Pattern.java revision 17465:cfdcaedd6da2
191671Sume/*
262587Sitojun * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
355009Sshin * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4116174Sobrien *
555009Sshin * This code is free software; you can redistribute it and/or modify it
655009Sshin * under the terms of the GNU General Public License version 2 only, as
755009Sshin * published by the Free Software Foundation.  Oracle designates this
855009Sshin * particular file as subject to the "Classpath" exception as provided
955009Sshin * by Oracle in the LICENSE file that accompanied this code.
1055009Sshin *
1155009Sshin * This code is distributed in the hope that it will be useful, but WITHOUT
1255009Sshin * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1355009Sshin * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1455009Sshin * version 2 for more details (a copy is included in the LICENSE file that
1555009Sshin * accompanied this code).
1655009Sshin *
1755009Sshin * You should have received a copy of the GNU General Public License version
1855009Sshin * 2 along with this work; if not, write to the Free Software Foundation,
1955009Sshin * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
2055009Sshin *
2155009Sshin * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2255009Sshin * or visit www.oracle.com if you need additional information or have any
2355009Sshin * questions.
2455009Sshin */
2555009Sshin
2655009Sshinpackage java.util.regex;
2755009Sshin
2855009Sshinimport java.text.Normalizer;
2955009Sshinimport java.text.Normalizer.Form;
3055009Sshinimport java.util.Locale;
3155009Sshinimport java.util.Iterator;
3255009Sshinimport java.util.Map;
3355009Sshinimport java.util.ArrayList;
3455009Sshinimport java.util.HashMap;
3555009Sshinimport java.util.LinkedHashSet;
3655009Sshinimport java.util.List;
3755009Sshinimport java.util.Set;
3855009Sshinimport java.util.Arrays;
3955009Sshinimport java.util.NoSuchElementException;
4055009Sshinimport java.util.Spliterator;
4155009Sshinimport java.util.Spliterators;
4255009Sshinimport java.util.function.Predicate;
4355009Sshinimport java.util.stream.Stream;
4455009Sshinimport java.util.stream.StreamSupport;
4555009Sshin
4655009Sshin
4755009Sshin/**
4855009Sshin * A compiled representation of a regular expression.
4955009Sshin *
5055009Sshin * <p> A regular expression, specified as a string, must first be compiled into
5155009Sshin * an instance of this class.  The resulting pattern can then be used to create
5255009Sshin * a {@link Matcher} object that can match arbitrary {@linkplain
5355009Sshin * java.lang.CharSequence character sequences} against the regular
5455009Sshin * expression.  All of the state involved in performing a match resides in the
5555009Sshin * matcher, so many matchers can share the same pattern.
5655009Sshin *
5755009Sshin * <p> A typical invocation sequence is thus
5855009Sshin *
5955009Sshin * <blockquote><pre>
6055009Sshin * Pattern p = Pattern.{@link #compile compile}("a*b");
6155009Sshin * Matcher m = p.{@link #matcher matcher}("aaaaab");
62116174Sobrien * boolean b = m.{@link Matcher#matches matches}();</pre></blockquote>
63116174Sobrien *
64116174Sobrien * <p> A {@link #matches matches} method is defined by this class as a
6555009Sshin * convenience for when a regular expression is used just once.  This method
6655009Sshin * compiles an expression and matches an input sequence against it in a single
6755009Sshin * invocation.  The statement
6855009Sshin *
6955009Sshin * <blockquote><pre>
7055009Sshin * boolean b = Pattern.matches("a*b", "aaaaab");</pre></blockquote>
7155009Sshin *
7278064Sume * is equivalent to the three statements above, though for repeated matches it
7378064Sume * is less efficient since it does not allow the compiled pattern to be reused.
7478064Sume *
7578064Sume * <p> Instances of this class are immutable and are safe for use by multiple
7678064Sume * concurrent threads.  Instances of the {@link Matcher} class are not safe for
7778064Sume * such use.
7855009Sshin *
7978064Sume *
8078064Sume * <h3><a id="sum">Summary of regular-expression constructs</a></h3>
8155009Sshin *
8291671Sume * <table class="borderless">
8378064Sume * <caption style="display:none">Regular expression constructs, and what they match</caption>
8455009Sshin * <thead>
8578064Sume * <tr style="text-align:left">
8678064Sume * <th style="text-align:left" id="construct">Construct</th>
8755009Sshin * <th style="text-align:left" id="matches">Matches</th>
8878064Sume * </tr>
8955009Sshin * </thead>
9078064Sume * <tbody>
9178064Sume *
9278064Sume * <tr><th>&nbsp;</th></tr>
9355009Sshin * <tr style="text-align:left"><th colspan="2" id="characters">Characters</th></tr>
9478064Sume *
9578064Sume * <tr><td style="vertical-align:top" headers="construct characters"><i>x</i></td>
9678064Sume *     <td headers="matches">The character <i>x</i></td></tr>
9755009Sshin * <tr><td style="vertical-align:top" headers="construct characters">{@code \\}</td>
9878064Sume *     <td headers="matches">The backslash character</td></tr>
9978064Sume * <tr><td style="vertical-align:top" headers="construct characters">{@code \0}<i>n</i></td>
10078064Sume *     <td headers="matches">The character with octal value {@code 0}<i>n</i>
10155009Sshin *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
10278064Sume * <tr><td style="vertical-align:top" headers="construct characters">{@code \0}<i>nn</i></td>
10378064Sume *     <td headers="matches">The character with octal value {@code 0}<i>nn</i>
10478064Sume *         (0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
10555009Sshin * <tr><td style="vertical-align:top" headers="construct characters">{@code \0}<i>mnn</i></td>
10678064Sume *     <td headers="matches">The character with octal value {@code 0}<i>mnn</i>
10778064Sume *         (0&nbsp;{@code <=}&nbsp;<i>m</i>&nbsp;{@code <=}&nbsp;3,
10855009Sshin *         0&nbsp;{@code <=}&nbsp;<i>n</i>&nbsp;{@code <=}&nbsp;7)</td></tr>
10978064Sume * <tr><td style="vertical-align:top" headers="construct characters">{@code \x}<i>hh</i></td>
11078064Sume *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;{@code 0x}<i>hh</i></td></tr>
11178064Sume * <tr><td style="vertical-align:top" headers="construct characters"><code>&#92;u</code><i>hhhh</i></td>
11291671Sume *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;{@code 0x}<i>hhhh</i></td></tr>
11378064Sume * <tr><td style="vertical-align:top" headers="construct characters"><code>&#92;x</code><i>{h...h}</i></td>
11478064Sume *     <td headers="matches">The character with hexadecimal&nbsp;value&nbsp;{@code 0x}<i>h...h</i>
11578064Sume *         ({@link java.lang.Character#MIN_CODE_POINT Character.MIN_CODE_POINT}
11655009Sshin *         &nbsp;&lt;=&nbsp;{@code 0x}<i>h...h</i>&nbsp;&lt;=&nbsp;
11778064Sume *          {@link java.lang.Character#MAX_CODE_POINT Character.MAX_CODE_POINT})</td></tr>
11878064Sume * <tr><td style="vertical-align:top" headers="construct characters"><code>&#92;N{</code><i>name</i><code>}</code></td>
11991671Sume *     <td headers="matches">The character with Unicode character name <i>'name'</i></td></tr>
12078064Sume * <tr><td style="vertical-align:top" headers="matches">{@code \t}</td>
12178064Sume *     <td headers="matches">The tab character (<code>'&#92;u0009'</code>)</td></tr>
12255009Sshin * <tr><td style="vertical-align:top" headers="construct characters">{@code \n}</td>
12378064Sume *     <td headers="matches">The newline (line feed) character (<code>'&#92;u000A'</code>)</td></tr>
124 * <tr><td style="vertical-align:top" headers="construct characters">{@code \r}</td>
125 *     <td headers="matches">The carriage-return character (<code>'&#92;u000D'</code>)</td></tr>
126 * <tr><td style="vertical-align:top" headers="construct characters">{@code \f}</td>
127 *     <td headers="matches">The form-feed character (<code>'&#92;u000C'</code>)</td></tr>
128 * <tr><td style="vertical-align:top" headers="construct characters">{@code \a}</td>
129 *     <td headers="matches">The alert (bell) character (<code>'&#92;u0007'</code>)</td></tr>
130 * <tr><td style="vertical-align:top" headers="construct characters">{@code \e}</td>
131 *     <td headers="matches">The escape character (<code>'&#92;u001B'</code>)</td></tr>
132 * <tr><td style="vertical-align:top" headers="construct characters">{@code \c}<i>x</i></td>
133 *     <td headers="matches">The control character corresponding to <i>x</i></td></tr>
134 *
135 * <tr><th>&nbsp;</th></tr>
136 * <tr style="text-align:left"><th colspan="2" id="classes">Character classes</th></tr>
137 *
138 * <tr><td style="vertical-align:top" headers="construct classes">{@code [abc]}</td>
139 *     <td headers="matches">{@code a}, {@code b}, or {@code c} (simple class)</td></tr>
140 * <tr><td style="vertical-align:top" headers="construct classes">{@code [^abc]}</td>
141 *     <td headers="matches">Any character except {@code a}, {@code b}, or {@code c} (negation)</td></tr>
142 * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-zA-Z]}</td>
143 *     <td headers="matches">{@code a} through {@code z}
144 *         or {@code A} through {@code Z}, inclusive (range)</td></tr>
145 * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-d[m-p]]}</td>
146 *     <td headers="matches">{@code a} through {@code d},
147 *      or {@code m} through {@code p}: {@code [a-dm-p]} (union)</td></tr>
148 * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-z&&[def]]}</td>
149 *     <td headers="matches">{@code d}, {@code e}, or {@code f} (intersection)</tr>
150 * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-z&&[^bc]]}</td>
151 *     <td headers="matches">{@code a} through {@code z},
152 *         except for {@code b} and {@code c}: {@code [ad-z]} (subtraction)</td></tr>
153 * <tr><td style="vertical-align:top" headers="construct classes">{@code [a-z&&[^m-p]]}</td>
154 *     <td headers="matches">{@code a} through {@code z},
155 *          and not {@code m} through {@code p}: {@code [a-lq-z]}(subtraction)</td></tr>
156 * <tr><th>&nbsp;</th></tr>
157 *
158 * <tr style="text-align:left"><th colspan="2" id="predef">Predefined character classes</th></tr>
159 *
160 * <tr><td style="vertical-align:top" headers="construct predef">{@code .}</td>
161 *     <td headers="matches">Any character (may or may not match <a href="#lt">line terminators</a>)</td></tr>
162 * <tr><td style="vertical-align:top" headers="construct predef">{@code \d}</td>
163 *     <td headers="matches">A digit: {@code [0-9]}</td></tr>
164 * <tr><td style="vertical-align:top" headers="construct predef">{@code \D}</td>
165 *     <td headers="matches">A non-digit: {@code [^0-9]}</td></tr>
166 * <tr><td style="vertical-align:top" headers="construct predef">{@code \h}</td>
167 *     <td headers="matches">A horizontal whitespace character:
168 *     <code>[ \t\xA0&#92;u1680&#92;u180e&#92;u2000-&#92;u200a&#92;u202f&#92;u205f&#92;u3000]</code></td></tr>
169 * <tr><td style="vertical-align:top" headers="construct predef">{@code \H}</td>
170 *     <td headers="matches">A non-horizontal whitespace character: {@code [^\h]}</td></tr>
171 * <tr><td style="vertical-align:top" headers="construct predef">{@code \s}</td>
172 *     <td headers="matches">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
173 * <tr><td style="vertical-align:top" headers="construct predef">{@code \S}</td>
174 *     <td headers="matches">A non-whitespace character: {@code [^\s]}</td></tr>
175 * <tr><td style="vertical-align:top" headers="construct predef">{@code \v}</td>
176 *     <td headers="matches">A vertical whitespace character: <code>[\n\x0B\f\r\x85&#92;u2028&#92;u2029]</code>
177 *     </td></tr>
178 * <tr><td style="vertical-align:top" headers="construct predef">{@code \V}</td>
179 *     <td headers="matches">A non-vertical whitespace character: {@code [^\v]}</td></tr>
180 * <tr><td style="vertical-align:top" headers="construct predef">{@code \w}</td>
181 *     <td headers="matches">A word character: {@code [a-zA-Z_0-9]}</td></tr>
182 * <tr><td style="vertical-align:top" headers="construct predef">{@code \W}</td>
183 *     <td headers="matches">A non-word character: {@code [^\w]}</td></tr>
184 * <tr><th>&nbsp;</th></tr>
185 * <tr style="text-align:left"><th colspan="2" id="posix"><b>POSIX character classes (US-ASCII only)</b></th></tr>
186 *
187 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Lower}}</td>
188 *     <td headers="matches">A lower-case alphabetic character: {@code [a-z]}</td></tr>
189 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Upper}}</td>
190 *     <td headers="matches">An upper-case alphabetic character:{@code [A-Z]}</td></tr>
191 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{ASCII}}</td>
192 *     <td headers="matches">All ASCII:{@code [\x00-\x7F]}</td></tr>
193 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Alpha}}</td>
194 *     <td headers="matches">An alphabetic character:{@code [\p{Lower}\p{Upper}]}</td></tr>
195 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Digit}}</td>
196 *     <td headers="matches">A decimal digit: {@code [0-9]}</td></tr>
197 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Alnum}}</td>
198 *     <td headers="matches">An alphanumeric character:{@code [\p{Alpha}\p{Digit}]}</td></tr>
199 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Punct}}</td>
200 *     <td headers="matches">Punctuation: One of {@code !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~}</td></tr>
201 *     <!-- {@code [\!"#\$%&'\(\)\*\+,\-\./:;\<=\>\?@\[\\\]\^_`\{\|\}~]}
202 *          {@code [\X21-\X2F\X31-\X40\X5B-\X60\X7B-\X7E]} -->
203 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Graph}}</td>
204 *     <td headers="matches">A visible character: {@code [\p{Alnum}\p{Punct}]}</td></tr>
205 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Print}}</td>
206 *     <td headers="matches">A printable character: {@code [\p{Graph}\x20]}</td></tr>
207 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Blank}}</td>
208 *     <td headers="matches">A space or a tab: {@code [ \t]}</td></tr>
209 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Cntrl}}</td>
210 *     <td headers="matches">A control character: {@code [\x00-\x1F\x7F]}</td></tr>
211 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{XDigit}}</td>
212 *     <td headers="matches">A hexadecimal digit: {@code [0-9a-fA-F]}</td></tr>
213 * <tr><td style="vertical-align:top" headers="construct posix">{@code \p{Space}}</td>
214 *     <td headers="matches">A whitespace character: {@code [ \t\n\x0B\f\r]}</td></tr>
215 *
216 * <tr><th>&nbsp;</th></tr>
217 * <tr style="text-align:left"><th colspan="2">java.lang.Character classes (simple <a href="#jcc">java character type</a>)</th></tr>
218 *
219 * <tr><td style="vertical-align:top">{@code \p{javaLowerCase}}</td>
220 *     <td>Equivalent to java.lang.Character.isLowerCase()</td></tr>
221 * <tr><td style="vertical-align:top">{@code \p{javaUpperCase}}</td>
222 *     <td>Equivalent to java.lang.Character.isUpperCase()</td></tr>
223 * <tr><td style="vertical-align:top">{@code \p{javaWhitespace}}</td>
224 *     <td>Equivalent to java.lang.Character.isWhitespace()</td></tr>
225 * <tr><td style="vertical-align:top">{@code \p{javaMirrored}}</td>
226 *     <td>Equivalent to java.lang.Character.isMirrored()</td></tr>
227 *
228 * <tr><th>&nbsp;</th></tr>
229 * <tr style="text-align:left"><th colspan="2" id="unicode">Classes for Unicode scripts, blocks, categories and binary properties</th></tr>
230 * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{IsLatin}}</td>
231 *     <td headers="matches">A Latin&nbsp;script character (<a href="#usc">script</a>)</td></tr>
232 * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{InGreek}}</td>
233 *     <td headers="matches">A character in the Greek&nbsp;block (<a href="#ubc">block</a>)</td></tr>
234 * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{Lu}}</td>
235 *     <td headers="matches">An uppercase letter (<a href="#ucc">category</a>)</td></tr>
236 * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{IsAlphabetic}}</td>
237 *     <td headers="matches">An alphabetic character (<a href="#ubpc">binary property</a>)</td></tr>
238 * <tr><td style="vertical-align:top" headers="construct unicode">{@code \p{Sc}}</td>
239 *     <td headers="matches">A currency symbol</td></tr>
240 * <tr><td style="vertical-align:top" headers="construct unicode">{@code \P{InGreek}}</td>
241 *     <td headers="matches">Any character except one in the Greek block (negation)</td></tr>
242 * <tr><td style="vertical-align:top" headers="construct unicode">{@code [\p{L}&&[^\p{Lu}]]}</td>
243 *     <td headers="matches">Any letter except an uppercase letter (subtraction)</td></tr>
244 *
245 * <tr><th>&nbsp;</th></tr>
246 * <tr style="text-align:left"><th colspan="2" id="bounds">Boundary matchers</th></tr>
247 *
248 * <tr><td style="vertical-align:top" headers="construct bounds">{@code ^}</td>
249 *     <td headers="matches">The beginning of a line</td></tr>
250 * <tr><td style="vertical-align:top" headers="construct bounds">{@code $}</td>
251 *     <td headers="matches">The end of a line</td></tr>
252 * <tr><td style="vertical-align:top" headers="construct bounds">{@code \b}</td>
253 *     <td headers="matches">A word boundary</td></tr>
254 * <tr><td style="vertical-align:top" headers="construct bounds">{@code \b{g}}</td>
255 *     <td headers="matches">A Unicode extended grapheme cluster boundary</td></tr>
256 * <tr><td style="vertical-align:top" headers="construct bounds">{@code \B}</td>
257 *     <td headers="matches">A non-word boundary</td></tr>
258 * <tr><td style="vertical-align:top" headers="construct bounds">{@code \A}</td>
259 *     <td headers="matches">The beginning of the input</td></tr>
260 * <tr><td style="vertical-align:top" headers="construct bounds">{@code \G}</td>
261 *     <td headers="matches">The end of the previous match</td></tr>
262 * <tr><td style="vertical-align:top" headers="construct bounds">{@code \Z}</td>
263 *     <td headers="matches">The end of the input but for the final
264 *         <a href="#lt">terminator</a>, if&nbsp;any</td></tr>
265 * <tr><td style="vertical-align:top" headers="construct bounds">{@code \z}</td>
266 *     <td headers="matches">The end of the input</td></tr>
267 *
268 * <tr><th>&nbsp;</th></tr>
269 * <tr style="text-align:left"><th colspan="2" id="lineending">Linebreak matcher</th></tr>
270 * <tr><td style="vertical-align:top" headers="construct lineending">{@code \R}</td>
271 *     <td headers="matches">Any Unicode linebreak sequence, is equivalent to
272 *     <code>&#92;u000D&#92;u000A|[&#92;u000A&#92;u000B&#92;u000C&#92;u000D&#92;u0085&#92;u2028&#92;u2029]
273 *     </code></td></tr>
274 *
275 * <tr><th>&nbsp;</th></tr>
276 * <tr style="text-align:left"><th colspan="2" id="grapheme">Unicode Extended Grapheme matcher</th></tr>
277 * <tr><td style="vertical-align:top" headers="construct grapheme">{@code \X}</td>
278 *     <td headers="matches">Any Unicode extended grapheme cluster</td></tr>
279 *
280 * <tr><th>&nbsp;</th></tr>
281 * <tr style="text-align:left"><th colspan="2" id="greedy">Greedy quantifiers</th></tr>
282 *
283 * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i>{@code ?}</td>
284 *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
285 * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i>{@code *}</td>
286 *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
287 * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i>{@code +}</td>
288 *     <td headers="matches"><i>X</i>, one or more times</td></tr>
289 * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i><code>{</code><i>n</i><code>}</code></td>
290 *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
291 * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i><code>{</code><i>n</i>{@code ,}}</td>
292 *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
293 * <tr><td style="vertical-align:top" headers="construct greedy"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}</code></td>
294 *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
295 *
296 * <tr><th>&nbsp;</th></tr>
297 * <tr style="text-align:left"><th colspan="2" id="reluc">Reluctant quantifiers</th></tr>
298 *
299 * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i>{@code ??}</td>
300 *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
301 * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i>{@code *?}</td>
302 *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
303 * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i>{@code +?}</td>
304 *     <td headers="matches"><i>X</i>, one or more times</td></tr>
305 * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i><code>{</code><i>n</i><code>}?</code></td>
306 *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
307 * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i><code>{</code><i>n</i><code>,}?</code></td>
308 *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
309 * <tr><td style="vertical-align:top" headers="construct reluc"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}?</code></td>
310 *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
311 *
312 * <tr><th>&nbsp;</th></tr>
313 * <tr style="text-align:left"><th colspan="2" id="poss">Possessive quantifiers</th></tr>
314 *
315 * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i>{@code ?+}</td>
316 *     <td headers="matches"><i>X</i>, once or not at all</td></tr>
317 * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i>{@code *+}</td>
318 *     <td headers="matches"><i>X</i>, zero or more times</td></tr>
319 * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i>{@code ++}</td>
320 *     <td headers="matches"><i>X</i>, one or more times</td></tr>
321 * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i><code>{</code><i>n</i><code>}+</code></td>
322 *     <td headers="matches"><i>X</i>, exactly <i>n</i> times</td></tr>
323 * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i><code>{</code><i>n</i><code>,}+</code></td>
324 *     <td headers="matches"><i>X</i>, at least <i>n</i> times</td></tr>
325 * <tr><td style="vertical-align:top" headers="construct poss"><i>X</i><code>{</code><i>n</i>{@code ,}<i>m</i><code>}+</code></td>
326 *     <td headers="matches"><i>X</i>, at least <i>n</i> but not more than <i>m</i> times</td></tr>
327 *
328 * <tr><th>&nbsp;</th></tr>
329 * <tr style="text-align:left"><th colspan="2" id="logical">Logical operators</th></tr>
330 *
331 * <tr><td style="vertical-align:top" headers="construct logical"><i>XY</i></td>
332 *     <td headers="matches"><i>X</i> followed by <i>Y</i></td></tr>
333 * <tr><td style="vertical-align:top" headers="construct logical"><i>X</i>{@code |}<i>Y</i></td>
334 *     <td headers="matches">Either <i>X</i> or <i>Y</i></td></tr>
335 * <tr><td style="vertical-align:top" headers="construct logical">{@code (}<i>X</i>{@code )}</td>
336 *     <td headers="matches">X, as a <a href="#cg">capturing group</a></td></tr>
337 *
338 * <tr><th>&nbsp;</th></tr>
339 * <tr style="text-align:left"><th colspan="2" id="backref">Back references</th></tr>
340 *
341 * <tr><td style="vertical-align:bottom" headers="construct backref">{@code \}<i>n</i></td>
342 *     <td style="vertical-align:bottom" headers="matches">Whatever the <i>n</i><sup>th</sup>
343 *     <a href="#cg">capturing group</a> matched</td></tr>
344 *
345 * <tr><td style="vertical-align:bottom" headers="construct backref">{@code \}<i>k</i>&lt;<i>name</i>&gt;</td>
346 *     <td style="vertical-align:bottom" headers="matches">Whatever the
347 *     <a href="#groupname">named-capturing group</a> "name" matched</td></tr>
348 *
349 * <tr><th>&nbsp;</th></tr>
350 * <tr style="text-align:left"><th colspan="2" id="quot">Quotation</th></tr>
351 *
352 * <tr><td style="vertical-align:top" headers="construct quot">{@code \}</td>
353 *     <td headers="matches">Nothing, but quotes the following character</td></tr>
354 * <tr><td style="vertical-align:top" headers="construct quot">{@code \Q}</td>
355 *     <td headers="matches">Nothing, but quotes all characters until {@code \E}</td></tr>
356 * <tr><td style="vertical-align:top" headers="construct quot">{@code \E}</td>
357 *     <td headers="matches">Nothing, but ends quoting started by {@code \Q}</td></tr>
358 *     <!-- Metachars: !$()*+.<>?[\]^{|} -->
359 *
360 * <tr><th>&nbsp;</th></tr>
361 * <tr style="text-align:left"><th colspan="2" id="special">Special constructs (named-capturing and non-capturing)</th></tr>
362 *
363 * <tr><td style="vertical-align:top" headers="construct special"><code>(?&lt;<a href="#groupname">name</a>&gt;</code><i>X</i>{@code )}</td>
364 *     <td headers="matches"><i>X</i>, as a named-capturing group</td></tr>
365 * <tr><td style="vertical-align:top" headers="construct special">{@code (?:}<i>X</i>{@code )}</td>
366 *     <td headers="matches"><i>X</i>, as a non-capturing group</td></tr>
367 * <tr><td style="vertical-align:top" headers="construct special"><code>(?idmsuxU-idmsuxU)&nbsp;</code></td>
368 *     <td headers="matches">Nothing, but turns match flags <a href="#CASE_INSENSITIVE">i</a>
369 * <a href="#UNIX_LINES">d</a> <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a>
370 * <a href="#UNICODE_CASE">u</a> <a href="#COMMENTS">x</a> <a href="#UNICODE_CHARACTER_CLASS">U</a>
371 * on - off</td></tr>
372 * <tr><td style="vertical-align:top" headers="construct special"><code>(?idmsux-idmsux:</code><i>X</i>{@code )}&nbsp;&nbsp;</td>
373 *     <td headers="matches"><i>X</i>, as a <a href="#cg">non-capturing group</a> with the
374 *         given flags <a href="#CASE_INSENSITIVE">i</a> <a href="#UNIX_LINES">d</a>
375 * <a href="#MULTILINE">m</a> <a href="#DOTALL">s</a> <a href="#UNICODE_CASE">u</a >
376 * <a href="#COMMENTS">x</a> on - off</td></tr>
377 * <tr><td style="vertical-align:top" headers="construct special">{@code (?=}<i>X</i>{@code )}</td>
378 *     <td headers="matches"><i>X</i>, via zero-width positive lookahead</td></tr>
379 * <tr><td style="vertical-align:top" headers="construct special">{@code (?!}<i>X</i>{@code )}</td>
380 *     <td headers="matches"><i>X</i>, via zero-width negative lookahead</td></tr>
381 * <tr><td style="vertical-align:top" headers="construct special">{@code (?<=}<i>X</i>{@code )}</td>
382 *     <td headers="matches"><i>X</i>, via zero-width positive lookbehind</td></tr>
383 * <tr><td style="vertical-align:top" headers="construct special">{@code (?<!}<i>X</i>{@code )}</td>
384 *     <td headers="matches"><i>X</i>, via zero-width negative lookbehind</td></tr>
385 * <tr><td style="vertical-align:top" headers="construct special">{@code (?>}<i>X</i>{@code )}</td>
386 *     <td headers="matches"><i>X</i>, as an independent, non-capturing group</td></tr>
387 *
388 * </tbody>
389 * </table>
390 *
391 * <hr>
392 *
393 *
394 * <h3><a id="bs">Backslashes, escapes, and quoting</a></h3>
395 *
396 * <p> The backslash character ({@code '\'}) serves to introduce escaped
397 * constructs, as defined in the table above, as well as to quote characters
398 * that otherwise would be interpreted as unescaped constructs.  Thus the
399 * expression {@code \\} matches a single backslash and <code>\{</code> matches a
400 * left brace.
401 *
402 * <p> It is an error to use a backslash prior to any alphabetic character that
403 * does not denote an escaped construct; these are reserved for future
404 * extensions to the regular-expression language.  A backslash may be used
405 * prior to a non-alphabetic character regardless of whether that character is
406 * part of an unescaped construct.
407 *
408 * <p> Backslashes within string literals in Java source code are interpreted
409 * as required by
410 * <cite>The Java&trade; Language Specification</cite>
411 * as either Unicode escapes (section 3.3) or other character escapes (section 3.10.6)
412 * It is therefore necessary to double backslashes in string
413 * literals that represent regular expressions to protect them from
414 * interpretation by the Java bytecode compiler.  The string literal
415 * <code>"&#92;b"</code>, for example, matches a single backspace character when
416 * interpreted as a regular expression, while {@code "\\b"} matches a
417 * word boundary.  The string literal {@code "\(hello\)"} is illegal
418 * and leads to a compile-time error; in order to match the string
419 * {@code (hello)} the string literal {@code "\\(hello\\)"}
420 * must be used.
421 *
422 * <h3><a id="cc">Character Classes</a></h3>
423 *
424 *    <p> Character classes may appear within other character classes, and
425 *    may be composed by the union operator (implicit) and the intersection
426 *    operator ({@code &&}).
427 *    The union operator denotes a class that contains every character that is
428 *    in at least one of its operand classes.  The intersection operator
429 *    denotes a class that contains every character that is in both of its
430 *    operand classes.
431 *
432 *    <p> The precedence of character-class operators is as follows, from
433 *    highest to lowest:
434 *
435 *    <blockquote><table>
436 *      <caption style="display:none">Precedence of character class operators.</caption>
437 *      <tbody>
438 *      <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
439 *        <td>Literal escape&nbsp;&nbsp;&nbsp;&nbsp;</td>
440 *        <td>{@code \x}</td></tr>
441 *     <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
442 *        <td>Grouping</td>
443 *        <td>{@code [...]}</td></tr>
444 *     <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
445 *        <td>Range</td>
446 *        <td>{@code a-z}</td></tr>
447 *      <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
448 *        <td>Union</td>
449 *        <td>{@code [a-e][i-u]}</td></tr>
450 *      <tr><th>5&nbsp;&nbsp;&nbsp;&nbsp;</th>
451 *        <td>Intersection</td>
452 *        <td>{@code [a-z&&[aeiou]]}</td></tr>
453 *      </tbody>
454 *    </table></blockquote>
455 *
456 *    <p> Note that a different set of metacharacters are in effect inside
457 *    a character class than outside a character class. For instance, the
458 *    regular expression {@code .} loses its special meaning inside a
459 *    character class, while the expression {@code -} becomes a range
460 *    forming metacharacter.
461 *
462 * <h3><a id="lt">Line terminators</a></h3>
463 *
464 * <p> A <i>line terminator</i> is a one- or two-character sequence that marks
465 * the end of a line of the input character sequence.  The following are
466 * recognized as line terminators:
467 *
468 * <ul>
469 *
470 *   <li> A newline (line feed) character&nbsp;({@code '\n'}),
471 *
472 *   <li> A carriage-return character followed immediately by a newline
473 *   character&nbsp;({@code "\r\n"}),
474 *
475 *   <li> A standalone carriage-return character&nbsp;({@code '\r'}),
476 *
477 *   <li> A next-line character&nbsp;(<code>'&#92;u0085'</code>),
478 *
479 *   <li> A line-separator character&nbsp;(<code>'&#92;u2028'</code>), or
480 *
481 *   <li> A paragraph-separator character&nbsp;(<code>'&#92;u2029'</code>).
482 *
483 * </ul>
484 * <p>If {@link #UNIX_LINES} mode is activated, then the only line terminators
485 * recognized are newline characters.
486 *
487 * <p> The regular expression {@code .} matches any character except a line
488 * terminator unless the {@link #DOTALL} flag is specified.
489 *
490 * <p> By default, the regular expressions {@code ^} and {@code $} ignore
491 * line terminators and only match at the beginning and the end, respectively,
492 * of the entire input sequence. If {@link #MULTILINE} mode is activated then
493 * {@code ^} matches at the beginning of input and after any line terminator
494 * except at the end of input. When in {@link #MULTILINE} mode {@code $}
495 * matches just before a line terminator or the end of the input sequence.
496 *
497 * <h3><a id="cg">Groups and capturing</a></h3>
498 *
499 * <h4><a id="gnumber">Group number</a></h4>
500 * <p> Capturing groups are numbered by counting their opening parentheses from
501 * left to right.  In the expression {@code ((A)(B(C)))}, for example, there
502 * are four such groups: </p>
503 *
504 * <blockquote><table>
505 * <caption style="display:none">Capturing group numberings</caption>
506 * <tbody>
507 * <tr><th>1&nbsp;&nbsp;&nbsp;&nbsp;</th>
508 *     <td>{@code ((A)(B(C)))}</td></tr>
509 * <tr><th>2&nbsp;&nbsp;&nbsp;&nbsp;</th>
510 *     <td>{@code (A)}</td></tr>
511 * <tr><th>3&nbsp;&nbsp;&nbsp;&nbsp;</th>
512 *     <td>{@code (B(C))}</td></tr>
513 * <tr><th>4&nbsp;&nbsp;&nbsp;&nbsp;</th>
514 *     <td>{@code (C)}</td></tr>
515 * </tbody>
516 * </table></blockquote>
517 *
518 * <p> Group zero always stands for the entire expression.
519 *
520 * <p> Capturing groups are so named because, during a match, each subsequence
521 * of the input sequence that matches such a group is saved.  The captured
522 * subsequence may be used later in the expression, via a back reference, and
523 * may also be retrieved from the matcher once the match operation is complete.
524 *
525 * <h4><a id="groupname">Group name</a></h4>
526 * <p>A capturing group can also be assigned a "name", a {@code named-capturing group},
527 * and then be back-referenced later by the "name". Group names are composed of
528 * the following characters. The first character must be a {@code letter}.
529 *
530 * <ul>
531 *   <li> The uppercase letters {@code 'A'} through {@code 'Z'}
532 *        (<code>'&#92;u0041'</code>&nbsp;through&nbsp;<code>'&#92;u005a'</code>),
533 *   <li> The lowercase letters {@code 'a'} through {@code 'z'}
534 *        (<code>'&#92;u0061'</code>&nbsp;through&nbsp;<code>'&#92;u007a'</code>),
535 *   <li> The digits {@code '0'} through {@code '9'}
536 *        (<code>'&#92;u0030'</code>&nbsp;through&nbsp;<code>'&#92;u0039'</code>),
537 * </ul>
538 *
539 * <p> A {@code named-capturing group} is still numbered as described in
540 * <a href="#gnumber">Group number</a>.
541 *
542 * <p> The captured input associated with a group is always the subsequence
543 * that the group most recently matched.  If a group is evaluated a second time
544 * because of quantification then its previously-captured value, if any, will
545 * be retained if the second evaluation fails.  Matching the string
546 * {@code "aba"} against the expression {@code (a(b)?)+}, for example, leaves
547 * group two set to {@code "b"}.  All captured input is discarded at the
548 * beginning of each match.
549 *
550 * <p> Groups beginning with {@code (?} are either pure, <i>non-capturing</i> groups
551 * that do not capture text and do not count towards the group total, or
552 * <i>named-capturing</i> group.
553 *
554 * <h3> Unicode support </h3>
555 *
556 * <p> This class is in conformance with Level 1 of <a
557 * href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
558 * Standard #18: Unicode Regular Expression</i></a>, plus RL2.1
559 * Canonical Equivalents.
560 * <p>
561 * <b>Unicode escape sequences</b> such as <code>&#92;u2014</code> in Java source code
562 * are processed as described in section 3.3 of
563 * <cite>The Java&trade; Language Specification</cite>.
564 * Such escape sequences are also implemented directly by the regular-expression
565 * parser so that Unicode escapes can be used in expressions that are read from
566 * files or from the keyboard.  Thus the strings <code>"&#92;u2014"</code> and
567 * {@code "\\u2014"}, while not equal, compile into the same pattern, which
568 * matches the character with hexadecimal value {@code 0x2014}.
569 * <p>
570 * A Unicode character can also be represented by using its <b>Hex notation</b>
571 * (hexadecimal code point value) directly as described in construct
572 * <code>&#92;x{...}</code>, for example a supplementary character U+2011F can be
573 * specified as <code>&#92;x{2011F}</code>, instead of two consecutive Unicode escape
574 * sequences of the surrogate pair <code>&#92;uD840</code><code>&#92;uDD1F</code>.
575 * <p>
576 * <b>Unicode character names</b> are supported by the named character construct
577 * <code>\N{</code>...<code>}</code>, for example, <code>\N{WHITE SMILING FACE}</code>
578 * specifies character <code>&#92;u263A</code>. The character names supported
579 * by this class are the valid Unicode character names matched by
580 * {@link java.lang.Character#codePointOf(String) Character.codePointOf(name)}.
581 * <p>
582 * <a href="http://www.unicode.org/reports/tr18/#Default_Grapheme_Clusters">
583 * <b>Unicode extended grapheme clusters</b></a> are supported by the grapheme
584 * cluster matcher {@code \X} and the corresponding boundary matcher {@code \b{g}}.
585 * <p>
586 * Unicode scripts, blocks, categories and binary properties are written with
587 * the {@code \p} and {@code \P} constructs as in Perl.
588 * <code>\p{</code><i>prop</i><code>}</code> matches if
589 * the input has the property <i>prop</i>, while <code>\P{</code><i>prop</i><code>}</code>
590 * does not match if the input has that property.
591 * <p>
592 * Scripts, blocks, categories and binary properties can be used both inside
593 * and outside of a character class.
594 *
595 * <p>
596 * <b><a id="usc">Scripts</a></b> are specified either with the prefix {@code Is}, as in
597 * {@code IsHiragana}, or by using  the {@code script} keyword (or its short
598 * form {@code sc}) as in {@code script=Hiragana} or {@code sc=Hiragana}.
599 * <p>
600 * The script names supported by {@code Pattern} are the valid script names
601 * accepted and defined by
602 * {@link java.lang.Character.UnicodeScript#forName(String) UnicodeScript.forName}.
603 *
604 * <p>
605 * <b><a id="ubc">Blocks</a></b> are specified with the prefix {@code In}, as in
606 * {@code InMongolian}, or by using the keyword {@code block} (or its short
607 * form {@code blk}) as in {@code block=Mongolian} or {@code blk=Mongolian}.
608 * <p>
609 * The block names supported by {@code Pattern} are the valid block names
610 * accepted and defined by
611 * {@link java.lang.Character.UnicodeBlock#forName(String) UnicodeBlock.forName}.
612 * <p>
613 *
614 * <b><a id="ucc">Categories</a></b> may be specified with the optional prefix {@code Is}:
615 * Both {@code \p{L}} and {@code \p{IsL}} denote the category of Unicode
616 * letters. Same as scripts and blocks, categories can also be specified
617 * by using the keyword {@code general_category} (or its short form
618 * {@code gc}) as in {@code general_category=Lu} or {@code gc=Lu}.
619 * <p>
620 * The supported categories are those of
621 * <a href="http://www.unicode.org/unicode/standard/standard.html">
622 * <i>The Unicode Standard</i></a> in the version specified by the
623 * {@link java.lang.Character Character} class. The category names are those
624 * defined in the Standard, both normative and informative.
625 * <p>
626 *
627 * <b><a id="ubpc">Binary properties</a></b> are specified with the prefix {@code Is}, as in
628 * {@code IsAlphabetic}. The supported binary properties by {@code Pattern}
629 * are
630 * <ul>
631 *   <li> Alphabetic
632 *   <li> Ideographic
633 *   <li> Letter
634 *   <li> Lowercase
635 *   <li> Uppercase
636 *   <li> Titlecase
637 *   <li> Punctuation
638 *   <Li> Control
639 *   <li> White_Space
640 *   <li> Digit
641 *   <li> Hex_Digit
642 *   <li> Join_Control
643 *   <li> Noncharacter_Code_Point
644 *   <li> Assigned
645 * </ul>
646 * <p>
647 * The following <b>Predefined Character classes</b> and <b>POSIX character classes</b>
648 * are in conformance with the recommendation of <i>Annex C: Compatibility Properties</i>
649 * of <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Regular Expression
650 * </i></a>, when {@link #UNICODE_CHARACTER_CLASS} flag is specified.
651 *
652 * <table>
653 * <caption style="display:none">predefined and posix character classes in Unicode mode</caption>
654 * <thead>
655 * <tr style="text-align:left">
656 * <th style="text-align:left" id="predef_classes">Classes</th>
657 * <th style="text-align:left" id="predef_matches">Matches</th>
658 * </tr>
659 * </thead>
660 * <tbody>
661 * <tr><td>{@code \p{Lower}}</td>
662 *     <td>A lowercase character:{@code \p{IsLowercase}}</td></tr>
663 * <tr><td>{@code \p{Upper}}</td>
664 *     <td>An uppercase character:{@code \p{IsUppercase}}</td></tr>
665 * <tr><td>{@code \p{ASCII}}</td>
666 *     <td>All ASCII:{@code [\x00-\x7F]}</td></tr>
667 * <tr><td>{@code \p{Alpha}}</td>
668 *     <td>An alphabetic character:{@code \p{IsAlphabetic}}</td></tr>
669 * <tr><td>{@code \p{Digit}}</td>
670 *     <td>A decimal digit character:{@code p{IsDigit}}</td></tr>
671 * <tr><td>{@code \p{Alnum}}</td>
672 *     <td>An alphanumeric character:{@code [\p{IsAlphabetic}\p{IsDigit}]}</td></tr>
673 * <tr><td>{@code \p{Punct}}</td>
674 *     <td>A punctuation character:{@code p{IsPunctuation}}</td></tr>
675 * <tr><td>{@code \p{Graph}}</td>
676 *     <td>A visible character: {@code [^\p{IsWhite_Space}\p{gc=Cc}\p{gc=Cs}\p{gc=Cn}]}</td></tr>
677 * <tr><td>{@code \p{Print}}</td>
678 *     <td>A printable character: {@code [\p{Graph}\p{Blank}&&[^\p{Cntrl}]]}</td></tr>
679 * <tr><td>{@code \p{Blank}}</td>
680 *     <td>A space or a tab: {@code [\p{IsWhite_Space}&&[^\p{gc=Zl}\p{gc=Zp}\x0a\x0b\x0c\x0d\x85]]}</td></tr>
681 * <tr><td>{@code \p{Cntrl}}</td>
682 *     <td>A control character: {@code \p{gc=Cc}}</td></tr>
683 * <tr><td>{@code \p{XDigit}}</td>
684 *     <td>A hexadecimal digit: {@code [\p{gc=Nd}\p{IsHex_Digit}]}</td></tr>
685 * <tr><td>{@code \p{Space}}</td>
686 *     <td>A whitespace character:{@code \p{IsWhite_Space}}</td></tr>
687 * <tr><td>{@code \d}</td>
688 *     <td>A digit: {@code \p{IsDigit}}</td></tr>
689 * <tr><td>{@code \D}</td>
690 *     <td>A non-digit: {@code [^\d]}</td></tr>
691 * <tr><td>{@code \s}</td>
692 *     <td>A whitespace character: {@code \p{IsWhite_Space}}</td></tr>
693 * <tr><td>{@code \S}</td>
694 *     <td>A non-whitespace character: {@code [^\s]}</td></tr>
695 * <tr><td>{@code \w}</td>
696 *     <td>A word character: {@code [\p{Alpha}\p{gc=Mn}\p{gc=Me}\p{gc=Mc}\p{Digit}\p{gc=Pc}\p{IsJoin_Control}]}</td></tr>
697 * <tr><td>{@code \W}</td>
698 *     <td>A non-word character: {@code [^\w]}</td></tr>
699 * </tbody>
700 * </table>
701 * <p>
702 * <a id="jcc">
703 * Categories that behave like the java.lang.Character
704 * boolean is<i>methodname</i> methods (except for the deprecated ones) are
705 * available through the same <code>\p{</code><i>prop</i><code>}</code> syntax where
706 * the specified property has the name <code>java<i>methodname</i></code></a>.
707 *
708 * <h3> Comparison to Perl 5 </h3>
709 *
710 * <p>The {@code Pattern} engine performs traditional NFA-based matching
711 * with ordered alternation as occurs in Perl 5.
712 *
713 * <p> Perl constructs not supported by this class: </p>
714 *
715 * <ul>
716 *    <li><p> The backreference constructs, <code>\g{</code><i>n</i><code>}</code> for
717 *    the <i>n</i><sup>th</sup><a href="#cg">capturing group</a> and
718 *    <code>\g{</code><i>name</i><code>}</code> for
719 *    <a href="#groupname">named-capturing group</a>.
720 *    </p></li>
721 *
722 *    <li><p> The conditional constructs
723 *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code )} and
724 *    {@code (?(}<i>condition</i>{@code )}<i>X</i>{@code |}<i>Y</i>{@code )},
725 *    </p></li>
726 *
727 *    <li><p> The embedded code constructs <code>(?{</code><i>code</i><code>})</code>
728 *    and <code>(??{</code><i>code</i><code>})</code>,</p></li>
729 *
730 *    <li><p> The embedded comment syntax {@code (?#comment)}, and </p></li>
731 *
732 *    <li><p> The preprocessing operations {@code \l} <code>&#92;u</code>,
733 *    {@code \L}, and {@code \U}.  </p></li>
734 *
735 * </ul>
736 *
737 * <p> Constructs supported by this class but not by Perl: </p>
738 *
739 * <ul>
740 *
741 *    <li><p> Character-class union and intersection as described
742 *    <a href="#cc">above</a>.</p></li>
743 *
744 * </ul>
745 *
746 * <p> Notable differences from Perl: </p>
747 *
748 * <ul>
749 *
750 *    <li><p> In Perl, {@code \1} through {@code \9} are always interpreted
751 *    as back references; a backslash-escaped number greater than {@code 9} is
752 *    treated as a back reference if at least that many subexpressions exist,
753 *    otherwise it is interpreted, if possible, as an octal escape.  In this
754 *    class octal escapes must always begin with a zero. In this class,
755 *    {@code \1} through {@code \9} are always interpreted as back
756 *    references, and a larger number is accepted as a back reference if at
757 *    least that many subexpressions exist at that point in the regular
758 *    expression, otherwise the parser will drop digits until the number is
759 *    smaller or equal to the existing number of groups or it is one digit.
760 *    </p></li>
761 *
762 *    <li><p> Perl uses the {@code g} flag to request a match that resumes
763 *    where the last match left off.  This functionality is provided implicitly
764 *    by the {@link Matcher} class: Repeated invocations of the {@link
765 *    Matcher#find find} method will resume where the last match left off,
766 *    unless the matcher is reset.  </p></li>
767 *
768 *    <li><p> In Perl, embedded flags at the top level of an expression affect
769 *    the whole expression.  In this class, embedded flags always take effect
770 *    at the point at which they appear, whether they are at the top level or
771 *    within a group; in the latter case, flags are restored at the end of the
772 *    group just as in Perl.  </p></li>
773 *
774 * </ul>
775 *
776 *
777 * <p> For a more precise description of the behavior of regular expression
778 * constructs, please see <a href="http://www.oreilly.com/catalog/regex3/">
779 * <i>Mastering Regular Expressions, 3nd Edition</i>, Jeffrey E. F. Friedl,
780 * O'Reilly and Associates, 2006.</a>
781 * </p>
782 *
783 * @see java.lang.String#split(String, int)
784 * @see java.lang.String#split(String)
785 *
786 * @author      Mike McCloskey
787 * @author      Mark Reinhold
788 * @author      JSR-51 Expert Group
789 * @since       1.4
790 * @spec        JSR-51
791 */
792
793public final class Pattern
794    implements java.io.Serializable
795{
796
797    /**
798     * Regular expression modifier values.  Instead of being passed as
799     * arguments, they can also be passed as inline modifiers.
800     * For example, the following statements have the same effect.
801     * <pre>
802     * RegExp r1 = RegExp.compile("abc", Pattern.I|Pattern.M);
803     * RegExp r2 = RegExp.compile("(?im)abc", 0);
804     * </pre>
805     *
806     * The flags are duplicated so that the familiar Perl match flag
807     * names are available.
808     */
809
810    /**
811     * Enables Unix lines mode.
812     *
813     * <p> In this mode, only the {@code '\n'} line terminator is recognized
814     * in the behavior of {@code .}, {@code ^}, and {@code $}.
815     *
816     * <p> Unix lines mode can also be enabled via the embedded flag
817     * expression&nbsp;{@code (?d)}.
818     */
819    public static final int UNIX_LINES = 0x01;
820
821    /**
822     * Enables case-insensitive matching.
823     *
824     * <p> By default, case-insensitive matching assumes that only characters
825     * in the US-ASCII charset are being matched.  Unicode-aware
826     * case-insensitive matching can be enabled by specifying the {@link
827     * #UNICODE_CASE} flag in conjunction with this flag.
828     *
829     * <p> Case-insensitive matching can also be enabled via the embedded flag
830     * expression&nbsp;{@code (?i)}.
831     *
832     * <p> Specifying this flag may impose a slight performance penalty.  </p>
833     */
834    public static final int CASE_INSENSITIVE = 0x02;
835
836    /**
837     * Permits whitespace and comments in pattern.
838     *
839     * <p> In this mode, whitespace is ignored, and embedded comments starting
840     * with {@code #} are ignored until the end of a line.
841     *
842     * <p> Comments mode can also be enabled via the embedded flag
843     * expression&nbsp;{@code (?x)}.
844     */
845    public static final int COMMENTS = 0x04;
846
847    /**
848     * Enables multiline mode.
849     *
850     * <p> In multiline mode the expressions {@code ^} and {@code $} match
851     * just after or just before, respectively, a line terminator or the end of
852     * the input sequence.  By default these expressions only match at the
853     * beginning and the end of the entire input sequence.
854     *
855     * <p> Multiline mode can also be enabled via the embedded flag
856     * expression&nbsp;{@code (?m)}.  </p>
857     */
858    public static final int MULTILINE = 0x08;
859
860    /**
861     * Enables literal parsing of the pattern.
862     *
863     * <p> When this flag is specified then the input string that specifies
864     * the pattern is treated as a sequence of literal characters.
865     * Metacharacters or escape sequences in the input sequence will be
866     * given no special meaning.
867     *
868     * <p>The flags CASE_INSENSITIVE and UNICODE_CASE retain their impact on
869     * matching when used in conjunction with this flag. The other flags
870     * become superfluous.
871     *
872     * <p> There is no embedded flag character for enabling literal parsing.
873     * @since 1.5
874     */
875    public static final int LITERAL = 0x10;
876
877    /**
878     * Enables dotall mode.
879     *
880     * <p> In dotall mode, the expression {@code .} matches any character,
881     * including a line terminator.  By default this expression does not match
882     * line terminators.
883     *
884     * <p> Dotall mode can also be enabled via the embedded flag
885     * expression&nbsp;{@code (?s)}.  (The {@code s} is a mnemonic for
886     * "single-line" mode, which is what this is called in Perl.)  </p>
887     */
888    public static final int DOTALL = 0x20;
889
890    /**
891     * Enables Unicode-aware case folding.
892     *
893     * <p> When this flag is specified then case-insensitive matching, when
894     * enabled by the {@link #CASE_INSENSITIVE} flag, is done in a manner
895     * consistent with the Unicode Standard.  By default, case-insensitive
896     * matching assumes that only characters in the US-ASCII charset are being
897     * matched.
898     *
899     * <p> Unicode-aware case folding can also be enabled via the embedded flag
900     * expression&nbsp;{@code (?u)}.
901     *
902     * <p> Specifying this flag may impose a performance penalty.  </p>
903     */
904    public static final int UNICODE_CASE = 0x40;
905
906    /**
907     * Enables canonical equivalence.
908     *
909     * <p> When this flag is specified then two characters will be considered
910     * to match if, and only if, their full canonical decompositions match.
911     * The expression <code>"a&#92;u030A"</code>, for example, will match the
912     * string <code>"&#92;u00E5"</code> when this flag is specified.  By default,
913     * matching does not take canonical equivalence into account.
914     *
915     * <p> There is no embedded flag character for enabling canonical
916     * equivalence.
917     *
918     * <p> Specifying this flag may impose a performance penalty.  </p>
919     */
920    public static final int CANON_EQ = 0x80;
921
922    /**
923     * Enables the Unicode version of <i>Predefined character classes</i> and
924     * <i>POSIX character classes</i>.
925     *
926     * <p> When this flag is specified then the (US-ASCII only)
927     * <i>Predefined character classes</i> and <i>POSIX character classes</i>
928     * are in conformance with
929     * <a href="http://www.unicode.org/reports/tr18/"><i>Unicode Technical
930     * Standard #18: Unicode Regular Expression</i></a>
931     * <i>Annex C: Compatibility Properties</i>.
932     * <p>
933     * The UNICODE_CHARACTER_CLASS mode can also be enabled via the embedded
934     * flag expression&nbsp;{@code (?U)}.
935     * <p>
936     * The flag implies UNICODE_CASE, that is, it enables Unicode-aware case
937     * folding.
938     * <p>
939     * Specifying this flag may impose a performance penalty.  </p>
940     * @since 1.7
941     */
942    public static final int UNICODE_CHARACTER_CLASS = 0x100;
943
944    /**
945     * Contains all possible flags for compile(regex, flags).
946     */
947    private static final int ALL_FLAGS = CASE_INSENSITIVE | MULTILINE |
948            DOTALL | UNICODE_CASE | CANON_EQ | UNIX_LINES | LITERAL |
949            UNICODE_CHARACTER_CLASS | COMMENTS;
950
951    /* Pattern has only two serialized components: The pattern string
952     * and the flags, which are all that is needed to recompile the pattern
953     * when it is deserialized.
954     */
955
956    /** use serialVersionUID from Merlin b59 for interoperability */
957    private static final long serialVersionUID = 5073258162644648461L;
958
959    /**
960     * The original regular-expression pattern string.
961     *
962     * @serial
963     */
964    private String pattern;
965
966    /**
967     * The original pattern flags.
968     *
969     * @serial
970     */
971    private int flags;
972
973    /**
974     * Boolean indicating this Pattern is compiled; this is necessary in order
975     * to lazily compile deserialized Patterns.
976     */
977    private transient volatile boolean compiled;
978
979    /**
980     * The normalized pattern string.
981     */
982    private transient String normalizedPattern;
983
984    /**
985     * The starting point of state machine for the find operation.  This allows
986     * a match to start anywhere in the input.
987     */
988    transient Node root;
989
990    /**
991     * The root of object tree for a match operation.  The pattern is matched
992     * at the beginning.  This may include a find that uses BnM or a First
993     * node.
994     */
995    transient Node matchRoot;
996
997    /**
998     * Temporary storage used by parsing pattern slice.
999     */
1000    transient int[] buffer;
1001
1002    /**
1003     * A temporary storage used for predicate for double return.
1004     */
1005    transient CharPredicate predicate;
1006
1007    /**
1008     * Map the "name" of the "named capturing group" to its group id
1009     * node.
1010     */
1011    transient volatile Map<String, Integer> namedGroups;
1012
1013    /**
1014     * Temporary storage used while parsing group references.
1015     */
1016    transient GroupHead[] groupNodes;
1017
1018    /**
1019     * Temporary storage used to store the top level closure nodes.
1020     */
1021    transient List<Node> topClosureNodes;
1022
1023    /**
1024     * The number of top greedy closure nodes in this Pattern. Used by
1025     * matchers to allocate storage needed for a IntHashSet to keep the
1026     * beginning pos {@code i} of all failed match.
1027     */
1028    transient int localTCNCount;
1029
1030    /*
1031     * Turn off the stop-exponential-backtracking optimization if there
1032     * is a group ref in the pattern.
1033     */
1034    transient boolean hasGroupRef;
1035
1036    /**
1037     * Temporary null terminated code point array used by pattern compiling.
1038     */
1039    private transient int[] temp;
1040
1041    /**
1042     * The number of capturing groups in this Pattern. Used by matchers to
1043     * allocate storage needed to perform a match.
1044     */
1045    transient int capturingGroupCount;
1046
1047    /**
1048     * The local variable count used by parsing tree. Used by matchers to
1049     * allocate storage needed to perform a match.
1050     */
1051    transient int localCount;
1052
1053    /**
1054     * Index into the pattern string that keeps track of how much has been
1055     * parsed.
1056     */
1057    private transient int cursor;
1058
1059    /**
1060     * Holds the length of the pattern string.
1061     */
1062    private transient int patternLength;
1063
1064    /**
1065     * If the Start node might possibly match supplementary characters.
1066     * It is set to true during compiling if
1067     * (1) There is supplementary char in pattern, or
1068     * (2) There is complement node of a "family" CharProperty
1069     */
1070    private transient boolean hasSupplementary;
1071
1072    /**
1073     * Compiles the given regular expression into a pattern.
1074     *
1075     * @param  regex
1076     *         The expression to be compiled
1077     * @return the given regular expression compiled into a pattern
1078     * @throws  PatternSyntaxException
1079     *          If the expression's syntax is invalid
1080     */
1081    public static Pattern compile(String regex) {
1082        return new Pattern(regex, 0);
1083    }
1084
1085    /**
1086     * Compiles the given regular expression into a pattern with the given
1087     * flags.
1088     *
1089     * @param  regex
1090     *         The expression to be compiled
1091     *
1092     * @param  flags
1093     *         Match flags, a bit mask that may include
1094     *         {@link #CASE_INSENSITIVE}, {@link #MULTILINE}, {@link #DOTALL},
1095     *         {@link #UNICODE_CASE}, {@link #CANON_EQ}, {@link #UNIX_LINES},
1096     *         {@link #LITERAL}, {@link #UNICODE_CHARACTER_CLASS}
1097     *         and {@link #COMMENTS}
1098     *
1099     * @return the given regular expression compiled into a pattern with the given flags
1100     * @throws  IllegalArgumentException
1101     *          If bit values other than those corresponding to the defined
1102     *          match flags are set in {@code flags}
1103     *
1104     * @throws  PatternSyntaxException
1105     *          If the expression's syntax is invalid
1106     */
1107    public static Pattern compile(String regex, int flags) {
1108        return new Pattern(regex, flags);
1109    }
1110
1111    /**
1112     * Returns the regular expression from which this pattern was compiled.
1113     *
1114     * @return  The source of this pattern
1115     */
1116    public String pattern() {
1117        return pattern;
1118    }
1119
1120    /**
1121     * <p>Returns the string representation of this pattern. This
1122     * is the regular expression from which this pattern was
1123     * compiled.</p>
1124     *
1125     * @return  The string representation of this pattern
1126     * @since 1.5
1127     */
1128    public String toString() {
1129        return pattern;
1130    }
1131
1132    /**
1133     * Creates a matcher that will match the given input against this pattern.
1134     *
1135     * @param  input
1136     *         The character sequence to be matched
1137     *
1138     * @return  A new matcher for this pattern
1139     */
1140    public Matcher matcher(CharSequence input) {
1141        if (!compiled) {
1142            synchronized(this) {
1143                if (!compiled)
1144                    compile();
1145            }
1146        }
1147        Matcher m = new Matcher(this, input);
1148        return m;
1149    }
1150
1151    /**
1152     * Returns this pattern's match flags.
1153     *
1154     * @return  The match flags specified when this pattern was compiled
1155     */
1156    public int flags() {
1157        return flags;
1158    }
1159
1160    /**
1161     * Compiles the given regular expression and attempts to match the given
1162     * input against it.
1163     *
1164     * <p> An invocation of this convenience method of the form
1165     *
1166     * <blockquote><pre>
1167     * Pattern.matches(regex, input);</pre></blockquote>
1168     *
1169     * behaves in exactly the same way as the expression
1170     *
1171     * <blockquote><pre>
1172     * Pattern.compile(regex).matcher(input).matches()</pre></blockquote>
1173     *
1174     * <p> If a pattern is to be used multiple times, compiling it once and reusing
1175     * it will be more efficient than invoking this method each time.  </p>
1176     *
1177     * @param  regex
1178     *         The expression to be compiled
1179     *
1180     * @param  input
1181     *         The character sequence to be matched
1182     * @return whether or not the regular expression matches on the input
1183     * @throws  PatternSyntaxException
1184     *          If the expression's syntax is invalid
1185     */
1186    public static boolean matches(String regex, CharSequence input) {
1187        Pattern p = Pattern.compile(regex);
1188        Matcher m = p.matcher(input);
1189        return m.matches();
1190    }
1191
1192    /**
1193     * Splits the given input sequence around matches of this pattern.
1194     *
1195     * <p> The array returned by this method contains each substring of the
1196     * input sequence that is terminated by another subsequence that matches
1197     * this pattern or is terminated by the end of the input sequence.  The
1198     * substrings in the array are in the order in which they occur in the
1199     * input. If this pattern does not match any subsequence of the input then
1200     * the resulting array has just one element, namely the input sequence in
1201     * string form.
1202     *
1203     * <p> When there is a positive-width match at the beginning of the input
1204     * sequence then an empty leading substring is included at the beginning
1205     * of the resulting array. A zero-width match at the beginning however
1206     * never produces such empty leading substring.
1207     *
1208     * <p> The {@code limit} parameter controls the number of times the
1209     * pattern is applied and therefore affects the length of the resulting
1210     * array.  If the limit <i>n</i> is greater than zero then the pattern
1211     * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
1212     * length will be no greater than <i>n</i>, and the array's last entry
1213     * will contain all input beyond the last matched delimiter.  If <i>n</i>
1214     * is non-positive then the pattern will be applied as many times as
1215     * possible and the array can have any length.  If <i>n</i> is zero then
1216     * the pattern will be applied as many times as possible, the array can
1217     * have any length, and trailing empty strings will be discarded.
1218     *
1219     * <p> The input {@code "boo:and:foo"}, for example, yields the following
1220     * results with these parameters:
1221     *
1222     * <blockquote><table>
1223     * <caption>Split examples showing regex, limit, and result</caption>
1224     * <thead>
1225     * <tr><th style="text-align:left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1226     *     <th style="text-align:left"><i>Limit&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1227     *     <th style="text-align:left"><i>Result&nbsp;&nbsp;&nbsp;&nbsp;</i></th></tr>
1228     * </thead>
1229     * <tbody>
1230     * <tr><td style="text-align:center">:</td>
1231     *     <td style="text-align:center">2</td>
1232     *     <td>{@code { "boo", "and:foo" }}</td></tr>
1233     * <tr><td style="text-align:center">:</td>
1234     *     <td style="text-align:center">5</td>
1235     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1236     * <tr><td style="text-align:center">:</td>
1237     *     <td style="text-align:center">-2</td>
1238     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1239     * <tr><td style="text-align:center">o</td>
1240     *     <td style="text-align:center">5</td>
1241     *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1242     * <tr><td style="text-align:center">o</td>
1243     *     <td style="text-align:center">-2</td>
1244     *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
1245     * <tr><td style="text-align:center">o</td>
1246     *     <td style="text-align:center">0</td>
1247     *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1248     * </tbody>
1249     * </table></blockquote>
1250     *
1251     * @param  input
1252     *         The character sequence to be split
1253     *
1254     * @param  limit
1255     *         The result threshold, as described above
1256     *
1257     * @return  The array of strings computed by splitting the input
1258     *          around matches of this pattern
1259     */
1260    public String[] split(CharSequence input, int limit) {
1261        int index = 0;
1262        boolean matchLimited = limit > 0;
1263        ArrayList<String> matchList = new ArrayList<>();
1264        Matcher m = matcher(input);
1265
1266        // Add segments before each match found
1267        while(m.find()) {
1268            if (!matchLimited || matchList.size() < limit - 1) {
1269                if (index == 0 && index == m.start() && m.start() == m.end()) {
1270                    // no empty leading substring included for zero-width match
1271                    // at the beginning of the input char sequence.
1272                    continue;
1273                }
1274                String match = input.subSequence(index, m.start()).toString();
1275                matchList.add(match);
1276                index = m.end();
1277            } else if (matchList.size() == limit - 1) { // last one
1278                String match = input.subSequence(index,
1279                                                 input.length()).toString();
1280                matchList.add(match);
1281                index = m.end();
1282            }
1283        }
1284
1285        // If no match was found, return this
1286        if (index == 0)
1287            return new String[] {input.toString()};
1288
1289        // Add remaining segment
1290        if (!matchLimited || matchList.size() < limit)
1291            matchList.add(input.subSequence(index, input.length()).toString());
1292
1293        // Construct result
1294        int resultSize = matchList.size();
1295        if (limit == 0)
1296            while (resultSize > 0 && matchList.get(resultSize-1).equals(""))
1297                resultSize--;
1298        String[] result = new String[resultSize];
1299        return matchList.subList(0, resultSize).toArray(result);
1300    }
1301
1302    /**
1303     * Splits the given input sequence around matches of this pattern.
1304     *
1305     * <p> This method works as if by invoking the two-argument {@link
1306     * #split(java.lang.CharSequence, int) split} method with the given input
1307     * sequence and a limit argument of zero.  Trailing empty strings are
1308     * therefore not included in the resulting array. </p>
1309     *
1310     * <p> The input {@code "boo:and:foo"}, for example, yields the following
1311     * results with these expressions:
1312     *
1313     * <blockquote><table>
1314     * <caption style="display:none">Split examples showing regex and result</caption>
1315     * <thead>
1316     * <tr><th style="text-align:left"><i>Regex&nbsp;&nbsp;&nbsp;&nbsp;</i></th>
1317     *     <th style="text-align:left"><i>Result</i></th></tr>
1318     * </thead>
1319     * <tbody>
1320     * <tr><td style="text-align:center">:</td>
1321     *     <td>{@code { "boo", "and", "foo" }}</td></tr>
1322     * <tr><td style="text-align:center">o</td>
1323     *     <td>{@code { "b", "", ":and:f" }}</td></tr>
1324     * </tbody>
1325     * </table></blockquote>
1326     *
1327     *
1328     * @param  input
1329     *         The character sequence to be split
1330     *
1331     * @return  The array of strings computed by splitting the input
1332     *          around matches of this pattern
1333     */
1334    public String[] split(CharSequence input) {
1335        return split(input, 0);
1336    }
1337
1338    /**
1339     * Returns a literal pattern {@code String} for the specified
1340     * {@code String}.
1341     *
1342     * <p>This method produces a {@code String} that can be used to
1343     * create a {@code Pattern} that would match the string
1344     * {@code s} as if it were a literal pattern.</p> Metacharacters
1345     * or escape sequences in the input sequence will be given no special
1346     * meaning.
1347     *
1348     * @param  s The string to be literalized
1349     * @return  A literal string replacement
1350     * @since 1.5
1351     */
1352    public static String quote(String s) {
1353        int slashEIndex = s.indexOf("\\E");
1354        if (slashEIndex == -1)
1355            return "\\Q" + s + "\\E";
1356
1357        int lenHint = s.length();
1358        lenHint = (lenHint < Integer.MAX_VALUE - 8 - lenHint) ?
1359                (lenHint << 1) : (Integer.MAX_VALUE - 8);
1360
1361        StringBuilder sb = new StringBuilder(lenHint);
1362        sb.append("\\Q");
1363        int current = 0;
1364        do {
1365            sb.append(s, current, slashEIndex)
1366                    .append("\\E\\\\E\\Q");
1367            current = slashEIndex + 2;
1368        } while ((slashEIndex = s.indexOf("\\E", current)) != -1);
1369
1370        return sb.append(s, current, s.length())
1371                .append("\\E")
1372                .toString();
1373    }
1374
1375    /**
1376     * Recompile the Pattern instance from a stream.  The original pattern
1377     * string is read in and the object tree is recompiled from it.
1378     */
1379    private void readObject(java.io.ObjectInputStream s)
1380        throws java.io.IOException, ClassNotFoundException {
1381
1382        // Read in all fields
1383        s.defaultReadObject();
1384
1385        // Initialize counts
1386        capturingGroupCount = 1;
1387        localCount = 0;
1388        localTCNCount = 0;
1389
1390        // if length > 0, the Pattern is lazily compiled
1391        if (pattern.length() == 0) {
1392            root = new Start(lastAccept);
1393            matchRoot = lastAccept;
1394            compiled = true;
1395        }
1396    }
1397
1398    /**
1399     * This private constructor is used to create all Patterns. The pattern
1400     * string and match flags are all that is needed to completely describe
1401     * a Pattern. An empty pattern string results in an object tree with
1402     * only a Start node and a LastNode node.
1403     */
1404    private Pattern(String p, int f) {
1405        if ((f & ~ALL_FLAGS) != 0) {
1406            throw new IllegalArgumentException("Unknown flag 0x"
1407                                               + Integer.toHexString(f));
1408        }
1409        pattern = p;
1410        flags = f;
1411
1412        // to use UNICODE_CASE if UNICODE_CHARACTER_CLASS present
1413        if ((flags & UNICODE_CHARACTER_CLASS) != 0)
1414            flags |= UNICODE_CASE;
1415
1416        // Reset group index count
1417        capturingGroupCount = 1;
1418        localCount = 0;
1419        localTCNCount = 0;
1420
1421        if (pattern.length() > 0) {
1422            compile();
1423        } else {
1424            root = new Start(lastAccept);
1425            matchRoot = lastAccept;
1426        }
1427    }
1428
1429    /**
1430     * The pattern is converted to normalized form ({@link
1431     * java.text.Normalizer.Form.NFC NFC}, canonical decomposition,
1432     * followed by canonical composition for the character class
1433     * part, and {@link java.text.Normalizer.Form.NFD NFD},
1434     * canonical decomposition) for the rest), and then a pure
1435     * group is constructed to match canonical equivalences of the
1436     * characters.
1437     */
1438    private static String normalize(String pattern) {
1439        int plen = pattern.length();
1440        StringBuilder pbuf = new StringBuilder(plen);
1441        char last = 0;
1442        int lastStart = 0;
1443        char cc = 0;
1444        for (int i = 0; i < plen;) {
1445            char c = pattern.charAt(i);
1446            if (cc == 0 &&    // top level
1447                c == '\\' && i + 1 < plen && pattern.charAt(i + 1) == '\\') {
1448                i += 2; last = 0;
1449                continue;
1450            }
1451            if (c == '[' && last != '\\') {
1452                if (cc == 0) {
1453                    if (lastStart < i)
1454                        normalizeSlice(pattern, lastStart, i, pbuf);
1455                    lastStart = i;
1456                }
1457                cc++;
1458            } else if (c == ']' && last != '\\') {
1459                cc--;
1460                if (cc == 0) {
1461                    normalizeClazz(pattern, lastStart, i + 1, pbuf);
1462                    lastStart = i + 1;
1463                }
1464            }
1465            last = c;
1466            i++;
1467        }
1468        assert (cc == 0);
1469        if (lastStart < plen)
1470            normalizeSlice(pattern, lastStart, plen, pbuf);
1471        return pbuf.toString();
1472    }
1473
1474    private static void normalizeSlice(String src, int off, int limit,
1475                                       StringBuilder dst)
1476    {
1477        int len = src.length();
1478        int off0 = off;
1479        while (off < limit && ASCII.isAscii(src.charAt(off))) {
1480            off++;
1481        }
1482        if (off == limit) {
1483            dst.append(src, off0, limit);
1484            return;
1485        }
1486        off--;
1487        if (off < off0)
1488            off = off0;
1489        else
1490            dst.append(src, off0, off);
1491        while (off < limit) {
1492            int ch0 = src.codePointAt(off);
1493            if (".$|()[]{}^?*+\\".indexOf(ch0) != -1) {
1494                dst.append((char)ch0);
1495                off++;
1496                continue;
1497            }
1498            int j = off + Character.charCount(ch0);
1499            int ch1;
1500            while (j < limit) {
1501                ch1 = src.codePointAt(j);
1502                if (Grapheme.isBoundary(ch0, ch1))
1503                    break;
1504                ch0 = ch1;
1505                j += Character.charCount(ch1);
1506            }
1507            String seq = src.substring(off, j);
1508            String nfd = Normalizer.normalize(seq, Normalizer.Form.NFD);
1509            off = j;
1510            if (nfd.length() > 1) {
1511                ch0 = nfd.codePointAt(0);
1512                ch1 = nfd.codePointAt(Character.charCount(ch0));
1513                if (Character.getType(ch1) == Character.NON_SPACING_MARK) {
1514                    Set<String> altns = new LinkedHashSet<>();
1515                    altns.add(seq);
1516                    produceEquivalentAlternation(nfd, altns);
1517                    dst.append("(?:");
1518                    altns.forEach( s -> dst.append(s).append('|'));
1519                    dst.delete(dst.length() - 1, dst.length());
1520                    dst.append(")");
1521                    continue;
1522                }
1523            }
1524            String nfc = Normalizer.normalize(seq, Normalizer.Form.NFC);
1525            if (!seq.equals(nfc) && !nfd.equals(nfc))
1526                dst.append("(?:" + seq + "|" + nfd  + "|" + nfc + ")");
1527            else if (!seq.equals(nfd))
1528                dst.append("(?:" + seq + "|" + nfd + ")");
1529            else
1530                dst.append(seq);
1531        }
1532    }
1533
1534    private static void normalizeClazz(String src, int off, int limit,
1535                                       StringBuilder dst)
1536    {
1537        dst.append(Normalizer.normalize(src.substring(off, limit), Form.NFC));
1538    }
1539
1540    /**
1541     * Given a specific sequence composed of a regular character and
1542     * combining marks that follow it, produce the alternation that will
1543     * match all canonical equivalences of that sequence.
1544     */
1545    private static void produceEquivalentAlternation(String src,
1546                                                     Set<String> dst)
1547    {
1548        int len = countChars(src, 0, 1);
1549        if (src.length() == len) {
1550            dst.add(src);  // source has one character.
1551            return;
1552        }
1553        String base = src.substring(0,len);
1554        String combiningMarks = src.substring(len);
1555        String[] perms = producePermutations(combiningMarks);
1556        // Add combined permutations
1557        for(int x = 0; x < perms.length; x++) {
1558            String next = base + perms[x];
1559            dst.add(next);
1560            next = composeOneStep(next);
1561            if (next != null) {
1562                produceEquivalentAlternation(next, dst);
1563            }
1564        }
1565    }
1566
1567    /**
1568     * Returns an array of strings that have all the possible
1569     * permutations of the characters in the input string.
1570     * This is used to get a list of all possible orderings
1571     * of a set of combining marks. Note that some of the permutations
1572     * are invalid because of combining class collisions, and these
1573     * possibilities must be removed because they are not canonically
1574     * equivalent.
1575     */
1576    private static String[] producePermutations(String input) {
1577        if (input.length() == countChars(input, 0, 1))
1578            return new String[] {input};
1579
1580        if (input.length() == countChars(input, 0, 2)) {
1581            int c0 = Character.codePointAt(input, 0);
1582            int c1 = Character.codePointAt(input, Character.charCount(c0));
1583            if (getClass(c1) == getClass(c0)) {
1584                return new String[] {input};
1585            }
1586            String[] result = new String[2];
1587            result[0] = input;
1588            StringBuilder sb = new StringBuilder(2);
1589            sb.appendCodePoint(c1);
1590            sb.appendCodePoint(c0);
1591            result[1] = sb.toString();
1592            return result;
1593        }
1594
1595        int length = 1;
1596        int nCodePoints = countCodePoints(input);
1597        for(int x=1; x<nCodePoints; x++)
1598            length = length * (x+1);
1599
1600        String[] temp = new String[length];
1601
1602        int combClass[] = new int[nCodePoints];
1603        for(int x=0, i=0; x<nCodePoints; x++) {
1604            int c = Character.codePointAt(input, i);
1605            combClass[x] = getClass(c);
1606            i +=  Character.charCount(c);
1607        }
1608
1609        // For each char, take it out and add the permutations
1610        // of the remaining chars
1611        int index = 0;
1612        int len;
1613        // offset maintains the index in code units.
1614loop:   for(int x=0, offset=0; x<nCodePoints; x++, offset+=len) {
1615            len = countChars(input, offset, 1);
1616            for(int y=x-1; y>=0; y--) {
1617                if (combClass[y] == combClass[x]) {
1618                    continue loop;
1619                }
1620            }
1621            StringBuilder sb = new StringBuilder(input);
1622            String otherChars = sb.delete(offset, offset+len).toString();
1623            String[] subResult = producePermutations(otherChars);
1624
1625            String prefix = input.substring(offset, offset+len);
1626            for (String sre : subResult)
1627                temp[index++] = prefix + sre;
1628        }
1629        String[] result = new String[index];
1630        System.arraycopy(temp, 0, result, 0, index);
1631        return result;
1632    }
1633
1634    private static int getClass(int c) {
1635        return sun.text.Normalizer.getCombiningClass(c);
1636    }
1637
1638    /**
1639     * Attempts to compose input by combining the first character
1640     * with the first combining mark following it. Returns a String
1641     * that is the composition of the leading character with its first
1642     * combining mark followed by the remaining combining marks. Returns
1643     * null if the first two characters cannot be further composed.
1644     */
1645    private static String composeOneStep(String input) {
1646        int len = countChars(input, 0, 2);
1647        String firstTwoCharacters = input.substring(0, len);
1648        String result = Normalizer.normalize(firstTwoCharacters, Normalizer.Form.NFC);
1649        if (result.equals(firstTwoCharacters))
1650            return null;
1651        else {
1652            String remainder = input.substring(len);
1653            return result + remainder;
1654        }
1655    }
1656
1657    /**
1658     * Preprocess any \Q...\E sequences in `temp', meta-quoting them.
1659     * See the description of `quotemeta' in perlfunc(1).
1660     */
1661    private void RemoveQEQuoting() {
1662        final int pLen = patternLength;
1663        int i = 0;
1664        while (i < pLen-1) {
1665            if (temp[i] != '\\')
1666                i += 1;
1667            else if (temp[i + 1] != 'Q')
1668                i += 2;
1669            else
1670                break;
1671        }
1672        if (i >= pLen - 1)    // No \Q sequence found
1673            return;
1674        int j = i;
1675        i += 2;
1676        int[] newtemp = new int[j + 3*(pLen-i) + 2];
1677        System.arraycopy(temp, 0, newtemp, 0, j);
1678
1679        boolean inQuote = true;
1680        boolean beginQuote = true;
1681        while (i < pLen) {
1682            int c = temp[i++];
1683            if (!ASCII.isAscii(c) || ASCII.isAlpha(c)) {
1684                newtemp[j++] = c;
1685            } else if (ASCII.isDigit(c)) {
1686                if (beginQuote) {
1687                    /*
1688                     * A unicode escape \[0xu] could be before this quote,
1689                     * and we don't want this numeric char to processed as
1690                     * part of the escape.
1691                     */
1692                    newtemp[j++] = '\\';
1693                    newtemp[j++] = 'x';
1694                    newtemp[j++] = '3';
1695                }
1696                newtemp[j++] = c;
1697            } else if (c != '\\') {
1698                if (inQuote) newtemp[j++] = '\\';
1699                newtemp[j++] = c;
1700            } else if (inQuote) {
1701                if (temp[i] == 'E') {
1702                    i++;
1703                    inQuote = false;
1704                } else {
1705                    newtemp[j++] = '\\';
1706                    newtemp[j++] = '\\';
1707                }
1708            } else {
1709                if (temp[i] == 'Q') {
1710                    i++;
1711                    inQuote = true;
1712                    beginQuote = true;
1713                    continue;
1714                } else {
1715                    newtemp[j++] = c;
1716                    if (i != pLen)
1717                        newtemp[j++] = temp[i++];
1718                }
1719            }
1720
1721            beginQuote = false;
1722        }
1723
1724        patternLength = j;
1725        temp = Arrays.copyOf(newtemp, j + 2); // double zero termination
1726    }
1727
1728    /**
1729     * Copies regular expression to an int array and invokes the parsing
1730     * of the expression which will create the object tree.
1731     */
1732    private void compile() {
1733        // Handle canonical equivalences
1734        if (has(CANON_EQ) && !has(LITERAL)) {
1735            normalizedPattern = normalize(pattern);
1736        } else {
1737            normalizedPattern = pattern;
1738        }
1739        patternLength = normalizedPattern.length();
1740
1741        // Copy pattern to int array for convenience
1742        // Use double zero to terminate pattern
1743        temp = new int[patternLength + 2];
1744
1745        hasSupplementary = false;
1746        int c, count = 0;
1747        // Convert all chars into code points
1748        for (int x = 0; x < patternLength; x += Character.charCount(c)) {
1749            c = normalizedPattern.codePointAt(x);
1750            if (isSupplementary(c)) {
1751                hasSupplementary = true;
1752            }
1753            temp[count++] = c;
1754        }
1755
1756        patternLength = count;   // patternLength now in code points
1757
1758        if (! has(LITERAL))
1759            RemoveQEQuoting();
1760
1761        // Allocate all temporary objects here.
1762        buffer = new int[32];
1763        groupNodes = new GroupHead[10];
1764        namedGroups = null;
1765        topClosureNodes = new ArrayList<>(10);
1766
1767        if (has(LITERAL)) {
1768            // Literal pattern handling
1769            matchRoot = newSlice(temp, patternLength, hasSupplementary);
1770            matchRoot.next = lastAccept;
1771        } else {
1772            // Start recursive descent parsing
1773            matchRoot = expr(lastAccept);
1774            // Check extra pattern characters
1775            if (patternLength != cursor) {
1776                if (peek() == ')') {
1777                    throw error("Unmatched closing ')'");
1778                } else {
1779                    throw error("Unexpected internal error");
1780                }
1781            }
1782        }
1783
1784        // Peephole optimization
1785        if (matchRoot instanceof Slice) {
1786            root = BnM.optimize(matchRoot);
1787            if (root == matchRoot) {
1788                root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1789            }
1790        } else if (matchRoot instanceof Begin || matchRoot instanceof First) {
1791            root = matchRoot;
1792        } else {
1793            root = hasSupplementary ? new StartS(matchRoot) : new Start(matchRoot);
1794        }
1795
1796        // Optimize the greedy Loop to prevent exponential backtracking, IF there
1797        // is no group ref in this pattern. With a non-negative localTCNCount value,
1798        // the greedy type Loop, Curly will skip the backtracking for any starting
1799        // position "i" that failed in the past.
1800        if (!hasGroupRef) {
1801            for (Node node : topClosureNodes) {
1802                if (node instanceof Loop) {
1803                    // non-deterministic-greedy-group
1804                    ((Loop)node).posIndex = localTCNCount++;
1805                }
1806            }
1807        }
1808
1809        // Release temporary storage
1810        temp = null;
1811        buffer = null;
1812        groupNodes = null;
1813        patternLength = 0;
1814        compiled = true;
1815        topClosureNodes = null;
1816    }
1817
1818    Map<String, Integer> namedGroups() {
1819        Map<String, Integer> groups = namedGroups;
1820        if (groups == null) {
1821            namedGroups = groups = new HashMap<>(2);
1822        }
1823        return groups;
1824    }
1825
1826    /**
1827     * Used to accumulate information about a subtree of the object graph
1828     * so that optimizations can be applied to the subtree.
1829     */
1830    static final class TreeInfo {
1831        int minLength;
1832        int maxLength;
1833        boolean maxValid;
1834        boolean deterministic;
1835
1836        TreeInfo() {
1837            reset();
1838        }
1839        void reset() {
1840            minLength = 0;
1841            maxLength = 0;
1842            maxValid = true;
1843            deterministic = true;
1844        }
1845    }
1846
1847    /*
1848     * The following private methods are mainly used to improve the
1849     * readability of the code. In order to let the Java compiler easily
1850     * inline them, we should not put many assertions or error checks in them.
1851     */
1852
1853    /**
1854     * Indicates whether a particular flag is set or not.
1855     */
1856    private boolean has(int f) {
1857        return (flags & f) != 0;
1858    }
1859
1860    /**
1861     * Match next character, signal error if failed.
1862     */
1863    private void accept(int ch, String s) {
1864        int testChar = temp[cursor++];
1865        if (has(COMMENTS))
1866            testChar = parsePastWhitespace(testChar);
1867        if (ch != testChar) {
1868            throw error(s);
1869        }
1870    }
1871
1872    /**
1873     * Mark the end of pattern with a specific character.
1874     */
1875    private void mark(int c) {
1876        temp[patternLength] = c;
1877    }
1878
1879    /**
1880     * Peek the next character, and do not advance the cursor.
1881     */
1882    private int peek() {
1883        int ch = temp[cursor];
1884        if (has(COMMENTS))
1885            ch = peekPastWhitespace(ch);
1886        return ch;
1887    }
1888
1889    /**
1890     * Read the next character, and advance the cursor by one.
1891     */
1892    private int read() {
1893        int ch = temp[cursor++];
1894        if (has(COMMENTS))
1895            ch = parsePastWhitespace(ch);
1896        return ch;
1897    }
1898
1899    /**
1900     * Read the next character, and advance the cursor by one,
1901     * ignoring the COMMENTS setting
1902     */
1903    private int readEscaped() {
1904        int ch = temp[cursor++];
1905        return ch;
1906    }
1907
1908    /**
1909     * Advance the cursor by one, and peek the next character.
1910     */
1911    private int next() {
1912        int ch = temp[++cursor];
1913        if (has(COMMENTS))
1914            ch = peekPastWhitespace(ch);
1915        return ch;
1916    }
1917
1918    /**
1919     * Advance the cursor by one, and peek the next character,
1920     * ignoring the COMMENTS setting
1921     */
1922    private int nextEscaped() {
1923        int ch = temp[++cursor];
1924        return ch;
1925    }
1926
1927    /**
1928     * If in xmode peek past whitespace and comments.
1929     */
1930    private int peekPastWhitespace(int ch) {
1931        while (ASCII.isSpace(ch) || ch == '#') {
1932            while (ASCII.isSpace(ch))
1933                ch = temp[++cursor];
1934            if (ch == '#') {
1935                ch = peekPastLine();
1936            }
1937        }
1938        return ch;
1939    }
1940
1941    /**
1942     * If in xmode parse past whitespace and comments.
1943     */
1944    private int parsePastWhitespace(int ch) {
1945        while (ASCII.isSpace(ch) || ch == '#') {
1946            while (ASCII.isSpace(ch))
1947                ch = temp[cursor++];
1948            if (ch == '#')
1949                ch = parsePastLine();
1950        }
1951        return ch;
1952    }
1953
1954    /**
1955     * xmode parse past comment to end of line.
1956     */
1957    private int parsePastLine() {
1958        int ch = temp[cursor++];
1959        while (ch != 0 && !isLineSeparator(ch))
1960            ch = temp[cursor++];
1961        return ch;
1962    }
1963
1964    /**
1965     * xmode peek past comment to end of line.
1966     */
1967    private int peekPastLine() {
1968        int ch = temp[++cursor];
1969        while (ch != 0 && !isLineSeparator(ch))
1970            ch = temp[++cursor];
1971        return ch;
1972    }
1973
1974    /**
1975     * Determines if character is a line separator in the current mode
1976     */
1977    private boolean isLineSeparator(int ch) {
1978        if (has(UNIX_LINES)) {
1979            return ch == '\n';
1980        } else {
1981            return (ch == '\n' ||
1982                    ch == '\r' ||
1983                    (ch|1) == '\u2029' ||
1984                    ch == '\u0085');
1985        }
1986    }
1987
1988    /**
1989     * Read the character after the next one, and advance the cursor by two.
1990     */
1991    private int skip() {
1992        int i = cursor;
1993        int ch = temp[i+1];
1994        cursor = i + 2;
1995        return ch;
1996    }
1997
1998    /**
1999     * Unread one next character, and retreat cursor by one.
2000     */
2001    private void unread() {
2002        cursor--;
2003    }
2004
2005    /**
2006     * Internal method used for handling all syntax errors. The pattern is
2007     * displayed with a pointer to aid in locating the syntax error.
2008     */
2009    private PatternSyntaxException error(String s) {
2010        return new PatternSyntaxException(s, normalizedPattern,  cursor - 1);
2011    }
2012
2013    /**
2014     * Determines if there is any supplementary character or unpaired
2015     * surrogate in the specified range.
2016     */
2017    private boolean findSupplementary(int start, int end) {
2018        for (int i = start; i < end; i++) {
2019            if (isSupplementary(temp[i]))
2020                return true;
2021        }
2022        return false;
2023    }
2024
2025    /**
2026     * Determines if the specified code point is a supplementary
2027     * character or unpaired surrogate.
2028     */
2029    private static final boolean isSupplementary(int ch) {
2030        return ch >= Character.MIN_SUPPLEMENTARY_CODE_POINT ||
2031               Character.isSurrogate((char)ch);
2032    }
2033
2034    /**
2035     *  The following methods handle the main parsing. They are sorted
2036     *  according to their precedence order, the lowest one first.
2037     */
2038
2039    /**
2040     * The expression is parsed with branch nodes added for alternations.
2041     * This may be called recursively to parse sub expressions that may
2042     * contain alternations.
2043     */
2044    private Node expr(Node end) {
2045        Node prev = null;
2046        Node firstTail = null;
2047        Branch branch = null;
2048        Node branchConn = null;
2049
2050        for (;;) {
2051            Node node = sequence(end);
2052            Node nodeTail = root;      //double return
2053            if (prev == null) {
2054                prev = node;
2055                firstTail = nodeTail;
2056            } else {
2057                // Branch
2058                if (branchConn == null) {
2059                    branchConn = new BranchConn();
2060                    branchConn.next = end;
2061                }
2062                if (node == end) {
2063                    // if the node returned from sequence() is "end"
2064                    // we have an empty expr, set a null atom into
2065                    // the branch to indicate to go "next" directly.
2066                    node = null;
2067                } else {
2068                    // the "tail.next" of each atom goes to branchConn
2069                    nodeTail.next = branchConn;
2070                }
2071                if (prev == branch) {
2072                    branch.add(node);
2073                } else {
2074                    if (prev == end) {
2075                        prev = null;
2076                    } else {
2077                        // replace the "end" with "branchConn" at its tail.next
2078                        // when put the "prev" into the branch as the first atom.
2079                        firstTail.next = branchConn;
2080                    }
2081                    prev = branch = new Branch(prev, node, branchConn);
2082                }
2083            }
2084            if (peek() != '|') {
2085                return prev;
2086            }
2087            next();
2088        }
2089    }
2090
2091    @SuppressWarnings("fallthrough")
2092    /**
2093     * Parsing of sequences between alternations.
2094     */
2095    private Node sequence(Node end) {
2096        Node head = null;
2097        Node tail = null;
2098        Node node = null;
2099    LOOP:
2100        for (;;) {
2101            int ch = peek();
2102            switch (ch) {
2103            case '(':
2104                // Because group handles its own closure,
2105                // we need to treat it differently
2106                node = group0();
2107                // Check for comment or flag group
2108                if (node == null)
2109                    continue;
2110                if (head == null)
2111                    head = node;
2112                else
2113                    tail.next = node;
2114                // Double return: Tail was returned in root
2115                tail = root;
2116                continue;
2117            case '[':
2118                if (has(CANON_EQ) && !has(LITERAL))
2119                    node = new NFCCharProperty(clazz(true));
2120                else
2121                    node = newCharProperty(clazz(true));
2122                break;
2123            case '\\':
2124                ch = nextEscaped();
2125                if (ch == 'p' || ch == 'P') {
2126                    boolean oneLetter = true;
2127                    boolean comp = (ch == 'P');
2128                    ch = next(); // Consume { if present
2129                    if (ch != '{') {
2130                        unread();
2131                    } else {
2132                        oneLetter = false;
2133                    }
2134                    // node = newCharProperty(family(oneLetter, comp));
2135                    if (has(CANON_EQ) && !has(LITERAL))
2136                        node = new NFCCharProperty(family(oneLetter, comp));
2137                    else
2138                        node = newCharProperty(family(oneLetter, comp));
2139                } else {
2140                    unread();
2141                    node = atom();
2142                }
2143                break;
2144            case '^':
2145                next();
2146                if (has(MULTILINE)) {
2147                    if (has(UNIX_LINES))
2148                        node = new UnixCaret();
2149                    else
2150                        node = new Caret();
2151                } else {
2152                    node = new Begin();
2153                }
2154                break;
2155            case '$':
2156                next();
2157                if (has(UNIX_LINES))
2158                    node = new UnixDollar(has(MULTILINE));
2159                else
2160                    node = new Dollar(has(MULTILINE));
2161                break;
2162            case '.':
2163                next();
2164                if (has(DOTALL)) {
2165                    node = new CharProperty(ALL());
2166                } else {
2167                    if (has(UNIX_LINES)) {
2168                        node = new CharProperty(UNIXDOT());
2169                    } else {
2170                        node = new CharProperty(DOT());
2171                    }
2172                }
2173                break;
2174            case '|':
2175            case ')':
2176                break LOOP;
2177            case ']': // Now interpreting dangling ] and } as literals
2178            case '}':
2179                node = atom();
2180                break;
2181            case '?':
2182            case '*':
2183            case '+':
2184                next();
2185                throw error("Dangling meta character '" + ((char)ch) + "'");
2186            case 0:
2187                if (cursor >= patternLength) {
2188                    break LOOP;
2189                }
2190                // Fall through
2191            default:
2192                node = atom();
2193                break;
2194            }
2195
2196            node = closure(node);
2197            /* save the top dot-greedy nodes (.*, .+) as well
2198            if (node instanceof GreedyCharProperty &&
2199                ((GreedyCharProperty)node).cp instanceof Dot) {
2200                topClosureNodes.add(node);
2201            }
2202            */
2203            if (head == null) {
2204                head = tail = node;
2205            } else {
2206                tail.next = node;
2207                tail = node;
2208            }
2209        }
2210        if (head == null) {
2211            return end;
2212        }
2213        tail.next = end;
2214        root = tail;      //double return
2215        return head;
2216    }
2217
2218    @SuppressWarnings("fallthrough")
2219    /**
2220     * Parse and add a new Single or Slice.
2221     */
2222    private Node atom() {
2223        int first = 0;
2224        int prev = -1;
2225        boolean hasSupplementary = false;
2226        int ch = peek();
2227        for (;;) {
2228            switch (ch) {
2229            case '*':
2230            case '+':
2231            case '?':
2232            case '{':
2233                if (first > 1) {
2234                    cursor = prev;    // Unwind one character
2235                    first--;
2236                }
2237                break;
2238            case '$':
2239            case '.':
2240            case '^':
2241            case '(':
2242            case '[':
2243            case '|':
2244            case ')':
2245                break;
2246            case '\\':
2247                ch = nextEscaped();
2248                if (ch == 'p' || ch == 'P') { // Property
2249                    if (first > 0) { // Slice is waiting; handle it first
2250                        unread();
2251                        break;
2252                    } else { // No slice; just return the family node
2253                        boolean comp = (ch == 'P');
2254                        boolean oneLetter = true;
2255                        ch = next(); // Consume { if present
2256                        if (ch != '{')
2257                            unread();
2258                        else
2259                            oneLetter = false;
2260                        if (has(CANON_EQ) && !has(LITERAL))
2261                            return new NFCCharProperty(family(oneLetter, comp));
2262                        else
2263                            return newCharProperty(family(oneLetter, comp));
2264                    }
2265                }
2266                unread();
2267                prev = cursor;
2268                ch = escape(false, first == 0, false);
2269                if (ch >= 0) {
2270                    append(ch, first);
2271                    first++;
2272                    if (isSupplementary(ch)) {
2273                        hasSupplementary = true;
2274                    }
2275                    ch = peek();
2276                    continue;
2277                } else if (first == 0) {
2278                    return root;
2279                }
2280                // Unwind meta escape sequence
2281                cursor = prev;
2282                break;
2283            case 0:
2284                if (cursor >= patternLength) {
2285                    break;
2286                }
2287                // Fall through
2288            default:
2289                prev = cursor;
2290                append(ch, first);
2291                first++;
2292                if (isSupplementary(ch)) {
2293                    hasSupplementary = true;
2294                }
2295                ch = next();
2296                continue;
2297            }
2298            break;
2299        }
2300        if (first == 1) {
2301            return newCharProperty(single(buffer[0]));
2302        } else {
2303            return newSlice(buffer, first, hasSupplementary);
2304        }
2305    }
2306
2307    private void append(int ch, int len) {
2308        if (len >= buffer.length) {
2309            int[] tmp = new int[len+len];
2310            System.arraycopy(buffer, 0, tmp, 0, len);
2311            buffer = tmp;
2312        }
2313        buffer[len] = ch;
2314    }
2315
2316    /**
2317     * Parses a backref greedily, taking as many numbers as it
2318     * can. The first digit is always treated as a backref, but
2319     * multi digit numbers are only treated as a backref if at
2320     * least that many backrefs exist at this point in the regex.
2321     */
2322    private Node ref(int refNum) {
2323        boolean done = false;
2324        while(!done) {
2325            int ch = peek();
2326            switch(ch) {
2327            case '0':
2328            case '1':
2329            case '2':
2330            case '3':
2331            case '4':
2332            case '5':
2333            case '6':
2334            case '7':
2335            case '8':
2336            case '9':
2337                int newRefNum = (refNum * 10) + (ch - '0');
2338                // Add another number if it doesn't make a group
2339                // that doesn't exist
2340                if (capturingGroupCount - 1 < newRefNum) {
2341                    done = true;
2342                    break;
2343                }
2344                refNum = newRefNum;
2345                read();
2346                break;
2347            default:
2348                done = true;
2349                break;
2350            }
2351        }
2352        hasGroupRef = true;
2353        if (has(CASE_INSENSITIVE))
2354            return new CIBackRef(refNum, has(UNICODE_CASE));
2355        else
2356            return new BackRef(refNum);
2357    }
2358
2359    /**
2360     * Parses an escape sequence to determine the actual value that needs
2361     * to be matched.
2362     * If -1 is returned and create was true a new object was added to the tree
2363     * to handle the escape sequence.
2364     * If the returned value is greater than zero, it is the value that
2365     * matches the escape sequence.
2366     */
2367    private int escape(boolean inclass, boolean create, boolean isrange) {
2368        int ch = skip();
2369        switch (ch) {
2370        case '0':
2371            return o();
2372        case '1':
2373        case '2':
2374        case '3':
2375        case '4':
2376        case '5':
2377        case '6':
2378        case '7':
2379        case '8':
2380        case '9':
2381            if (inclass) break;
2382            if (create) {
2383                root = ref((ch - '0'));
2384            }
2385            return -1;
2386        case 'A':
2387            if (inclass) break;
2388            if (create) root = new Begin();
2389            return -1;
2390        case 'B':
2391            if (inclass) break;
2392            if (create) root = new Bound(Bound.NONE, has(UNICODE_CHARACTER_CLASS));
2393            return -1;
2394        case 'C':
2395            break;
2396        case 'D':
2397            if (create) {
2398                predicate = has(UNICODE_CHARACTER_CLASS) ?
2399                            CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2400                predicate = predicate.negate();
2401                if (!inclass)
2402                    root = newCharProperty(predicate);
2403            }
2404            return -1;
2405        case 'E':
2406        case 'F':
2407            break;
2408        case 'G':
2409            if (inclass) break;
2410            if (create) root = new LastMatch();
2411            return -1;
2412        case 'H':
2413            if (create) {
2414                predicate = HorizWS().negate();
2415                if (!inclass)
2416                    root = newCharProperty(predicate);
2417            }
2418            return -1;
2419        case 'I':
2420        case 'J':
2421        case 'K':
2422        case 'L':
2423        case 'M':
2424            break;
2425        case 'N':
2426            return N();
2427        case 'O':
2428        case 'P':
2429        case 'Q':
2430            break;
2431        case 'R':
2432            if (inclass) break;
2433            if (create) root = new LineEnding();
2434            return -1;
2435        case 'S':
2436            if (create) {
2437                predicate = has(UNICODE_CHARACTER_CLASS) ?
2438                            CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2439                predicate = predicate.negate();
2440                if (!inclass)
2441                    root = newCharProperty(predicate);
2442            }
2443            return -1;
2444        case 'T':
2445        case 'U':
2446            break;
2447        case 'V':
2448            if (create) {
2449                predicate = VertWS().negate();
2450                if (!inclass)
2451                    root = newCharProperty(predicate);
2452            }
2453            return -1;
2454        case 'W':
2455            if (create) {
2456                predicate = has(UNICODE_CHARACTER_CLASS) ?
2457                            CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2458                predicate = predicate.negate();
2459                if (!inclass)
2460                    root = newCharProperty(predicate);
2461            }
2462            return -1;
2463        case 'X':
2464            if (inclass) break;
2465            if (create) {
2466                root = new XGrapheme();
2467            }
2468            return -1;
2469        case 'Y':
2470            break;
2471        case 'Z':
2472            if (inclass) break;
2473            if (create) {
2474                if (has(UNIX_LINES))
2475                    root = new UnixDollar(false);
2476                else
2477                    root = new Dollar(false);
2478            }
2479            return -1;
2480        case 'a':
2481            return '\007';
2482        case 'b':
2483            if (inclass) break;
2484            if (create) {
2485                if (peek() == '{') {
2486                    if (skip() == 'g') {
2487                        if (read() == '}') {
2488                            root = new GraphemeBound();
2489                            return -1;
2490                        }
2491                        break;  // error missing trailing }
2492                    }
2493                    unread(); unread();
2494                }
2495                root = new Bound(Bound.BOTH, has(UNICODE_CHARACTER_CLASS));
2496            }
2497            return -1;
2498        case 'c':
2499            return c();
2500        case 'd':
2501            if (create) {
2502                predicate = has(UNICODE_CHARACTER_CLASS) ?
2503                            CharPredicates.DIGIT() : CharPredicates.ASCII_DIGIT();
2504                if (!inclass)
2505                    root = newCharProperty(predicate);
2506            }
2507            return -1;
2508        case 'e':
2509            return '\033';
2510        case 'f':
2511            return '\f';
2512        case 'g':
2513            break;
2514        case 'h':
2515            if (create) {
2516                predicate = HorizWS();
2517                if (!inclass)
2518                    root = newCharProperty(predicate);
2519            }
2520            return -1;
2521        case 'i':
2522        case 'j':
2523            break;
2524        case 'k':
2525            if (inclass)
2526                break;
2527            if (read() != '<')
2528                throw error("\\k is not followed by '<' for named capturing group");
2529            String name = groupname(read());
2530            if (!namedGroups().containsKey(name))
2531                throw error("(named capturing group <"+ name+"> does not exit");
2532            if (create) {
2533                hasGroupRef = true;
2534                if (has(CASE_INSENSITIVE))
2535                    root = new CIBackRef(namedGroups().get(name), has(UNICODE_CASE));
2536                else
2537                    root = new BackRef(namedGroups().get(name));
2538            }
2539            return -1;
2540        case 'l':
2541        case 'm':
2542            break;
2543        case 'n':
2544            return '\n';
2545        case 'o':
2546        case 'p':
2547        case 'q':
2548            break;
2549        case 'r':
2550            return '\r';
2551        case 's':
2552            if (create) {
2553                predicate = has(UNICODE_CHARACTER_CLASS) ?
2554                            CharPredicates.WHITE_SPACE() : CharPredicates.ASCII_SPACE();
2555                if (!inclass)
2556                    root = newCharProperty(predicate);
2557            }
2558            return -1;
2559        case 't':
2560            return '\t';
2561        case 'u':
2562            return u();
2563        case 'v':
2564            // '\v' was implemented as VT/0x0B in releases < 1.8 (though
2565            // undocumented). In JDK8 '\v' is specified as a predefined
2566            // character class for all vertical whitespace characters.
2567            // So [-1, root=VertWS node] pair is returned (instead of a
2568            // single 0x0B). This breaks the range if '\v' is used as
2569            // the start or end value, such as [\v-...] or [...-\v], in
2570            // which a single definite value (0x0B) is expected. For
2571            // compatibility concern '\013'/0x0B is returned if isrange.
2572            if (isrange)
2573                return '\013';
2574            if (create) {
2575                predicate = VertWS();
2576                if (!inclass)
2577                    root = newCharProperty(predicate);
2578            }
2579            return -1;
2580        case 'w':
2581            if (create) {
2582                predicate = has(UNICODE_CHARACTER_CLASS) ?
2583                            CharPredicates.WORD() : CharPredicates.ASCII_WORD();
2584                if (!inclass)
2585                    root = newCharProperty(predicate);
2586            }
2587            return -1;
2588        case 'x':
2589            return x();
2590        case 'y':
2591            break;
2592        case 'z':
2593            if (inclass) break;
2594            if (create) root = new End();
2595            return -1;
2596        default:
2597            return ch;
2598        }
2599        throw error("Illegal/unsupported escape sequence");
2600    }
2601
2602    /**
2603     * Parse a character class, and return the node that matches it.
2604     *
2605     * Consumes a ] on the way out if consume is true. Usually consume
2606     * is true except for the case of [abc&&def] where def is a separate
2607     * right hand node with "understood" brackets.
2608     */
2609    private CharPredicate clazz(boolean consume) {
2610        CharPredicate prev = null;
2611        CharPredicate curr = null;
2612        BitClass bits = new BitClass();
2613        BmpCharPredicate bitsP = ch -> ch < 256 && bits.bits[ch];
2614
2615        boolean isNeg = false;
2616        boolean hasBits = false;
2617        int ch = next();
2618
2619        // Negates if first char in a class, otherwise literal
2620        if (ch == '^' && temp[cursor-1] == '[') {
2621            ch = next();
2622            isNeg = true;
2623        }
2624        for (;;) {
2625            switch (ch) {
2626                case '[':
2627                    curr = clazz(true);
2628                    if (prev == null)
2629                        prev = curr;
2630                    else
2631                        prev = prev.union(curr);
2632                    ch = peek();
2633                    continue;
2634                case '&':
2635                    ch = next();
2636                    if (ch == '&') {
2637                        ch = next();
2638                        CharPredicate right = null;
2639                        while (ch != ']' && ch != '&') {
2640                            if (ch == '[') {
2641                                if (right == null)
2642                                    right = clazz(true);
2643                                else
2644                                    right = right.union(clazz(true));
2645                            } else { // abc&&def
2646                                unread();
2647                                right = clazz(false);
2648                            }
2649                            ch = peek();
2650                        }
2651                        if (hasBits) {
2652                            // bits used, union has high precedence
2653                            if (prev == null) {
2654                                prev = curr = bitsP;
2655                            } else {
2656                                prev = prev.union(bitsP);
2657                            }
2658                            hasBits = false;
2659                        }
2660                        if (right != null)
2661                            curr = right;
2662                        if (prev == null) {
2663                            if (right == null)
2664                                throw error("Bad class syntax");
2665                            else
2666                                prev = right;
2667                        } else {
2668                            prev = prev.and(curr);
2669                        }
2670                    } else {
2671                        // treat as a literal &
2672                        unread();
2673                        break;
2674                    }
2675                    continue;
2676                case 0:
2677                    if (cursor >= patternLength)
2678                        throw error("Unclosed character class");
2679                    break;
2680                case ']':
2681                    if (prev != null || hasBits) {
2682                        if (consume)
2683                            next();
2684                        if (prev == null)
2685                            prev = bitsP;
2686                        else if (hasBits)
2687                            prev = prev.union(bitsP);
2688                        if (isNeg)
2689                            return prev.negate();
2690                        return prev;
2691                    }
2692                    break;
2693                default:
2694                    break;
2695            }
2696            curr = range(bits);
2697            if (curr == null) {    // the bits used
2698                hasBits = true;
2699            } else {
2700                if (prev == null)
2701                    prev = curr;
2702                else if (prev != curr)
2703                    prev = prev.union(curr);
2704            }
2705            ch = peek();
2706        }
2707    }
2708
2709    private CharPredicate bitsOrSingle(BitClass bits, int ch) {
2710        /* Bits can only handle codepoints in [u+0000-u+00ff] range.
2711           Use "single" node instead of bits when dealing with unicode
2712           case folding for codepoints listed below.
2713           (1)Uppercase out of range: u+00ff, u+00b5
2714              toUpperCase(u+00ff) -> u+0178
2715              toUpperCase(u+00b5) -> u+039c
2716           (2)LatinSmallLetterLongS u+17f
2717              toUpperCase(u+017f) -> u+0053
2718           (3)LatinSmallLetterDotlessI u+131
2719              toUpperCase(u+0131) -> u+0049
2720           (4)LatinCapitalLetterIWithDotAbove u+0130
2721              toLowerCase(u+0130) -> u+0069
2722           (5)KelvinSign u+212a
2723              toLowerCase(u+212a) ==> u+006B
2724           (6)AngstromSign u+212b
2725              toLowerCase(u+212b) ==> u+00e5
2726        */
2727        if (ch < 256 &&
2728            !(has(CASE_INSENSITIVE) && has(UNICODE_CASE) &&
2729              (ch == 0xff || ch == 0xb5 ||
2730               ch == 0x49 || ch == 0x69 ||    //I and i
2731               ch == 0x53 || ch == 0x73 ||    //S and s
2732               ch == 0x4b || ch == 0x6b ||    //K and k
2733               ch == 0xc5 || ch == 0xe5))) {  //A+ring
2734            bits.add(ch, flags());
2735            return null;
2736        }
2737        return single(ch);
2738    }
2739
2740    /**
2741     *  Returns a suitably optimized, single character predicate
2742     */
2743    private CharPredicate single(final int ch) {
2744        if (has(CASE_INSENSITIVE)) {
2745            int lower, upper;
2746            if (has(UNICODE_CASE)) {
2747                upper = Character.toUpperCase(ch);
2748                lower = Character.toLowerCase(upper);
2749                // Unicode case insensitive matches
2750                if (upper != lower)
2751                    return SingleU(lower);
2752            } else if (ASCII.isAscii(ch)) {
2753                lower = ASCII.toLower(ch);
2754                upper = ASCII.toUpper(ch);
2755                // Case insensitive matches a given BMP character
2756                if (lower != upper)
2757                    return SingleI(lower, upper);
2758            }
2759        }
2760        if (isSupplementary(ch))
2761            return SingleS(ch);
2762        return Single(ch);  // Match a given BMP character
2763    }
2764
2765    /**
2766     * Parse a single character or a character range in a character class
2767     * and return its representative node.
2768     */
2769    private CharPredicate range(BitClass bits) {
2770        int ch = peek();
2771        if (ch == '\\') {
2772            ch = nextEscaped();
2773            if (ch == 'p' || ch == 'P') { // A property
2774                boolean comp = (ch == 'P');
2775                boolean oneLetter = true;
2776                // Consume { if present
2777                ch = next();
2778                if (ch != '{')
2779                    unread();
2780                else
2781                    oneLetter = false;
2782                return family(oneLetter, comp);
2783            } else { // ordinary escape
2784                boolean isrange = temp[cursor+1] == '-';
2785                unread();
2786                ch = escape(true, true, isrange);
2787                if (ch == -1)
2788                    return predicate;
2789            }
2790        } else {
2791            next();
2792        }
2793        if (ch >= 0) {
2794            if (peek() == '-') {
2795                int endRange = temp[cursor+1];
2796                if (endRange == '[') {
2797                    return bitsOrSingle(bits, ch);
2798                }
2799                if (endRange != ']') {
2800                    next();
2801                    int m = peek();
2802                    if (m == '\\') {
2803                        m = escape(true, false, true);
2804                    } else {
2805                        next();
2806                    }
2807                    if (m < ch) {
2808                        throw error("Illegal character range");
2809                    }
2810                    if (has(CASE_INSENSITIVE)) {
2811                        if (has(UNICODE_CASE))
2812                            return CIRangeU(ch, m);
2813                        return CIRange(ch, m);
2814                    } else {
2815                        return Range(ch, m);
2816                    }
2817                }
2818            }
2819            return bitsOrSingle(bits, ch);
2820        }
2821        throw error("Unexpected character '"+((char)ch)+"'");
2822    }
2823
2824    /**
2825     * Parses a Unicode character family and returns its representative node.
2826     */
2827    private CharPredicate family(boolean singleLetter, boolean isComplement) {
2828        next();
2829        String name;
2830        CharPredicate p = null;
2831
2832        if (singleLetter) {
2833            int c = temp[cursor];
2834            if (!Character.isSupplementaryCodePoint(c)) {
2835                name = String.valueOf((char)c);
2836            } else {
2837                name = new String(temp, cursor, 1);
2838            }
2839            read();
2840        } else {
2841            int i = cursor;
2842            mark('}');
2843            while(read() != '}') {
2844            }
2845            mark('\000');
2846            int j = cursor;
2847            if (j > patternLength)
2848                throw error("Unclosed character family");
2849            if (i + 1 >= j)
2850                throw error("Empty character family");
2851            name = new String(temp, i, j-i-1);
2852        }
2853
2854        int i = name.indexOf('=');
2855        if (i != -1) {
2856            // property construct \p{name=value}
2857            String value = name.substring(i + 1);
2858            name = name.substring(0, i).toLowerCase(Locale.ENGLISH);
2859            switch (name) {
2860                case "sc":
2861                case "script":
2862                    p = CharPredicates.forUnicodeScript(value);
2863                    break;
2864                case "blk":
2865                case "block":
2866                    p = CharPredicates.forUnicodeBlock(value);
2867                    break;
2868                case "gc":
2869                case "general_category":
2870                    p = CharPredicates.forProperty(value);
2871                    break;
2872                default:
2873                    break;
2874            }
2875            if (p == null)
2876                throw error("Unknown Unicode property {name=<" + name + ">, "
2877                             + "value=<" + value + ">}");
2878
2879        } else {
2880            if (name.startsWith("In")) {
2881                // \p{InBlockName}
2882                p = CharPredicates.forUnicodeBlock(name.substring(2));
2883            } else if (name.startsWith("Is")) {
2884                // \p{IsGeneralCategory} and \p{IsScriptName}
2885                name = name.substring(2);
2886                p = CharPredicates.forUnicodeProperty(name);
2887                if (p == null)
2888                    p = CharPredicates.forProperty(name);
2889                if (p == null)
2890                    p = CharPredicates.forUnicodeScript(name);
2891            } else {
2892                if (has(UNICODE_CHARACTER_CLASS)) {
2893                    p = CharPredicates.forPOSIXName(name);
2894                }
2895                if (p == null)
2896                    p = CharPredicates.forProperty(name);
2897            }
2898            if (p == null)
2899                throw error("Unknown character property name {In/Is" + name + "}");
2900        }
2901        if (isComplement) {
2902            // it might be too expensive to detect if a complement of
2903            // CharProperty can match "certain" supplementary. So just
2904            // go with StartS.
2905            hasSupplementary = true;
2906            p = p.negate();
2907        }
2908        return p;
2909    }
2910
2911    private CharProperty newCharProperty(CharPredicate p) {
2912        if (p == null)
2913            return null;
2914        if (p instanceof BmpCharPredicate)
2915            return new BmpCharProperty((BmpCharPredicate)p);
2916        else
2917            return new CharProperty(p);
2918    }
2919
2920    /**
2921     * Parses and returns the name of a "named capturing group", the trailing
2922     * ">" is consumed after parsing.
2923     */
2924    private String groupname(int ch) {
2925        StringBuilder sb = new StringBuilder();
2926        sb.append(Character.toChars(ch));
2927        while (ASCII.isLower(ch=read()) || ASCII.isUpper(ch) ||
2928               ASCII.isDigit(ch)) {
2929            sb.append(Character.toChars(ch));
2930        }
2931        if (sb.length() == 0)
2932            throw error("named capturing group has 0 length name");
2933        if (ch != '>')
2934            throw error("named capturing group is missing trailing '>'");
2935        return sb.toString();
2936    }
2937
2938    /**
2939     * Parses a group and returns the head node of a set of nodes that process
2940     * the group. Sometimes a double return system is used where the tail is
2941     * returned in root.
2942     */
2943    private Node group0() {
2944        boolean capturingGroup = false;
2945        Node head = null;
2946        Node tail = null;
2947        int save = flags;
2948        int saveTCNCount = topClosureNodes.size();
2949        root = null;
2950        int ch = next();
2951        if (ch == '?') {
2952            ch = skip();
2953            switch (ch) {
2954            case ':':   //  (?:xxx) pure group
2955                head = createGroup(true);
2956                tail = root;
2957                head.next = expr(tail);
2958                break;
2959            case '=':   // (?=xxx) and (?!xxx) lookahead
2960            case '!':
2961                head = createGroup(true);
2962                tail = root;
2963                head.next = expr(tail);
2964                if (ch == '=') {
2965                    head = tail = new Pos(head);
2966                } else {
2967                    head = tail = new Neg(head);
2968                }
2969                break;
2970            case '>':   // (?>xxx)  independent group
2971                head = createGroup(true);
2972                tail = root;
2973                head.next = expr(tail);
2974                head = tail = new Ques(head, Qtype.INDEPENDENT);
2975                break;
2976            case '<':   // (?<xxx)  look behind
2977                ch = read();
2978                if (ASCII.isLower(ch) || ASCII.isUpper(ch)) {
2979                    // named captured group
2980                    String name = groupname(ch);
2981                    if (namedGroups().containsKey(name))
2982                        throw error("Named capturing group <" + name
2983                                    + "> is already defined");
2984                    capturingGroup = true;
2985                    head = createGroup(false);
2986                    tail = root;
2987                    namedGroups().put(name, capturingGroupCount-1);
2988                    head.next = expr(tail);
2989                    break;
2990                }
2991                int start = cursor;
2992                head = createGroup(true);
2993                tail = root;
2994                head.next = expr(tail);
2995                tail.next = lookbehindEnd;
2996                TreeInfo info = new TreeInfo();
2997                head.study(info);
2998                if (info.maxValid == false) {
2999                    throw error("Look-behind group does not have "
3000                                + "an obvious maximum length");
3001                }
3002                boolean hasSupplementary = findSupplementary(start, patternLength);
3003                if (ch == '=') {
3004                    head = tail = (hasSupplementary ?
3005                                   new BehindS(head, info.maxLength,
3006                                               info.minLength) :
3007                                   new Behind(head, info.maxLength,
3008                                              info.minLength));
3009                } else if (ch == '!') {
3010                    head = tail = (hasSupplementary ?
3011                                   new NotBehindS(head, info.maxLength,
3012                                                  info.minLength) :
3013                                   new NotBehind(head, info.maxLength,
3014                                                 info.minLength));
3015                } else {
3016                    throw error("Unknown look-behind group");
3017                }
3018                // clear all top-closure-nodes inside lookbehind
3019                if (saveTCNCount < topClosureNodes.size())
3020                    topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3021                break;
3022            case '$':
3023            case '@':
3024                throw error("Unknown group type");
3025            default:    // (?xxx:) inlined match flags
3026                unread();
3027                addFlag();
3028                ch = read();
3029                if (ch == ')') {
3030                    return null;    // Inline modifier only
3031                }
3032                if (ch != ':') {
3033                    throw error("Unknown inline modifier");
3034                }
3035                head = createGroup(true);
3036                tail = root;
3037                head.next = expr(tail);
3038                break;
3039            }
3040        } else { // (xxx) a regular group
3041            capturingGroup = true;
3042            head = createGroup(false);
3043            tail = root;
3044            head.next = expr(tail);
3045        }
3046
3047        accept(')', "Unclosed group");
3048        flags = save;
3049
3050        // Check for quantifiers
3051        Node node = closure(head);
3052        if (node == head) { // No closure
3053            root = tail;
3054            return node;    // Dual return
3055        }
3056        if (head == tail) { // Zero length assertion
3057            root = node;
3058            return node;    // Dual return
3059        }
3060
3061        // have group closure, clear all inner closure nodes from the
3062        // top list (no backtracking stopper optimization for inner
3063        if (saveTCNCount < topClosureNodes.size())
3064            topClosureNodes.subList(saveTCNCount, topClosureNodes.size()).clear();
3065
3066        if (node instanceof Ques) {
3067            Ques ques = (Ques) node;
3068            if (ques.type == Qtype.POSSESSIVE) {
3069                root = node;
3070                return node;
3071            }
3072            tail.next = new BranchConn();
3073            tail = tail.next;
3074            if (ques.type == Qtype.GREEDY) {
3075                head = new Branch(head, null, tail);
3076            } else { // Reluctant quantifier
3077                head = new Branch(null, head, tail);
3078            }
3079            root = tail;
3080            return head;
3081        } else if (node instanceof Curly) {
3082            Curly curly = (Curly) node;
3083            if (curly.type == Qtype.POSSESSIVE) {
3084                root = node;
3085                return node;
3086            }
3087            // Discover if the group is deterministic
3088            TreeInfo info = new TreeInfo();
3089            if (head.study(info)) { // Deterministic
3090                GroupTail temp = (GroupTail) tail;
3091                head = root = new GroupCurly(head.next, curly.cmin,
3092                                   curly.cmax, curly.type,
3093                                   ((GroupTail)tail).localIndex,
3094                                   ((GroupTail)tail).groupIndex,
3095                                             capturingGroup);
3096                return head;
3097            } else { // Non-deterministic
3098                int temp = ((GroupHead) head).localIndex;
3099                Loop loop;
3100                if (curly.type == Qtype.GREEDY) {
3101                    loop = new Loop(this.localCount, temp);
3102                    // add the max_reps greedy to the top-closure-node list
3103                    if (curly.cmax == MAX_REPS)
3104                        topClosureNodes.add(loop);
3105                } else {  // Reluctant Curly
3106                    loop = new LazyLoop(this.localCount, temp);
3107                }
3108                Prolog prolog = new Prolog(loop);
3109                this.localCount += 1;
3110                loop.cmin = curly.cmin;
3111                loop.cmax = curly.cmax;
3112                loop.body = head;
3113                tail.next = loop;
3114                root = loop;
3115                return prolog; // Dual return
3116            }
3117        }
3118        throw error("Internal logic error");
3119    }
3120
3121    /**
3122     * Create group head and tail nodes using double return. If the group is
3123     * created with anonymous true then it is a pure group and should not
3124     * affect group counting.
3125     */
3126    private Node createGroup(boolean anonymous) {
3127        int localIndex = localCount++;
3128        int groupIndex = 0;
3129        if (!anonymous)
3130            groupIndex = capturingGroupCount++;
3131        GroupHead head = new GroupHead(localIndex);
3132        root = new GroupTail(localIndex, groupIndex);
3133
3134        // for debug/print only, head.match does NOT need the "tail" info
3135        head.tail = (GroupTail)root;
3136
3137        if (!anonymous && groupIndex < 10)
3138            groupNodes[groupIndex] = head;
3139        return head;
3140    }
3141
3142    @SuppressWarnings("fallthrough")
3143    /**
3144     * Parses inlined match flags and set them appropriately.
3145     */
3146    private void addFlag() {
3147        int ch = peek();
3148        for (;;) {
3149            switch (ch) {
3150            case 'i':
3151                flags |= CASE_INSENSITIVE;
3152                break;
3153            case 'm':
3154                flags |= MULTILINE;
3155                break;
3156            case 's':
3157                flags |= DOTALL;
3158                break;
3159            case 'd':
3160                flags |= UNIX_LINES;
3161                break;
3162            case 'u':
3163                flags |= UNICODE_CASE;
3164                break;
3165            case 'c':
3166                flags |= CANON_EQ;
3167                break;
3168            case 'x':
3169                flags |= COMMENTS;
3170                break;
3171            case 'U':
3172                flags |= (UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3173                break;
3174            case '-': // subFlag then fall through
3175                ch = next();
3176                subFlag();
3177            default:
3178                return;
3179            }
3180            ch = next();
3181        }
3182    }
3183
3184    @SuppressWarnings("fallthrough")
3185    /**
3186     * Parses the second part of inlined match flags and turns off
3187     * flags appropriately.
3188     */
3189    private void subFlag() {
3190        int ch = peek();
3191        for (;;) {
3192            switch (ch) {
3193            case 'i':
3194                flags &= ~CASE_INSENSITIVE;
3195                break;
3196            case 'm':
3197                flags &= ~MULTILINE;
3198                break;
3199            case 's':
3200                flags &= ~DOTALL;
3201                break;
3202            case 'd':
3203                flags &= ~UNIX_LINES;
3204                break;
3205            case 'u':
3206                flags &= ~UNICODE_CASE;
3207                break;
3208            case 'c':
3209                flags &= ~CANON_EQ;
3210                break;
3211            case 'x':
3212                flags &= ~COMMENTS;
3213                break;
3214            case 'U':
3215                flags &= ~(UNICODE_CHARACTER_CLASS | UNICODE_CASE);
3216                break;
3217            default:
3218                return;
3219            }
3220            ch = next();
3221        }
3222    }
3223
3224    static final int MAX_REPS   = 0x7FFFFFFF;
3225
3226    static enum Qtype {
3227        GREEDY, LAZY, POSSESSIVE, INDEPENDENT
3228    }
3229
3230    private Node curly(Node prev, int cmin) {
3231        int ch = next();
3232        if (ch == '?') {
3233            next();
3234            return new Curly(prev, cmin, MAX_REPS, Qtype.LAZY);
3235        } else if (ch == '+') {
3236            next();
3237            return new Curly(prev, cmin, MAX_REPS, Qtype.POSSESSIVE);
3238        }
3239        if (prev instanceof BmpCharProperty) {
3240            return new BmpCharPropertyGreedy((BmpCharProperty)prev, cmin);
3241        } else if (prev instanceof CharProperty) {
3242            return new CharPropertyGreedy((CharProperty)prev, cmin);
3243        }
3244        return new Curly(prev, cmin, MAX_REPS, Qtype.GREEDY);
3245    }
3246
3247    /**
3248     * Processes repetition. If the next character peeked is a quantifier
3249     * then new nodes must be appended to handle the repetition.
3250     * Prev could be a single or a group, so it could be a chain of nodes.
3251     */
3252    private Node closure(Node prev) {
3253        Node atom;
3254        int ch = peek();
3255        switch (ch) {
3256        case '?':
3257            ch = next();
3258            if (ch == '?') {
3259                next();
3260                return new Ques(prev, Qtype.LAZY);
3261            } else if (ch == '+') {
3262                next();
3263                return new Ques(prev, Qtype.POSSESSIVE);
3264            }
3265            return new Ques(prev, Qtype.GREEDY);
3266        case '*':
3267            return curly(prev, 0);
3268        case '+':
3269            return curly(prev, 1);
3270        case '{':
3271            ch = temp[cursor+1];
3272            if (ASCII.isDigit(ch)) {
3273                skip();
3274                int cmin = 0;
3275                do {
3276                    cmin = cmin * 10 + (ch - '0');
3277                } while (ASCII.isDigit(ch = read()));
3278                int cmax = cmin;
3279                if (ch == ',') {
3280                    ch = read();
3281                    cmax = MAX_REPS;
3282                    if (ch != '}') {
3283                        cmax = 0;
3284                        while (ASCII.isDigit(ch)) {
3285                            cmax = cmax * 10 + (ch - '0');
3286                            ch = read();
3287                        }
3288                    }
3289                }
3290                if (ch != '}')
3291                    throw error("Unclosed counted closure");
3292                if (((cmin) | (cmax) | (cmax - cmin)) < 0)
3293                    throw error("Illegal repetition range");
3294                Curly curly;
3295                ch = peek();
3296                if (ch == '?') {
3297                    next();
3298                    curly = new Curly(prev, cmin, cmax, Qtype.LAZY);
3299                } else if (ch == '+') {
3300                    next();
3301                    curly = new Curly(prev, cmin, cmax, Qtype.POSSESSIVE);
3302                } else {
3303                    curly = new Curly(prev, cmin, cmax, Qtype.GREEDY);
3304                }
3305                return curly;
3306            } else {
3307                throw error("Illegal repetition");
3308            }
3309        default:
3310            return prev;
3311        }
3312    }
3313
3314    /**
3315     *  Utility method for parsing control escape sequences.
3316     */
3317    private int c() {
3318        if (cursor < patternLength) {
3319            return read() ^ 64;
3320        }
3321        throw error("Illegal control escape sequence");
3322    }
3323
3324    /**
3325     *  Utility method for parsing octal escape sequences.
3326     */
3327    private int o() {
3328        int n = read();
3329        if (((n-'0')|('7'-n)) >= 0) {
3330            int m = read();
3331            if (((m-'0')|('7'-m)) >= 0) {
3332                int o = read();
3333                if ((((o-'0')|('7'-o)) >= 0) && (((n-'0')|('3'-n)) >= 0)) {
3334                    return (n - '0') * 64 + (m - '0') * 8 + (o - '0');
3335                }
3336                unread();
3337                return (n - '0') * 8 + (m - '0');
3338            }
3339            unread();
3340            return (n - '0');
3341        }
3342        throw error("Illegal octal escape sequence");
3343    }
3344
3345    /**
3346     *  Utility method for parsing hexadecimal escape sequences.
3347     */
3348    private int x() {
3349        int n = read();
3350        if (ASCII.isHexDigit(n)) {
3351            int m = read();
3352            if (ASCII.isHexDigit(m)) {
3353                return ASCII.toDigit(n) * 16 + ASCII.toDigit(m);
3354            }
3355        } else if (n == '{' && ASCII.isHexDigit(peek())) {
3356            int ch = 0;
3357            while (ASCII.isHexDigit(n = read())) {
3358                ch = (ch << 4) + ASCII.toDigit(n);
3359                if (ch > Character.MAX_CODE_POINT)
3360                    throw error("Hexadecimal codepoint is too big");
3361            }
3362            if (n != '}')
3363                throw error("Unclosed hexadecimal escape sequence");
3364            return ch;
3365        }
3366        throw error("Illegal hexadecimal escape sequence");
3367    }
3368
3369    /**
3370     *  Utility method for parsing unicode escape sequences.
3371     */
3372    private int cursor() {
3373        return cursor;
3374    }
3375
3376    private void setcursor(int pos) {
3377        cursor = pos;
3378    }
3379
3380    private int uxxxx() {
3381        int n = 0;
3382        for (int i = 0; i < 4; i++) {
3383            int ch = read();
3384            if (!ASCII.isHexDigit(ch)) {
3385                throw error("Illegal Unicode escape sequence");
3386            }
3387            n = n * 16 + ASCII.toDigit(ch);
3388        }
3389        return n;
3390    }
3391
3392    private int u() {
3393        int n = uxxxx();
3394        if (Character.isHighSurrogate((char)n)) {
3395            int cur = cursor();
3396            if (read() == '\\' && read() == 'u') {
3397                int n2 = uxxxx();
3398                if (Character.isLowSurrogate((char)n2))
3399                    return Character.toCodePoint((char)n, (char)n2);
3400            }
3401            setcursor(cur);
3402        }
3403        return n;
3404    }
3405
3406    private int N() {
3407        if (read() == '{') {
3408            int i = cursor;
3409            while (cursor < patternLength && read() != '}') {}
3410            if (cursor > patternLength)
3411                throw error("Unclosed character name escape sequence");
3412            String name = new String(temp, i, cursor - i - 1);
3413            try {
3414                return Character.codePointOf(name);
3415            } catch (IllegalArgumentException x) {
3416                throw error("Unknown character name [" + name + "]");
3417            }
3418        }
3419        throw error("Illegal character name escape sequence");
3420    }
3421
3422    //
3423    // Utility methods for code point support
3424    //
3425    private static final int countChars(CharSequence seq, int index,
3426                                        int lengthInCodePoints) {
3427        // optimization
3428        if (lengthInCodePoints == 1 && !Character.isHighSurrogate(seq.charAt(index))) {
3429            assert (index >= 0 && index < seq.length());
3430            return 1;
3431        }
3432        int length = seq.length();
3433        int x = index;
3434        if (lengthInCodePoints >= 0) {
3435            assert (index >= 0 && index < length);
3436            for (int i = 0; x < length && i < lengthInCodePoints; i++) {
3437                if (Character.isHighSurrogate(seq.charAt(x++))) {
3438                    if (x < length && Character.isLowSurrogate(seq.charAt(x))) {
3439                        x++;
3440                    }
3441                }
3442            }
3443            return x - index;
3444        }
3445
3446        assert (index >= 0 && index <= length);
3447        if (index == 0) {
3448            return 0;
3449        }
3450        int len = -lengthInCodePoints;
3451        for (int i = 0; x > 0 && i < len; i++) {
3452            if (Character.isLowSurrogate(seq.charAt(--x))) {
3453                if (x > 0 && Character.isHighSurrogate(seq.charAt(x-1))) {
3454                    x--;
3455                }
3456            }
3457        }
3458        return index - x;
3459    }
3460
3461    private static final int countCodePoints(CharSequence seq) {
3462        int length = seq.length();
3463        int n = 0;
3464        for (int i = 0; i < length; ) {
3465            n++;
3466            if (Character.isHighSurrogate(seq.charAt(i++))) {
3467                if (i < length && Character.isLowSurrogate(seq.charAt(i))) {
3468                    i++;
3469                }
3470            }
3471        }
3472        return n;
3473    }
3474
3475    /**
3476     *  Creates a bit vector for matching Latin-1 values. A normal BitClass
3477     *  never matches values above Latin-1, and a complemented BitClass always
3478     *  matches values above Latin-1.
3479     */
3480    static final class BitClass extends BmpCharProperty {
3481        final boolean[] bits;
3482        BitClass() {
3483            this(new boolean[256]);
3484        }
3485        private BitClass(boolean[] bits) {
3486            super( ch -> ch < 256 && bits[ch]);
3487            this.bits = bits;
3488        }
3489        BitClass add(int c, int flags) {
3490            assert c >= 0 && c <= 255;
3491            if ((flags & CASE_INSENSITIVE) != 0) {
3492                if (ASCII.isAscii(c)) {
3493                    bits[ASCII.toUpper(c)] = true;
3494                    bits[ASCII.toLower(c)] = true;
3495                } else if ((flags & UNICODE_CASE) != 0) {
3496                    bits[Character.toLowerCase(c)] = true;
3497                    bits[Character.toUpperCase(c)] = true;
3498                }
3499            }
3500            bits[c] = true;
3501            return this;
3502        }
3503    }
3504
3505    /**
3506     *  Utility method for creating a string slice matcher.
3507     */
3508    private Node newSlice(int[] buf, int count, boolean hasSupplementary) {
3509        int[] tmp = new int[count];
3510        if (has(CASE_INSENSITIVE)) {
3511            if (has(UNICODE_CASE)) {
3512                for (int i = 0; i < count; i++) {
3513                    tmp[i] = Character.toLowerCase(
3514                                 Character.toUpperCase(buf[i]));
3515                }
3516                return hasSupplementary? new SliceUS(tmp) : new SliceU(tmp);
3517            }
3518            for (int i = 0; i < count; i++) {
3519                tmp[i] = ASCII.toLower(buf[i]);
3520            }
3521            return hasSupplementary? new SliceIS(tmp) : new SliceI(tmp);
3522        }
3523        for (int i = 0; i < count; i++) {
3524            tmp[i] = buf[i];
3525        }
3526        return hasSupplementary ? new SliceS(tmp) : new Slice(tmp);
3527    }
3528
3529    /**
3530     * The following classes are the building components of the object
3531     * tree that represents a compiled regular expression. The object tree
3532     * is made of individual elements that handle constructs in the Pattern.
3533     * Each type of object knows how to match its equivalent construct with
3534     * the match() method.
3535     */
3536
3537    /**
3538     * Base class for all node classes. Subclasses should override the match()
3539     * method as appropriate. This class is an accepting node, so its match()
3540     * always returns true.
3541     */
3542    static class Node extends Object {
3543        Node next;
3544        Node() {
3545            next = Pattern.accept;
3546        }
3547        /**
3548         * This method implements the classic accept node.
3549         */
3550        boolean match(Matcher matcher, int i, CharSequence seq) {
3551            matcher.last = i;
3552            matcher.groups[0] = matcher.first;
3553            matcher.groups[1] = matcher.last;
3554            return true;
3555        }
3556        /**
3557         * This method is good for all zero length assertions.
3558         */
3559        boolean study(TreeInfo info) {
3560            if (next != null) {
3561                return next.study(info);
3562            } else {
3563                return info.deterministic;
3564            }
3565        }
3566    }
3567
3568    static class LastNode extends Node {
3569        /**
3570         * This method implements the classic accept node with
3571         * the addition of a check to see if the match occurred
3572         * using all of the input.
3573         */
3574        boolean match(Matcher matcher, int i, CharSequence seq) {
3575            if (matcher.acceptMode == Matcher.ENDANCHOR && i != matcher.to)
3576                return false;
3577            matcher.last = i;
3578            matcher.groups[0] = matcher.first;
3579            matcher.groups[1] = matcher.last;
3580            return true;
3581        }
3582    }
3583
3584    /**
3585     * Used for REs that can start anywhere within the input string.
3586     * This basically tries to match repeatedly at each spot in the
3587     * input string, moving forward after each try. An anchored search
3588     * or a BnM will bypass this node completely.
3589     */
3590    static class Start extends Node {
3591        int minLength;
3592        Start(Node node) {
3593            this.next = node;
3594            TreeInfo info = new TreeInfo();
3595            next.study(info);
3596            minLength = info.minLength;
3597        }
3598        boolean match(Matcher matcher, int i, CharSequence seq) {
3599            if (i > matcher.to - minLength) {
3600                matcher.hitEnd = true;
3601                return false;
3602            }
3603            int guard = matcher.to - minLength;
3604            for (; i <= guard; i++) {
3605                if (next.match(matcher, i, seq)) {
3606                    matcher.first = i;
3607                    matcher.groups[0] = matcher.first;
3608                    matcher.groups[1] = matcher.last;
3609                    return true;
3610                }
3611            }
3612            matcher.hitEnd = true;
3613            return false;
3614        }
3615        boolean study(TreeInfo info) {
3616            next.study(info);
3617            info.maxValid = false;
3618            info.deterministic = false;
3619            return false;
3620        }
3621    }
3622
3623    /*
3624     * StartS supports supplementary characters, including unpaired surrogates.
3625     */
3626    static final class StartS extends Start {
3627        StartS(Node node) {
3628            super(node);
3629        }
3630        boolean match(Matcher matcher, int i, CharSequence seq) {
3631            if (i > matcher.to - minLength) {
3632                matcher.hitEnd = true;
3633                return false;
3634            }
3635            int guard = matcher.to - minLength;
3636            while (i <= guard) {
3637                //if ((ret = next.match(matcher, i, seq)) || i == guard)
3638                if (next.match(matcher, i, seq)) {
3639                    matcher.first = i;
3640                    matcher.groups[0] = matcher.first;
3641                    matcher.groups[1] = matcher.last;
3642                    return true;
3643                }
3644                if (i == guard)
3645                    break;
3646                // Optimization to move to the next character. This is
3647                // faster than countChars(seq, i, 1).
3648                if (Character.isHighSurrogate(seq.charAt(i++))) {
3649                    if (i < seq.length() &&
3650                        Character.isLowSurrogate(seq.charAt(i))) {
3651                        i++;
3652                    }
3653                }
3654            }
3655            matcher.hitEnd = true;
3656            return false;
3657        }
3658    }
3659
3660    /**
3661     * Node to anchor at the beginning of input. This object implements the
3662     * match for a \A sequence, and the caret anchor will use this if not in
3663     * multiline mode.
3664     */
3665    static final class Begin extends Node {
3666        boolean match(Matcher matcher, int i, CharSequence seq) {
3667            int fromIndex = (matcher.anchoringBounds) ?
3668                matcher.from : 0;
3669            if (i == fromIndex && next.match(matcher, i, seq)) {
3670                matcher.first = i;
3671                matcher.groups[0] = i;
3672                matcher.groups[1] = matcher.last;
3673                return true;
3674            } else {
3675                return false;
3676            }
3677        }
3678    }
3679
3680    /**
3681     * Node to anchor at the end of input. This is the absolute end, so this
3682     * should not match at the last newline before the end as $ will.
3683     */
3684    static final class End extends Node {
3685        boolean match(Matcher matcher, int i, CharSequence seq) {
3686            int endIndex = (matcher.anchoringBounds) ?
3687                matcher.to : matcher.getTextLength();
3688            if (i == endIndex) {
3689                matcher.hitEnd = true;
3690                return next.match(matcher, i, seq);
3691            }
3692            return false;
3693        }
3694    }
3695
3696    /**
3697     * Node to anchor at the beginning of a line. This is essentially the
3698     * object to match for the multiline ^.
3699     */
3700    static final class Caret extends Node {
3701        boolean match(Matcher matcher, int i, CharSequence seq) {
3702            int startIndex = matcher.from;
3703            int endIndex = matcher.to;
3704            if (!matcher.anchoringBounds) {
3705                startIndex = 0;
3706                endIndex = matcher.getTextLength();
3707            }
3708            // Perl does not match ^ at end of input even after newline
3709            if (i == endIndex) {
3710                matcher.hitEnd = true;
3711                return false;
3712            }
3713            if (i > startIndex) {
3714                char ch = seq.charAt(i-1);
3715                if (ch != '\n' && ch != '\r'
3716                    && (ch|1) != '\u2029'
3717                    && ch != '\u0085' ) {
3718                    return false;
3719                }
3720                // Should treat /r/n as one newline
3721                if (ch == '\r' && seq.charAt(i) == '\n')
3722                    return false;
3723            }
3724            return next.match(matcher, i, seq);
3725        }
3726    }
3727
3728    /**
3729     * Node to anchor at the beginning of a line when in unixdot mode.
3730     */
3731    static final class UnixCaret extends Node {
3732        boolean match(Matcher matcher, int i, CharSequence seq) {
3733            int startIndex = matcher.from;
3734            int endIndex = matcher.to;
3735            if (!matcher.anchoringBounds) {
3736                startIndex = 0;
3737                endIndex = matcher.getTextLength();
3738            }
3739            // Perl does not match ^ at end of input even after newline
3740            if (i == endIndex) {
3741                matcher.hitEnd = true;
3742                return false;
3743            }
3744            if (i > startIndex) {
3745                char ch = seq.charAt(i-1);
3746                if (ch != '\n') {
3747                    return false;
3748                }
3749            }
3750            return next.match(matcher, i, seq);
3751        }
3752    }
3753
3754    /**
3755     * Node to match the location where the last match ended.
3756     * This is used for the \G construct.
3757     */
3758    static final class LastMatch extends Node {
3759        boolean match(Matcher matcher, int i, CharSequence seq) {
3760            if (i != matcher.oldLast)
3761                return false;
3762            return next.match(matcher, i, seq);
3763        }
3764    }
3765
3766    /**
3767     * Node to anchor at the end of a line or the end of input based on the
3768     * multiline mode.
3769     *
3770     * When not in multiline mode, the $ can only match at the very end
3771     * of the input, unless the input ends in a line terminator in which
3772     * it matches right before the last line terminator.
3773     *
3774     * Note that \r\n is considered an atomic line terminator.
3775     *
3776     * Like ^ the $ operator matches at a position, it does not match the
3777     * line terminators themselves.
3778     */
3779    static final class Dollar extends Node {
3780        boolean multiline;
3781        Dollar(boolean mul) {
3782            multiline = mul;
3783        }
3784        boolean match(Matcher matcher, int i, CharSequence seq) {
3785            int endIndex = (matcher.anchoringBounds) ?
3786                matcher.to : matcher.getTextLength();
3787            if (!multiline) {
3788                if (i < endIndex - 2)
3789                    return false;
3790                if (i == endIndex - 2) {
3791                    char ch = seq.charAt(i);
3792                    if (ch != '\r')
3793                        return false;
3794                    ch = seq.charAt(i + 1);
3795                    if (ch != '\n')
3796                        return false;
3797                }
3798            }
3799            // Matches before any line terminator; also matches at the
3800            // end of input
3801            // Before line terminator:
3802            // If multiline, we match here no matter what
3803            // If not multiline, fall through so that the end
3804            // is marked as hit; this must be a /r/n or a /n
3805            // at the very end so the end was hit; more input
3806            // could make this not match here
3807            if (i < endIndex) {
3808                char ch = seq.charAt(i);
3809                 if (ch == '\n') {
3810                     // No match between \r\n
3811                     if (i > 0 && seq.charAt(i-1) == '\r')
3812                         return false;
3813                     if (multiline)
3814                         return next.match(matcher, i, seq);
3815                 } else if (ch == '\r' || ch == '\u0085' ||
3816                            (ch|1) == '\u2029') {
3817                     if (multiline)
3818                         return next.match(matcher, i, seq);
3819                 } else { // No line terminator, no match
3820                     return false;
3821                 }
3822            }
3823            // Matched at current end so hit end
3824            matcher.hitEnd = true;
3825            // If a $ matches because of end of input, then more input
3826            // could cause it to fail!
3827            matcher.requireEnd = true;
3828            return next.match(matcher, i, seq);
3829        }
3830        boolean study(TreeInfo info) {
3831            next.study(info);
3832            return info.deterministic;
3833        }
3834    }
3835
3836    /**
3837     * Node to anchor at the end of a line or the end of input based on the
3838     * multiline mode when in unix lines mode.
3839     */
3840    static final class UnixDollar extends Node {
3841        boolean multiline;
3842        UnixDollar(boolean mul) {
3843            multiline = mul;
3844        }
3845        boolean match(Matcher matcher, int i, CharSequence seq) {
3846            int endIndex = (matcher.anchoringBounds) ?
3847                matcher.to : matcher.getTextLength();
3848            if (i < endIndex) {
3849                char ch = seq.charAt(i);
3850                if (ch == '\n') {
3851                    // If not multiline, then only possible to
3852                    // match at very end or one before end
3853                    if (multiline == false && i != endIndex - 1)
3854                        return false;
3855                    // If multiline return next.match without setting
3856                    // matcher.hitEnd
3857                    if (multiline)
3858                        return next.match(matcher, i, seq);
3859                } else {
3860                    return false;
3861                }
3862            }
3863            // Matching because at the end or 1 before the end;
3864            // more input could change this so set hitEnd
3865            matcher.hitEnd = true;
3866            // If a $ matches because of end of input, then more input
3867            // could cause it to fail!
3868            matcher.requireEnd = true;
3869            return next.match(matcher, i, seq);
3870        }
3871        boolean study(TreeInfo info) {
3872            next.study(info);
3873            return info.deterministic;
3874        }
3875    }
3876
3877    /**
3878     * Node class that matches a Unicode line ending '\R'
3879     */
3880    static final class LineEnding extends Node {
3881        boolean match(Matcher matcher, int i, CharSequence seq) {
3882            // (u+000Du+000A|[u+000Au+000Bu+000Cu+000Du+0085u+2028u+2029])
3883            if (i < matcher.to) {
3884                int ch = seq.charAt(i);
3885                if (ch == 0x0A || ch == 0x0B || ch == 0x0C ||
3886                    ch == 0x85 || ch == 0x2028 || ch == 0x2029)
3887                    return next.match(matcher, i + 1, seq);
3888                if (ch == 0x0D) {
3889                    i++;
3890                    if (i < matcher.to) {
3891                        if (seq.charAt(i) == 0x0A &&
3892                            next.match(matcher, i + 1, seq)) {
3893                            return true;
3894                        }
3895                    } else {
3896                        matcher.hitEnd = true;
3897                    }
3898                    return next.match(matcher, i, seq);
3899                }
3900            } else {
3901                matcher.hitEnd = true;
3902            }
3903            return false;
3904        }
3905        boolean study(TreeInfo info) {
3906            info.minLength++;
3907            info.maxLength += 2;
3908            return next.study(info);
3909        }
3910    }
3911
3912    /**
3913     * Abstract node class to match one character satisfying some
3914     * boolean property.
3915     */
3916    static class CharProperty extends Node {
3917        CharPredicate predicate;
3918
3919        CharProperty (CharPredicate predicate) {
3920            this.predicate = predicate;
3921        }
3922        boolean match(Matcher matcher, int i, CharSequence seq) {
3923            if (i < matcher.to) {
3924                int ch = Character.codePointAt(seq, i);
3925                return predicate.is(ch) &&
3926                       next.match(matcher, i + Character.charCount(ch), seq);
3927            } else {
3928                matcher.hitEnd = true;
3929                return false;
3930            }
3931        }
3932        boolean study(TreeInfo info) {
3933            info.minLength++;
3934            info.maxLength++;
3935            return next.study(info);
3936        }
3937    }
3938
3939    /**
3940     * Optimized version of CharProperty that works only for
3941     * properties never satisfied by Supplementary characters.
3942     */
3943    private static class BmpCharProperty extends CharProperty {
3944        BmpCharProperty (BmpCharPredicate predicate) {
3945            super(predicate);
3946        }
3947        boolean match(Matcher matcher, int i, CharSequence seq) {
3948            if (i < matcher.to) {
3949                return predicate.is(seq.charAt(i)) &&
3950                       next.match(matcher, i + 1, seq);
3951            } else {
3952                matcher.hitEnd = true;
3953                return false;
3954            }
3955        }
3956    }
3957
3958    private static class NFCCharProperty extends Node {
3959        CharPredicate predicate;
3960        NFCCharProperty (CharPredicate predicate) {
3961            this.predicate = predicate;
3962        }
3963
3964        boolean match(Matcher matcher, int i, CharSequence seq) {
3965            if (i < matcher.to) {
3966                int ch0 = Character.codePointAt(seq, i);
3967                int n = Character.charCount(ch0);
3968                int j = i + n;
3969                while (j < matcher.to) {
3970                    int ch1 = Character.codePointAt(seq, j);
3971                    if (Grapheme.isBoundary(ch0, ch1))
3972                        break;
3973                    ch0 = ch1;
3974                    j += Character.charCount(ch1);
3975                }
3976                if (i + n == j) {    // single, assume nfc cp
3977                    if (predicate.is(ch0))
3978                        return next.match(matcher, j, seq);
3979                } else {
3980                    while (i + n < j) {
3981                        String nfc = Normalizer.normalize(
3982                            seq.toString().substring(i, j), Normalizer.Form.NFC);
3983                        if (nfc.codePointCount(0, nfc.length()) == 1) {
3984                            if (predicate.is(nfc.codePointAt(0)) &&
3985                                next.match(matcher, j, seq)) {
3986                                return true;
3987                            }
3988                        }
3989
3990                        ch0 = Character.codePointBefore(seq, j);
3991                        j -= Character.charCount(ch0);
3992                    }
3993                }
3994                if (j < matcher.to)
3995                    return false;
3996            }
3997            matcher.hitEnd = true;
3998            return false;
3999        }
4000
4001        boolean study(TreeInfo info) {
4002            info.minLength++;
4003            info.deterministic = false;
4004            return next.study(info);
4005        }
4006    }
4007
4008    /**
4009     * Node class that matches an unicode extended grapheme cluster
4010     */
4011    static class XGrapheme extends Node {
4012        boolean match(Matcher matcher, int i, CharSequence seq) {
4013            if (i < matcher.to) {
4014                int ch0 = Character.codePointAt(seq, i);
4015                    i += Character.charCount(ch0);
4016                while (i < matcher.to) {
4017                    int ch1 = Character.codePointAt(seq, i);
4018                    if (Grapheme.isBoundary(ch0, ch1))
4019                        break;
4020                    ch0 = ch1;
4021                    i += Character.charCount(ch1);
4022                }
4023                return next.match(matcher, i, seq);
4024            }
4025            matcher.hitEnd = true;
4026            return false;
4027        }
4028
4029        boolean study(TreeInfo info) {
4030            info.minLength++;
4031            info.deterministic = false;
4032            return next.study(info);
4033        }
4034    }
4035
4036    /**
4037     * Node class that handles grapheme boundaries
4038     */
4039    static class GraphemeBound extends Node {
4040        boolean match(Matcher matcher, int i, CharSequence seq) {
4041            int startIndex = matcher.from;
4042            int endIndex = matcher.to;
4043            if (matcher.transparentBounds) {
4044                startIndex = 0;
4045                endIndex = matcher.getTextLength();
4046            }
4047            if (i == startIndex) {
4048                return next.match(matcher, i, seq);
4049            }
4050            if (i < endIndex) {
4051                if (Character.isSurrogatePair(seq.charAt(i-1), seq.charAt(i)) ||
4052                    !Grapheme.isBoundary(Character.codePointBefore(seq, i),
4053                                         Character.codePointAt(seq, i))) {
4054                    return false;
4055                }
4056            } else {
4057                matcher.hitEnd = true;
4058                matcher.requireEnd = true;
4059            }
4060            return next.match(matcher, i, seq);
4061        }
4062    }
4063
4064    /**
4065     * Base class for all Slice nodes
4066     */
4067    static class SliceNode extends Node {
4068        int[] buffer;
4069        SliceNode(int[] buf) {
4070            buffer = buf;
4071        }
4072        boolean study(TreeInfo info) {
4073            info.minLength += buffer.length;
4074            info.maxLength += buffer.length;
4075            return next.study(info);
4076        }
4077    }
4078
4079    /**
4080     * Node class for a case sensitive/BMP-only sequence of literal
4081     * characters.
4082     */
4083    static class Slice extends SliceNode {
4084        Slice(int[] buf) {
4085            super(buf);
4086        }
4087        boolean match(Matcher matcher, int i, CharSequence seq) {
4088            int[] buf = buffer;
4089            int len = buf.length;
4090            for (int j=0; j<len; j++) {
4091                if ((i+j) >= matcher.to) {
4092                    matcher.hitEnd = true;
4093                    return false;
4094                }
4095                if (buf[j] != seq.charAt(i+j))
4096                    return false;
4097            }
4098            return next.match(matcher, i+len, seq);
4099        }
4100    }
4101
4102    /**
4103     * Node class for a case_insensitive/BMP-only sequence of literal
4104     * characters.
4105     */
4106    static class SliceI extends SliceNode {
4107        SliceI(int[] buf) {
4108            super(buf);
4109        }
4110        boolean match(Matcher matcher, int i, CharSequence seq) {
4111            int[] buf = buffer;
4112            int len = buf.length;
4113            for (int j=0; j<len; j++) {
4114                if ((i+j) >= matcher.to) {
4115                    matcher.hitEnd = true;
4116                    return false;
4117                }
4118                int c = seq.charAt(i+j);
4119                if (buf[j] != c &&
4120                    buf[j] != ASCII.toLower(c))
4121                    return false;
4122            }
4123            return next.match(matcher, i+len, seq);
4124        }
4125    }
4126
4127    /**
4128     * Node class for a unicode_case_insensitive/BMP-only sequence of
4129     * literal characters. Uses unicode case folding.
4130     */
4131    static final class SliceU extends SliceNode {
4132        SliceU(int[] buf) {
4133            super(buf);
4134        }
4135        boolean match(Matcher matcher, int i, CharSequence seq) {
4136            int[] buf = buffer;
4137            int len = buf.length;
4138            for (int j=0; j<len; j++) {
4139                if ((i+j) >= matcher.to) {
4140                    matcher.hitEnd = true;
4141                    return false;
4142                }
4143                int c = seq.charAt(i+j);
4144                if (buf[j] != c &&
4145                    buf[j] != Character.toLowerCase(Character.toUpperCase(c)))
4146                    return false;
4147            }
4148            return next.match(matcher, i+len, seq);
4149        }
4150    }
4151
4152    /**
4153     * Node class for a case sensitive sequence of literal characters
4154     * including supplementary characters.
4155     */
4156    static final class SliceS extends Slice {
4157        SliceS(int[] buf) {
4158            super(buf);
4159        }
4160        boolean match(Matcher matcher, int i, CharSequence seq) {
4161            int[] buf = buffer;
4162            int x = i;
4163            for (int j = 0; j < buf.length; j++) {
4164                if (x >= matcher.to) {
4165                    matcher.hitEnd = true;
4166                    return false;
4167                }
4168                int c = Character.codePointAt(seq, x);
4169                if (buf[j] != c)
4170                    return false;
4171                x += Character.charCount(c);
4172                if (x > matcher.to) {
4173                    matcher.hitEnd = true;
4174                    return false;
4175                }
4176            }
4177            return next.match(matcher, x, seq);
4178        }
4179    }
4180
4181    /**
4182     * Node class for a case insensitive sequence of literal characters
4183     * including supplementary characters.
4184     */
4185    static class SliceIS extends SliceNode {
4186        SliceIS(int[] buf) {
4187            super(buf);
4188        }
4189        int toLower(int c) {
4190            return ASCII.toLower(c);
4191        }
4192        boolean match(Matcher matcher, int i, CharSequence seq) {
4193            int[] buf = buffer;
4194            int x = i;
4195            for (int j = 0; j < buf.length; j++) {
4196                if (x >= matcher.to) {
4197                    matcher.hitEnd = true;
4198                    return false;
4199                }
4200                int c = Character.codePointAt(seq, x);
4201                if (buf[j] != c && buf[j] != toLower(c))
4202                    return false;
4203                x += Character.charCount(c);
4204                if (x > matcher.to) {
4205                    matcher.hitEnd = true;
4206                    return false;
4207                }
4208            }
4209            return next.match(matcher, x, seq);
4210        }
4211    }
4212
4213    /**
4214     * Node class for a case insensitive sequence of literal characters.
4215     * Uses unicode case folding.
4216     */
4217    static final class SliceUS extends SliceIS {
4218        SliceUS(int[] buf) {
4219            super(buf);
4220        }
4221        int toLower(int c) {
4222            return Character.toLowerCase(Character.toUpperCase(c));
4223        }
4224    }
4225
4226    /**
4227     * The 0 or 1 quantifier. This one class implements all three types.
4228     */
4229    static final class Ques extends Node {
4230        Node atom;
4231        Qtype type;
4232        Ques(Node node, Qtype type) {
4233            this.atom = node;
4234            this.type = type;
4235        }
4236        boolean match(Matcher matcher, int i, CharSequence seq) {
4237            switch (type) {
4238            case GREEDY:
4239                return (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq))
4240                    || next.match(matcher, i, seq);
4241            case LAZY:
4242                return next.match(matcher, i, seq)
4243                    || (atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq));
4244            case POSSESSIVE:
4245                if (atom.match(matcher, i, seq)) i = matcher.last;
4246                return next.match(matcher, i, seq);
4247            default:
4248                return atom.match(matcher, i, seq) && next.match(matcher, matcher.last, seq);
4249            }
4250        }
4251        boolean study(TreeInfo info) {
4252            if (type != Qtype.INDEPENDENT) {
4253                int minL = info.minLength;
4254                atom.study(info);
4255                info.minLength = minL;
4256                info.deterministic = false;
4257                return next.study(info);
4258            } else {
4259                atom.study(info);
4260                return next.study(info);
4261            }
4262        }
4263    }
4264
4265    /**
4266     * Handles the greedy style repetition with the minimum either be
4267     * 0 or 1 and the maximum be MAX_REPS, for * and + quantifier.
4268     */
4269    static class CharPropertyGreedy extends Node {
4270        final CharPredicate predicate;
4271        final int cmin;
4272
4273        CharPropertyGreedy(CharProperty cp, int cmin) {
4274            this.predicate = cp.predicate;
4275            this.cmin = cmin;
4276        }
4277        boolean match(Matcher matcher, int i,  CharSequence seq) {
4278            int n = 0;
4279            int to = matcher.to;
4280            // greedy, all the way down
4281            while (i < to) {
4282                int ch = Character.codePointAt(seq, i);
4283                if (!predicate.is(ch))
4284                   break;
4285                i += Character.charCount(ch);
4286                n++;
4287            }
4288            if (i >= to) {
4289                matcher.hitEnd = true;
4290            }
4291            while (n >= cmin) {
4292                if (next.match(matcher, i, seq))
4293                    return true;
4294                if (n == cmin)
4295                    return false;
4296                 // backing off if match fails
4297                int ch = Character.codePointBefore(seq, i);
4298                i -= Character.charCount(ch);
4299                n--;
4300            }
4301            return false;
4302        }
4303
4304        boolean study(TreeInfo info) {
4305            info.minLength += cmin;
4306            if (info.maxValid) {
4307                info.maxLength += MAX_REPS;
4308            }
4309            info.deterministic = false;
4310            return next.study(info);
4311        }
4312    }
4313
4314    static final class BmpCharPropertyGreedy extends CharPropertyGreedy {
4315
4316        BmpCharPropertyGreedy(BmpCharProperty bcp, int cmin) {
4317            super(bcp, cmin);
4318        }
4319
4320        boolean match(Matcher matcher, int i,  CharSequence seq) {
4321            int n = 0;
4322            int to = matcher.to;
4323            while (i < to && predicate.is(seq.charAt(i))) {
4324                i++; n++;
4325            }
4326            if (i >= to) {
4327                matcher.hitEnd = true;
4328            }
4329            while (n >= cmin) {
4330                if (next.match(matcher, i, seq))
4331                    return true;
4332                i--; n--;  // backing off if match fails
4333            }
4334            return false;
4335        }
4336    }
4337
4338    /**
4339     * Handles the curly-brace style repetition with a specified minimum and
4340     * maximum occurrences. The * quantifier is handled as a special case.
4341     * This class handles the three types.
4342     */
4343    static final class Curly extends Node {
4344        Node atom;
4345        Qtype type;
4346        int cmin;
4347        int cmax;
4348
4349        Curly(Node node, int cmin, int cmax, Qtype type) {
4350            this.atom = node;
4351            this.type = type;
4352            this.cmin = cmin;
4353            this.cmax = cmax;
4354        }
4355        boolean match(Matcher matcher, int i, CharSequence seq) {
4356            int j;
4357            for (j = 0; j < cmin; j++) {
4358                if (atom.match(matcher, i, seq)) {
4359                    i = matcher.last;
4360                    continue;
4361                }
4362                return false;
4363            }
4364            if (type == Qtype.GREEDY)
4365                return match0(matcher, i, j, seq);
4366            else if (type == Qtype.LAZY)
4367                return match1(matcher, i, j, seq);
4368            else
4369                return match2(matcher, i, j, seq);
4370        }
4371        // Greedy match.
4372        // i is the index to start matching at
4373        // j is the number of atoms that have matched
4374        boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4375            if (j >= cmax) {
4376                // We have matched the maximum... continue with the rest of
4377                // the regular expression
4378                return next.match(matcher, i, seq);
4379            }
4380            int backLimit = j;
4381            while (atom.match(matcher, i, seq)) {
4382                // k is the length of this match
4383                int k = matcher.last - i;
4384                if (k == 0) // Zero length match
4385                    break;
4386                // Move up index and number matched
4387                i = matcher.last;
4388                j++;
4389                // We are greedy so match as many as we can
4390                while (j < cmax) {
4391                    if (!atom.match(matcher, i, seq))
4392                        break;
4393                    if (i + k != matcher.last) {
4394                        if (match0(matcher, matcher.last, j+1, seq))
4395                            return true;
4396                        break;
4397                    }
4398                    i += k;
4399                    j++;
4400                }
4401                // Handle backing off if match fails
4402                while (j >= backLimit) {
4403                   if (next.match(matcher, i, seq))
4404                        return true;
4405                    i -= k;
4406                    j--;
4407                }
4408                return false;
4409            }
4410            return next.match(matcher, i, seq);
4411        }
4412        // Reluctant match. At this point, the minimum has been satisfied.
4413        // i is the index to start matching at
4414        // j is the number of atoms that have matched
4415        boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4416            for (;;) {
4417                // Try finishing match without consuming any more
4418                if (next.match(matcher, i, seq))
4419                    return true;
4420                // At the maximum, no match found
4421                if (j >= cmax)
4422                    return false;
4423                // Okay, must try one more atom
4424                if (!atom.match(matcher, i, seq))
4425                    return false;
4426                // If we haven't moved forward then must break out
4427                if (i == matcher.last)
4428                    return false;
4429                // Move up index and number matched
4430                i = matcher.last;
4431                j++;
4432            }
4433        }
4434        boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4435            for (; j < cmax; j++) {
4436                if (!atom.match(matcher, i, seq))
4437                    break;
4438                if (i == matcher.last)
4439                    break;
4440                i = matcher.last;
4441            }
4442            return next.match(matcher, i, seq);
4443        }
4444        boolean study(TreeInfo info) {
4445            // Save original info
4446            int minL = info.minLength;
4447            int maxL = info.maxLength;
4448            boolean maxV = info.maxValid;
4449            boolean detm = info.deterministic;
4450            info.reset();
4451
4452            atom.study(info);
4453
4454            int temp = info.minLength * cmin + minL;
4455            if (temp < minL) {
4456                temp = 0xFFFFFFF; // arbitrary large number
4457            }
4458            info.minLength = temp;
4459
4460            if (maxV & info.maxValid) {
4461                temp = info.maxLength * cmax + maxL;
4462                info.maxLength = temp;
4463                if (temp < maxL) {
4464                    info.maxValid = false;
4465                }
4466            } else {
4467                info.maxValid = false;
4468            }
4469
4470            if (info.deterministic && cmin == cmax)
4471                info.deterministic = detm;
4472            else
4473                info.deterministic = false;
4474            return next.study(info);
4475        }
4476    }
4477
4478    /**
4479     * Handles the curly-brace style repetition with a specified minimum and
4480     * maximum occurrences in deterministic cases. This is an iterative
4481     * optimization over the Prolog and Loop system which would handle this
4482     * in a recursive way. The * quantifier is handled as a special case.
4483     * If capture is true then this class saves group settings and ensures
4484     * that groups are unset when backing off of a group match.
4485     */
4486    static final class GroupCurly extends Node {
4487        Node atom;
4488        Qtype type;
4489        int cmin;
4490        int cmax;
4491        int localIndex;
4492        int groupIndex;
4493        boolean capture;
4494
4495        GroupCurly(Node node, int cmin, int cmax, Qtype type, int local,
4496                   int group, boolean capture) {
4497            this.atom = node;
4498            this.type = type;
4499            this.cmin = cmin;
4500            this.cmax = cmax;
4501            this.localIndex = local;
4502            this.groupIndex = group;
4503            this.capture = capture;
4504        }
4505        boolean match(Matcher matcher, int i, CharSequence seq) {
4506            int[] groups = matcher.groups;
4507            int[] locals = matcher.locals;
4508            int save0 = locals[localIndex];
4509            int save1 = 0;
4510            int save2 = 0;
4511
4512            if (capture) {
4513                save1 = groups[groupIndex];
4514                save2 = groups[groupIndex+1];
4515            }
4516
4517            // Notify GroupTail there is no need to setup group info
4518            // because it will be set here
4519            locals[localIndex] = -1;
4520
4521            boolean ret = true;
4522            for (int j = 0; j < cmin; j++) {
4523                if (atom.match(matcher, i, seq)) {
4524                    if (capture) {
4525                        groups[groupIndex] = i;
4526                        groups[groupIndex+1] = matcher.last;
4527                    }
4528                    i = matcher.last;
4529                } else {
4530                    ret = false;
4531                    break;
4532                }
4533            }
4534            if (ret) {
4535                if (type == Qtype.GREEDY) {
4536                    ret = match0(matcher, i, cmin, seq);
4537                } else if (type == Qtype.LAZY) {
4538                    ret = match1(matcher, i, cmin, seq);
4539                } else {
4540                    ret = match2(matcher, i, cmin, seq);
4541                }
4542            }
4543            if (!ret) {
4544                locals[localIndex] = save0;
4545                if (capture) {
4546                    groups[groupIndex] = save1;
4547                    groups[groupIndex+1] = save2;
4548                }
4549            }
4550            return ret;
4551        }
4552        // Aggressive group match
4553        boolean match0(Matcher matcher, int i, int j, CharSequence seq) {
4554            // don't back off passing the starting "j"
4555            int min = j;
4556            int[] groups = matcher.groups;
4557            int save0 = 0;
4558            int save1 = 0;
4559            if (capture) {
4560                save0 = groups[groupIndex];
4561                save1 = groups[groupIndex+1];
4562            }
4563            for (;;) {
4564                if (j >= cmax)
4565                    break;
4566                if (!atom.match(matcher, i, seq))
4567                    break;
4568                int k = matcher.last - i;
4569                if (k <= 0) {
4570                    if (capture) {
4571                        groups[groupIndex] = i;
4572                        groups[groupIndex+1] = i + k;
4573                    }
4574                    i = i + k;
4575                    break;
4576                }
4577                for (;;) {
4578                    if (capture) {
4579                        groups[groupIndex] = i;
4580                        groups[groupIndex+1] = i + k;
4581                    }
4582                    i = i + k;
4583                    if (++j >= cmax)
4584                        break;
4585                    if (!atom.match(matcher, i, seq))
4586                        break;
4587                    if (i + k != matcher.last) {
4588                        if (match0(matcher, i, j, seq))
4589                            return true;
4590                        break;
4591                    }
4592                }
4593                while (j > min) {
4594                    if (next.match(matcher, i, seq)) {
4595                        if (capture) {
4596                            groups[groupIndex+1] = i;
4597                            groups[groupIndex] = i - k;
4598                        }
4599                        return true;
4600                    }
4601                    // backing off
4602                    i = i - k;
4603                    if (capture) {
4604                        groups[groupIndex+1] = i;
4605                        groups[groupIndex] = i - k;
4606                    }
4607                    j--;
4608
4609                }
4610                break;
4611            }
4612            if (capture) {
4613                groups[groupIndex] = save0;
4614                groups[groupIndex+1] = save1;
4615            }
4616            return next.match(matcher, i, seq);
4617        }
4618        // Reluctant matching
4619        boolean match1(Matcher matcher, int i, int j, CharSequence seq) {
4620            for (;;) {
4621                if (next.match(matcher, i, seq))
4622                    return true;
4623                if (j >= cmax)
4624                    return false;
4625                if (!atom.match(matcher, i, seq))
4626                    return false;
4627                if (i == matcher.last)
4628                    return false;
4629                if (capture) {
4630                    matcher.groups[groupIndex] = i;
4631                    matcher.groups[groupIndex+1] = matcher.last;
4632                }
4633                i = matcher.last;
4634                j++;
4635            }
4636        }
4637        // Possessive matching
4638        boolean match2(Matcher matcher, int i, int j, CharSequence seq) {
4639            for (; j < cmax; j++) {
4640                if (!atom.match(matcher, i, seq)) {
4641                    break;
4642                }
4643                if (capture) {
4644                    matcher.groups[groupIndex] = i;
4645                    matcher.groups[groupIndex+1] = matcher.last;
4646                }
4647                if (i == matcher.last) {
4648                    break;
4649                }
4650                i = matcher.last;
4651            }
4652            return next.match(matcher, i, seq);
4653        }
4654        boolean study(TreeInfo info) {
4655            // Save original info
4656            int minL = info.minLength;
4657            int maxL = info.maxLength;
4658            boolean maxV = info.maxValid;
4659            boolean detm = info.deterministic;
4660            info.reset();
4661
4662            atom.study(info);
4663
4664            int temp = info.minLength * cmin + minL;
4665            if (temp < minL) {
4666                temp = 0xFFFFFFF; // Arbitrary large number
4667            }
4668            info.minLength = temp;
4669
4670            if (maxV & info.maxValid) {
4671                temp = info.maxLength * cmax + maxL;
4672                info.maxLength = temp;
4673                if (temp < maxL) {
4674                    info.maxValid = false;
4675                }
4676            } else {
4677                info.maxValid = false;
4678            }
4679
4680            if (info.deterministic && cmin == cmax) {
4681                info.deterministic = detm;
4682            } else {
4683                info.deterministic = false;
4684            }
4685            return next.study(info);
4686        }
4687    }
4688
4689    /**
4690     * A Guard node at the end of each atom node in a Branch. It
4691     * serves the purpose of chaining the "match" operation to
4692     * "next" but not the "study", so we can collect the TreeInfo
4693     * of each atom node without including the TreeInfo of the
4694     * "next".
4695     */
4696    static final class BranchConn extends Node {
4697        BranchConn() {};
4698        boolean match(Matcher matcher, int i, CharSequence seq) {
4699            return next.match(matcher, i, seq);
4700        }
4701        boolean study(TreeInfo info) {
4702            return info.deterministic;
4703        }
4704    }
4705
4706    /**
4707     * Handles the branching of alternations. Note this is also used for
4708     * the ? quantifier to branch between the case where it matches once
4709     * and where it does not occur.
4710     */
4711    static final class Branch extends Node {
4712        Node[] atoms = new Node[2];
4713        int size = 2;
4714        Node conn;
4715        Branch(Node first, Node second, Node branchConn) {
4716            conn = branchConn;
4717            atoms[0] = first;
4718            atoms[1] = second;
4719        }
4720
4721        void add(Node node) {
4722            if (size >= atoms.length) {
4723                Node[] tmp = new Node[atoms.length*2];
4724                System.arraycopy(atoms, 0, tmp, 0, atoms.length);
4725                atoms = tmp;
4726            }
4727            atoms[size++] = node;
4728        }
4729
4730        boolean match(Matcher matcher, int i, CharSequence seq) {
4731            for (int n = 0; n < size; n++) {
4732                if (atoms[n] == null) {
4733                    if (conn.next.match(matcher, i, seq))
4734                        return true;
4735                } else if (atoms[n].match(matcher, i, seq)) {
4736                    return true;
4737                }
4738            }
4739            return false;
4740        }
4741
4742        boolean study(TreeInfo info) {
4743            int minL = info.minLength;
4744            int maxL = info.maxLength;
4745            boolean maxV = info.maxValid;
4746
4747            int minL2 = Integer.MAX_VALUE; //arbitrary large enough num
4748            int maxL2 = -1;
4749            for (int n = 0; n < size; n++) {
4750                info.reset();
4751                if (atoms[n] != null)
4752                    atoms[n].study(info);
4753                minL2 = Math.min(minL2, info.minLength);
4754                maxL2 = Math.max(maxL2, info.maxLength);
4755                maxV = (maxV & info.maxValid);
4756            }
4757
4758            minL += minL2;
4759            maxL += maxL2;
4760
4761            info.reset();
4762            conn.next.study(info);
4763
4764            info.minLength += minL;
4765            info.maxLength += maxL;
4766            info.maxValid &= maxV;
4767            info.deterministic = false;
4768            return false;
4769        }
4770    }
4771
4772    /**
4773     * The GroupHead saves the location where the group begins in the locals
4774     * and restores them when the match is done.
4775     *
4776     * The matchRef is used when a reference to this group is accessed later
4777     * in the expression. The locals will have a negative value in them to
4778     * indicate that we do not want to unset the group if the reference
4779     * doesn't match.
4780     */
4781    static final class GroupHead extends Node {
4782        int localIndex;
4783        GroupTail tail;    // for debug/print only, match does not need to know
4784        GroupHead(int localCount) {
4785            localIndex = localCount;
4786        }
4787        boolean match(Matcher matcher, int i, CharSequence seq) {
4788            int save = matcher.locals[localIndex];
4789            matcher.locals[localIndex] = i;
4790            boolean ret = next.match(matcher, i, seq);
4791            matcher.locals[localIndex] = save;
4792            return ret;
4793        }
4794        boolean matchRef(Matcher matcher, int i, CharSequence seq) {
4795            int save = matcher.locals[localIndex];
4796            matcher.locals[localIndex] = ~i; // HACK
4797            boolean ret = next.match(matcher, i, seq);
4798            matcher.locals[localIndex] = save;
4799            return ret;
4800        }
4801    }
4802
4803    /**
4804     * Recursive reference to a group in the regular expression. It calls
4805     * matchRef because if the reference fails to match we would not unset
4806     * the group.
4807     */
4808    static final class GroupRef extends Node {
4809        GroupHead head;
4810        GroupRef(GroupHead head) {
4811            this.head = head;
4812        }
4813        boolean match(Matcher matcher, int i, CharSequence seq) {
4814            return head.matchRef(matcher, i, seq)
4815                && next.match(matcher, matcher.last, seq);
4816        }
4817        boolean study(TreeInfo info) {
4818            info.maxValid = false;
4819            info.deterministic = false;
4820            return next.study(info);
4821        }
4822    }
4823
4824    /**
4825     * The GroupTail handles the setting of group beginning and ending
4826     * locations when groups are successfully matched. It must also be able to
4827     * unset groups that have to be backed off of.
4828     *
4829     * The GroupTail node is also used when a previous group is referenced,
4830     * and in that case no group information needs to be set.
4831     */
4832    static final class GroupTail extends Node {
4833        int localIndex;
4834        int groupIndex;
4835        GroupTail(int localCount, int groupCount) {
4836            localIndex = localCount;
4837            groupIndex = groupCount + groupCount;
4838        }
4839        boolean match(Matcher matcher, int i, CharSequence seq) {
4840            int tmp = matcher.locals[localIndex];
4841            if (tmp >= 0) { // This is the normal group case.
4842                // Save the group so we can unset it if it
4843                // backs off of a match.
4844                int groupStart = matcher.groups[groupIndex];
4845                int groupEnd = matcher.groups[groupIndex+1];
4846
4847                matcher.groups[groupIndex] = tmp;
4848                matcher.groups[groupIndex+1] = i;
4849                if (next.match(matcher, i, seq)) {
4850                    return true;
4851                }
4852                matcher.groups[groupIndex] = groupStart;
4853                matcher.groups[groupIndex+1] = groupEnd;
4854                return false;
4855            } else {
4856                // This is a group reference case. We don't need to save any
4857                // group info because it isn't really a group.
4858                matcher.last = i;
4859                return true;
4860            }
4861        }
4862    }
4863
4864    /**
4865     * This sets up a loop to handle a recursive quantifier structure.
4866     */
4867    static final class Prolog extends Node {
4868        Loop loop;
4869        Prolog(Loop loop) {
4870            this.loop = loop;
4871        }
4872        boolean match(Matcher matcher, int i, CharSequence seq) {
4873            return loop.matchInit(matcher, i, seq);
4874        }
4875        boolean study(TreeInfo info) {
4876            return loop.study(info);
4877        }
4878    }
4879
4880    /**
4881     * Handles the repetition count for a greedy Curly. The matchInit
4882     * is called from the Prolog to save the index of where the group
4883     * beginning is stored. A zero length group check occurs in the
4884     * normal match but is skipped in the matchInit.
4885     */
4886    static class Loop extends Node {
4887        Node body;
4888        int countIndex; // local count index in matcher locals
4889        int beginIndex; // group beginning index
4890        int cmin, cmax;
4891        int posIndex;
4892        Loop(int countIndex, int beginIndex) {
4893            this.countIndex = countIndex;
4894            this.beginIndex = beginIndex;
4895            this.posIndex = -1;
4896        }
4897        boolean match(Matcher matcher, int i, CharSequence seq) {
4898            // Avoid infinite loop in zero-length case.
4899            if (i > matcher.locals[beginIndex]) {
4900                int count = matcher.locals[countIndex];
4901
4902                // This block is for before we reach the minimum
4903                // iterations required for the loop to match
4904                if (count < cmin) {
4905                    matcher.locals[countIndex] = count + 1;
4906                    boolean b = body.match(matcher, i, seq);
4907                    // If match failed we must backtrack, so
4908                    // the loop count should NOT be incremented
4909                    if (!b)
4910                        matcher.locals[countIndex] = count;
4911                    // Return success or failure since we are under
4912                    // minimum
4913                    return b;
4914                }
4915                // This block is for after we have the minimum
4916                // iterations required for the loop to match
4917                if (count < cmax) {
4918                    // Let's check if we have already tried and failed
4919                    // at this starting position "i" in the past.
4920                    // If yes, then just return false wihtout trying
4921                    // again, to stop the exponential backtracking.
4922                    if (posIndex != -1 &&
4923                        matcher.localsPos[posIndex].contains(i)) {
4924                        return next.match(matcher, i, seq);
4925                    }
4926                    matcher.locals[countIndex] = count + 1;
4927                    boolean b = body.match(matcher, i, seq);
4928                    // If match failed we must backtrack, so
4929                    // the loop count should NOT be incremented
4930                    if (b)
4931                        return true;
4932                    matcher.locals[countIndex] = count;
4933                    // save the failed position
4934                    if (posIndex != -1) {
4935                        matcher.localsPos[posIndex].add(i);
4936                    }
4937                }
4938            }
4939            return next.match(matcher, i, seq);
4940        }
4941        boolean matchInit(Matcher matcher, int i, CharSequence seq) {
4942            int save = matcher.locals[countIndex];
4943            boolean ret = false;
4944            if (posIndex != -1 && matcher.localsPos[posIndex] == null) {
4945                matcher.localsPos[posIndex] = new IntHashSet();
4946            }
4947            if (0 < cmin) {
4948                matcher.locals[countIndex] = 1;
4949                ret = body.match(matcher, i, seq);
4950            } else if (0 < cmax) {
4951                matcher.locals[countIndex] = 1;
4952                ret = body.match(matcher, i, seq);
4953                if (ret == false)
4954                    ret = next.match(matcher, i, seq);
4955            } else {
4956                ret = next.match(matcher, i, seq);
4957            }
4958            matcher.locals[countIndex] = save;
4959            return ret;
4960        }
4961        boolean study(TreeInfo info) {
4962            info.maxValid = false;
4963            info.deterministic = false;
4964            return false;
4965        }
4966    }
4967
4968    /**
4969     * Handles the repetition count for a reluctant Curly. The matchInit
4970     * is called from the Prolog to save the index of where the group
4971     * beginning is stored. A zero length group check occurs in the
4972     * normal match but is skipped in the matchInit.
4973     */
4974    static final class LazyLoop extends Loop {
4975        LazyLoop(int countIndex, int beginIndex) {
4976            super(countIndex, beginIndex);
4977        }
4978        boolean match(Matcher matcher, int i, CharSequence seq) {
4979            // Check for zero length group
4980            if (i > matcher.locals[beginIndex]) {
4981                int count = matcher.locals[countIndex];
4982                if (count < cmin) {
4983                    matcher.locals[countIndex] = count + 1;
4984                    boolean result = body.match(matcher, i, seq);
4985                    // If match failed we must backtrack, so
4986                    // the loop count should NOT be incremented
4987                    if (!result)
4988                        matcher.locals[countIndex] = count;
4989                    return result;
4990                }
4991                if (next.match(matcher, i, seq))
4992                    return true;
4993                if (count < cmax) {
4994                    matcher.locals[countIndex] = count + 1;
4995                    boolean result = body.match(matcher, i, seq);
4996                    // If match failed we must backtrack, so
4997                    // the loop count should NOT be incremented
4998                    if (!result)
4999                        matcher.locals[countIndex] = count;
5000                    return result;
5001                }
5002                return false;
5003            }
5004            return next.match(matcher, i, seq);
5005        }
5006        boolean matchInit(Matcher matcher, int i, CharSequence seq) {
5007            int save = matcher.locals[countIndex];
5008            boolean ret = false;
5009            if (0 < cmin) {
5010                matcher.locals[countIndex] = 1;
5011                ret = body.match(matcher, i, seq);
5012            } else if (next.match(matcher, i, seq)) {
5013                ret = true;
5014            } else if (0 < cmax) {
5015                matcher.locals[countIndex] = 1;
5016                ret = body.match(matcher, i, seq);
5017            }
5018            matcher.locals[countIndex] = save;
5019            return ret;
5020        }
5021        boolean study(TreeInfo info) {
5022            info.maxValid = false;
5023            info.deterministic = false;
5024            return false;
5025        }
5026    }
5027
5028    /**
5029     * Refers to a group in the regular expression. Attempts to match
5030     * whatever the group referred to last matched.
5031     */
5032    static class BackRef extends Node {
5033        int groupIndex;
5034        BackRef(int groupCount) {
5035            super();
5036            groupIndex = groupCount + groupCount;
5037        }
5038        boolean match(Matcher matcher, int i, CharSequence seq) {
5039            int j = matcher.groups[groupIndex];
5040            int k = matcher.groups[groupIndex+1];
5041
5042            int groupSize = k - j;
5043            // If the referenced group didn't match, neither can this
5044            if (j < 0)
5045                return false;
5046
5047            // If there isn't enough input left no match
5048            if (i + groupSize > matcher.to) {
5049                matcher.hitEnd = true;
5050                return false;
5051            }
5052            // Check each new char to make sure it matches what the group
5053            // referenced matched last time around
5054            for (int index=0; index<groupSize; index++)
5055                if (seq.charAt(i+index) != seq.charAt(j+index))
5056                    return false;
5057
5058            return next.match(matcher, i+groupSize, seq);
5059        }
5060        boolean study(TreeInfo info) {
5061            info.maxValid = false;
5062            return next.study(info);
5063        }
5064    }
5065
5066    static class CIBackRef extends Node {
5067        int groupIndex;
5068        boolean doUnicodeCase;
5069        CIBackRef(int groupCount, boolean doUnicodeCase) {
5070            super();
5071            groupIndex = groupCount + groupCount;
5072            this.doUnicodeCase = doUnicodeCase;
5073        }
5074        boolean match(Matcher matcher, int i, CharSequence seq) {
5075            int j = matcher.groups[groupIndex];
5076            int k = matcher.groups[groupIndex+1];
5077
5078            int groupSize = k - j;
5079
5080            // If the referenced group didn't match, neither can this
5081            if (j < 0)
5082                return false;
5083
5084            // If there isn't enough input left no match
5085            if (i + groupSize > matcher.to) {
5086                matcher.hitEnd = true;
5087                return false;
5088            }
5089
5090            // Check each new char to make sure it matches what the group
5091            // referenced matched last time around
5092            int x = i;
5093            for (int index=0; index<groupSize; index++) {
5094                int c1 = Character.codePointAt(seq, x);
5095                int c2 = Character.codePointAt(seq, j);
5096                if (c1 != c2) {
5097                    if (doUnicodeCase) {
5098                        int cc1 = Character.toUpperCase(c1);
5099                        int cc2 = Character.toUpperCase(c2);
5100                        if (cc1 != cc2 &&
5101                            Character.toLowerCase(cc1) !=
5102                            Character.toLowerCase(cc2))
5103                            return false;
5104                    } else {
5105                        if (ASCII.toLower(c1) != ASCII.toLower(c2))
5106                            return false;
5107                    }
5108                }
5109                x += Character.charCount(c1);
5110                j += Character.charCount(c2);
5111            }
5112
5113            return next.match(matcher, i+groupSize, seq);
5114        }
5115        boolean study(TreeInfo info) {
5116            info.maxValid = false;
5117            return next.study(info);
5118        }
5119    }
5120
5121    /**
5122     * Searches until the next instance of its atom. This is useful for
5123     * finding the atom efficiently without passing an instance of it
5124     * (greedy problem) and without a lot of wasted search time (reluctant
5125     * problem).
5126     */
5127    static final class First extends Node {
5128        Node atom;
5129        First(Node node) {
5130            this.atom = BnM.optimize(node);
5131        }
5132        boolean match(Matcher matcher, int i, CharSequence seq) {
5133            if (atom instanceof BnM) {
5134                return atom.match(matcher, i, seq)
5135                    && next.match(matcher, matcher.last, seq);
5136            }
5137            for (;;) {
5138                if (i > matcher.to) {
5139                    matcher.hitEnd = true;
5140                    return false;
5141                }
5142                if (atom.match(matcher, i, seq)) {
5143                    return next.match(matcher, matcher.last, seq);
5144                }
5145                i += countChars(seq, i, 1);
5146                matcher.first++;
5147            }
5148        }
5149        boolean study(TreeInfo info) {
5150            atom.study(info);
5151            info.maxValid = false;
5152            info.deterministic = false;
5153            return next.study(info);
5154        }
5155    }
5156
5157    static final class Conditional extends Node {
5158        Node cond, yes, not;
5159        Conditional(Node cond, Node yes, Node not) {
5160            this.cond = cond;
5161            this.yes = yes;
5162            this.not = not;
5163        }
5164        boolean match(Matcher matcher, int i, CharSequence seq) {
5165            if (cond.match(matcher, i, seq)) {
5166                return yes.match(matcher, i, seq);
5167            } else {
5168                return not.match(matcher, i, seq);
5169            }
5170        }
5171        boolean study(TreeInfo info) {
5172            int minL = info.minLength;
5173            int maxL = info.maxLength;
5174            boolean maxV = info.maxValid;
5175            info.reset();
5176            yes.study(info);
5177
5178            int minL2 = info.minLength;
5179            int maxL2 = info.maxLength;
5180            boolean maxV2 = info.maxValid;
5181            info.reset();
5182            not.study(info);
5183
5184            info.minLength = minL + Math.min(minL2, info.minLength);
5185            info.maxLength = maxL + Math.max(maxL2, info.maxLength);
5186            info.maxValid = (maxV & maxV2 & info.maxValid);
5187            info.deterministic = false;
5188            return next.study(info);
5189        }
5190    }
5191
5192    /**
5193     * Zero width positive lookahead.
5194     */
5195    static final class Pos extends Node {
5196        Node cond;
5197        Pos(Node cond) {
5198            this.cond = cond;
5199        }
5200        boolean match(Matcher matcher, int i, CharSequence seq) {
5201            int savedTo = matcher.to;
5202            boolean conditionMatched = false;
5203
5204            // Relax transparent region boundaries for lookahead
5205            if (matcher.transparentBounds)
5206                matcher.to = matcher.getTextLength();
5207            try {
5208                conditionMatched = cond.match(matcher, i, seq);
5209            } finally {
5210                // Reinstate region boundaries
5211                matcher.to = savedTo;
5212            }
5213            return conditionMatched && next.match(matcher, i, seq);
5214        }
5215    }
5216
5217    /**
5218     * Zero width negative lookahead.
5219     */
5220    static final class Neg extends Node {
5221        Node cond;
5222        Neg(Node cond) {
5223            this.cond = cond;
5224        }
5225        boolean match(Matcher matcher, int i, CharSequence seq) {
5226            int savedTo = matcher.to;
5227            boolean conditionMatched = false;
5228
5229            // Relax transparent region boundaries for lookahead
5230            if (matcher.transparentBounds)
5231                matcher.to = matcher.getTextLength();
5232            try {
5233                if (i < matcher.to) {
5234                    conditionMatched = !cond.match(matcher, i, seq);
5235                } else {
5236                    // If a negative lookahead succeeds then more input
5237                    // could cause it to fail!
5238                    matcher.requireEnd = true;
5239                    conditionMatched = !cond.match(matcher, i, seq);
5240                }
5241            } finally {
5242                // Reinstate region boundaries
5243                matcher.to = savedTo;
5244            }
5245            return conditionMatched && next.match(matcher, i, seq);
5246        }
5247    }
5248
5249    /**
5250     * For use with lookbehinds; matches the position where the lookbehind
5251     * was encountered.
5252     */
5253    static Node lookbehindEnd = new Node() {
5254        boolean match(Matcher matcher, int i, CharSequence seq) {
5255            return i == matcher.lookbehindTo;
5256        }
5257    };
5258
5259    /**
5260     * Zero width positive lookbehind.
5261     */
5262    static class Behind extends Node {
5263        Node cond;
5264        int rmax, rmin;
5265        Behind(Node cond, int rmax, int rmin) {
5266            this.cond = cond;
5267            this.rmax = rmax;
5268            this.rmin = rmin;
5269        }
5270
5271        boolean match(Matcher matcher, int i, CharSequence seq) {
5272            int savedFrom = matcher.from;
5273            boolean conditionMatched = false;
5274            int startIndex = (!matcher.transparentBounds) ?
5275                             matcher.from : 0;
5276            int from = Math.max(i - rmax, startIndex);
5277            // Set end boundary
5278            int savedLBT = matcher.lookbehindTo;
5279            matcher.lookbehindTo = i;
5280            // Relax transparent region boundaries for lookbehind
5281            if (matcher.transparentBounds)
5282                matcher.from = 0;
5283            for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5284                conditionMatched = cond.match(matcher, j, seq);
5285            }
5286            matcher.from = savedFrom;
5287            matcher.lookbehindTo = savedLBT;
5288            return conditionMatched && next.match(matcher, i, seq);
5289        }
5290    }
5291
5292    /**
5293     * Zero width positive lookbehind, including supplementary
5294     * characters or unpaired surrogates.
5295     */
5296    static final class BehindS extends Behind {
5297        BehindS(Node cond, int rmax, int rmin) {
5298            super(cond, rmax, rmin);
5299        }
5300        boolean match(Matcher matcher, int i, CharSequence seq) {
5301            int rmaxChars = countChars(seq, i, -rmax);
5302            int rminChars = countChars(seq, i, -rmin);
5303            int savedFrom = matcher.from;
5304            int startIndex = (!matcher.transparentBounds) ?
5305                             matcher.from : 0;
5306            boolean conditionMatched = false;
5307            int from = Math.max(i - rmaxChars, startIndex);
5308            // Set end boundary
5309            int savedLBT = matcher.lookbehindTo;
5310            matcher.lookbehindTo = i;
5311            // Relax transparent region boundaries for lookbehind
5312            if (matcher.transparentBounds)
5313                matcher.from = 0;
5314
5315            for (int j = i - rminChars;
5316                 !conditionMatched && j >= from;
5317                 j -= j>from ? countChars(seq, j, -1) : 1) {
5318                conditionMatched = cond.match(matcher, j, seq);
5319            }
5320            matcher.from = savedFrom;
5321            matcher.lookbehindTo = savedLBT;
5322            return conditionMatched && next.match(matcher, i, seq);
5323        }
5324    }
5325
5326    /**
5327     * Zero width negative lookbehind.
5328     */
5329    static class NotBehind extends Node {
5330        Node cond;
5331        int rmax, rmin;
5332        NotBehind(Node cond, int rmax, int rmin) {
5333            this.cond = cond;
5334            this.rmax = rmax;
5335            this.rmin = rmin;
5336        }
5337
5338        boolean match(Matcher matcher, int i, CharSequence seq) {
5339            int savedLBT = matcher.lookbehindTo;
5340            int savedFrom = matcher.from;
5341            boolean conditionMatched = false;
5342            int startIndex = (!matcher.transparentBounds) ?
5343                             matcher.from : 0;
5344            int from = Math.max(i - rmax, startIndex);
5345            matcher.lookbehindTo = i;
5346            // Relax transparent region boundaries for lookbehind
5347            if (matcher.transparentBounds)
5348                matcher.from = 0;
5349            for (int j = i - rmin; !conditionMatched && j >= from; j--) {
5350                conditionMatched = cond.match(matcher, j, seq);
5351            }
5352            // Reinstate region boundaries
5353            matcher.from = savedFrom;
5354            matcher.lookbehindTo = savedLBT;
5355            return !conditionMatched && next.match(matcher, i, seq);
5356        }
5357    }
5358
5359    /**
5360     * Zero width negative lookbehind, including supplementary
5361     * characters or unpaired surrogates.
5362     */
5363    static final class NotBehindS extends NotBehind {
5364        NotBehindS(Node cond, int rmax, int rmin) {
5365            super(cond, rmax, rmin);
5366        }
5367        boolean match(Matcher matcher, int i, CharSequence seq) {
5368            int rmaxChars = countChars(seq, i, -rmax);
5369            int rminChars = countChars(seq, i, -rmin);
5370            int savedFrom = matcher.from;
5371            int savedLBT = matcher.lookbehindTo;
5372            boolean conditionMatched = false;
5373            int startIndex = (!matcher.transparentBounds) ?
5374                             matcher.from : 0;
5375            int from = Math.max(i - rmaxChars, startIndex);
5376            matcher.lookbehindTo = i;
5377            // Relax transparent region boundaries for lookbehind
5378            if (matcher.transparentBounds)
5379                matcher.from = 0;
5380            for (int j = i - rminChars;
5381                 !conditionMatched && j >= from;
5382                 j -= j>from ? countChars(seq, j, -1) : 1) {
5383                conditionMatched = cond.match(matcher, j, seq);
5384            }
5385            //Reinstate region boundaries
5386            matcher.from = savedFrom;
5387            matcher.lookbehindTo = savedLBT;
5388            return !conditionMatched && next.match(matcher, i, seq);
5389        }
5390    }
5391
5392    /**
5393     * Handles word boundaries. Includes a field to allow this one class to
5394     * deal with the different types of word boundaries we can match. The word
5395     * characters include underscores, letters, and digits. Non spacing marks
5396     * can are also part of a word if they have a base character, otherwise
5397     * they are ignored for purposes of finding word boundaries.
5398     */
5399    static final class Bound extends Node {
5400        static int LEFT = 0x1;
5401        static int RIGHT= 0x2;
5402        static int BOTH = 0x3;
5403        static int NONE = 0x4;
5404        int type;
5405        boolean useUWORD;
5406        Bound(int n, boolean useUWORD) {
5407            type = n;
5408            this.useUWORD = useUWORD;
5409        }
5410
5411        boolean isWord(int ch) {
5412            return useUWORD ? CharPredicates.WORD().is(ch)
5413                            : (ch == '_' || Character.isLetterOrDigit(ch));
5414        }
5415
5416        int check(Matcher matcher, int i, CharSequence seq) {
5417            int ch;
5418            boolean left = false;
5419            int startIndex = matcher.from;
5420            int endIndex = matcher.to;
5421            if (matcher.transparentBounds) {
5422                startIndex = 0;
5423                endIndex = matcher.getTextLength();
5424            }
5425            if (i > startIndex) {
5426                ch = Character.codePointBefore(seq, i);
5427                left = (isWord(ch) ||
5428                    ((Character.getType(ch) == Character.NON_SPACING_MARK)
5429                     && hasBaseCharacter(matcher, i-1, seq)));
5430            }
5431            boolean right = false;
5432            if (i < endIndex) {
5433                ch = Character.codePointAt(seq, i);
5434                right = (isWord(ch) ||
5435                    ((Character.getType(ch) == Character.NON_SPACING_MARK)
5436                     && hasBaseCharacter(matcher, i, seq)));
5437            } else {
5438                // Tried to access char past the end
5439                matcher.hitEnd = true;
5440                // The addition of another char could wreck a boundary
5441                matcher.requireEnd = true;
5442            }
5443            return ((left ^ right) ? (right ? LEFT : RIGHT) : NONE);
5444        }
5445        boolean match(Matcher matcher, int i, CharSequence seq) {
5446            return (check(matcher, i, seq) & type) > 0
5447                && next.match(matcher, i, seq);
5448        }
5449    }
5450
5451    /**
5452     * Non spacing marks only count as word characters in bounds calculations
5453     * if they have a base character.
5454     */
5455    private static boolean hasBaseCharacter(Matcher matcher, int i,
5456                                            CharSequence seq)
5457    {
5458        int start = (!matcher.transparentBounds) ?
5459            matcher.from : 0;
5460        for (int x=i; x >= start; x--) {
5461            int ch = Character.codePointAt(seq, x);
5462            if (Character.isLetterOrDigit(ch))
5463                return true;
5464            if (Character.getType(ch) == Character.NON_SPACING_MARK)
5465                continue;
5466            return false;
5467        }
5468        return false;
5469    }
5470
5471    /**
5472     * Attempts to match a slice in the input using the Boyer-Moore string
5473     * matching algorithm. The algorithm is based on the idea that the
5474     * pattern can be shifted farther ahead in the search text if it is
5475     * matched right to left.
5476     * <p>
5477     * The pattern is compared to the input one character at a time, from
5478     * the rightmost character in the pattern to the left. If the characters
5479     * all match the pattern has been found. If a character does not match,
5480     * the pattern is shifted right a distance that is the maximum of two
5481     * functions, the bad character shift and the good suffix shift. This
5482     * shift moves the attempted match position through the input more
5483     * quickly than a naive one position at a time check.
5484     * <p>
5485     * The bad character shift is based on the character from the text that
5486     * did not match. If the character does not appear in the pattern, the
5487     * pattern can be shifted completely beyond the bad character. If the
5488     * character does occur in the pattern, the pattern can be shifted to
5489     * line the pattern up with the next occurrence of that character.
5490     * <p>
5491     * The good suffix shift is based on the idea that some subset on the right
5492     * side of the pattern has matched. When a bad character is found, the
5493     * pattern can be shifted right by the pattern length if the subset does
5494     * not occur again in pattern, or by the amount of distance to the
5495     * next occurrence of the subset in the pattern.
5496     *
5497     * Boyer-Moore search methods adapted from code by Amy Yu.
5498     */
5499    static class BnM extends Node {
5500        int[] buffer;
5501        int[] lastOcc;
5502        int[] optoSft;
5503
5504        /**
5505         * Pre calculates arrays needed to generate the bad character
5506         * shift and the good suffix shift. Only the last seven bits
5507         * are used to see if chars match; This keeps the tables small
5508         * and covers the heavily used ASCII range, but occasionally
5509         * results in an aliased match for the bad character shift.
5510         */
5511        static Node optimize(Node node) {
5512            if (!(node instanceof Slice)) {
5513                return node;
5514            }
5515
5516            int[] src = ((Slice) node).buffer;
5517            int patternLength = src.length;
5518            // The BM algorithm requires a bit of overhead;
5519            // If the pattern is short don't use it, since
5520            // a shift larger than the pattern length cannot
5521            // be used anyway.
5522            if (patternLength < 4) {
5523                return node;
5524            }
5525            int i, j, k;
5526            int[] lastOcc = new int[128];
5527            int[] optoSft = new int[patternLength];
5528            // Precalculate part of the bad character shift
5529            // It is a table for where in the pattern each
5530            // lower 7-bit value occurs
5531            for (i = 0; i < patternLength; i++) {
5532                lastOcc[src[i]&0x7F] = i + 1;
5533            }
5534            // Precalculate the good suffix shift
5535            // i is the shift amount being considered
5536NEXT:       for (i = patternLength; i > 0; i--) {
5537                // j is the beginning index of suffix being considered
5538                for (j = patternLength - 1; j >= i; j--) {
5539                    // Testing for good suffix
5540                    if (src[j] == src[j-i]) {
5541                        // src[j..len] is a good suffix
5542                        optoSft[j-1] = i;
5543                    } else {
5544                        // No match. The array has already been
5545                        // filled up with correct values before.
5546                        continue NEXT;
5547                    }
5548                }
5549                // This fills up the remaining of optoSft
5550                // any suffix can not have larger shift amount
5551                // then its sub-suffix. Why???
5552                while (j > 0) {
5553                    optoSft[--j] = i;
5554                }
5555            }
5556            // Set the guard value because of unicode compression
5557            optoSft[patternLength-1] = 1;
5558            if (node instanceof SliceS)
5559                return new BnMS(src, lastOcc, optoSft, node.next);
5560            return new BnM(src, lastOcc, optoSft, node.next);
5561        }
5562        BnM(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5563            this.buffer = src;
5564            this.lastOcc = lastOcc;
5565            this.optoSft = optoSft;
5566            this.next = next;
5567        }
5568        boolean match(Matcher matcher, int i, CharSequence seq) {
5569            int[] src = buffer;
5570            int patternLength = src.length;
5571            int last = matcher.to - patternLength;
5572
5573            // Loop over all possible match positions in text
5574NEXT:       while (i <= last) {
5575                // Loop over pattern from right to left
5576                for (int j = patternLength - 1; j >= 0; j--) {
5577                    int ch = seq.charAt(i+j);
5578                    if (ch != src[j]) {
5579                        // Shift search to the right by the maximum of the
5580                        // bad character shift and the good suffix shift
5581                        i += Math.max(j + 1 - lastOcc[ch&0x7F], optoSft[j]);
5582                        continue NEXT;
5583                    }
5584                }
5585                // Entire pattern matched starting at i
5586                matcher.first = i;
5587                boolean ret = next.match(matcher, i + patternLength, seq);
5588                if (ret) {
5589                    matcher.first = i;
5590                    matcher.groups[0] = matcher.first;
5591                    matcher.groups[1] = matcher.last;
5592                    return true;
5593                }
5594                i++;
5595            }
5596            // BnM is only used as the leading node in the unanchored case,
5597            // and it replaced its Start() which always searches to the end
5598            // if it doesn't find what it's looking for, so hitEnd is true.
5599            matcher.hitEnd = true;
5600            return false;
5601        }
5602        boolean study(TreeInfo info) {
5603            info.minLength += buffer.length;
5604            info.maxValid = false;
5605            return next.study(info);
5606        }
5607    }
5608
5609    /**
5610     * Supplementary support version of BnM(). Unpaired surrogates are
5611     * also handled by this class.
5612     */
5613    static final class BnMS extends BnM {
5614        int lengthInChars;
5615
5616        BnMS(int[] src, int[] lastOcc, int[] optoSft, Node next) {
5617            super(src, lastOcc, optoSft, next);
5618            for (int cp : buffer) {
5619                lengthInChars += Character.charCount(cp);
5620            }
5621        }
5622        boolean match(Matcher matcher, int i, CharSequence seq) {
5623            int[] src = buffer;
5624            int patternLength = src.length;
5625            int last = matcher.to - lengthInChars;
5626
5627            // Loop over all possible match positions in text
5628NEXT:       while (i <= last) {
5629                // Loop over pattern from right to left
5630                int ch;
5631                for (int j = countChars(seq, i, patternLength), x = patternLength - 1;
5632                     j > 0; j -= Character.charCount(ch), x--) {
5633                    ch = Character.codePointBefore(seq, i+j);
5634                    if (ch != src[x]) {
5635                        // Shift search to the right by the maximum of the
5636                        // bad character shift and the good suffix shift
5637                        int n = Math.max(x + 1 - lastOcc[ch&0x7F], optoSft[x]);
5638                        i += countChars(seq, i, n);
5639                        continue NEXT;
5640                    }
5641                }
5642                // Entire pattern matched starting at i
5643                matcher.first = i;
5644                boolean ret = next.match(matcher, i + lengthInChars, seq);
5645                if (ret) {
5646                    matcher.first = i;
5647                    matcher.groups[0] = matcher.first;
5648                    matcher.groups[1] = matcher.last;
5649                    return true;
5650                }
5651                i += countChars(seq, i, 1);
5652            }
5653            matcher.hitEnd = true;
5654            return false;
5655        }
5656    }
5657
5658    @FunctionalInterface
5659    static interface CharPredicate {
5660        boolean is(int ch);
5661
5662        default CharPredicate and(CharPredicate p) {
5663            return ch -> is(ch) && p.is(ch);
5664        }
5665        default CharPredicate union(CharPredicate p) {
5666            return ch -> is(ch) || p.is(ch);
5667        }
5668        default CharPredicate union(CharPredicate p1,
5669                                    CharPredicate p2 ) {
5670            return ch -> is(ch) || p1.is(ch) || p2.is(ch);
5671        }
5672        default CharPredicate negate() {
5673            return ch -> !is(ch);
5674        }
5675    }
5676
5677    static interface BmpCharPredicate extends CharPredicate {
5678
5679        default CharPredicate and(CharPredicate p) {
5680            if(p instanceof BmpCharPredicate)
5681                return (BmpCharPredicate)(ch -> is(ch) && p.is(ch));
5682            return ch -> is(ch) && p.is(ch);
5683        }
5684        default CharPredicate union(CharPredicate p) {
5685            if (p instanceof BmpCharPredicate)
5686                return (BmpCharPredicate)(ch -> is(ch) || p.is(ch));
5687            return ch -> is(ch) || p.is(ch);
5688        }
5689        static CharPredicate union(CharPredicate... predicates) {
5690            CharPredicate cp = ch -> {
5691                for (CharPredicate p : predicates) {
5692                    if (!p.is(ch))
5693                        return false;
5694                }
5695                return true;
5696            };
5697            for (CharPredicate p : predicates) {
5698                if (! (p instanceof BmpCharPredicate))
5699                    return cp;
5700            }
5701            return (BmpCharPredicate)cp;
5702        }
5703    }
5704
5705    /**
5706     * matches a Perl vertical whitespace
5707     */
5708    static BmpCharPredicate VertWS() {
5709        return cp -> (cp >= 0x0A && cp <= 0x0D) ||
5710            cp == 0x85 || cp == 0x2028 || cp == 0x2029;
5711    }
5712
5713    /**
5714     * matches a Perl horizontal whitespace
5715     */
5716    static BmpCharPredicate HorizWS() {
5717        return cp ->
5718            cp == 0x09 || cp == 0x20 || cp == 0xa0 || cp == 0x1680 ||
5719            cp == 0x180e || cp >= 0x2000 && cp <= 0x200a ||  cp == 0x202f ||
5720            cp == 0x205f || cp == 0x3000;
5721    }
5722
5723    /**
5724     *  for the Unicode category ALL and the dot metacharacter when
5725     *  in dotall mode.
5726     */
5727    static CharPredicate ALL() {
5728        return ch -> true;
5729    }
5730
5731    /**
5732     * for the dot metacharacter when dotall is not enabled.
5733     */
5734    static CharPredicate DOT() {
5735        return ch ->
5736            (ch != '\n' && ch != '\r'
5737            && (ch|1) != '\u2029'
5738            && ch != '\u0085');
5739    }
5740
5741    /**
5742     *  the dot metacharacter when dotall is not enabled but UNIX_LINES is enabled.
5743     */
5744    static CharPredicate UNIXDOT() {
5745        return ch ->  ch != '\n';
5746    }
5747
5748    /**
5749     * Indicate that matches a Supplementary Unicode character
5750     */
5751    static CharPredicate SingleS(int c) {
5752        return ch -> ch == c;
5753    }
5754
5755    /**
5756     * A bmp/optimized predicate of single
5757     */
5758    static BmpCharPredicate Single(int c) {
5759        return ch -> ch == c;
5760    }
5761
5762    /**
5763     * Case insensitive matches a given BMP character
5764     */
5765    static BmpCharPredicate SingleI(int lower, int upper) {
5766        return ch -> ch == lower || ch == upper;
5767    }
5768
5769    /**
5770     * Unicode case insensitive matches a given Unicode character
5771     */
5772    static CharPredicate SingleU(int lower) {
5773        return ch -> lower == ch ||
5774                     lower == Character.toLowerCase(Character.toUpperCase(ch));
5775    }
5776
5777    private static boolean inRange(int lower, int ch, int upper) {
5778        return lower <= ch && ch <= upper;
5779    }
5780
5781    /**
5782     * Charactrs within a explicit value range
5783     */
5784    static CharPredicate Range(int lower, int upper) {
5785        if (upper < Character.MIN_HIGH_SURROGATE ||
5786            lower > Character.MAX_HIGH_SURROGATE &&
5787            upper < Character.MIN_SUPPLEMENTARY_CODE_POINT)
5788            return (BmpCharPredicate)(ch -> inRange(lower, ch, upper));
5789        return ch -> inRange(lower, ch, upper);
5790    }
5791
5792   /**
5793    * Charactrs within a explicit value range in a case insensitive manner.
5794    */
5795    static CharPredicate CIRange(int lower, int upper) {
5796        return ch -> inRange(lower, ch, upper) ||
5797                     ASCII.isAscii(ch) &&
5798                     (inRange(lower, ASCII.toUpper(ch), upper) ||
5799                      inRange(lower, ASCII.toLower(ch), upper));
5800    }
5801
5802    static CharPredicate CIRangeU(int lower, int upper) {
5803        return ch -> {
5804            if (inRange(lower, ch, upper))
5805                return true;
5806            int up = Character.toUpperCase(ch);
5807            return inRange(lower, up, upper) ||
5808                   inRange(lower, Character.toLowerCase(up), upper);
5809        };
5810    }
5811
5812    /**
5813     *  This must be the very first initializer.
5814     */
5815    static final Node accept = new Node();
5816
5817    static final Node lastAccept = new LastNode();
5818
5819    /**
5820     * Creates a predicate which can be used to match a string.
5821     *
5822     * @return  The predicate which can be used for matching on a string
5823     * @since   1.8
5824     */
5825    public Predicate<String> asPredicate() {
5826        return s -> matcher(s).find();
5827    }
5828
5829    /**
5830     * Creates a stream from the given input sequence around matches of this
5831     * pattern.
5832     *
5833     * <p> The stream returned by this method contains each substring of the
5834     * input sequence that is terminated by another subsequence that matches
5835     * this pattern or is terminated by the end of the input sequence.  The
5836     * substrings in the stream are in the order in which they occur in the
5837     * input. Trailing empty strings will be discarded and not encountered in
5838     * the stream.
5839     *
5840     * <p> If this pattern does not match any subsequence of the input then
5841     * the resulting stream has just one element, namely the input sequence in
5842     * string form.
5843     *
5844     * <p> When there is a positive-width match at the beginning of the input
5845     * sequence then an empty leading substring is included at the beginning
5846     * of the stream. A zero-width match at the beginning however never produces
5847     * such empty leading substring.
5848     *
5849     * <p> If the input sequence is mutable, it must remain constant during the
5850     * execution of the terminal stream operation.  Otherwise, the result of the
5851     * terminal stream operation is undefined.
5852     *
5853     * @param   input
5854     *          The character sequence to be split
5855     *
5856     * @return  The stream of strings computed by splitting the input
5857     *          around matches of this pattern
5858     * @see     #split(CharSequence)
5859     * @since   1.8
5860     */
5861    public Stream<String> splitAsStream(final CharSequence input) {
5862        class MatcherIterator implements Iterator<String> {
5863            private Matcher matcher;
5864            // The start position of the next sub-sequence of input
5865            // when current == input.length there are no more elements
5866            private int current;
5867            // null if the next element, if any, needs to obtained
5868            private String nextElement;
5869            // > 0 if there are N next empty elements
5870            private int emptyElementCount;
5871
5872            public String next() {
5873                if (!hasNext())
5874                    throw new NoSuchElementException();
5875
5876                if (emptyElementCount == 0) {
5877                    String n = nextElement;
5878                    nextElement = null;
5879                    return n;
5880                } else {
5881                    emptyElementCount--;
5882                    return "";
5883                }
5884            }
5885
5886            public boolean hasNext() {
5887                if (matcher == null) {
5888                    matcher = matcher(input);
5889                    // If the input is an empty string then the result can only be a
5890                    // stream of the input.  Induce that by setting the empty
5891                    // element count to 1
5892                    emptyElementCount = input.length() == 0 ? 1 : 0;
5893                }
5894                if (nextElement != null || emptyElementCount > 0)
5895                    return true;
5896
5897                if (current == input.length())
5898                    return false;
5899
5900                // Consume the next matching element
5901                // Count sequence of matching empty elements
5902                while (matcher.find()) {
5903                    nextElement = input.subSequence(current, matcher.start()).toString();
5904                    current = matcher.end();
5905                    if (!nextElement.isEmpty()) {
5906                        return true;
5907                    } else if (current > 0) { // no empty leading substring for zero-width
5908                                              // match at the beginning of the input
5909                        emptyElementCount++;
5910                    }
5911                }
5912
5913                // Consume last matching element
5914                nextElement = input.subSequence(current, input.length()).toString();
5915                current = input.length();
5916                if (!nextElement.isEmpty()) {
5917                    return true;
5918                } else {
5919                    // Ignore a terminal sequence of matching empty elements
5920                    emptyElementCount = 0;
5921                    nextElement = null;
5922                    return false;
5923                }
5924            }
5925        }
5926        return StreamSupport.stream(Spliterators.spliteratorUnknownSize(
5927                new MatcherIterator(), Spliterator.ORDERED | Spliterator.NONNULL), false);
5928    }
5929}
5930