Pattern.java revision 17639:46e9f2b0a472
1/*
2 * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util.regex;
27
28import java.text.Normalizer;
29import java.text.Normalizer.Form;
30import java.util.Locale;
31import java.util.Iterator;
32import java.util.Map;
33import java.util.ArrayList;
34import java.util.HashMap;
35import java.util.LinkedHashSet;
36import java.util.List;
37import java.util.Set;
38import java.util.Arrays;
39import java.util.NoSuchElementException;
40import java.util.Spliterator;
41import java.util.Spliterators;
42import java.util.function.Predicate;
43import java.util.stream.Stream;
44import java.util.stream.StreamSupport;
45
46
47/**
48 * A compiled representation of a regular expression.
49 *
50 * <p> A regular expression, specified as a string, must first be compiled into
51 * an instance of this class.  The resulting pattern can then be used to create
52 * a {@link Matcher} object that can match arbitrary {@linkplain
53 * java.lang.CharSequence character sequences} against the regular
54 * expression.  All of the state involved in performing a match resides in the
55 * matcher, so many matchers can share the same pattern.
56 *
57 * <p> A typical invocation sequence is thus
58 *
59 * <blockquote><pre>
60 * Pattern p = Pattern.{@link #compile compile}("a*b");
61 * Matcher m = p.{@link #matcher matcher}("aaaaab");
62 * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
63 *
64 * <p> A {@link #matches matches} method is defined by this class as a
65 * convenience for when a regular expression is used just once.  This method
66 * compiles an expression and matches an input sequence against it in a single
67 * invocation.  The statement
68 *
69 * <blockquote><pre>
70 * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
71 *
72 * is equivalent to the three statements above, though for repeated matches it
73 * is less efficient since it does not allow the compiled pattern to be reused.
74 *
75 * <p> Instances of this class are immutable and are safe for use by multiple
76 * concurrent threads.  Instances of the {@link Matcher} class are not safe for
77 * such use.
78 *
79 *
80 * <h3><a id="sum">Summary of regular-expression constructs</a></h3>
81 *
82 * <table class="borderless">
83 * <caption style="display:none">Regular expression constructs, and what they match</caption>
84 * <thead style="text-align:left">
85 * <tr>
86 * <th id="construct">Construct</th>
87 * <th id="matches">Matches</th>
88 * </tr>
89 * </thead>
90 * <tbody style="text-align:left">
91 *
92 * <tr><th colspan="2" style="padding-top:20px" id="characters">Characters</th></tr>
93 *
94 * <tr><th style="vertical-align:top; font-weight: normal" id="x"><i>x</i></th>
95 *     <td headers="matches characters x">The character <i>x</i></td></tr>
96 * <tr><th style="vertical-align:top; font-weight: normal" id="backslash">{@code \\}</th>
97 *     <td headers="matches characters backslash">The backslash character</td></tr>
98 * <tr><th style="vertical-align:top; font-weight: normal" id="octal_n">{@code \0}<i>n</i></th>
99 *     <td headers="matches characters octal_n">The character with octal value {@code 0}<i>n</i>
100 *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
101 * <tr><th style="vertical-align:top; font-weight: normal" id="octal_nn">{@code \0}<i>nn</i></th>
102 *     <td headers="matches characters octal_nn">The character with octal value {@code 0}<i>nn</i>
103 *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
104 * <tr><th style="vertical-align:top; font-weight: normal" id="octal_nnn">{@code \0}<i>mnn</i></th>
105 *     <td headers="matches characters octal_nnn">The character with octal value {@code 0}<i>mnn</i>
106 *         (0&nbsp;{@code <=}&nbsp;<i>m</i>&nbsp;{@code <=}&nbsp;3,
107 *         0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
108 * <tr><th style="vertical-align:top; font-weight: normal" id="hex_hh">{@code \x}<i>hh</i></th>
109 *     <td headers="matches characters hex_hh">The character with hexadecimal value {@code 0x}<i>hh</i></td></tr>
110 * <tr><th style="vertical-align:top; font-weight: normal" id="hex_hhhh"><code>&#92;u</code><i>hhhh</i></th>
111 *     <td headers="matches characters hex_hhhh">The character with hexadecimal&nbsp;value&nbsp;{@code 0x}<i>hhhh</i></td></tr>
112 * <tr><th style="vertical-align:top; font-weight: normal" id="hex_h_h"><code>&#92;x</code><i>{h...h}</i></th>
113 *     <td headers="matches characters hex_h_h">The character with hexadecimal value {@code 0x}<i>h...h</i>
114 *         ({@link java.lang.Character#MIN_CODE_POINT Character.MIN_CODE_POINT}
115 *         &nbsp;&lt;=&nbsp;{@code 0x}<i>h...h</i>&nbsp;&lt;=&nbsp;
116 *          {@link java.lang.Character#MAX_CODE_POINT Character.MAX_CODE_POINT})</td></tr>
117 * <tr><th style="vertical-align:top; font-weight: normal" id="unicode_name"><code>&#92;N{</code><i>name</i><code>}</code></th>
118 *     <td headers="matches characters unicode_name">The character with Unicode character name <i>'name'</i></td></tr>
119 * <tr><th style="vertical-align:top; font-weight:normal" id="tab">{@code \t}</th>
120 *     <td headers="matches characters tab">The tab character (<code>'&#92;u0009'</code>)</td></tr>
121 * <tr><th style="vertical-align:top; font-weight:normal" id="newline">{@code \n}</th>
122 *     <td headers="matches characters newline">The newline (line feed) character (<code>'&#92;u000A'</code>)</td></tr>
123 * <tr><th style="vertical-align:top; font-weight:normal" id="return">{@code \r}</th>
124 *     <td headers="matches characters return">The carriage-return character (<code>'&#92;u000D'</code>)</td></tr>
125 * <tr><th style="vertical-align:top; font-weight:normal" id="form_feed">{@code \f}</th>
126 *     <td headers="matches characters form_feed">The form-feed character (<code>'&#92;u000C'</code>)</td></tr>
127 * <tr><th style="vertical-align:top; font-weight:normal" id="bell">{@code \a}</th>
128 *     <td headers="matches characters bell">The alert (bell) character (<code>'&#92;u0007'</code>)</td></tr>
129 * <tr><th style="vertical-align:top; font-weight:normal" id="escape">{@code \e}</th>
130 *     <td headers="matches characters escape">The escape character (<code>'&#92;u001B'</code>)</td></tr>
131 * <tr><th style="vertical-align:top; font-weight:normal" id="ctrl_x">{@code \c}<i>x</i></th>
132 *     <td headers="matches characters ctrl_x">The control character corresponding to <i>x</i></td></tr>
133 *
134 *  <tr><th colspan="2" style="padding-top:20px" id="classes">Character classes</th></tr>
135 *
136 * <tr><th style="vertical-align:top; font-weight:normal" id="simple">{@code [abc]}</th>
137 *     <td headers="matches classes simple">{@code a}, {@code b}, or {@code c} (simple class)</td></tr>
138 * <tr><th style="vertical-align:top; font-weight:normal" id="negation">{@code [^abc]}</th>
139 *     <td headers="matches classes negation">Any character except {@code a}, {@code b}, or {@code c} (negation)</td></tr>
140 * <tr><th style="vertical-align:top; font-weight:normal" id="range">{@code [a-zA-Z]}</th>
141 *     <td headers="matches classes range">{@code a} through {@code z}
142 *         or {@code A} through {@code Z}, inclusive (range)</td></tr>
143 * <tr><th style="vertical-align:top; font-weight:normal" id="union">{@code [a-d[m-p]]}</th>
144 *     <td headers="matches classes union">{@code a} through {@code d},
145 *      or {@code m} through {@code p}: {@code [a-dm-p]} (union)</td></tr>
146 * <tr><th style="vertical-align:top; font-weight:normal" id="intersection">{@code [a-z&&[def]]}</th>
147 *     <td headers="matches classes intersection">{@code d}, {@code e}, or {@code f} (intersection)</tr>
148 * <tr><th style="vertical-align:top; font-weight:normal" id="subtraction1">{@code [a-z&&[^bc]]}</th>
149 *     <td headers="matches classes subtraction1">{@code a} through {@code z},
150 *         except for {@code b} and {@code c}: {@code [ad-z]} (subtraction)</td></tr>
151 * <tr><th style="vertical-align:top; font-weight:normal" id="subtraction2">{@code [a-z&&[^m-p]]}</th>
152 *     <td headers="matches classes subtraction2">{@code a} through {@code z},
153 *          and not {@code m} through {@code p}: {@code [a-lq-z]}(subtraction)</td></tr>
154 *
155 * <tr><th colspan="2" style="padding-top:20px" id="predef">Predefined character classes</th></tr>
156 *
157 * <tr><th style="vertical-align:top; font-weight:normal" id="any">{@code .}</th>
158 *     <td headers="matches predef any">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
159 * <tr><th style="vertical-align:top; font-weight:normal" id="digit">{@code \d}</th>
160 *     <td headers="matches predef digit">A digit: {@code [0-9]}</td></tr>
161 * <tr><th style="vertical-align:top; font-weight:normal" id="non_digit">{@code \D}</th>
162 *     <td headers="matches predef non_digit">A non-digit: {@code [^0-9]}</td></tr>
163 * <tr><th style="vertical-align:top; font-weight:normal" id="horiz_white">{@code \h}</th>
164 *     <td headers="matches predef horiz_white">A horizontal whitespace character:
165 *     <code>[ \t\xA0&#92;u1680&#92;u180e&#92;u2000-&#92;u200a&#92;u202f&#92;u205f&#92;u3000]</code></td></tr>
166 * <tr><th style="vertical-align:top; font-weight:normal" id="non_horiz_white">{@code \H}</th>
167 *     <td headers="matches predef non_horiz_white">A non-horizontal whitespace character: {@code [^\h]}</td></tr>
168 * <tr><th style="vertical-align:top; font-weight:normal" id="white">{@code \s}</th>
169 *     <td headers="matches predef white">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
170 * <tr><th style="vertical-align:top; font-weight:normal" id="non_white">{@code \S}</th>
171 *     <td headers="matches predef non_white">A non-whitespace character: {@code [^\s]}</td></tr>
172 * <tr><th style="vertical-align:top; font-weight:normal" id="vert_white">{@code \v}</th>
173 *     <td headers="matches predef vert_white">A vertical whitespace character: <code>[\n\x0B\f\r\x85&#92;u2028&#92;u2029]</code>
174 *     </td></tr>
175 * <tr><th style="vertical-align:top; font-weight:normal" id="non_vert_white">{@code \V}</th>
176 *     <td headers="matches predef non_vert_white">A non-vertical whitespace character: {@code [^\v]}</td></tr>
177 * <tr><th style="vertical-align:top; font-weight:normal" id="word">{@code \w}</th>
178 *     <td headers="matches predef word">A word character: {@code [a-zA-Z_0-9]}</td></tr>
179 * <tr><th style="vertical-align:top; font-weight:normal" id="non_word">{@code \W}</th>
180 *     <td headers="matches predef non_word">A non-word character: {@code [^\w]}</td></tr>
181 *
182 * <tr><th colspan="2" style="padding-top:20px" id="posix"><b>POSIX character classes (US-ASCII only)</b></th></tr>
183 *
184 * <tr><th style="vertical-align:top; font-weight:normal" id="Lower">{@code \p{Lower}}</th>
185 *     <td headers="matches posix Lower">A lower-case alphabetic character: {@code [a-z]}</td></tr>
186 * <tr><th style="vertical-align:top; font-weight:normal" id="Upper">{@code \p{Upper}}</th>
187 *     <td headers="matches posix Upper">An upper-case alphabetic character:{@code [A-Z]}</td></tr>
188 * <tr><th style="vertical-align:top; font-weight:normal" id="ASCII">{@code \p{ASCII}}</th>
189 *     <td headers="matches posix ASCII">All ASCII:{@code [\x00-\x7F]}</td></tr>
190 * <tr><th style="vertical-align:top; font-weight:normal" id="Alpha">{@code \p{Alpha}}</th>
191 *     <td headers="matches posix Alpha">An alphabetic character:{@code [\p{Lower}\p{Upper}]}</td></tr>
192 * <tr><th style="vertical-align:top; font-weight:normal" id="Digit">{@code \p{Digit}}</th>
193 *     <td headers="matches posix Digit">A decimal digit: {@code [0-9]}</td></tr>
194 * <tr><th style="vertical-align:top; font-weight:normal" id="Alnum">{@code \p{Alnum}}</th>
195 *     <td headers="matches posix Alnum">An alphanumeric character:{@code [\p{Alpha}\p{Digit}]}</td></tr>
196 * <tr><th style="vertical-align:top; font-weight:normal" id="Punct">{@code \p{Punct}}</th>
197 *     <td headers="matches posix Punct">Punctuation: One of {@code !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~}</td></tr>
198 *     <!-- {@code [\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]}
199 *          {@code [\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]} -->
200 * <tr><th style="vertical-align:top; font-weight:normal" id="Graph">{@code \p{Graph}}</th>
201 *     <td headers="matches posix Graph">A visible character: {@code [\p{Alnum}\p{Punct}]}</td></tr>
202 * <tr><th style="vertical-align:top; font-weight:normal" id="Print">{@code \p{Print}}</th>
203 *     <td headers="matches posix Print">A printable character: {@code [\p{Graph}\x20]}</td></tr>
204 * <tr><th style="vertical-align:top; font-weight:normal" id="Blank">{@code \p{Blank}}</th>
205 *     <td headers="matches posix Blank">A space or a tab: {@code [ \t]}</td></tr>
206 * <tr><th style="vertical-align:top; font-weight:normal" id="Cntrl">{@code \p{Cntrl}}</th>
207 *     <td headers="matches posix Cntrl">A control character: {@code [\x00-\x1F\x7F]}</td></tr>
208 * <tr><th style="vertical-align:top; font-weight:normal" id="XDigit">{@code \p{XDigit}}</th>
209 *     <td headers="matches posix XDigit">A hexadecimal digit: {@code [0-9a-fA-F]}</td></tr>
210 * <tr><th style="vertical-align:top; font-weight:normal" id="Space">{@code \p{Space}}</th>
211 *     <td headers="matches posix Space">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
212 *
213 * <tr><th colspan="2" style="padding-top:20px" id="java">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
214 *
215 * <tr><th style="vertical-align:top; font-weight:normal" id="javaLowerCase">{@code \p{javaLowerCase}}</th>
216 *     <td headers="matches java javaLowerCase">Equivalent to java.lang.Character.isLowerCase()</td></tr>
217 * <tr><th style="vertical-align:top; font-weight:normal" id="javaUpperCase">{@code \p{javaUpperCase}}</th>
218 *     <td headers="matches java javaUpperCase">Equivalent to java.lang.Character.isUpperCase()</td></tr>
219 * <tr><th style="vertical-align:top; font-weight:normal" id="javaWhitespace">{@code \p{javaWhitespace}}</th>
220 *     <td headers="matches java javaWhitespace">Equivalent to java.lang.Character.isWhitespace()</td></tr>
221 * <tr><th style="vertical-align:top; font-weight:normal" id="javaMirrored">{@code \p{javaMirrored}}</th>
222 *     <td headers="matches java javaMirrored">Equivalent to java.lang.Character.isMirrored()</td></tr>
223 *
224 * <tr><th colspan="2" style="padding-top:20px"  id="unicode">Classes for Unicode scripts, blocks, categories and binary properties</th></tr>
225 *
226 * <tr><th style="vertical-align:top; font-weight:normal" id="IsLatin">{@code \p{IsLatin}}</th>
227 *     <td headers="matches unicode IsLatin">A Latin&nbsp;script character (<a href="#usc">script</a>)</td></tr>
228 * <tr><th style="vertical-align:top; font-weight:normal" id="InGreek">{@code \p{InGreek}}</th>
229 *     <td headers="matches unicode InGreek">A character in the Greek&nbsp;block (<a href="#ubc">block</a>)</td></tr>
230 * <tr><th style="vertical-align:top; font-weight:normal" id="Lu">{@code \p{Lu}}</th>
231 *     <td headers="matches unicode Lu">An uppercase letter (<a href="#ucc">category</a>)</td></tr>
232 * <tr><th style="vertical-align:top; font-weight:normal" id="IsAlphabetic">{@code \p{IsAlphabetic}}</th>
233 *     <td headers="matches unicode IsAlphabetic">An alphabetic character (<a href="#ubpc">binary property</a>)</td></tr>
234 * <tr><th style="vertical-align:top; font-weight:normal" id="Sc">{@code \p{Sc}}</th>
235 *     <td headers="matches unicode Sc">A currency symbol</td></tr>
236 * <tr><th style="vertical-align:top; font-weight:normal" id="not_InGreek">{@code \P{InGreek}}</th>
237 *     <td headers="matches unicode not_InGreek">Any character except one in the Greek block (negation)</td></tr>
238 * <tr><th style="vertical-align:top; font-weight:normal" id="not_uppercase">{@code [\p{L}&&[^\p{Lu}]]}</th>
239 *     <td headers="matches unicode not_uppercase">Any letter except an uppercase letter (subtraction)</td></tr>
240 *
241 * <tr><th colspan="2" style="padding-top:20px" id="bounds">Boundary matchers</th></tr>
242 *
243 * <tr><th style="vertical-align:top; font-weight:normal" id="begin_line">{@code ^}</th>
244 *     <td headers="matches bounds begin_line">The beginning of a line</td></tr>
245 * <tr><th style="vertical-align:top; font-weight:normal" id="end_line">{@code $}</th>
246 *     <td headers="matches bounds end_line">The end of a line</td></tr>
247 * <tr><th style="vertical-align:top; font-weight:normal" id="word_boundary">{@code \b}</th>
248 *     <td headers="matches bounds word_boundary">A word boundary</td></tr>
249 * <tr><th style="vertical-align:top; font-weight:normal" id="grapheme_cluster_boundary">{@code \b{g}}</th>
250 *     <td headers="matches bounds grapheme_cluster_boundary">A Unicode extended grapheme cluster boundary</td></tr>
251 * <tr><th style="vertical-align:top; font-weight:normal" id="non_word_boundary">{@code \B}</th>
252 *     <td headers="matches bounds non_word_boundary">A non-word boundary</td></tr>
253 * <tr><th style="vertical-align:top; font-weight:normal" id="begin_input">{@code \A}</th>
254 *     <td headers="matches bounds begin_input">The beginning of the input</td></tr>
255 * <tr><th style="vertical-align:top; font-weight:normal" id="end_prev_match">{@code \G}</th>
256 *     <td headers="matches bounds end_prev_match">The end of the previous match</td></tr>
257 * <tr><th style="vertical-align:top; font-weight:normal" id="end_input_except_term">{@code \Z}</th>
258 *     <td headers="matches bounds end_input_except_term">The end of the input but for the final
259 *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
260 * <tr><th style="vertical-align:top; font-weight:normal" id="end_input">{@code \z}</th>
261 *     <td headers="matches bounds end_input">The end of the input</td></tr>
262 *
263 * <tr><th colspan="2" style="padding-top:20px" id="linebreak">Linebreak matcher</th></tr>
264 *
265 * <tr><th style="vertical-align:top; font-weight:normal" id="any_unicode_linebreak">{@code \R}</th>
266 *     <td headers="matches linebreak any_unicode_linebreak">Any Unicode linebreak sequence, is equivalent to
267 *     <code>&#92;u000D&#92;u000A|[&#92;u000A&#92;u000B&#92;u000C&#92;u000D&#92;u0085&#92;u2028&#92;u2029]
268 *     </code></td></tr>
269 *
270 * <tr><th colspan="2" style="padding-top:20px" id="grapheme">Unicode Extended Grapheme matcher</th></tr>
271 *
272 * <tr><th style="vertical-align:top; font-weight:normal" id="grapheme_any">{@code \X}</th>
273 *     <td headers="matches grapheme grapheme_any">Any Unicode extended grapheme cluster</td></tr>
274 *
275 * <tr><th colspan="2" style="padding-top:20px" id="greedy">Greedy quantifiers</th></tr>
276 *
277 * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_once_or_not"><i>X</i>{@code ?}</th>
278 *     <td headers="matches greedy greedy_once_or_not"><i>X</i>, once or not at all</td></tr>
279 * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_zero_or_more"><i>X</i>{@code *}</th>
280 *     <td headers="matches greedy greedy_zero_or_more"><i>X</i>, zero or more times</td></tr>
281 * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_one_or_more"><i>X</i>{@code +}</th>
282 *     <td headers="matches greedy greedy_one_or_more"><i>X</i>, one or more times</td></tr>
283 * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_exactly"><i>X</i><code>{</code><i>n</i><code>}</code></th>
284 *     <td headers="matches greedy greedy_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
285 * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_at_least"><i>X</i><code>{</code><i>n</i>{@code ,}}</th>
286 *     <td headers="matches greedy greedy_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
287 * <tr><th style="vertical-align:top; font-weight:normal" id="greedy_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}</code></th>
288 *     <td headers="matches greedy greedy_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
289 *
290 * <tr><th colspan="2" style="padding-top:20px" id="reluc">Reluctant quantifiers</th></tr>
291 *
292 * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_once_or_not"><i>X</i>{@code ??}</th>
293 *     <td headers="matches reluc reluc_once_or_not"><i>X</i>, once or not at all</td></tr>
294 * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_zero_or_more"><i>X</i>{@code *?}</th>
295 *     <td headers="matches reluc reluc_zero_or_more"><i>X</i>, zero or more times</td></tr>
296 * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_one_or_more"><i>X</i>{@code +?}</th>
297 *     <td headers="matches reluc reluc_one_or_more"><i>X</i>, one or more times</td></tr>
298 * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_exactly"><i>X</i><code>{</code><i>n</i><code>}?</code></th>
299 *     <td headers="matches reluc reluc_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
300 * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_at_least"><i>X</i><code>{</code><i>n</i><code>,}?</code></th>
301 *     <td headers="matches reluc reluc_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
302 * <tr><th style="vertical-align:top; font-weight:normal" id="reluc_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}?</code></th>
303 *     <td headers="matches reluc reluc_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
304 *
305 * <tr><th colspan="2" style="padding-top:20px" id="poss">Possessive quantifiers</th></tr>
306 *
307 * <tr><th style="vertical-align:top; font-weight:normal" id="poss_once_or_not"><i>X</i>{@code ?+}</th>
308 *     <td headers="matches poss poss_once_or_not"><i>X</i>, once or not at all</td></tr>
309 * <tr><th style="vertical-align:top; font-weight:normal" id="poss_zero_or_more"><i>X</i>{@code *+}</th>
310 *     <td headers="matches poss poss_zero_or_more"><i>X</i>, zero or more times</td></tr>
311 * <tr><th style="vertical-align:top; font-weight:normal" id="poss_one_or_more"><i>X</i>{@code ++}</th>
312 *     <td headers="matches poss poss_one_or_more"><i>X</i>, one or more times</td></tr>
313 * <tr><th style="vertical-align:top; font-weight:normal" id="poss_exactly"><i>X</i><code>{</code><i>n</i><code>}+</code></th>
314 *     <td headers="matches poss poss_exactly"><i>X</i>, exactly <i>n</i> times</td></tr>
315 * <tr><th style="vertical-align:top; font-weight:normal" id="poss_at_least"><i>X</i><code>{</code><i>n</i><code>,}+</code></th>
316 *     <td headers="matches poss poss_at_least"><i>X</i>, at least <i>n</i> times</td></tr>
317 * <tr><th style="vertical-align:top; font-weight:normal" id="poss_at_least_up_to"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}+</code></th>
318 *     <td headers="matches poss poss_at_least_up_to"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
319 *
320 * <tr><th colspan="2" style="padding-top:20px" id="logical">Logical operators</th></tr>
321 *
322 * <tr><th style="vertical-align:top; font-weight:normal" id="concat"><i>XY</i></th>
323 *     <td headers="matches logical concat"><i>X</i> followed by <i>Y</i></td></tr>
324 * <tr><th style="vertical-align:top; font-weight:normal" id="alternate"><i>X</i>{@code |}<i>Y</i></th>
325 *     <td headers="matches logical alternate">Either <i>X</i> or <i>Y</i></td></tr>
326 * <tr><th style="vertical-align:top; font-weight:normal" id="group">{@code (}<i>X</i>{@code )}</th>
327 *     <td headers="matches logical group">X, as a <a href="#cg">capturing group</a></td></tr>
328 *
329 * <tr><th colspan="2" style="padding-top:20px" id="backref">Back references</th></tr>
330 *
331 * <tr><th style="vertical-align:top; font-weight:normal" id="back_nth">{@code \}<i>n</i></th>
332 *     <td headers="matches backref back_nth">Whatever the <i>n</i><sup>th</sup>
333 *     <a href="#cg">capturing group</a> matched</td></tr>
334 * <tr><th style="vertical-align:top; font-weight:normal" id="back_named">{@code \}<i>k</i>&lt;<i>name</i>&gt;</th>
335 *     <td headers="matches backref back_named">Whatever the
336 *     <a href="#groupname">named-capturing group</a> "name" matched</td></tr>
337 *
338 * <tr><th colspan="2" style="padding-top:20px" id="quote">Quotation</th></tr>
339 *
340 * <tr><th style="vertical-align:top; font-weight:normal" id="quote_follow">{@code \}</th>
341 *     <td headers="matches quote quote_follow">Nothing, but quotes the following character</td></tr>
342 * <tr><th style="vertical-align:top; font-weight:normal" id="quote_begin">{@code \Q}</th>
343 *     <td headers="matches quote quote_begin">Nothing, but quotes all characters until {@code \E}</td></tr>
344 * <tr><th style="vertical-align:top; font-weight:normal" id="quote_end">{@code \E}</th>
345 *     <td headers="matches quote quote_end">Nothing, but ends quoting started by {@code \Q}</td></tr>
346 *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
347 *
348 * <tr><th colspan="2" style="padding-top:20px" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
349 *
350 * <tr><th style="vertical-align:top; font-weight:normal" id="named_group"><code>(?&lt;<a href="#groupname">name</a>&gt;</code><i>X</i>{@code )}</th>
351 *     <td headers="matches special named_group"><i>X</i>, as a named-capturing group</td></tr>
352 * <tr><th style="vertical-align:top; font-weight:normal" id="non_capture_group">{@code (?:}<i>X</i>{@code )}</th>
353 *     <td headers="matches special non_capture_group"><i>X</i>, as a non-capturing group</td></tr>
354 * <tr><th style="vertical-align:top; font-weight:normal" id="flags"><code>(?idmsuxU-idmsuxU)&nbsp;</code></th>
355 *     <td headers="matches special flags">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
356 * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
357 * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a>
358 * on - off</td></tr>
359 * <tr><th style="vertical-align:top; font-weight:normal" id="non_capture_group_flags"><code>(?idmsux-idmsux:</code><i>X</i>{@code )}&nbsp;&nbsp;</th>
360 *     <td headers="matches special non_capture_group_flags"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
361 *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
362 * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
363 * <a href="#COMMENTS">x</a> on - off</td></tr>
364 * <tr><th style="vertical-align:top; font-weight:normal" id="pos_lookahead">{@code (?=}<i>X</i>{@code )}</th>
365 *     <td headers="matches special pos_lookahead"><i>X</i>, via zero-width positive lookahead</td></tr>
366 * <tr><th style="vertical-align:top; font-weight:normal" id="neg_lookahead">{@code (?!}<i>X</i>{@code )}</th>
367 *     <td headers="matches special neg_lookahead"><i>X</i>, via zero-width negative lookahead</td></tr>
368 * <tr><th style="vertical-align:top; font-weight:normal" id="pos_lookbehind">{@code (?<=}<i>X</i>{@code )}</th>
369 *     <td headers="matches special pos_lookbehind"><i>X</i>, via zero-width positive lookbehind</td></tr>
370 * <tr><th style="vertical-align:top; font-weight:normal" id="neg_lookbehind">{@code (?<!}<i>X</i>{@code )}</th>
371 *     <td headers="matches special neg_lookbehind"><i>X</i>, via zero-width negative lookbehind</td></tr>
372 * <tr><th style="vertical-align:top; font-weight:normal" id="indep_non_capture_group">{@code (?>}<i>X</i>{@code )}</th>
373 *     <td headers="matches special indep_non_capture_group"><i>X</i>, as an independent, non-capturing group</td></tr>
374 *
375 * </tbody>
376 * </table>
377 *
378 * <hr>
379 *
380 *
381 * <h3><a id="bs">Backslashes, escapes, and quoting</a></h3>
382 *
383 * <p> The backslash character ({@code '\'}) serves to introduce escaped
384 * constructs, as defined in the table above, as well as to quote characters
385 * that otherwise would be interpreted as unescaped constructs.  Thus the
386 * expression {@code \\} matches a single backslash and <code>\{</code> matches a
387 * left brace.
388 *
389 * <p> It is an error to use a backslash prior to any alphabetic character that
390 * does not denote an escaped construct; these are reserved for future
391 * extensions to the regular-expression language.  A backslash may be used
392 * prior to a non-alphabetic character regardless of whether that character is
393 * part of an unescaped construct.
394 *
395 * <p> Backslashes within string literals in Java source code are interpreted
396 * as required by
397 * <cite>The Java&trade; Language Specification</cite>
398 * as either Unicode escapes (section 3.3) or other character escapes (section 3.10.6)
399 * It is therefore necessary to double backslashes in string
400 * literals that represent regular expressions to protect them from
401 * interpretation by the Java bytecode compiler.  The string literal
402 * <code>"&#92;b"</code>, for example, matches a single backspace character when
403 * interpreted as a regular expression, while {@code "\\b"} matches a
404 * word boundary.  The string literal {@code "\(hello\)"} is illegal
405 * and leads to a compile-time error; in order to match the string
406 * {@code (hello)} the string literal {@code "\\(hello\\)"}
407 * must be used.
408 *
409 * <h3><a id="cc">Character Classes</a></h3>
410 *
411 *    <p> Character classes may appear within other character classes, and
412 *    may be composed by the union operator (implicit) and the intersection
413 *    operator ({@code &&}).
414 *    The union operator denotes a class that contains every character that is
415 *    in at least one of its operand classes.  The intersection operator
416 *    denotes a class that contains every character that is in both of its
417 *    operand classes.
418 *
419 *    <p> The precedence of character-class operators is as follows, from
420 *    highest to lowest:
421 *
422 *    <table class="striped" style="margin-left: 2em;">
423 *      <caption style="display:none">Precedence of character class operators.</caption>
424 *      <thead>
425 *      <tr><th scope="col">Precedence<th scope="col">Name<th scope="col">Example
426 *      </thead>
427 *      <tbody>
428 *      <tr><th scope="row">1</th>
429 *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
430 *        <td>{@code \x}</td></tr>
431 *     <tr><th scope="row">2</th>
432 *        <td>Grouping</td>
433 *        <td>{@code [...]}</td></tr>
434 *     <tr><th scope="row">3</th>
435 *        <td>Range</td>
436 *        <td>{@code a-z}</td></tr>
437 *      <tr><th scope="row">4</th>
438 *        <td>Union</td>
439 *        <td>{@code [a-e][i-u]}</td></tr>
440 *      <tr><th scope="row">5</th>
441 *        <td>Intersection</td>
442 *        <td>{@code [a-z&&[aeiou]]}</td></tr>
443 *      </tbody>
444 *    </table>
445 *
446 *    <p> Note that a different set of metacharacters are in effect inside
447 *    a character class than outside a character class. For instance, the
448 *    regular expression {@code .} loses its special meaning inside a
449 *    character class, while the expression {@code -} becomes a range
450 *    forming metacharacter.
451 *
452 * <h3><a id="lt">Line terminators</a></h3>
453 *
454 * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
455 * the end of a line of the input character sequence.  The following are
456 * recognized as line terminators:
457 *
458 * <ul>
459 *
460 *   <li> A newline (line feed) character ({@code '\n'}),
461 *
462 *   <li> A carriage-return character followed immediately by a newline
463 *   character ({@code "\r\n"}),
464 *
465 *   <li> A standalone carriage-return character ({@code '\r'}),
466 *
467 *   <li> A next-line character (<code>'&#92;u0085'</code>),
468 *
469 *   <li> A line-separator character (<code>'&#92;u2028'</code>), or
470 *
471 *   <li> A paragraph-separator character (<code>'&#92;u2029'</code>).
472 *
473 * </ul>
474 * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
475 * recognized are newline characters.
476 *
477 * <p> The regular expression {@code .} matches any character except a line
478 * terminator unless the {@link #DOTALL} flag is specified.
479 *
480 * <p> By default, the regular expressions {@code ^} and {@code $} ignore
481 * line terminators and only match at the beginning and the end, respectively,
482 * of the entire input sequence. If {@link #MULTILINE} mode is activated then
483 * {@code ^} matches at the beginning of input and after any line terminator
484 * except at the end of input. When in {@link #MULTILINE} mode {@code $}
485 * matches just before a line terminator or the end of the input sequence.
486 *
487 * <h3><a id="cg">Groups and capturing</a></h3>
488 *
489 * <h4><a id="gnumber">Group number</a></h4>
490 * <p> Capturing groups are numbered by counting their opening parentheses from
491 * left to right.  In the expression {@code ((A)(B(C)))}, for example, there
492 * are four such groups: </p>
493 *
494 * <ol style="margin-left:2em;">
495 *   <li> {@code ((A)(B(C)))}
496 *   <li> {@code (A)}
497 *   <li> {@code (B(C))}
498 *   <li> {@code (C)}
499 * </ol>
500 *
501 * <p> Group zero always stands for the entire expression.
502 *
503 * <p> Capturing groups are so named because, during a match, each subsequence
504 * of the input sequence that matches such a group is saved.  The captured
505 * subsequence may be used later in the expression, via a back reference, and
506 * may also be retrieved from the matcher once the match operation is complete.
507 *
508 * <h4><a id="groupname">Group name</a></h4>
509 * <p>A capturing group can also be assigned a "name", a {@code named-capturing group},
510 * and then be back-referenced later by the "name". Group names are composed of
511 * the following characters. The first character must be a {@code letter}.
512 *
513 * <ul>
514 *   <li> The uppercase letters {@code 'A'} through {@code 'Z'}
515 *        (<code>'&#92;u0041'</code>&nbsp;through&nbsp;<code>'&#92;u005a'</code>),
516 *   <li> The lowercase letters {@code 'a'} through {@code 'z'}
517 *        (<code>'&#92;u0061'</code>&nbsp;through&nbsp;<code>'&#92;u007a'</code>),
518 *   <li> The digits {@code '0'} through {@code '9'}
519 *        (<code>'&#92;u0030'</code>&nbsp;through&nbsp;<code>'&#92;u0039'</code>),
520 * </ul>
521 *
522 * <p> A {@code named-capturing group} is still numbered as described in
523 * <a href="#gnumber">Group number</a>.
524 *
525 * <p> The captured input associated with a group is always the subsequence
526 * that the group most recently matched.  If a group is evaluated a second time
527 * because of quantification then its previously-captured value, if any, will
528 * be retained if the second evaluation fails.  Matching the string
529 * {@code "aba"} against the expression {@code (a(b)?)+}, for example, leaves
530 * group two set to {@code "b"}.  All captured input is discarded at the
531 * beginning of each match.
532 *
533 * <p> Groups beginning with {@code (?} are either pure, <i>non-capturing</i> groups
534 * that do not capture text and do not count towards the group total, or
535 * <i>named-capturing</i> group.
536 *
537 * <h3> Unicode support </h3>
538 *
539 * <p> This class is in conformance with Level 1 of <a
540 * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
541 * Standard #18: Unicode Regular Expression</i></a>, plus RL2.1
542 * Canonical Equivalents.
543 * <p>
544 * <b>Unicode escape sequences</b> such as <code>&#92;u2014</code> in Java source code
545 * are processed as described in section 3.3 of
546 * <cite>The Java&trade; Language Specification</cite>.
547 * Such escape sequences are also implemented directly by the regular-expression
548 * parser so that Unicode escapes can be used in expressions that are read from
549 * files or from the keyboard.  Thus the strings <code>"&#92;u2014"</code> and
550 * {@code "\\u2014"}, while not equal, compile into the same pattern, which
551 * matches the character with hexadecimal value {@code 0x2014}.
552 * <p>
553 * A Unicode character can also be represented by using its <b>Hex notation</b>
554 * (hexadecimal code point value) directly as described in construct
555 * <code>&#92;x{...}</code>, for example a supplementary character U+2011F can be
556 * specified as <code>&#92;x{2011F}</code>, instead of two consecutive Unicode escape
557 * sequences of the surrogate pair <code>&#92;uD840</code><code>&#92;uDD1F</code>.
558 * <p>
559 * <b>Unicode character names</b> are supported by the named character construct
560 * <code>\N{</code>...<code>}</code>, for example, <code>\N{WHITE SMILING FACE}</code>
561 * specifies character <code>&#92;u263A</code>. The character names supported
562 * by this class are the valid Unicode character names matched by
563 * {@link java.lang.Character#codePointOf(String) Character.codePointOf(name)}.
564 * <p>
565 * <a href="http://www.unicode.org/reports/tr18/#Default_Grapheme_Clusters">
566 * <b>Unicode extended grapheme clusters</b></a> are supported by the grapheme
567 * cluster matcher {@code \X} and the corresponding boundary matcher {@code \b{g}}.
568 * <p>
569 * Unicode scripts, blocks, categories and binary properties are written with
570 * the {@code \p} and {@code \P} constructs as in Perl.
571 * <code>\p{</code><i>prop</i><code>}</code> matches if
572 * the input has the property <i>prop</i>, while <code>\P{</code><i>prop</i><code>}</code>
573 * does not match if the input has that property.
574 * <p>
575 * Scripts, blocks, categories and binary properties can be used both inside
576 * and outside of a character class.
577 *
578 * <p>
579 * <b><a id="usc">Scripts</a></b> are specified either with the prefix {@code Is}, as in
580 * {@code IsHiragana}, or by using  the {@code script} keyword (or its short
581 * form {@code sc}) as in {@code script=Hiragana} or {@code sc=Hiragana}.
582 * <p>
583 * The script names supported by {@code Pattern} are the valid script names
584 * accepted and defined by
585 * {@link java.lang.Character.UnicodeScript#forName(String) UnicodeScript.forName}.
586 *
587 * <p>
588 * <b><a id="ubc">Blocks</a></b> are specified with the prefix {@code In}, as in
589 * {@code InMongolian}, or by using the keyword {@code block} (or its short
590 * form {@code blk}) as in {@code block=Mongolian} or {@code blk=Mongolian}.
591 * <p>
592 * The block names supported by {@code Pattern} are the valid block names
593 * accepted and defined by
594 * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
595 * <p>
596 *
597 * <b><a id="ucc">Categories</a></b> may be specified with the optional prefix {@code Is}:
598 * Both {@code \p{L}} and {@code \p{IsL}} denote the category of Unicode
599 * letters. Same as scripts and blocks, categories can also be specified
600 * by using the keyword {@code general_category} (or its short form
601 * {@code gc}) as in {@code general_category=Lu} or {@code gc=Lu}.
602 * <p>
603 * The supported categories are those of
604 * <a href="http://www.unicode.org/unicode/standard/standard.html">
605 * <i>The Unicode Standard</i></a> in the version specified by the
606 * {@link java.lang.Character Character} class. The category names are those
607 * defined in the Standard, both normative and informative.
608 * <p>
609 *
610 * <b><a id="ubpc">Binary properties</a></b> are specified with the prefix {@code Is}, as in
611 * {@code IsAlphabetic}. The supported binary properties by {@code Pattern}
612 * are
613 * <ul>
614 *   <li> Alphabetic
615 *   <li> Ideographic
616 *   <li> Letter
617 *   <li> Lowercase
618 *   <li> Uppercase
619 *   <li> Titlecase
620 *   <li> Punctuation
621 *   <Li> Control
622 *   <li> White_Space
623 *   <li> Digit
624 *   <li> Hex_Digit
625 *   <li> Join_Control
626 *   <li> Noncharacter_Code_Point
627 *   <li> Assigned
628 * </ul>
629 * <p>
630 * The following <b>Predefined Character classes</b> and <b>POSIX character classes</b>
631 * are in conformance with the recommendation of <i>Annex C: Compatibility Properties</i>
632 * of <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Regular Expression
633 * </i></a>, when {@link #UNICODE_CHARACTER_CLASS} flag is specified.
634 *
635 * <table class="striped">
636 * <caption style="display:none">predefined and posix character classes in Unicode mode</caption>
637 * <thead>
638 * <tr>
639 * <th scope="col" id="predef_classes">Classes</th>
640 * <th scope="col" id="predef_matches">Matches</th>
641 * </tr>
642 * </thead>
643 * <tbody>
644 * <tr><th scope="row">{@code \p{Lower}}</th>
645 *     <td>A lowercase character:{@code \p{IsLowercase}}</td></tr>
646 * <tr><th scope="row">{@code \p{Upper}}</th>
647 *     <td>An uppercase character:{@code \p{IsUppercase}}</td></tr>
648 * <tr><th scope="row">{@code \p{ASCII}}</th>
649 *     <td>All ASCII:{@code [\x00-\x7F]}</td></tr>
650 * <tr><th scope="row">{@code \p{Alpha}}</th>
651 *     <td>An alphabetic character:{@code \p{IsAlphabetic}}</td></tr>
652 * <tr><th scope="row">{@code \p{Digit}}</th>
653 *     <td>A decimal digit character:{@code \p{IsDigit}}</td></tr>
654 * <tr><th scope="row">{@code \p{Alnum}}</th>
655 *     <td>An alphanumeric character:{@code [\p{IsAlphabetic}\p{IsDigit}]}</td></tr>
656 * <tr><th scope="row">{@code \p{Punct}}</th>
657 *     <td>A punctuation character:{@code \p{IsPunctuation}}</td></tr>
658 * <tr><th scope="row">{@code \p{Graph}}</th>
659 *     <td>A visible character: {@code [^\p{IsWhite_Space}\p{gc=Cc}\p{gc=Cs}\p{gc=Cn}]}</td></tr>
660 * <tr><th scope="row">{@code \p{Print}}</th>
661 *     <td>A printable character: {@code [\p{Graph}\p{Blank}&&[^\p{Cntrl}]]}</td></tr>
662 * <tr><th scope="row">{@code \p{Blank}}</th>
663 *     <td>A space or a tab: {@code [\p{IsWhite_Space}&&[^\p{gc=Zl}\p{gc=Zp}\x0a\x0b\x0c\x0d\x85]]}</td></tr>
664 * <tr><th scope="row">{@code \p{Cntrl}}</th>
665 *     <td>A control character: {@code \p{gc=Cc}}</td></tr>
666 * <tr><th scope="row">{@code \p{XDigit}}</th>
667 *     <td>A hexadecimal digit: {@code [\p{gc=Nd}\p{IsHex_Digit}]}</td></tr>
668 * <tr><th scope="row">{@code \p{Space}}</th>
669 *     <td>A whitespace character:{@code \p{IsWhite_Space}}</td></tr>
670 * <tr><th scope="row">{@code \d}</th>
671 *     <td>A digit: {@code \p{IsDigit}}</td></tr>
672 * <tr><th scope="row">{@code \D}</th>
673 *     <td>A non-digit: {@code [^\d]}</td></tr>
674 * <tr><th scope="row">{@code \s}</th>
675 *     <td>A whitespace character: {@code \p{IsWhite_Space}}</td></tr>
676 * <tr><th scope="row">{@code \S}</th>
677 *     <td>A non-whitespace character: {@code [^\s]}</td></tr>
678 * <tr><th scope="row">{@code \w}</th>
679 *     <td>A word character: {@code [\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}\p{IsJoin_Control}]}</td></tr>
680 * <tr><th scope="row">{@code \W}</th>
681 *     <td>A non-word character: {@code [^\w]}</td></tr>
682 * </tbody>
683 * </table>
684 * <p>
685 * <a id="jcc">
686 * Categories that behave like the java.lang.Character
687 * boolean is<i>methodname</i> methods (except for the deprecated ones) are
688 * available through the same <code>\p{</code><i>prop</i><code>}</code> syntax where
689 * the specified property has the name <code>java<i>methodname</i></code></a>.
690 *
691 * <h3> Comparison to Perl 5 </h3>
692 *
693 * <p>The {@code Pattern} engine performs traditional NFA-based matching
694 * with ordered alternation as occurs in Perl 5.
695 *
696 * <p> Perl constructs not supported by this class: </p>
697 *
698 * <ul>
699 *    <li><p> The backreference constructs, <code>\g{</code><i>n</i><code>}</code> for
700 *    the <i>n</i><sup>th</sup><a href="#cg">capturing group</a> and
701 *    <code>\g{</code><i>name</i><code>}</code> for
702 *    <a href="#groupname">named-capturing group</a>.
703 *    </p></li>
704 *
705 *    <li><p> The conditional constructs
706 *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code )} and
707 *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code |}<i>Y</i>{@code )},
708 *    </p></li>
709 *
710 *    <li><p> The embedded code constructs <code>(?{</code><i>code</i><code>})</code>
711 *    and <code>(??{</code><i>code</i><code>})</code>,</p></li>
712 *
713 *    <li><p> The embedded comment syntax {@code (?#comment)}, and </p></li>
714 *
715 *    <li><p> The preprocessing operations {@code \l} <code>&#92;u</code>,
716 *    {@code \L}, and {@code \U}.  </p></li>
717 *
718 * </ul>
719 *
720 * <p> Constructs supported by this class but not by Perl: </p>
721 *
722 * <ul>
723 *
724 *    <li><p> Character-class union and intersection as described
725 *    <a href="#cc">above</a>.</p></li>
726 *
727 * </ul>
728 *
729 * <p> Notable differences from Perl: </p>
730 *
731 * <ul>
732 *
733 *    <li><p> In Perl, {@code \1} through {@code \9} are always interpreted
734 *    as back references; a backslash-escaped number greater than {@code 9} is
735 *    treated as a back reference if at least that many subexpressions exist,
736 *    otherwise it is interpreted, if possible, as an octal escape.  In this
737 *    class octal escapes must always begin with a zero. In this class,
738 *    {@code \1} through {@code \9} are always interpreted as back
739 *    references, and a larger number is accepted as a back reference if at
740 *    least that many subexpressions exist at that point in the regular
741 *    expression, otherwise the parser will drop digits until the number is
742 *    smaller or equal to the existing number of groups or it is one digit.
743 *    </p></li>
744 *
745 *    <li><p> Perl uses the {@code g} flag to request a match that resumes
746 *    where the last match left off.  This functionality is provided implicitly
747 *    by the {@link Matcher} class: Repeated invocations of the {@link
748 *    Matcher#find find} method will resume where the last match left off,
749 *    unless the matcher is reset.  </p></li>
750 *
751 *    <li><p> In Perl, embedded flags at the top level of an expression affect
752 *    the whole expression.  In this class, embedded flags always take effect
753 *    at the point at which they appear, whether they are at the top level or
754 *    within a group; in the latter case, flags are restored at the end of the
755 *    group just as in Perl.  </p></li>
756 *
757 * </ul>
758 *
759 *
760 * <p> For a more precise description of the behavior of regular expression
761 * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
762 * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
763 * O'Reilly and Associates, 2006.</a>
764 * </p>
765 *
766 * @see java.lang.String#split(String, int)
767 * @see java.lang.String#split(String)
768 *
769 * @author      Mike McCloskey
770 * @author      Mark Reinhold
771 * @author      JSR-51 Expert Group
772 * @since       1.4
773 * @spec        JSR-51
774 */
775
776public final class Pattern
777    implements java.io.Serializable
778{
779
780    /**
781     * Regular expression modifier values.  Instead of being passed as
782     * arguments, they can also be passed as inline modifiers.
783     * For example, the following statements have the same effect.
784     * <pre>
785     * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
786     * RegExp r2 = RegExp.compile("(?im)abc", 0);
787     * </pre>
788     *
789     * The flags are duplicated so that the familiar Perl match flag
790     * names are available.
791     */
792
793    /**
794     * Enables Unix lines mode.
795     *
796     * <p> In this mode, only the {@code '\n'} line terminator is recognized
797     * in the behavior of {@code .}, {@code ^}, and {@code $}.
798     *
799     * <p> Unix lines mode can also be enabled via the embedded flag
800     * expression&nbsp;{@code (?d)}.
801     */
802    public static final int UNIX_LINES = 0x01;
803
804    /**
805     * Enables case-insensitive matching.
806     *
807     * <p> By default, case-insensitive matching assumes that only characters
808     * in the US-ASCII charset are being matched.  Unicode-aware
809     * case-insensitive matching can be enabled by specifying the {@link
810     * #UNICODE_CASE} flag in conjunction with this flag.
811     *
812     * <p> Case-insensitive matching can also be enabled via the embedded flag
813     * expression&nbsp;{@code (?i)}.
814     *
815     * <p> Specifying this flag may impose a slight performance penalty.  </p>
816     */
817    public static final int CASE_INSENSITIVE = 0x02;
818
819    /**
820     * Permits whitespace and comments in pattern.
821     *
822     * <p> In this mode, whitespace is ignored, and embedded comments starting
823     * with {@code #} are ignored until the end of a line.
824     *
825     * <p> Comments mode can also be enabled via the embedded flag
826     * expression&nbsp;{@code (?x)}.
827     */
828    public static final int COMMENTS = 0x04;
829
830    /**
831     * Enables multiline mode.
832     *
833     * <p> In multiline mode the expressions {@code ^} and {@code $} match
834     * just after or just before, respectively, a line terminator or the end of
835     * the input sequence.  By default these expressions only match at the
836     * beginning and the end of the entire input sequence.
837     *
838     * <p> Multiline mode can also be enabled via the embedded flag
839     * expression&nbsp;{@code (?m)}.  </p>
840     */
841    public static final int MULTILINE = 0x08;
842
843    /**
844     * Enables literal parsing of the pattern.
845     *
846     * <p> When this flag is specified then the input string that specifies
847     * the pattern is treated as a sequence of literal characters.
848     * Metacharacters or escape sequences in the input sequence will be
849     * given no special meaning.
850     *
851     * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
852     * matching when used in conjunction with this flag. The other flags
853     * become superfluous.
854     *
855     * <p> There is no embedded flag character for enabling literal parsing.
856     * @since 1.5
857     */
858    public static final int LITERAL = 0x10;
859
860    /**
861     * Enables dotall mode.
862     *
863     * <p> In dotall mode, the expression {@code .} matches any character,
864     * including a line terminator.  By default this expression does not match
865     * line terminators.
866     *
867     * <p> Dotall mode can also be enabled via the embedded flag
868     * expression&nbsp;{@code (?s)}.  (The {@code s} is a mnemonic for
869     * "single-line" mode, which is what this is called in Perl.)  </p>
870     */
871    public static final int DOTALL = 0x20;
872
873    /**
874     * Enables Unicode-aware case folding.
875     *
876     * <p> When this flag is specified then case-insensitive matching, when
877     * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
878     * consistent with the Unicode Standard.  By default, case-insensitive
879     * matching assumes that only characters in the US-ASCII charset are being
880     * matched.
881     *
882     * <p> Unicode-aware case folding can also be enabled via the embedded flag
883     * expression&nbsp;{@code (?u)}.
884     *
885     * <p> Specifying this flag may impose a performance penalty.  </p>
886     */
887    public static final int UNICODE_CASE = 0x40;
888
889    /**
890     * Enables canonical equivalence.
891     *
892     * <p> When this flag is specified then two characters will be considered
893     * to match if, and only if, their full canonical decompositions match.
894     * The expression <code>"a&#92;u030A"</code>, for example, will match the
895     * string <code>"&#92;u00E5"</code> when this flag is specified.  By default,
896     * matching does not take canonical equivalence into account.
897     *
898     * <p> There is no embedded flag character for enabling canonical
899     * equivalence.
900     *
901     * <p> Specifying this flag may impose a performance penalty.  </p>
902     */
903    public static final int CANON_EQ = 0x80;
904
905    /**
906     * Enables the Unicode version of <i>Predefined character classes</i> and
907     * <i>POSIX character classes</i>.
908     *
909     * <p> When this flag is specified then the (US-ASCII only)
910     * <i>Predefined character classes</i> and <i>POSIX character classes</i>
911     * are in conformance with
912     * <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
913     * Standard #18: Unicode Regular Expression</i></a>
914     * <i>Annex C: Compatibility Properties</i>.
915     * <p>
916     * The UNICODE_CHARACTER_CLASS mode can also be enabled via the embedded
917     * flag expression&nbsp;{@code (?U)}.
918     * <p>
919     * The flag implies UNICODE_CASE, that is, it enables Unicode-aware case
920     * folding.
921     * <p>
922     * Specifying this flag may impose a performance penalty.  </p>
923     * @since 1.7
924     */
925    public static final int UNICODE_CHARACTER_CLASS = 0x100;
926
927    /**
928     * Contains all possible flags for compile(regex, flags).
929     */
930    private static final int ALL_FLAGS = CASE_INSENSITIVE | MULTILINE |
931            DOTALL | UNICODE_CASE | CANON_EQ | UNIX_LINES | LITERAL |
932            UNICODE_CHARACTER_CLASS | COMMENTS;
933
934    /* Pattern has only two serialized components: The pattern string
935     * and the flags, which are all that is needed to recompile the pattern
936     * when it is deserialized.
937     */
938
939    /** use serialVersionUID from Merlin b59 for interoperability */
940    private static final long serialVersionUID = 5073258162644648461L;
941
942    /**
943     * The original regular-expression pattern string.
944     *
945     * @serial
946     */
947    private String pattern;
948
949    /**
950     * The original pattern flags.
951     *
952     * @serial
953     */
954    private int flags;
955
956    /**
957     * Boolean indicating this Pattern is compiled; this is necessary in order
958     * to lazily compile deserialized Patterns.
959     */
960    private transient volatile boolean compiled;
961
962    /**
963     * The normalized pattern string.
964     */
965    private transient String normalizedPattern;
966
967    /**
968     * The starting point of state machine for the find operation.  This allows
969     * a match to start anywhere in the input.
970     */
971    transient Node root;
972
973    /**
974     * The root of object tree for a match operation.  The pattern is matched
975     * at the beginning.  This may include a find that uses BnM or a First
976     * node.
977     */
978    transient Node matchRoot;
979
980    /**
981     * Temporary storage used by parsing pattern slice.
982     */
983    transient int[] buffer;
984
985    /**
986     * A temporary storage used for predicate for double return.
987     */
988    transient CharPredicate predicate;
989
990    /**
991     * Map the "name" of the "named capturing group" to its group id
992     * node.
993     */
994    transient volatile Map<String, Integer> namedGroups;
995
996    /**
997     * Temporary storage used while parsing group references.
998     */
999    transient GroupHead[] groupNodes;
1000
1001    /**
1002     * Temporary storage used to store the top level closure nodes.
1003     */
1004    transient List<Node> topClosureNodes;
1005
1006    /**
1007     * The number of top greedy closure nodes in this Pattern. Used by
1008     * matchers to allocate storage needed for a IntHashSet to keep the
1009     * beginning pos {@code i} of all failed match.
1010     */
1011    transient int localTCNCount;
1012
1013    /*
1014     * Turn off the stop-exponential-backtracking optimization if there
1015     * is a group ref in the pattern.
1016     */
1017    transient boolean hasGroupRef;
1018
1019    /**
1020     * Temporary null terminated code point array used by pattern compiling.
1021     */
1022    private transient int[] temp;
1023
1024    /**
1025     * The number of capturing groups in this Pattern. Used by matchers to
1026     * allocate storage needed to perform a match.
1027     */
1028    transient int capturingGroupCount;
1029
1030    /**
1031     * The local variable count used by parsing tree. Used by matchers to
1032     * allocate storage needed to perform a match.
1033     */
1034    transient int localCount;
1035
1036    /**
1037     * Index into the pattern string that keeps track of how much has been
1038     * parsed.
1039     */
1040    private transient int cursor;
1041
1042    /**
1043     * Holds the length of the pattern string.
1044     */
1045    private transient int patternLength;
1046
1047    /**
1048     * If the Start node might possibly match supplementary characters.
1049     * It is set to true during compiling if
1050     * (1) There is supplementary char in pattern, or
1051     * (2) There is complement node of a "family" CharProperty
1052     */
1053    private transient boolean hasSupplementary;
1054
1055    /**
1056     * Compiles the given regular expression into a pattern.
1057     *
1058     * @param  regex
1059     *         The expression to be compiled
1060     * @return the given regular expression compiled into a pattern
1061     * @throws  PatternSyntaxException
1062     *          If the expression's syntax is invalid
1063     */
1064    public static Pattern compile(String regex) {
1065        return new Pattern(regex, 0);
1066    }
1067
1068    /**
1069     * Compiles the given regular expression into a pattern with the given
1070     * flags.
1071     *
1072     * @param  regex
1073     *         The expression to be compiled
1074     *
1075     * @param  flags
1076     *         Match flags, a bit mask that may include
1077     *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
1078     *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
1079     *         {@link #LITERAL}, {@link #UNICODE_CHARACTER_CLASS}
1080     *         and {@link #COMMENTS}
1081     *
1082     * @return the given regular expression compiled into a pattern with the given flags
1083     * @throws  IllegalArgumentException
1084     *          If bit values other than those corresponding to the defined
1085     *          match flags are set in {@code flags}
1086     *
1087     * @throws  PatternSyntaxException
1088     *          If the expression's syntax is invalid
1089     */
1090    public static Pattern compile(String regex, int flags) {
1091        return new Pattern(regex, flags);
1092    }
1093
1094    /**
1095     * Returns the regular expression from which this pattern was compiled.
1096     *
1097     * @return  The source of this pattern
1098     */
1099    public String pattern() {
1100        return pattern;
1101    }
1102
1103    /**
1104     * <p>Returns the string representation of this pattern. This
1105     * is the regular expression from which this pattern was
1106     * compiled.</p>
1107     *
1108     * @return  The string representation of this pattern
1109     * @since 1.5
1110     */
1111    public String toString() {
1112        return pattern;
1113    }
1114
1115    /**
1116     * Creates a matcher that will match the given input against this pattern.
1117     *
1118     * @param  input
1119     *         The character sequence to be matched
1120     *
1121     * @return  A new matcher for this pattern
1122     */
1123    public Matcher matcher(CharSequence input) {
1124        if (!compiled) {
1125            synchronized(this) {
1126                if (!compiled)
1127                    compile();
1128            }
1129        }
1130        Matcher m = new Matcher(this, input);
1131        return m;
1132    }
1133
1134    /**
1135     * Returns this pattern's match flags.
1136     *
1137     * @return  The match flags specified when this pattern was compiled
1138     */
1139    public int flags() {
1140        return flags;
1141    }
1142
1143    /**
1144     * Compiles the given regular expression and attempts to match the given
1145     * input against it.
1146     *
1147     * <p> An invocation of this convenience method of the form
1148     *
1149     * <blockquote><pre>
1150     * Pattern.matches(regex, input);</pre></blockquote>
1151     *
1152     * behaves in exactly the same way as the expression
1153     *
1154     * <blockquote><pre>
1155     * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
1156     *
1157     * <p> If a pattern is to be used multiple times, compiling it once and reusing
1158     * it will be more efficient than invoking this method each time.  </p>
1159     *
1160     * @param  regex
1161     *         The expression to be compiled
1162     *
1163     * @param  input
1164     *         The character sequence to be matched
1165     * @return whether or not the regular expression matches on the input
1166     * @throws  PatternSyntaxException
1167     *          If the expression's syntax is invalid
1168     */
1169    public static boolean matches(String regex, CharSequence input) {
1170        Pattern p = Pattern.compile(regex);
1171        Matcher m = p.matcher(input);
1172        return m.matches();
1173    }
1174
1175    /**
1176     * Splits the given input sequence around matches of this pattern.
1177     *
1178     * <p> The array returned by this method contains each substring of the
1179     * input sequence that is terminated by another subsequence that matches
1180     * this pattern or is terminated by the end of the input sequence.  The
1181     * substrings in the array are in the order in which they occur in the
1182     * input. If this pattern does not match any subsequence of the input then
1183     * the resulting array has just one element, namely the input sequence in
1184     * string form.
1185     *
1186     * <p> When there is a positive-width match at the beginning of the input
1187     * sequence then an empty leading substring is included at the beginning
1188     * of the resulting array. A zero-width match at the beginning however
1189     * never produces such empty leading substring.
1190     *
1191     * <p> The {@code limit} parameter controls the number of times the
1192     * pattern is applied and therefore affects the length of the resulting
1193     * array.  If the limit <i>n</i> is greater than zero then the pattern
1194     * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
1195     * length will be no greater than <i>n</i>, and the array's last entry
1196     * will contain all input beyond the last matched delimiter.  If <i>n</i>
1197     * is non-positive then the pattern will be applied as many times as
1198     * possible and the array can have any length.  If <i>n</i> is zero then
1199     * the pattern will be applied as many times as possible, the array can
1200     * have any length, and trailing empty strings will be discarded.
1201     *
1202     * <p> The input {@code "boo:and:foo"}, for example, yields the following
1203     * results with these parameters:
1204     *
1205     * <table class="plain" style="margin-left:2em;">
1206     * <caption style="display:none">Split example showing regex, limit, and result</caption>
1207     * <thead>
1208     * <tr>
1209     *     <th scope="col">Regex</th>
1210     *     <th scope="col">Limit</th>
1211     *     <th scope="col">Result</th>
1212     * </tr>
1213     * </thead>
1214     * <tbody>
1215     * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
1216     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
1217     *     <td>{@code { "boo", "and:foo" }}</td></tr>
1218     * <tr><!-- : -->
1219     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
1220     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1221     * <tr><!-- : -->
1222     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
1223     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1224     * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
1225     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
1226     *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1227     * <tr><!-- o -->
1228     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
1229     *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1230     * <tr><!-- o -->
1231     *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
1232     *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1233     * </tbody>
1234     * </table>
1235     *
1236     * @param  input
1237     *         The character sequence to be split
1238     *
1239     * @param  limit
1240     *         The result threshold, as described above
1241     *
1242     * @return  The array of strings computed by splitting the input
1243     *          around matches of this pattern
1244     */
1245    public String[] split(CharSequence input, int limit) {
1246        int index = 0;
1247        boolean matchLimited = limit > 0;
1248        ArrayList<String> matchList = new ArrayList<>();
1249        Matcher m = matcher(input);
1250
1251        // Add segments before each match found
1252        while(m.find()) {
1253            if (!matchLimited || matchList.size() < limit - 1) {
1254                if (index == 0 && index == m.start() && m.start() == m.end()) {
1255                    // no empty leading substring included for zero-width match
1256                    // at the beginning of the input char sequence.
1257                    continue;
1258                }
1259                String match = input.subSequence(index, m.start()).toString();
1260                matchList.add(match);
1261                index = m.end();
1262            } else if (matchList.size() == limit - 1) { // last one
1263                String match = input.subSequence(index,
1264                                                 input.length()).toString();
1265                matchList.add(match);
1266                index = m.end();
1267            }
1268        }
1269
1270        // If no match was found, return this
1271        if (index == 0)
1272            return new String[] {input.toString()};
1273
1274        // Add remaining segment
1275        if (!matchLimited || matchList.size() < limit)
1276            matchList.add(input.subSequence(index, input.length()).toString());
1277
1278        // Construct result
1279        int resultSize = matchList.size();
1280        if (limit == 0)
1281            while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
1282                resultSize--;
1283        String[] result = new String[resultSize];
1284        return matchList.subList(0, resultSize).toArray(result);
1285    }
1286
1287    /**
1288     * Splits the given input sequence around matches of this pattern.
1289     *
1290     * <p> This method works as if by invoking the two-argument {@link
1291     * #split(java.lang.CharSequence, int) split} method with the given input
1292     * sequence and a limit argument of zero.  Trailing empty strings are
1293     * therefore not included in the resulting array. </p>
1294     *
1295     * <p> The input {@code "boo:and:foo"}, for example, yields the following
1296     * results with these expressions:
1297     *
1298     * <table class="plain" style="margin-left:2em">
1299     * <caption style="display:none">Split examples showing regex and result</caption>
1300     * <thead>
1301     * <tr>
1302     *  <th scope="col">Regex</th>
1303     *  <th scope="col">Result</th>
1304     * </tr>
1305     * </thead>
1306     * <tbody>
1307     * <tr><th scope="row" style="text-weight:normal">:</th>
1308     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1309     * <tr><th scope="row" style="text-weight:normal">o</th>
1310     *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1311     * </tbody>
1312     * </table>
1313     *
1314     *
1315     * @param  input
1316     *         The character sequence to be split
1317     *
1318     * @return  The array of strings computed by splitting the input
1319     *          around matches of this pattern
1320     */
1321    public String[] split(CharSequence input) {
1322        return split(input, 0);
1323    }
1324
1325    /**
1326     * Returns a literal pattern {@code String} for the specified
1327     * {@code String}.
1328     *
1329     * <p>This method produces a {@code String} that can be used to
1330     * create a {@code Pattern} that would match the string
1331     * {@code s} as if it were a literal pattern.</p> Metacharacters
1332     * or escape sequences in the input sequence will be given no special
1333     * meaning.
1334     *
1335     * @param  s The string to be literalized
1336     * @return  A literal string replacement
1337     * @since 1.5
1338     */
1339    public static String quote(String s) {
1340        int slashEIndex = s.indexOf("\\E");
1341        if (slashEIndex == -1)
1342            return "\\Q" + s + "\\E";
1343
1344        int lenHint = s.length();
1345        lenHint = (lenHint < Integer.MAX_VALUE - 8 - lenHint) ?
1346                (lenHint << 1) : (Integer.MAX_VALUE - 8);
1347
1348        StringBuilder sb = new StringBuilder(lenHint);
1349        sb.append("\\Q");
1350        int current = 0;
1351        do {
1352            sb.append(s, current, slashEIndex)
1353                    .append("\\E\\\\E\\Q");
1354            current = slashEIndex + 2;
1355        } while ((slashEIndex = s.indexOf("\\E", current)) != -1);
1356
1357        return sb.append(s, current, s.length())
1358                .append("\\E")
1359                .toString();
1360    }
1361
1362    /**
1363     * Recompile the Pattern instance from a stream.  The original pattern
1364     * string is read in and the object tree is recompiled from it.
1365     */
1366    private void readObject(java.io.ObjectInputStream s)
1367        throws java.io.IOException, ClassNotFoundException {
1368
1369        // Read in all fields
1370        s.defaultReadObject();
1371
1372        // Initialize counts
1373        capturingGroupCount = 1;
1374        localCount = 0;
1375        localTCNCount = 0;
1376
1377        // if length > 0, the Pattern is lazily compiled
1378        if (pattern.length() == 0) {
1379            root = new Start(lastAccept);
1380            matchRoot = lastAccept;
1381            compiled = true;
1382        }
1383    }
1384
1385    /**
1386     * This private constructor is used to create all Patterns. The pattern
1387     * string and match flags are all that is needed to completely describe
1388     * a Pattern. An empty pattern string results in an object tree with
1389     * only a Start node and a LastNode node.
1390     */
1391    private Pattern(String p, int f) {
1392        if ((f & ~ALL_FLAGS) != 0) {
1393            throw new IllegalArgumentException("Unknown flag 0x"
1394                                               + Integer.toHexString(f));
1395        }
1396        pattern = p;
1397        flags = f;
1398
1399        // to use UNICODE_CASE if UNICODE_CHARACTER_CLASS present
1400        if ((flags & UNICODE_CHARACTER_CLASS) != 0)
1401            flags |= UNICODE_CASE;
1402
1403        // Reset group index count
1404        capturingGroupCount = 1;
1405        localCount = 0;
1406        localTCNCount = 0;
1407
1408        if (pattern.length() > 0) {
1409            compile();
1410        } else {
1411            root = new Start(lastAccept);
1412            matchRoot = lastAccept;
1413        }
1414    }
1415
1416    /**
1417     * The pattern is converted to normalized form ({@link
1418     * java.text.Normalizer.Form.NFC NFC}, canonical decomposition,
1419     * followed by canonical composition for the character class
1420     * part, and {@link java.text.Normalizer.Form.NFD NFD},
1421     * canonical decomposition) for the rest), and then a pure
1422     * group is constructed to match canonical equivalences of the
1423     * characters.
1424     */
1425    private static String normalize(String pattern) {
1426        int plen = pattern.length();
1427        StringBuilder pbuf = new StringBuilder(plen);
1428        char last = 0;
1429        int lastStart = 0;
1430        char cc = 0;
1431        for (int i = 0; i < plen;) {
1432            char c = pattern.charAt(i);
1433            if (cc == 0 &&    // top level
1434                c == '\\' && i + 1 < plen && pattern.charAt(i + 1) == '\\') {
1435                i += 2; last = 0;
1436                continue;
1437            }
1438            if (c == '[' && last != '\\') {
1439                if (cc == 0) {
1440                    if (lastStart < i)
1441                        normalizeSlice(pattern, lastStart, i, pbuf);
1442                    lastStart = i;
1443                }
1444                cc++;
1445            } else if (c == ']' && last != '\\') {
1446                cc--;
1447                if (cc == 0) {
1448                    normalizeClazz(pattern, lastStart, i + 1, pbuf);
1449                    lastStart = i + 1;
1450                }
1451            }
1452            last = c;
1453            i++;
1454        }
1455        assert (cc == 0);
1456        if (lastStart < plen)
1457            normalizeSlice(pattern, lastStart, plen, pbuf);
1458        return pbuf.toString();
1459    }
1460
1461    private static void normalizeSlice(String src, int off, int limit,
1462                                       StringBuilder dst)
1463    {
1464        int len = src.length();
1465        int off0 = off;
1466        while (off < limit && ASCII.isAscii(src.charAt(off))) {
1467            off++;
1468        }
1469        if (off == limit) {
1470            dst.append(src, off0, limit);
1471            return;
1472        }
1473        off--;
1474        if (off < off0)
1475            off = off0;
1476        else
1477            dst.append(src, off0, off);
1478        while (off < limit) {
1479            int ch0 = src.codePointAt(off);
1480            if (".$|()[]{}^?*+\\".indexOf(ch0) != -1) {
1481                dst.append((char)ch0);
1482                off++;
1483                continue;
1484            }
1485            int j = off + Character.charCount(ch0);
1486            int ch1;
1487            while (j < limit) {
1488                ch1 = src.codePointAt(j);
1489                if (Grapheme.isBoundary(ch0, ch1))
1490                    break;
1491                ch0 = ch1;
1492                j += Character.charCount(ch1);
1493            }
1494            String seq = src.substring(off, j);
1495            String nfd = Normalizer.normalize(seq, Normalizer.Form.NFD);
1496            off = j;
1497            if (nfd.length() > 1) {
1498                ch0 = nfd.codePointAt(0);
1499                ch1 = nfd.codePointAt(Character.charCount(ch0));
1500                if (Character.getType(ch1) == Character.NON_SPACING_MARK) {
1501                    Set<String> altns = new LinkedHashSet<>();
1502                    altns.add(seq);
1503                    produceEquivalentAlternation(nfd, altns);
1504                    dst.append("(?:");
1505                    altns.forEach( s -> dst.append(s).append('|'));
1506                    dst.delete(dst.length() - 1, dst.length());
1507                    dst.append(")");
1508                    continue;
1509                }
1510            }
1511            String nfc = Normalizer.normalize(seq, Normalizer.Form.NFC);
1512            if (!seq.equals(nfc) && !nfd.equals(nfc))
1513                dst.append("(?:" + seq + "|" + nfd  + "|" + nfc + ")");
1514            else if (!seq.equals(nfd))
1515                dst.append("(?:" + seq + "|" + nfd + ")");
1516            else
1517                dst.append(seq);
1518        }
1519    }
1520
1521    private static void normalizeClazz(String src, int off, int limit,
1522                                       StringBuilder dst)
1523    {
1524        dst.append(Normalizer.normalize(src.substring(off, limit), Form.NFC));
1525    }
1526
1527    /**
1528     * Given a specific sequence composed of a regular character and
1529     * combining marks that follow it, produce the alternation that will
1530     * match all canonical equivalences of that sequence.
1531     */
1532    private static void produceEquivalentAlternation(String src,
1533                                                     Set<String> dst)
1534    {
1535        int len = countChars(src, 0, 1);
1536        if (src.length() == len) {
1537            dst.add(src);  // source has one character.
1538            return;
1539        }
1540        String base = src.substring(0,len);
1541        String combiningMarks = src.substring(len);
1542        String[] perms = producePermutations(combiningMarks);
1543        // Add combined permutations
1544        for(int x = 0; x < perms.length; x++) {
1545            String next = base + perms[x];
1546            dst.add(next);
1547            next = composeOneStep(next);
1548            if (next != null) {
1549                produceEquivalentAlternation(next, dst);
1550            }
1551        }
1552    }
1553
1554    /**
1555     * Returns an array of strings that have all the possible
1556     * permutations of the characters in the input string.
1557     * This is used to get a list of all possible orderings
1558     * of a set of combining marks. Note that some of the permutations
1559     * are invalid because of combining class collisions, and these
1560     * possibilities must be removed because they are not canonically
1561     * equivalent.
1562     */
1563    private static String[] producePermutations(String input) {
1564        if (input.length() == countChars(input, 0, 1))
1565            return new String[] {input};
1566
1567        if (input.length() == countChars(input, 0, 2)) {
1568            int c0 = Character.codePointAt(input, 0);
1569            int c1 = Character.codePointAt(input, Character.charCount(c0));
1570            if (getClass(c1) == getClass(c0)) {
1571                return new String[] {input};
1572            }
1573            String[] result = new String[2];
1574            result[0] = input;
1575            StringBuilder sb = new StringBuilder(2);
1576            sb.appendCodePoint(c1);
1577            sb.appendCodePoint(c0);
1578            result[1] = sb.toString();
1579            return result;
1580        }
1581
1582        int length = 1;
1583        int nCodePoints = countCodePoints(input);
1584        for(int x=1; x<nCodePoints; x++)
1585            length = length * (x+1);
1586
1587        String[] temp = new String[length];
1588
1589        int combClass[] = new int[nCodePoints];
1590        for(int x=0, i=0; x<nCodePoints; x++) {
1591            int c = Character.codePointAt(input, i);
1592            combClass[x] = getClass(c);
1593            i +=  Character.charCount(c);
1594        }
1595
1596        // For each char, take it out and add the permutations
1597        // of the remaining chars
1598        int index = 0;
1599        int len;
1600        // offset maintains the index in code units.
1601loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1602            len = countChars(input, offset, 1);
1603            for(int y=x-1; y>=0; y--) {
1604                if (combClass[y] == combClass[x]) {
1605                    continue loop;
1606                }
1607            }
1608            StringBuilder sb = new StringBuilder(input);
1609            String otherChars = sb.delete(offset, offset+len).toString();
1610            String[] subResult = producePermutations(otherChars);
1611
1612            String prefix = input.substring(offset, offset+len);
1613            for (String sre : subResult)
1614                temp[index++] = prefix + sre;
1615        }
1616        String[] result = new String[index];
1617        System.arraycopy(temp, 0, result, 0, index);
1618        return result;
1619    }
1620
1621    private static int getClass(int c) {
1622        return sun.text.Normalizer.getCombiningClass(c);
1623    }
1624
1625    /**
1626     * Attempts to compose input by combining the first character
1627     * with the first combining mark following it. Returns a String
1628     * that is the composition of the leading character with its first
1629     * combining mark followed by the remaining combining marks. Returns
1630     * null if the first two characters cannot be further composed.
1631     */
1632    private static String composeOneStep(String input) {
1633        int len = countChars(input, 0, 2);
1634        String firstTwoCharacters = input.substring(0, len);
1635        String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1636        if (result.equals(firstTwoCharacters))
1637            return null;
1638        else {
1639            String remainder = input.substring(len);
1640            return result + remainder;
1641        }
1642    }
1643
1644    /**
1645     * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
1646     * See the description of `quotemeta' in perlfunc(1).
1647     */
1648    private void RemoveQEQuoting() {
1649        final int pLen = patternLength;
1650        int i = 0;
1651        while (i < pLen-1) {
1652            if (temp[i] != '\\')
1653                i += 1;
1654            else if (temp[i + 1] != 'Q')
1655                i += 2;
1656            else
1657                break;
1658        }
1659        if (i >= pLen - 1)    // No \Q sequence found
1660            return;
1661        int j = i;
1662        i += 2;
1663        int[] newtemp = new int[j + 3*(pLen-i) + 2];
1664        System.arraycopy(temp, 0, newtemp, 0, j);
1665
1666        boolean inQuote = true;
1667        boolean beginQuote = true;
1668        while (i < pLen) {
1669            int c = temp[i++];
1670            if (!ASCII.isAscii(c) || ASCII.isAlpha(c)) {
1671                newtemp[j++] = c;
1672            } else if (ASCII.isDigit(c)) {
1673                if (beginQuote) {
1674                    /*
1675                     * A unicode escape \[0xu] could be before this quote,
1676                     * and we don't want this numeric char to processed as
1677                     * part of the escape.
1678                     */
1679                    newtemp[j++] = '\\';
1680                    newtemp[j++] = 'x';
1681                    newtemp[j++] = '3';
1682                }
1683                newtemp[j++] = c;
1684            } else if (c != '\\') {
1685                if (inQuote) newtemp[j++] = '\\';
1686                newtemp[j++] = c;
1687            } else if (inQuote) {
1688                if (temp[i] == 'E') {
1689                    i++;
1690                    inQuote = false;
1691                } else {
1692                    newtemp[j++] = '\\';
1693                    newtemp[j++] = '\\';
1694                }
1695            } else {
1696                if (temp[i] == 'Q') {
1697                    i++;
1698                    inQuote = true;
1699                    beginQuote = true;
1700                    continue;
1701                } else {
1702                    newtemp[j++] = c;
1703                    if (i != pLen)
1704                        newtemp[j++] = temp[i++];
1705                }
1706            }
1707
1708            beginQuote = false;
1709        }
1710
1711        patternLength = j;
1712        temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
1713    }
1714
1715    /**
1716     * Copies regular expression to an int array and invokes the parsing
1717     * of the expression which will create the object tree.
1718     */
1719    private void compile() {
1720        // Handle canonical equivalences
1721        if (has(CANON_EQ) && !has(LITERAL)) {
1722            normalizedPattern = normalize(pattern);
1723        } else {
1724            normalizedPattern = pattern;
1725        }
1726        patternLength = normalizedPattern.length();
1727
1728        // Copy pattern to int array for convenience
1729        // Use double zero to terminate pattern
1730        temp = new int[patternLength + 2];
1731
1732        hasSupplementary = false;
1733        int c, count = 0;
1734        // Convert all chars into code points
1735        for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1736            c = normalizedPattern.codePointAt(x);
1737            if (isSupplementary(c)) {
1738                hasSupplementary = true;
1739            }
1740            temp[count++] = c;
1741        }
1742
1743        patternLength = count;   // patternLength now in code points
1744
1745        if (! has(LITERAL))
1746            RemoveQEQuoting();
1747
1748        // Allocate all temporary objects here.
1749        buffer = new int[32];
1750        groupNodes = new GroupHead[10];
1751        namedGroups = null;
1752        topClosureNodes = new ArrayList<>(10);
1753
1754        if (has(LITERAL)) {
1755            // Literal pattern handling
1756            matchRoot = newSlice(temp, patternLength, hasSupplementary);
1757            matchRoot.next = lastAccept;
1758        } else {
1759            // Start recursive descent parsing
1760            matchRoot = expr(lastAccept);
1761            // Check extra pattern characters
1762            if (patternLength != cursor) {
1763                if (peek() == ')') {
1764                    throw error("Unmatched closing ')'");
1765                } else {
1766                    throw error("Unexpected internal error");
1767                }
1768            }
1769        }
1770
1771        // Peephole optimization
1772        if (matchRoot instanceof Slice) {
1773            root = BnM.optimize(matchRoot);
1774            if (root == matchRoot) {
1775                root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1776            }
1777        } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1778            root = matchRoot;
1779        } else {
1780            root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1781        }
1782
1783        // Optimize the greedy Loop to prevent exponential backtracking, IF there
1784        // is no group ref in this pattern. With a non-negative localTCNCount value,
1785        // the greedy type Loop, Curly will skip the backtracking for any starting
1786        // position "i" that failed in the past.
1787        if (!hasGroupRef) {
1788            for (Node node : topClosureNodes) {
1789                if (node instanceof Loop) {
1790                    // non-deterministic-greedy-group
1791                    ((Loop)node).posIndex = localTCNCount++;
1792                }
1793            }
1794        }
1795
1796        // Release temporary storage
1797        temp = null;
1798        buffer = null;
1799        groupNodes = null;
1800        patternLength = 0;
1801        compiled = true;
1802        topClosureNodes = null;
1803    }
1804
1805    Map<String, Integer> namedGroups() {
1806        Map<String, Integer> groups = namedGroups;
1807        if (groups == null) {
1808            namedGroups = groups = new HashMap<>(2);
1809        }
1810        return groups;
1811    }
1812
1813    /**
1814     * Used to accumulate information about a subtree of the object graph
1815     * so that optimizations can be applied to the subtree.
1816     */
1817    static final class TreeInfo {
1818        int minLength;
1819        int maxLength;
1820        boolean maxValid;
1821        boolean deterministic;
1822
1823        TreeInfo() {
1824            reset();
1825        }
1826        void reset() {
1827            minLength = 0;
1828            maxLength = 0;
1829            maxValid = true;
1830            deterministic = true;
1831        }
1832    }
1833
1834    /*
1835     * The following private methods are mainly used to improve the
1836     * readability of the code. In order to let the Java compiler easily
1837     * inline them, we should not put many assertions or error checks in them.
1838     */
1839
1840    /**
1841     * Indicates whether a particular flag is set or not.
1842     */
1843    private boolean has(int f) {
1844        return (flags & f) != 0;
1845    }
1846
1847    /**
1848     * Match next character, signal error if failed.
1849     */
1850    private void accept(int ch, String s) {
1851        int testChar = temp[cursor++];
1852        if (has(COMMENTS))
1853            testChar = parsePastWhitespace(testChar);
1854        if (ch != testChar) {
1855            throw error(s);
1856        }
1857    }
1858
1859    /**
1860     * Mark the end of pattern with a specific character.
1861     */
1862    private void mark(int c) {
1863        temp[patternLength] = c;
1864    }
1865
1866    /**
1867     * Peek the next character, and do not advance the cursor.
1868     */
1869    private int peek() {
1870        int ch = temp[cursor];
1871        if (has(COMMENTS))
1872            ch = peekPastWhitespace(ch);
1873        return ch;
1874    }
1875
1876    /**
1877     * Read the next character, and advance the cursor by one.
1878     */
1879    private int read() {
1880        int ch = temp[cursor++];
1881        if (has(COMMENTS))
1882            ch = parsePastWhitespace(ch);
1883        return ch;
1884    }
1885
1886    /**
1887     * Read the next character, and advance the cursor by one,
1888     * ignoring the COMMENTS setting
1889     */
1890    private int readEscaped() {
1891        int ch = temp[cursor++];
1892        return ch;
1893    }
1894
1895    /**
1896     * Advance the cursor by one, and peek the next character.
1897     */
1898    private int next() {
1899        int ch = temp[++cursor];
1900        if (has(COMMENTS))
1901            ch = peekPastWhitespace(ch);
1902        return ch;
1903    }
1904
1905    /**
1906     * Advance the cursor by one, and peek the next character,
1907     * ignoring the COMMENTS setting
1908     */
1909    private int nextEscaped() {
1910        int ch = temp[++cursor];
1911        return ch;
1912    }
1913
1914    /**
1915     * If in xmode peek past whitespace and comments.
1916     */
1917    private int peekPastWhitespace(int ch) {
1918        while (ASCII.isSpace(ch) || ch == '#') {
1919            while (ASCII.isSpace(ch))
1920                ch = temp[++cursor];
1921            if (ch == '#') {
1922                ch = peekPastLine();
1923            }
1924        }
1925        return ch;
1926    }
1927
1928    /**
1929     * If in xmode parse past whitespace and comments.
1930     */
1931    private int parsePastWhitespace(int ch) {
1932        while (ASCII.isSpace(ch) || ch == '#') {
1933            while (ASCII.isSpace(ch))
1934                ch = temp[cursor++];
1935            if (ch == '#')
1936                ch = parsePastLine();
1937        }
1938        return ch;
1939    }
1940
1941    /**
1942     * xmode parse past comment to end of line.
1943     */
1944    private int parsePastLine() {
1945        int ch = temp[cursor++];
1946        while (ch != 0 && !isLineSeparator(ch))
1947            ch = temp[cursor++];
1948        return ch;
1949    }
1950
1951    /**
1952     * xmode peek past comment to end of line.
1953     */
1954    private int peekPastLine() {
1955        int ch = temp[++cursor];
1956        while (ch != 0 && !isLineSeparator(ch))
1957            ch = temp[++cursor];
1958        return ch;
1959    }
1960
1961    /**
1962     * Determines if character is a line separator in the current mode
1963     */
1964    private boolean isLineSeparator(int ch) {
1965        if (has(UNIX_LINES)) {
1966            return ch == '\n';
1967        } else {
1968            return (ch == '\n' ||
1969                    ch == '\r' ||
1970                    (ch|1) == '\u2029' ||
1971                    ch == '\u0085');
1972        }
1973    }
1974
1975    /**
1976     * Read the character after the next one, and advance the cursor by two.
1977     */
1978    private int skip() {
1979        int i = cursor;
1980        int ch = temp[i+1];
1981        cursor = i + 2;
1982        return ch;
1983    }
1984
1985    /**
1986     * Unread one next character, and retreat cursor by one.
1987     */
1988    private void unread() {
1989        cursor--;
1990    }
1991
1992    /**
1993     * Internal method used for handling all syntax errors. The pattern is
1994     * displayed with a pointer to aid in locating the syntax error.
1995     */
1996    private PatternSyntaxException error(String s) {
1997        return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
1998    }
1999
2000    /**
2001     * Determines if there is any supplementary character or unpaired
2002     * surrogate in the specified range.
2003     */
2004    private boolean findSupplementary(int start, int end) {
2005        for (int i = start; i < end; i++) {
2006            if (isSupplementary(temp[i]))
2007                return true;
2008        }
2009        return false;
2010    }
2011
2012    /**
2013     * Determines if the specified code point is a supplementary
2014     * character or unpaired surrogate.
2015     */
2016    private static final boolean isSupplementary(int ch) {
2017        return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
2018               Character.isSurrogate((char)ch);
2019    }
2020
2021    /**
2022     *  The following methods handle the main parsing. They are sorted
2023     *  according to their precedence order, the lowest one first.
2024     */
2025
2026    /**
2027     * The expression is parsed with branch nodes added for alternations.
2028     * This may be called recursively to parse sub expressions that may
2029     * contain alternations.
2030     */
2031    private Node expr(Node end) {
2032        Node prev = null;
2033        Node firstTail = null;
2034        Branch branch = null;
2035        Node branchConn = null;
2036
2037        for (;;) {
2038            Node node = sequence(end);
2039            Node nodeTail = root;      //double return
2040            if (prev == null) {
2041                prev = node;
2042                firstTail = nodeTail;
2043            } else {
2044                // Branch
2045                if (branchConn == null) {
2046                    branchConn = new BranchConn();
2047                    branchConn.next = end;
2048                }
2049                if (node == end) {
2050                    // if the node returned from sequence() is "end"
2051                    // we have an empty expr, set a null atom into
2052                    // the branch to indicate to go "next" directly.
2053                    node = null;
2054                } else {
2055                    // the "tail.next" of each atom goes to branchConn
2056                    nodeTail.next = branchConn;
2057                }
2058                if (prev == branch) {
2059                    branch.add(node);
2060                } else {
2061                    if (prev == end) {
2062                        prev = null;
2063                    } else {
2064                        // replace the "end" with "branchConn" at its tail.next
2065                        // when put the "prev" into the branch as the first atom.
2066                        firstTail.next = branchConn;
2067                    }
2068                    prev = branch = new Branch(prev, node, branchConn);
2069                }
2070            }
2071            if (peek() != '|') {
2072                return prev;
2073            }
2074            next();
2075        }
2076    }
2077
2078    @SuppressWarnings("fallthrough")
2079    /**
2080     * Parsing of sequences between alternations.
2081     */
2082    private Node sequence(Node end) {
2083        Node head = null;
2084        Node tail = null;
2085        Node node = null;
2086    LOOP:
2087        for (;;) {
2088            int ch = peek();
2089            switch (ch) {
2090            case '(':
2091                // Because group handles its own closure,
2092                // we need to treat it differently
2093                node = group0();
2094                // Check for comment or flag group
2095                if (node == null)
2096                    continue;
2097                if (head == null)
2098                    head = node;
2099                else
2100                    tail.next = node;
2101                // Double return: Tail was returned in root
2102                tail = root;
2103                continue;
2104            case '[':
2105                if (has(CANON_EQ) && !has(LITERAL))
2106                    node = new NFCCharProperty(clazz(true));
2107                else
2108                    node = newCharProperty(clazz(true));
2109                break;
2110            case '\\':
2111                ch = nextEscaped();
2112                if (ch == 'p' || ch == 'P') {
2113                    boolean oneLetter = true;
2114                    boolean comp = (ch == 'P');
2115                    ch = next(); // Consume { if present
2116                    if (ch != '{') {
2117                        unread();
2118                    } else {
2119                        oneLetter = false;
2120                    }
2121                    // node = newCharProperty(family(oneLetter, comp));
2122                    if (has(CANON_EQ) && !has(LITERAL))
2123                        node = new NFCCharProperty(family(oneLetter, comp));
2124                    else
2125                        node = newCharProperty(family(oneLetter, comp));
2126                } else {
2127                    unread();
2128                    node = atom();
2129                }
2130                break;
2131            case '^':
2132                next();
2133                if (has(MULTILINE)) {
2134                    if (has(UNIX_LINES))
2135                        node = new UnixCaret();
2136                    else
2137                        node = new Caret();
2138                } else {
2139                    node = new Begin();
2140                }
2141                break;
2142            case '$':
2143                next();
2144                if (has(UNIX_LINES))
2145                    node = new UnixDollar(has(MULTILINE));
2146                else
2147                    node = new Dollar(has(MULTILINE));
2148                break;
2149            case '.':
2150                next();
2151                if (has(DOTALL)) {
2152                    node = new CharProperty(ALL());
2153                } else {
2154                    if (has(UNIX_LINES)) {
2155                        node = new CharProperty(UNIXDOT());
2156                    } else {
2157                        node = new CharProperty(DOT());
2158                    }
2159                }
2160                break;
2161            case '|':
2162            case ')':
2163                break LOOP;
2164            case ']': // Now interpreting dangling ] and } as literals
2165            case '}':
2166                node = atom();
2167                break;
2168            case '?':
2169            case '*':
2170            case '+':
2171                next();
2172                throw error("Dangling meta character '" + ((char)ch) + "'");
2173            case 0:
2174                if (cursor >= patternLength) {
2175                    break LOOP;
2176                }
2177                // Fall through
2178            default:
2179                node = atom();
2180                break;
2181            }
2182
2183            node = closure(node);
2184            /* save the top dot-greedy nodes (.*, .+) as well
2185            if (node instanceof GreedyCharProperty &&
2186                ((GreedyCharProperty)node).cp instanceof Dot) {
2187                topClosureNodes.add(node);
2188            }
2189            */
2190            if (head == null) {
2191                head = tail = node;
2192            } else {
2193                tail.next = node;
2194                tail = node;
2195            }
2196        }
2197        if (head == null) {
2198            return end;
2199        }
2200        tail.next = end;
2201        root = tail;      //double return
2202        return head;
2203    }
2204
2205    @SuppressWarnings("fallthrough")
2206    /**
2207     * Parse and add a new Single or Slice.
2208     */
2209    private Node atom() {
2210        int first = 0;
2211        int prev = -1;
2212        boolean hasSupplementary = false;
2213        int ch = peek();
2214        for (;;) {
2215            switch (ch) {
2216            case '*':
2217            case '+':
2218            case '?':
2219            case '{':
2220                if (first > 1) {
2221                    cursor = prev;    // Unwind one character
2222                    first--;
2223                }
2224                break;
2225            case '$':
2226            case '.':
2227            case '^':
2228            case '(':
2229            case '[':
2230            case '|':
2231            case ')':
2232                break;
2233            case '\\':
2234                ch = nextEscaped();
2235                if (ch == 'p' || ch == 'P') { // Property
2236                    if (first > 0) { // Slice is waiting; handle it first
2237                        unread();
2238                        break;
2239                    } else { // No slice; just return the family node
2240                        boolean comp = (ch == 'P');
2241                        boolean oneLetter = true;
2242                        ch = next(); // Consume { if present
2243                        if (ch != '{')
2244                            unread();
2245                        else
2246                            oneLetter = false;
2247                        if (has(CANON_EQ) && !has(LITERAL))
2248                            return new NFCCharProperty(family(oneLetter, comp));
2249                        else
2250                            return newCharProperty(family(oneLetter, comp));
2251                    }
2252                }
2253                unread();
2254                prev = cursor;
2255                ch = escape(false, first == 0, false);
2256                if (ch >= 0) {
2257                    append(ch, first);
2258                    first++;
2259                    if (isSupplementary(ch)) {
2260                        hasSupplementary = true;
2261                    }
2262                    ch = peek();
2263                    continue;
2264                } else if (first == 0) {
2265                    return root;
2266                }
2267                // Unwind meta escape sequence
2268                cursor = prev;
2269                break;
2270            case 0:
2271                if (cursor >= patternLength) {
2272                    break;
2273                }
2274                // Fall through
2275            default:
2276                prev = cursor;
2277                append(ch, first);
2278                first++;
2279                if (isSupplementary(ch)) {
2280                    hasSupplementary = true;
2281                }
2282                ch = next();
2283                continue;
2284            }
2285            break;
2286        }
2287        if (first == 1) {
2288            return newCharProperty(single(buffer[0]));
2289        } else {
2290            return newSlice(buffer, first, hasSupplementary);
2291        }
2292    }
2293
2294    private void append(int ch, int len) {
2295        if (len >= buffer.length) {
2296            int[] tmp = new int[len+len];
2297            System.arraycopy(buffer, 0, tmp, 0, len);
2298            buffer = tmp;
2299        }
2300        buffer[len] = ch;
2301    }
2302
2303    /**
2304     * Parses a backref greedily, taking as many numbers as it
2305     * can. The first digit is always treated as a backref, but
2306     * multi digit numbers are only treated as a backref if at
2307     * least that many backrefs exist at this point in the regex.
2308     */
2309    private Node ref(int refNum) {
2310        boolean done = false;
2311        while(!done) {
2312            int ch = peek();
2313            switch(ch) {
2314            case '0':
2315            case '1':
2316            case '2':
2317            case '3':
2318            case '4':
2319            case '5':
2320            case '6':
2321            case '7':
2322            case '8':
2323            case '9':
2324                int newRefNum = (refNum * 10) + (ch - '0');
2325                // Add another number if it doesn't make a group
2326                // that doesn't exist
2327                if (capturingGroupCount - 1 < newRefNum) {
2328                    done = true;
2329                    break;
2330                }
2331                refNum = newRefNum;
2332                read();
2333                break;
2334            default:
2335                done = true;
2336                break;
2337            }
2338        }
2339        hasGroupRef = true;
2340        if (has(CASE_INSENSITIVE))
2341            return new CIBackRef(refNum, has(UNICODE_CASE));
2342        else
2343            return new BackRef(refNum);
2344    }
2345
2346    /**
2347     * Parses an escape sequence to determine the actual value that needs
2348     * to be matched.
2349     * If -1 is returned and create was true a new object was added to the tree
2350     * to handle the escape sequence.
2351     * If the returned value is greater than zero, it is the value that
2352     * matches the escape sequence.
2353     */
2354    private int escape(boolean inclass, boolean create, boolean isrange) {
2355        int ch = skip();
2356        switch (ch) {
2357        case '0':
2358            return o();
2359        case '1':
2360        case '2':
2361        case '3':
2362        case '4':
2363        case '5':
2364        case '6':
2365        case '7':
2366        case '8':
2367        case '9':
2368            if (inclass) break;
2369            if (create) {
2370                root = ref((ch - '0'));
2371            }
2372            return -1;
2373        case 'A':
2374            if (inclass) break;
2375            if (create) root = new Begin();
2376            return -1;
2377        case 'B':
2378            if (inclass) break;
2379            if (create) root = new Bound(Bound.NONE, has(UNICODE_CHARACTER_CLASS));
2380            return -1;
2381        case 'C':
2382            break;
2383        case 'D':
2384            if (create) {
2385                predicate = has(UNICODE_CHARACTER_CLASS) ?
2386                            CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2387                predicate = predicate.negate();
2388                if (!inclass)
2389                    root = newCharProperty(predicate);
2390            }
2391            return -1;
2392        case 'E':
2393        case 'F':
2394            break;
2395        case 'G':
2396            if (inclass) break;
2397            if (create) root = new LastMatch();
2398            return -1;
2399        case 'H':
2400            if (create) {
2401                predicate = HorizWS().negate();
2402                if (!inclass)
2403                    root = newCharProperty(predicate);
2404            }
2405            return -1;
2406        case 'I':
2407        case 'J':
2408        case 'K':
2409        case 'L':
2410        case 'M':
2411            break;
2412        case 'N':
2413            return N();
2414        case 'O':
2415        case 'P':
2416        case 'Q':
2417            break;
2418        case 'R':
2419            if (inclass) break;
2420            if (create) root = new LineEnding();
2421            return -1;
2422        case 'S':
2423            if (create) {
2424                predicate = has(UNICODE_CHARACTER_CLASS) ?
2425                            CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2426                predicate = predicate.negate();
2427                if (!inclass)
2428                    root = newCharProperty(predicate);
2429            }
2430            return -1;
2431        case 'T':
2432        case 'U':
2433            break;
2434        case 'V':
2435            if (create) {
2436                predicate = VertWS().negate();
2437                if (!inclass)
2438                    root = newCharProperty(predicate);
2439            }
2440            return -1;
2441        case 'W':
2442            if (create) {
2443                predicate = has(UNICODE_CHARACTER_CLASS) ?
2444                            CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2445                predicate = predicate.negate();
2446                if (!inclass)
2447                    root = newCharProperty(predicate);
2448            }
2449            return -1;
2450        case 'X':
2451            if (inclass) break;
2452            if (create) {
2453                root = new XGrapheme();
2454            }
2455            return -1;
2456        case 'Y':
2457            break;
2458        case 'Z':
2459            if (inclass) break;
2460            if (create) {
2461                if (has(UNIX_LINES))
2462                    root = new UnixDollar(false);
2463                else
2464                    root = new Dollar(false);
2465            }
2466            return -1;
2467        case 'a':
2468            return '\007';
2469        case 'b':
2470            if (inclass) break;
2471            if (create) {
2472                if (peek() == '{') {
2473                    if (skip() == 'g') {
2474                        if (read() == '}') {
2475                            root = new GraphemeBound();
2476                            return -1;
2477                        }
2478                        break;  // error missing trailing }
2479                    }
2480                    unread(); unread();
2481                }
2482                root = new Bound(Bound.BOTH, has(UNICODE_CHARACTER_CLASS));
2483            }
2484            return -1;
2485        case 'c':
2486            return c();
2487        case 'd':
2488            if (create) {
2489                predicate = has(UNICODE_CHARACTER_CLASS) ?
2490                            CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2491                if (!inclass)
2492                    root = newCharProperty(predicate);
2493            }
2494            return -1;
2495        case 'e':
2496            return '\033';
2497        case 'f':
2498            return '\f';
2499        case 'g':
2500            break;
2501        case 'h':
2502            if (create) {
2503                predicate = HorizWS();
2504                if (!inclass)
2505                    root = newCharProperty(predicate);
2506            }
2507            return -1;
2508        case 'i':
2509        case 'j':
2510            break;
2511        case 'k':
2512            if (inclass)
2513                break;
2514            if (read() != '<')
2515                throw error("\\k is not followed by '<' for named capturing group");
2516            String name = groupname(read());
2517            if (!namedGroups().containsKey(name))
2518                throw error("(named capturing group <"+ name+"> does not exit");
2519            if (create) {
2520                hasGroupRef = true;
2521                if (has(CASE_INSENSITIVE))
2522                    root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
2523                else
2524                    root = new BackRef(namedGroups().get(name));
2525            }
2526            return -1;
2527        case 'l':
2528        case 'm':
2529            break;
2530        case 'n':
2531            return '\n';
2532        case 'o':
2533        case 'p':
2534        case 'q':
2535            break;
2536        case 'r':
2537            return '\r';
2538        case 's':
2539            if (create) {
2540                predicate = has(UNICODE_CHARACTER_CLASS) ?
2541                            CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2542                if (!inclass)
2543                    root = newCharProperty(predicate);
2544            }
2545            return -1;
2546        case 't':
2547            return '\t';
2548        case 'u':
2549            return u();
2550        case 'v':
2551            // '\v' was implemented as VT/0x0B in releases < 1.8 (though
2552            // undocumented). In JDK8 '\v' is specified as a predefined
2553            // character class for all vertical whitespace characters.
2554            // So [-1, root=VertWS node] pair is returned (instead of a
2555            // single 0x0B). This breaks the range if '\v' is used as
2556            // the start or end value, such as [\v-...] or [...-\v], in
2557            // which a single definite value (0x0B) is expected. For
2558            // compatibility concern '\013'/0x0B is returned if isrange.
2559            if (isrange)
2560                return '\013';
2561            if (create) {
2562                predicate = VertWS();
2563                if (!inclass)
2564                    root = newCharProperty(predicate);
2565            }
2566            return -1;
2567        case 'w':
2568            if (create) {
2569                predicate = has(UNICODE_CHARACTER_CLASS) ?
2570                            CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2571                if (!inclass)
2572                    root = newCharProperty(predicate);
2573            }
2574            return -1;
2575        case 'x':
2576            return x();
2577        case 'y':
2578            break;
2579        case 'z':
2580            if (inclass) break;
2581            if (create) root = new End();
2582            return -1;
2583        default:
2584            return ch;
2585        }
2586        throw error("Illegal/unsupported escape sequence");
2587    }
2588
2589    /**
2590     * Parse a character class, and return the node that matches it.
2591     *
2592     * Consumes a ] on the way out if consume is true. Usually consume
2593     * is true except for the case of [abc&&def] where def is a separate
2594     * right hand node with "understood" brackets.
2595     */
2596    private CharPredicate clazz(boolean consume) {
2597        CharPredicate prev = null;
2598        CharPredicate curr = null;
2599        BitClass bits = new BitClass();
2600        BmpCharPredicate bitsP = ch -> ch < 256 && bits.bits[ch];
2601
2602        boolean isNeg = false;
2603        boolean hasBits = false;
2604        int ch = next();
2605
2606        // Negates if first char in a class, otherwise literal
2607        if (ch == '^' && temp[cursor-1] == '[') {
2608            ch = next();
2609            isNeg = true;
2610        }
2611        for (;;) {
2612            switch (ch) {
2613                case '[':
2614                    curr = clazz(true);
2615                    if (prev == null)
2616                        prev = curr;
2617                    else
2618                        prev = prev.union(curr);
2619                    ch = peek();
2620                    continue;
2621                case '&':
2622                    ch = next();
2623                    if (ch == '&') {
2624                        ch = next();
2625                        CharPredicate right = null;
2626                        while (ch != ']' && ch != '&') {
2627                            if (ch == '[') {
2628                                if (right == null)
2629                                    right = clazz(true);
2630                                else
2631                                    right = right.union(clazz(true));
2632                            } else { // abc&&def
2633                                unread();
2634                                right = clazz(false);
2635                            }
2636                            ch = peek();
2637                        }
2638                        if (hasBits) {
2639                            // bits used, union has high precedence
2640                            if (prev == null) {
2641                                prev = curr = bitsP;
2642                            } else {
2643                                prev = prev.union(bitsP);
2644                            }
2645                            hasBits = false;
2646                        }
2647                        if (right != null)
2648                            curr = right;
2649                        if (prev == null) {
2650                            if (right == null)
2651                                throw error("Bad class syntax");
2652                            else
2653                                prev = right;
2654                        } else {
2655                            prev = prev.and(curr);
2656                        }
2657                    } else {
2658                        // treat as a literal &
2659                        unread();
2660                        break;
2661                    }
2662                    continue;
2663                case 0:
2664                    if (cursor >= patternLength)
2665                        throw error("Unclosed character class");
2666                    break;
2667                case ']':
2668                    if (prev != null || hasBits) {
2669                        if (consume)
2670                            next();
2671                        if (prev == null)
2672                            prev = bitsP;
2673                        else if (hasBits)
2674                            prev = prev.union(bitsP);
2675                        if (isNeg)
2676                            return prev.negate();
2677                        return prev;
2678                    }
2679                    break;
2680                default:
2681                    break;
2682            }
2683            curr = range(bits);
2684            if (curr == null) {    // the bits used
2685                hasBits = true;
2686            } else {
2687                if (prev == null)
2688                    prev = curr;
2689                else if (prev != curr)
2690                    prev = prev.union(curr);
2691            }
2692            ch = peek();
2693        }
2694    }
2695
2696    private CharPredicate bitsOrSingle(BitClass bits, int ch) {
2697        /* Bits can only handle codepoints in [u+0000-u+00ff] range.
2698           Use "single" node instead of bits when dealing with unicode
2699           case folding for codepoints listed below.
2700           (1)Uppercase out of range: u+00ff, u+00b5
2701              toUpperCase(u+00ff) -> u+0178
2702              toUpperCase(u+00b5) -> u+039c
2703           (2)LatinSmallLetterLongS u+17f
2704              toUpperCase(u+017f) -> u+0053
2705           (3)LatinSmallLetterDotlessI u+131
2706              toUpperCase(u+0131) -> u+0049
2707           (4)LatinCapitalLetterIWithDotAbove u+0130
2708              toLowerCase(u+0130) -> u+0069
2709           (5)KelvinSign u+212a
2710              toLowerCase(u+212a) ==> u+006B
2711           (6)AngstromSign u+212b
2712              toLowerCase(u+212b) ==> u+00e5
2713        */
2714        if (ch < 256 &&
2715            !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
2716              (ch == 0xff || ch == 0xb5 ||
2717               ch == 0x49 || ch == 0x69 ||    //I and i
2718               ch == 0x53 || ch == 0x73 ||    //S and s
2719               ch == 0x4b || ch == 0x6b ||    //K and k
2720               ch == 0xc5 || ch == 0xe5))) {  //A+ring
2721            bits.add(ch, flags());
2722            return null;
2723        }
2724        return single(ch);
2725    }
2726
2727    /**
2728     *  Returns a suitably optimized, single character predicate
2729     */
2730    private CharPredicate single(final int ch) {
2731        if (has(CASE_INSENSITIVE)) {
2732            int lower, upper;
2733            if (has(UNICODE_CASE)) {
2734                upper = Character.toUpperCase(ch);
2735                lower = Character.toLowerCase(upper);
2736                // Unicode case insensitive matches
2737                if (upper != lower)
2738                    return SingleU(lower);
2739            } else if (ASCII.isAscii(ch)) {
2740                lower = ASCII.toLower(ch);
2741                upper = ASCII.toUpper(ch);
2742                // Case insensitive matches a given BMP character
2743                if (lower != upper)
2744                    return SingleI(lower, upper);
2745            }
2746        }
2747        if (isSupplementary(ch))
2748            return SingleS(ch);
2749        return Single(ch);  // Match a given BMP character
2750    }
2751
2752    /**
2753     * Parse a single character or a character range in a character class
2754     * and return its representative node.
2755     */
2756    private CharPredicate range(BitClass bits) {
2757        int ch = peek();
2758        if (ch == '\\') {
2759            ch = nextEscaped();
2760            if (ch == 'p' || ch == 'P') { // A property
2761                boolean comp = (ch == 'P');
2762                boolean oneLetter = true;
2763                // Consume { if present
2764                ch = next();
2765                if (ch != '{')
2766                    unread();
2767                else
2768                    oneLetter = false;
2769                return family(oneLetter, comp);
2770            } else { // ordinary escape
2771                boolean isrange = temp[cursor+1] == '-';
2772                unread();
2773                ch = escape(true, true, isrange);
2774                if (ch == -1)
2775                    return predicate;
2776            }
2777        } else {
2778            next();
2779        }
2780        if (ch >= 0) {
2781            if (peek() == '-') {
2782                int endRange = temp[cursor+1];
2783                if (endRange == '[') {
2784                    return bitsOrSingle(bits, ch);
2785                }
2786                if (endRange != ']') {
2787                    next();
2788                    int m = peek();
2789                    if (m == '\\') {
2790                        m = escape(true, false, true);
2791                    } else {
2792                        next();
2793                    }
2794                    if (m < ch) {
2795                        throw error("Illegal character range");
2796                    }
2797                    if (has(CASE_INSENSITIVE)) {
2798                        if (has(UNICODE_CASE))
2799                            return CIRangeU(ch, m);
2800                        return CIRange(ch, m);
2801                    } else {
2802                        return Range(ch, m);
2803                    }
2804                }
2805            }
2806            return bitsOrSingle(bits, ch);
2807        }
2808        throw error("Unexpected character '"+((char)ch)+"'");
2809    }
2810
2811    /**
2812     * Parses a Unicode character family and returns its representative node.
2813     */
2814    private CharPredicate family(boolean singleLetter, boolean isComplement) {
2815        next();
2816        String name;
2817        CharPredicate p = null;
2818
2819        if (singleLetter) {
2820            int c = temp[cursor];
2821            if (!Character.isSupplementaryCodePoint(c)) {
2822                name = String.valueOf((char)c);
2823            } else {
2824                name = new String(temp, cursor, 1);
2825            }
2826            read();
2827        } else {
2828            int i = cursor;
2829            mark('}');
2830            while(read() != '}') {
2831            }
2832            mark('\000');
2833            int j = cursor;
2834            if (j > patternLength)
2835                throw error("Unclosed character family");
2836            if (i + 1 >= j)
2837                throw error("Empty character family");
2838            name = new String(temp, i, j-i-1);
2839        }
2840
2841        int i = name.indexOf('=');
2842        if (i != -1) {
2843            // property construct \p{name=value}
2844            String value = name.substring(i + 1);
2845            name = name.substring(0, i).toLowerCase(Locale.ENGLISH);
2846            switch (name) {
2847                case "sc":
2848                case "script":
2849                    p = CharPredicates.forUnicodeScript(value);
2850                    break;
2851                case "blk":
2852                case "block":
2853                    p = CharPredicates.forUnicodeBlock(value);
2854                    break;
2855                case "gc":
2856                case "general_category":
2857                    p = CharPredicates.forProperty(value);
2858                    break;
2859                default:
2860                    break;
2861            }
2862            if (p == null)
2863                throw error("Unknown Unicode property {name=<" + name + ">, "
2864                             + "value=<" + value + ">}");
2865
2866        } else {
2867            if (name.startsWith("In")) {
2868                // \p{InBlockName}
2869                p = CharPredicates.forUnicodeBlock(name.substring(2));
2870            } else if (name.startsWith("Is")) {
2871                // \p{IsGeneralCategory} and \p{IsScriptName}
2872                name = name.substring(2);
2873                p = CharPredicates.forUnicodeProperty(name);
2874                if (p == null)
2875                    p = CharPredicates.forProperty(name);
2876                if (p == null)
2877                    p = CharPredicates.forUnicodeScript(name);
2878            } else {
2879                if (has(UNICODE_CHARACTER_CLASS)) {
2880                    p = CharPredicates.forPOSIXName(name);
2881                }
2882                if (p == null)
2883                    p = CharPredicates.forProperty(name);
2884            }
2885            if (p == null)
2886                throw error("Unknown character property name {In/Is" + name + "}");
2887        }
2888        if (isComplement) {
2889            // it might be too expensive to detect if a complement of
2890            // CharProperty can match "certain" supplementary. So just
2891            // go with StartS.
2892            hasSupplementary = true;
2893            p = p.negate();
2894        }
2895        return p;
2896    }
2897
2898    private CharProperty newCharProperty(CharPredicate p) {
2899        if (p == null)
2900            return null;
2901        if (p instanceof BmpCharPredicate)
2902            return new BmpCharProperty((BmpCharPredicate)p);
2903        else
2904            return new CharProperty(p);
2905    }
2906
2907    /**
2908     * Parses and returns the name of a "named capturing group", the trailing
2909     * ">" is consumed after parsing.
2910     */
2911    private String groupname(int ch) {
2912        StringBuilder sb = new StringBuilder();
2913        sb.append(Character.toChars(ch));
2914        while (ASCII.isLower(ch=read()) || ASCII.isUpper(ch) ||
2915               ASCII.isDigit(ch)) {
2916            sb.append(Character.toChars(ch));
2917        }
2918        if (sb.length() == 0)
2919            throw error("named capturing group has 0 length name");
2920        if (ch != '>')
2921            throw error("named capturing group is missing trailing '>'");
2922        return sb.toString();
2923    }
2924
2925    /**
2926     * Parses a group and returns the head node of a set of nodes that process
2927     * the group. Sometimes a double return system is used where the tail is
2928     * returned in root.
2929     */
2930    private Node group0() {
2931        boolean capturingGroup = false;
2932        Node head = null;
2933        Node tail = null;
2934        int save = flags;
2935        int saveTCNCount = topClosureNodes.size();
2936        root = null;
2937        int ch = next();
2938        if (ch == '?') {
2939            ch = skip();
2940            switch (ch) {
2941            case ':':   //  (?:xxx) pure group
2942                head = createGroup(true);
2943                tail = root;
2944                head.next = expr(tail);
2945                break;
2946            case '=':   // (?=xxx) and (?!xxx) lookahead
2947            case '!':
2948                head = createGroup(true);
2949                tail = root;
2950                head.next = expr(tail);
2951                if (ch == '=') {
2952                    head = tail = new Pos(head);
2953                } else {
2954                    head = tail = new Neg(head);
2955                }
2956                break;
2957            case '>':   // (?>xxx)  independent group
2958                head = createGroup(true);
2959                tail = root;
2960                head.next = expr(tail);
2961                head = tail = new Ques(head, Qtype.INDEPENDENT);
2962                break;
2963            case '<':   // (?<xxx)  look behind
2964                ch = read();
2965                if (ASCII.isLower(ch) || ASCII.isUpper(ch)) {
2966                    // named captured group
2967                    String name = groupname(ch);
2968                    if (namedGroups().containsKey(name))
2969                        throw error("Named capturing group <" + name
2970                                    + "> is already defined");
2971                    capturingGroup = true;
2972                    head = createGroup(false);
2973                    tail = root;
2974                    namedGroups().put(name, capturingGroupCount-1);
2975                    head.next = expr(tail);
2976                    break;
2977                }
2978                int start = cursor;
2979                head = createGroup(true);
2980                tail = root;
2981                head.next = expr(tail);
2982                tail.next = lookbehindEnd;
2983                TreeInfo info = new TreeInfo();
2984                head.study(info);
2985                if (info.maxValid == false) {
2986                    throw error("Look-behind group does not have "
2987                                + "an obvious maximum length");
2988                }
2989                boolean hasSupplementary = findSupplementary(start, patternLength);
2990                if (ch == '=') {
2991                    head = tail = (hasSupplementary ?
2992                                   new BehindS(head, info.maxLength,
2993                                               info.minLength) :
2994                                   new Behind(head, info.maxLength,
2995                                              info.minLength));
2996                } else if (ch == '!') {
2997                    head = tail = (hasSupplementary ?
2998                                   new NotBehindS(head, info.maxLength,
2999                                                  info.minLength) :
3000                                   new NotBehind(head, info.maxLength,
3001                                                 info.minLength));
3002                } else {
3003                    throw error("Unknown look-behind group");
3004                }
3005                // clear all top-closure-nodes inside lookbehind
3006                if (saveTCNCount < topClosureNodes.size())
3007                    topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3008                break;
3009            case '$':
3010            case '@':
3011                throw error("Unknown group type");
3012            default:    // (?xxx:) inlined match flags
3013                unread();
3014                addFlag();
3015                ch = read();
3016                if (ch == ')') {
3017                    return null;    // Inline modifier only
3018                }
3019                if (ch != ':') {
3020                    throw error("Unknown inline modifier");
3021                }
3022                head = createGroup(true);
3023                tail = root;
3024                head.next = expr(tail);
3025                break;
3026            }
3027        } else { // (xxx) a regular group
3028            capturingGroup = true;
3029            head = createGroup(false);
3030            tail = root;
3031            head.next = expr(tail);
3032        }
3033
3034        accept(')', "Unclosed group");
3035        flags = save;
3036
3037        // Check for quantifiers
3038        Node node = closure(head);
3039        if (node == head) { // No closure
3040            root = tail;
3041            return node;    // Dual return
3042        }
3043        if (head == tail) { // Zero length assertion
3044            root = node;
3045            return node;    // Dual return
3046        }
3047
3048        // have group closure, clear all inner closure nodes from the
3049        // top list (no backtracking stopper optimization for inner
3050        if (saveTCNCount < topClosureNodes.size())
3051            topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3052
3053        if (node instanceof Ques) {
3054            Ques ques = (Ques) node;
3055            if (ques.type == Qtype.POSSESSIVE) {
3056                root = node;
3057                return node;
3058            }
3059            tail.next = new BranchConn();
3060            tail = tail.next;
3061            if (ques.type == Qtype.GREEDY) {
3062                head = new Branch(head, null, tail);
3063            } else { // Reluctant quantifier
3064                head = new Branch(null, head, tail);
3065            }
3066            root = tail;
3067            return head;
3068        } else if (node instanceof Curly) {
3069            Curly curly = (Curly) node;
3070            if (curly.type == Qtype.POSSESSIVE) {
3071                root = node;
3072                return node;
3073            }
3074            // Discover if the group is deterministic
3075            TreeInfo info = new TreeInfo();
3076            if (head.study(info)) { // Deterministic
3077                GroupTail temp = (GroupTail) tail;
3078                head = root = new GroupCurly(head.next, curly.cmin,
3079                                   curly.cmax, curly.type,
3080                                   ((GroupTail)tail).localIndex,
3081                                   ((GroupTail)tail).groupIndex,
3082                                             capturingGroup);
3083                return head;
3084            } else { // Non-deterministic
3085                int temp = ((GroupHead) head).localIndex;
3086                Loop loop;
3087                if (curly.type == Qtype.GREEDY) {
3088                    loop = new Loop(this.localCount, temp);
3089                    // add the max_reps greedy to the top-closure-node list
3090                    if (curly.cmax == MAX_REPS)
3091                        topClosureNodes.add(loop);
3092                } else {  // Reluctant Curly
3093                    loop = new LazyLoop(this.localCount, temp);
3094                }
3095                Prolog prolog = new Prolog(loop);
3096                this.localCount += 1;
3097                loop.cmin = curly.cmin;
3098                loop.cmax = curly.cmax;
3099                loop.body = head;
3100                tail.next = loop;
3101                root = loop;
3102                return prolog; // Dual return
3103            }
3104        }
3105        throw error("Internal logic error");
3106    }
3107
3108    /**
3109     * Create group head and tail nodes using double return. If the group is
3110     * created with anonymous true then it is a pure group and should not
3111     * affect group counting.
3112     */
3113    private Node createGroup(boolean anonymous) {
3114        int localIndex = localCount++;
3115        int groupIndex = 0;
3116        if (!anonymous)
3117            groupIndex = capturingGroupCount++;
3118        GroupHead head = new GroupHead(localIndex);
3119        root = new GroupTail(localIndex, groupIndex);
3120
3121        // for debug/print only, head.match does NOT need the "tail" info
3122        head.tail = (GroupTail)root;
3123
3124        if (!anonymous && groupIndex < 10)
3125            groupNodes[groupIndex] = head;
3126        return head;
3127    }
3128
3129    @SuppressWarnings("fallthrough")
3130    /**
3131     * Parses inlined match flags and set them appropriately.
3132     */
3133    private void addFlag() {
3134        int ch = peek();
3135        for (;;) {
3136            switch (ch) {
3137            case 'i':
3138                flags |= CASE_INSENSITIVE;
3139                break;
3140            case 'm':
3141                flags |= MULTILINE;
3142                break;
3143            case 's':
3144                flags |= DOTALL;
3145                break;
3146            case 'd':
3147                flags |= UNIX_LINES;
3148                break;
3149            case 'u':
3150                flags |= UNICODE_CASE;
3151                break;
3152            case 'c':
3153                flags |= CANON_EQ;
3154                break;
3155            case 'x':
3156                flags |= COMMENTS;
3157                break;
3158            case 'U':
3159                flags |= (UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3160                break;
3161            case '-': // subFlag then fall through
3162                ch = next();
3163                subFlag();
3164            default:
3165                return;
3166            }
3167            ch = next();
3168        }
3169    }
3170
3171    @SuppressWarnings("fallthrough")
3172    /**
3173     * Parses the second part of inlined match flags and turns off
3174     * flags appropriately.
3175     */
3176    private void subFlag() {
3177        int ch = peek();
3178        for (;;) {
3179            switch (ch) {
3180            case 'i':
3181                flags &= ~CASE_INSENSITIVE;
3182                break;
3183            case 'm':
3184                flags &= ~MULTILINE;
3185                break;
3186            case 's':
3187                flags &= ~DOTALL;
3188                break;
3189            case 'd':
3190                flags &= ~UNIX_LINES;
3191                break;
3192            case 'u':
3193                flags &= ~UNICODE_CASE;
3194                break;
3195            case 'c':
3196                flags &= ~CANON_EQ;
3197                break;
3198            case 'x':
3199                flags &= ~COMMENTS;
3200                break;
3201            case 'U':
3202                flags &= ~(UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3203                break;
3204            default:
3205                return;
3206            }
3207            ch = next();
3208        }
3209    }
3210
3211    static final int MAX_REPS   = 0x7FFFFFFF;
3212
3213    static enum Qtype {
3214        GREEDY, LAZY, POSSESSIVE, INDEPENDENT
3215    }
3216
3217    private Node curly(Node prev, int cmin) {
3218        int ch = next();
3219        if (ch == '?') {
3220            next();
3221            return new Curly(prev, cmin, MAX_REPS, Qtype.LAZY);
3222        } else if (ch == '+') {
3223            next();
3224            return new Curly(prev, cmin, MAX_REPS, Qtype.POSSESSIVE);
3225        }
3226        if (prev instanceof BmpCharProperty) {
3227            return new BmpCharPropertyGreedy((BmpCharProperty)prev, cmin);
3228        } else if (prev instanceof CharProperty) {
3229            return new CharPropertyGreedy((CharProperty)prev, cmin);
3230        }
3231        return new Curly(prev, cmin, MAX_REPS, Qtype.GREEDY);
3232    }
3233
3234    /**
3235     * Processes repetition. If the next character peeked is a quantifier
3236     * then new nodes must be appended to handle the repetition.
3237     * Prev could be a single or a group, so it could be a chain of nodes.
3238     */
3239    private Node closure(Node prev) {
3240        Node atom;
3241        int ch = peek();
3242        switch (ch) {
3243        case '?':
3244            ch = next();
3245            if (ch == '?') {
3246                next();
3247                return new Ques(prev, Qtype.LAZY);
3248            } else if (ch == '+') {
3249                next();
3250                return new Ques(prev, Qtype.POSSESSIVE);
3251            }
3252            return new Ques(prev, Qtype.GREEDY);
3253        case '*':
3254            return curly(prev, 0);
3255        case '+':
3256            return curly(prev, 1);
3257        case '{':
3258            ch = temp[cursor+1];
3259            if (ASCII.isDigit(ch)) {
3260                skip();
3261                int cmin = 0;
3262                do {
3263                    cmin = cmin * 10 + (ch - '0');
3264                } while (ASCII.isDigit(ch = read()));
3265                int cmax = cmin;
3266                if (ch == ',') {
3267                    ch = read();
3268                    cmax = MAX_REPS;
3269                    if (ch != '}') {
3270                        cmax = 0;
3271                        while (ASCII.isDigit(ch)) {
3272                            cmax = cmax * 10 + (ch - '0');
3273                            ch = read();
3274                        }
3275                    }
3276                }
3277                if (ch != '}')
3278                    throw error("Unclosed counted closure");
3279                if (((cmin) | (cmax) | (cmax - cmin)) < 0)
3280                    throw error("Illegal repetition range");
3281                Curly curly;
3282                ch = peek();
3283                if (ch == '?') {
3284                    next();
3285                    curly = new Curly(prev, cmin, cmax, Qtype.LAZY);
3286                } else if (ch == '+') {
3287                    next();
3288                    curly = new Curly(prev, cmin, cmax, Qtype.POSSESSIVE);
3289                } else {
3290                    curly = new Curly(prev, cmin, cmax, Qtype.GREEDY);
3291                }
3292                return curly;
3293            } else {
3294                throw error("Illegal repetition");
3295            }
3296        default:
3297            return prev;
3298        }
3299    }
3300
3301    /**
3302     *  Utility method for parsing control escape sequences.
3303     */
3304    private int c() {
3305        if (cursor < patternLength) {
3306            return read() ^ 64;
3307        }
3308        throw error("Illegal control escape sequence");
3309    }
3310
3311    /**
3312     *  Utility method for parsing octal escape sequences.
3313     */
3314    private int o() {
3315        int n = read();
3316        if (((n-'0')|('7'-n)) >= 0) {
3317            int m = read();
3318            if (((m-'0')|('7'-m)) >= 0) {
3319                int o = read();
3320                if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
3321                    return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
3322                }
3323                unread();
3324                return (n - '0') * 8 + (m - '0');
3325            }
3326            unread();
3327            return (n - '0');
3328        }
3329        throw error("Illegal octal escape sequence");
3330    }
3331
3332    /**
3333     *  Utility method for parsing hexadecimal escape sequences.
3334     */
3335    private int x() {
3336        int n = read();
3337        if (ASCII.isHexDigit(n)) {
3338            int m = read();
3339            if (ASCII.isHexDigit(m)) {
3340                return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
3341            }
3342        } else if (n == '{' && ASCII.isHexDigit(peek())) {
3343            int ch = 0;
3344            while (ASCII.isHexDigit(n = read())) {
3345                ch = (ch << 4) + ASCII.toDigit(n);
3346                if (ch > Character.MAX_CODE_POINT)
3347                    throw error("Hexadecimal codepoint is too big");
3348            }
3349            if (n != '}')
3350                throw error("Unclosed hexadecimal escape sequence");
3351            return ch;
3352        }
3353        throw error("Illegal hexadecimal escape sequence");
3354    }
3355
3356    /**
3357     *  Utility method for parsing unicode escape sequences.
3358     */
3359    private int cursor() {
3360        return cursor;
3361    }
3362
3363    private void setcursor(int pos) {
3364        cursor = pos;
3365    }
3366
3367    private int uxxxx() {
3368        int n = 0;
3369        for (int i = 0; i < 4; i++) {
3370            int ch = read();
3371            if (!ASCII.isHexDigit(ch)) {
3372                throw error("Illegal Unicode escape sequence");
3373            }
3374            n = n * 16 + ASCII.toDigit(ch);
3375        }
3376        return n;
3377    }
3378
3379    private int u() {
3380        int n = uxxxx();
3381        if (Character.isHighSurrogate((char)n)) {
3382            int cur = cursor();
3383            if (read() == '\\' && read() == 'u') {
3384                int n2 = uxxxx();
3385                if (Character.isLowSurrogate((char)n2))
3386                    return Character.toCodePoint((char)n, (char)n2);
3387            }
3388            setcursor(cur);
3389        }
3390        return n;
3391    }
3392
3393    private int N() {
3394        if (read() == '{') {
3395            int i = cursor;
3396            while (cursor < patternLength && read() != '}') {}
3397            if (cursor > patternLength)
3398                throw error("Unclosed character name escape sequence");
3399            String name = new String(temp, i, cursor - i - 1);
3400            try {
3401                return Character.codePointOf(name);
3402            } catch (IllegalArgumentException x) {
3403                throw error("Unknown character name [" + name + "]");
3404            }
3405        }
3406        throw error("Illegal character name escape sequence");
3407    }
3408
3409    //
3410    // Utility methods for code point support
3411    //
3412    private static final int countChars(CharSequence seq, int index,
3413                                        int lengthInCodePoints) {
3414        // optimization
3415        if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
3416            assert (index >= 0 && index < seq.length());
3417            return 1;
3418        }
3419        int length = seq.length();
3420        int x = index;
3421        if (lengthInCodePoints >= 0) {
3422            assert (index >= 0 && index < length);
3423            for (int i = 0; x < length && i < lengthInCodePoints; i++) {
3424                if (Character.isHighSurrogate(seq.charAt(x++))) {
3425                    if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
3426                        x++;
3427                    }
3428                }
3429            }
3430            return x - index;
3431        }
3432
3433        assert (index >= 0 && index <= length);
3434        if (index == 0) {
3435            return 0;
3436        }
3437        int len = -lengthInCodePoints;
3438        for (int i = 0; x > 0 && i < len; i++) {
3439            if (Character.isLowSurrogate(seq.charAt(--x))) {
3440                if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
3441                    x--;
3442                }
3443            }
3444        }
3445        return index - x;
3446    }
3447
3448    private static final int countCodePoints(CharSequence seq) {
3449        int length = seq.length();
3450        int n = 0;
3451        for (int i = 0; i < length; ) {
3452            n++;
3453            if (Character.isHighSurrogate(seq.charAt(i++))) {
3454                if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
3455                    i++;
3456                }
3457            }
3458        }
3459        return n;
3460    }
3461
3462    /**
3463     *  Creates a bit vector for matching Latin-1 values. A normal BitClass
3464     *  never matches values above Latin-1, and a complemented BitClass always
3465     *  matches values above Latin-1.
3466     */
3467    static final class BitClass extends BmpCharProperty {
3468        final boolean[] bits;
3469        BitClass() {
3470            this(new boolean[256]);
3471        }
3472        private BitClass(boolean[] bits) {
3473            super( ch -> ch < 256 && bits[ch]);
3474            this.bits = bits;
3475        }
3476        BitClass add(int c, int flags) {
3477            assert c >= 0 && c <= 255;
3478            if ((flags & CASE_INSENSITIVE) != 0) {
3479                if (ASCII.isAscii(c)) {
3480                    bits[ASCII.toUpper(c)] = true;
3481                    bits[ASCII.toLower(c)] = true;
3482                } else if ((flags & UNICODE_CASE) != 0) {
3483                    bits[Character.toLowerCase(c)] = true;
3484                    bits[Character.toUpperCase(c)] = true;
3485                }
3486            }
3487            bits[c] = true;
3488            return this;
3489        }
3490    }
3491
3492    /**
3493     *  Utility method for creating a string slice matcher.
3494     */
3495    private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
3496        int[] tmp = new int[count];
3497        if (has(CASE_INSENSITIVE)) {
3498            if (has(UNICODE_CASE)) {
3499                for (int i = 0; i < count; i++) {
3500                    tmp[i] = Character.toLowerCase(
3501                                 Character.toUpperCase(buf[i]));
3502                }
3503                return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
3504            }
3505            for (int i = 0; i < count; i++) {
3506                tmp[i] = ASCII.toLower(buf[i]);
3507            }
3508            return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
3509        }
3510        for (int i = 0; i < count; i++) {
3511            tmp[i] = buf[i];
3512        }
3513        return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
3514    }
3515
3516    /**
3517     * The following classes are the building components of the object
3518     * tree that represents a compiled regular expression. The object tree
3519     * is made of individual elements that handle constructs in the Pattern.
3520     * Each type of object knows how to match its equivalent construct with
3521     * the match() method.
3522     */
3523
3524    /**
3525     * Base class for all node classes. Subclasses should override the match()
3526     * method as appropriate. This class is an accepting node, so its match()
3527     * always returns true.
3528     */
3529    static class Node extends Object {
3530        Node next;
3531        Node() {
3532            next = Pattern.accept;
3533        }
3534        /**
3535         * This method implements the classic accept node.
3536         */
3537        boolean match(Matcher matcher, int i, CharSequence seq) {
3538            matcher.last = i;
3539            matcher.groups[0] = matcher.first;
3540            matcher.groups[1] = matcher.last;
3541            return true;
3542        }
3543        /**
3544         * This method is good for all zero length assertions.
3545         */
3546        boolean study(TreeInfo info) {
3547            if (next != null) {
3548                return next.study(info);
3549            } else {
3550                return info.deterministic;
3551            }
3552        }
3553    }
3554
3555    static class LastNode extends Node {
3556        /**
3557         * This method implements the classic accept node with
3558         * the addition of a check to see if the match occurred
3559         * using all of the input.
3560         */
3561        boolean match(Matcher matcher, int i, CharSequence seq) {
3562            if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
3563                return false;
3564            matcher.last = i;
3565            matcher.groups[0] = matcher.first;
3566            matcher.groups[1] = matcher.last;
3567            return true;
3568        }
3569    }
3570
3571    /**
3572     * Used for REs that can start anywhere within the input string.
3573     * This basically tries to match repeatedly at each spot in the
3574     * input string, moving forward after each try. An anchored search
3575     * or a BnM will bypass this node completely.
3576     */
3577    static class Start extends Node {
3578        int minLength;
3579        Start(Node node) {
3580            this.next = node;
3581            TreeInfo info = new TreeInfo();
3582            next.study(info);
3583            minLength = info.minLength;
3584        }
3585        boolean match(Matcher matcher, int i, CharSequence seq) {
3586            if (i > matcher.to - minLength) {
3587                matcher.hitEnd = true;
3588                return false;
3589            }
3590            int guard = matcher.to - minLength;
3591            for (; i <= guard; i++) {
3592                if (next.match(matcher, i, seq)) {
3593                    matcher.first = i;
3594                    matcher.groups[0] = matcher.first;
3595                    matcher.groups[1] = matcher.last;
3596                    return true;
3597                }
3598            }
3599            matcher.hitEnd = true;
3600            return false;
3601        }
3602        boolean study(TreeInfo info) {
3603            next.study(info);
3604            info.maxValid = false;
3605            info.deterministic = false;
3606            return false;
3607        }
3608    }
3609
3610    /*
3611     * StartS supports supplementary characters, including unpaired surrogates.
3612     */
3613    static final class StartS extends Start {
3614        StartS(Node node) {
3615            super(node);
3616        }
3617        boolean match(Matcher matcher, int i, CharSequence seq) {
3618            if (i > matcher.to - minLength) {
3619                matcher.hitEnd = true;
3620                return false;
3621            }
3622            int guard = matcher.to - minLength;
3623            while (i <= guard) {
3624                //if ((ret = next.match(matcher, i, seq)) || i == guard)
3625                if (next.match(matcher, i, seq)) {
3626                    matcher.first = i;
3627                    matcher.groups[0] = matcher.first;
3628                    matcher.groups[1] = matcher.last;
3629                    return true;
3630                }
3631                if (i == guard)
3632                    break;
3633                // Optimization to move to the next character. This is
3634                // faster than countChars(seq, i, 1).
3635                if (Character.isHighSurrogate(seq.charAt(i++))) {
3636                    if (i < seq.length() &&
3637                        Character.isLowSurrogate(seq.charAt(i))) {
3638                        i++;
3639                    }
3640                }
3641            }
3642            matcher.hitEnd = true;
3643            return false;
3644        }
3645    }
3646
3647    /**
3648     * Node to anchor at the beginning of input. This object implements the
3649     * match for a \A sequence, and the caret anchor will use this if not in
3650     * multiline mode.
3651     */
3652    static final class Begin extends Node {
3653        boolean match(Matcher matcher, int i, CharSequence seq) {
3654            int fromIndex = (matcher.anchoringBounds) ?
3655                matcher.from : 0;
3656            if (i == fromIndex && next.match(matcher, i, seq)) {
3657                matcher.first = i;
3658                matcher.groups[0] = i;
3659                matcher.groups[1] = matcher.last;
3660                return true;
3661            } else {
3662                return false;
3663            }
3664        }
3665    }
3666
3667    /**
3668     * Node to anchor at the end of input. This is the absolute end, so this
3669     * should not match at the last newline before the end as $ will.
3670     */
3671    static final class End extends Node {
3672        boolean match(Matcher matcher, int i, CharSequence seq) {
3673            int endIndex = (matcher.anchoringBounds) ?
3674                matcher.to : matcher.getTextLength();
3675            if (i == endIndex) {
3676                matcher.hitEnd = true;
3677                return next.match(matcher, i, seq);
3678            }
3679            return false;
3680        }
3681    }
3682
3683    /**
3684     * Node to anchor at the beginning of a line. This is essentially the
3685     * object to match for the multiline ^.
3686     */
3687    static final class Caret extends Node {
3688        boolean match(Matcher matcher, int i, CharSequence seq) {
3689            int startIndex = matcher.from;
3690            int endIndex = matcher.to;
3691            if (!matcher.anchoringBounds) {
3692                startIndex = 0;
3693                endIndex = matcher.getTextLength();
3694            }
3695            // Perl does not match ^ at end of input even after newline
3696            if (i == endIndex) {
3697                matcher.hitEnd = true;
3698                return false;
3699            }
3700            if (i > startIndex) {
3701                char ch = seq.charAt(i-1);
3702                if (ch != '\n' && ch != '\r'
3703                    && (ch|1) != '\u2029'
3704                    && ch != '\u0085' ) {
3705                    return false;
3706                }
3707                // Should treat /r/n as one newline
3708                if (ch == '\r' && seq.charAt(i) == '\n')
3709                    return false;
3710            }
3711            return next.match(matcher, i, seq);
3712        }
3713    }
3714
3715    /**
3716     * Node to anchor at the beginning of a line when in unixdot mode.
3717     */
3718    static final class UnixCaret extends Node {
3719        boolean match(Matcher matcher, int i, CharSequence seq) {
3720            int startIndex = matcher.from;
3721            int endIndex = matcher.to;
3722            if (!matcher.anchoringBounds) {
3723                startIndex = 0;
3724                endIndex = matcher.getTextLength();
3725            }
3726            // Perl does not match ^ at end of input even after newline
3727            if (i == endIndex) {
3728                matcher.hitEnd = true;
3729                return false;
3730            }
3731            if (i > startIndex) {
3732                char ch = seq.charAt(i-1);
3733                if (ch != '\n') {
3734                    return false;
3735                }
3736            }
3737            return next.match(matcher, i, seq);
3738        }
3739    }
3740
3741    /**
3742     * Node to match the location where the last match ended.
3743     * This is used for the \G construct.
3744     */
3745    static final class LastMatch extends Node {
3746        boolean match(Matcher matcher, int i, CharSequence seq) {
3747            if (i != matcher.oldLast)
3748                return false;
3749            return next.match(matcher, i, seq);
3750        }
3751    }
3752
3753    /**
3754     * Node to anchor at the end of a line or the end of input based on the
3755     * multiline mode.
3756     *
3757     * When not in multiline mode, the $ can only match at the very end
3758     * of the input, unless the input ends in a line terminator in which
3759     * it matches right before the last line terminator.
3760     *
3761     * Note that \r\n is considered an atomic line terminator.
3762     *
3763     * Like ^ the $ operator matches at a position, it does not match the
3764     * line terminators themselves.
3765     */
3766    static final class Dollar extends Node {
3767        boolean multiline;
3768        Dollar(boolean mul) {
3769            multiline = mul;
3770        }
3771        boolean match(Matcher matcher, int i, CharSequence seq) {
3772            int endIndex = (matcher.anchoringBounds) ?
3773                matcher.to : matcher.getTextLength();
3774            if (!multiline) {
3775                if (i < endIndex - 2)
3776                    return false;
3777                if (i == endIndex - 2) {
3778                    char ch = seq.charAt(i);
3779                    if (ch != '\r')
3780                        return false;
3781                    ch = seq.charAt(i + 1);
3782                    if (ch != '\n')
3783                        return false;
3784                }
3785            }
3786            // Matches before any line terminator; also matches at the
3787            // end of input
3788            // Before line terminator:
3789            // If multiline, we match here no matter what
3790            // If not multiline, fall through so that the end
3791            // is marked as hit; this must be a /r/n or a /n
3792            // at the very end so the end was hit; more input
3793            // could make this not match here
3794            if (i < endIndex) {
3795                char ch = seq.charAt(i);
3796                 if (ch == '\n') {
3797                     // No match between \r\n
3798                     if (i > 0 && seq.charAt(i-1) == '\r')
3799                         return false;
3800                     if (multiline)
3801                         return next.match(matcher, i, seq);
3802                 } else if (ch == '\r' || ch == '\u0085' ||
3803                            (ch|1) == '\u2029') {
3804                     if (multiline)
3805                         return next.match(matcher, i, seq);
3806                 } else { // No line terminator, no match
3807                     return false;
3808                 }
3809            }
3810            // Matched at current end so hit end
3811            matcher.hitEnd = true;
3812            // If a $ matches because of end of input, then more input
3813            // could cause it to fail!
3814            matcher.requireEnd = true;
3815            return next.match(matcher, i, seq);
3816        }
3817        boolean study(TreeInfo info) {
3818            next.study(info);
3819            return info.deterministic;
3820        }
3821    }
3822
3823    /**
3824     * Node to anchor at the end of a line or the end of input based on the
3825     * multiline mode when in unix lines mode.
3826     */
3827    static final class UnixDollar extends Node {
3828        boolean multiline;
3829        UnixDollar(boolean mul) {
3830            multiline = mul;
3831        }
3832        boolean match(Matcher matcher, int i, CharSequence seq) {
3833            int endIndex = (matcher.anchoringBounds) ?
3834                matcher.to : matcher.getTextLength();
3835            if (i < endIndex) {
3836                char ch = seq.charAt(i);
3837                if (ch == '\n') {
3838                    // If not multiline, then only possible to
3839                    // match at very end or one before end
3840                    if (multiline == false && i != endIndex - 1)
3841                        return false;
3842                    // If multiline return next.match without setting
3843                    // matcher.hitEnd
3844                    if (multiline)
3845                        return next.match(matcher, i, seq);
3846                } else {
3847                    return false;
3848                }
3849            }
3850            // Matching because at the end or 1 before the end;
3851            // more input could change this so set hitEnd
3852            matcher.hitEnd = true;
3853            // If a $ matches because of end of input, then more input
3854            // could cause it to fail!
3855            matcher.requireEnd = true;
3856            return next.match(matcher, i, seq);
3857        }
3858        boolean study(TreeInfo info) {
3859            next.study(info);
3860            return info.deterministic;
3861        }
3862    }
3863
3864    /**
3865     * Node class that matches a Unicode line ending '\R'
3866     */
3867    static final class LineEnding extends Node {
3868        boolean match(Matcher matcher, int i, CharSequence seq) {
3869            // (u+000Du+000A|[u+000Au+000Bu+000Cu+000Du+0085u+2028u+2029])
3870            if (i < matcher.to) {
3871                int ch = seq.charAt(i);
3872                if (ch == 0x0A || ch == 0x0B || ch == 0x0C ||
3873                    ch == 0x85 || ch == 0x2028 || ch == 0x2029)
3874                    return next.match(matcher, i + 1, seq);
3875                if (ch == 0x0D) {
3876                    i++;
3877                    if (i < matcher.to) {
3878                        if (seq.charAt(i) == 0x0A &&
3879                            next.match(matcher, i + 1, seq)) {
3880                            return true;
3881                        }
3882                    } else {
3883                        matcher.hitEnd = true;
3884                    }
3885                    return next.match(matcher, i, seq);
3886                }
3887            } else {
3888                matcher.hitEnd = true;
3889            }
3890            return false;
3891        }
3892        boolean study(TreeInfo info) {
3893            info.minLength++;
3894            info.maxLength += 2;
3895            return next.study(info);
3896        }
3897    }
3898
3899    /**
3900     * Abstract node class to match one character satisfying some
3901     * boolean property.
3902     */
3903    static class CharProperty extends Node {
3904        CharPredicate predicate;
3905
3906        CharProperty (CharPredicate predicate) {
3907            this.predicate = predicate;
3908        }
3909        boolean match(Matcher matcher, int i, CharSequence seq) {
3910            if (i < matcher.to) {
3911                int ch = Character.codePointAt(seq, i);
3912                return predicate.is(ch) &&
3913                       next.match(matcher, i + Character.charCount(ch), seq);
3914            } else {
3915                matcher.hitEnd = true;
3916                return false;
3917            }
3918        }
3919        boolean study(TreeInfo info) {
3920            info.minLength++;
3921            info.maxLength++;
3922            return next.study(info);
3923        }
3924    }
3925
3926    /**
3927     * Optimized version of CharProperty that works only for
3928     * properties never satisfied by Supplementary characters.
3929     */
3930    private static class BmpCharProperty extends CharProperty {
3931        BmpCharProperty (BmpCharPredicate predicate) {
3932            super(predicate);
3933        }
3934        boolean match(Matcher matcher, int i, CharSequence seq) {
3935            if (i < matcher.to) {
3936                return predicate.is(seq.charAt(i)) &&
3937                       next.match(matcher, i + 1, seq);
3938            } else {
3939                matcher.hitEnd = true;
3940                return false;
3941            }
3942        }
3943    }
3944
3945    private static class NFCCharProperty extends Node {
3946        CharPredicate predicate;
3947        NFCCharProperty (CharPredicate predicate) {
3948            this.predicate = predicate;
3949        }
3950
3951        boolean match(Matcher matcher, int i, CharSequence seq) {
3952            if (i < matcher.to) {
3953                int ch0 = Character.codePointAt(seq, i);
3954                int n = Character.charCount(ch0);
3955                int j = i + n;
3956                while (j < matcher.to) {
3957                    int ch1 = Character.codePointAt(seq, j);
3958                    if (Grapheme.isBoundary(ch0, ch1))
3959                        break;
3960                    ch0 = ch1;
3961                    j += Character.charCount(ch1);
3962                }
3963                if (i + n == j) {    // single, assume nfc cp
3964                    if (predicate.is(ch0))
3965                        return next.match(matcher, j, seq);
3966                } else {
3967                    while (i + n < j) {
3968                        String nfc = Normalizer.normalize(
3969                            seq.toString().substring(i, j), Normalizer.Form.NFC);
3970                        if (nfc.codePointCount(0, nfc.length()) == 1) {
3971                            if (predicate.is(nfc.codePointAt(0)) &&
3972                                next.match(matcher, j, seq)) {
3973                                return true;
3974                            }
3975                        }
3976
3977                        ch0 = Character.codePointBefore(seq, j);
3978                        j -= Character.charCount(ch0);
3979                    }
3980                }
3981                if (j < matcher.to)
3982                    return false;
3983            }
3984            matcher.hitEnd = true;
3985            return false;
3986        }
3987
3988        boolean study(TreeInfo info) {
3989            info.minLength++;
3990            info.deterministic = false;
3991            return next.study(info);
3992        }
3993    }
3994
3995    /**
3996     * Node class that matches an unicode extended grapheme cluster
3997     */
3998    static class XGrapheme extends Node {
3999        boolean match(Matcher matcher, int i, CharSequence seq) {
4000            if (i < matcher.to) {
4001                int ch0 = Character.codePointAt(seq, i);
4002                    i += Character.charCount(ch0);
4003                while (i < matcher.to) {
4004                    int ch1 = Character.codePointAt(seq, i);
4005                    if (Grapheme.isBoundary(ch0, ch1))
4006                        break;
4007                    ch0 = ch1;
4008                    i += Character.charCount(ch1);
4009                }
4010                return next.match(matcher, i, seq);
4011            }
4012            matcher.hitEnd = true;
4013            return false;
4014        }
4015
4016        boolean study(TreeInfo info) {
4017            info.minLength++;
4018            info.deterministic = false;
4019            return next.study(info);
4020        }
4021    }
4022
4023    /**
4024     * Node class that handles grapheme boundaries
4025     */
4026    static class GraphemeBound extends Node {
4027        boolean match(Matcher matcher, int i, CharSequence seq) {
4028            int startIndex = matcher.from;
4029            int endIndex = matcher.to;
4030            if (matcher.transparentBounds) {
4031                startIndex = 0;
4032                endIndex = matcher.getTextLength();
4033            }
4034            if (i == startIndex) {
4035                return next.match(matcher, i, seq);
4036            }
4037            if (i < endIndex) {
4038                if (Character.isSurrogatePair(seq.charAt(i-1), seq.charAt(i)) ||
4039                    !Grapheme.isBoundary(Character.codePointBefore(seq, i),
4040                                         Character.codePointAt(seq, i))) {
4041                    return false;
4042                }
4043            } else {
4044                matcher.hitEnd = true;
4045                matcher.requireEnd = true;
4046            }
4047            return next.match(matcher, i, seq);
4048        }
4049    }
4050
4051    /**
4052     * Base class for all Slice nodes
4053     */
4054    static class SliceNode extends Node {
4055        int[] buffer;
4056        SliceNode(int[] buf) {
4057            buffer = buf;
4058        }
4059        boolean study(TreeInfo info) {
4060            info.minLength += buffer.length;
4061            info.maxLength += buffer.length;
4062            return next.study(info);
4063        }
4064    }
4065
4066    /**
4067     * Node class for a case sensitive/BMP-only sequence of literal
4068     * characters.
4069     */
4070    static class Slice extends SliceNode {
4071        Slice(int[] buf) {
4072            super(buf);
4073        }
4074        boolean match(Matcher matcher, int i, CharSequence seq) {
4075            int[] buf = buffer;
4076            int len = buf.length;
4077            for (int j=0; j<len; j++) {
4078                if ((i+j) >= matcher.to) {
4079                    matcher.hitEnd = true;
4080                    return false;
4081                }
4082                if (buf[j] != seq.charAt(i+j))
4083                    return false;
4084            }
4085            return next.match(matcher, i+len, seq);
4086        }
4087    }
4088
4089    /**
4090     * Node class for a case_insensitive/BMP-only sequence of literal
4091     * characters.
4092     */
4093    static class SliceI extends SliceNode {
4094        SliceI(int[] buf) {
4095            super(buf);
4096        }
4097        boolean match(Matcher matcher, int i, CharSequence seq) {
4098            int[] buf = buffer;
4099            int len = buf.length;
4100            for (int j=0; j<len; j++) {
4101                if ((i+j) >= matcher.to) {
4102                    matcher.hitEnd = true;
4103                    return false;
4104                }
4105                int c = seq.charAt(i+j);
4106                if (buf[j] != c &&
4107                    buf[j] != ASCII.toLower(c))
4108                    return false;
4109            }
4110            return next.match(matcher, i+len, seq);
4111        }
4112    }
4113
4114    /**
4115     * Node class for a unicode_case_insensitive/BMP-only sequence of
4116     * literal characters. Uses unicode case folding.
4117     */
4118    static final class SliceU extends SliceNode {
4119        SliceU(int[] buf) {
4120            super(buf);
4121        }
4122        boolean match(Matcher matcher, int i, CharSequence seq) {
4123            int[] buf = buffer;
4124            int len = buf.length;
4125            for (int j=0; j<len; j++) {
4126                if ((i+j) >= matcher.to) {
4127                    matcher.hitEnd = true;
4128                    return false;
4129                }
4130                int c = seq.charAt(i+j);
4131                if (buf[j] != c &&
4132                    buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
4133                    return false;
4134            }
4135            return next.match(matcher, i+len, seq);
4136        }
4137    }
4138
4139    /**
4140     * Node class for a case sensitive sequence of literal characters
4141     * including supplementary characters.
4142     */
4143    static final class SliceS extends Slice {
4144        SliceS(int[] buf) {
4145            super(buf);
4146        }
4147        boolean match(Matcher matcher, int i, CharSequence seq) {
4148            int[] buf = buffer;
4149            int x = i;
4150            for (int j = 0; j < buf.length; j++) {
4151                if (x >= matcher.to) {
4152                    matcher.hitEnd = true;
4153                    return false;
4154                }
4155                int c = Character.codePointAt(seq, x);
4156                if (buf[j] != c)
4157                    return false;
4158                x += Character.charCount(c);
4159                if (x > matcher.to) {
4160                    matcher.hitEnd = true;
4161                    return false;
4162                }
4163            }
4164            return next.match(matcher, x, seq);
4165        }
4166    }
4167
4168    /**
4169     * Node class for a case insensitive sequence of literal characters
4170     * including supplementary characters.
4171     */
4172    static class SliceIS extends SliceNode {
4173        SliceIS(int[] buf) {
4174            super(buf);
4175        }
4176        int toLower(int c) {
4177            return ASCII.toLower(c);
4178        }
4179        boolean match(Matcher matcher, int i, CharSequence seq) {
4180            int[] buf = buffer;
4181            int x = i;
4182            for (int j = 0; j < buf.length; j++) {
4183                if (x >= matcher.to) {
4184                    matcher.hitEnd = true;
4185                    return false;
4186                }
4187                int c = Character.codePointAt(seq, x);
4188                if (buf[j] != c && buf[j] != toLower(c))
4189                    return false;
4190                x += Character.charCount(c);
4191                if (x > matcher.to) {
4192                    matcher.hitEnd = true;
4193                    return false;
4194                }
4195            }
4196            return next.match(matcher, x, seq);
4197        }
4198    }
4199
4200    /**
4201     * Node class for a case insensitive sequence of literal characters.
4202     * Uses unicode case folding.
4203     */
4204    static final class SliceUS extends SliceIS {
4205        SliceUS(int[] buf) {
4206            super(buf);
4207        }
4208        int toLower(int c) {
4209            return Character.toLowerCase(Character.toUpperCase(c));
4210        }
4211    }
4212
4213    /**
4214     * The 0 or 1 quantifier. This one class implements all three types.
4215     */
4216    static final class Ques extends Node {
4217        Node atom;
4218        Qtype type;
4219        Ques(Node node, Qtype type) {
4220            this.atom = node;
4221            this.type = type;
4222        }
4223        boolean match(Matcher matcher, int i, CharSequence seq) {
4224            switch (type) {
4225            case GREEDY:
4226                return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
4227                    || next.match(matcher, i, seq);
4228            case LAZY:
4229                return next.match(matcher, i, seq)
4230                    || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
4231            case POSSESSIVE:
4232                if (atom.match(matcher, i, seq)) i = matcher.last;
4233                return next.match(matcher, i, seq);
4234            default:
4235                return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
4236            }
4237        }
4238        boolean study(TreeInfo info) {
4239            if (type != Qtype.INDEPENDENT) {
4240                int minL = info.minLength;
4241                atom.study(info);
4242                info.minLength = minL;
4243                info.deterministic = false;
4244                return next.study(info);
4245            } else {
4246                atom.study(info);
4247                return next.study(info);
4248            }
4249        }
4250    }
4251
4252    /**
4253     * Handles the greedy style repetition with the minimum either be
4254     * 0 or 1 and the maximum be MAX_REPS, for * and + quantifier.
4255     */
4256    static class CharPropertyGreedy extends Node {
4257        final CharPredicate predicate;
4258        final int cmin;
4259
4260        CharPropertyGreedy(CharProperty cp, int cmin) {
4261            this.predicate = cp.predicate;
4262            this.cmin = cmin;
4263        }
4264        boolean match(Matcher matcher, int i,  CharSequence seq) {
4265            int n = 0;
4266            int to = matcher.to;
4267            // greedy, all the way down
4268            while (i < to) {
4269                int ch = Character.codePointAt(seq, i);
4270                if (!predicate.is(ch))
4271                   break;
4272                i += Character.charCount(ch);
4273                n++;
4274            }
4275            if (i >= to) {
4276                matcher.hitEnd = true;
4277            }
4278            while (n >= cmin) {
4279                if (next.match(matcher, i, seq))
4280                    return true;
4281                if (n == cmin)
4282                    return false;
4283                 // backing off if match fails
4284                int ch = Character.codePointBefore(seq, i);
4285                i -= Character.charCount(ch);
4286                n--;
4287            }
4288            return false;
4289        }
4290
4291        boolean study(TreeInfo info) {
4292            info.minLength += cmin;
4293            if (info.maxValid) {
4294                info.maxLength += MAX_REPS;
4295            }
4296            info.deterministic = false;
4297            return next.study(info);
4298        }
4299    }
4300
4301    static final class BmpCharPropertyGreedy extends CharPropertyGreedy {
4302
4303        BmpCharPropertyGreedy(BmpCharProperty bcp, int cmin) {
4304            super(bcp, cmin);
4305        }
4306
4307        boolean match(Matcher matcher, int i,  CharSequence seq) {
4308            int n = 0;
4309            int to = matcher.to;
4310            while (i < to && predicate.is(seq.charAt(i))) {
4311                i++; n++;
4312            }
4313            if (i >= to) {
4314                matcher.hitEnd = true;
4315            }
4316            while (n >= cmin) {
4317                if (next.match(matcher, i, seq))
4318                    return true;
4319                i--; n--;  // backing off if match fails
4320            }
4321            return false;
4322        }
4323    }
4324
4325    /**
4326     * Handles the curly-brace style repetition with a specified minimum and
4327     * maximum occurrences. The * quantifier is handled as a special case.
4328     * This class handles the three types.
4329     */
4330    static final class Curly extends Node {
4331        Node atom;
4332        Qtype type;
4333        int cmin;
4334        int cmax;
4335
4336        Curly(Node node, int cmin, int cmax, Qtype type) {
4337            this.atom = node;
4338            this.type = type;
4339            this.cmin = cmin;
4340            this.cmax = cmax;
4341        }
4342        boolean match(Matcher matcher, int i, CharSequence seq) {
4343            int j;
4344            for (j = 0; j < cmin; j++) {
4345                if (atom.match(matcher, i, seq)) {
4346                    i = matcher.last;
4347                    continue;
4348                }
4349                return false;
4350            }
4351            if (type == Qtype.GREEDY)
4352                return match0(matcher, i, j, seq);
4353            else if (type == Qtype.LAZY)
4354                return match1(matcher, i, j, seq);
4355            else
4356                return match2(matcher, i, j, seq);
4357        }
4358        // Greedy match.
4359        // i is the index to start matching at
4360        // j is the number of atoms that have matched
4361        boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4362            if (j >= cmax) {
4363                // We have matched the maximum... continue with the rest of
4364                // the regular expression
4365                return next.match(matcher, i, seq);
4366            }
4367            int backLimit = j;
4368            while (atom.match(matcher, i, seq)) {
4369                // k is the length of this match
4370                int k = matcher.last - i;
4371                if (k == 0) // Zero length match
4372                    break;
4373                // Move up index and number matched
4374                i = matcher.last;
4375                j++;
4376                // We are greedy so match as many as we can
4377                while (j < cmax) {
4378                    if (!atom.match(matcher, i, seq))
4379                        break;
4380                    if (i + k != matcher.last) {
4381                        if (match0(matcher, matcher.last, j+1, seq))
4382                            return true;
4383                        break;
4384                    }
4385                    i += k;
4386                    j++;
4387                }
4388                // Handle backing off if match fails
4389                while (j >= backLimit) {
4390                   if (next.match(matcher, i, seq))
4391                        return true;
4392                    i -= k;
4393                    j--;
4394                }
4395                return false;
4396            }
4397            return next.match(matcher, i, seq);
4398        }
4399        // Reluctant match. At this point, the minimum has been satisfied.
4400        // i is the index to start matching at
4401        // j is the number of atoms that have matched
4402        boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4403            for (;;) {
4404                // Try finishing match without consuming any more
4405                if (next.match(matcher, i, seq))
4406                    return true;
4407                // At the maximum, no match found
4408                if (j >= cmax)
4409                    return false;
4410                // Okay, must try one more atom
4411                if (!atom.match(matcher, i, seq))
4412                    return false;
4413                // If we haven't moved forward then must break out
4414                if (i == matcher.last)
4415                    return false;
4416                // Move up index and number matched
4417                i = matcher.last;
4418                j++;
4419            }
4420        }
4421        boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4422            for (; j < cmax; j++) {
4423                if (!atom.match(matcher, i, seq))
4424                    break;
4425                if (i == matcher.last)
4426                    break;
4427                i = matcher.last;
4428            }
4429            return next.match(matcher, i, seq);
4430        }
4431        boolean study(TreeInfo info) {
4432            // Save original info
4433            int minL = info.minLength;
4434            int maxL = info.maxLength;
4435            boolean maxV = info.maxValid;
4436            boolean detm = info.deterministic;
4437            info.reset();
4438
4439            atom.study(info);
4440
4441            int temp = info.minLength * cmin + minL;
4442            if (temp < minL) {
4443                temp = 0xFFFFFFF; // arbitrary large number
4444            }
4445            info.minLength = temp;
4446
4447            if (maxV & info.maxValid) {
4448                temp = info.maxLength * cmax + maxL;
4449                info.maxLength = temp;
4450                if (temp < maxL) {
4451                    info.maxValid = false;
4452                }
4453            } else {
4454                info.maxValid = false;
4455            }
4456
4457            if (info.deterministic && cmin == cmax)
4458                info.deterministic = detm;
4459            else
4460                info.deterministic = false;
4461            return next.study(info);
4462        }
4463    }
4464
4465    /**
4466     * Handles the curly-brace style repetition with a specified minimum and
4467     * maximum occurrences in deterministic cases. This is an iterative
4468     * optimization over the Prolog and Loop system which would handle this
4469     * in a recursive way. The * quantifier is handled as a special case.
4470     * If capture is true then this class saves group settings and ensures
4471     * that groups are unset when backing off of a group match.
4472     */
4473    static final class GroupCurly extends Node {
4474        Node atom;
4475        Qtype type;
4476        int cmin;
4477        int cmax;
4478        int localIndex;
4479        int groupIndex;
4480        boolean capture;
4481
4482        GroupCurly(Node node, int cmin, int cmax, Qtype type, int local,
4483                   int group, boolean capture) {
4484            this.atom = node;
4485            this.type = type;
4486            this.cmin = cmin;
4487            this.cmax = cmax;
4488            this.localIndex = local;
4489            this.groupIndex = group;
4490            this.capture = capture;
4491        }
4492        boolean match(Matcher matcher, int i, CharSequence seq) {
4493            int[] groups = matcher.groups;
4494            int[] locals = matcher.locals;
4495            int save0 = locals[localIndex];
4496            int save1 = 0;
4497            int save2 = 0;
4498
4499            if (capture) {
4500                save1 = groups[groupIndex];
4501                save2 = groups[groupIndex+1];
4502            }
4503
4504            // Notify GroupTail there is no need to setup group info
4505            // because it will be set here
4506            locals[localIndex] = -1;
4507
4508            boolean ret = true;
4509            for (int j = 0; j < cmin; j++) {
4510                if (atom.match(matcher, i, seq)) {
4511                    if (capture) {
4512                        groups[groupIndex] = i;
4513                        groups[groupIndex+1] = matcher.last;
4514                    }
4515                    i = matcher.last;
4516                } else {
4517                    ret = false;
4518                    break;
4519                }
4520            }
4521            if (ret) {
4522                if (type == Qtype.GREEDY) {
4523                    ret = match0(matcher, i, cmin, seq);
4524                } else if (type == Qtype.LAZY) {
4525                    ret = match1(matcher, i, cmin, seq);
4526                } else {
4527                    ret = match2(matcher, i, cmin, seq);
4528                }
4529            }
4530            if (!ret) {
4531                locals[localIndex] = save0;
4532                if (capture) {
4533                    groups[groupIndex] = save1;
4534                    groups[groupIndex+1] = save2;
4535                }
4536            }
4537            return ret;
4538        }
4539        // Aggressive group match
4540        boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4541            // don't back off passing the starting "j"
4542            int min = j;
4543            int[] groups = matcher.groups;
4544            int save0 = 0;
4545            int save1 = 0;
4546            if (capture) {
4547                save0 = groups[groupIndex];
4548                save1 = groups[groupIndex+1];
4549            }
4550            for (;;) {
4551                if (j >= cmax)
4552                    break;
4553                if (!atom.match(matcher, i, seq))
4554                    break;
4555                int k = matcher.last - i;
4556                if (k <= 0) {
4557                    if (capture) {
4558                        groups[groupIndex] = i;
4559                        groups[groupIndex+1] = i + k;
4560                    }
4561                    i = i + k;
4562                    break;
4563                }
4564                for (;;) {
4565                    if (capture) {
4566                        groups[groupIndex] = i;
4567                        groups[groupIndex+1] = i + k;
4568                    }
4569                    i = i + k;
4570                    if (++j >= cmax)
4571                        break;
4572                    if (!atom.match(matcher, i, seq))
4573                        break;
4574                    if (i + k != matcher.last) {
4575                        if (match0(matcher, i, j, seq))
4576                            return true;
4577                        break;
4578                    }
4579                }
4580                while (j > min) {
4581                    if (next.match(matcher, i, seq)) {
4582                        if (capture) {
4583                            groups[groupIndex+1] = i;
4584                            groups[groupIndex] = i - k;
4585                        }
4586                        return true;
4587                    }
4588                    // backing off
4589                    i = i - k;
4590                    if (capture) {
4591                        groups[groupIndex+1] = i;
4592                        groups[groupIndex] = i - k;
4593                    }
4594                    j--;
4595
4596                }
4597                break;
4598            }
4599            if (capture) {
4600                groups[groupIndex] = save0;
4601                groups[groupIndex+1] = save1;
4602            }
4603            return next.match(matcher, i, seq);
4604        }
4605        // Reluctant matching
4606        boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4607            for (;;) {
4608                if (next.match(matcher, i, seq))
4609                    return true;
4610                if (j >= cmax)
4611                    return false;
4612                if (!atom.match(matcher, i, seq))
4613                    return false;
4614                if (i == matcher.last)
4615                    return false;
4616                if (capture) {
4617                    matcher.groups[groupIndex] = i;
4618                    matcher.groups[groupIndex+1] = matcher.last;
4619                }
4620                i = matcher.last;
4621                j++;
4622            }
4623        }
4624        // Possessive matching
4625        boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4626            for (; j < cmax; j++) {
4627                if (!atom.match(matcher, i, seq)) {
4628                    break;
4629                }
4630                if (capture) {
4631                    matcher.groups[groupIndex] = i;
4632                    matcher.groups[groupIndex+1] = matcher.last;
4633                }
4634                if (i == matcher.last) {
4635                    break;
4636                }
4637                i = matcher.last;
4638            }
4639            return next.match(matcher, i, seq);
4640        }
4641        boolean study(TreeInfo info) {
4642            // Save original info
4643            int minL = info.minLength;
4644            int maxL = info.maxLength;
4645            boolean maxV = info.maxValid;
4646            boolean detm = info.deterministic;
4647            info.reset();
4648
4649            atom.study(info);
4650
4651            int temp = info.minLength * cmin + minL;
4652            if (temp < minL) {
4653                temp = 0xFFFFFFF; // Arbitrary large number
4654            }
4655            info.minLength = temp;
4656
4657            if (maxV & info.maxValid) {
4658                temp = info.maxLength * cmax + maxL;
4659                info.maxLength = temp;
4660                if (temp < maxL) {
4661                    info.maxValid = false;
4662                }
4663            } else {
4664                info.maxValid = false;
4665            }
4666
4667            if (info.deterministic && cmin == cmax) {
4668                info.deterministic = detm;
4669            } else {
4670                info.deterministic = false;
4671            }
4672            return next.study(info);
4673        }
4674    }
4675
4676    /**
4677     * A Guard node at the end of each atom node in a Branch. It
4678     * serves the purpose of chaining the "match" operation to
4679     * "next" but not the "study", so we can collect the TreeInfo
4680     * of each atom node without including the TreeInfo of the
4681     * "next".
4682     */
4683    static final class BranchConn extends Node {
4684        BranchConn() {};
4685        boolean match(Matcher matcher, int i, CharSequence seq) {
4686            return next.match(matcher, i, seq);
4687        }
4688        boolean study(TreeInfo info) {
4689            return info.deterministic;
4690        }
4691    }
4692
4693    /**
4694     * Handles the branching of alternations. Note this is also used for
4695     * the ? quantifier to branch between the case where it matches once
4696     * and where it does not occur.
4697     */
4698    static final class Branch extends Node {
4699        Node[] atoms = new Node[2];
4700        int size = 2;
4701        Node conn;
4702        Branch(Node first, Node second, Node branchConn) {
4703            conn = branchConn;
4704            atoms[0] = first;
4705            atoms[1] = second;
4706        }
4707
4708        void add(Node node) {
4709            if (size >= atoms.length) {
4710                Node[] tmp = new Node[atoms.length*2];
4711                System.arraycopy(atoms, 0, tmp, 0, atoms.length);
4712                atoms = tmp;
4713            }
4714            atoms[size++] = node;
4715        }
4716
4717        boolean match(Matcher matcher, int i, CharSequence seq) {
4718            for (int n = 0; n < size; n++) {
4719                if (atoms[n] == null) {
4720                    if (conn.next.match(matcher, i, seq))
4721                        return true;
4722                } else if (atoms[n].match(matcher, i, seq)) {
4723                    return true;
4724                }
4725            }
4726            return false;
4727        }
4728
4729        boolean study(TreeInfo info) {
4730            int minL = info.minLength;
4731            int maxL = info.maxLength;
4732            boolean maxV = info.maxValid;
4733
4734            int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4735            int maxL2 = -1;
4736            for (int n = 0; n < size; n++) {
4737                info.reset();
4738                if (atoms[n] != null)
4739                    atoms[n].study(info);
4740                minL2 = Math.min(minL2, info.minLength);
4741                maxL2 = Math.max(maxL2, info.maxLength);
4742                maxV = (maxV & info.maxValid);
4743            }
4744
4745            minL += minL2;
4746            maxL += maxL2;
4747
4748            info.reset();
4749            conn.next.study(info);
4750
4751            info.minLength += minL;
4752            info.maxLength += maxL;
4753            info.maxValid &= maxV;
4754            info.deterministic = false;
4755            return false;
4756        }
4757    }
4758
4759    /**
4760     * The GroupHead saves the location where the group begins in the locals
4761     * and restores them when the match is done.
4762     *
4763     * The matchRef is used when a reference to this group is accessed later
4764     * in the expression. The locals will have a negative value in them to
4765     * indicate that we do not want to unset the group if the reference
4766     * doesn't match.
4767     */
4768    static final class GroupHead extends Node {
4769        int localIndex;
4770        GroupTail tail;    // for debug/print only, match does not need to know
4771        GroupHead(int localCount) {
4772            localIndex = localCount;
4773        }
4774        boolean match(Matcher matcher, int i, CharSequence seq) {
4775            int save = matcher.locals[localIndex];
4776            matcher.locals[localIndex] = i;
4777            boolean ret = next.match(matcher, i, seq);
4778            matcher.locals[localIndex] = save;
4779            return ret;
4780        }
4781        boolean matchRef(Matcher matcher, int i, CharSequence seq) {
4782            int save = matcher.locals[localIndex];
4783            matcher.locals[localIndex] = ~i; // HACK
4784            boolean ret = next.match(matcher, i, seq);
4785            matcher.locals[localIndex] = save;
4786            return ret;
4787        }
4788    }
4789
4790    /**
4791     * Recursive reference to a group in the regular expression. It calls
4792     * matchRef because if the reference fails to match we would not unset
4793     * the group.
4794     */
4795    static final class GroupRef extends Node {
4796        GroupHead head;
4797        GroupRef(GroupHead head) {
4798            this.head = head;
4799        }
4800        boolean match(Matcher matcher, int i, CharSequence seq) {
4801            return head.matchRef(matcher, i, seq)
4802                && next.match(matcher, matcher.last, seq);
4803        }
4804        boolean study(TreeInfo info) {
4805            info.maxValid = false;
4806            info.deterministic = false;
4807            return next.study(info);
4808        }
4809    }
4810
4811    /**
4812     * The GroupTail handles the setting of group beginning and ending
4813     * locations when groups are successfully matched. It must also be able to
4814     * unset groups that have to be backed off of.
4815     *
4816     * The GroupTail node is also used when a previous group is referenced,
4817     * and in that case no group information needs to be set.
4818     */
4819    static final class GroupTail extends Node {
4820        int localIndex;
4821        int groupIndex;
4822        GroupTail(int localCount, int groupCount) {
4823            localIndex = localCount;
4824            groupIndex = groupCount + groupCount;
4825        }
4826        boolean match(Matcher matcher, int i, CharSequence seq) {
4827            int tmp = matcher.locals[localIndex];
4828            if (tmp >= 0) { // This is the normal group case.
4829                // Save the group so we can unset it if it
4830                // backs off of a match.
4831                int groupStart = matcher.groups[groupIndex];
4832                int groupEnd = matcher.groups[groupIndex+1];
4833
4834                matcher.groups[groupIndex] = tmp;
4835                matcher.groups[groupIndex+1] = i;
4836                if (next.match(matcher, i, seq)) {
4837                    return true;
4838                }
4839                matcher.groups[groupIndex] = groupStart;
4840                matcher.groups[groupIndex+1] = groupEnd;
4841                return false;
4842            } else {
4843                // This is a group reference case. We don't need to save any
4844                // group info because it isn't really a group.
4845                matcher.last = i;
4846                return true;
4847            }
4848        }
4849    }
4850
4851    /**
4852     * This sets up a loop to handle a recursive quantifier structure.
4853     */
4854    static final class Prolog extends Node {
4855        Loop loop;
4856        Prolog(Loop loop) {
4857            this.loop = loop;
4858        }
4859        boolean match(Matcher matcher, int i, CharSequence seq) {
4860            return loop.matchInit(matcher, i, seq);
4861        }
4862        boolean study(TreeInfo info) {
4863            return loop.study(info);
4864        }
4865    }
4866
4867    /**
4868     * Handles the repetition count for a greedy Curly. The matchInit
4869     * is called from the Prolog to save the index of where the group
4870     * beginning is stored. A zero length group check occurs in the
4871     * normal match but is skipped in the matchInit.
4872     */
4873    static class Loop extends Node {
4874        Node body;
4875        int countIndex; // local count index in matcher locals
4876        int beginIndex; // group beginning index
4877        int cmin, cmax;
4878        int posIndex;
4879        Loop(int countIndex, int beginIndex) {
4880            this.countIndex = countIndex;
4881            this.beginIndex = beginIndex;
4882            this.posIndex = -1;
4883        }
4884        boolean match(Matcher matcher, int i, CharSequence seq) {
4885            // Avoid infinite loop in zero-length case.
4886            if (i > matcher.locals[beginIndex]) {
4887                int count = matcher.locals[countIndex];
4888
4889                // This block is for before we reach the minimum
4890                // iterations required for the loop to match
4891                if (count < cmin) {
4892                    matcher.locals[countIndex] = count + 1;
4893                    boolean b = body.match(matcher, i, seq);
4894                    // If match failed we must backtrack, so
4895                    // the loop count should NOT be incremented
4896                    if (!b)
4897                        matcher.locals[countIndex] = count;
4898                    // Return success or failure since we are under
4899                    // minimum
4900                    return b;
4901                }
4902                // This block is for after we have the minimum
4903                // iterations required for the loop to match
4904                if (count < cmax) {
4905                    // Let's check if we have already tried and failed
4906                    // at this starting position "i" in the past.
4907                    // If yes, then just return false wihtout trying
4908                    // again, to stop the exponential backtracking.
4909                    if (posIndex != -1 &&
4910                        matcher.localsPos[posIndex].contains(i)) {
4911                        return next.match(matcher, i, seq);
4912                    }
4913                    matcher.locals[countIndex] = count + 1;
4914                    boolean b = body.match(matcher, i, seq);
4915                    // If match failed we must backtrack, so
4916                    // the loop count should NOT be incremented
4917                    if (b)
4918                        return true;
4919                    matcher.locals[countIndex] = count;
4920                    // save the failed position
4921                    if (posIndex != -1) {
4922                        matcher.localsPos[posIndex].add(i);
4923                    }
4924                }
4925            }
4926            return next.match(matcher, i, seq);
4927        }
4928        boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4929            int save = matcher.locals[countIndex];
4930            boolean ret = false;
4931            if (posIndex != -1 && matcher.localsPos[posIndex] == null) {
4932                matcher.localsPos[posIndex] = new IntHashSet();
4933            }
4934            if (0 < cmin) {
4935                matcher.locals[countIndex] = 1;
4936                ret = body.match(matcher, i, seq);
4937            } else if (0 < cmax) {
4938                matcher.locals[countIndex] = 1;
4939                ret = body.match(matcher, i, seq);
4940                if (ret == false)
4941                    ret = next.match(matcher, i, seq);
4942            } else {
4943                ret = next.match(matcher, i, seq);
4944            }
4945            matcher.locals[countIndex] = save;
4946            return ret;
4947        }
4948        boolean study(TreeInfo info) {
4949            info.maxValid = false;
4950            info.deterministic = false;
4951            return false;
4952        }
4953    }
4954
4955    /**
4956     * Handles the repetition count for a reluctant Curly. The matchInit
4957     * is called from the Prolog to save the index of where the group
4958     * beginning is stored. A zero length group check occurs in the
4959     * normal match but is skipped in the matchInit.
4960     */
4961    static final class LazyLoop extends Loop {
4962        LazyLoop(int countIndex, int beginIndex) {
4963            super(countIndex, beginIndex);
4964        }
4965        boolean match(Matcher matcher, int i, CharSequence seq) {
4966            // Check for zero length group
4967            if (i > matcher.locals[beginIndex]) {
4968                int count = matcher.locals[countIndex];
4969                if (count < cmin) {
4970                    matcher.locals[countIndex] = count + 1;
4971                    boolean result = body.match(matcher, i, seq);
4972                    // If match failed we must backtrack, so
4973                    // the loop count should NOT be incremented
4974                    if (!result)
4975                        matcher.locals[countIndex] = count;
4976                    return result;
4977                }
4978                if (next.match(matcher, i, seq))
4979                    return true;
4980                if (count < cmax) {
4981                    matcher.locals[countIndex] = count + 1;
4982                    boolean result = body.match(matcher, i, seq);
4983                    // If match failed we must backtrack, so
4984                    // the loop count should NOT be incremented
4985                    if (!result)
4986                        matcher.locals[countIndex] = count;
4987                    return result;
4988                }
4989                return false;
4990            }
4991            return next.match(matcher, i, seq);
4992        }
4993        boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4994            int save = matcher.locals[countIndex];
4995            boolean ret = false;
4996            if (0 < cmin) {
4997                matcher.locals[countIndex] = 1;
4998                ret = body.match(matcher, i, seq);
4999            } else if (next.match(matcher, i, seq)) {
5000                ret = true;
5001            } else if (0 < cmax) {
5002                matcher.locals[countIndex] = 1;
5003                ret = body.match(matcher, i, seq);
5004            }
5005            matcher.locals[countIndex] = save;
5006            return ret;
5007        }
5008        boolean study(TreeInfo info) {
5009            info.maxValid = false;
5010            info.deterministic = false;
5011            return false;
5012        }
5013    }
5014
5015    /**
5016     * Refers to a group in the regular expression. Attempts to match
5017     * whatever the group referred to last matched.
5018     */
5019    static class BackRef extends Node {
5020        int groupIndex;
5021        BackRef(int groupCount) {
5022            super();
5023            groupIndex = groupCount + groupCount;
5024        }
5025        boolean match(Matcher matcher, int i, CharSequence seq) {
5026            int j = matcher.groups[groupIndex];
5027            int k = matcher.groups[groupIndex+1];
5028
5029            int groupSize = k - j;
5030            // If the referenced group didn't match, neither can this
5031            if (j < 0)
5032                return false;
5033
5034            // If there isn't enough input left no match
5035            if (i + groupSize > matcher.to) {
5036                matcher.hitEnd = true;
5037                return false;
5038            }
5039            // Check each new char to make sure it matches what the group
5040            // referenced matched last time around
5041            for (int index=0; index<groupSize; index++)
5042                if (seq.charAt(i+index) != seq.charAt(j+index))
5043                    return false;
5044
5045            return next.match(matcher, i+groupSize, seq);
5046        }
5047        boolean study(TreeInfo info) {
5048            info.maxValid = false;
5049            return next.study(info);
5050        }
5051    }
5052
5053    static class CIBackRef extends Node {
5054        int groupIndex;
5055        boolean doUnicodeCase;
5056        CIBackRef(int groupCount, boolean doUnicodeCase) {
5057            super();
5058            groupIndex = groupCount + groupCount;
5059            this.doUnicodeCase = doUnicodeCase;
5060        }
5061        boolean match(Matcher matcher, int i, CharSequence seq) {
5062            int j = matcher.groups[groupIndex];
5063            int k = matcher.groups[groupIndex+1];
5064
5065            int groupSize = k - j;
5066
5067            // If the referenced group didn't match, neither can this
5068            if (j < 0)
5069                return false;
5070
5071            // If there isn't enough input left no match
5072            if (i + groupSize > matcher.to) {
5073                matcher.hitEnd = true;
5074                return false;
5075            }
5076
5077            // Check each new char to make sure it matches what the group
5078            // referenced matched last time around
5079            int x = i;
5080            for (int index=0; index<groupSize; index++) {
5081                int c1 = Character.codePointAt(seq, x);
5082                int c2 = Character.codePointAt(seq, j);
5083                if (c1 != c2) {
5084                    if (doUnicodeCase) {
5085                        int cc1 = Character.toUpperCase(c1);
5086                        int cc2 = Character.toUpperCase(c2);
5087                        if (cc1 != cc2 &&
5088                            Character.toLowerCase(cc1) !=
5089                            Character.toLowerCase(cc2))
5090                            return false;
5091                    } else {
5092                        if (ASCII.toLower(c1) != ASCII.toLower(c2))
5093                            return false;
5094                    }
5095                }
5096                x += Character.charCount(c1);
5097                j += Character.charCount(c2);
5098            }
5099
5100            return next.match(matcher, i+groupSize, seq);
5101        }
5102        boolean study(TreeInfo info) {
5103            info.maxValid = false;
5104            return next.study(info);
5105        }
5106    }
5107
5108    /**
5109     * Searches until the next instance of its atom. This is useful for
5110     * finding the atom efficiently without passing an instance of it
5111     * (greedy problem) and without a lot of wasted search time (reluctant
5112     * problem).
5113     */
5114    static final class First extends Node {
5115        Node atom;
5116        First(Node node) {
5117            this.atom = BnM.optimize(node);
5118        }
5119        boolean match(Matcher matcher, int i, CharSequence seq) {
5120            if (atom instanceof BnM) {
5121                return atom.match(matcher, i, seq)
5122                    && next.match(matcher, matcher.last, seq);
5123            }
5124            for (;;) {
5125                if (i > matcher.to) {
5126                    matcher.hitEnd = true;
5127                    return false;
5128                }
5129                if (atom.match(matcher, i, seq)) {
5130                    return next.match(matcher, matcher.last, seq);
5131                }
5132                i += countChars(seq, i, 1);
5133                matcher.first++;
5134            }
5135        }
5136        boolean study(TreeInfo info) {
5137            atom.study(info);
5138            info.maxValid = false;
5139            info.deterministic = false;
5140            return next.study(info);
5141        }
5142    }
5143
5144    static final class Conditional extends Node {
5145        Node cond, yes, not;
5146        Conditional(Node cond, Node yes, Node not) {
5147            this.cond = cond;
5148            this.yes = yes;
5149            this.not = not;
5150        }
5151        boolean match(Matcher matcher, int i, CharSequence seq) {
5152            if (cond.match(matcher, i, seq)) {
5153                return yes.match(matcher, i, seq);
5154            } else {
5155                return not.match(matcher, i, seq);
5156            }
5157        }
5158        boolean study(TreeInfo info) {
5159            int minL = info.minLength;
5160            int maxL = info.maxLength;
5161            boolean maxV = info.maxValid;
5162            info.reset();
5163            yes.study(info);
5164
5165            int minL2 = info.minLength;
5166            int maxL2 = info.maxLength;
5167            boolean maxV2 = info.maxValid;
5168            info.reset();
5169            not.study(info);
5170
5171            info.minLength = minL + Math.min(minL2, info.minLength);
5172            info.maxLength = maxL + Math.max(maxL2, info.maxLength);
5173            info.maxValid = (maxV & maxV2 & info.maxValid);
5174            info.deterministic = false;
5175            return next.study(info);
5176        }
5177    }
5178
5179    /**
5180     * Zero width positive lookahead.
5181     */
5182    static final class Pos extends Node {
5183        Node cond;
5184        Pos(Node cond) {
5185            this.cond = cond;
5186        }
5187        boolean match(Matcher matcher, int i, CharSequence seq) {
5188            int savedTo = matcher.to;
5189            boolean conditionMatched = false;
5190
5191            // Relax transparent region boundaries for lookahead
5192            if (matcher.transparentBounds)
5193                matcher.to = matcher.getTextLength();
5194            try {
5195                conditionMatched = cond.match(matcher, i, seq);
5196            } finally {
5197                // Reinstate region boundaries
5198                matcher.to = savedTo;
5199            }
5200            return conditionMatched && next.match(matcher, i, seq);
5201        }
5202    }
5203
5204    /**
5205     * Zero width negative lookahead.
5206     */
5207    static final class Neg extends Node {
5208        Node cond;
5209        Neg(Node cond) {
5210            this.cond = cond;
5211        }
5212        boolean match(Matcher matcher, int i, CharSequence seq) {
5213            int savedTo = matcher.to;
5214            boolean conditionMatched = false;
5215
5216            // Relax transparent region boundaries for lookahead
5217            if (matcher.transparentBounds)
5218                matcher.to = matcher.getTextLength();
5219            try {
5220                if (i < matcher.to) {
5221                    conditionMatched = !cond.match(matcher, i, seq);
5222                } else {
5223                    // If a negative lookahead succeeds then more input
5224                    // could cause it to fail!
5225                    matcher.requireEnd = true;
5226                    conditionMatched = !cond.match(matcher, i, seq);
5227                }
5228            } finally {
5229                // Reinstate region boundaries
5230                matcher.to = savedTo;
5231            }
5232            return conditionMatched && next.match(matcher, i, seq);
5233        }
5234    }
5235
5236    /**
5237     * For use with lookbehinds; matches the position where the lookbehind
5238     * was encountered.
5239     */
5240    static Node lookbehindEnd = new Node() {
5241        boolean match(Matcher matcher, int i, CharSequence seq) {
5242            return i == matcher.lookbehindTo;
5243        }
5244    };
5245
5246    /**
5247     * Zero width positive lookbehind.
5248     */
5249    static class Behind extends Node {
5250        Node cond;
5251        int rmax, rmin;
5252        Behind(Node cond, int rmax, int rmin) {
5253            this.cond = cond;
5254            this.rmax = rmax;
5255            this.rmin = rmin;
5256        }
5257
5258        boolean match(Matcher matcher, int i, CharSequence seq) {
5259            int savedFrom = matcher.from;
5260            boolean conditionMatched = false;
5261            int startIndex = (!matcher.transparentBounds) ?
5262                             matcher.from : 0;
5263            int from = Math.max(i - rmax, startIndex);
5264            // Set end boundary
5265            int savedLBT = matcher.lookbehindTo;
5266            matcher.lookbehindTo = i;
5267            // Relax transparent region boundaries for lookbehind
5268            if (matcher.transparentBounds)
5269                matcher.from = 0;
5270            for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5271                conditionMatched = cond.match(matcher, j, seq);
5272            }
5273            matcher.from = savedFrom;
5274            matcher.lookbehindTo = savedLBT;
5275            return conditionMatched && next.match(matcher, i, seq);
5276        }
5277    }
5278
5279    /**
5280     * Zero width positive lookbehind, including supplementary
5281     * characters or unpaired surrogates.
5282     */
5283    static final class BehindS extends Behind {
5284        BehindS(Node cond, int rmax, int rmin) {
5285            super(cond, rmax, rmin);
5286        }
5287        boolean match(Matcher matcher, int i, CharSequence seq) {
5288            int rmaxChars = countChars(seq, i, -rmax);
5289            int rminChars = countChars(seq, i, -rmin);
5290            int savedFrom = matcher.from;
5291            int startIndex = (!matcher.transparentBounds) ?
5292                             matcher.from : 0;
5293            boolean conditionMatched = false;
5294            int from = Math.max(i - rmaxChars, startIndex);
5295            // Set end boundary
5296            int savedLBT = matcher.lookbehindTo;
5297            matcher.lookbehindTo = i;
5298            // Relax transparent region boundaries for lookbehind
5299            if (matcher.transparentBounds)
5300                matcher.from = 0;
5301
5302            for (int j = i - rminChars;
5303                 !conditionMatched && j >= from;
5304                 j -= j>from ? countChars(seq, j, -1) : 1) {
5305                conditionMatched = cond.match(matcher, j, seq);
5306            }
5307            matcher.from = savedFrom;
5308            matcher.lookbehindTo = savedLBT;
5309            return conditionMatched && next.match(matcher, i, seq);
5310        }
5311    }
5312
5313    /**
5314     * Zero width negative lookbehind.
5315     */
5316    static class NotBehind extends Node {
5317        Node cond;
5318        int rmax, rmin;
5319        NotBehind(Node cond, int rmax, int rmin) {
5320            this.cond = cond;
5321            this.rmax = rmax;
5322            this.rmin = rmin;
5323        }
5324
5325        boolean match(Matcher matcher, int i, CharSequence seq) {
5326            int savedLBT = matcher.lookbehindTo;
5327            int savedFrom = matcher.from;
5328            boolean conditionMatched = false;
5329            int startIndex = (!matcher.transparentBounds) ?
5330                             matcher.from : 0;
5331            int from = Math.max(i - rmax, startIndex);
5332            matcher.lookbehindTo = i;
5333            // Relax transparent region boundaries for lookbehind
5334            if (matcher.transparentBounds)
5335                matcher.from = 0;
5336            for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5337                conditionMatched = cond.match(matcher, j, seq);
5338            }
5339            // Reinstate region boundaries
5340            matcher.from = savedFrom;
5341            matcher.lookbehindTo = savedLBT;
5342            return !conditionMatched && next.match(matcher, i, seq);
5343        }
5344    }
5345
5346    /**
5347     * Zero width negative lookbehind, including supplementary
5348     * characters or unpaired surrogates.
5349     */
5350    static final class NotBehindS extends NotBehind {
5351        NotBehindS(Node cond, int rmax, int rmin) {
5352            super(cond, rmax, rmin);
5353        }
5354        boolean match(Matcher matcher, int i, CharSequence seq) {
5355            int rmaxChars = countChars(seq, i, -rmax);
5356            int rminChars = countChars(seq, i, -rmin);
5357            int savedFrom = matcher.from;
5358            int savedLBT = matcher.lookbehindTo;
5359            boolean conditionMatched = false;
5360            int startIndex = (!matcher.transparentBounds) ?
5361                             matcher.from : 0;
5362            int from = Math.max(i - rmaxChars, startIndex);
5363            matcher.lookbehindTo = i;
5364            // Relax transparent region boundaries for lookbehind
5365            if (matcher.transparentBounds)
5366                matcher.from = 0;
5367            for (int j = i - rminChars;
5368                 !conditionMatched && j >= from;
5369                 j -= j>from ? countChars(seq, j, -1) : 1) {
5370                conditionMatched = cond.match(matcher, j, seq);
5371            }
5372            //Reinstate region boundaries
5373            matcher.from = savedFrom;
5374            matcher.lookbehindTo = savedLBT;
5375            return !conditionMatched && next.match(matcher, i, seq);
5376        }
5377    }
5378
5379    /**
5380     * Handles word boundaries. Includes a field to allow this one class to
5381     * deal with the different types of word boundaries we can match. The word
5382     * characters include underscores, letters, and digits. Non spacing marks
5383     * can are also part of a word if they have a base character, otherwise
5384     * they are ignored for purposes of finding word boundaries.
5385     */
5386    static final class Bound extends Node {
5387        static int LEFT = 0x1;
5388        static int RIGHT= 0x2;
5389        static int BOTH = 0x3;
5390        static int NONE = 0x4;
5391        int type;
5392        boolean useUWORD;
5393        Bound(int n, boolean useUWORD) {
5394            type = n;
5395            this.useUWORD = useUWORD;
5396        }
5397
5398        boolean isWord(int ch) {
5399            return useUWORD ? CharPredicates.WORD().is(ch)
5400                            : (ch == '_' || Character.isLetterOrDigit(ch));
5401        }
5402
5403        int check(Matcher matcher, int i, CharSequence seq) {
5404            int ch;
5405            boolean left = false;
5406            int startIndex = matcher.from;
5407            int endIndex = matcher.to;
5408            if (matcher.transparentBounds) {
5409                startIndex = 0;
5410                endIndex = matcher.getTextLength();
5411            }
5412            if (i > startIndex) {
5413                ch = Character.codePointBefore(seq, i);
5414                left = (isWord(ch) ||
5415                    ((Character.getType(ch) == Character.NON_SPACING_MARK)
5416                     && hasBaseCharacter(matcher, i-1, seq)));
5417            }
5418            boolean right = false;
5419            if (i < endIndex) {
5420                ch = Character.codePointAt(seq, i);
5421                right = (isWord(ch) ||
5422                    ((Character.getType(ch) == Character.NON_SPACING_MARK)
5423                     && hasBaseCharacter(matcher, i, seq)));
5424            } else {
5425                // Tried to access char past the end
5426                matcher.hitEnd = true;
5427                // The addition of another char could wreck a boundary
5428                matcher.requireEnd = true;
5429            }
5430            return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
5431        }
5432        boolean match(Matcher matcher, int i, CharSequence seq) {
5433            return (check(matcher, i, seq) & type) > 0
5434                && next.match(matcher, i, seq);
5435        }
5436    }
5437
5438    /**
5439     * Non spacing marks only count as word characters in bounds calculations
5440     * if they have a base character.
5441     */
5442    private static boolean hasBaseCharacter(Matcher matcher, int i,
5443                                            CharSequence seq)
5444    {
5445        int start = (!matcher.transparentBounds) ?
5446            matcher.from : 0;
5447        for (int x=i; x >= start; x--) {
5448            int ch = Character.codePointAt(seq, x);
5449            if (Character.isLetterOrDigit(ch))
5450                return true;
5451            if (Character.getType(ch) == Character.NON_SPACING_MARK)
5452                continue;
5453            return false;
5454        }
5455        return false;
5456    }
5457
5458    /**
5459     * Attempts to match a slice in the input using the Boyer-Moore string
5460     * matching algorithm. The algorithm is based on the idea that the
5461     * pattern can be shifted farther ahead in the search text if it is
5462     * matched right to left.
5463     * <p>
5464     * The pattern is compared to the input one character at a time, from
5465     * the rightmost character in the pattern to the left. If the characters
5466     * all match the pattern has been found. If a character does not match,
5467     * the pattern is shifted right a distance that is the maximum of two
5468     * functions, the bad character shift and the good suffix shift. This
5469     * shift moves the attempted match position through the input more
5470     * quickly than a naive one position at a time check.
5471     * <p>
5472     * The bad character shift is based on the character from the text that
5473     * did not match. If the character does not appear in the pattern, the
5474     * pattern can be shifted completely beyond the bad character. If the
5475     * character does occur in the pattern, the pattern can be shifted to
5476     * line the pattern up with the next occurrence of that character.
5477     * <p>
5478     * The good suffix shift is based on the idea that some subset on the right
5479     * side of the pattern has matched. When a bad character is found, the
5480     * pattern can be shifted right by the pattern length if the subset does
5481     * not occur again in pattern, or by the amount of distance to the
5482     * next occurrence of the subset in the pattern.
5483     *
5484     * Boyer-Moore search methods adapted from code by Amy Yu.
5485     */
5486    static class BnM extends Node {
5487        int[] buffer;
5488        int[] lastOcc;
5489        int[] optoSft;
5490
5491        /**
5492         * Pre calculates arrays needed to generate the bad character
5493         * shift and the good suffix shift. Only the last seven bits
5494         * are used to see if chars match; This keeps the tables small
5495         * and covers the heavily used ASCII range, but occasionally
5496         * results in an aliased match for the bad character shift.
5497         */
5498        static Node optimize(Node node) {
5499            if (!(node instanceof Slice)) {
5500                return node;
5501            }
5502
5503            int[] src = ((Slice) node).buffer;
5504            int patternLength = src.length;
5505            // The BM algorithm requires a bit of overhead;
5506            // If the pattern is short don't use it, since
5507            // a shift larger than the pattern length cannot
5508            // be used anyway.
5509            if (patternLength < 4) {
5510                return node;
5511            }
5512            int i, j, k;
5513            int[] lastOcc = new int[128];
5514            int[] optoSft = new int[patternLength];
5515            // Precalculate part of the bad character shift
5516            // It is a table for where in the pattern each
5517            // lower 7-bit value occurs
5518            for (i = 0; i < patternLength; i++) {
5519                lastOcc[src[i]&0x7F] = i + 1;
5520            }
5521            // Precalculate the good suffix shift
5522            // i is the shift amount being considered
5523NEXT:       for (i = patternLength; i > 0; i--) {
5524                // j is the beginning index of suffix being considered
5525                for (j = patternLength - 1; j >= i; j--) {
5526                    // Testing for good suffix
5527                    if (src[j] == src[j-i]) {
5528                        // src[j..len] is a good suffix
5529                        optoSft[j-1] = i;
5530                    } else {
5531                        // No match. The array has already been
5532                        // filled up with correct values before.
5533                        continue NEXT;
5534                    }
5535                }
5536                // This fills up the remaining of optoSft
5537                // any suffix can not have larger shift amount
5538                // then its sub-suffix. Why???
5539                while (j > 0) {
5540                    optoSft[--j] = i;
5541                }
5542            }
5543            // Set the guard value because of unicode compression
5544            optoSft[patternLength-1] = 1;
5545            if (node instanceof SliceS)
5546                return new BnMS(src, lastOcc, optoSft, node.next);
5547            return new BnM(src, lastOcc, optoSft, node.next);
5548        }
5549        BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5550            this.buffer = src;
5551            this.lastOcc = lastOcc;
5552            this.optoSft = optoSft;
5553            this.next = next;
5554        }
5555        boolean match(Matcher matcher, int i, CharSequence seq) {
5556            int[] src = buffer;
5557            int patternLength = src.length;
5558            int last = matcher.to - patternLength;
5559
5560            // Loop over all possible match positions in text
5561NEXT:       while (i <= last) {
5562                // Loop over pattern from right to left
5563                for (int j = patternLength - 1; j >= 0; j--) {
5564                    int ch = seq.charAt(i+j);
5565                    if (ch != src[j]) {
5566                        // Shift search to the right by the maximum of the
5567                        // bad character shift and the good suffix shift
5568                        i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
5569                        continue NEXT;
5570                    }
5571                }
5572                // Entire pattern matched starting at i
5573                matcher.first = i;
5574                boolean ret = next.match(matcher, i + patternLength, seq);
5575                if (ret) {
5576                    matcher.first = i;
5577                    matcher.groups[0] = matcher.first;
5578                    matcher.groups[1] = matcher.last;
5579                    return true;
5580                }
5581                i++;
5582            }
5583            // BnM is only used as the leading node in the unanchored case,
5584            // and it replaced its Start() which always searches to the end
5585            // if it doesn't find what it's looking for, so hitEnd is true.
5586            matcher.hitEnd = true;
5587            return false;
5588        }
5589        boolean study(TreeInfo info) {
5590            info.minLength += buffer.length;
5591            info.maxValid = false;
5592            return next.study(info);
5593        }
5594    }
5595
5596    /**
5597     * Supplementary support version of BnM(). Unpaired surrogates are
5598     * also handled by this class.
5599     */
5600    static final class BnMS extends BnM {
5601        int lengthInChars;
5602
5603        BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5604            super(src, lastOcc, optoSft, next);
5605            for (int cp : buffer) {
5606                lengthInChars += Character.charCount(cp);
5607            }
5608        }
5609        boolean match(Matcher matcher, int i, CharSequence seq) {
5610            int[] src = buffer;
5611            int patternLength = src.length;
5612            int last = matcher.to - lengthInChars;
5613
5614            // Loop over all possible match positions in text
5615NEXT:       while (i <= last) {
5616                // Loop over pattern from right to left
5617                int ch;
5618                for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
5619                     j > 0; j -= Character.charCount(ch), x--) {
5620                    ch = Character.codePointBefore(seq, i+j);
5621                    if (ch != src[x]) {
5622                        // Shift search to the right by the maximum of the
5623                        // bad character shift and the good suffix shift
5624                        int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
5625                        i += countChars(seq, i, n);
5626                        continue NEXT;
5627                    }
5628                }
5629                // Entire pattern matched starting at i
5630                matcher.first = i;
5631                boolean ret = next.match(matcher, i + lengthInChars, seq);
5632                if (ret) {
5633                    matcher.first = i;
5634                    matcher.groups[0] = matcher.first;
5635                    matcher.groups[1] = matcher.last;
5636                    return true;
5637                }
5638                i += countChars(seq, i, 1);
5639            }
5640            matcher.hitEnd = true;
5641            return false;
5642        }
5643    }
5644
5645    @FunctionalInterface
5646    static interface CharPredicate {
5647        boolean is(int ch);
5648
5649        default CharPredicate and(CharPredicate p) {
5650            return ch -> is(ch) && p.is(ch);
5651        }
5652        default CharPredicate union(CharPredicate p) {
5653            return ch -> is(ch) || p.is(ch);
5654        }
5655        default CharPredicate union(CharPredicate p1,
5656                                    CharPredicate p2 ) {
5657            return ch -> is(ch) || p1.is(ch) || p2.is(ch);
5658        }
5659        default CharPredicate negate() {
5660            return ch -> !is(ch);
5661        }
5662    }
5663
5664    static interface BmpCharPredicate extends CharPredicate {
5665
5666        default CharPredicate and(CharPredicate p) {
5667            if(p instanceof BmpCharPredicate)
5668                return (BmpCharPredicate)(ch -> is(ch) && p.is(ch));
5669            return ch -> is(ch) && p.is(ch);
5670        }
5671        default CharPredicate union(CharPredicate p) {
5672            if (p instanceof BmpCharPredicate)
5673                return (BmpCharPredicate)(ch -> is(ch) || p.is(ch));
5674            return ch -> is(ch) || p.is(ch);
5675        }
5676        static CharPredicate union(CharPredicate... predicates) {
5677            CharPredicate cp = ch -> {
5678                for (CharPredicate p : predicates) {
5679                    if (!p.is(ch))
5680                        return false;
5681                }
5682                return true;
5683            };
5684            for (CharPredicate p : predicates) {
5685                if (! (p instanceof BmpCharPredicate))
5686                    return cp;
5687            }
5688            return (BmpCharPredicate)cp;
5689        }
5690    }
5691
5692    /**
5693     * matches a Perl vertical whitespace
5694     */
5695    static BmpCharPredicate VertWS() {
5696        return cp -> (cp >= 0x0A && cp <= 0x0D) ||
5697            cp == 0x85 || cp == 0x2028 || cp == 0x2029;
5698    }
5699
5700    /**
5701     * matches a Perl horizontal whitespace
5702     */
5703    static BmpCharPredicate HorizWS() {
5704        return cp ->
5705            cp == 0x09 || cp == 0x20 || cp == 0xa0 || cp == 0x1680 ||
5706            cp == 0x180e || cp >= 0x2000 && cp <= 0x200a ||  cp == 0x202f ||
5707            cp == 0x205f || cp == 0x3000;
5708    }
5709
5710    /**
5711     *  for the Unicode category ALL and the dot metacharacter when
5712     *  in dotall mode.
5713     */
5714    static CharPredicate ALL() {
5715        return ch -> true;
5716    }
5717
5718    /**
5719     * for the dot metacharacter when dotall is not enabled.
5720     */
5721    static CharPredicate DOT() {
5722        return ch ->
5723            (ch != '\n' && ch != '\r'
5724            && (ch|1) != '\u2029'
5725            && ch != '\u0085');
5726    }
5727
5728    /**
5729     *  the dot metacharacter when dotall is not enabled but UNIX_LINES is enabled.
5730     */
5731    static CharPredicate UNIXDOT() {
5732        return ch ->  ch != '\n';
5733    }
5734
5735    /**
5736     * Indicate that matches a Supplementary Unicode character
5737     */
5738    static CharPredicate SingleS(int c) {
5739        return ch -> ch == c;
5740    }
5741
5742    /**
5743     * A bmp/optimized predicate of single
5744     */
5745    static BmpCharPredicate Single(int c) {
5746        return ch -> ch == c;
5747    }
5748
5749    /**
5750     * Case insensitive matches a given BMP character
5751     */
5752    static BmpCharPredicate SingleI(int lower, int upper) {
5753        return ch -> ch == lower || ch == upper;
5754    }
5755
5756    /**
5757     * Unicode case insensitive matches a given Unicode character
5758     */
5759    static CharPredicate SingleU(int lower) {
5760        return ch -> lower == ch ||
5761                     lower == Character.toLowerCase(Character.toUpperCase(ch));
5762    }
5763
5764    private static boolean inRange(int lower, int ch, int upper) {
5765        return lower <= ch && ch <= upper;
5766    }
5767
5768    /**
5769     * Charactrs within a explicit value range
5770     */
5771    static CharPredicate Range(int lower, int upper) {
5772        if (upper < Character.MIN_HIGH_SURROGATE ||
5773            lower > Character.MAX_HIGH_SURROGATE &&
5774            upper < Character.MIN_SUPPLEMENTARY_CODE_POINT)
5775            return (BmpCharPredicate)(ch -> inRange(lower, ch, upper));
5776        return ch -> inRange(lower, ch, upper);
5777    }
5778
5779   /**
5780    * Charactrs within a explicit value range in a case insensitive manner.
5781    */
5782    static CharPredicate CIRange(int lower, int upper) {
5783        return ch -> inRange(lower, ch, upper) ||
5784                     ASCII.isAscii(ch) &&
5785                     (inRange(lower, ASCII.toUpper(ch), upper) ||
5786                      inRange(lower, ASCII.toLower(ch), upper));
5787    }
5788
5789    static CharPredicate CIRangeU(int lower, int upper) {
5790        return ch -> {
5791            if (inRange(lower, ch, upper))
5792                return true;
5793            int up = Character.toUpperCase(ch);
5794            return inRange(lower, up, upper) ||
5795                   inRange(lower, Character.toLowerCase(up), upper);
5796        };
5797    }
5798
5799    /**
5800     *  This must be the very first initializer.
5801     */
5802    static final Node accept = new Node();
5803
5804    static final Node lastAccept = new LastNode();
5805
5806    /**
5807     * Creates a predicate which can be used to match a string.
5808     *
5809     * @return  The predicate which can be used for matching on a string
5810     * @since   1.8
5811     */
5812    public Predicate<String> asPredicate() {
5813        return s -> matcher(s).find();
5814    }
5815
5816    /**
5817     * Creates a stream from the given input sequence around matches of this
5818     * pattern.
5819     *
5820     * <p> The stream returned by this method contains each substring of the
5821     * input sequence that is terminated by another subsequence that matches
5822     * this pattern or is terminated by the end of the input sequence.  The
5823     * substrings in the stream are in the order in which they occur in the
5824     * input. Trailing empty strings will be discarded and not encountered in
5825     * the stream.
5826     *
5827     * <p> If this pattern does not match any subsequence of the input then
5828     * the resulting stream has just one element, namely the input sequence in
5829     * string form.
5830     *
5831     * <p> When there is a positive-width match at the beginning of the input
5832     * sequence then an empty leading substring is included at the beginning
5833     * of the stream. A zero-width match at the beginning however never produces
5834     * such empty leading substring.
5835     *
5836     * <p> If the input sequence is mutable, it must remain constant during the
5837     * execution of the terminal stream operation.  Otherwise, the result of the
5838     * terminal stream operation is undefined.
5839     *
5840     * @param   input
5841     *          The character sequence to be split
5842     *
5843     * @return  The stream of strings computed by splitting the input
5844     *          around matches of this pattern
5845     * @see     #split(CharSequence)
5846     * @since   1.8
5847     */
5848    public Stream<String> splitAsStream(final CharSequence input) {
5849        class MatcherIterator implements Iterator<String> {
5850            private Matcher matcher;
5851            // The start position of the next sub-sequence of input
5852            // when current == input.length there are no more elements
5853            private int current;
5854            // null if the next element, if any, needs to obtained
5855            private String nextElement;
5856            // > 0 if there are N next empty elements
5857            private int emptyElementCount;
5858
5859            public String next() {
5860                if (!hasNext())
5861                    throw new NoSuchElementException();
5862
5863                if (emptyElementCount == 0) {
5864                    String n = nextElement;
5865                    nextElement = null;
5866                    return n;
5867                } else {
5868                    emptyElementCount--;
5869                    return "";
5870                }
5871            }
5872
5873            public boolean hasNext() {
5874                if (matcher == null) {
5875                    matcher = matcher(input);
5876                    // If the input is an empty string then the result can only be a
5877                    // stream of the input.  Induce that by setting the empty
5878                    // element count to 1
5879                    emptyElementCount = input.length() == 0 ? 1 : 0;
5880                }
5881                if (nextElement != null || emptyElementCount > 0)
5882                    return true;
5883
5884                if (current == input.length())
5885                    return false;
5886
5887                // Consume the next matching element
5888                // Count sequence of matching empty elements
5889                while (matcher.find()) {
5890                    nextElement = input.subSequence(current, matcher.start()).toString();
5891                    current = matcher.end();
5892                    if (!nextElement.isEmpty()) {
5893                        return true;
5894                    } else if (current > 0) { // no empty leading substring for zero-width
5895                                              // match at the beginning of the input
5896                        emptyElementCount++;
5897                    }
5898                }
5899
5900                // Consume last matching element
5901                nextElement = input.subSequence(current, input.length()).toString();
5902                current = input.length();
5903                if (!nextElement.isEmpty()) {
5904                    return true;
5905                } else {
5906                    // Ignore a terminal sequence of matching empty elements
5907                    emptyElementCount = 0;
5908                    nextElement = null;
5909                    return false;
5910                }
5911            }
5912        }
5913        return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
5914                new MatcherIterator(), Spliterator.ORDERED | Spliterator.NONNULL), false);
5915    }
5916}
5917