KeyProtector.java revision 10444:f08705540498
1/*
2 * Copyright (c) 1997, 2006, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package sun.security.provider;
27
28import java.io.IOException;
29import java.io.UnsupportedEncodingException;
30import java.security.Key;
31import java.security.KeyStoreException;
32import java.security.MessageDigest;
33import java.security.NoSuchAlgorithmException;
34import java.security.SecureRandom;
35import java.security.UnrecoverableKeyException;
36import java.util.*;
37
38import sun.security.pkcs.PKCS8Key;
39import sun.security.pkcs.EncryptedPrivateKeyInfo;
40import sun.security.x509.AlgorithmId;
41import sun.security.util.ObjectIdentifier;
42import sun.security.util.DerValue;
43
44/**
45 * This is an implementation of a Sun proprietary, exportable algorithm
46 * intended for use when protecting (or recovering the cleartext version of)
47 * sensitive keys.
48 * This algorithm is not intended as a general purpose cipher.
49 *
50 * This is how the algorithm works for key protection:
51 *
52 * p - user password
53 * s - random salt
54 * X - xor key
55 * P - to-be-protected key
56 * Y - protected key
57 * R - what gets stored in the keystore
58 *
59 * Step 1:
60 * Take the user's password, append a random salt (of fixed size) to it,
61 * and hash it: d1 = digest(p, s)
62 * Store d1 in X.
63 *
64 * Step 2:
65 * Take the user's password, append the digest result from the previous step,
66 * and hash it: dn = digest(p, dn-1).
67 * Store dn in X (append it to the previously stored digests).
68 * Repeat this step until the length of X matches the length of the private key
69 * P.
70 *
71 * Step 3:
72 * XOR X and P, and store the result in Y: Y = X XOR P.
73 *
74 * Step 4:
75 * Store s, Y, and digest(p, P) in the result buffer R:
76 * R = s + Y + digest(p, P), where "+" denotes concatenation.
77 * (NOTE: digest(p, P) is stored in the result buffer, so that when the key is
78 * recovered, we can check if the recovered key indeed matches the original
79 * key.) R is stored in the keystore.
80 *
81 * The protected key is recovered as follows:
82 *
83 * Step1 and Step2 are the same as above, except that the salt is not randomly
84 * generated, but taken from the result R of step 4 (the first length(s)
85 * bytes).
86 *
87 * Step 3 (XOR operation) yields the plaintext key.
88 *
89 * Then concatenate the password with the recovered key, and compare with the
90 * last length(digest(p, P)) bytes of R. If they match, the recovered key is
91 * indeed the same key as the original key.
92 *
93 * @author Jan Luehe
94 *
95 *
96 * @see java.security.KeyStore
97 * @see JavaKeyStore
98 * @see KeyTool
99 *
100 * @since 1.2
101 */
102
103final class KeyProtector {
104
105    private static final int SALT_LEN = 20; // the salt length
106    private static final String DIGEST_ALG = "SHA";
107    private static final int DIGEST_LEN = 20;
108
109    // defined by JavaSoft
110    private static final String KEY_PROTECTOR_OID = "1.3.6.1.4.1.42.2.17.1.1";
111
112    // The password used for protecting/recovering keys passed through this
113    // key protector. We store it as a byte array, so that we can digest it.
114    private byte[] passwdBytes;
115
116    private MessageDigest md;
117
118
119    /**
120     * Creates an instance of this class, and initializes it with the given
121     * password.
122     *
123     * <p>The password is expected to be in printable ASCII.
124     * Normal rules for good password selection apply: at least
125     * seven characters, mixed case, with punctuation encouraged.
126     * Phrases or words which are easily guessed, for example by
127     * being found in dictionaries, are bad.
128     */
129    public KeyProtector(char[] password)
130        throws NoSuchAlgorithmException
131    {
132        int i, j;
133
134        if (password == null) {
135           throw new IllegalArgumentException("password can't be null");
136        }
137        md = MessageDigest.getInstance(DIGEST_ALG);
138        // Convert password to byte array, so that it can be digested
139        passwdBytes = new byte[password.length * 2];
140        for (i=0, j=0; i<password.length; i++) {
141            passwdBytes[j++] = (byte)(password[i] >> 8);
142            passwdBytes[j++] = (byte)password[i];
143        }
144    }
145
146    /**
147     * Ensures that the password bytes of this key protector are
148     * set to zero when there are no more references to it.
149     */
150    protected void finalize() {
151        if (passwdBytes != null) {
152            Arrays.fill(passwdBytes, (byte)0x00);
153            passwdBytes = null;
154        }
155    }
156
157    /*
158     * Protects the given plaintext key, using the password provided at
159     * construction time.
160     */
161    public byte[] protect(Key key) throws KeyStoreException
162    {
163        int i;
164        int numRounds;
165        byte[] digest;
166        int xorOffset; // offset in xorKey where next digest will be stored
167        int encrKeyOffset = 0;
168
169        if (key == null) {
170            throw new IllegalArgumentException("plaintext key can't be null");
171        }
172
173        if (!"PKCS#8".equalsIgnoreCase(key.getFormat())) {
174            throw new KeyStoreException(
175                "Cannot get key bytes, not PKCS#8 encoded");
176        }
177
178        byte[] plainKey = key.getEncoded();
179        if (plainKey == null) {
180            throw new KeyStoreException(
181                "Cannot get key bytes, encoding not supported");
182        }
183
184        // Determine the number of digest rounds
185        numRounds = plainKey.length / DIGEST_LEN;
186        if ((plainKey.length % DIGEST_LEN) != 0)
187            numRounds++;
188
189        // Create a random salt
190        byte[] salt = new byte[SALT_LEN];
191        SecureRandom random = new SecureRandom();
192        random.nextBytes(salt);
193
194        // Set up the byte array which will be XORed with "plainKey"
195        byte[] xorKey = new byte[plainKey.length];
196
197        // Compute the digests, and store them in "xorKey"
198        for (i = 0, xorOffset = 0, digest = salt;
199             i < numRounds;
200             i++, xorOffset += DIGEST_LEN) {
201            md.update(passwdBytes);
202            md.update(digest);
203            digest = md.digest();
204            md.reset();
205            // Copy the digest into "xorKey"
206            if (i < numRounds - 1) {
207                System.arraycopy(digest, 0, xorKey, xorOffset,
208                                 digest.length);
209            } else {
210                System.arraycopy(digest, 0, xorKey, xorOffset,
211                                 xorKey.length - xorOffset);
212            }
213        }
214
215        // XOR "plainKey" with "xorKey", and store the result in "tmpKey"
216        byte[] tmpKey = new byte[plainKey.length];
217        for (i = 0; i < tmpKey.length; i++) {
218            tmpKey[i] = (byte)(plainKey[i] ^ xorKey[i]);
219        }
220
221        // Store salt and "tmpKey" in "encrKey"
222        byte[] encrKey = new byte[salt.length + tmpKey.length + DIGEST_LEN];
223        System.arraycopy(salt, 0, encrKey, encrKeyOffset, salt.length);
224        encrKeyOffset += salt.length;
225        System.arraycopy(tmpKey, 0, encrKey, encrKeyOffset, tmpKey.length);
226        encrKeyOffset += tmpKey.length;
227
228        // Append digest(password, plainKey) as an integrity check to "encrKey"
229        md.update(passwdBytes);
230        Arrays.fill(passwdBytes, (byte)0x00);
231        passwdBytes = null;
232        md.update(plainKey);
233        digest = md.digest();
234        md.reset();
235        System.arraycopy(digest, 0, encrKey, encrKeyOffset, digest.length);
236
237        // wrap the protected private key in a PKCS#8-style
238        // EncryptedPrivateKeyInfo, and returns its encoding
239        AlgorithmId encrAlg;
240        try {
241            encrAlg = new AlgorithmId(new ObjectIdentifier(KEY_PROTECTOR_OID));
242            return new EncryptedPrivateKeyInfo(encrAlg,encrKey).getEncoded();
243        } catch (IOException ioe) {
244            throw new KeyStoreException(ioe.getMessage());
245        }
246    }
247
248    /*
249     * Recovers the plaintext version of the given key (in protected format),
250     * using the password provided at construction time.
251     */
252    public Key recover(EncryptedPrivateKeyInfo encrInfo)
253        throws UnrecoverableKeyException
254    {
255        int i;
256        byte[] digest;
257        int numRounds;
258        int xorOffset; // offset in xorKey where next digest will be stored
259        int encrKeyLen; // the length of the encrpyted key
260
261        // do we support the algorithm?
262        AlgorithmId encrAlg = encrInfo.getAlgorithm();
263        if (!(encrAlg.getOID().toString().equals(KEY_PROTECTOR_OID))) {
264            throw new UnrecoverableKeyException("Unsupported key protection "
265                                                + "algorithm");
266        }
267
268        byte[] protectedKey = encrInfo.getEncryptedData();
269
270        /*
271         * Get the salt associated with this key (the first SALT_LEN bytes of
272         * <code>protectedKey</code>)
273         */
274        byte[] salt = new byte[SALT_LEN];
275        System.arraycopy(protectedKey, 0, salt, 0, SALT_LEN);
276
277        // Determine the number of digest rounds
278        encrKeyLen = protectedKey.length - SALT_LEN - DIGEST_LEN;
279        numRounds = encrKeyLen / DIGEST_LEN;
280        if ((encrKeyLen % DIGEST_LEN) != 0) numRounds++;
281
282        // Get the encrypted key portion and store it in "encrKey"
283        byte[] encrKey = new byte[encrKeyLen];
284        System.arraycopy(protectedKey, SALT_LEN, encrKey, 0, encrKeyLen);
285
286        // Set up the byte array which will be XORed with "encrKey"
287        byte[] xorKey = new byte[encrKey.length];
288
289        // Compute the digests, and store them in "xorKey"
290        for (i = 0, xorOffset = 0, digest = salt;
291             i < numRounds;
292             i++, xorOffset += DIGEST_LEN) {
293            md.update(passwdBytes);
294            md.update(digest);
295            digest = md.digest();
296            md.reset();
297            // Copy the digest into "xorKey"
298            if (i < numRounds - 1) {
299                System.arraycopy(digest, 0, xorKey, xorOffset,
300                                 digest.length);
301            } else {
302                System.arraycopy(digest, 0, xorKey, xorOffset,
303                                 xorKey.length - xorOffset);
304            }
305        }
306
307        // XOR "encrKey" with "xorKey", and store the result in "plainKey"
308        byte[] plainKey = new byte[encrKey.length];
309        for (i = 0; i < plainKey.length; i++) {
310            plainKey[i] = (byte)(encrKey[i] ^ xorKey[i]);
311        }
312
313        /*
314         * Check the integrity of the recovered key by concatenating it with
315         * the password, digesting the concatenation, and comparing the
316         * result of the digest operation with the digest provided at the end
317         * of <code>protectedKey</code>. If the two digest values are
318         * different, throw an exception.
319         */
320        md.update(passwdBytes);
321        Arrays.fill(passwdBytes, (byte)0x00);
322        passwdBytes = null;
323        md.update(plainKey);
324        digest = md.digest();
325        md.reset();
326        for (i = 0; i < digest.length; i++) {
327            if (digest[i] != protectedKey[SALT_LEN + encrKeyLen + i]) {
328                throw new UnrecoverableKeyException("Cannot recover key");
329            }
330        }
331
332        // The parseKey() method of PKCS8Key parses the key
333        // algorithm and instantiates the appropriate key factory,
334        // which in turn parses the key material.
335        try {
336            return PKCS8Key.parseKey(new DerValue(plainKey));
337        } catch (IOException ioe) {
338            throw new UnrecoverableKeyException(ioe.getMessage());
339        }
340    }
341}
342