390        } else if (cl1.head.tsym == cl2.head.tsym) {
3391            return union(cl1.tail, cl2.tail).prepend(cl1.head);
3392        } else if (cl1.head.tsym.precedes(cl2.head.tsym, this)) {
3393            return union(cl1.tail, cl2).prepend(cl1.head);
3394        } else if (cl2.head.tsym.precedes(cl1.head.tsym, this)) {
3395            return union(cl1, cl2.tail).prepend(cl2.head);
3396        } else {
3397            // unrelated types
3398            return union(cl1.tail, cl2).prepend(cl1.head);
3399        }
3400    }
3401
3402    /**
3403     * Intersect two closures
3404     */
3405    public List<Type> intersect(List<Type> cl1, List<Type> cl2) {
3406        if (cl1 == cl2)
3407            return cl1;
3408        if (cl1.isEmpty() || cl2.isEmpty())
3409            return List.nil();
3410        if (cl1.head.tsym.precedes(cl2.head.tsym, this))
3411            return intersect(cl1.tail, cl2);
3412        if (cl2.head.tsym.precedes(cl1.head.tsym, this))
3413            return intersect(cl1, cl2.tail);
3414        if (isSameType(cl1.head, cl2.head))
3415            return intersect(cl1.tail, cl2.tail).prepend(cl1.head);
3416        if (cl1.head.tsym == cl2.head.tsym &&
3417            cl1.head.hasTag(CLASS) && cl2.head.hasTag(CLASS)) {
3418            if (cl1.head.isParameterized() && cl2.head.isParameterized()) {
3419                Type merge = merge(cl1.head,cl2.head);
3420                return intersect(cl1.tail, cl2.tail).prepend(merge);
3421            }
3422            if (cl1.head.isRaw() || cl2.head.isRaw())
3423                return intersect(cl1.tail, cl2.tail).prepend(erasure(cl1.head));
3424        }
3425        return intersect(cl1.tail, cl2.tail);
3426    }
3427    // where
3428        class TypePair {
3429            final Type t1;
3430            final Type t2;
3431            boolean strict;
3432
3433            TypePair(Type t1, Type t2) {
3434                this(t1, t2, false);
3435            }
3436
3437            TypePair(Type t1, Type t2, boolean strict) {
3438                this.t1 = t1;
3439                this.t2 = t2;
3440                this.strict = strict;
3441            }
3442            @Override
3443            public int hashCode() {
3444                return 127 * Types.this.hashCode(t1) + Types.this.hashCode(t2);
3445            }
3446            @Override
3447            public boolean equals(Object obj) {
3448                if (!(obj instanceof TypePair))
3449                    return false;
3450                TypePair typePair = (TypePair)obj;
3451                return isSameType(t1, typePair.t1, strict)
3452                    && isSameType(t2, typePair.t2, strict);
3453            }
3454        }
3455        Set<TypePair> mergeCache = new HashSet<>();
3456        private Type merge(Type c1, Type c2) {
3457            ClassType class1 = (ClassType) c1;
3458            List<Type> act1 = class1.getTypeArguments();
3459            ClassType class2 = (ClassType) c2;
3460            List<Type> act2 = class2.getTypeArguments();
3461            ListBuffer<Type> merged = new ListBuffer<>();
3462            List<Type> typarams = class1.tsym.type.getTypeArguments();
3463
3464            while (act1.nonEmpty() && act2.nonEmpty() && typarams.nonEmpty()) {
3465                if (containsType(act1.head, act2.head)) {
3466                    merged.append(act1.head);
3467                } else if (containsType(act2.head, act1.head)) {
3468                    merged.append(act2.head);
3469                } else {
3470                    TypePair pair = new TypePair(c1, c2);
3471                    Type m;
3472                    if (mergeCache.add(pair)) {
3473                        m = new WildcardType(lub(wildUpperBound(act1.head),
3474                                                 wildUpperBound(act2.head)),
3475                                             BoundKind.EXTENDS,
3476                                             syms.boundClass);
3477                        mergeCache.remove(pair);
3478                    } else {
3479                        m = new WildcardType(syms.objectType,
3480                                             BoundKind.UNBOUND,
3481                                             syms.boundClass);
3482                    }
3483                    merged.append(m.withTypeVar(typarams.head));
3484                }
3485                act1 = act1.tail;
3486                act2 = act2.tail;
3487                typarams = typarams.tail;
3488            }
3489            Assert.check(act1.isEmpty() && act2.isEmpty() && typarams.isEmpty());
3490            // There is no spec detailing how type annotations are to
3491            // be inherited.  So set it to noAnnotations for now
3492            return new ClassType(class1.getEnclosingType(), merged.toList(),
3493                                 class1.tsym);
3494        }
3495
3496    /**
3497     * Return the minimum type of a closure, a compound type if no
3498     * unique minimum exists.
3499     */
3500    private Type compoundMin(List<Type> cl) {
3501        if (cl.isEmpty()) return syms.objectType;
3502        List<Type> compound = closureMin(cl);
3503        if (compound.isEmpty())
3504            return null;
3505        else if (compound.tail.isEmpty())
3506            return compound.head;
3507        else
3508            return makeCompoundType(compound);
3509    }
3510
3511    /**
3512     * Return the minimum types of a closure, suitable for computing
3513     * compoundMin or glb.
3514     */
3515    private List<Type> closureMin(List<Type> cl) {
3516        ListBuffer<Type> classes = new ListBuffer<>();
3517        ListBuffer<Type> interfaces = new ListBuffer<>();
3518        Set<Type> toSkip = new HashSet<>();
3519        while (!cl.isEmpty()) {
3520            Type current = cl.head;
3521            boolean keep = !toSkip.contains(current);
3522            if (keep && current.hasTag(TYPEVAR)) {
3523                // skip lower-bounded variables with a subtype in cl.tail
3524                for (Type t : cl.tail) {
3525                    if (isSubtypeNoCapture(t, current)) {
3526                        keep = false;
3527                        break;
3528                    }
3529                }
3530            }
3531            if (keep) {
3532                if (current.isInterface())
3533                    interfaces.append(current);
3534                else
3535                    classes.append(current);
3536                for (Type t : cl.tail) {
3537                    // skip supertypes of 'current' in cl.tail
3538                    if (isSubtypeNoCapture(current, t))
3539                        toSkip.add(t);
3540                }
3541            }
3542            cl = cl.tail;
3543        }
3544        return classes.appendList(interfaces).toList();
3545    }
3546
3547    /**
3548     * Return the least upper bound of list of types.  if the lub does
3549     * not exist return null.
3550     */
3551    public Type lub(List<Type> ts) {
3552        return lub(ts.toArray(new Type[ts.length()]));
3553    }
3554
3555    /**
3556     * Return the least upper bound (lub) of set of types.  If the lub
3557     * does not exist return the type of null (bottom).
3558     */
3559    public Type lub(Type... ts) {
3560        final int UNKNOWN_BOUND = 0;
3561        final int ARRAY_BOUND = 1;
3562        final int CLASS_BOUND = 2;
3563
3564        int[] kinds = new int[ts.length];
3565
3566        int boundkind = UNKNOWN_BOUND;
3567        for (int i = 0 ; i < ts.length ; i++) {
3568            Type t = ts[i];
3569            switch (t.getTag()) {
3570            case CLASS:
3571                boundkind |= kinds[i] = CLASS_BOUND;
3572                break;
3573            case ARRAY:
3574                boundkind |= kinds[i] = ARRAY_BOUND;
3575                break;
3576            case  TYPEVAR:
3577                do {
3578                    t = t.getUpperBound();
3579                } while (t.hasTag(TYPEVAR));
3580                if (t.hasTag(ARRAY)) {
3581                    boundkind |= kinds[i] = ARRAY_BOUND;
3582                } else {
3583                    boundkind |= kinds[i] = CLASS_BOUND;
3584                }
3585                break;
3586            default:
3587                kinds[i] = UNKNOWN_BOUND;
3588                if (t.isPrimitive())
3589                    return syms.errType;
3590            }
3591        }
3592        switch (boundkind) {
3593        case 0:
3594            return syms.botType;
3595
3596        case ARRAY_BOUND:
3597            // calculate lub(A[], B[])
3598            Type[] elements = new Type[ts.length];
3599            for (int i = 0 ; i < ts.length ; i++) {
3600                Type elem = elements[i] = elemTypeFun.apply(ts[i]);
3601                if (elem.isPrimitive()) {
3602                    // if a primitive type is found, then return
3603                    // arraySuperType unless all the types are the
3604                    // same
3605                    Type first = ts[0];
3606                    for (int j = 1 ; j < ts.length ; j++) {
3607                        if (!isSameType(first, ts[j])) {
3608                             // lub(int[], B[]) is Cloneable & Serializable
3609                            return arraySuperType();
3610                        }
3611                    }
3612                    // all the array types are the same, return one
3613                    // lub(int[], int[]) is int[]
3614                    return first;
3615                }
3616            }
3617            // lub(A[], B[]) is lub(A, B)[]
3618            return new ArrayType(lub(elements), syms.arrayClass);
3619
3620        case CLASS_BOUND:
3621            // calculate lub(A, B)
3622            int startIdx = 0;
3623            for (int i = 0; i < ts.length ; i++) {
3624                Type t = ts[i];
3625                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR)) {
3626                    break;
3627                } else {
3628                    startIdx++;
3629                }
3630            }
3631            Assert.check(startIdx < ts.length);
3632            //step 1 - compute erased candidate set (EC)
3633            List<Type> cl = erasedSupertypes(ts[startIdx]);
3634            for (int i = startIdx + 1 ; i < ts.length ; i++) {
3635                Type t = ts[i];
3636                if (t.hasTag(CLASS) || t.hasTag(TYPEVAR))
3637                    cl = intersect(cl, erasedSupertypes(t));
3638            }
3639            //step 2 - compute minimal erased candidate set (MEC)
3640            List<Type> mec = closureMin(cl);
3641            //step 3 - for each element G in MEC, compute lci(Inv(G))
3642            List<Type> candidates = List.nil();
3643            for (Type erasedSupertype : mec) {
3644                List<Type> lci = List.of(asSuper(ts[startIdx], erasedSupertype.tsym));
3645                for (int i = startIdx + 1 ; i < ts.length ; i++) {
3646                    Type superType = asSuper(ts[i], erasedSupertype.tsym);
3647                    lci = intersect(lci, superType != null ? List.of(superType) : List.<Type>nil());
3648                }
3649                candidates = candidates.appendList(lci);
3650            }
3651            //step 4 - let MEC be { G1, G2 ... Gn }, then we have that
3652            //lub = lci(Inv(G1)) & lci(Inv(G2)) & ... & lci(Inv(Gn))
3653            return compoundMin(candidates);
3654
3655        default:
3656            // calculate lub(A, B[])
3657            List<Type> classes = List.of(arraySuperType());
3658            for (int i = 0 ; i < ts.length ; i++) {
3659                if (kinds[i] != ARRAY_BOUND) // Filter out any arrays
3660                    classes = classes.prepend(ts[i]);
3661            }
3662            // lub(A, B[]) is lub(A, arraySuperType)
3663            return lub(classes);
3664        }
3665    }
3666    // where
3667        List<Type> erasedSupertypes(Type t) {
3668            ListBuffer<Type> buf = new ListBuffer<>();
3669            for (Type sup : closure(t)) {
3670                if (sup.hasTag(TYPEVAR)) {
3671                    buf.append(sup);
3672                } else {
3673                    buf.append(erasure(sup));
3674                }
3675            }
3676            return buf.toList();
3677        }
3678
3679        private Type arraySuperType = null;
3680        private Type arraySuperType() {
3681            // initialized lazily to avoid problems during compiler startup
3682            if (arraySuperType == null) {
3683                synchronized (this) {
3684                    if (arraySuperType == null) {
3685                        // JLS 10.8: all arrays implement Cloneable and Serializable.
3686                        arraySuperType = makeCompoundType(List.of(syms.serializableType,
3687                                                                  syms.cloneableType), true);
3688                    }
3689                }
3690            }
3691            return arraySuperType;
3692        }
3693    // </editor-fold>
3694
3695    // <editor-fold defaultstate="collapsed" desc="Greatest lower bound">
3696    public Type glb(List<Type> ts) {
3697        Type t1 = ts.head;
3698        for (Type t2 : ts.tail) {
3699            if (t1.isErroneous())
3700                return t1;
3701            t1 = glb(t1, t2);
3702        }
3703        return t1;
3704    }
3705    //where
3706    public Type glb(Type t, Type s) {
3707        if (s == null)
3708            return t;
3709        else if (t.isPrimitive() || s.isPrimitive())
3710            return syms.errType;
3711        else if (isSubtypeNoCapture(t, s))
3712            return t;
3713        else if (isSubtypeNoCapture(s, t))
3714            return s;
3715
3716        List<Type> closure = union(closure(t), closure(s));
3717        return glbFlattened(closure, t);
3718    }
3719    //where
3720    /**
3721     * Perform glb for a list of non-primitive, non-error, non-compound types;
3722     * redundant elements are removed.  Bounds should be ordered according to
3723     * {@link Symbol#precedes(TypeSymbol,Types)}.
3724     *
3725     * @param flatBounds List of type to glb
3726     * @param errT Original type to use if the result is an error type
3727     */
3728    private Type glbFlattened(List<Type> flatBounds, Type errT) {
3729        List<Type> bounds = closureMin(flatBounds);
3730
3731        if (bounds.isEmpty()) {             // length == 0
3732            return syms.objectType;
3733        } else if (bounds.tail.isEmpty()) { // length == 1
3734            return bounds.head;
3735        } else {                            // length > 1
3736            int classCount = 0;
3737            List<Type> lowers = List.nil();
3738            for (Type bound : bounds) {
3739                if (!bound.isInterface()) {
3740                    classCount++;
3741                    Type lower = cvarLowerBound(bound);
3742                    if (bound != lower && !lower.hasTag(BOT))
3743                        lowers = insert(lowers, lower);
3744                }
3745            }
3746            if (classCount > 1) {
3747                if (lowers.isEmpty())
3748                    return createErrorType(errT);
3749                else
3750                    return glbFlattened(union(bounds, lowers), errT);
3751            }
3752        }
3753        return makeCompoundType(bounds);
3754    }
3755    // </editor-fold>
3756
3757    // <editor-fold defaultstate="collapsed" desc="hashCode">
3758    /**
3759     * Compute a hash code on a type.
3760     */
3761    public int hashCode(Type t) {
3762        return hashCode.visit(t);
3763    }
3764    // where
3765        private static final UnaryVisitor<Integer> hashCode = new UnaryVisitor<Integer>() {
3766
3767            public Integer visitType(Type t, Void ignored) {
3768                return t.getTag().ordinal();
3769            }
3770
3771            @Override
3772            public Integer visitClassType(ClassType t, Void ignored) {
3773                int result = visit(t.getEnclosingType());
3774                result *= 127;
3775                result += t.tsym.flatName().hashCode();
3776                for (Type s : t.getTypeArguments()) {
3777                    result *= 127;
3778                    result += visit(s);
3779                }
3780                return result;
3781            }
3782
3783            @Override
3784            public Integer visitMethodType(MethodType t, Void ignored) {
3785                int h = METHOD.ordinal();
3786                for (List<Type> thisargs = t.argtypes;
3787                     thisargs.tail != null;
3788                     thisargs = thisargs.tail)
3789                    h = (h << 5) + visit(thisargs.head);
3790                return (h << 5) + visit(t.restype);
3791            }
3792
3793            @Override
3794            public Integer visitWildcardType(WildcardType t, Void ignored) {
3795                int result = t.kind.hashCode();
3796                if (t.type != null) {
3797                    result *= 127;
3798                    result += visit(t.type);
3799                }
3800                return result;
3801            }
3802
3803            @Override
3804            public Integer visitArrayType(ArrayType t, Void ignored) {
3805                return visit(t.elemtype) + 12;
3806            }
3807
3808            @Override
3809            public Integer visitTypeVar(TypeVar t, Void ignored) {
3810                return System.identityHashCode(t.tsym);
3811            }
3812
3813            @Override
3814            public Integer visitUndetVar(UndetVar t, Void ignored) {
3815                return System.identityHashCode(t);
3816            }
3817
3818            @Override
3819            public Integer visitErrorType(ErrorType t, Void ignored) {
3820                return 0;
3821            }
3822        };
3823    // </editor-fold>
3824
3825    // <editor-fold defaultstate="collapsed" desc="Return-Type-Substitutable">
3826    /**
3827     * Does t have a result that is a subtype of the result type of s,
3828     * suitable for covariant returns?  It is assumed that both types
3829     * are (possibly polymorphic) method types.  Monomorphic method
3830     * types are handled in the obvious way.  Polymorphic method types
3831     * require renaming all type variables of one to corresponding
3832     * type variables in the other, where correspondence is by
3833     * position in the type parameter list. */
3834    public boolean resultSubtype(Type t, Type s, Warner warner) {
3835        List<Type> tvars = t.getTypeArguments();
3836        List<Type> svars = s.getTypeArguments();
3837        Type tres = t.getReturnType();
3838        Type sres = subst(s.getReturnType(), svars, tvars);
3839        return covariantReturnType(tres, sres, warner);
3840    }
3841
3842    /**
3843     * Return-Type-Substitutable.
3844     * @jls section 8.4.5
3845     */
3846    public boolean returnTypeSubstitutable(Type r1, Type r2) {
3847        if (hasSameArgs(r1, r2))
3848            return resultSubtype(r1, r2, noWarnings);
3849        else
3850            return covariantReturnType(r1.getReturnType(),
3851                                       erasure(r2.getReturnType()),
3852                                       noWarnings);
3853    }
3854
3855    public boolean returnTypeSubstitutable(Type r1,
3856                                           Type r2, Type r2res,
3857                                           Warner warner) {
3858        if (isSameType(r1.getReturnType(), r2res))
3859            return true;
3860        if (r1.getReturnType().isPrimitive() || r2res.isPrimitive())
3861            return false;
3862
3863        if (hasSameArgs(r1, r2))
3864            return covariantReturnType(r1.getReturnType(), r2res, warner);
3865        if (isSubtypeUnchecked(r1.getReturnType(), r2res, warner))
3866            return true;
3867        if (!isSubtype(r1.getReturnType(), erasure(r2res)))
3868            return false;
3869        warner.warn(LintCategory.UNCHECKED);
3870        return true;
3871    }
3872
3873    /**
3874     * Is t an appropriate return type in an overrider for a
3875     * method that returns s?
3876     */
3877    public boolean covariantReturnType(Type t, Type s, Warner warner) {
3878        return
3879            isSameType(t, s) ||
3880            !t.isPrimitive() &&
3881            !s.isPrimitive() &&
3882            isAssignable(t, s, warner);
3883    }
3884    // </editor-fold>
3885
3886    // <editor-fold defaultstate="collapsed" desc="Box/unbox support">
3887    /**
3888     * Return the class that boxes the given primitive.
3889     */
3890    public ClassSymbol boxedClass(Type t) {
3891        return syms.enterClass(syms.boxedName[t.getTag().ordinal()]);
3892    }
3893
3894    /**
3895     * Return the boxed type if 't' is primitive, otherwise return 't' itself.
3896     */
3897    public Type boxedTypeOrType(Type t) {
3898        return t.isPrimitive() ?
3899            boxedClass(t).type :
3900            t;
3901    }
3902
3903    /**
3904     * Return the primitive type corresponding to a boxed type.
3905     */
3906    public Type unboxedType(Type t) {
3907        for (int i=0; i<syms.boxedName.length; i++) {
3908            Name box = syms.boxedName[i];
3909            if (box != null &&
3910                asSuper(t, syms.enterClass(box)) != null)
3911                return syms.typeOfTag[i];
3912        }
3913        return Type.noType;
3914    }
3915
3916    /**
3917     * Return the unboxed type if 't' is a boxed class, otherwise return 't' itself.
3918     */
3919    public Type unboxedTypeOrType(Type t) {
3920        Type unboxedType = unboxedType(t);
3921        return unboxedType.hasTag(NONE) ? t : unboxedType;
3922    }
3923    // </editor-fold>
3924
3925    // <editor-fold defaultstate="collapsed" desc="Capture conversion">
3926    /*
3927     * JLS 5.1.10 Capture Conversion:
3928     *
3929     * Let G name a generic type declaration with n formal type
3930     * parameters A1 ... An with corresponding bounds U1 ... Un. There
3931     * exists a capture conversion from G<T1 ... Tn> to G<S1 ... Sn>,
3932     * where, for 1 <= i <= n:
3933     *
3934     * + If Ti is a wildcard type argument (4.5.1) of the form ? then
3935     *   Si is a fresh type variable whose upper bound is
3936     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is the null
3937     *   type.
3938     *
3939     * + If Ti is a wildcard type argument of the form ? extends Bi,
3940     *   then Si is a fresh type variable whose upper bound is
3941     *   glb(Bi, Ui[A1 := S1, ..., An := Sn]) and whose lower bound is
3942     *   the null type, where glb(V1,... ,Vm) is V1 & ... & Vm. It is
3943     *   a compile-time error if for any two classes (not interfaces)
3944     *   Vi and Vj,Vi is not a subclass of Vj or vice versa.
3945     *
3946     * + If Ti is a wildcard type argument of the form ? super Bi,
3947     *   then Si is a fresh type variable whose upper bound is
3948     *   Ui[A1 := S1, ..., An := Sn] and whose lower bound is Bi.
3949     *
3950     * + Otherwise, Si = Ti.
3951     *
3952     * Capture conversion on any type other than a parameterized type
3953     * (4.5) acts as an identity conversion (5.1.1). Capture
3954     * conversions never require a special action at run time and
3955     * therefore never throw an exception at run time.
3956     *
3957     * Capture conversion is not applied recursively.
3958     */
3959    /**
3960     * Capture conversion as specified by the JLS.
3961     */
3962
3963    public List<Type> capture(List<Type> ts) {
3964        List<Type> buf = List.nil();
3965        for (Type t : ts) {
3966            buf = buf.prepend(capture(t));
3967        }
3968        return buf.reverse();
3969    }
3970
3971    public Type capture(Type t) {
3972        if (!t.hasTag(CLASS)) {
3973            return t;
3974        }
3975        if (t.getEnclosingType() != Type.noType) {
3976            Type capturedEncl = capture(t.getEnclosingType());
3977            if (capturedEncl != t.getEnclosingType()) {
3978                Type type1 = memberType(capturedEncl, t.tsym);
3979                t = subst(type1, t.tsym.type.getTypeArguments(), t.getTypeArguments());
3980            }
3981        }
3982        ClassType cls = (ClassType)t;
3983        if (cls.isRaw() || !cls.isParameterized())
3984            return cls;
3985
3986        ClassType G = (ClassType)cls.asElement().asType();
3987        List<Type> A = G.getTypeArguments();
3988        List<Type> T = cls.getTypeArguments();
3989        List<Type> S = freshTypeVariables(T);
3990
3991        List<Type> currentA = A;
3992        List<Type> currentT = T;
3993        List<Type> currentS = S;
3994        boolean captured = false;
3995        while (!currentA.isEmpty() &&
3996               !currentT.isEmpty() &&
3997               !currentS.isEmpty()) {
3998            if (currentS.head != currentT.head) {
3999                captured = true;
4000                WildcardType Ti = (WildcardType)currentT.head;
4001                Type Ui = currentA.head.getUpperBound();
4002                CapturedType Si = (CapturedType)currentS.head;
4003                if (Ui == null)
4004                    Ui = syms.objectType;
4005                switch (Ti.kind) {
4006                case UNBOUND:
4007                    Si.bound = subst(Ui, A, S);
4008                    Si.lower = syms.botType;
4009                    break;
4010                case EXTENDS:
4011                    Si.bound = glb(Ti.getExtendsBound(), subst(Ui, A, S));
4012                    Si.lower = syms.botType;
4013                    break;
4014                case SUPER:
4015                    Si.bound = subst(Ui, A, S);
4016                    Si.lower = Ti.getSuperBound();
4017                    break;
4018                }
4019                Type tmpBound = Si.bound.hasTag(UNDETVAR) ? ((UndetVar)Si.bound).qtype : Si.bound;
4020                Type tmpLower = Si.lower.hasTag(UNDETVAR) ? ((UndetVar)Si.lower).qtype : Si.lower;
4021                if (!Si.bound.hasTag(ERROR) &&
4022                    !Si.lower.hasTag(ERROR) &&
4023                    isSameType(tmpBound, tmpLower, false)) {
4024                    currentS.head = Si.bound;
4025                }
4026            }
4027            currentA = currentA.tail;
4028            currentT = currentT.tail;
4029            currentS = currentS.tail;
4030        }
4031        if (!currentA.isEmpty() || !currentT.isEmpty() || !currentS.isEmpty())
4032            return erasure(t); // some "rare" type involved
4033
4034        if (captured)
4035            return new ClassType(cls.getEnclosingType(), S, cls.tsym,
4036                                 cls.getMetadata());
4037        else
4038            return t;
4039    }
4040    // where
4041        public List<Type> freshTypeVariables(List<Type> types) {
4042            ListBuffer<Type> result = new ListBuffer<>();
4043            for (Type t : types) {
4044                if (t.hasTag(WILDCARD)) {
4045                    Type bound = ((WildcardType)t).getExtendsBound();
4046                    if (bound == null)
4047                        bound = syms.objectType;
4048                    result.append(new CapturedType(capturedName,
4049                                                   syms.noSymbol,
4050                                                   bound,
4051                                                   syms.botType,
4052                                                   (WildcardType)t));
4053                } else {
4054                    result.append(t);
4055                }
4056            }
4057            return result.toList();
4058        }
4059    // </editor-fold>
4060
4061    // <editor-fold defaultstate="collapsed" desc="Internal utility methods">
4062    private boolean sideCast(Type from, Type to, Warner warn) {
4063        // We are casting from type $from$ to type $to$, which are
4064        // non-final unrelated types.  This method
4065        // tries to reject a cast by transferring type parameters
4066        // from $to$ to $from$ by common superinterfaces.
4067        boolean reverse = false;
4068        Type target = to;
4069        if ((to.tsym.flags() & INTERFACE) == 0) {
4070            Assert.check((from.tsym.flags() & INTERFACE) != 0);
4071            reverse = true;
4072            to = from;
4073            from = target;
4074        }
4075        List<Type> commonSupers = superClosure(to, erasure(from));
4076        boolean giveWarning = commonSupers.isEmpty();
4077        // The arguments to the supers could be unified here to
4078        // get a more accurate analysis
4079        while (commonSupers.nonEmpty()) {
4080            Type t1 = asSuper(from, commonSupers.head.tsym);
4081            Type t2 = commonSupers.head; // same as asSuper(to, commonSupers.head.tsym);
4082            if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4083                return false;
4084            giveWarning = giveWarning || (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2));
4085            commonSupers = commonSupers.tail;
4086        }
4087        if (giveWarning && !isReifiable(reverse ? from : to))
4088            warn.warn(LintCategory.UNCHECKED);
4089        return true;
4090    }
4091
4092    private boolean sideCastFinal(Type from, Type to, Warner warn) {
4093        // We are casting from type $from$ to type $to$, which are
4094        // unrelated types one of which is final and the other of
4095        // which is an interface.  This method
4096        // tries to reject a cast by transferring type parameters
4097        // from the final class to the interface.
4098        boolean reverse = false;
4099        Type target = to;
4100        if ((to.tsym.flags() & INTERFACE) == 0) {
4101            Assert.check((from.tsym.flags() & INTERFACE) != 0);
4102            reverse = true;
4103            to = from;
4104            from = target;
4105        }
4106        Assert.check((from.tsym.flags() & FINAL) != 0);
4107        Type t1 = asSuper(from, to.tsym);
4108        if (t1 == null) return false;
4109        Type t2 = to;
4110        if (disjointTypes(t1.getTypeArguments(), t2.getTypeArguments()))
4111            return false;
4112        if (!isReifiable(target) &&
4113            (reverse ? giveWarning(t2, t1) : giveWarning(t1, t2)))
4114            warn.warn(LintCategory.UNCHECKED);
4115        return true;
4116    }
4117
4118    private boolean giveWarning(Type from, Type to) {
4119        List<Type> bounds = to.isCompound() ?
4120                ((IntersectionClassType)to).getComponents() : List.of(to);
4121        for (Type b : bounds) {
4122            Type subFrom = asSub(from, b.tsym);
4123            if (b.isParameterized() &&
4124                    (!(isUnbounded(b) ||
4125                    isSubtype(from, b) ||
4126                    ((subFrom != null) && containsType(b.allparams(), subFrom.allparams()))))) {
4127                return true;
4128            }
4129        }
4130        return false;
4131    }
4132
4133    private List<Type> superClosure(Type t, Type s) {
4134        List<Type> cl = List.nil();
4135        for (List<Type> l = interfaces(t); l.nonEmpty(); l = l.tail) {
4136            if (isSubtype(s, erasure(l.head))) {
4137                cl = insert(cl, l.head);
4138            } else {
4139                cl = union(cl, superClosure(l.head, s));
4140            }
4141        }
4142        return cl;
4143    }
4144
4145    private boolean containsTypeEquivalent(Type t, Type s) {
4146        return
4147            isSameType(t, s) || // shortcut
4148            containsType(t, s) && containsType(s, t);
4149    }
4150
4151    // <editor-fold defaultstate="collapsed" desc="adapt">
4152    /**
4153     * Adapt a type by computing a substitution which maps a source
4154     * type to a target type.
4155     *
4156     * @param source    the source type
4157     * @param target    the target type
4158     * @param from      the type variables of the computed substitution
4159     * @param to        the types of the computed substitution.
4160     */
4161    public void adapt(Type source,
4162                       Type target,
4163                       ListBuffer<Type> from,
4164                       ListBuffer<Type> to) throws AdaptFailure {
4165        new Adapter(from, to).adapt(source, target);
4166    }
4167
4168    class Adapter extends SimpleVisitor<Void, Type> {
4169
4170        ListBuffer<Type> from;
4171        ListBuffer<Type> to;
4172        Map<Symbol,Type> mapping;
4173
4174        Adapter(ListBuffer<Type> from, ListBuffer<Type> to) {
4175            this.from = from;
4176            this.to = to;
4177            mapping = new HashMap<>();
4178        }
4179
4180        public void adapt(Type source, Type target) throws AdaptFailure {
4181            visit(source, target);
4182            List<Type> fromList = from.toList();
4183            List<Type> toList = to.toList();
4184            while (!fromList.isEmpty()) {
4185                Type val = mapping.get(fromList.head.tsym);
4186                if (toList.head != val)
4187                    toList.head = val;
4188                fromList = fromList.tail;
4189                toList = toList.tail;
4190            }
4191        }
4192
4193        @Override
4194        public Void visitClassType(ClassType source, Type target) throws AdaptFailure {
4195            if (target.hasTag(CLASS))
4196                adaptRecursive(source.allparams(), target.allparams());
4197            return null;
4198        }
4199
4200        @Override
4201        public Void visitArrayType(ArrayType source, Type target) throws AdaptFailure {
4202            if (target.hasTag(ARRAY))
4203                adaptRecursive(elemtype(source), elemtype(target));
4204            return null;
4205        }
4206
4207        @Override
4208        public Void visitWildcardType(WildcardType source, Type target) throws AdaptFailure {
4209            if (source.isExtendsBound())
4210                adaptRecursive(wildUpperBound(source), wildUpperBound(target));
4211            else if (source.isSuperBound())
4212                adaptRecursive(wildLowerBound(source), wildLowerBound(target));
4213            return null;
4214        }
4215
4216        @Override
4217        public Void visitTypeVar(TypeVar source, Type target) throws AdaptFailure {
4218            // Check to see if there is
4219            // already a mapping for $source$, in which case
4220            // the old mapping will be merged with the new
4221            Type val = mapping.get(source.tsym);
4222            if (val != null) {
4223                if (val.isSuperBound() && target.isSuperBound()) {
4224                    val = isSubtype(wildLowerBound(val), wildLowerBound(target))
4225                        ? target : val;
4226                } else if (val.isExtendsBound() && target.isExtendsBound()) {
4227                    val = isSubtype(wildUpperBound(val), wildUpperBound(target))
4228                        ? val : target;
4229                } else if (!isSameType(val, target)) {
4230                    throw new AdaptFailure();
4231                }
4232            } else {
4233                val = target;
4234                from.append(source);
4235                to.append(target);
4236            }
4237            mapping.put(source.tsym, val);
4238            return null;
4239        }
4240
4241        @Override
4242        public Void visitType(Type source, Type target) {
4243            return null;
4244        }
4245
4246        private Set<TypePair> cache = new HashSet<>();
4247
4248        private void adaptRecursive(Type source, Type target) {
4249            TypePair pair = new TypePair(source, target);
4250            if (cache.add(pair)) {
4251                try {
4252                    visit(source, target);
4253                } finally {
4254                    cache.remove(pair);
4255                }
4256            }
4257        }
4258
4259        private void adaptRecursive(List<Type> source, List<Type> target) {
4260            if (source.length() == target.length()) {
4261                while (source.nonEmpty()) {
4262                    adaptRecursive(source.head, target.head);
4263                    source = source.tail;
4264                    target = target.tail;
4265                }
4266            }
4267        }
4268    }
4269
4270    public static class AdaptFailure extends RuntimeException {
4271        static final long serialVersionUID = -7490231548272701566L;
4272    }
4273
4274    private void adaptSelf(Type t,
4275                           ListBuffer<Type> from,
4276                           ListBuffer<Type> to) {
4277        try {
4278            //if (t.tsym.type != t)
4279                adapt(t.tsym.type, t, from, to);
4280        } catch (AdaptFailure ex) {
4281            // Adapt should never fail calculating a mapping from
4282            // t.tsym.type to t as there can be no merge problem.
4283            throw new AssertionError(ex);
4284        }
4285    }
4286    // </editor-fold>
4287
4288    /**
4289     * Rewrite all type variables (universal quantifiers) in the given
4290     * type to wildcards (existential quantifiers).  This is used to
4291     * determine if a cast is allowed.  For example, if high is true
4292     * and {@code T <: Number}, then {@code List<T>} is rewritten to
4293     * {@code List<?  extends Number>}.  Since {@code List<Integer> <:
4294     * List<? extends Number>} a {@code List<T>} can be cast to {@code
4295     * List<Integer>} with a warning.
4296     * @param t a type
4297     * @param high if true return an upper bound; otherwise a lower
4298     * bound
4299     * @param rewriteTypeVars only rewrite captured wildcards if false;
4300     * otherwise rewrite all type variables
4301     * @return the type rewritten with wildcards (existential
4302     * quantifiers) only
4303     */
4304    private Type rewriteQuantifiers(Type t, boolean high, boolean rewriteTypeVars) {
4305        return new Rewriter(high, rewriteTypeVars).visit(t);
4306    }
4307
4308    class Rewriter extends UnaryVisitor<Type> {
4309
4310        boolean high;
4311        boolean rewriteTypeVars;
4312
4313        Rewriter(boolean high, boolean rewriteTypeVars) {
4314            this.high = high;
4315            this.rewriteTypeVars = rewriteTypeVars;
4316        }
4317
4318        @Override
4319        public Type visitClassType(ClassType t, Void s) {
4320            ListBuffer<Type> rewritten = new ListBuffer<>();
4321            boolean changed = false;
4322            for (Type arg : t.allparams()) {
4323                Type bound = visit(arg);
4324                if (arg != bound) {
4325                    changed = true;
4326                }
4327                rewritten.append(bound);
4328            }
4329            if (changed)
4330                return subst(t.tsym.type,
4331                        t.tsym.type.allparams(),
4332                        rewritten.toList());
4333            else
4334                return t;
4335        }
4336
4337        public Type visitType(Type t, Void s) {
4338            return t;
4339        }
4340
4341        @Override
4342        public Type visitCapturedType(CapturedType t, Void s) {
4343            Type w_bound = t.wildcard.type;
4344            Type bound = w_bound.contains(t) ?
4345                        erasure(w_bound) :
4346                        visit(w_bound);
4347            return rewriteAsWildcardType(visit(bound), t.wildcard.bound, t.wildcard.kind);
4348        }
4349
4350        @Override
4351        public Type visitTypeVar(TypeVar t, Void s) {
4352            if (rewriteTypeVars) {
4353                Type bound = t.bound.contains(t) ?
4354                        erasure(t.bound) :
4355                        visit(t.bound);
4356                return rewriteAsWildcardType(bound, t, EXTENDS);
4357            } else {
4358                return t;
4359            }
4360        }
4361
4362        @Override
4363        public Type visitWildcardType(WildcardType t, Void s) {
4364            Type bound2 = visit(t.type);
4365            return t.type == bound2 ? t : rewriteAsWildcardType(bound2, t.bound, t.kind);
4366        }
4367
4368        private Type rewriteAsWildcardType(Type bound, TypeVar formal, BoundKind bk) {
4369            switch (bk) {
4370               case EXTENDS: return high ?
4371                       makeExtendsWildcard(B(bound), formal) :
4372                       makeExtendsWildcard(syms.objectType, formal);
4373               case SUPER: return high ?
4374                       makeSuperWildcard(syms.botType, formal) :
4375                       makeSuperWildcard(B(bound), formal);
4376               case UNBOUND: return makeExtendsWildcard(syms.objectType, formal);
4377               default:
4378                   Assert.error("Invalid bound kind " + bk);
4379                   return null;
4380            }
4381        }
4382
4383        Type B(Type t) {
4384            while (t.hasTag(WILDCARD)) {
4385                WildcardType w = (WildcardType)t;
4386                t = high ?
4387                    w.getExtendsBound() :
4388                    w.getSuperBound();
4389                if (t == null) {
4390                    t = high ? syms.objectType : syms.botType;
4391                }
4392            }
4393            return t;
4394        }
4395    }
4396
4397
4398    /**
4399     * Create a wildcard with the given upper (extends) bound; create
4400     * an unbounded wildcard if bound is Object.
4401     *
4402     * @param bound the upper bound
4403     * @param formal the formal type parameter that will be
4404     * substituted by the wildcard
4405     */
4406    private WildcardType makeExtendsWildcard(Type bound, TypeVar formal) {
4407        if (bound == syms.objectType) {
4408            return new WildcardType(syms.objectType,
4409                                    BoundKind.UNBOUND,
4410                                    syms.boundClass,
4411                                    formal);
4412        } else {
4413            return new WildcardType(bound,
4414                                    BoundKind.EXTENDS,
4415                                    syms.boundClass,
4416                                    formal);
4417        }
4418    }
4419
4420    /**
4421     * Create a wildcard with the given lower (super) bound; create an
4422     * unbounded wildcard if bound is bottom (type of {@code null}).
4423     *
4424     * @param bound the lower bound
4425     * @param formal the formal type parameter that will be
4426     * substituted by the wildcard
4427     */
4428    private WildcardType makeSuperWildcard(Type bound, TypeVar formal) {
4429        if (bound.hasTag(BOT)) {
4430            return new WildcardType(syms.objectType,
4431                                    BoundKind.UNBOUND,
4432                                    syms.boundClass,
4433                                    formal);
4434        } else {
4435            return new WildcardType(bound,
4436                                    BoundKind.SUPER,
4437                                    syms.boundClass,
4438                                    formal);
4439        }
4440    }
4441
4442    /**
4443     * A wrapper for a type that allows use in sets.
4444     */
4445    public static class UniqueType {
4446        public final Type type;
4447        final Types types;
4448
4449        public UniqueType(Type type, Types types) {
4450            this.type = type;
4451            this.types = types;
4452        }
4453
4454        public int hashCode() {
4455            return types.hashCode(type);
4456        }
4457
4458        public boolean equals(Object obj) {
4459            return (obj instanceof UniqueType) &&
4460                types.isSameType(type, ((UniqueType)obj).type);
4461        }
4462
4463        public String toString() {
4464            return type.toString();
4465        }
4466
4467    }
4468    // </editor-fold>
4469
4470    // <editor-fold defaultstate="collapsed" desc="Visitors">
4471    /**
4472     * A default visitor for types.  All visitor methods except
4473     * visitType are implemented by delegating to visitType.  Concrete
4474     * subclasses must provide an implementation of visitType and can
4475     * override other methods as needed.
4476     *
4477     * @param <R> the return type of the operation implemented by this
4478     * visitor; use Void if no return type is needed.
4479     * @param <S> the type of the second argument (the first being the
4480     * type itself) of the operation implemented by this visitor; use
4481     * Void if a second argument is not needed.
4482     */
4483    public static abstract class DefaultTypeVisitor<R,S> implements Type.Visitor<R,S> {
4484        final public R visit(Type t, S s)               { return t.accept(this, s); }
4485        public R visitClassType(ClassType t, S s)       { return visitType(t, s); }
4486        public R visitWildcardType(WildcardType t, S s) { return visitType(t, s); }
4487        public R visitArrayType(ArrayType t, S s)       { return visitType(t, s); }
4488        public R visitMethodType(MethodType t, S s)     { return visitType(t, s); }
4489        public R visitPackageType(PackageType t, S s)   { return visitType(t, s); }
4490        public R visitTypeVar(TypeVar t, S s)           { return visitType(t, s); }
4491        public R visitCapturedType(CapturedType t, S s) { return visitType(t, s); }
4492        public R visitForAll(ForAll t, S s)             { return visitType(t, s); }
4493        public R visitUndetVar(UndetVar t, S s)         { return visitType(t, s); }
4494        public R visitErrorType(ErrorType t, S s)       { return visitType(t, s); }
4495    }
4496
4497    /**
4498     * A default visitor for symbols.  All visitor methods except
4499     * visitSymbol are implemented by delegating to visitSymbol.  Concrete
4500     * subclasses must provide an implementation of visitSymbol and can
4501     * override other methods as needed.
4502     *
4503     * @param <R> the return type of the operation implemented by this
4504     * visitor; use Void if no return type is needed.
4505     * @param <S> the type of the second argument (the first being the
4506     * symbol itself) of the operation implemented by this visitor; use
4507     * Void if a second argument is not needed.
4508     */
4509    public static abstract class DefaultSymbolVisitor<R,S> implements Symbol.Visitor<R,S> {
4510        final public R visit(Symbol s, S arg)                   { return s.accept(this, arg); }
4511        public R visitClassSymbol(ClassSymbol s, S arg)         { return visitSymbol(s, arg); }
4512        public R visitMethodSymbol(MethodSymbol s, S arg)       { return visitSymbol(s, arg); }
4513        public R visitOperatorSymbol(OperatorSymbol s, S arg)   { return visitSymbol(s, arg); }
4514        public R visitPackageSymbol(PackageSymbol s, S arg)     { return visitSymbol(s, arg); }
4515        public R visitTypeSymbol(TypeSymbol s, S arg)           { return visitSymbol(s, arg); }
4516        public R visitVarSymbol(VarSymbol s, S arg)             { return visitSymbol(s, arg); }
4517    }
4518
4519    /**
4520     * A <em>simple</em> visitor for types.  This visitor is simple as
4521     * captured wildcards, for-all types (generic methods), and
4522     * undetermined type variables (part of inference) are hidden.
4523     * Captured wildcards are hidden by treating them as type
4524     * variables and the rest are hidden by visiting their qtypes.
4525     *
4526     * @param <R> the return type of the operation implemented by this
4527     * visitor; use Void if no return type is needed.
4528     * @param <S> the type of the second argument (the first being the
4529     * type itself) of the operation implemented by this visitor; use
4530     * Void if a second argument is not needed.
4531     */
4532    public static abstract class SimpleVisitor<R,S> extends DefaultTypeVisitor<R,S> {
4533        @Override
4534        public R visitCapturedType(CapturedType t, S s) {
4535            return visitTypeVar(t, s);
4536        }
4537        @Override
4538        public R visitForAll(ForAll t, S s) {
4539            return visit(t.qtype, s);
4540        }
4541        @Override
4542        public R visitUndetVar(UndetVar t, S s) {
4543            return visit(t.qtype, s);
4544        }
4545    }
4546
4547    /**
4548     * A plain relation on types.  That is a 2-ary function on the
4549     * form Type&nbsp;&times;&nbsp;Type&nbsp;&rarr;&nbsp;Boolean.
4550     * <!-- In plain text: Type x Type -> Boolean -->
4551     */
4552    public static abstract class TypeRelation extends SimpleVisitor<Boolean,Type> {}
4553
4554    /**
4555     * A convenience visitor for implementing operations that only
4556     * require one argument (the type itself), that is, unary
4557     * operations.
4558     *
4559     * @param <R> the return type of the operation implemented by this
4560     * visitor; use Void if no return type is needed.
4561     */
4562    public static abstract class UnaryVisitor<R> extends SimpleVisitor<R,Void> {
4563        final public R visit(Type t) { return t.accept(this, null); }
4564    }
4565
4566    /**
4567     * A visitor for implementing a mapping from types to types.  The
4568     * default behavior of this class is to implement the identity
4569     * mapping (mapping a type to itself).  This can be overridden in
4570     * subclasses.
4571     *
4572     * @param <S> the type of the second argument (the first being the
4573     * type itself) of this mapping; use Void if a second argument is
4574     * not needed.
4575     */
4576    public static class MapVisitor<S> extends DefaultTypeVisitor<Type,S> {
4577        final public Type visit(Type t) { return t.accept(this, null); }
4578        public Type visitType(Type t, S s) { return t; }
4579    }
4580    // </editor-fold>
4581
4582
4583    // <editor-fold defaultstate="collapsed" desc="Annotation support">
4584
4585    public RetentionPolicy getRetention(Attribute.Compound a) {
4586        return getRetention(a.type.tsym);
4587    }
4588
4589    public RetentionPolicy getRetention(Symbol sym) {
4590        RetentionPolicy vis = RetentionPolicy.CLASS; // the default
4591        Attribute.Compound c = sym.attribute(syms.retentionType.tsym);
4592        if (c != null) {
4593            Attribute value = c.member(names.value);
4594            if (value != null && value instanceof Attribute.Enum) {
4595                Name levelName = ((Attribute.Enum)value).value.name;
4596                if (levelName == names.SOURCE) vis = RetentionPolicy.SOURCE;
4597                else if (levelName == names.CLASS) vis = RetentionPolicy.CLASS;
4598                else if (levelName == names.RUNTIME) vis = RetentionPolicy.RUNTIME;
4599                else ;// /* fail soft */ throw new AssertionError(levelName);
4600            }
4601        }
4602        return vis;
4603    }
4604    // </editor-fold>
4605
4606    // <editor-fold defaultstate="collapsed" desc="Signature Generation">
4607
4608    public static abstract class SignatureGenerator {
4609
4610        private final Types types;
4611
4612        protected abstract void append(char ch);
4613        protected abstract void append(byte[] ba);
4614        protected abstract void append(Name name);
4615        protected void classReference(ClassSymbol c) { /* by default: no-op */ }
4616
4617        protected SignatureGenerator(Types types) {
4618            this.types = types;
4619        }
4620
4621        /**
4622         * Assemble signature of given type in string buffer.
4623         */
4624        public void assembleSig(Type type) {
4625            switch (type.getTag()) {
4626                case BYTE:
4627                    append('B');
4628                    break;
4629                case SHORT:
4630                    append('S');
4631                    break;
4632                case CHAR:
4633                    append('C');
4634                    break;
4635                case INT:
4636                    append('I');
4637                    break;
4638                case LONG:
4639                    append('J');
4640                    break;
4641                case FLOAT:
4642                    append('F');
4643                    break;
4644                case DOUBLE:
4645                    append('D');
4646                    break;
4647                case BOOLEAN:
4648                    append('Z');
4649                    break;
4650                case VOID:
4651                    append('V');
4652                    break;
4653                case CLASS:
4654                    append('L');
4655                    assembleClassSig(type);
4656                    append(';');
4657                    break;
4658                case ARRAY:
4659                    ArrayType at = (ArrayType) type;
4660                    append('[');
4661                    assembleSig(at.elemtype);
4662                    break;
4663                case METHOD:
4664                    MethodType mt = (MethodType) type;
4665                    append('(');
4666                    assembleSig(mt.argtypes);
4667                    append(')');
4668                    assembleSig(mt.restype);
4669                    if (hasTypeVar(mt.thrown)) {
4670                        for (List<Type> l = mt.thrown; l.nonEmpty(); l = l.tail) {
4671                            append('^');
4672                            assembleSig(l.head);
4673                        }
4674                    }
4675                    break;
4676                case WILDCARD: {
4677                    Type.WildcardType ta = (Type.WildcardType) type;
4678                    switch (ta.kind) {
4679                        case SUPER:
4680                            append('-');
4681                            assembleSig(ta.type);
4682                            break;
4683                        case EXTENDS:
4684                            append('+');
4685                            assembleSig(ta.type);
4686                            break;
4687                        case UNBOUND:
4688                            append('*');
4689                            break;
4690                        default:
4691                            throw new AssertionError(ta.kind);
4692                    }
4693                    break;
4694                }
4695                case TYPEVAR:
4696                    append('T');
4697                    append(type.tsym.name);
4698                    append(';');
4699                    break;
4700                case FORALL:
4701                    Type.ForAll ft = (Type.ForAll) type;
4702                    assembleParamsSig(ft.tvars);
4703                    assembleSig(ft.qtype);
4704                    break;
4705                default:
4706                    throw new AssertionError("typeSig " + type.getTag());
4707            }
4708        }
4709
4710        public boolean hasTypeVar(List<Type> l) {
4711            while (l.nonEmpty()) {
4712                if (l.head.hasTag(TypeTag.TYPEVAR)) {
4713                    return true;
4714                }
4715                l = l.tail;
4716            }
4717            return false;
4718        }
4719
4720        public void assembleClassSig(Type type) {
4721            ClassType ct = (ClassType) type;
4722            ClassSymbol c = (ClassSymbol) ct.tsym;
4723            classReference(c);
4724            Type outer = ct.getEnclosingType();
4725            if (outer.allparams().nonEmpty()) {
4726                boolean rawOuter =
4727                        c.owner.kind == MTH || // either a local class
4728                        c.name == types.names.empty; // or anonymous
4729                assembleClassSig(rawOuter
4730                        ? types.erasure(outer)
4731                        : outer);
4732                append(rawOuter ? '$' : '.');
4733                Assert.check(c.flatname.startsWith(c.owner.enclClass().flatname));
4734                append(rawOuter
4735                        ? c.flatname.subName(c.owner.enclClass().flatname.getByteLength() + 1, c.flatname.getByteLength())
4736                        : c.name);
4737            } else {
4738                append(externalize(c.flatname));
4739            }
4740            if (ct.getTypeArguments().nonEmpty()) {
4741                append('<');
4742                assembleSig(ct.getTypeArguments());
4743                append('>');
4744            }
4745        }
4746
4747        public void assembleParamsSig(List<Type> typarams) {
4748            append('<');
4749            for (List<Type> ts = typarams; ts.nonEmpty(); ts = ts.tail) {
4750                Type.TypeVar tvar = (Type.TypeVar) ts.head;
4751                append(tvar.tsym.name);
4752                List<Type> bounds = types.getBounds(tvar);
4753                if ((bounds.head.tsym.flags() & INTERFACE) != 0) {
4754                    append(':');
4755                }
4756                for (List<Type> l = bounds; l.nonEmpty(); l = l.tail) {
4757                    append(':');
4758                    assembleSig(l.head);
4759                }
4760            }
4761            append('>');
4762        }
4763
4764        private void assembleSig(List<Type> types) {
4765            for (List<Type> ts = types; ts.nonEmpty(); ts = ts.tail) {
4766                assembleSig(ts.head);
4767            }
4768        }
4769    }
4770    // </editor-fold>
4771
4772    public void newRound() {
4773        descCache._map.clear();
4774        isDerivedRawCache.clear();
4775        implCache._map.clear();
4776        membersCache._map.clear();
4777        closureCache.clear();
4778    }
4779}
4780