stack.inline.hpp revision 1756:894b1d7c7e01
1/*
2 * Copyright 2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25StackBase::StackBase(size_t segment_size, size_t max_cache_size,
26                     size_t max_size):
27  _seg_size(segment_size),
28  _max_cache_size(max_cache_size),
29  _max_size(adjust_max_size(max_size, segment_size))
30{
31  assert(_max_size % _seg_size == 0, "not a multiple");
32}
33
34size_t StackBase::adjust_max_size(size_t max_size, size_t seg_size)
35{
36  assert(seg_size > 0, "cannot be 0");
37  assert(max_size >= seg_size || max_size == 0, "max_size too small");
38  const size_t limit = max_uintx - (seg_size - 1);
39  if (max_size == 0 || max_size > limit) {
40    max_size = limit;
41  }
42  return (max_size + seg_size - 1) / seg_size * seg_size;
43}
44
45template <class E>
46Stack<E>::Stack(size_t segment_size, size_t max_cache_size, size_t max_size):
47  StackBase(adjust_segment_size(segment_size), max_cache_size, max_size)
48{
49  reset(true);
50}
51
52template <class E>
53void Stack<E>::push(E item)
54{
55  assert(!is_full(), "pushing onto a full stack");
56  if (_cur_seg_size == _seg_size) {
57    push_segment();
58  }
59  _cur_seg[_cur_seg_size] = item;
60  ++_cur_seg_size;
61}
62
63template <class E>
64E Stack<E>::pop()
65{
66  assert(!is_empty(), "popping from an empty stack");
67  if (_cur_seg_size == 1) {
68    E tmp = _cur_seg[--_cur_seg_size];
69    pop_segment();
70    return tmp;
71  }
72  return _cur_seg[--_cur_seg_size];
73}
74
75template <class E>
76void Stack<E>::clear(bool clear_cache)
77{
78  free_segments(_cur_seg);
79  if (clear_cache) free_segments(_cache);
80  reset(clear_cache);
81}
82
83template <class E>
84size_t Stack<E>::default_segment_size()
85{
86  // Number of elements that fit in 4K bytes minus the size of two pointers
87  // (link field and malloc header).
88  return (4096 - 2 * sizeof(E*)) / sizeof(E);
89}
90
91template <class E>
92size_t Stack<E>::adjust_segment_size(size_t seg_size)
93{
94  const size_t elem_sz = sizeof(E);
95  const size_t ptr_sz = sizeof(E*);
96  assert(elem_sz % ptr_sz == 0 || ptr_sz % elem_sz == 0, "bad element size");
97  if (elem_sz < ptr_sz) {
98    return align_size_up(seg_size * elem_sz, ptr_sz) / elem_sz;
99  }
100  return seg_size;
101}
102
103template <class E>
104size_t Stack<E>::link_offset() const
105{
106  return align_size_up(_seg_size * sizeof(E), sizeof(E*));
107}
108
109template <class E>
110size_t Stack<E>::segment_bytes() const
111{
112  return link_offset() + sizeof(E*);
113}
114
115template <class E>
116E** Stack<E>::link_addr(E* seg) const
117{
118  return (E**) ((char*)seg + link_offset());
119}
120
121template <class E>
122E* Stack<E>::get_link(E* seg) const
123{
124  return *link_addr(seg);
125}
126
127template <class E>
128E* Stack<E>::set_link(E* new_seg, E* old_seg)
129{
130  *link_addr(new_seg) = old_seg;
131  return new_seg;
132}
133
134template <class E>
135E* Stack<E>::alloc(size_t bytes)
136{
137  return (E*) NEW_C_HEAP_ARRAY(char, bytes);
138}
139
140template <class E>
141void Stack<E>::free(E* addr, size_t bytes)
142{
143  FREE_C_HEAP_ARRAY(char, (char*) addr);
144}
145
146template <class E>
147void Stack<E>::push_segment()
148{
149  assert(_cur_seg_size == _seg_size, "current segment is not full");
150  E* next;
151  if (_cache_size > 0) {
152    // Use a cached segment.
153    next = _cache;
154    _cache = get_link(_cache);
155    --_cache_size;
156  } else {
157    next = alloc(segment_bytes());
158    DEBUG_ONLY(zap_segment(next, true);)
159  }
160  const bool at_empty_transition = is_empty();
161  _cur_seg = set_link(next, _cur_seg);
162  _cur_seg_size = 0;
163  _full_seg_size += at_empty_transition ? 0 : _seg_size;
164  DEBUG_ONLY(verify(at_empty_transition);)
165}
166
167template <class E>
168void Stack<E>::pop_segment()
169{
170  assert(_cur_seg_size == 0, "current segment is not empty");
171  E* const prev = get_link(_cur_seg);
172  if (_cache_size < _max_cache_size) {
173    // Add the current segment to the cache.
174    DEBUG_ONLY(zap_segment(_cur_seg, false);)
175    _cache = set_link(_cur_seg, _cache);
176    ++_cache_size;
177  } else {
178    DEBUG_ONLY(zap_segment(_cur_seg, true);)
179    free(_cur_seg, segment_bytes());
180  }
181  const bool at_empty_transition = prev == NULL;
182  _cur_seg = prev;
183  _cur_seg_size = _seg_size;
184  _full_seg_size -= at_empty_transition ? 0 : _seg_size;
185  DEBUG_ONLY(verify(at_empty_transition);)
186}
187
188template <class E>
189void Stack<E>::free_segments(E* seg)
190{
191  const size_t bytes = segment_bytes();
192  while (seg != NULL) {
193    E* const prev = get_link(seg);
194    free(seg, bytes);
195    seg = prev;
196  }
197}
198
199template <class E>
200void Stack<E>::reset(bool reset_cache)
201{
202  _cur_seg_size = _seg_size; // So push() will alloc a new segment.
203  _full_seg_size = 0;
204  _cur_seg = NULL;
205  if (reset_cache) {
206    _cache_size = 0;
207    _cache = NULL;
208  }
209}
210
211#ifdef ASSERT
212template <class E>
213void Stack<E>::verify(bool at_empty_transition) const
214{
215  assert(size() <= max_size(), "stack exceeded bounds");
216  assert(cache_size() <= max_cache_size(), "cache exceeded bounds");
217  assert(_cur_seg_size <= segment_size(), "segment index exceeded bounds");
218
219  assert(_full_seg_size % _seg_size == 0, "not a multiple");
220  assert(at_empty_transition || is_empty() == (size() == 0), "mismatch");
221  assert((_cache == NULL) == (cache_size() == 0), "mismatch");
222
223  if (is_empty()) {
224    assert(_cur_seg_size == segment_size(), "sanity");
225  }
226}
227
228template <class E>
229void Stack<E>::zap_segment(E* seg, bool zap_link_field) const
230{
231  if (!ZapStackSegments) return;
232  const size_t zap_bytes = segment_bytes() - (zap_link_field ? 0 : sizeof(E*));
233  uint32_t* cur = (uint32_t*)seg;
234  const uint32_t* end = cur + zap_bytes / sizeof(uint32_t);
235  while (cur < end) {
236    *cur++ = 0xfadfaded;
237  }
238}
239#endif
240
241template <class E>
242E* ResourceStack<E>::alloc(size_t bytes)
243{
244  return (E*) resource_allocate_bytes(bytes);
245}
246
247template <class E>
248void ResourceStack<E>::free(E* addr, size_t bytes)
249{
250  resource_free_bytes((char*) addr, bytes);
251}
252
253template <class E>
254void StackIterator<E>::sync()
255{
256  _full_seg_size = _stack._full_seg_size;
257  _cur_seg_size = _stack._cur_seg_size;
258  _cur_seg = _stack._cur_seg;
259}
260
261template <class E>
262E* StackIterator<E>::next_addr()
263{
264  assert(!is_empty(), "no items left");
265  if (_cur_seg_size == 1) {
266    E* addr = _cur_seg;
267    _cur_seg = _stack.get_link(_cur_seg);
268    _cur_seg_size = _stack.segment_size();
269    _full_seg_size -= _stack.segment_size();
270    return addr;
271  }
272  return _cur_seg + --_cur_seg_size;
273}
274