Formatter.java revision 10713:70fab1ef5e04
1/*
2 * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.  Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26package java.util;
27
28import java.io.BufferedWriter;
29import java.io.Closeable;
30import java.io.IOException;
31import java.io.File;
32import java.io.FileOutputStream;
33import java.io.FileNotFoundException;
34import java.io.Flushable;
35import java.io.OutputStream;
36import java.io.OutputStreamWriter;
37import java.io.PrintStream;
38import java.io.UnsupportedEncodingException;
39import java.math.BigDecimal;
40import java.math.BigInteger;
41import java.math.MathContext;
42import java.math.RoundingMode;
43import java.nio.charset.Charset;
44import java.nio.charset.IllegalCharsetNameException;
45import java.nio.charset.UnsupportedCharsetException;
46import java.text.DateFormatSymbols;
47import java.text.DecimalFormat;
48import java.text.DecimalFormatSymbols;
49import java.text.NumberFormat;
50import java.util.regex.Matcher;
51import java.util.regex.Pattern;
52
53import java.time.DateTimeException;
54import java.time.Instant;
55import java.time.ZoneId;
56import java.time.ZoneOffset;
57import java.time.temporal.ChronoField;
58import java.time.temporal.TemporalAccessor;
59import java.time.temporal.TemporalQueries;
60
61import sun.misc.DoubleConsts;
62import sun.misc.FormattedFloatingDecimal;
63
64/**
65 * An interpreter for printf-style format strings.  This class provides support
66 * for layout justification and alignment, common formats for numeric, string,
67 * and date/time data, and locale-specific output.  Common Java types such as
68 * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
69 * are supported.  Limited formatting customization for arbitrary user types is
70 * provided through the {@link Formattable} interface.
71 *
72 * <p> Formatters are not necessarily safe for multithreaded access.  Thread
73 * safety is optional and is the responsibility of users of methods in this
74 * class.
75 *
76 * <p> Formatted printing for the Java language is heavily inspired by C's
77 * {@code printf}.  Although the format strings are similar to C, some
78 * customizations have been made to accommodate the Java language and exploit
79 * some of its features.  Also, Java formatting is more strict than C's; for
80 * example, if a conversion is incompatible with a flag, an exception will be
81 * thrown.  In C inapplicable flags are silently ignored.  The format strings
82 * are thus intended to be recognizable to C programmers but not necessarily
83 * completely compatible with those in C.
84 *
85 * <p> Examples of expected usage:
86 *
87 * <blockquote><pre>
88 *   StringBuilder sb = new StringBuilder();
89 *   // Send all output to the Appendable object sb
90 *   Formatter formatter = new Formatter(sb, Locale.US);
91 *
92 *   // Explicit argument indices may be used to re-order output.
93 *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
94 *   // -&gt; " d  c  b  a"
95 *
96 *   // Optional locale as the first argument can be used to get
97 *   // locale-specific formatting of numbers.  The precision and width can be
98 *   // given to round and align the value.
99 *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
100 *   // -&gt; "e =    +2,7183"
101 *
102 *   // The '(' numeric flag may be used to format negative numbers with
103 *   // parentheses rather than a minus sign.  Group separators are
104 *   // automatically inserted.
105 *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
106 *                    balanceDelta);
107 *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
108 * </pre></blockquote>
109 *
110 * <p> Convenience methods for common formatting requests exist as illustrated
111 * by the following invocations:
112 *
113 * <blockquote><pre>
114 *   // Writes a formatted string to System.out.
115 *   System.out.format("Local time: %tT", Calendar.getInstance());
116 *   // -&gt; "Local time: 13:34:18"
117 *
118 *   // Writes formatted output to System.err.
119 *   System.err.printf("Unable to open file '%1$s': %2$s",
120 *                     fileName, exception.getMessage());
121 *   // -&gt; "Unable to open file 'food': No such file or directory"
122 * </pre></blockquote>
123 *
124 * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
125 * method {@link String#format(String,Object...) String.format}:
126 *
127 * <blockquote><pre>
128 *   // Format a string containing a date.
129 *   import java.util.Calendar;
130 *   import java.util.GregorianCalendar;
131 *   import static java.util.Calendar.*;
132 *
133 *   Calendar c = new GregorianCalendar(1995, MAY, 23);
134 *   String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
135 *   // -&gt; s == "Duke's Birthday: May 23, 1995"
136 * </pre></blockquote>
137 *
138 * <h3><a name="org">Organization</a></h3>
139 *
140 * <p> This specification is divided into two sections.  The first section, <a
141 * href="#summary">Summary</a>, covers the basic formatting concepts.  This
142 * section is intended for users who want to get started quickly and are
143 * familiar with formatted printing in other programming languages.  The second
144 * section, <a href="#detail">Details</a>, covers the specific implementation
145 * details.  It is intended for users who want more precise specification of
146 * formatting behavior.
147 *
148 * <h3><a name="summary">Summary</a></h3>
149 *
150 * <p> This section is intended to provide a brief overview of formatting
151 * concepts.  For precise behavioral details, refer to the <a
152 * href="#detail">Details</a> section.
153 *
154 * <h4><a name="syntax">Format String Syntax</a></h4>
155 *
156 * <p> Every method which produces formatted output requires a <i>format
157 * string</i> and an <i>argument list</i>.  The format string is a {@link
158 * String} which may contain fixed text and one or more embedded <i>format
159 * specifiers</i>.  Consider the following example:
160 *
161 * <blockquote><pre>
162 *   Calendar c = ...;
163 *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
164 * </pre></blockquote>
165 *
166 * This format string is the first argument to the {@code format} method.  It
167 * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
168 * "{@code %1$tY}" which indicate how the arguments should be processed and
169 * where they should be inserted in the text.  The remaining portions of the
170 * format string are fixed text including {@code "Dukes Birthday: "} and any
171 * other spaces or punctuation.
172 *
173 * The argument list consists of all arguments passed to the method after the
174 * format string.  In the above example, the argument list is of size one and
175 * consists of the {@link java.util.Calendar Calendar} object {@code c}.
176 *
177 * <ul>
178 *
179 * <li> The format specifiers for general, character, and numeric types have
180 * the following syntax:
181 *
182 * <blockquote><pre>
183 *   %[argument_index$][flags][width][.precision]conversion
184 * </pre></blockquote>
185 *
186 * <p> The optional <i>argument_index</i> is a decimal integer indicating the
187 * position of the argument in the argument list.  The first argument is
188 * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
189 *
190 * <p> The optional <i>flags</i> is a set of characters that modify the output
191 * format.  The set of valid flags depends on the conversion.
192 *
193 * <p> The optional <i>width</i> is a positive decimal integer indicating
194 * the minimum number of characters to be written to the output.
195 *
196 * <p> The optional <i>precision</i> is a non-negative decimal integer usually
197 * used to restrict the number of characters.  The specific behavior depends on
198 * the conversion.
199 *
200 * <p> The required <i>conversion</i> is a character indicating how the
201 * argument should be formatted.  The set of valid conversions for a given
202 * argument depends on the argument's data type.
203 *
204 * <li> The format specifiers for types which are used to represents dates and
205 * times have the following syntax:
206 *
207 * <blockquote><pre>
208 *   %[argument_index$][flags][width]conversion
209 * </pre></blockquote>
210 *
211 * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
212 * defined as above.
213 *
214 * <p> The required <i>conversion</i> is a two character sequence.  The first
215 * character is {@code 't'} or {@code 'T'}.  The second character indicates
216 * the format to be used.  These characters are similar to but not completely
217 * identical to those defined by GNU {@code date} and POSIX
218 * {@code strftime(3c)}.
219 *
220 * <li> The format specifiers which do not correspond to arguments have the
221 * following syntax:
222 *
223 * <blockquote><pre>
224 *   %[flags][width]conversion
225 * </pre></blockquote>
226 *
227 * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
228 *
229 * <p> The required <i>conversion</i> is a character indicating content to be
230 * inserted in the output.
231 *
232 * </ul>
233 *
234 * <h4> Conversions </h4>
235 *
236 * <p> Conversions are divided into the following categories:
237 *
238 * <ol>
239 *
240 * <li> <b>General</b> - may be applied to any argument
241 * type
242 *
243 * <li> <b>Character</b> - may be applied to basic types which represent
244 * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
245 * Byte}, {@code short}, and {@link Short}. This conversion may also be
246 * applied to the types {@code int} and {@link Integer} when {@link
247 * Character#isValidCodePoint} returns {@code true}
248 *
249 * <li> <b>Numeric</b>
250 *
251 * <ol>
252 *
253 * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
254 * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
255 * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
256 * BigInteger} (but not {@code char} or {@link Character})
257 *
258 * <li><b>Floating Point</b> - may be applied to Java floating-point types:
259 * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
260 * java.math.BigDecimal BigDecimal}
261 *
262 * </ol>
263 *
264 * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
265 * encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
266 * {@link Date} and {@link TemporalAccessor TemporalAccessor}
267 *
268 * <li> <b>Percent</b> - produces a literal {@code '%'}
269 * (<tt>'&#92;u0025'</tt>)
270 *
271 * <li> <b>Line Separator</b> - produces the platform-specific line separator
272 *
273 * </ol>
274 *
275 * <p> The following table summarizes the supported conversions.  Conversions
276 * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
277 * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
278 * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
279 * lower-case conversion characters except that the result is converted to
280 * upper case according to the rules of the prevailing {@link java.util.Locale
281 * Locale}.  The result is equivalent to the following invocation of {@link
282 * String#toUpperCase()}
283 *
284 * <pre>
285 *    out.toUpperCase() </pre>
286 *
287 * <table cellpadding=5 summary="genConv">
288 *
289 * <tr><th valign="bottom"> Conversion
290 *     <th valign="bottom"> Argument Category
291 *     <th valign="bottom"> Description
292 *
293 * <tr><td valign="top"> {@code 'b'}, {@code 'B'}
294 *     <td valign="top"> general
295 *     <td> If the argument <i>arg</i> is {@code null}, then the result is
296 *     "{@code false}".  If <i>arg</i> is a {@code boolean} or {@link
297 *     Boolean}, then the result is the string returned by {@link
298 *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
299 *     "true".
300 *
301 * <tr><td valign="top"> {@code 'h'}, {@code 'H'}
302 *     <td valign="top"> general
303 *     <td> If the argument <i>arg</i> is {@code null}, then the result is
304 *     "{@code null}".  Otherwise, the result is obtained by invoking
305 *     {@code Integer.toHexString(arg.hashCode())}.
306 *
307 * <tr><td valign="top"> {@code 's'}, {@code 'S'}
308 *     <td valign="top"> general
309 *     <td> If the argument <i>arg</i> is {@code null}, then the result is
310 *     "{@code null}".  If <i>arg</i> implements {@link Formattable}, then
311 *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
312 *     result is obtained by invoking {@code arg.toString()}.
313 *
314 * <tr><td valign="top">{@code 'c'}, {@code 'C'}
315 *     <td valign="top"> character
316 *     <td> The result is a Unicode character
317 *
318 * <tr><td valign="top">{@code 'd'}
319 *     <td valign="top"> integral
320 *     <td> The result is formatted as a decimal integer
321 *
322 * <tr><td valign="top">{@code 'o'}
323 *     <td valign="top"> integral
324 *     <td> The result is formatted as an octal integer
325 *
326 * <tr><td valign="top">{@code 'x'}, {@code 'X'}
327 *     <td valign="top"> integral
328 *     <td> The result is formatted as a hexadecimal integer
329 *
330 * <tr><td valign="top">{@code 'e'}, {@code 'E'}
331 *     <td valign="top"> floating point
332 *     <td> The result is formatted as a decimal number in computerized
333 *     scientific notation
334 *
335 * <tr><td valign="top">{@code 'f'}
336 *     <td valign="top"> floating point
337 *     <td> The result is formatted as a decimal number
338 *
339 * <tr><td valign="top">{@code 'g'}, {@code 'G'}
340 *     <td valign="top"> floating point
341 *     <td> The result is formatted using computerized scientific notation or
342 *     decimal format, depending on the precision and the value after rounding.
343 *
344 * <tr><td valign="top">{@code 'a'}, {@code 'A'}
345 *     <td valign="top"> floating point
346 *     <td> The result is formatted as a hexadecimal floating-point number with
347 *     a significand and an exponent. This conversion is <b>not</b> supported
348 *     for the {@code BigDecimal} type despite the latter's being in the
349 *     <i>floating point</i> argument category.
350 *
351 * <tr><td valign="top">{@code 't'}, {@code 'T'}
352 *     <td valign="top"> date/time
353 *     <td> Prefix for date and time conversion characters.  See <a
354 *     href="#dt">Date/Time Conversions</a>.
355 *
356 * <tr><td valign="top">{@code '%'}
357 *     <td valign="top"> percent
358 *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
359 *
360 * <tr><td valign="top">{@code 'n'}
361 *     <td valign="top"> line separator
362 *     <td> The result is the platform-specific line separator
363 *
364 * </table>
365 *
366 * <p> Any characters not explicitly defined as conversions are illegal and are
367 * reserved for future extensions.
368 *
369 * <h4><a name="dt">Date/Time Conversions</a></h4>
370 *
371 * <p> The following date and time conversion suffix characters are defined for
372 * the {@code 't'} and {@code 'T'} conversions.  The types are similar to but
373 * not completely identical to those defined by GNU {@code date} and POSIX
374 * {@code strftime(3c)}.  Additional conversion types are provided to access
375 * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
376 * second).
377 *
378 * <p> The following conversion characters are used for formatting times:
379 *
380 * <table cellpadding=5 summary="time">
381 *
382 * <tr><td valign="top"> {@code 'H'}
383 *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
384 *     a leading zero as necessary i.e. {@code 00 - 23}.
385 *
386 * <tr><td valign="top">{@code 'I'}
387 *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
388 *     zero as necessary, i.e.  {@code 01 - 12}.
389 *
390 * <tr><td valign="top">{@code 'k'}
391 *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
392 *
393 * <tr><td valign="top">{@code 'l'}
394 *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
395 *
396 * <tr><td valign="top">{@code 'M'}
397 *     <td> Minute within the hour formatted as two digits with a leading zero
398 *     as necessary, i.e.  {@code 00 - 59}.
399 *
400 * <tr><td valign="top">{@code 'S'}
401 *     <td> Seconds within the minute, formatted as two digits with a leading
402 *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
403 *     value required to support leap seconds).
404 *
405 * <tr><td valign="top">{@code 'L'}
406 *     <td> Millisecond within the second formatted as three digits with
407 *     leading zeros as necessary, i.e. {@code 000 - 999}.
408 *
409 * <tr><td valign="top">{@code 'N'}
410 *     <td> Nanosecond within the second, formatted as nine digits with leading
411 *     zeros as necessary, i.e. {@code 000000000 - 999999999}.
412 *
413 * <tr><td valign="top">{@code 'p'}
414 *     <td> Locale-specific {@linkplain
415 *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
416 *     in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
417 *     prefix {@code 'T'} forces this output to upper case.
418 *
419 * <tr><td valign="top">{@code 'z'}
420 *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
421 *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
422 *     value will be adjusted as necessary for Daylight Saving Time.  For
423 *     {@code long}, {@link Long}, and {@link Date} the time zone used is
424 *     the {@linkplain TimeZone#getDefault() default time zone} for this
425 *     instance of the Java virtual machine.
426 *
427 * <tr><td valign="top">{@code 'Z'}
428 *     <td> A string representing the abbreviation for the time zone.  This
429 *     value will be adjusted as necessary for Daylight Saving Time.  For
430 *     {@code long}, {@link Long}, and {@link Date} the  time zone used is
431 *     the {@linkplain TimeZone#getDefault() default time zone} for this
432 *     instance of the Java virtual machine.  The Formatter's locale will
433 *     supersede the locale of the argument (if any).
434 *
435 * <tr><td valign="top">{@code 's'}
436 *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
437 *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
438 *     {@code Long.MAX_VALUE/1000}.
439 *
440 * <tr><td valign="top">{@code 'Q'}
441 *     <td> Milliseconds since the beginning of the epoch starting at 1 January
442 *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
443 *     {@code Long.MAX_VALUE}.
444 *
445 * </table>
446 *
447 * <p> The following conversion characters are used for formatting dates:
448 *
449 * <table cellpadding=5 summary="date">
450 *
451 * <tr><td valign="top">{@code 'B'}
452 *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
453 *     full month name}, e.g. {@code "January"}, {@code "February"}.
454 *
455 * <tr><td valign="top">{@code 'b'}
456 *     <td> Locale-specific {@linkplain
457 *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
458 *     e.g. {@code "Jan"}, {@code "Feb"}.
459 *
460 * <tr><td valign="top">{@code 'h'}
461 *     <td> Same as {@code 'b'}.
462 *
463 * <tr><td valign="top">{@code 'A'}
464 *     <td> Locale-specific full name of the {@linkplain
465 *     java.text.DateFormatSymbols#getWeekdays day of the week},
466 *     e.g. {@code "Sunday"}, {@code "Monday"}
467 *
468 * <tr><td valign="top">{@code 'a'}
469 *     <td> Locale-specific short name of the {@linkplain
470 *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
471 *     e.g. {@code "Sun"}, {@code "Mon"}
472 *
473 * <tr><td valign="top">{@code 'C'}
474 *     <td> Four-digit year divided by {@code 100}, formatted as two digits
475 *     with leading zero as necessary, i.e. {@code 00 - 99}
476 *
477 * <tr><td valign="top">{@code 'Y'}
478 *     <td> Year, formatted as at least four digits with leading zeros as
479 *     necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
480 *     calendar.
481 *
482 * <tr><td valign="top">{@code 'y'}
483 *     <td> Last two digits of the year, formatted with leading zeros as
484 *     necessary, i.e. {@code 00 - 99}.
485 *
486 * <tr><td valign="top">{@code 'j'}
487 *     <td> Day of year, formatted as three digits with leading zeros as
488 *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
489 *
490 * <tr><td valign="top">{@code 'm'}
491 *     <td> Month, formatted as two digits with leading zeros as necessary,
492 *     i.e. {@code 01 - 13}.
493 *
494 * <tr><td valign="top">{@code 'd'}
495 *     <td> Day of month, formatted as two digits with leading zeros as
496 *     necessary, i.e. {@code 01 - 31}
497 *
498 * <tr><td valign="top">{@code 'e'}
499 *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
500 *
501 * </table>
502 *
503 * <p> The following conversion characters are used for formatting common
504 * date/time compositions.
505 *
506 * <table cellpadding=5 summary="composites">
507 *
508 * <tr><td valign="top">{@code 'R'}
509 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
510 *
511 * <tr><td valign="top">{@code 'T'}
512 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
513 *
514 * <tr><td valign="top">{@code 'r'}
515 *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
516 *     The location of the morning or afternoon marker ({@code '%Tp'}) may be
517 *     locale-dependent.
518 *
519 * <tr><td valign="top">{@code 'D'}
520 *     <td> Date formatted as {@code "%tm/%td/%ty"}.
521 *
522 * <tr><td valign="top">{@code 'F'}
523 *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
524 *     complete date formatted as {@code "%tY-%tm-%td"}.
525 *
526 * <tr><td valign="top">{@code 'c'}
527 *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
528 *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
529 *
530 * </table>
531 *
532 * <p> Any characters not explicitly defined as date/time conversion suffixes
533 * are illegal and are reserved for future extensions.
534 *
535 * <h4> Flags </h4>
536 *
537 * <p> The following table summarizes the supported flags.  <i>y</i> means the
538 * flag is supported for the indicated argument types.
539 *
540 * <table cellpadding=5 summary="genConv">
541 *
542 * <tr><th valign="bottom"> Flag <th valign="bottom"> General
543 *     <th valign="bottom"> Character <th valign="bottom"> Integral
544 *     <th valign="bottom"> Floating Point
545 *     <th valign="bottom"> Date/Time
546 *     <th valign="bottom"> Description
547 *
548 * <tr><td> '-' <td align="center" valign="top"> y
549 *     <td align="center" valign="top"> y
550 *     <td align="center" valign="top"> y
551 *     <td align="center" valign="top"> y
552 *     <td align="center" valign="top"> y
553 *     <td> The result will be left-justified.
554 *
555 * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
556 *     <td align="center" valign="top"> -
557 *     <td align="center" valign="top"> y<sup>3</sup>
558 *     <td align="center" valign="top"> y
559 *     <td align="center" valign="top"> -
560 *     <td> The result should use a conversion-dependent alternate form
561 *
562 * <tr><td> '+' <td align="center" valign="top"> -
563 *     <td align="center" valign="top"> -
564 *     <td align="center" valign="top"> y<sup>4</sup>
565 *     <td align="center" valign="top"> y
566 *     <td align="center" valign="top"> -
567 *     <td> The result will always include a sign
568 *
569 * <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> -
570 *     <td align="center" valign="top"> -
571 *     <td align="center" valign="top"> y<sup>4</sup>
572 *     <td align="center" valign="top"> y
573 *     <td align="center" valign="top"> -
574 *     <td> The result will include a leading space for positive values
575 *
576 * <tr><td> '0' <td align="center" valign="top"> -
577 *     <td align="center" valign="top"> -
578 *     <td align="center" valign="top"> y
579 *     <td align="center" valign="top"> y
580 *     <td align="center" valign="top"> -
581 *     <td> The result will be zero-padded
582 *
583 * <tr><td> ',' <td align="center" valign="top"> -
584 *     <td align="center" valign="top"> -
585 *     <td align="center" valign="top"> y<sup>2</sup>
586 *     <td align="center" valign="top"> y<sup>5</sup>
587 *     <td align="center" valign="top"> -
588 *     <td> The result will include locale-specific {@linkplain
589 *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
590 *
591 * <tr><td> '(' <td align="center" valign="top"> -
592 *     <td align="center" valign="top"> -
593 *     <td align="center" valign="top"> y<sup>4</sup>
594 *     <td align="center" valign="top"> y<sup>5</sup>
595 *     <td align="center"> -
596 *     <td> The result will enclose negative numbers in parentheses
597 *
598 * </table>
599 *
600 * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
601 *
602 * <p> <sup>2</sup> For {@code 'd'} conversion only.
603 *
604 * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
605 * conversions only.
606 *
607 * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
608 * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
609 * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
610 * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
611 *
612 * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
613 * {@code 'g'}, and {@code 'G'} conversions only.
614 *
615 * <p> Any characters not explicitly defined as flags are illegal and are
616 * reserved for future extensions.
617 *
618 * <h4> Width </h4>
619 *
620 * <p> The width is the minimum number of characters to be written to the
621 * output.  For the line separator conversion, width is not applicable; if it
622 * is provided, an exception will be thrown.
623 *
624 * <h4> Precision </h4>
625 *
626 * <p> For general argument types, the precision is the maximum number of
627 * characters to be written to the output.
628 *
629 * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
630 * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
631 * radix point.  If the conversion is {@code 'g'} or {@code 'G'}, then the
632 * precision is the total number of digits in the resulting magnitude after
633 * rounding.
634 *
635 * <p> For character, integral, and date/time argument types and the percent
636 * and line separator conversions, the precision is not applicable; if a
637 * precision is provided, an exception will be thrown.
638 *
639 * <h4> Argument Index </h4>
640 *
641 * <p> The argument index is a decimal integer indicating the position of the
642 * argument in the argument list.  The first argument is referenced by
643 * "{@code 1$}", the second by "{@code 2$}", etc.
644 *
645 * <p> Another way to reference arguments by position is to use the
646 * {@code '<'} (<tt>'&#92;u003c'</tt>) flag, which causes the argument for
647 * the previous format specifier to be re-used.  For example, the following two
648 * statements would produce identical strings:
649 *
650 * <blockquote><pre>
651 *   Calendar c = ...;
652 *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
653 *
654 *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
655 * </pre></blockquote>
656 *
657 * <hr>
658 * <h3><a name="detail">Details</a></h3>
659 *
660 * <p> This section is intended to provide behavioral details for formatting,
661 * including conditions and exceptions, supported data types, localization, and
662 * interactions between flags, conversions, and data types.  For an overview of
663 * formatting concepts, refer to the <a href="#summary">Summary</a>
664 *
665 * <p> Any characters not explicitly defined as conversions, date/time
666 * conversion suffixes, or flags are illegal and are reserved for
667 * future extensions.  Use of such a character in a format string will
668 * cause an {@link UnknownFormatConversionException} or {@link
669 * UnknownFormatFlagsException} to be thrown.
670 *
671 * <p> If the format specifier contains a width or precision with an invalid
672 * value or which is otherwise unsupported, then a {@link
673 * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
674 * respectively will be thrown.
675 *
676 * <p> If a format specifier contains a conversion character that is not
677 * applicable to the corresponding argument, then an {@link
678 * IllegalFormatConversionException} will be thrown.
679 *
680 * <p> All specified exceptions may be thrown by any of the {@code format}
681 * methods of {@code Formatter} as well as by any {@code format} convenience
682 * methods such as {@link String#format(String,Object...) String.format} and
683 * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
684 *
685 * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
686 * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
687 * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
688 * corresponding lower-case conversion characters except that the result is
689 * converted to upper case according to the rules of the prevailing {@link
690 * java.util.Locale Locale}.  The result is equivalent to the following
691 * invocation of {@link String#toUpperCase()}
692 *
693 * <pre>
694 *    out.toUpperCase() </pre>
695 *
696 * <h4><a name="dgen">General</a></h4>
697 *
698 * <p> The following general conversions may be applied to any argument type:
699 *
700 * <table cellpadding=5 summary="dgConv">
701 *
702 * <tr><td valign="top"> {@code 'b'}
703 *     <td valign="top"> <tt>'&#92;u0062'</tt>
704 *     <td> Produces either "{@code true}" or "{@code false}" as returned by
705 *     {@link Boolean#toString(boolean)}.
706 *
707 *     <p> If the argument is {@code null}, then the result is
708 *     "{@code false}".  If the argument is a {@code boolean} or {@link
709 *     Boolean}, then the result is the string returned by {@link
710 *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
711 *     "{@code true}".
712 *
713 *     <p> If the {@code '#'} flag is given, then a {@link
714 *     FormatFlagsConversionMismatchException} will be thrown.
715 *
716 * <tr><td valign="top"> {@code 'B'}
717 *     <td valign="top"> <tt>'&#92;u0042'</tt>
718 *     <td> The upper-case variant of {@code 'b'}.
719 *
720 * <tr><td valign="top"> {@code 'h'}
721 *     <td valign="top"> <tt>'&#92;u0068'</tt>
722 *     <td> Produces a string representing the hash code value of the object.
723 *
724 *     <p> If the argument, <i>arg</i> is {@code null}, then the
725 *     result is "{@code null}".  Otherwise, the result is obtained
726 *     by invoking {@code Integer.toHexString(arg.hashCode())}.
727 *
728 *     <p> If the {@code '#'} flag is given, then a {@link
729 *     FormatFlagsConversionMismatchException} will be thrown.
730 *
731 * <tr><td valign="top"> {@code 'H'}
732 *     <td valign="top"> <tt>'&#92;u0048'</tt>
733 *     <td> The upper-case variant of {@code 'h'}.
734 *
735 * <tr><td valign="top"> {@code 's'}
736 *     <td valign="top"> <tt>'&#92;u0073'</tt>
737 *     <td> Produces a string.
738 *
739 *     <p> If the argument is {@code null}, then the result is
740 *     "{@code null}".  If the argument implements {@link Formattable}, then
741 *     its {@link Formattable#formatTo formatTo} method is invoked.
742 *     Otherwise, the result is obtained by invoking the argument's
743 *     {@code toString()} method.
744 *
745 *     <p> If the {@code '#'} flag is given and the argument is not a {@link
746 *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
747 *     will be thrown.
748 *
749 * <tr><td valign="top"> {@code 'S'}
750 *     <td valign="top"> <tt>'&#92;u0053'</tt>
751 *     <td> The upper-case variant of {@code 's'}.
752 *
753 * </table>
754 *
755 * <p> The following <a name="dFlags">flags</a> apply to general conversions:
756 *
757 * <table cellpadding=5 summary="dFlags">
758 *
759 * <tr><td valign="top"> {@code '-'}
760 *     <td valign="top"> <tt>'&#92;u002d'</tt>
761 *     <td> Left justifies the output.  Spaces (<tt>'&#92;u0020'</tt>) will be
762 *     added at the end of the converted value as required to fill the minimum
763 *     width of the field.  If the width is not provided, then a {@link
764 *     MissingFormatWidthException} will be thrown.  If this flag is not given
765 *     then the output will be right-justified.
766 *
767 * <tr><td valign="top"> {@code '#'}
768 *     <td valign="top"> <tt>'&#92;u0023'</tt>
769 *     <td> Requires the output use an alternate form.  The definition of the
770 *     form is specified by the conversion.
771 *
772 * </table>
773 *
774 * <p> The <a name="genWidth">width</a> is the minimum number of characters to
775 * be written to the
776 * output.  If the length of the converted value is less than the width then
777 * the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>'&#92;u0020'</tt>)
778 * until the total number of characters equals the width.  The padding is on
779 * the left by default.  If the {@code '-'} flag is given, then the padding
780 * will be on the right.  If the width is not specified then there is no
781 * minimum.
782 *
783 * <p> The precision is the maximum number of characters to be written to the
784 * output.  The precision is applied before the width, thus the output will be
785 * truncated to {@code precision} characters even if the width is greater than
786 * the precision.  If the precision is not specified then there is no explicit
787 * limit on the number of characters.
788 *
789 * <h4><a name="dchar">Character</a></h4>
790 *
791 * This conversion may be applied to {@code char} and {@link Character}.  It
792 * may also be applied to the types {@code byte}, {@link Byte},
793 * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
794 * {@link Character#isValidCodePoint} returns {@code true}.  If it returns
795 * {@code false} then an {@link IllegalFormatCodePointException} will be
796 * thrown.
797 *
798 * <table cellpadding=5 summary="charConv">
799 *
800 * <tr><td valign="top"> {@code 'c'}
801 *     <td valign="top"> <tt>'&#92;u0063'</tt>
802 *     <td> Formats the argument as a Unicode character as described in <a
803 *     href="../lang/Character.html#unicode">Unicode Character
804 *     Representation</a>.  This may be more than one 16-bit {@code char} in
805 *     the case where the argument represents a supplementary character.
806 *
807 *     <p> If the {@code '#'} flag is given, then a {@link
808 *     FormatFlagsConversionMismatchException} will be thrown.
809 *
810 * <tr><td valign="top"> {@code 'C'}
811 *     <td valign="top"> <tt>'&#92;u0043'</tt>
812 *     <td> The upper-case variant of {@code 'c'}.
813 *
814 * </table>
815 *
816 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
817 * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
818 * FormatFlagsConversionMismatchException} will be thrown.
819 *
820 * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
821 *
822 * <p> The precision is not applicable.  If the precision is specified then an
823 * {@link IllegalFormatPrecisionException} will be thrown.
824 *
825 * <h4><a name="dnum">Numeric</a></h4>
826 *
827 * <p> Numeric conversions are divided into the following categories:
828 *
829 * <ol>
830 *
831 * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
832 *
833 * <li> <a href="#dnbint"><b>BigInteger</b></a>
834 *
835 * <li> <a href="#dndec"><b>Float and Double</b></a>
836 *
837 * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
838 *
839 * </ol>
840 *
841 * <p> Numeric types will be formatted according to the following algorithm:
842 *
843 * <p><b><a name="L10nAlgorithm"> Number Localization Algorithm</a></b>
844 *
845 * <p> After digits are obtained for the integer part, fractional part, and
846 * exponent (as appropriate for the data type), the following transformation
847 * is applied:
848 *
849 * <ol>
850 *
851 * <li> Each digit character <i>d</i> in the string is replaced by a
852 * locale-specific digit computed relative to the current locale's
853 * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
854 * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
855 * <i>&nbsp;+&nbsp;z</i>.
856 *
857 * <li> If a decimal separator is present, a locale-specific {@linkplain
858 * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
859 * substituted.
860 *
861 * <li> If the {@code ','} (<tt>'&#92;u002c'</tt>)
862 * <a name="L10nGroup">flag</a> is given, then the locale-specific {@linkplain
863 * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
864 * inserted by scanning the integer part of the string from least significant
865 * to most significant digits and inserting a separator at intervals defined by
866 * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
867 * size}.
868 *
869 * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
870 * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
871 * after the sign character, if any, and before the first non-zero digit, until
872 * the length of the string is equal to the requested field width.
873 *
874 * <li> If the value is negative and the {@code '('} flag is given, then a
875 * {@code '('} (<tt>'&#92;u0028'</tt>) is prepended and a {@code ')'}
876 * (<tt>'&#92;u0029'</tt>) is appended.
877 *
878 * <li> If the value is negative (or floating-point negative zero) and
879 * {@code '('} flag is not given, then a {@code '-'} (<tt>'&#92;u002d'</tt>)
880 * is prepended.
881 *
882 * <li> If the {@code '+'} flag is given and the value is positive or zero (or
883 * floating-point positive zero), then a {@code '+'} (<tt>'&#92;u002b'</tt>)
884 * will be prepended.
885 *
886 * </ol>
887 *
888 * <p> If the value is NaN or positive infinity the literal strings "NaN" or
889 * "Infinity" respectively, will be output.  If the value is negative infinity,
890 * then the output will be "(Infinity)" if the {@code '('} flag is given
891 * otherwise the output will be "-Infinity".  These values are not localized.
892 *
893 * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
894 *
895 * <p> The following conversions may be applied to {@code byte}, {@link Byte},
896 * {@code short}, {@link Short}, {@code int} and {@link Integer},
897 * {@code long}, and {@link Long}.
898 *
899 * <table cellpadding=5 summary="IntConv">
900 *
901 * <tr><td valign="top"> {@code 'd'}
902 *     <td valign="top"> <tt>'&#92;u0064'</tt>
903 *     <td> Formats the argument as a decimal integer. The <a
904 *     href="#L10nAlgorithm">localization algorithm</a> is applied.
905 *
906 *     <p> If the {@code '0'} flag is given and the value is negative, then
907 *     the zero padding will occur after the sign.
908 *
909 *     <p> If the {@code '#'} flag is given then a {@link
910 *     FormatFlagsConversionMismatchException} will be thrown.
911 *
912 * <tr><td valign="top"> {@code 'o'}
913 *     <td valign="top"> <tt>'&#92;u006f'</tt>
914 *     <td> Formats the argument as an integer in base eight.  No localization
915 *     is applied.
916 *
917 *     <p> If <i>x</i> is negative then the result will be an unsigned value
918 *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
919 *     number of bits in the type as returned by the static {@code SIZE} field
920 *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
921 *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
922 *     classes as appropriate.
923 *
924 *     <p> If the {@code '#'} flag is given then the output will always begin
925 *     with the radix indicator {@code '0'}.
926 *
927 *     <p> If the {@code '0'} flag is given then the output will be padded
928 *     with leading zeros to the field width following any indication of sign.
929 *
930 *     <p> If {@code '('}, {@code '+'}, '&nbsp;&nbsp;', or {@code ','} flags
931 *     are given then a {@link FormatFlagsConversionMismatchException} will be
932 *     thrown.
933 *
934 * <tr><td valign="top"> {@code 'x'}
935 *     <td valign="top"> <tt>'&#92;u0078'</tt>
936 *     <td> Formats the argument as an integer in base sixteen. No
937 *     localization is applied.
938 *
939 *     <p> If <i>x</i> is negative then the result will be an unsigned value
940 *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
941 *     number of bits in the type as returned by the static {@code SIZE} field
942 *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
943 *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
944 *     classes as appropriate.
945 *
946 *     <p> If the {@code '#'} flag is given then the output will always begin
947 *     with the radix indicator {@code "0x"}.
948 *
949 *     <p> If the {@code '0'} flag is given then the output will be padded to
950 *     the field width with leading zeros after the radix indicator or sign (if
951 *     present).
952 *
953 *     <p> If {@code '('}, <tt>'&nbsp;&nbsp;'</tt>, {@code '+'}, or
954 *     {@code ','} flags are given then a {@link
955 *     FormatFlagsConversionMismatchException} will be thrown.
956 *
957 * <tr><td valign="top"> {@code 'X'}
958 *     <td valign="top"> <tt>'&#92;u0058'</tt>
959 *     <td> The upper-case variant of {@code 'x'}.  The entire string
960 *     representing the number will be converted to {@linkplain
961 *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
962 *     all hexadecimal digits {@code 'a'} - {@code 'f'}
963 *     (<tt>'&#92;u0061'</tt> -  <tt>'&#92;u0066'</tt>).
964 *
965 * </table>
966 *
967 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
968 * both the {@code '#'} and the {@code '0'} flags are given, then result will
969 * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
970 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
971 * and the value.
972 *
973 * <p> If the {@code '-'} flag is not given, then the space padding will occur
974 * before the sign.
975 *
976 * <p> The following <a name="intFlags">flags</a> apply to numeric integral
977 * conversions:
978 *
979 * <table cellpadding=5 summary="intFlags">
980 *
981 * <tr><td valign="top"> {@code '+'}
982 *     <td valign="top"> <tt>'&#92;u002b'</tt>
983 *     <td> Requires the output to include a positive sign for all positive
984 *     numbers.  If this flag is not given then only negative values will
985 *     include a sign.
986 *
987 *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
988 *     then an {@link IllegalFormatFlagsException} will be thrown.
989 *
990 * <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt>
991 *     <td valign="top"> <tt>'&#92;u0020'</tt>
992 *     <td> Requires the output to include a single extra space
993 *     (<tt>'&#92;u0020'</tt>) for non-negative values.
994 *
995 *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
996 *     then an {@link IllegalFormatFlagsException} will be thrown.
997 *
998 * <tr><td valign="top"> {@code '0'}
999 *     <td valign="top"> <tt>'&#92;u0030'</tt>
1000 *     <td> Requires the output to be padded with leading {@linkplain
1001 *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
1002 *     width following any sign or radix indicator except when converting NaN
1003 *     or infinity.  If the width is not provided, then a {@link
1004 *     MissingFormatWidthException} will be thrown.
1005 *
1006 *     <p> If both the {@code '-'} and {@code '0'} flags are given then an
1007 *     {@link IllegalFormatFlagsException} will be thrown.
1008 *
1009 * <tr><td valign="top"> {@code ','}
1010 *     <td valign="top"> <tt>'&#92;u002c'</tt>
1011 *     <td> Requires the output to include the locale-specific {@linkplain
1012 *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1013 *     described in the <a href="#L10nGroup">"group" section</a> of the
1014 *     localization algorithm.
1015 *
1016 * <tr><td valign="top"> {@code '('}
1017 *     <td valign="top"> <tt>'&#92;u0028'</tt>
1018 *     <td> Requires the output to prepend a {@code '('}
1019 *     (<tt>'&#92;u0028'</tt>) and append a {@code ')'}
1020 *     (<tt>'&#92;u0029'</tt>) to negative values.
1021 *
1022 * </table>
1023 *
1024 * <p> If no <a name="intdFlags">flags</a> are given the default formatting is
1025 * as follows:
1026 *
1027 * <ul>
1028 *
1029 * <li> The output is right-justified within the {@code width}
1030 *
1031 * <li> Negative numbers begin with a {@code '-'} (<tt>'&#92;u002d'</tt>)
1032 *
1033 * <li> Positive numbers and zero do not include a sign or extra leading
1034 * space
1035 *
1036 * <li> No grouping separators are included
1037 *
1038 * </ul>
1039 *
1040 * <p> The <a name="intWidth">width</a> is the minimum number of characters to
1041 * be written to the output.  This includes any signs, digits, grouping
1042 * separators, radix indicator, and parentheses.  If the length of the
1043 * converted value is less than the width then the output will be padded by
1044 * spaces (<tt>'&#92;u0020'</tt>) until the total number of characters equals
1045 * width.  The padding is on the left by default.  If {@code '-'} flag is
1046 * given then the padding will be on the right.  If width is not specified then
1047 * there is no minimum.
1048 *
1049 * <p> The precision is not applicable.  If precision is specified then an
1050 * {@link IllegalFormatPrecisionException} will be thrown.
1051 *
1052 * <p><a name="dnbint"><b> BigInteger </b></a>
1053 *
1054 * <p> The following conversions may be applied to {@link
1055 * java.math.BigInteger}.
1056 *
1057 * <table cellpadding=5 summary="BIntConv">
1058 *
1059 * <tr><td valign="top"> {@code 'd'}
1060 *     <td valign="top"> <tt>'&#92;u0064'</tt>
1061 *     <td> Requires the output to be formatted as a decimal integer. The <a
1062 *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1063 *
1064 *     <p> If the {@code '#'} flag is given {@link
1065 *     FormatFlagsConversionMismatchException} will be thrown.
1066 *
1067 * <tr><td valign="top"> {@code 'o'}
1068 *     <td valign="top"> <tt>'&#92;u006f'</tt>
1069 *     <td> Requires the output to be formatted as an integer in base eight.
1070 *     No localization is applied.
1071 *
1072 *     <p> If <i>x</i> is negative then the result will be a signed value
1073 *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1074 *     allowed for this type because unlike the primitive types it is not
1075 *     possible to create an unsigned equivalent without assuming an explicit
1076 *     data-type size.
1077 *
1078 *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1079 *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1080 *
1081 *     <p> If the {@code '#'} flag is given then the output will always begin
1082 *     with {@code '0'} prefix.
1083 *
1084 *     <p> If the {@code '0'} flag is given then the output will be padded
1085 *     with leading zeros to the field width following any indication of sign.
1086 *
1087 *     <p> If the {@code ','} flag is given then a {@link
1088 *     FormatFlagsConversionMismatchException} will be thrown.
1089 *
1090 * <tr><td valign="top"> {@code 'x'}
1091 *     <td valign="top"> <tt>'&#92;u0078'</tt>
1092 *     <td> Requires the output to be formatted as an integer in base
1093 *     sixteen.  No localization is applied.
1094 *
1095 *     <p> If <i>x</i> is negative then the result will be a signed value
1096 *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1097 *     allowed for this type because unlike the primitive types it is not
1098 *     possible to create an unsigned equivalent without assuming an explicit
1099 *     data-type size.
1100 *
1101 *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1102 *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1103 *
1104 *     <p> If the {@code '#'} flag is given then the output will always begin
1105 *     with the radix indicator {@code "0x"}.
1106 *
1107 *     <p> If the {@code '0'} flag is given then the output will be padded to
1108 *     the field width with leading zeros after the radix indicator or sign (if
1109 *     present).
1110 *
1111 *     <p> If the {@code ','} flag is given then a {@link
1112 *     FormatFlagsConversionMismatchException} will be thrown.
1113 *
1114 * <tr><td valign="top"> {@code 'X'}
1115 *     <td valign="top"> <tt>'&#92;u0058'</tt>
1116 *     <td> The upper-case variant of {@code 'x'}.  The entire string
1117 *     representing the number will be converted to {@linkplain
1118 *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
1119 *     all hexadecimal digits {@code 'a'} - {@code 'f'}
1120 *     (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1121 *
1122 * </table>
1123 *
1124 * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1125 * both the {@code '#'} and the {@code '0'} flags are given, then result will
1126 * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1127 * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1128 * and the value.
1129 *
1130 * <p> If the {@code '0'} flag is given and the value is negative, then the
1131 * zero padding will occur after the sign.
1132 *
1133 * <p> If the {@code '-'} flag is not given, then the space padding will occur
1134 * before the sign.
1135 *
1136 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1137 * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
1138 * given is the same as for Byte, Short, Integer, and Long.
1139 *
1140 * <p> The specification of <a href="#intWidth">width</a> is the same as
1141 * defined for Byte, Short, Integer, and Long.
1142 *
1143 * <p> The precision is not applicable.  If precision is specified then an
1144 * {@link IllegalFormatPrecisionException} will be thrown.
1145 *
1146 * <p><a name="dndec"><b> Float and Double</b></a>
1147 *
1148 * <p> The following conversions may be applied to {@code float}, {@link
1149 * Float}, {@code double} and {@link Double}.
1150 *
1151 * <table cellpadding=5 summary="floatConv">
1152 *
1153 * <tr><td valign="top"> {@code 'e'}
1154 *     <td valign="top"> <tt>'&#92;u0065'</tt>
1155 *     <td> Requires the output to be formatted using <a
1156 *     name="scientific">computerized scientific notation</a>.  The <a
1157 *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1158 *
1159 *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1160 *
1161 *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1162 *     "Infinity", respectively, will be output.  These values are not
1163 *     localized.
1164 *
1165 *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1166 *     will be {@code "+00"}.
1167 *
1168 *     <p> Otherwise, the result is a string that represents the sign and
1169 *     magnitude (absolute value) of the argument.  The formatting of the sign
1170 *     is described in the <a href="#L10nAlgorithm">localization
1171 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1172 *     value.
1173 *
1174 *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1175 *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1176 *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1177 *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1178 *     integer part of <i>a</i>, as a single decimal digit, followed by the
1179 *     decimal separator followed by decimal digits representing the fractional
1180 *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1181 *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1182 *     by a representation of <i>n</i> as a decimal integer, as produced by the
1183 *     method {@link Long#toString(long, int)}, and zero-padded to include at
1184 *     least two digits.
1185 *
1186 *     <p> The number of digits in the result for the fractional part of
1187 *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1188 *     specified then the default value is {@code 6}. If the precision is less
1189 *     than the number of digits which would appear after the decimal point in
1190 *     the string returned by {@link Float#toString(float)} or {@link
1191 *     Double#toString(double)} respectively, then the value will be rounded
1192 *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1193 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1194 *     For a canonical representation of the value, use {@link
1195 *     Float#toString(float)} or {@link Double#toString(double)} as
1196 *     appropriate.
1197 *
1198 *     <p>If the {@code ','} flag is given, then an {@link
1199 *     FormatFlagsConversionMismatchException} will be thrown.
1200 *
1201 * <tr><td valign="top"> {@code 'E'}
1202 *     <td valign="top"> <tt>'&#92;u0045'</tt>
1203 *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1204 *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1205 *
1206 * <tr><td valign="top"> {@code 'g'}
1207 *     <td valign="top"> <tt>'&#92;u0067'</tt>
1208 *     <td> Requires the output to be formatted in general scientific notation
1209 *     as described below. The <a href="#L10nAlgorithm">localization
1210 *     algorithm</a> is applied.
1211 *
1212 *     <p> After rounding for the precision, the formatting of the resulting
1213 *     magnitude <i>m</i> depends on its value.
1214 *
1215 *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1216 *     than 10<sup>precision</sup> then it is represented in <i><a
1217 *     href="#decimal">decimal format</a></i>.
1218 *
1219 *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1220 *     10<sup>precision</sup>, then it is represented in <i><a
1221 *     href="#scientific">computerized scientific notation</a></i>.
1222 *
1223 *     <p> The total number of significant digits in <i>m</i> is equal to the
1224 *     precision.  If the precision is not specified, then the default value is
1225 *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1226 *     {@code 1}.
1227 *
1228 *     <p> If the {@code '#'} flag is given then an {@link
1229 *     FormatFlagsConversionMismatchException} will be thrown.
1230 *
1231 * <tr><td valign="top"> {@code 'G'}
1232 *     <td valign="top"> <tt>'&#92;u0047'</tt>
1233 *     <td> The upper-case variant of {@code 'g'}.
1234 *
1235 * <tr><td valign="top"> {@code 'f'}
1236 *     <td valign="top"> <tt>'&#92;u0066'</tt>
1237 *     <td> Requires the output to be formatted using <a name="decimal">decimal
1238 *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1239 *     applied.
1240 *
1241 *     <p> The result is a string that represents the sign and magnitude
1242 *     (absolute value) of the argument.  The formatting of the sign is
1243 *     described in the <a href="#L10nAlgorithm">localization
1244 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1245 *     value.
1246 *
1247 *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1248 *     "Infinity", respectively, will be output.  These values are not
1249 *     localized.
1250 *
1251 *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1252 *     leading zeroes, followed by the decimal separator followed by one or
1253 *     more decimal digits representing the fractional part of <i>m</i>.
1254 *
1255 *     <p> The number of digits in the result for the fractional part of
1256 *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1257 *     specified then the default value is {@code 6}. If the precision is less
1258 *     than the number of digits which would appear after the decimal point in
1259 *     the string returned by {@link Float#toString(float)} or {@link
1260 *     Double#toString(double)} respectively, then the value will be rounded
1261 *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1262 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1263 *     For a canonical representation of the value, use {@link
1264 *     Float#toString(float)} or {@link Double#toString(double)} as
1265 *     appropriate.
1266 *
1267 * <tr><td valign="top"> {@code 'a'}
1268 *     <td valign="top"> <tt>'&#92;u0061'</tt>
1269 *     <td> Requires the output to be formatted in hexadecimal exponential
1270 *     form.  No localization is applied.
1271 *
1272 *     <p> The result is a string that represents the sign and magnitude
1273 *     (absolute value) of the argument <i>x</i>.
1274 *
1275 *     <p> If <i>x</i> is negative or a negative-zero value then the result
1276 *     will begin with {@code '-'} (<tt>'&#92;u002d'</tt>).
1277 *
1278 *     <p> If <i>x</i> is positive or a positive-zero value and the
1279 *     {@code '+'} flag is given then the result will begin with {@code '+'}
1280 *     (<tt>'&#92;u002b'</tt>).
1281 *
1282 *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1283 *
1284 *     <ul>
1285 *
1286 *     <li> If the value is NaN or infinite, the literal strings "NaN" or
1287 *     "Infinity", respectively, will be output.
1288 *
1289 *     <li> If <i>m</i> is zero then it is represented by the string
1290 *     {@code "0x0.0p0"}.
1291 *
1292 *     <li> If <i>m</i> is a {@code double} value with a normalized
1293 *     representation then substrings are used to represent the significand and
1294 *     exponent fields.  The significand is represented by the characters
1295 *     {@code "0x1."} followed by the hexadecimal representation of the rest
1296 *     of the significand as a fraction.  The exponent is represented by
1297 *     {@code 'p'} (<tt>'&#92;u0070'</tt>) followed by a decimal string of the
1298 *     unbiased exponent as if produced by invoking {@link
1299 *     Integer#toString(int) Integer.toString} on the exponent value.  If the
1300 *     precision is specified, the value is rounded to the given number of
1301 *     hexadecimal digits.
1302 *
1303 *     <li> If <i>m</i> is a {@code double} value with a subnormal
1304 *     representation then, unless the precision is specified to be in the range
1305 *     1 through 12, inclusive, the significand is represented by the characters
1306 *     {@code '0x0.'} followed by the hexadecimal representation of the rest of
1307 *     the significand as a fraction, and the exponent represented by
1308 *     {@code 'p-1022'}.  If the precision is in the interval
1309 *     [1,&nbsp;12], the subnormal value is normalized such that it
1310 *     begins with the characters {@code '0x1.'}, rounded to the number of
1311 *     hexadecimal digits of precision, and the exponent adjusted
1312 *     accordingly.  Note that there must be at least one nonzero digit in a
1313 *     subnormal significand.
1314 *
1315 *     </ul>
1316 *
1317 *     <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1318 *     FormatFlagsConversionMismatchException} will be thrown.
1319 *
1320 * <tr><td valign="top"> {@code 'A'}
1321 *     <td valign="top"> <tt>'&#92;u0041'</tt>
1322 *     <td> The upper-case variant of {@code 'a'}.  The entire string
1323 *     representing the number will be converted to upper case including the
1324 *     {@code 'x'} (<tt>'&#92;u0078'</tt>) and {@code 'p'}
1325 *     (<tt>'&#92;u0070'</tt> and all hexadecimal digits {@code 'a'} -
1326 *     {@code 'f'} (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1327 *
1328 * </table>
1329 *
1330 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1331 * Long apply.
1332 *
1333 * <p> If the {@code '#'} flag is given, then the decimal separator will
1334 * always be present.
1335 *
1336 * <p> If no <a name="floatdFlags">flags</a> are given the default formatting
1337 * is as follows:
1338 *
1339 * <ul>
1340 *
1341 * <li> The output is right-justified within the {@code width}
1342 *
1343 * <li> Negative numbers begin with a {@code '-'}
1344 *
1345 * <li> Positive numbers and positive zero do not include a sign or extra
1346 * leading space
1347 *
1348 * <li> No grouping separators are included
1349 *
1350 * <li> The decimal separator will only appear if a digit follows it
1351 *
1352 * </ul>
1353 *
1354 * <p> The <a name="floatDWidth">width</a> is the minimum number of characters
1355 * to be written to the output.  This includes any signs, digits, grouping
1356 * separators, decimal separators, exponential symbol, radix indicator,
1357 * parentheses, and strings representing infinity and NaN as applicable.  If
1358 * the length of the converted value is less than the width then the output
1359 * will be padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1360 * characters equals width.  The padding is on the left by default.  If the
1361 * {@code '-'} flag is given then the padding will be on the right.  If width
1362 * is not specified then there is no minimum.
1363 *
1364 * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'},
1365 * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1366 * after the decimal separator.  If the precision is not specified, then it is
1367 * assumed to be {@code 6}.
1368 *
1369 * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1370 * the total number of significant digits in the resulting magnitude after
1371 * rounding.  If the precision is not specified, then the default value is
1372 * {@code 6}.  If the precision is {@code 0}, then it is taken to be
1373 * {@code 1}.
1374 *
1375 * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1376 * is the number of hexadecimal digits after the radix point.  If the
1377 * precision is not provided, then all of the digits as returned by {@link
1378 * Double#toHexString(double)} will be output.
1379 *
1380 * <p><a name="dnbdec"><b> BigDecimal </b></a>
1381 *
1382 * <p> The following conversions may be applied {@link java.math.BigDecimal
1383 * BigDecimal}.
1384 *
1385 * <table cellpadding=5 summary="floatConv">
1386 *
1387 * <tr><td valign="top"> {@code 'e'}
1388 *     <td valign="top"> <tt>'&#92;u0065'</tt>
1389 *     <td> Requires the output to be formatted using <a
1390 *     name="bscientific">computerized scientific notation</a>.  The <a
1391 *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1392 *
1393 *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1394 *
1395 *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1396 *     will be {@code "+00"}.
1397 *
1398 *     <p> Otherwise, the result is a string that represents the sign and
1399 *     magnitude (absolute value) of the argument.  The formatting of the sign
1400 *     is described in the <a href="#L10nAlgorithm">localization
1401 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1402 *     value.
1403 *
1404 *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1405 *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1406 *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1407 *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1408 *     integer part of <i>a</i>, as a single decimal digit, followed by the
1409 *     decimal separator followed by decimal digits representing the fractional
1410 *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1411 *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1412 *     by a representation of <i>n</i> as a decimal integer, as produced by the
1413 *     method {@link Long#toString(long, int)}, and zero-padded to include at
1414 *     least two digits.
1415 *
1416 *     <p> The number of digits in the result for the fractional part of
1417 *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1418 *     specified then the default value is {@code 6}.  If the precision is
1419 *     less than the number of digits to the right of the decimal point then
1420 *     the value will be rounded using the
1421 *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1422 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1423 *     For a canonical representation of the value, use {@link
1424 *     BigDecimal#toString()}.
1425 *
1426 *     <p> If the {@code ','} flag is given, then an {@link
1427 *     FormatFlagsConversionMismatchException} will be thrown.
1428 *
1429 * <tr><td valign="top"> {@code 'E'}
1430 *     <td valign="top"> <tt>'&#92;u0045'</tt>
1431 *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1432 *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1433 *
1434 * <tr><td valign="top"> {@code 'g'}
1435 *     <td valign="top"> <tt>'&#92;u0067'</tt>
1436 *     <td> Requires the output to be formatted in general scientific notation
1437 *     as described below. The <a href="#L10nAlgorithm">localization
1438 *     algorithm</a> is applied.
1439 *
1440 *     <p> After rounding for the precision, the formatting of the resulting
1441 *     magnitude <i>m</i> depends on its value.
1442 *
1443 *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1444 *     than 10<sup>precision</sup> then it is represented in <i><a
1445 *     href="#bdecimal">decimal format</a></i>.
1446 *
1447 *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1448 *     10<sup>precision</sup>, then it is represented in <i><a
1449 *     href="#bscientific">computerized scientific notation</a></i>.
1450 *
1451 *     <p> The total number of significant digits in <i>m</i> is equal to the
1452 *     precision.  If the precision is not specified, then the default value is
1453 *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1454 *     {@code 1}.
1455 *
1456 *     <p> If the {@code '#'} flag is given then an {@link
1457 *     FormatFlagsConversionMismatchException} will be thrown.
1458 *
1459 * <tr><td valign="top"> {@code 'G'}
1460 *     <td valign="top"> <tt>'&#92;u0047'</tt>
1461 *     <td> The upper-case variant of {@code 'g'}.
1462 *
1463 * <tr><td valign="top"> {@code 'f'}
1464 *     <td valign="top"> <tt>'&#92;u0066'</tt>
1465 *     <td> Requires the output to be formatted using <a name="bdecimal">decimal
1466 *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1467 *     applied.
1468 *
1469 *     <p> The result is a string that represents the sign and magnitude
1470 *     (absolute value) of the argument.  The formatting of the sign is
1471 *     described in the <a href="#L10nAlgorithm">localization
1472 *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1473 *     value.
1474 *
1475 *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1476 *     leading zeroes, followed by the decimal separator followed by one or
1477 *     more decimal digits representing the fractional part of <i>m</i>.
1478 *
1479 *     <p> The number of digits in the result for the fractional part of
1480 *     <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1481 *     specified then the default value is {@code 6}.  If the precision is
1482 *     less than the number of digits to the right of the decimal point
1483 *     then the value will be rounded using the
1484 *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1485 *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1486 *     For a canonical representation of the value, use {@link
1487 *     BigDecimal#toString()}.
1488 *
1489 * </table>
1490 *
1491 * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1492 * Long apply.
1493 *
1494 * <p> If the {@code '#'} flag is given, then the decimal separator will
1495 * always be present.
1496 *
1497 * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1498 * given is the same as for Float and Double.
1499 *
1500 * <p> The specification of <a href="#floatDWidth">width</a> and <a
1501 * href="#floatDPrec">precision</a> is the same as defined for Float and
1502 * Double.
1503 *
1504 * <h4><a name="ddt">Date/Time</a></h4>
1505 *
1506 * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1507 * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
1508 *
1509 * <table cellpadding=5 summary="DTConv">
1510 *
1511 * <tr><td valign="top"> {@code 't'}
1512 *     <td valign="top"> <tt>'&#92;u0074'</tt>
1513 *     <td> Prefix for date and time conversion characters.
1514 * <tr><td valign="top"> {@code 'T'}
1515 *     <td valign="top"> <tt>'&#92;u0054'</tt>
1516 *     <td> The upper-case variant of {@code 't'}.
1517 *
1518 * </table>
1519 *
1520 * <p> The following date and time conversion character suffixes are defined
1521 * for the {@code 't'} and {@code 'T'} conversions.  The types are similar to
1522 * but not completely identical to those defined by GNU {@code date} and
1523 * POSIX {@code strftime(3c)}.  Additional conversion types are provided to
1524 * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1525 * within the second).
1526 *
1527 * <p> The following conversion characters are used for formatting times:
1528 *
1529 * <table cellpadding=5 summary="time">
1530 *
1531 * <tr><td valign="top"> {@code 'H'}
1532 *     <td valign="top"> <tt>'&#92;u0048'</tt>
1533 *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
1534 *     a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1535 *     corresponds to midnight.
1536 *
1537 * <tr><td valign="top">{@code 'I'}
1538 *     <td valign="top"> <tt>'&#92;u0049'</tt>
1539 *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
1540 *     zero as necessary, i.e.  {@code 01 - 12}.  {@code 01} corresponds to
1541 *     one o'clock (either morning or afternoon).
1542 *
1543 * <tr><td valign="top">{@code 'k'}
1544 *     <td valign="top"> <tt>'&#92;u006b'</tt>
1545 *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1546 *     {@code 0} corresponds to midnight.
1547 *
1548 * <tr><td valign="top">{@code 'l'}
1549 *     <td valign="top"> <tt>'&#92;u006c'</tt>
1550 *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.  {@code 1}
1551 *     corresponds to one o'clock (either morning or afternoon).
1552 *
1553 * <tr><td valign="top">{@code 'M'}
1554 *     <td valign="top"> <tt>'&#92;u004d'</tt>
1555 *     <td> Minute within the hour formatted as two digits with a leading zero
1556 *     as necessary, i.e.  {@code 00 - 59}.
1557 *
1558 * <tr><td valign="top">{@code 'S'}
1559 *     <td valign="top"> <tt>'&#92;u0053'</tt>
1560 *     <td> Seconds within the minute, formatted as two digits with a leading
1561 *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1562 *     value required to support leap seconds).
1563 *
1564 * <tr><td valign="top">{@code 'L'}
1565 *     <td valign="top"> <tt>'&#92;u004c'</tt>
1566 *     <td> Millisecond within the second formatted as three digits with
1567 *     leading zeros as necessary, i.e. {@code 000 - 999}.
1568 *
1569 * <tr><td valign="top">{@code 'N'}
1570 *     <td valign="top"> <tt>'&#92;u004e'</tt>
1571 *     <td> Nanosecond within the second, formatted as nine digits with leading
1572 *     zeros as necessary, i.e. {@code 000000000 - 999999999}.  The precision
1573 *     of this value is limited by the resolution of the underlying operating
1574 *     system or hardware.
1575 *
1576 * <tr><td valign="top">{@code 'p'}
1577 *     <td valign="top"> <tt>'&#92;u0070'</tt>
1578 *     <td> Locale-specific {@linkplain
1579 *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1580 *     in lower case, e.g."{@code am}" or "{@code pm}".  Use of the
1581 *     conversion prefix {@code 'T'} forces this output to upper case.  (Note
1582 *     that {@code 'p'} produces lower-case output.  This is different from
1583 *     GNU {@code date} and POSIX {@code strftime(3c)} which produce
1584 *     upper-case output.)
1585 *
1586 * <tr><td valign="top">{@code 'z'}
1587 *     <td valign="top"> <tt>'&#92;u007a'</tt>
1588 *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1589 *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
1590 *     value will be adjusted as necessary for Daylight Saving Time.  For
1591 *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1592 *     the {@linkplain TimeZone#getDefault() default time zone} for this
1593 *     instance of the Java virtual machine.
1594 *
1595 * <tr><td valign="top">{@code 'Z'}
1596 *     <td valign="top"> <tt>'&#92;u005a'</tt>
1597 *     <td> A string representing the abbreviation for the time zone.  This
1598 *     value will be adjusted as necessary for Daylight Saving Time.  For
1599 *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1600 *     the {@linkplain TimeZone#getDefault() default time zone} for this
1601 *     instance of the Java virtual machine.  The Formatter's locale will
1602 *     supersede the locale of the argument (if any).
1603 *
1604 * <tr><td valign="top">{@code 's'}
1605 *     <td valign="top"> <tt>'&#92;u0073'</tt>
1606 *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
1607 *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1608 *     {@code Long.MAX_VALUE/1000}.
1609 *
1610 * <tr><td valign="top">{@code 'Q'}
1611 *     <td valign="top"> <tt>'&#92;u004f'</tt>
1612 *     <td> Milliseconds since the beginning of the epoch starting at 1 January
1613 *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1614 *     {@code Long.MAX_VALUE}. The precision of this value is limited by
1615 *     the resolution of the underlying operating system or hardware.
1616 *
1617 * </table>
1618 *
1619 * <p> The following conversion characters are used for formatting dates:
1620 *
1621 * <table cellpadding=5 summary="date">
1622 *
1623 * <tr><td valign="top">{@code 'B'}
1624 *     <td valign="top"> <tt>'&#92;u0042'</tt>
1625 *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1626 *     full month name}, e.g. {@code "January"}, {@code "February"}.
1627 *
1628 * <tr><td valign="top">{@code 'b'}
1629 *     <td valign="top"> <tt>'&#92;u0062'</tt>
1630 *     <td> Locale-specific {@linkplain
1631 *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1632 *     e.g. {@code "Jan"}, {@code "Feb"}.
1633 *
1634 * <tr><td valign="top">{@code 'h'}
1635 *     <td valign="top"> <tt>'&#92;u0068'</tt>
1636 *     <td> Same as {@code 'b'}.
1637 *
1638 * <tr><td valign="top">{@code 'A'}
1639 *     <td valign="top"> <tt>'&#92;u0041'</tt>
1640 *     <td> Locale-specific full name of the {@linkplain
1641 *     java.text.DateFormatSymbols#getWeekdays day of the week},
1642 *     e.g. {@code "Sunday"}, {@code "Monday"}
1643 *
1644 * <tr><td valign="top">{@code 'a'}
1645 *     <td valign="top"> <tt>'&#92;u0061'</tt>
1646 *     <td> Locale-specific short name of the {@linkplain
1647 *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
1648 *     e.g. {@code "Sun"}, {@code "Mon"}
1649 *
1650 * <tr><td valign="top">{@code 'C'}
1651 *     <td valign="top"> <tt>'&#92;u0043'</tt>
1652 *     <td> Four-digit year divided by {@code 100}, formatted as two digits
1653 *     with leading zero as necessary, i.e. {@code 00 - 99}
1654 *
1655 * <tr><td valign="top">{@code 'Y'}
1656 *     <td valign="top"> <tt>'&#92;u0059'</tt> <td> Year, formatted to at least
1657 *     four digits with leading zeros as necessary, e.g. {@code 0092} equals
1658 *     {@code 92} CE for the Gregorian calendar.
1659 *
1660 * <tr><td valign="top">{@code 'y'}
1661 *     <td valign="top"> <tt>'&#92;u0079'</tt>
1662 *     <td> Last two digits of the year, formatted with leading zeros as
1663 *     necessary, i.e. {@code 00 - 99}.
1664 *
1665 * <tr><td valign="top">{@code 'j'}
1666 *     <td valign="top"> <tt>'&#92;u006a'</tt>
1667 *     <td> Day of year, formatted as three digits with leading zeros as
1668 *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1669 *     {@code 001} corresponds to the first day of the year.
1670 *
1671 * <tr><td valign="top">{@code 'm'}
1672 *     <td valign="top"> <tt>'&#92;u006d'</tt>
1673 *     <td> Month, formatted as two digits with leading zeros as necessary,
1674 *     i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1675 *     year and ("{@code 13}" is a special value required to support lunar
1676 *     calendars).
1677 *
1678 * <tr><td valign="top">{@code 'd'}
1679 *     <td valign="top"> <tt>'&#92;u0064'</tt>
1680 *     <td> Day of month, formatted as two digits with leading zeros as
1681 *     necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1682 *     of the month.
1683 *
1684 * <tr><td valign="top">{@code 'e'}
1685 *     <td valign="top"> <tt>'&#92;u0065'</tt>
1686 *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1687 *     "{@code 1}" is the first day of the month.
1688 *
1689 * </table>
1690 *
1691 * <p> The following conversion characters are used for formatting common
1692 * date/time compositions.
1693 *
1694 * <table cellpadding=5 summary="composites">
1695 *
1696 * <tr><td valign="top">{@code 'R'}
1697 *     <td valign="top"> <tt>'&#92;u0052'</tt>
1698 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1699 *
1700 * <tr><td valign="top">{@code 'T'}
1701 *     <td valign="top"> <tt>'&#92;u0054'</tt>
1702 *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1703 *
1704 * <tr><td valign="top">{@code 'r'}
1705 *     <td valign="top"> <tt>'&#92;u0072'</tt>
1706 *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1707 *     %Tp"}.  The location of the morning or afternoon marker
1708 *     ({@code '%Tp'}) may be locale-dependent.
1709 *
1710 * <tr><td valign="top">{@code 'D'}
1711 *     <td valign="top"> <tt>'&#92;u0044'</tt>
1712 *     <td> Date formatted as {@code "%tm/%td/%ty"}.
1713 *
1714 * <tr><td valign="top">{@code 'F'}
1715 *     <td valign="top"> <tt>'&#92;u0046'</tt>
1716 *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1717 *     complete date formatted as {@code "%tY-%tm-%td"}.
1718 *
1719 * <tr><td valign="top">{@code 'c'}
1720 *     <td valign="top"> <tt>'&#92;u0063'</tt>
1721 *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1722 *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1723 *
1724 * </table>
1725 *
1726 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1727 * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
1728 * FormatFlagsConversionMismatchException} will be thrown.
1729 *
1730 * <p> The width is the minimum number of characters to
1731 * be written to the output.  If the length of the converted value is less than
1732 * the {@code width} then the output will be padded by spaces
1733 * (<tt>'&#92;u0020'</tt>) until the total number of characters equals width.
1734 * The padding is on the left by default.  If the {@code '-'} flag is given
1735 * then the padding will be on the right.  If width is not specified then there
1736 * is no minimum.
1737 *
1738 * <p> The precision is not applicable.  If the precision is specified then an
1739 * {@link IllegalFormatPrecisionException} will be thrown.
1740 *
1741 * <h4><a name="dper">Percent</a></h4>
1742 *
1743 * <p> The conversion does not correspond to any argument.
1744 *
1745 * <table cellpadding=5 summary="DTConv">
1746 *
1747 * <tr><td valign="top">{@code '%'}
1748 *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
1749 *
1750 * <p> The width is the minimum number of characters to
1751 * be written to the output including the {@code '%'}.  If the length of the
1752 * converted value is less than the {@code width} then the output will be
1753 * padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1754 * characters equals width.  The padding is on the left.  If width is not
1755 * specified then just the {@code '%'} is output.
1756 *
1757 * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1758 * conversions</a> applies.  If any other flags are provided, then a
1759 * {@link FormatFlagsConversionMismatchException} will be thrown.
1760 *
1761 * <p> The precision is not applicable.  If the precision is specified an
1762 * {@link IllegalFormatPrecisionException} will be thrown.
1763 *
1764 * </table>
1765 *
1766 * <h4><a name="dls">Line Separator</a></h4>
1767 *
1768 * <p> The conversion does not correspond to any argument.
1769 *
1770 * <table cellpadding=5 summary="DTConv">
1771 *
1772 * <tr><td valign="top">{@code 'n'}
1773 *     <td> the platform-specific line separator as returned by {@link
1774 *     System#getProperty System.getProperty("line.separator")}.
1775 *
1776 * </table>
1777 *
1778 * <p> Flags, width, and precision are not applicable.  If any are provided an
1779 * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1780 * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1781 *
1782 * <h4><a name="dpos">Argument Index</a></h4>
1783 *
1784 * <p> Format specifiers can reference arguments in three ways:
1785 *
1786 * <ul>
1787 *
1788 * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1789 * argument index.  The argument index is a decimal integer indicating the
1790 * position of the argument in the argument list.  The first argument is
1791 * referenced by "{@code 1$}", the second by "{@code 2$}", etc.  An argument
1792 * may be referenced more than once.
1793 *
1794 * <p> For example:
1795 *
1796 * <blockquote><pre>
1797 *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1798 *                    "a", "b", "c", "d")
1799 *   // -&gt; "d c b a d c b a"
1800 * </pre></blockquote>
1801 *
1802 * <li> <i>Relative indexing</i> is used when the format specifier contains a
1803 * {@code '<'} (<tt>'&#92;u003c'</tt>) flag which causes the argument for
1804 * the previous format specifier to be re-used.  If there is no previous
1805 * argument, then a {@link MissingFormatArgumentException} is thrown.
1806 *
1807 * <blockquote><pre>
1808 *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1809 *    // -&gt; "a b b b"
1810 *    // "c" and "d" are ignored because they are not referenced
1811 * </pre></blockquote>
1812 *
1813 * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1814 * neither an argument index nor a {@code '<'} flag.  Each format specifier
1815 * which uses ordinary indexing is assigned a sequential implicit index into
1816 * argument list which is independent of the indices used by explicit or
1817 * relative indexing.
1818 *
1819 * <blockquote><pre>
1820 *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
1821 *   // -&gt; "a b c d"
1822 * </pre></blockquote>
1823 *
1824 * </ul>
1825 *
1826 * <p> It is possible to have a format string which uses all forms of indexing,
1827 * for example:
1828 *
1829 * <blockquote><pre>
1830 *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1831 *   // -&gt; "b a a b"
1832 *   // "c" and "d" are ignored because they are not referenced
1833 * </pre></blockquote>
1834 *
1835 * <p> The maximum number of arguments is limited by the maximum dimension of a
1836 * Java array as defined by
1837 * <cite>The Java&trade; Virtual Machine Specification</cite>.
1838 * If the argument index is does not correspond to an
1839 * available argument, then a {@link MissingFormatArgumentException} is thrown.
1840 *
1841 * <p> If there are more arguments than format specifiers, the extra arguments
1842 * are ignored.
1843 *
1844 * <p> Unless otherwise specified, passing a {@code null} argument to any
1845 * method or constructor in this class will cause a {@link
1846 * NullPointerException} to be thrown.
1847 *
1848 * @author  Iris Clark
1849 * @since 1.5
1850 */
1851public final class Formatter implements Closeable, Flushable {
1852    private Appendable a;
1853    private final Locale l;
1854
1855    private IOException lastException;
1856
1857    private final char zero;
1858    private static double scaleUp;
1859
1860    // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1861    // + 3 (max # exp digits) + 4 (error) = 30
1862    private static final int MAX_FD_CHARS = 30;
1863
1864    /**
1865     * Returns a charset object for the given charset name.
1866     * @throws NullPointerException          is csn is null
1867     * @throws UnsupportedEncodingException  if the charset is not supported
1868     */
1869    private static Charset toCharset(String csn)
1870        throws UnsupportedEncodingException
1871    {
1872        Objects.requireNonNull(csn, "charsetName");
1873        try {
1874            return Charset.forName(csn);
1875        } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1876            // UnsupportedEncodingException should be thrown
1877            throw new UnsupportedEncodingException(csn);
1878        }
1879    }
1880
1881    private static final Appendable nonNullAppendable(Appendable a) {
1882        if (a == null)
1883            return new StringBuilder();
1884
1885        return a;
1886    }
1887
1888    /* Private constructors */
1889    private Formatter(Locale l, Appendable a) {
1890        this.a = a;
1891        this.l = l;
1892        this.zero = getZero(l);
1893    }
1894
1895    private Formatter(Charset charset, Locale l, File file)
1896        throws FileNotFoundException
1897    {
1898        this(l,
1899             new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1900    }
1901
1902    /**
1903     * Constructs a new formatter.
1904     *
1905     * <p> The destination of the formatted output is a {@link StringBuilder}
1906     * which may be retrieved by invoking {@link #out out()} and whose
1907     * current content may be converted into a string by invoking {@link
1908     * #toString toString()}.  The locale used is the {@linkplain
1909     * Locale#getDefault(Locale.Category) default locale} for
1910     * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1911     * virtual machine.
1912     */
1913    public Formatter() {
1914        this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1915    }
1916
1917    /**
1918     * Constructs a new formatter with the specified destination.
1919     *
1920     * <p> The locale used is the {@linkplain
1921     * Locale#getDefault(Locale.Category) default locale} for
1922     * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1923     * virtual machine.
1924     *
1925     * @param  a
1926     *         Destination for the formatted output.  If {@code a} is
1927     *         {@code null} then a {@link StringBuilder} will be created.
1928     */
1929    public Formatter(Appendable a) {
1930        this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1931    }
1932
1933    /**
1934     * Constructs a new formatter with the specified locale.
1935     *
1936     * <p> The destination of the formatted output is a {@link StringBuilder}
1937     * which may be retrieved by invoking {@link #out out()} and whose current
1938     * content may be converted into a string by invoking {@link #toString
1939     * toString()}.
1940     *
1941     * @param  l
1942     *         The {@linkplain java.util.Locale locale} to apply during
1943     *         formatting.  If {@code l} is {@code null} then no localization
1944     *         is applied.
1945     */
1946    public Formatter(Locale l) {
1947        this(l, new StringBuilder());
1948    }
1949
1950    /**
1951     * Constructs a new formatter with the specified destination and locale.
1952     *
1953     * @param  a
1954     *         Destination for the formatted output.  If {@code a} is
1955     *         {@code null} then a {@link StringBuilder} will be created.
1956     *
1957     * @param  l
1958     *         The {@linkplain java.util.Locale locale} to apply during
1959     *         formatting.  If {@code l} is {@code null} then no localization
1960     *         is applied.
1961     */
1962    public Formatter(Appendable a, Locale l) {
1963        this(l, nonNullAppendable(a));
1964    }
1965
1966    /**
1967     * Constructs a new formatter with the specified file name.
1968     *
1969     * <p> The charset used is the {@linkplain
1970     * java.nio.charset.Charset#defaultCharset() default charset} for this
1971     * instance of the Java virtual machine.
1972     *
1973     * <p> The locale used is the {@linkplain
1974     * Locale#getDefault(Locale.Category) default locale} for
1975     * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1976     * virtual machine.
1977     *
1978     * @param  fileName
1979     *         The name of the file to use as the destination of this
1980     *         formatter.  If the file exists then it will be truncated to
1981     *         zero size; otherwise, a new file will be created.  The output
1982     *         will be written to the file and is buffered.
1983     *
1984     * @throws  SecurityException
1985     *          If a security manager is present and {@link
1986     *          SecurityManager#checkWrite checkWrite(fileName)} denies write
1987     *          access to the file
1988     *
1989     * @throws  FileNotFoundException
1990     *          If the given file name does not denote an existing, writable
1991     *          regular file and a new regular file of that name cannot be
1992     *          created, or if some other error occurs while opening or
1993     *          creating the file
1994     */
1995    public Formatter(String fileName) throws FileNotFoundException {
1996        this(Locale.getDefault(Locale.Category.FORMAT),
1997             new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
1998    }
1999
2000    /**
2001     * Constructs a new formatter with the specified file name and charset.
2002     *
2003     * <p> The locale used is the {@linkplain
2004     * Locale#getDefault(Locale.Category) default locale} for
2005     * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2006     * virtual machine.
2007     *
2008     * @param  fileName
2009     *         The name of the file to use as the destination of this
2010     *         formatter.  If the file exists then it will be truncated to
2011     *         zero size; otherwise, a new file will be created.  The output
2012     *         will be written to the file and is buffered.
2013     *
2014     * @param  csn
2015     *         The name of a supported {@linkplain java.nio.charset.Charset
2016     *         charset}
2017     *
2018     * @throws  FileNotFoundException
2019     *          If the given file name does not denote an existing, writable
2020     *          regular file and a new regular file of that name cannot be
2021     *          created, or if some other error occurs while opening or
2022     *          creating the file
2023     *
2024     * @throws  SecurityException
2025     *          If a security manager is present and {@link
2026     *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2027     *          access to the file
2028     *
2029     * @throws  UnsupportedEncodingException
2030     *          If the named charset is not supported
2031     */
2032    public Formatter(String fileName, String csn)
2033        throws FileNotFoundException, UnsupportedEncodingException
2034    {
2035        this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2036    }
2037
2038    /**
2039     * Constructs a new formatter with the specified file name, charset, and
2040     * locale.
2041     *
2042     * @param  fileName
2043     *         The name of the file to use as the destination of this
2044     *         formatter.  If the file exists then it will be truncated to
2045     *         zero size; otherwise, a new file will be created.  The output
2046     *         will be written to the file and is buffered.
2047     *
2048     * @param  csn
2049     *         The name of a supported {@linkplain java.nio.charset.Charset
2050     *         charset}
2051     *
2052     * @param  l
2053     *         The {@linkplain java.util.Locale locale} to apply during
2054     *         formatting.  If {@code l} is {@code null} then no localization
2055     *         is applied.
2056     *
2057     * @throws  FileNotFoundException
2058     *          If the given file name does not denote an existing, writable
2059     *          regular file and a new regular file of that name cannot be
2060     *          created, or if some other error occurs while opening or
2061     *          creating the file
2062     *
2063     * @throws  SecurityException
2064     *          If a security manager is present and {@link
2065     *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2066     *          access to the file
2067     *
2068     * @throws  UnsupportedEncodingException
2069     *          If the named charset is not supported
2070     */
2071    public Formatter(String fileName, String csn, Locale l)
2072        throws FileNotFoundException, UnsupportedEncodingException
2073    {
2074        this(toCharset(csn), l, new File(fileName));
2075    }
2076
2077    /**
2078     * Constructs a new formatter with the specified file.
2079     *
2080     * <p> The charset used is the {@linkplain
2081     * java.nio.charset.Charset#defaultCharset() default charset} for this
2082     * instance of the Java virtual machine.
2083     *
2084     * <p> The locale used is the {@linkplain
2085     * Locale#getDefault(Locale.Category) default locale} for
2086     * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2087     * virtual machine.
2088     *
2089     * @param  file
2090     *         The file to use as the destination of this formatter.  If the
2091     *         file exists then it will be truncated to zero size; otherwise,
2092     *         a new file will be created.  The output will be written to the
2093     *         file and is buffered.
2094     *
2095     * @throws  SecurityException
2096     *          If a security manager is present and {@link
2097     *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2098     *          write access to the file
2099     *
2100     * @throws  FileNotFoundException
2101     *          If the given file object does not denote an existing, writable
2102     *          regular file and a new regular file of that name cannot be
2103     *          created, or if some other error occurs while opening or
2104     *          creating the file
2105     */
2106    public Formatter(File file) throws FileNotFoundException {
2107        this(Locale.getDefault(Locale.Category.FORMAT),
2108             new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2109    }
2110
2111    /**
2112     * Constructs a new formatter with the specified file and charset.
2113     *
2114     * <p> The locale used is the {@linkplain
2115     * Locale#getDefault(Locale.Category) default locale} for
2116     * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2117     * virtual machine.
2118     *
2119     * @param  file
2120     *         The file to use as the destination of this formatter.  If the
2121     *         file exists then it will be truncated to zero size; otherwise,
2122     *         a new file will be created.  The output will be written to the
2123     *         file and is buffered.
2124     *
2125     * @param  csn
2126     *         The name of a supported {@linkplain java.nio.charset.Charset
2127     *         charset}
2128     *
2129     * @throws  FileNotFoundException
2130     *          If the given file object does not denote an existing, writable
2131     *          regular file and a new regular file of that name cannot be
2132     *          created, or if some other error occurs while opening or
2133     *          creating the file
2134     *
2135     * @throws  SecurityException
2136     *          If a security manager is present and {@link
2137     *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2138     *          write access to the file
2139     *
2140     * @throws  UnsupportedEncodingException
2141     *          If the named charset is not supported
2142     */
2143    public Formatter(File file, String csn)
2144        throws FileNotFoundException, UnsupportedEncodingException
2145    {
2146        this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2147    }
2148
2149    /**
2150     * Constructs a new formatter with the specified file, charset, and
2151     * locale.
2152     *
2153     * @param  file
2154     *         The file to use as the destination of this formatter.  If the
2155     *         file exists then it will be truncated to zero size; otherwise,
2156     *         a new file will be created.  The output will be written to the
2157     *         file and is buffered.
2158     *
2159     * @param  csn
2160     *         The name of a supported {@linkplain java.nio.charset.Charset
2161     *         charset}
2162     *
2163     * @param  l
2164     *         The {@linkplain java.util.Locale locale} to apply during
2165     *         formatting.  If {@code l} is {@code null} then no localization
2166     *         is applied.
2167     *
2168     * @throws  FileNotFoundException
2169     *          If the given file object does not denote an existing, writable
2170     *          regular file and a new regular file of that name cannot be
2171     *          created, or if some other error occurs while opening or
2172     *          creating the file
2173     *
2174     * @throws  SecurityException
2175     *          If a security manager is present and {@link
2176     *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2177     *          write access to the file
2178     *
2179     * @throws  UnsupportedEncodingException
2180     *          If the named charset is not supported
2181     */
2182    public Formatter(File file, String csn, Locale l)
2183        throws FileNotFoundException, UnsupportedEncodingException
2184    {
2185        this(toCharset(csn), l, file);
2186    }
2187
2188    /**
2189     * Constructs a new formatter with the specified print stream.
2190     *
2191     * <p> The locale used is the {@linkplain
2192     * Locale#getDefault(Locale.Category) default locale} for
2193     * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2194     * virtual machine.
2195     *
2196     * <p> Characters are written to the given {@link java.io.PrintStream
2197     * PrintStream} object and are therefore encoded using that object's
2198     * charset.
2199     *
2200     * @param  ps
2201     *         The stream to use as the destination of this formatter.
2202     */
2203    public Formatter(PrintStream ps) {
2204        this(Locale.getDefault(Locale.Category.FORMAT),
2205             (Appendable)Objects.requireNonNull(ps));
2206    }
2207
2208    /**
2209     * Constructs a new formatter with the specified output stream.
2210     *
2211     * <p> The charset used is the {@linkplain
2212     * java.nio.charset.Charset#defaultCharset() default charset} for this
2213     * instance of the Java virtual machine.
2214     *
2215     * <p> The locale used is the {@linkplain
2216     * Locale#getDefault(Locale.Category) default locale} for
2217     * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2218     * virtual machine.
2219     *
2220     * @param  os
2221     *         The output stream to use as the destination of this formatter.
2222     *         The output will be buffered.
2223     */
2224    public Formatter(OutputStream os) {
2225        this(Locale.getDefault(Locale.Category.FORMAT),
2226             new BufferedWriter(new OutputStreamWriter(os)));
2227    }
2228
2229    /**
2230     * Constructs a new formatter with the specified output stream and
2231     * charset.
2232     *
2233     * <p> The locale used is the {@linkplain
2234     * Locale#getDefault(Locale.Category) default locale} for
2235     * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2236     * virtual machine.
2237     *
2238     * @param  os
2239     *         The output stream to use as the destination of this formatter.
2240     *         The output will be buffered.
2241     *
2242     * @param  csn
2243     *         The name of a supported {@linkplain java.nio.charset.Charset
2244     *         charset}
2245     *
2246     * @throws  UnsupportedEncodingException
2247     *          If the named charset is not supported
2248     */
2249    public Formatter(OutputStream os, String csn)
2250        throws UnsupportedEncodingException
2251    {
2252        this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2253    }
2254
2255    /**
2256     * Constructs a new formatter with the specified output stream, charset,
2257     * and locale.
2258     *
2259     * @param  os
2260     *         The output stream to use as the destination of this formatter.
2261     *         The output will be buffered.
2262     *
2263     * @param  csn
2264     *         The name of a supported {@linkplain java.nio.charset.Charset
2265     *         charset}
2266     *
2267     * @param  l
2268     *         The {@linkplain java.util.Locale locale} to apply during
2269     *         formatting.  If {@code l} is {@code null} then no localization
2270     *         is applied.
2271     *
2272     * @throws  UnsupportedEncodingException
2273     *          If the named charset is not supported
2274     */
2275    public Formatter(OutputStream os, String csn, Locale l)
2276        throws UnsupportedEncodingException
2277    {
2278        this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2279    }
2280
2281    private static char getZero(Locale l) {
2282        if ((l != null) && !l.equals(Locale.US)) {
2283            DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2284            return dfs.getZeroDigit();
2285        } else {
2286            return '0';
2287        }
2288    }
2289
2290    /**
2291     * Returns the locale set by the construction of this formatter.
2292     *
2293     * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2294     * for this object which has a locale argument does not change this value.
2295     *
2296     * @return  {@code null} if no localization is applied, otherwise a
2297     *          locale
2298     *
2299     * @throws  FormatterClosedException
2300     *          If this formatter has been closed by invoking its {@link
2301     *          #close()} method
2302     */
2303    public Locale locale() {
2304        ensureOpen();
2305        return l;
2306    }
2307
2308    /**
2309     * Returns the destination for the output.
2310     *
2311     * @return  The destination for the output
2312     *
2313     * @throws  FormatterClosedException
2314     *          If this formatter has been closed by invoking its {@link
2315     *          #close()} method
2316     */
2317    public Appendable out() {
2318        ensureOpen();
2319        return a;
2320    }
2321
2322    /**
2323     * Returns the result of invoking {@code toString()} on the destination
2324     * for the output.  For example, the following code formats text into a
2325     * {@link StringBuilder} then retrieves the resultant string:
2326     *
2327     * <blockquote><pre>
2328     *   Formatter f = new Formatter();
2329     *   f.format("Last reboot at %tc", lastRebootDate);
2330     *   String s = f.toString();
2331     *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2332     * </pre></blockquote>
2333     *
2334     * <p> An invocation of this method behaves in exactly the same way as the
2335     * invocation
2336     *
2337     * <pre>
2338     *     out().toString() </pre>
2339     *
2340     * <p> Depending on the specification of {@code toString} for the {@link
2341     * Appendable}, the returned string may or may not contain the characters
2342     * written to the destination.  For instance, buffers typically return
2343     * their contents in {@code toString()}, but streams cannot since the
2344     * data is discarded.
2345     *
2346     * @return  The result of invoking {@code toString()} on the destination
2347     *          for the output
2348     *
2349     * @throws  FormatterClosedException
2350     *          If this formatter has been closed by invoking its {@link
2351     *          #close()} method
2352     */
2353    public String toString() {
2354        ensureOpen();
2355        return a.toString();
2356    }
2357
2358    /**
2359     * Flushes this formatter.  If the destination implements the {@link
2360     * java.io.Flushable} interface, its {@code flush} method will be invoked.
2361     *
2362     * <p> Flushing a formatter writes any buffered output in the destination
2363     * to the underlying stream.
2364     *
2365     * @throws  FormatterClosedException
2366     *          If this formatter has been closed by invoking its {@link
2367     *          #close()} method
2368     */
2369    public void flush() {
2370        ensureOpen();
2371        if (a instanceof Flushable) {
2372            try {
2373                ((Flushable)a).flush();
2374            } catch (IOException ioe) {
2375                lastException = ioe;
2376            }
2377        }
2378    }
2379
2380    /**
2381     * Closes this formatter.  If the destination implements the {@link
2382     * java.io.Closeable} interface, its {@code close} method will be invoked.
2383     *
2384     * <p> Closing a formatter allows it to release resources it may be holding
2385     * (such as open files).  If the formatter is already closed, then invoking
2386     * this method has no effect.
2387     *
2388     * <p> Attempting to invoke any methods except {@link #ioException()} in
2389     * this formatter after it has been closed will result in a {@link
2390     * FormatterClosedException}.
2391     */
2392    public void close() {
2393        if (a == null)
2394            return;
2395        try {
2396            if (a instanceof Closeable)
2397                ((Closeable)a).close();
2398        } catch (IOException ioe) {
2399            lastException = ioe;
2400        } finally {
2401            a = null;
2402        }
2403    }
2404
2405    private void ensureOpen() {
2406        if (a == null)
2407            throw new FormatterClosedException();
2408    }
2409
2410    /**
2411     * Returns the {@code IOException} last thrown by this formatter's {@link
2412     * Appendable}.
2413     *
2414     * <p> If the destination's {@code append()} method never throws
2415     * {@code IOException}, then this method will always return {@code null}.
2416     *
2417     * @return  The last exception thrown by the Appendable or {@code null} if
2418     *          no such exception exists.
2419     */
2420    public IOException ioException() {
2421        return lastException;
2422    }
2423
2424    /**
2425     * Writes a formatted string to this object's destination using the
2426     * specified format string and arguments.  The locale used is the one
2427     * defined during the construction of this formatter.
2428     *
2429     * @param  format
2430     *         A format string as described in <a href="#syntax">Format string
2431     *         syntax</a>.
2432     *
2433     * @param  args
2434     *         Arguments referenced by the format specifiers in the format
2435     *         string.  If there are more arguments than format specifiers, the
2436     *         extra arguments are ignored.  The maximum number of arguments is
2437     *         limited by the maximum dimension of a Java array as defined by
2438     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2439     *
2440     * @throws  IllegalFormatException
2441     *          If a format string contains an illegal syntax, a format
2442     *          specifier that is incompatible with the given arguments,
2443     *          insufficient arguments given the format string, or other
2444     *          illegal conditions.  For specification of all possible
2445     *          formatting errors, see the <a href="#detail">Details</a>
2446     *          section of the formatter class specification.
2447     *
2448     * @throws  FormatterClosedException
2449     *          If this formatter has been closed by invoking its {@link
2450     *          #close()} method
2451     *
2452     * @return  This formatter
2453     */
2454    public Formatter format(String format, Object ... args) {
2455        return format(l, format, args);
2456    }
2457
2458    /**
2459     * Writes a formatted string to this object's destination using the
2460     * specified locale, format string, and arguments.
2461     *
2462     * @param  l
2463     *         The {@linkplain java.util.Locale locale} to apply during
2464     *         formatting.  If {@code l} is {@code null} then no localization
2465     *         is applied.  This does not change this object's locale that was
2466     *         set during construction.
2467     *
2468     * @param  format
2469     *         A format string as described in <a href="#syntax">Format string
2470     *         syntax</a>
2471     *
2472     * @param  args
2473     *         Arguments referenced by the format specifiers in the format
2474     *         string.  If there are more arguments than format specifiers, the
2475     *         extra arguments are ignored.  The maximum number of arguments is
2476     *         limited by the maximum dimension of a Java array as defined by
2477     *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2478     *
2479     * @throws  IllegalFormatException
2480     *          If a format string contains an illegal syntax, a format
2481     *          specifier that is incompatible with the given arguments,
2482     *          insufficient arguments given the format string, or other
2483     *          illegal conditions.  For specification of all possible
2484     *          formatting errors, see the <a href="#detail">Details</a>
2485     *          section of the formatter class specification.
2486     *
2487     * @throws  FormatterClosedException
2488     *          If this formatter has been closed by invoking its {@link
2489     *          #close()} method
2490     *
2491     * @return  This formatter
2492     */
2493    public Formatter format(Locale l, String format, Object ... args) {
2494        ensureOpen();
2495
2496        // index of last argument referenced
2497        int last = -1;
2498        // last ordinary index
2499        int lasto = -1;
2500
2501        List<FormatString> fsa = parse(format);
2502        for (FormatString fs : fsa) {
2503            int index = fs.index();
2504            try {
2505                switch (index) {
2506                case -2:  // fixed string, "%n", or "%%"
2507                    fs.print(null, l);
2508                    break;
2509                case -1:  // relative index
2510                    if (last < 0 || (args != null && last > args.length - 1))
2511                        throw new MissingFormatArgumentException(fs.toString());
2512                    fs.print((args == null ? null : args[last]), l);
2513                    break;
2514                case 0:  // ordinary index
2515                    lasto++;
2516                    last = lasto;
2517                    if (args != null && lasto > args.length - 1)
2518                        throw new MissingFormatArgumentException(fs.toString());
2519                    fs.print((args == null ? null : args[lasto]), l);
2520                    break;
2521                default:  // explicit index
2522                    last = index - 1;
2523                    if (args != null && last > args.length - 1)
2524                        throw new MissingFormatArgumentException(fs.toString());
2525                    fs.print((args == null ? null : args[last]), l);
2526                    break;
2527                }
2528            } catch (IOException x) {
2529                lastException = x;
2530            }
2531        }
2532        return this;
2533    }
2534
2535    // %[argument_index$][flags][width][.precision][t]conversion
2536    private static final String formatSpecifier
2537        = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2538
2539    private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2540
2541    /**
2542     * Finds format specifiers in the format string.
2543     */
2544    private List<FormatString> parse(String s) {
2545        ArrayList<FormatString> al = new ArrayList<>();
2546        Matcher m = fsPattern.matcher(s);
2547        for (int i = 0, len = s.length(); i < len; ) {
2548            if (m.find(i)) {
2549                // Anything between the start of the string and the beginning
2550                // of the format specifier is either fixed text or contains
2551                // an invalid format string.
2552                if (m.start() != i) {
2553                    // Make sure we didn't miss any invalid format specifiers
2554                    checkText(s, i, m.start());
2555                    // Assume previous characters were fixed text
2556                    al.add(new FixedString(s, i, m.start()));
2557                }
2558
2559                al.add(new FormatSpecifier(s, m));
2560                i = m.end();
2561            } else {
2562                // No more valid format specifiers.  Check for possible invalid
2563                // format specifiers.
2564                checkText(s, i, len);
2565                // The rest of the string is fixed text
2566                al.add(new FixedString(s, i, s.length()));
2567                break;
2568            }
2569        }
2570        return al;
2571    }
2572
2573    private static void checkText(String s, int start, int end) {
2574        for (int i = start; i < end; i++) {
2575            // Any '%' found in the region starts an invalid format specifier.
2576            if (s.charAt(i) == '%') {
2577                char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2578                throw new UnknownFormatConversionException(String.valueOf(c));
2579            }
2580        }
2581    }
2582
2583    private interface FormatString {
2584        int index();
2585        void print(Object arg, Locale l) throws IOException;
2586        String toString();
2587    }
2588
2589    private class FixedString implements FormatString {
2590        private String s;
2591        private int start;
2592        private int end;
2593        FixedString(String s, int start, int end) {
2594            this.s = s;
2595            this.start = start;
2596            this.end = end;
2597        }
2598        public int index() { return -2; }
2599        public void print(Object arg, Locale l)
2600            throws IOException { a.append(s, start, end); }
2601        public String toString() { return s.substring(start, end); }
2602    }
2603
2604    /**
2605     * Enum for {@code BigDecimal} formatting.
2606     */
2607    public enum BigDecimalLayoutForm {
2608        /**
2609         * Format the {@code BigDecimal} in computerized scientific notation.
2610         */
2611        SCIENTIFIC,
2612
2613        /**
2614         * Format the {@code BigDecimal} as a decimal number.
2615         */
2616        DECIMAL_FLOAT
2617    };
2618
2619    private class FormatSpecifier implements FormatString {
2620        private int index = -1;
2621        private Flags f = Flags.NONE;
2622        private int width;
2623        private int precision;
2624        private boolean dt = false;
2625        private char c;
2626
2627        private int index(String s) {
2628            if (s != null) {
2629                try {
2630                    index = Integer.parseInt(s.substring(0, s.length() - 1));
2631                } catch (NumberFormatException x) {
2632                    assert(false);
2633                }
2634            } else {
2635                index = 0;
2636            }
2637            return index;
2638        }
2639
2640        public int index() {
2641            return index;
2642        }
2643
2644        private Flags flags(String s, int start, int end) {
2645            f = Flags.parse(s, start, end);
2646            if (f.contains(Flags.PREVIOUS))
2647                index = -1;
2648            return f;
2649        }
2650
2651        private int width(String s) {
2652            width = -1;
2653            if (s != null) {
2654                try {
2655                    width  = Integer.parseInt(s);
2656                    if (width < 0)
2657                        throw new IllegalFormatWidthException(width);
2658                } catch (NumberFormatException x) {
2659                    assert(false);
2660                }
2661            }
2662            return width;
2663        }
2664
2665        private int precision(String s) {
2666            precision = -1;
2667            if (s != null) {
2668                try {
2669                    // remove the '.'
2670                    precision = Integer.parseInt(s.substring(1));
2671                    if (precision < 0)
2672                        throw new IllegalFormatPrecisionException(precision);
2673                } catch (NumberFormatException x) {
2674                    assert(false);
2675                }
2676            }
2677            return precision;
2678        }
2679
2680        private char conversion(char conv) {
2681            c = conv;
2682            if (!dt) {
2683                if (!Conversion.isValid(c)) {
2684                    throw new UnknownFormatConversionException(String.valueOf(c));
2685                }
2686                if (Character.isUpperCase(c)) {
2687                    f.add(Flags.UPPERCASE);
2688                    c = Character.toLowerCase(c);
2689                }
2690                if (Conversion.isText(c)) {
2691                    index = -2;
2692                }
2693            }
2694            return c;
2695        }
2696
2697        FormatSpecifier(String s, Matcher m) {
2698            int idx = 1;
2699
2700            index(m.group(idx++));
2701            flags(s, m.start(idx), m.end(idx++));
2702            width(m.group(idx++));
2703            precision(m.group(idx++));
2704
2705            int tTStart = m.start(idx);
2706            int tTEnd = m.end(idx++);
2707            if (tTStart != -1 && tTEnd != -1) {
2708                dt = true;
2709                if (tTStart == tTEnd - 1 && s.charAt(tTStart) == 'T') {
2710                    f.add(Flags.UPPERCASE);
2711                }
2712            }
2713
2714            conversion(s.charAt(m.start(idx)));
2715
2716            if (dt)
2717                checkDateTime();
2718            else if (Conversion.isGeneral(c))
2719                checkGeneral();
2720            else if (Conversion.isCharacter(c))
2721                checkCharacter();
2722            else if (Conversion.isInteger(c))
2723                checkInteger();
2724            else if (Conversion.isFloat(c))
2725                checkFloat();
2726            else if (Conversion.isText(c))
2727                checkText();
2728            else
2729                throw new UnknownFormatConversionException(String.valueOf(c));
2730        }
2731
2732        public void print(Object arg, Locale l) throws IOException {
2733            if (dt) {
2734                printDateTime(arg, l);
2735                return;
2736            }
2737            switch(c) {
2738            case Conversion.DECIMAL_INTEGER:
2739            case Conversion.OCTAL_INTEGER:
2740            case Conversion.HEXADECIMAL_INTEGER:
2741                printInteger(arg, l);
2742                break;
2743            case Conversion.SCIENTIFIC:
2744            case Conversion.GENERAL:
2745            case Conversion.DECIMAL_FLOAT:
2746            case Conversion.HEXADECIMAL_FLOAT:
2747                printFloat(arg, l);
2748                break;
2749            case Conversion.CHARACTER:
2750            case Conversion.CHARACTER_UPPER:
2751                printCharacter(arg);
2752                break;
2753            case Conversion.BOOLEAN:
2754                printBoolean(arg);
2755                break;
2756            case Conversion.STRING:
2757                printString(arg, l);
2758                break;
2759            case Conversion.HASHCODE:
2760                printHashCode(arg);
2761                break;
2762            case Conversion.LINE_SEPARATOR:
2763                a.append(System.lineSeparator());
2764                break;
2765            case Conversion.PERCENT_SIGN:
2766                a.append('%');
2767                break;
2768            default:
2769                assert false;
2770            }
2771        }
2772
2773        private void printInteger(Object arg, Locale l) throws IOException {
2774            if (arg == null)
2775                print("null");
2776            else if (arg instanceof Byte)
2777                print(((Byte)arg).byteValue(), l);
2778            else if (arg instanceof Short)
2779                print(((Short)arg).shortValue(), l);
2780            else if (arg instanceof Integer)
2781                print(((Integer)arg).intValue(), l);
2782            else if (arg instanceof Long)
2783                print(((Long)arg).longValue(), l);
2784            else if (arg instanceof BigInteger)
2785                print(((BigInteger)arg), l);
2786            else
2787                failConversion(c, arg);
2788        }
2789
2790        private void printFloat(Object arg, Locale l) throws IOException {
2791            if (arg == null)
2792                print("null");
2793            else if (arg instanceof Float)
2794                print(((Float)arg).floatValue(), l);
2795            else if (arg instanceof Double)
2796                print(((Double)arg).doubleValue(), l);
2797            else if (arg instanceof BigDecimal)
2798                print(((BigDecimal)arg), l);
2799            else
2800                failConversion(c, arg);
2801        }
2802
2803        private void printDateTime(Object arg, Locale l) throws IOException {
2804            if (arg == null) {
2805                print("null");
2806                return;
2807            }
2808            Calendar cal = null;
2809
2810            // Instead of Calendar.setLenient(true), perhaps we should
2811            // wrap the IllegalArgumentException that might be thrown?
2812            if (arg instanceof Long) {
2813                // Note that the following method uses an instance of the
2814                // default time zone (TimeZone.getDefaultRef().
2815                cal = Calendar.getInstance(l == null ? Locale.US : l);
2816                cal.setTimeInMillis((Long)arg);
2817            } else if (arg instanceof Date) {
2818                // Note that the following method uses an instance of the
2819                // default time zone (TimeZone.getDefaultRef().
2820                cal = Calendar.getInstance(l == null ? Locale.US : l);
2821                cal.setTime((Date)arg);
2822            } else if (arg instanceof Calendar) {
2823                cal = (Calendar) ((Calendar) arg).clone();
2824                cal.setLenient(true);
2825            } else if (arg instanceof TemporalAccessor) {
2826                print((TemporalAccessor) arg, c, l);
2827                return;
2828            } else {
2829                failConversion(c, arg);
2830            }
2831            // Use the provided locale so that invocations of
2832            // localizedMagnitude() use optimizations for null.
2833            print(cal, c, l);
2834        }
2835
2836        private void printCharacter(Object arg) throws IOException {
2837            if (arg == null) {
2838                print("null");
2839                return;
2840            }
2841            String s = null;
2842            if (arg instanceof Character) {
2843                s = ((Character)arg).toString();
2844            } else if (arg instanceof Byte) {
2845                byte i = ((Byte)arg).byteValue();
2846                if (Character.isValidCodePoint(i))
2847                    s = new String(Character.toChars(i));
2848                else
2849                    throw new IllegalFormatCodePointException(i);
2850            } else if (arg instanceof Short) {
2851                short i = ((Short)arg).shortValue();
2852                if (Character.isValidCodePoint(i))
2853                    s = new String(Character.toChars(i));
2854                else
2855                    throw new IllegalFormatCodePointException(i);
2856            } else if (arg instanceof Integer) {
2857                int i = ((Integer)arg).intValue();
2858                if (Character.isValidCodePoint(i))
2859                    s = new String(Character.toChars(i));
2860                else
2861                    throw new IllegalFormatCodePointException(i);
2862            } else {
2863                failConversion(c, arg);
2864            }
2865            print(s);
2866        }
2867
2868        private void printString(Object arg, Locale l) throws IOException {
2869            if (arg instanceof Formattable) {
2870                Formatter fmt = Formatter.this;
2871                if (fmt.locale() != l)
2872                    fmt = new Formatter(fmt.out(), l);
2873                ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2874            } else {
2875                if (f.contains(Flags.ALTERNATE))
2876                    failMismatch(Flags.ALTERNATE, 's');
2877                if (arg == null)
2878                    print("null");
2879                else
2880                    print(arg.toString());
2881            }
2882        }
2883
2884        private void printBoolean(Object arg) throws IOException {
2885            String s;
2886            if (arg != null)
2887                s = ((arg instanceof Boolean)
2888                     ? ((Boolean)arg).toString()
2889                     : Boolean.toString(true));
2890            else
2891                s = Boolean.toString(false);
2892            print(s);
2893        }
2894
2895        private void printHashCode(Object arg) throws IOException {
2896            String s = (arg == null
2897                        ? "null"
2898                        : Integer.toHexString(arg.hashCode()));
2899            print(s);
2900        }
2901
2902        private void print(String s) throws IOException {
2903            if (precision != -1 && precision < s.length())
2904                s = s.substring(0, precision);
2905            if (f.contains(Flags.UPPERCASE))
2906                s = s.toUpperCase();
2907            appendJustified(a, s);
2908        }
2909
2910        private Appendable appendJustified(Appendable a, CharSequence cs) throws IOException {
2911             if (width == -1) {
2912                 return a.append(cs);
2913             }
2914             boolean padRight = f.contains(Flags.LEFT_JUSTIFY);
2915             int sp = width - cs.length();
2916             if (padRight) {
2917                 a.append(cs);
2918             }
2919             for (int i = 0; i < sp; i++) {
2920                 a.append(' ');
2921             }
2922             if (!padRight) {
2923                 a.append(cs);
2924             }
2925             return a;
2926        }
2927
2928        public String toString() {
2929            StringBuilder sb = new StringBuilder("%");
2930            // Flags.UPPERCASE is set internally for legal conversions.
2931            Flags dupf = f.dup().remove(Flags.UPPERCASE);
2932            sb.append(dupf.toString());
2933            if (index > 0)
2934                sb.append(index).append('$');
2935            if (width != -1)
2936                sb.append(width);
2937            if (precision != -1)
2938                sb.append('.').append(precision);
2939            if (dt)
2940                sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
2941            sb.append(f.contains(Flags.UPPERCASE)
2942                      ? Character.toUpperCase(c) : c);
2943            return sb.toString();
2944        }
2945
2946        private void checkGeneral() {
2947            if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
2948                && f.contains(Flags.ALTERNATE))
2949                failMismatch(Flags.ALTERNATE, c);
2950            // '-' requires a width
2951            if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2952                throw new MissingFormatWidthException(toString());
2953            checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
2954                          Flags.GROUP, Flags.PARENTHESES);
2955        }
2956
2957        private void checkDateTime() {
2958            if (precision != -1)
2959                throw new IllegalFormatPrecisionException(precision);
2960            if (!DateTime.isValid(c))
2961                throw new UnknownFormatConversionException("t" + c);
2962            checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2963                          Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2964            // '-' requires a width
2965            if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2966                throw new MissingFormatWidthException(toString());
2967        }
2968
2969        private void checkCharacter() {
2970            if (precision != -1)
2971                throw new IllegalFormatPrecisionException(precision);
2972            checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2973                          Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2974            // '-' requires a width
2975            if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2976                throw new MissingFormatWidthException(toString());
2977        }
2978
2979        private void checkInteger() {
2980            checkNumeric();
2981            if (precision != -1)
2982                throw new IllegalFormatPrecisionException(precision);
2983
2984            if (c == Conversion.DECIMAL_INTEGER)
2985                checkBadFlags(Flags.ALTERNATE);
2986            else if (c == Conversion.OCTAL_INTEGER)
2987                checkBadFlags(Flags.GROUP);
2988            else
2989                checkBadFlags(Flags.GROUP);
2990        }
2991
2992        private void checkBadFlags(Flags ... badFlags) {
2993            for (Flags badFlag : badFlags)
2994                if (f.contains(badFlag))
2995                    failMismatch(badFlag, c);
2996        }
2997
2998        private void checkFloat() {
2999            checkNumeric();
3000            if (c == Conversion.DECIMAL_FLOAT) {
3001            } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3002                checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3003            } else if (c == Conversion.SCIENTIFIC) {
3004                checkBadFlags(Flags.GROUP);
3005            } else if (c == Conversion.GENERAL) {
3006                checkBadFlags(Flags.ALTERNATE);
3007            }
3008        }
3009
3010        private void checkNumeric() {
3011            if (width != -1 && width < 0)
3012                throw new IllegalFormatWidthException(width);
3013
3014            if (precision != -1 && precision < 0)
3015                throw new IllegalFormatPrecisionException(precision);
3016
3017            // '-' and '0' require a width
3018            if (width == -1
3019                && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3020                throw new MissingFormatWidthException(toString());
3021
3022            // bad combination
3023            if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3024                || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3025                throw new IllegalFormatFlagsException(f.toString());
3026        }
3027
3028        private void checkText() {
3029            if (precision != -1)
3030                throw new IllegalFormatPrecisionException(precision);
3031            switch (c) {
3032            case Conversion.PERCENT_SIGN:
3033                if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3034                    && f.valueOf() != Flags.NONE.valueOf())
3035                    throw new IllegalFormatFlagsException(f.toString());
3036                // '-' requires a width
3037                if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3038                    throw new MissingFormatWidthException(toString());
3039                break;
3040            case Conversion.LINE_SEPARATOR:
3041                if (width != -1)
3042                    throw new IllegalFormatWidthException(width);
3043                if (f.valueOf() != Flags.NONE.valueOf())
3044                    throw new IllegalFormatFlagsException(f.toString());
3045                break;
3046            default:
3047                assert false;
3048            }
3049        }
3050
3051        private void print(byte value, Locale l) throws IOException {
3052            long v = value;
3053            if (value < 0
3054                && (c == Conversion.OCTAL_INTEGER
3055                    || c == Conversion.HEXADECIMAL_INTEGER)) {
3056                v += (1L << 8);
3057                assert v >= 0 : v;
3058            }
3059            print(v, l);
3060        }
3061
3062        private void print(short value, Locale l) throws IOException {
3063            long v = value;
3064            if (value < 0
3065                && (c == Conversion.OCTAL_INTEGER
3066                    || c == Conversion.HEXADECIMAL_INTEGER)) {
3067                v += (1L << 16);
3068                assert v >= 0 : v;
3069            }
3070            print(v, l);
3071        }
3072
3073        private void print(int value, Locale l) throws IOException {
3074            long v = value;
3075            if (value < 0
3076                && (c == Conversion.OCTAL_INTEGER
3077                    || c == Conversion.HEXADECIMAL_INTEGER)) {
3078                v += (1L << 32);
3079                assert v >= 0 : v;
3080            }
3081            print(v, l);
3082        }
3083
3084        private void print(long value, Locale l) throws IOException {
3085
3086            StringBuilder sb = new StringBuilder();
3087
3088            if (c == Conversion.DECIMAL_INTEGER) {
3089                boolean neg = value < 0;
3090                String valueStr = Long.toString(value, 10);
3091
3092                // leading sign indicator
3093                leadingSign(sb, neg);
3094
3095                // the value
3096                localizedMagnitude(sb, valueStr, neg ? 1 : 0, f, adjustWidth(width, f, neg), l);
3097
3098                // trailing sign indicator
3099                trailingSign(sb, neg);
3100            } else if (c == Conversion.OCTAL_INTEGER) {
3101                checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3102                              Flags.PLUS);
3103                String s = Long.toOctalString(value);
3104                int len = (f.contains(Flags.ALTERNATE)
3105                           ? s.length() + 1
3106                           : s.length());
3107
3108                // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3109                if (f.contains(Flags.ALTERNATE))
3110                    sb.append('0');
3111                if (f.contains(Flags.ZERO_PAD)) {
3112                    trailingZeros(sb, width - len);
3113                }
3114                sb.append(s);
3115            } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3116                checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3117                              Flags.PLUS);
3118                String s = Long.toHexString(value);
3119                int len = (f.contains(Flags.ALTERNATE)
3120                           ? s.length() + 2
3121                           : s.length());
3122
3123                // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3124                if (f.contains(Flags.ALTERNATE))
3125                    sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3126                if (f.contains(Flags.ZERO_PAD)) {
3127                    trailingZeros(sb, width - len);
3128                }
3129                if (f.contains(Flags.UPPERCASE))
3130                    s = s.toUpperCase();
3131                sb.append(s);
3132            }
3133
3134            // justify based on width
3135            appendJustified(a, sb);
3136        }
3137
3138        // neg := val < 0
3139        private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3140            if (!neg) {
3141                if (f.contains(Flags.PLUS)) {
3142                    sb.append('+');
3143                } else if (f.contains(Flags.LEADING_SPACE)) {
3144                    sb.append(' ');
3145                }
3146            } else {
3147                if (f.contains(Flags.PARENTHESES))
3148                    sb.append('(');
3149                else
3150                    sb.append('-');
3151            }
3152            return sb;
3153        }
3154
3155        // neg := val < 0
3156        private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3157            if (neg && f.contains(Flags.PARENTHESES))
3158                sb.append(')');
3159            return sb;
3160        }
3161
3162        private void print(BigInteger value, Locale l) throws IOException {
3163            StringBuilder sb = new StringBuilder();
3164            boolean neg = value.signum() == -1;
3165            BigInteger v = value.abs();
3166
3167            // leading sign indicator
3168            leadingSign(sb, neg);
3169
3170            // the value
3171            if (c == Conversion.DECIMAL_INTEGER) {
3172                localizedMagnitude(sb, v.toString(), 0, f, adjustWidth(width, f, neg), l);
3173            } else if (c == Conversion.OCTAL_INTEGER) {
3174                String s = v.toString(8);
3175
3176                int len = s.length() + sb.length();
3177                if (neg && f.contains(Flags.PARENTHESES))
3178                    len++;
3179
3180                // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3181                if (f.contains(Flags.ALTERNATE)) {
3182                    len++;
3183                    sb.append('0');
3184                }
3185                if (f.contains(Flags.ZERO_PAD)) {
3186                    trailingZeros(sb, width - len);
3187                }
3188                sb.append(s);
3189            } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3190                String s = v.toString(16);
3191
3192                int len = s.length() + sb.length();
3193                if (neg && f.contains(Flags.PARENTHESES))
3194                    len++;
3195
3196                // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3197                if (f.contains(Flags.ALTERNATE)) {
3198                    len += 2;
3199                    sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3200                }
3201                if (f.contains(Flags.ZERO_PAD)) {
3202                    trailingZeros(sb, width - len);
3203                }
3204                if (f.contains(Flags.UPPERCASE))
3205                    s = s.toUpperCase();
3206                sb.append(s);
3207            }
3208
3209            // trailing sign indicator
3210            trailingSign(sb, (value.signum() == -1));
3211
3212            // justify based on width
3213            appendJustified(a, sb);
3214        }
3215
3216        private void print(float value, Locale l) throws IOException {
3217            print((double) value, l);
3218        }
3219
3220        private void print(double value, Locale l) throws IOException {
3221            StringBuilder sb = new StringBuilder();
3222            boolean neg = Double.compare(value, 0.0) == -1;
3223
3224            if (!Double.isNaN(value)) {
3225                double v = Math.abs(value);
3226
3227                // leading sign indicator
3228                leadingSign(sb, neg);
3229
3230                // the value
3231                if (!Double.isInfinite(v))
3232                    print(sb, v, l, f, c, precision, neg);
3233                else
3234                    sb.append(f.contains(Flags.UPPERCASE)
3235                              ? "INFINITY" : "Infinity");
3236
3237                // trailing sign indicator
3238                trailingSign(sb, neg);
3239            } else {
3240                sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3241            }
3242
3243            // justify based on width
3244            appendJustified(a, sb);
3245        }
3246
3247        // !Double.isInfinite(value) && !Double.isNaN(value)
3248        private void print(StringBuilder sb, double value, Locale l,
3249                           Flags f, char c, int precision, boolean neg)
3250            throws IOException
3251        {
3252            if (c == Conversion.SCIENTIFIC) {
3253                // Create a new FormattedFloatingDecimal with the desired
3254                // precision.
3255                int prec = (precision == -1 ? 6 : precision);
3256
3257                FormattedFloatingDecimal fd
3258                        = FormattedFloatingDecimal.valueOf(value, prec,
3259                          FormattedFloatingDecimal.Form.SCIENTIFIC);
3260
3261                StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3262                addZeros(mant, prec);
3263
3264                // If the precision is zero and the '#' flag is set, add the
3265                // requested decimal point.
3266                if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3267                    mant.append('.');
3268                }
3269
3270                char[] exp = (value == 0.0)
3271                    ? new char[] {'+','0','0'} : fd.getExponent();
3272
3273                int newW = width;
3274                if (width != -1) {
3275                    newW = adjustWidth(width - exp.length - 1, f, neg);
3276                }
3277                localizedMagnitude(sb, mant, 0, f, newW, l);
3278
3279                sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3280
3281                char sign = exp[0];
3282                assert(sign == '+' || sign == '-');
3283                sb.append(sign);
3284
3285                localizedMagnitudeExp(sb, exp, 1, l);
3286            } else if (c == Conversion.DECIMAL_FLOAT) {
3287                // Create a new FormattedFloatingDecimal with the desired
3288                // precision.
3289                int prec = (precision == -1 ? 6 : precision);
3290
3291                FormattedFloatingDecimal fd
3292                        = FormattedFloatingDecimal.valueOf(value, prec,
3293                          FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3294
3295                StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3296                addZeros(mant, prec);
3297
3298                // If the precision is zero and the '#' flag is set, add the
3299                // requested decimal point.
3300                if (f.contains(Flags.ALTERNATE) && (prec == 0))
3301                    mant.append('.');
3302
3303                int newW = width;
3304                if (width != -1)
3305                    newW = adjustWidth(width, f, neg);
3306                localizedMagnitude(sb, mant, 0, f, newW, l);
3307            } else if (c == Conversion.GENERAL) {
3308                int prec = precision;
3309                if (precision == -1)
3310                    prec = 6;
3311                else if (precision == 0)
3312                    prec = 1;
3313
3314                char[] exp;
3315                StringBuilder mant = new StringBuilder();
3316                int expRounded;
3317                if (value == 0.0) {
3318                    exp = null;
3319                    mant.append('0');
3320                    expRounded = 0;
3321                } else {
3322                    FormattedFloatingDecimal fd
3323                        = FormattedFloatingDecimal.valueOf(value, prec,
3324                          FormattedFloatingDecimal.Form.GENERAL);
3325                    exp = fd.getExponent();
3326                    mant.append(fd.getMantissa());
3327                    expRounded = fd.getExponentRounded();
3328                }
3329
3330                if (exp != null) {
3331                    prec -= 1;
3332                } else {
3333                    prec -= expRounded + 1;
3334                }
3335
3336                addZeros(mant, prec);
3337                // If the precision is zero and the '#' flag is set, add the
3338                // requested decimal point.
3339                if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3340                    mant.append('.');
3341                }
3342
3343                int newW = width;
3344                if (width != -1) {
3345                    if (exp != null)
3346                        newW = adjustWidth(width - exp.length - 1, f, neg);
3347                    else
3348                        newW = adjustWidth(width, f, neg);
3349                }
3350                localizedMagnitude(sb, mant, 0, f, newW, l);
3351
3352                if (exp != null) {
3353                    sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3354
3355                    char sign = exp[0];
3356                    assert(sign == '+' || sign == '-');
3357                    sb.append(sign);
3358
3359                    localizedMagnitudeExp(sb, exp, 1, l);
3360                }
3361            } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3362                int prec = precision;
3363                if (precision == -1)
3364                    // assume that we want all of the digits
3365                    prec = 0;
3366                else if (precision == 0)
3367                    prec = 1;
3368
3369                String s = hexDouble(value, prec);
3370
3371                StringBuilder va = new StringBuilder();
3372                boolean upper = f.contains(Flags.UPPERCASE);
3373                sb.append(upper ? "0X" : "0x");
3374
3375                if (f.contains(Flags.ZERO_PAD)) {
3376                    trailingZeros(sb, width - s.length() - 2);
3377                }
3378
3379                int idx = s.indexOf('p');
3380                if (upper) {
3381                    String tmp = s.substring(0, idx);
3382                    // don't localize hex
3383                    tmp = tmp.toUpperCase(Locale.US);
3384                    va.append(tmp);
3385                } else {
3386                    va.append(s, 0, idx);
3387                }
3388                if (prec != 0) {
3389                    addZeros(va, prec);
3390                }
3391                sb.append(va);
3392                sb.append(upper ? 'P' : 'p');
3393                sb.append(s, idx+1, s.length());
3394            }
3395        }
3396
3397        // Add zeros to the requested precision.
3398        private void addZeros(StringBuilder sb, int prec) {
3399            // Look for the dot.  If we don't find one, the we'll need to add
3400            // it before we add the zeros.
3401            int len = sb.length();
3402            int i;
3403            for (i = 0; i < len; i++) {
3404                if (sb.charAt(i) == '.') {
3405                    break;
3406                }
3407            }
3408            boolean needDot = false;
3409            if (i == len) {
3410                needDot = true;
3411            }
3412
3413            // Determine existing precision.
3414            int outPrec = len - i - (needDot ? 0 : 1);
3415            assert (outPrec <= prec);
3416            if (outPrec == prec) {
3417                return;
3418            }
3419
3420            // Add dot if previously determined to be necessary.
3421            if (needDot) {
3422                sb.append('.');
3423            }
3424
3425            // Add zeros.
3426            trailingZeros(sb, prec - outPrec);
3427        }
3428
3429        // Method assumes that d > 0.
3430        private String hexDouble(double d, int prec) {
3431            // Let Double.toHexString handle simple cases
3432            if (!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) {
3433                // remove "0x"
3434                return Double.toHexString(d).substring(2);
3435            } else {
3436                assert(prec >= 1 && prec <= 12);
3437
3438                int exponent  = Math.getExponent(d);
3439                boolean subnormal
3440                    = (exponent == DoubleConsts.MIN_EXPONENT - 1);
3441
3442                // If this is subnormal input so normalize (could be faster to
3443                // do as integer operation).
3444                if (subnormal) {
3445                    scaleUp = Math.scalb(1.0, 54);
3446                    d *= scaleUp;
3447                    // Calculate the exponent.  This is not just exponent + 54
3448                    // since the former is not the normalized exponent.
3449                    exponent = Math.getExponent(d);
3450                    assert exponent >= DoubleConsts.MIN_EXPONENT &&
3451                        exponent <= DoubleConsts.MAX_EXPONENT: exponent;
3452                }
3453
3454                int precision = 1 + prec*4;
3455                int shiftDistance
3456                    =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
3457                assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3458
3459                long doppel = Double.doubleToLongBits(d);
3460                // Deterime the number of bits to keep.
3461                long newSignif
3462                    = (doppel & (DoubleConsts.EXP_BIT_MASK
3463                                 | DoubleConsts.SIGNIF_BIT_MASK))
3464                                     >> shiftDistance;
3465                // Bits to round away.
3466                long roundingBits = doppel & ~(~0L << shiftDistance);
3467
3468                // To decide how to round, look at the low-order bit of the
3469                // working significand, the highest order discarded bit (the
3470                // round bit) and whether any of the lower order discarded bits
3471                // are nonzero (the sticky bit).
3472
3473                boolean leastZero = (newSignif & 0x1L) == 0L;
3474                boolean round
3475                    = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3476                boolean sticky  = shiftDistance > 1 &&
3477                    (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3478                if((leastZero && round && sticky) || (!leastZero && round)) {
3479                    newSignif++;
3480                }
3481
3482                long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3483                newSignif = signBit | (newSignif << shiftDistance);
3484                double result = Double.longBitsToDouble(newSignif);
3485
3486                if (Double.isInfinite(result) ) {
3487                    // Infinite result generated by rounding
3488                    return "1.0p1024";
3489                } else {
3490                    String res = Double.toHexString(result).substring(2);
3491                    if (!subnormal)
3492                        return res;
3493                    else {
3494                        // Create a normalized subnormal string.
3495                        int idx = res.indexOf('p');
3496                        if (idx == -1) {
3497                            // No 'p' character in hex string.
3498                            assert false;
3499                            return null;
3500                        } else {
3501                            // Get exponent and append at the end.
3502                            String exp = res.substring(idx + 1);
3503                            int iexp = Integer.parseInt(exp) -54;
3504                            return res.substring(0, idx) + "p"
3505                                + Integer.toString(iexp);
3506                        }
3507                    }
3508                }
3509            }
3510        }
3511
3512        private void print(BigDecimal value, Locale l) throws IOException {
3513            if (c == Conversion.HEXADECIMAL_FLOAT)
3514                failConversion(c, value);
3515            StringBuilder sb = new StringBuilder();
3516            boolean neg = value.signum() == -1;
3517            BigDecimal v = value.abs();
3518            // leading sign indicator
3519            leadingSign(sb, neg);
3520
3521            // the value
3522            print(sb, v, l, f, c, precision, neg);
3523
3524            // trailing sign indicator
3525            trailingSign(sb, neg);
3526
3527            // justify based on width
3528            appendJustified(a, sb);
3529        }
3530
3531        // value > 0
3532        private void print(StringBuilder sb, BigDecimal value, Locale l,
3533                           Flags f, char c, int precision, boolean neg)
3534            throws IOException
3535        {
3536            if (c == Conversion.SCIENTIFIC) {
3537                // Create a new BigDecimal with the desired precision.
3538                int prec = (precision == -1 ? 6 : precision);
3539                int scale = value.scale();
3540                int origPrec = value.precision();
3541                int nzeros = 0;
3542                int compPrec;
3543
3544                if (prec > origPrec - 1) {
3545                    compPrec = origPrec;
3546                    nzeros = prec - (origPrec - 1);
3547                } else {
3548                    compPrec = prec + 1;
3549                }
3550
3551                MathContext mc = new MathContext(compPrec);
3552                BigDecimal v
3553                    = new BigDecimal(value.unscaledValue(), scale, mc);
3554
3555                BigDecimalLayout bdl
3556                    = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3557                                           BigDecimalLayoutForm.SCIENTIFIC);
3558
3559                StringBuilder mant = bdl.mantissa();
3560
3561                // Add a decimal point if necessary.  The mantissa may not
3562                // contain a decimal point if the scale is zero (the internal
3563                // representation has no fractional part) or the original
3564                // precision is one. Append a decimal point if '#' is set or if
3565                // we require zero padding to get to the requested precision.
3566                if ((origPrec == 1 || !bdl.hasDot())
3567                        && (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) {
3568                    mant.append('.');
3569                }
3570
3571                // Add trailing zeros in the case precision is greater than
3572                // the number of available digits after the decimal separator.
3573                trailingZeros(mant, nzeros);
3574
3575                StringBuilder exp = bdl.exponent();
3576                int newW = width;
3577                if (width != -1) {
3578                    newW = adjustWidth(width - exp.length() - 1, f, neg);
3579                }
3580                localizedMagnitude(sb, mant, 0, f, newW, l);
3581
3582                sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3583
3584                Flags flags = f.dup().remove(Flags.GROUP);
3585                char sign = exp.charAt(0);
3586                assert(sign == '+' || sign == '-');
3587                sb.append(sign);
3588
3589                sb.append(localizedMagnitude(null, exp, 1, flags, -1, l));
3590            } else if (c == Conversion.DECIMAL_FLOAT) {
3591                // Create a new BigDecimal with the desired precision.
3592                int prec = (precision == -1 ? 6 : precision);
3593                int scale = value.scale();
3594
3595                if (scale > prec) {
3596                    // more "scale" digits than the requested "precision"
3597                    int compPrec = value.precision();
3598                    if (compPrec <= scale) {
3599                        // case of 0.xxxxxx
3600                        value = value.setScale(prec, RoundingMode.HALF_UP);
3601                    } else {
3602                        compPrec -= (scale - prec);
3603                        value = new BigDecimal(value.unscaledValue(),
3604                                               scale,
3605                                               new MathContext(compPrec));
3606                    }
3607                }
3608                BigDecimalLayout bdl = new BigDecimalLayout(
3609                                           value.unscaledValue(),
3610                                           value.scale(),
3611                                           BigDecimalLayoutForm.DECIMAL_FLOAT);
3612
3613                StringBuilder mant = bdl.mantissa();
3614                int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3615
3616                // Add a decimal point if necessary.  The mantissa may not
3617                // contain a decimal point if the scale is zero (the internal
3618                // representation has no fractional part).  Append a decimal
3619                // point if '#' is set or we require zero padding to get to the
3620                // requested precision.
3621                if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE)
3622                        || nzeros > 0)) {
3623                    mant.append('.');
3624                }
3625
3626                // Add trailing zeros if the precision is greater than the
3627                // number of available digits after the decimal separator.
3628                trailingZeros(mant, nzeros);
3629
3630                localizedMagnitude(sb, mant, 0, f, adjustWidth(width, f, neg), l);
3631            } else if (c == Conversion.GENERAL) {
3632                int prec = precision;
3633                if (precision == -1)
3634                    prec = 6;
3635                else if (precision == 0)
3636                    prec = 1;
3637
3638                BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3639                BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3640                if ((value.equals(BigDecimal.ZERO))
3641                    || ((value.compareTo(tenToTheNegFour) != -1)
3642                        && (value.compareTo(tenToThePrec) == -1))) {
3643
3644                    int e = - value.scale()
3645                        + (value.unscaledValue().toString().length() - 1);
3646
3647                    // xxx.yyy
3648                    //   g precision (# sig digits) = #x + #y
3649                    //   f precision = #y
3650                    //   exponent = #x - 1
3651                    // => f precision = g precision - exponent - 1
3652                    // 0.000zzz
3653                    //   g precision (# sig digits) = #z
3654                    //   f precision = #0 (after '.') + #z
3655                    //   exponent = - #0 (after '.') - 1
3656                    // => f precision = g precision - exponent - 1
3657                    prec = prec - e - 1;
3658
3659                    print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3660                          neg);
3661                } else {
3662                    print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3663                }
3664            } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3665                // This conversion isn't supported.  The error should be
3666                // reported earlier.
3667                assert false;
3668            }
3669        }
3670
3671        private class BigDecimalLayout {
3672            private StringBuilder mant;
3673            private StringBuilder exp;
3674            private boolean dot = false;
3675            private int scale;
3676
3677            public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3678                layout(intVal, scale, form);
3679            }
3680
3681            public boolean hasDot() {
3682                return dot;
3683            }
3684
3685            public int scale() {
3686                return scale;
3687            }
3688
3689            public StringBuilder mantissa() {
3690                return mant;
3691            }
3692
3693            // The exponent will be formatted as a sign ('+' or '-') followed
3694            // by the exponent zero-padded to include at least two digits.
3695            public StringBuilder exponent() {
3696                return exp;
3697            }
3698
3699            private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3700                String coeff = intVal.toString();
3701                this.scale = scale;
3702
3703                // Construct a buffer, with sufficient capacity for all cases.
3704                // If E-notation is needed, length will be: +1 if negative, +1
3705                // if '.' needed, +2 for "E+", + up to 10 for adjusted
3706                // exponent.  Otherwise it could have +1 if negative, plus
3707                // leading "0.00000"
3708                int len = coeff.length();
3709                mant = new StringBuilder(len + 14);
3710
3711                if (scale == 0) {
3712                    if (len > 1) {
3713                        mant.append(coeff.charAt(0));
3714                        if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3715                            mant.append('.');
3716                            dot = true;
3717                            mant.append(coeff, 1, len);
3718                            exp = new StringBuilder("+");
3719                            if (len < 10) {
3720                                exp.append('0').append(len - 1);
3721                            } else {
3722                                exp.append(len - 1);
3723                            }
3724                        } else {
3725                            mant.append(coeff, 1, len);
3726                        }
3727                    } else {
3728                        mant.append(coeff);
3729                        if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3730                            exp = new StringBuilder("+00");
3731                        }
3732                    }
3733                    return;
3734                }
3735                long adjusted = -(long) scale + (len - 1);
3736                if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3737                    // count of padding zeros
3738                    int pad = scale - len;
3739                    if (pad >= 0) {
3740                        // 0.xxx form
3741                        mant.append("0.");
3742                        dot = true;
3743                        trailingZeros(mant, pad);
3744                        mant.append(coeff);
3745                    } else {
3746                        if (-pad < len) {
3747                            // xx.xx form
3748                            mant.append(coeff, 0, -pad);
3749                            mant.append('.');
3750                            dot = true;
3751                            mant.append(coeff, -pad, -pad + scale);
3752                        } else {
3753                            // xx form
3754                            mant.append(coeff, 0, len);
3755                            trailingZeros(mant, -scale);
3756                            this.scale = 0;
3757                        }
3758                    }
3759                } else {
3760                    // x.xxx form
3761                    mant.append(coeff.charAt(0));
3762                    if (len > 1) {
3763                        mant.append('.');
3764                        dot = true;
3765                        mant.append(coeff, 1, len);
3766                    }
3767                    exp = new StringBuilder();
3768                    if (adjusted != 0) {
3769                        long abs = Math.abs(adjusted);
3770                        // require sign
3771                        exp.append(adjusted < 0 ? '-' : '+');
3772                        if (abs < 10) {
3773                            exp.append('0');
3774                        }
3775                        exp.append(abs);
3776                    } else {
3777                        exp.append("+00");
3778                    }
3779                }
3780            }
3781        }
3782
3783        private int adjustWidth(int width, Flags f, boolean neg) {
3784            int newW = width;
3785            if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3786                newW--;
3787            return newW;
3788        }
3789
3790        // Add trailing zeros
3791        private void trailingZeros(StringBuilder sb, int nzeros) {
3792            for (int i = 0; i < nzeros; i++) {
3793                sb.append('0');
3794            }
3795        }
3796
3797        private void print(Calendar t, char c, Locale l)  throws IOException {
3798            StringBuilder sb = new StringBuilder();
3799            print(sb, t, c, l);
3800
3801            // justify based on width
3802            if (f.contains(Flags.UPPERCASE)) {
3803                appendJustified(a, sb.toString().toUpperCase());
3804            } else {
3805                appendJustified(a, sb);
3806            }
3807        }
3808
3809        private Appendable print(StringBuilder sb, Calendar t, char c, Locale l)
3810                throws IOException {
3811            if (sb == null)
3812                sb = new StringBuilder();
3813            switch (c) {
3814            case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3815            case DateTime.HOUR_0:        // 'I' (01 - 12)
3816            case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
3817            case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
3818                int i = t.get(Calendar.HOUR_OF_DAY);
3819                if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3820                    i = (i == 0 || i == 12 ? 12 : i % 12);
3821                Flags flags = (c == DateTime.HOUR_OF_DAY_0
3822                               || c == DateTime.HOUR_0
3823                               ? Flags.ZERO_PAD
3824                               : Flags.NONE);
3825                sb.append(localizedMagnitude(null, i, flags, 2, l));
3826                break;
3827            }
3828            case DateTime.MINUTE:      { // 'M' (00 - 59)
3829                int i = t.get(Calendar.MINUTE);
3830                Flags flags = Flags.ZERO_PAD;
3831                sb.append(localizedMagnitude(null, i, flags, 2, l));
3832                break;
3833            }
3834            case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
3835                int i = t.get(Calendar.MILLISECOND) * 1000000;
3836                Flags flags = Flags.ZERO_PAD;
3837                sb.append(localizedMagnitude(null, i, flags, 9, l));
3838                break;
3839            }
3840            case DateTime.MILLISECOND: { // 'L' (000 - 999)
3841                int i = t.get(Calendar.MILLISECOND);
3842                Flags flags = Flags.ZERO_PAD;
3843                sb.append(localizedMagnitude(null, i, flags, 3, l));
3844                break;
3845            }
3846            case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3847                long i = t.getTimeInMillis();
3848                Flags flags = Flags.NONE;
3849                sb.append(localizedMagnitude(null, i, flags, width, l));
3850                break;
3851            }
3852            case DateTime.AM_PM:       { // 'p' (am or pm)
3853                // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3854                String[] ampm = { "AM", "PM" };
3855                if (l != null && l != Locale.US) {
3856                    DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3857                    ampm = dfs.getAmPmStrings();
3858                }
3859                String s = ampm[t.get(Calendar.AM_PM)];
3860                sb.append(s.toLowerCase(l != null ? l : Locale.US));
3861                break;
3862            }
3863            case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3864                long i = t.getTimeInMillis() / 1000;
3865                Flags flags = Flags.NONE;
3866                sb.append(localizedMagnitude(null, i, flags, width, l));
3867                break;
3868            }
3869            case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
3870                int i = t.get(Calendar.SECOND);
3871                Flags flags = Flags.ZERO_PAD;
3872                sb.append(localizedMagnitude(null, i, flags, 2, l));
3873                break;
3874            }
3875            case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3876                int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3877                boolean neg = i < 0;
3878                sb.append(neg ? '-' : '+');
3879                if (neg)
3880                    i = -i;
3881                int min = i / 60000;
3882                // combine minute and hour into a single integer
3883                int offset = (min / 60) * 100 + (min % 60);
3884                Flags flags = Flags.ZERO_PAD;
3885
3886                sb.append(localizedMagnitude(null, offset, flags, 4, l));
3887                break;
3888            }
3889            case DateTime.ZONE:        { // 'Z' (symbol)
3890                TimeZone tz = t.getTimeZone();
3891                sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
3892                                           TimeZone.SHORT,
3893                                            (l == null) ? Locale.US : l));
3894                break;
3895            }
3896
3897            // Date
3898            case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
3899            case DateTime.NAME_OF_DAY:          { // 'A'
3900                int i = t.get(Calendar.DAY_OF_WEEK);
3901                Locale lt = ((l == null) ? Locale.US : l);
3902                DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3903                if (c == DateTime.NAME_OF_DAY)
3904                    sb.append(dfs.getWeekdays()[i]);
3905                else
3906                    sb.append(dfs.getShortWeekdays()[i]);
3907                break;
3908            }
3909            case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
3910            case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
3911            case DateTime.NAME_OF_MONTH:        { // 'B'
3912                int i = t.get(Calendar.MONTH);
3913                Locale lt = ((l == null) ? Locale.US : l);
3914                DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3915                if (c == DateTime.NAME_OF_MONTH)
3916                    sb.append(dfs.getMonths()[i]);
3917                else
3918                    sb.append(dfs.getShortMonths()[i]);
3919                break;
3920            }
3921            case DateTime.CENTURY:                // 'C' (00 - 99)
3922            case DateTime.YEAR_2:                 // 'y' (00 - 99)
3923            case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
3924                int i = t.get(Calendar.YEAR);
3925                int size = 2;
3926                switch (c) {
3927                case DateTime.CENTURY:
3928                    i /= 100;
3929                    break;
3930                case DateTime.YEAR_2:
3931                    i %= 100;
3932                    break;
3933                case DateTime.YEAR_4:
3934                    size = 4;
3935                    break;
3936                }
3937                Flags flags = Flags.ZERO_PAD;
3938                sb.append(localizedMagnitude(null, i, flags, size, l));
3939                break;
3940            }
3941            case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
3942            case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
3943                int i = t.get(Calendar.DATE);
3944                Flags flags = (c == DateTime.DAY_OF_MONTH_0
3945                               ? Flags.ZERO_PAD
3946                               : Flags.NONE);
3947                sb.append(localizedMagnitude(null, i, flags, 2, l));
3948                break;
3949            }
3950            case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
3951                int i = t.get(Calendar.DAY_OF_YEAR);
3952                Flags flags = Flags.ZERO_PAD;
3953                sb.append(localizedMagnitude(null, i, flags, 3, l));
3954                break;
3955            }
3956            case DateTime.MONTH:                { // 'm' (01 - 12)
3957                int i = t.get(Calendar.MONTH) + 1;
3958                Flags flags = Flags.ZERO_PAD;
3959                sb.append(localizedMagnitude(null, i, flags, 2, l));
3960                break;
3961            }
3962
3963            // Composites
3964            case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
3965            case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
3966                char sep = ':';
3967                print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
3968                print(sb, t, DateTime.MINUTE, l);
3969                if (c == DateTime.TIME) {
3970                    sb.append(sep);
3971                    print(sb, t, DateTime.SECOND, l);
3972                }
3973                break;
3974            }
3975            case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
3976                char sep = ':';
3977                print(sb, t, DateTime.HOUR_0, l).append(sep);
3978                print(sb, t, DateTime.MINUTE, l).append(sep);
3979                print(sb, t, DateTime.SECOND, l).append(' ');
3980                // this may be in wrong place for some locales
3981                StringBuilder tsb = new StringBuilder();
3982                print(tsb, t, DateTime.AM_PM, l);
3983
3984                sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
3985                break;
3986            }
3987            case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
3988                char sep = ' ';
3989                print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
3990                print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
3991                print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
3992                print(sb, t, DateTime.TIME, l).append(sep);
3993                print(sb, t, DateTime.ZONE, l).append(sep);
3994                print(sb, t, DateTime.YEAR_4, l);
3995                break;
3996            }
3997            case DateTime.DATE:            { // 'D' (mm/dd/yy)
3998                char sep = '/';
3999                print(sb, t, DateTime.MONTH, l).append(sep);
4000                print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4001                print(sb, t, DateTime.YEAR_2, l);
4002                break;
4003            }
4004            case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4005                char sep = '-';
4006                print(sb, t, DateTime.YEAR_4, l).append(sep);
4007                print(sb, t, DateTime.MONTH, l).append(sep);
4008                print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4009                break;
4010            }
4011            default:
4012                assert false;
4013            }
4014            return sb;
4015        }
4016
4017        private void print(TemporalAccessor t, char c, Locale l)  throws IOException {
4018            StringBuilder sb = new StringBuilder();
4019            print(sb, t, c, l);
4020            // justify based on width
4021            if (f.contains(Flags.UPPERCASE)) {
4022                appendJustified(a, sb.toString().toUpperCase());
4023            } else {
4024                appendJustified(a, sb);
4025            }
4026        }
4027
4028        private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
4029                                 Locale l) throws IOException {
4030            if (sb == null)
4031                sb = new StringBuilder();
4032            try {
4033                switch (c) {
4034                case DateTime.HOUR_OF_DAY_0: {  // 'H' (00 - 23)
4035                    int i = t.get(ChronoField.HOUR_OF_DAY);
4036                    sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4037                    break;
4038                }
4039                case DateTime.HOUR_OF_DAY: {   // 'k' (0 - 23) -- like H
4040                    int i = t.get(ChronoField.HOUR_OF_DAY);
4041                    sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4042                    break;
4043                }
4044                case DateTime.HOUR_0:      {  // 'I' (01 - 12)
4045                    int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4046                    sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4047                    break;
4048                }
4049                case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
4050                    int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4051                    sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4052                    break;
4053                }
4054                case DateTime.MINUTE:      { // 'M' (00 - 59)
4055                    int i = t.get(ChronoField.MINUTE_OF_HOUR);
4056                    Flags flags = Flags.ZERO_PAD;
4057                    sb.append(localizedMagnitude(null, i, flags, 2, l));
4058                    break;
4059                }
4060                case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
4061                    int i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
4062                    Flags flags = Flags.ZERO_PAD;
4063                    sb.append(localizedMagnitude(null, i, flags, 9, l));
4064                    break;
4065                }
4066                case DateTime.MILLISECOND: { // 'L' (000 - 999)
4067                    int i = t.get(ChronoField.MILLI_OF_SECOND);
4068                    Flags flags = Flags.ZERO_PAD;
4069                    sb.append(localizedMagnitude(null, i, flags, 3, l));
4070                    break;
4071                }
4072                case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4073                    long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
4074                             t.getLong(ChronoField.MILLI_OF_SECOND);
4075                    Flags flags = Flags.NONE;
4076                    sb.append(localizedMagnitude(null, i, flags, width, l));
4077                    break;
4078                }
4079                case DateTime.AM_PM:       { // 'p' (am or pm)
4080                    // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4081                    String[] ampm = { "AM", "PM" };
4082                    if (l != null && l != Locale.US) {
4083                        DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4084                        ampm = dfs.getAmPmStrings();
4085                    }
4086                    String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
4087                    sb.append(s.toLowerCase(l != null ? l : Locale.US));
4088                    break;
4089                }
4090                case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4091                    long i = t.getLong(ChronoField.INSTANT_SECONDS);
4092                    Flags flags = Flags.NONE;
4093                    sb.append(localizedMagnitude(null, i, flags, width, l));
4094                    break;
4095                }
4096                case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
4097                    int i = t.get(ChronoField.SECOND_OF_MINUTE);
4098                    Flags flags = Flags.ZERO_PAD;
4099                    sb.append(localizedMagnitude(null, i, flags, 2, l));
4100                    break;
4101                }
4102                case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4103                    int i = t.get(ChronoField.OFFSET_SECONDS);
4104                    boolean neg = i < 0;
4105                    sb.append(neg ? '-' : '+');
4106                    if (neg)
4107                        i = -i;
4108                    int min = i / 60;
4109                    // combine minute and hour into a single integer
4110                    int offset = (min / 60) * 100 + (min % 60);
4111                    Flags flags = Flags.ZERO_PAD;
4112                    sb.append(localizedMagnitude(null, offset, flags, 4, l));
4113                    break;
4114                }
4115                case DateTime.ZONE:        { // 'Z' (symbol)
4116                    ZoneId zid = t.query(TemporalQueries.zone());
4117                    if (zid == null) {
4118                        throw new IllegalFormatConversionException(c, t.getClass());
4119                    }
4120                    if (!(zid instanceof ZoneOffset) &&
4121                        t.isSupported(ChronoField.INSTANT_SECONDS)) {
4122                        Instant instant = Instant.from(t);
4123                        sb.append(TimeZone.getTimeZone(zid.getId())
4124                                          .getDisplayName(zid.getRules().isDaylightSavings(instant),
4125                                                          TimeZone.SHORT,
4126                                                          (l == null) ? Locale.US : l));
4127                        break;
4128                    }
4129                    sb.append(zid.getId());
4130                    break;
4131                }
4132                // Date
4133                case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
4134                case DateTime.NAME_OF_DAY:          { // 'A'
4135                    int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
4136                    Locale lt = ((l == null) ? Locale.US : l);
4137                    DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4138                    if (c == DateTime.NAME_OF_DAY)
4139                        sb.append(dfs.getWeekdays()[i]);
4140                    else
4141                        sb.append(dfs.getShortWeekdays()[i]);
4142                    break;
4143                }
4144                case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
4145                case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4146                case DateTime.NAME_OF_MONTH:        { // 'B'
4147                    int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
4148                    Locale lt = ((l == null) ? Locale.US : l);
4149                    DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4150                    if (c == DateTime.NAME_OF_MONTH)
4151                        sb.append(dfs.getMonths()[i]);
4152                    else
4153                        sb.append(dfs.getShortMonths()[i]);
4154                    break;
4155                }
4156                case DateTime.CENTURY:                // 'C' (00 - 99)
4157                case DateTime.YEAR_2:                 // 'y' (00 - 99)
4158                case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
4159                    int i = t.get(ChronoField.YEAR_OF_ERA);
4160                    int size = 2;
4161                    switch (c) {
4162                    case DateTime.CENTURY:
4163                        i /= 100;
4164                        break;
4165                    case DateTime.YEAR_2:
4166                        i %= 100;
4167                        break;
4168                    case DateTime.YEAR_4:
4169                        size = 4;
4170                        break;
4171                    }
4172                    Flags flags = Flags.ZERO_PAD;
4173                    sb.append(localizedMagnitude(null, i, flags, size, l));
4174                    break;
4175                }
4176                case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4177                case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4178                    int i = t.get(ChronoField.DAY_OF_MONTH);
4179                    Flags flags = (c == DateTime.DAY_OF_MONTH_0
4180                                   ? Flags.ZERO_PAD
4181                                   : Flags.NONE);
4182                    sb.append(localizedMagnitude(null, i, flags, 2, l));
4183                    break;
4184                }
4185                case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4186                    int i = t.get(ChronoField.DAY_OF_YEAR);
4187                    Flags flags = Flags.ZERO_PAD;
4188                    sb.append(localizedMagnitude(null, i, flags, 3, l));
4189                    break;
4190                }
4191                case DateTime.MONTH:                { // 'm' (01 - 12)
4192                    int i = t.get(ChronoField.MONTH_OF_YEAR);
4193                    Flags flags = Flags.ZERO_PAD;
4194                    sb.append(localizedMagnitude(null, i, flags, 2, l));
4195                    break;
4196                }
4197
4198                // Composites
4199                case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4200                case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4201                    char sep = ':';
4202                    print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4203                    print(sb, t, DateTime.MINUTE, l);
4204                    if (c == DateTime.TIME) {
4205                        sb.append(sep);
4206                        print(sb, t, DateTime.SECOND, l);
4207                    }
4208                    break;
4209                }
4210                case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4211                    char sep = ':';
4212                    print(sb, t, DateTime.HOUR_0, l).append(sep);
4213                    print(sb, t, DateTime.MINUTE, l).append(sep);
4214                    print(sb, t, DateTime.SECOND, l).append(' ');
4215                    // this may be in wrong place for some locales
4216                    StringBuilder tsb = new StringBuilder();
4217                    print(tsb, t, DateTime.AM_PM, l);
4218                    sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4219                    break;
4220                }
4221                case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4222                    char sep = ' ';
4223                    print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4224                    print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4225                    print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4226                    print(sb, t, DateTime.TIME, l).append(sep);
4227                    print(sb, t, DateTime.ZONE, l).append(sep);
4228                    print(sb, t, DateTime.YEAR_4, l);
4229                    break;
4230                }
4231                case DateTime.DATE:            { // 'D' (mm/dd/yy)
4232                    char sep = '/';
4233                    print(sb, t, DateTime.MONTH, l).append(sep);
4234                    print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4235                    print(sb, t, DateTime.YEAR_2, l);
4236                    break;
4237                }
4238                case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4239                    char sep = '-';
4240                    print(sb, t, DateTime.YEAR_4, l).append(sep);
4241                    print(sb, t, DateTime.MONTH, l).append(sep);
4242                    print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4243                    break;
4244                }
4245                default:
4246                    assert false;
4247                }
4248            } catch (DateTimeException x) {
4249                throw new IllegalFormatConversionException(c, t.getClass());
4250            }
4251            return sb;
4252        }
4253
4254        // -- Methods to support throwing exceptions --
4255
4256        private void failMismatch(Flags f, char c) {
4257            String fs = f.toString();
4258            throw new FormatFlagsConversionMismatchException(fs, c);
4259        }
4260
4261        private void failConversion(char c, Object arg) {
4262            throw new IllegalFormatConversionException(c, arg.getClass());
4263        }
4264
4265        private char getZero(Locale l) {
4266            if ((l != null) &&  !l.equals(locale())) {
4267                DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4268                return dfs.getZeroDigit();
4269            }
4270            return zero;
4271        }
4272
4273        private StringBuilder localizedMagnitude(StringBuilder sb,
4274                long value, Flags f, int width, Locale l) {
4275            return localizedMagnitude(sb, Long.toString(value, 10), 0, f, width, l);
4276        }
4277
4278        private StringBuilder localizedMagnitude(StringBuilder sb,
4279                CharSequence value, final int offset, Flags f, int width,
4280                Locale l) {
4281            if (sb == null) {
4282                sb = new StringBuilder();
4283            }
4284            int begin = sb.length();
4285
4286            char zero = getZero(l);
4287
4288            // determine localized grouping separator and size
4289            char grpSep = '\0';
4290            int  grpSize = -1;
4291            char decSep = '\0';
4292
4293            int len = value.length();
4294            int dot = len;
4295            for (int j = offset; j < len; j++) {
4296                if (value.charAt(j) == '.') {
4297                    dot = j;
4298                    break;
4299                }
4300            }
4301
4302            if (dot < len) {
4303                if (l == null || l.equals(Locale.US)) {
4304                    decSep  = '.';
4305                } else {
4306                    DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4307                    decSep  = dfs.getDecimalSeparator();
4308                }
4309            }
4310
4311            if (f.contains(Flags.GROUP)) {
4312                if (l == null || l.equals(Locale.US)) {
4313                    grpSep = ',';
4314                    grpSize = 3;
4315                } else {
4316                    DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4317                    grpSep = dfs.getGroupingSeparator();
4318                    DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4319                    grpSize = df.getGroupingSize();
4320                }
4321            }
4322
4323            // localize the digits inserting group separators as necessary
4324            for (int j = offset; j < len; j++) {
4325                if (j == dot) {
4326                    sb.append(decSep);
4327                    // no more group separators after the decimal separator
4328                    grpSep = '\0';
4329                    continue;
4330                }
4331
4332                char c = value.charAt(j);
4333                sb.append((char) ((c - '0') + zero));
4334                if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) {
4335                    sb.append(grpSep);
4336                }
4337            }
4338
4339            // apply zero padding
4340            if (width != -1 && f.contains(Flags.ZERO_PAD)) {
4341                for (int k = sb.length(); k < width; k++) {
4342                    sb.insert(begin, zero);
4343                }
4344            }
4345
4346            return sb;
4347        }
4348
4349        // Specialized localization of exponents, where the source value can only
4350        // contain characters '0' through '9', starting at index offset, and no
4351        // group separators is added for any locale.
4352        private void localizedMagnitudeExp(StringBuilder sb, char[] value,
4353                final int offset, Locale l) {
4354            char zero = getZero(l);
4355
4356            int len = value.length;
4357            for (int j = offset; j < len; j++) {
4358                char c = value[j];
4359                sb.append((char) ((c - '0') + zero));
4360            }
4361        }
4362    }
4363
4364    private static class Flags {
4365        private int flags;
4366
4367        static final Flags NONE          = new Flags(0);      // ''
4368
4369        // duplicate declarations from Formattable.java
4370        static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
4371        static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
4372        static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
4373
4374        // numerics
4375        static final Flags PLUS          = new Flags(1<<3);   // '+'
4376        static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
4377        static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
4378        static final Flags GROUP         = new Flags(1<<6);   // ','
4379        static final Flags PARENTHESES   = new Flags(1<<7);   // '('
4380
4381        // indexing
4382        static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
4383
4384        private Flags(int f) {
4385            flags = f;
4386        }
4387
4388        public int valueOf() {
4389            return flags;
4390        }
4391
4392        public boolean contains(Flags f) {
4393            return (flags & f.valueOf()) == f.valueOf();
4394        }
4395
4396        public Flags dup() {
4397            return new Flags(flags);
4398        }
4399
4400        private Flags add(Flags f) {
4401            flags |= f.valueOf();
4402            return this;
4403        }
4404
4405        public Flags remove(Flags f) {
4406            flags &= ~f.valueOf();
4407            return this;
4408        }
4409
4410        public static Flags parse(String s, int start, int end) {
4411            Flags f = new Flags(0);
4412            for (int i = start; i < end; i++) {
4413                char c = s.charAt(i);
4414                Flags v = parse(c);
4415                if (f.contains(v))
4416                    throw new DuplicateFormatFlagsException(v.toString());
4417                f.add(v);
4418            }
4419            return f;
4420        }
4421
4422        // parse those flags which may be provided by users
4423        private static Flags parse(char c) {
4424            switch (c) {
4425            case '-': return LEFT_JUSTIFY;
4426            case '#': return ALTERNATE;
4427            case '+': return PLUS;
4428            case ' ': return LEADING_SPACE;
4429            case '0': return ZERO_PAD;
4430            case ',': return GROUP;
4431            case '(': return PARENTHESES;
4432            case '<': return PREVIOUS;
4433            default:
4434                throw new UnknownFormatFlagsException(String.valueOf(c));
4435            }
4436        }
4437
4438        // Returns a string representation of the current {@code Flags}.
4439        public static String toString(Flags f) {
4440            return f.toString();
4441        }
4442
4443        public String toString() {
4444            StringBuilder sb = new StringBuilder();
4445            if (contains(LEFT_JUSTIFY))  sb.append('-');
4446            if (contains(UPPERCASE))     sb.append('^');
4447            if (contains(ALTERNATE))     sb.append('#');
4448            if (contains(PLUS))          sb.append('+');
4449            if (contains(LEADING_SPACE)) sb.append(' ');
4450            if (contains(ZERO_PAD))      sb.append('0');
4451            if (contains(GROUP))         sb.append(',');
4452            if (contains(PARENTHESES))   sb.append('(');
4453            if (contains(PREVIOUS))      sb.append('<');
4454            return sb.toString();
4455        }
4456    }
4457
4458    private static class Conversion {
4459        // Byte, Short, Integer, Long, BigInteger
4460        // (and associated primitives due to autoboxing)
4461        static final char DECIMAL_INTEGER     = 'd';
4462        static final char OCTAL_INTEGER       = 'o';
4463        static final char HEXADECIMAL_INTEGER = 'x';
4464        static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4465
4466        // Float, Double, BigDecimal
4467        // (and associated primitives due to autoboxing)
4468        static final char SCIENTIFIC          = 'e';
4469        static final char SCIENTIFIC_UPPER    = 'E';
4470        static final char GENERAL             = 'g';
4471        static final char GENERAL_UPPER       = 'G';
4472        static final char DECIMAL_FLOAT       = 'f';
4473        static final char HEXADECIMAL_FLOAT   = 'a';
4474        static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4475
4476        // Character, Byte, Short, Integer
4477        // (and associated primitives due to autoboxing)
4478        static final char CHARACTER           = 'c';
4479        static final char CHARACTER_UPPER     = 'C';
4480
4481        // java.util.Date, java.util.Calendar, long
4482        static final char DATE_TIME           = 't';
4483        static final char DATE_TIME_UPPER     = 'T';
4484
4485        // if (arg.TYPE != boolean) return boolean
4486        // if (arg != null) return true; else return false;
4487        static final char BOOLEAN             = 'b';
4488        static final char BOOLEAN_UPPER       = 'B';
4489        // if (arg instanceof Formattable) arg.formatTo()
4490        // else arg.toString();
4491        static final char STRING              = 's';
4492        static final char STRING_UPPER        = 'S';
4493        // arg.hashCode()
4494        static final char HASHCODE            = 'h';
4495        static final char HASHCODE_UPPER      = 'H';
4496
4497        static final char LINE_SEPARATOR      = 'n';
4498        static final char PERCENT_SIGN        = '%';
4499
4500        static boolean isValid(char c) {
4501            return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4502                    || c == 't' || isCharacter(c));
4503        }
4504
4505        // Returns true iff the Conversion is applicable to all objects.
4506        static boolean isGeneral(char c) {
4507            switch (c) {
4508            case BOOLEAN:
4509            case BOOLEAN_UPPER:
4510            case STRING:
4511            case STRING_UPPER:
4512            case HASHCODE:
4513            case HASHCODE_UPPER:
4514                return true;
4515            default:
4516                return false;
4517            }
4518        }
4519
4520        // Returns true iff the Conversion is applicable to character.
4521        static boolean isCharacter(char c) {
4522            switch (c) {
4523            case CHARACTER:
4524            case CHARACTER_UPPER:
4525                return true;
4526            default:
4527                return false;
4528            }
4529        }
4530
4531        // Returns true iff the Conversion is an integer type.
4532        static boolean isInteger(char c) {
4533            switch (c) {
4534            case DECIMAL_INTEGER:
4535            case OCTAL_INTEGER:
4536            case HEXADECIMAL_INTEGER:
4537            case HEXADECIMAL_INTEGER_UPPER:
4538                return true;
4539            default:
4540                return false;
4541            }
4542        }
4543
4544        // Returns true iff the Conversion is a floating-point type.
4545        static boolean isFloat(char c) {
4546            switch (c) {
4547            case SCIENTIFIC:
4548            case SCIENTIFIC_UPPER:
4549            case GENERAL:
4550            case GENERAL_UPPER:
4551            case DECIMAL_FLOAT:
4552            case HEXADECIMAL_FLOAT:
4553            case HEXADECIMAL_FLOAT_UPPER:
4554                return true;
4555            default:
4556                return false;
4557            }
4558        }
4559
4560        // Returns true iff the Conversion does not require an argument
4561        static boolean isText(char c) {
4562            switch (c) {
4563            case LINE_SEPARATOR:
4564            case PERCENT_SIGN:
4565                return true;
4566            default:
4567                return false;
4568            }
4569        }
4570    }
4571
4572    private static class DateTime {
4573        static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4574        static final char HOUR_0        = 'I'; // (01 - 12)
4575        static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
4576        static final char HOUR          = 'l'; // (1 - 12) -- like I
4577        static final char MINUTE        = 'M'; // (00 - 59)
4578        static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
4579        static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
4580        static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4581        static final char AM_PM         = 'p'; // (am or pm)
4582        static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4583        static final char SECOND        = 'S'; // (00 - 60 - leap second)
4584        static final char TIME          = 'T'; // (24 hour hh:mm:ss)
4585        static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
4586        static final char ZONE          = 'Z'; // (symbol)
4587
4588        // Date
4589        static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
4590        static final char NAME_OF_DAY           = 'A'; // 'A'
4591        static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
4592        static final char NAME_OF_MONTH         = 'B'; // 'B'
4593        static final char CENTURY               = 'C'; // (00 - 99)
4594        static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
4595        static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
4596// *    static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
4597// *    static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
4598        static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
4599        static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
4600        static final char MONTH                 = 'm'; // (01 - 12)
4601// *    static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
4602// *    static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (0 - 53) Sunday+
4603// *    static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4604// *    static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
4605// *    static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
4606        static final char YEAR_2                = 'y'; // (00 - 99)
4607        static final char YEAR_4                = 'Y'; // (0000 - 9999)
4608
4609        // Composites
4610        static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
4611        static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
4612// *    static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
4613        static final char DATE_TIME             = 'c';
4614                                            // (Sat Nov 04 12:02:33 EST 1999)
4615        static final char DATE                  = 'D'; // (mm/dd/yy)
4616        static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
4617// *    static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
4618
4619        static boolean isValid(char c) {
4620            switch (c) {
4621            case HOUR_OF_DAY_0:
4622            case HOUR_0:
4623            case HOUR_OF_DAY:
4624            case HOUR:
4625            case MINUTE:
4626            case NANOSECOND:
4627            case MILLISECOND:
4628            case MILLISECOND_SINCE_EPOCH:
4629            case AM_PM:
4630            case SECONDS_SINCE_EPOCH:
4631            case SECOND:
4632            case TIME:
4633            case ZONE_NUMERIC:
4634            case ZONE:
4635
4636            // Date
4637            case NAME_OF_DAY_ABBREV:
4638            case NAME_OF_DAY:
4639            case NAME_OF_MONTH_ABBREV:
4640            case NAME_OF_MONTH:
4641            case CENTURY:
4642            case DAY_OF_MONTH_0:
4643            case DAY_OF_MONTH:
4644// *        case ISO_WEEK_OF_YEAR_2:
4645// *        case ISO_WEEK_OF_YEAR_4:
4646            case NAME_OF_MONTH_ABBREV_X:
4647            case DAY_OF_YEAR:
4648            case MONTH:
4649// *        case DAY_OF_WEEK_1:
4650// *        case WEEK_OF_YEAR_SUNDAY:
4651// *        case WEEK_OF_YEAR_MONDAY_01:
4652// *        case DAY_OF_WEEK_0:
4653// *        case WEEK_OF_YEAR_MONDAY:
4654            case YEAR_2:
4655            case YEAR_4:
4656
4657            // Composites
4658            case TIME_12_HOUR:
4659            case TIME_24_HOUR:
4660// *        case LOCALE_TIME:
4661            case DATE_TIME:
4662            case DATE:
4663            case ISO_STANDARD_DATE:
4664// *        case LOCALE_DATE:
4665                return true;
4666            default:
4667                return false;
4668            }
4669        }
4670    }
4671}
4672