globalDefinitions.hpp revision 9821:867bdec7c8c5
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
26#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
27
28#ifndef __STDC_FORMAT_MACROS
29#define __STDC_FORMAT_MACROS
30#endif
31
32#ifdef TARGET_COMPILER_gcc
33# include "utilities/globalDefinitions_gcc.hpp"
34#endif
35#ifdef TARGET_COMPILER_visCPP
36# include "utilities/globalDefinitions_visCPP.hpp"
37#endif
38#ifdef TARGET_COMPILER_sparcWorks
39# include "utilities/globalDefinitions_sparcWorks.hpp"
40#endif
41#ifdef TARGET_COMPILER_xlc
42# include "utilities/globalDefinitions_xlc.hpp"
43#endif
44
45#ifndef PRAGMA_DIAG_PUSH
46#define PRAGMA_DIAG_PUSH
47#endif
48#ifndef PRAGMA_DIAG_POP
49#define PRAGMA_DIAG_POP
50#endif
51#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
52#define PRAGMA_FORMAT_NONLITERAL_IGNORED
53#endif
54#ifndef PRAGMA_FORMAT_IGNORED
55#define PRAGMA_FORMAT_IGNORED
56#endif
57#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
58#define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
59#endif
60#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
61#define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
62#endif
63#ifndef ATTRIBUTE_PRINTF
64#define ATTRIBUTE_PRINTF(fmt, vargs)
65#endif
66#ifndef ATTRIBUTE_SCANF
67#define ATTRIBUTE_SCANF(fmt, vargs)
68#endif
69
70
71#include "utilities/macros.hpp"
72
73// This file holds all globally used constants & types, class (forward)
74// declarations and a few frequently used utility functions.
75
76//----------------------------------------------------------------------------------------------------
77// Constants
78
79const int LogBytesPerShort   = 1;
80const int LogBytesPerInt     = 2;
81#ifdef _LP64
82const int LogBytesPerWord    = 3;
83#else
84const int LogBytesPerWord    = 2;
85#endif
86const int LogBytesPerLong    = 3;
87
88const int BytesPerShort      = 1 << LogBytesPerShort;
89const int BytesPerInt        = 1 << LogBytesPerInt;
90const int BytesPerWord       = 1 << LogBytesPerWord;
91const int BytesPerLong       = 1 << LogBytesPerLong;
92
93const int LogBitsPerByte     = 3;
94const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
95const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
96const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
97const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
98
99const int BitsPerByte        = 1 << LogBitsPerByte;
100const int BitsPerShort       = 1 << LogBitsPerShort;
101const int BitsPerInt         = 1 << LogBitsPerInt;
102const int BitsPerWord        = 1 << LogBitsPerWord;
103const int BitsPerLong        = 1 << LogBitsPerLong;
104
105const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
106const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
107
108const int WordsPerLong       = 2;       // Number of stack entries for longs
109
110const int oopSize            = sizeof(char*); // Full-width oop
111extern int heapOopSize;                       // Oop within a java object
112const int wordSize           = sizeof(char*);
113const int longSize           = sizeof(jlong);
114const int jintSize           = sizeof(jint);
115const int size_tSize         = sizeof(size_t);
116
117const int BytesPerOop        = BytesPerWord;  // Full-width oop
118
119extern int LogBytesPerHeapOop;                // Oop within a java object
120extern int LogBitsPerHeapOop;
121extern int BytesPerHeapOop;
122extern int BitsPerHeapOop;
123
124const int BitsPerJavaInteger = 32;
125const int BitsPerJavaLong    = 64;
126const int BitsPerSize_t      = size_tSize * BitsPerByte;
127
128// Size of a char[] needed to represent a jint as a string in decimal.
129const int jintAsStringSize = 12;
130
131// In fact this should be
132// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
133// see os::set_memory_serialize_page()
134#ifdef _LP64
135const int SerializePageShiftCount = 4;
136#else
137const int SerializePageShiftCount = 3;
138#endif
139
140// An opaque struct of heap-word width, so that HeapWord* can be a generic
141// pointer into the heap.  We require that object sizes be measured in
142// units of heap words, so that that
143//   HeapWord* hw;
144//   hw += oop(hw)->foo();
145// works, where foo is a method (like size or scavenge) that returns the
146// object size.
147class HeapWord {
148  friend class VMStructs;
149 private:
150  char* i;
151#ifndef PRODUCT
152 public:
153  char* value() { return i; }
154#endif
155};
156
157// Analogous opaque struct for metadata allocated from
158// metaspaces.
159class MetaWord {
160  friend class VMStructs;
161 private:
162  char* i;
163};
164
165// HeapWordSize must be 2^LogHeapWordSize.
166const int HeapWordSize        = sizeof(HeapWord);
167#ifdef _LP64
168const int LogHeapWordSize     = 3;
169#else
170const int LogHeapWordSize     = 2;
171#endif
172const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
173const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
174
175// The larger HeapWordSize for 64bit requires larger heaps
176// for the same application running in 64bit.  See bug 4967770.
177// The minimum alignment to a heap word size is done.  Other
178// parts of the memory system may require additional alignment
179// and are responsible for those alignments.
180#ifdef _LP64
181#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
182#else
183#define ScaleForWordSize(x) (x)
184#endif
185
186// The minimum number of native machine words necessary to contain "byte_size"
187// bytes.
188inline size_t heap_word_size(size_t byte_size) {
189  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
190}
191
192const size_t K                  = 1024;
193const size_t M                  = K*K;
194const size_t G                  = M*K;
195const size_t HWperKB            = K / sizeof(HeapWord);
196
197const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
198const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
199
200// Constants for converting from a base unit to milli-base units.  For
201// example from seconds to milliseconds and microseconds
202
203const int MILLIUNITS    = 1000;         // milli units per base unit
204const int MICROUNITS    = 1000000;      // micro units per base unit
205const int NANOUNITS     = 1000000000;   // nano units per base unit
206
207const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
208const jint  NANOSECS_PER_MILLISEC = 1000000;
209
210inline const char* proper_unit_for_byte_size(size_t s) {
211#ifdef _LP64
212  if (s >= 10*G) {
213    return "G";
214  }
215#endif
216  if (s >= 10*M) {
217    return "M";
218  } else if (s >= 10*K) {
219    return "K";
220  } else {
221    return "B";
222  }
223}
224
225template <class T>
226inline T byte_size_in_proper_unit(T s) {
227#ifdef _LP64
228  if (s >= 10*G) {
229    return (T)(s/G);
230  }
231#endif
232  if (s >= 10*M) {
233    return (T)(s/M);
234  } else if (s >= 10*K) {
235    return (T)(s/K);
236  } else {
237    return s;
238  }
239}
240
241//----------------------------------------------------------------------------------------------------
242// VM type definitions
243
244// intx and uintx are the 'extended' int and 'extended' unsigned int types;
245// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
246
247typedef intptr_t  intx;
248typedef uintptr_t uintx;
249
250const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
251const intx  max_intx  = (uintx)min_intx - 1;
252const uintx max_uintx = (uintx)-1;
253
254// Table of values:
255//      sizeof intx         4               8
256// min_intx             0x80000000      0x8000000000000000
257// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
258// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
259
260typedef unsigned int uint;   NEEDS_CLEANUP
261
262
263//----------------------------------------------------------------------------------------------------
264// Java type definitions
265
266// All kinds of 'plain' byte addresses
267typedef   signed char s_char;
268typedef unsigned char u_char;
269typedef u_char*       address;
270typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
271                                    // except for some implementations of a C++
272                                    // linkage pointer to function. Should never
273                                    // need one of those to be placed in this
274                                    // type anyway.
275
276//  Utility functions to "portably" (?) bit twiddle pointers
277//  Where portable means keep ANSI C++ compilers quiet
278
279inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
280inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
281
282//  Utility functions to "portably" make cast to/from function pointers.
283
284inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
285inline address_word  castable_address(address x)              { return address_word(x) ; }
286inline address_word  castable_address(void* x)                { return address_word(x) ; }
287
288// Pointer subtraction.
289// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
290// the range we might need to find differences from one end of the heap
291// to the other.
292// A typical use might be:
293//     if (pointer_delta(end(), top()) >= size) {
294//       // enough room for an object of size
295//       ...
296// and then additions like
297//       ... top() + size ...
298// are safe because we know that top() is at least size below end().
299inline size_t pointer_delta(const void* left,
300                            const void* right,
301                            size_t element_size) {
302  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
303}
304// A version specialized for HeapWord*'s.
305inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
306  return pointer_delta(left, right, sizeof(HeapWord));
307}
308// A version specialized for MetaWord*'s.
309inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
310  return pointer_delta(left, right, sizeof(MetaWord));
311}
312
313//
314// ANSI C++ does not allow casting from one pointer type to a function pointer
315// directly without at best a warning. This macro accomplishes it silently
316// In every case that is present at this point the value be cast is a pointer
317// to a C linkage function. In somecase the type used for the cast reflects
318// that linkage and a picky compiler would not complain. In other cases because
319// there is no convenient place to place a typedef with extern C linkage (i.e
320// a platform dependent header file) it doesn't. At this point no compiler seems
321// picky enough to catch these instances (which are few). It is possible that
322// using templates could fix these for all cases. This use of templates is likely
323// so far from the middle of the road that it is likely to be problematic in
324// many C++ compilers.
325//
326#define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
327#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
328
329// Unsigned byte types for os and stream.hpp
330
331// Unsigned one, two, four and eigth byte quantities used for describing
332// the .class file format. See JVM book chapter 4.
333
334typedef jubyte  u1;
335typedef jushort u2;
336typedef juint   u4;
337typedef julong  u8;
338
339const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
340const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
341const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
342const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
343
344typedef jbyte  s1;
345typedef jshort s2;
346typedef jint   s4;
347typedef jlong  s8;
348
349//----------------------------------------------------------------------------------------------------
350// JVM spec restrictions
351
352const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
353
354// Default ProtectionDomainCacheSize values
355
356const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
357
358//----------------------------------------------------------------------------------------------------
359// Default and minimum StringTableSize values
360
361const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
362const int minimumStringTableSize = 1009;
363
364const int defaultSymbolTableSize = 20011;
365const int minimumSymbolTableSize = 1009;
366
367
368//----------------------------------------------------------------------------------------------------
369// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
370//
371// Determines whether on-the-fly class replacement and frame popping are enabled.
372
373#define HOTSWAP
374
375//----------------------------------------------------------------------------------------------------
376// Object alignment, in units of HeapWords.
377//
378// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
379// reference fields can be naturally aligned.
380
381extern int MinObjAlignment;
382extern int MinObjAlignmentInBytes;
383extern int MinObjAlignmentInBytesMask;
384
385extern int LogMinObjAlignment;
386extern int LogMinObjAlignmentInBytes;
387
388const int LogKlassAlignmentInBytes = 3;
389const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
390const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
391const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
392
393// Maximal size of heap where unscaled compression can be used. Also upper bound
394// for heap placement: 4GB.
395const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
396// Maximal size of heap where compressed oops can be used. Also upper bound for heap
397// placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
398extern uint64_t OopEncodingHeapMax;
399
400// Maximal size of compressed class space. Above this limit compression is not possible.
401// Also upper bound for placement of zero based class space. (Class space is further limited
402// to be < 3G, see arguments.cpp.)
403const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
404
405// Machine dependent stuff
406
407// States of Restricted Transactional Memory usage.
408enum RTMState {
409  NoRTM      = 0x2, // Don't use RTM
410  UseRTM     = 0x1, // Use RTM
411  ProfileRTM = 0x0  // Use RTM with abort ratio calculation
412};
413
414// The maximum size of the code cache.  Can be overridden by targets.
415#define CODE_CACHE_SIZE_LIMIT (2*G)
416// Allow targets to reduce the default size of the code cache.
417#define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
418
419#ifdef TARGET_ARCH_x86
420# include "globalDefinitions_x86.hpp"
421#endif
422#ifdef TARGET_ARCH_sparc
423# include "globalDefinitions_sparc.hpp"
424#endif
425#ifdef TARGET_ARCH_zero
426# include "globalDefinitions_zero.hpp"
427#endif
428#ifdef TARGET_ARCH_arm
429# include "globalDefinitions_arm.hpp"
430#endif
431#ifdef TARGET_ARCH_ppc
432# include "globalDefinitions_ppc.hpp"
433#endif
434#ifdef TARGET_ARCH_aarch64
435# include "globalDefinitions_aarch64.hpp"
436#endif
437
438#ifndef INCLUDE_RTM_OPT
439#define INCLUDE_RTM_OPT 0
440#endif
441#if INCLUDE_RTM_OPT
442#define RTM_OPT_ONLY(code) code
443#else
444#define RTM_OPT_ONLY(code)
445#endif
446
447// To assure the IRIW property on processors that are not multiple copy
448// atomic, sync instructions must be issued between volatile reads to
449// assure their ordering, instead of after volatile stores.
450// (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
451// by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
452#ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
453const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
454#else
455const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
456#endif
457
458// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
459// Note: this value must be a power of 2
460
461#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
462
463// Signed variants of alignment helpers.  There are two versions of each, a macro
464// for use in places like enum definitions that require compile-time constant
465// expressions and a function for all other places so as to get type checking.
466
467#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
468
469inline bool is_size_aligned(size_t size, size_t alignment) {
470  return align_size_up_(size, alignment) == size;
471}
472
473inline bool is_ptr_aligned(void* ptr, size_t alignment) {
474  return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
475}
476
477inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
478  return align_size_up_(size, alignment);
479}
480
481#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
482
483inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
484  return align_size_down_(size, alignment);
485}
486
487#define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
488
489inline void* align_ptr_up(void* ptr, size_t alignment) {
490  return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
491}
492
493inline void* align_ptr_down(void* ptr, size_t alignment) {
494  return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
495}
496
497// Align objects by rounding up their size, in HeapWord units.
498
499#define align_object_size_(size) align_size_up_(size, MinObjAlignment)
500
501inline intptr_t align_object_size(intptr_t size) {
502  return align_size_up(size, MinObjAlignment);
503}
504
505inline bool is_object_aligned(intptr_t addr) {
506  return addr == align_object_size(addr);
507}
508
509// Pad out certain offsets to jlong alignment, in HeapWord units.
510
511inline intptr_t align_object_offset(intptr_t offset) {
512  return align_size_up(offset, HeapWordsPerLong);
513}
514
515inline void* align_pointer_up(const void* addr, size_t size) {
516  return (void*) align_size_up_((uintptr_t)addr, size);
517}
518
519// Align down with a lower bound. If the aligning results in 0, return 'alignment'.
520
521inline size_t align_size_down_bounded(size_t size, size_t alignment) {
522  size_t aligned_size = align_size_down_(size, alignment);
523  return aligned_size > 0 ? aligned_size : alignment;
524}
525
526// Clamp an address to be within a specific page
527// 1. If addr is on the page it is returned as is
528// 2. If addr is above the page_address the start of the *next* page will be returned
529// 3. Otherwise, if addr is below the page_address the start of the page will be returned
530inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
531  if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
532    // address is in the specified page, just return it as is
533    return addr;
534  } else if (addr > page_address) {
535    // address is above specified page, return start of next page
536    return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
537  } else {
538    // address is below specified page, return start of page
539    return (address)align_size_down(intptr_t(page_address), page_size);
540  }
541}
542
543
544// The expected size in bytes of a cache line, used to pad data structures.
545#ifndef DEFAULT_CACHE_LINE_SIZE
546  #define DEFAULT_CACHE_LINE_SIZE 64
547#endif
548
549
550//----------------------------------------------------------------------------------------------------
551// Utility macros for compilers
552// used to silence compiler warnings
553
554#define Unused_Variable(var) var
555
556
557//----------------------------------------------------------------------------------------------------
558// Miscellaneous
559
560// 6302670 Eliminate Hotspot __fabsf dependency
561// All fabs() callers should call this function instead, which will implicitly
562// convert the operand to double, avoiding a dependency on __fabsf which
563// doesn't exist in early versions of Solaris 8.
564inline double fabsd(double value) {
565  return fabs(value);
566}
567
568// Returns numerator/denominator as percentage value from 0 to 100. If denominator
569// is zero, return 0.0.
570template<typename T>
571inline double percent_of(T numerator, T denominator) {
572  return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
573}
574
575//----------------------------------------------------------------------------------------------------
576// Special casts
577// Cast floats into same-size integers and vice-versa w/o changing bit-pattern
578typedef union {
579  jfloat f;
580  jint i;
581} FloatIntConv;
582
583typedef union {
584  jdouble d;
585  jlong l;
586  julong ul;
587} DoubleLongConv;
588
589inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
590inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
591
592inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
593inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
594inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
595
596inline jint low (jlong value)                    { return jint(value); }
597inline jint high(jlong value)                    { return jint(value >> 32); }
598
599// the fancy casts are a hopefully portable way
600// to do unsigned 32 to 64 bit type conversion
601inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
602                                                   *value |= (jlong)(julong)(juint)low; }
603
604inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
605                                                   *value |= (jlong)high       << 32; }
606
607inline jlong jlong_from(jint h, jint l) {
608  jlong result = 0; // initialization to avoid warning
609  set_high(&result, h);
610  set_low(&result,  l);
611  return result;
612}
613
614union jlong_accessor {
615  jint  words[2];
616  jlong long_value;
617};
618
619void basic_types_init(); // cannot define here; uses assert
620
621
622// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
623enum BasicType {
624  T_BOOLEAN     =  4,
625  T_CHAR        =  5,
626  T_FLOAT       =  6,
627  T_DOUBLE      =  7,
628  T_BYTE        =  8,
629  T_SHORT       =  9,
630  T_INT         = 10,
631  T_LONG        = 11,
632  T_OBJECT      = 12,
633  T_ARRAY       = 13,
634  T_VOID        = 14,
635  T_ADDRESS     = 15,
636  T_NARROWOOP   = 16,
637  T_METADATA    = 17,
638  T_NARROWKLASS = 18,
639  T_CONFLICT    = 19, // for stack value type with conflicting contents
640  T_ILLEGAL     = 99
641};
642
643inline bool is_java_primitive(BasicType t) {
644  return T_BOOLEAN <= t && t <= T_LONG;
645}
646
647inline bool is_subword_type(BasicType t) {
648  // these guys are processed exactly like T_INT in calling sequences:
649  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
650}
651
652inline bool is_signed_subword_type(BasicType t) {
653  return (t == T_BYTE || t == T_SHORT);
654}
655
656// Convert a char from a classfile signature to a BasicType
657inline BasicType char2type(char c) {
658  switch( c ) {
659  case 'B': return T_BYTE;
660  case 'C': return T_CHAR;
661  case 'D': return T_DOUBLE;
662  case 'F': return T_FLOAT;
663  case 'I': return T_INT;
664  case 'J': return T_LONG;
665  case 'S': return T_SHORT;
666  case 'Z': return T_BOOLEAN;
667  case 'V': return T_VOID;
668  case 'L': return T_OBJECT;
669  case '[': return T_ARRAY;
670  }
671  return T_ILLEGAL;
672}
673
674extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
675inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
676extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
677extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
678inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
679extern BasicType name2type(const char* name);
680
681// Auxilary math routines
682// least common multiple
683extern size_t lcm(size_t a, size_t b);
684
685
686// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
687enum BasicTypeSize {
688  T_BOOLEAN_size     = 1,
689  T_CHAR_size        = 1,
690  T_FLOAT_size       = 1,
691  T_DOUBLE_size      = 2,
692  T_BYTE_size        = 1,
693  T_SHORT_size       = 1,
694  T_INT_size         = 1,
695  T_LONG_size        = 2,
696  T_OBJECT_size      = 1,
697  T_ARRAY_size       = 1,
698  T_NARROWOOP_size   = 1,
699  T_NARROWKLASS_size = 1,
700  T_VOID_size        = 0
701};
702
703
704// maps a BasicType to its instance field storage type:
705// all sub-word integral types are widened to T_INT
706extern BasicType type2field[T_CONFLICT+1];
707extern BasicType type2wfield[T_CONFLICT+1];
708
709
710// size in bytes
711enum ArrayElementSize {
712  T_BOOLEAN_aelem_bytes     = 1,
713  T_CHAR_aelem_bytes        = 2,
714  T_FLOAT_aelem_bytes       = 4,
715  T_DOUBLE_aelem_bytes      = 8,
716  T_BYTE_aelem_bytes        = 1,
717  T_SHORT_aelem_bytes       = 2,
718  T_INT_aelem_bytes         = 4,
719  T_LONG_aelem_bytes        = 8,
720#ifdef _LP64
721  T_OBJECT_aelem_bytes      = 8,
722  T_ARRAY_aelem_bytes       = 8,
723#else
724  T_OBJECT_aelem_bytes      = 4,
725  T_ARRAY_aelem_bytes       = 4,
726#endif
727  T_NARROWOOP_aelem_bytes   = 4,
728  T_NARROWKLASS_aelem_bytes = 4,
729  T_VOID_aelem_bytes        = 0
730};
731
732extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
733#ifdef ASSERT
734extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
735#else
736inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
737#endif
738
739
740// JavaValue serves as a container for arbitrary Java values.
741
742class JavaValue {
743
744 public:
745  typedef union JavaCallValue {
746    jfloat   f;
747    jdouble  d;
748    jint     i;
749    jlong    l;
750    jobject  h;
751  } JavaCallValue;
752
753 private:
754  BasicType _type;
755  JavaCallValue _value;
756
757 public:
758  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
759
760  JavaValue(jfloat value) {
761    _type    = T_FLOAT;
762    _value.f = value;
763  }
764
765  JavaValue(jdouble value) {
766    _type    = T_DOUBLE;
767    _value.d = value;
768  }
769
770 jfloat get_jfloat() const { return _value.f; }
771 jdouble get_jdouble() const { return _value.d; }
772 jint get_jint() const { return _value.i; }
773 jlong get_jlong() const { return _value.l; }
774 jobject get_jobject() const { return _value.h; }
775 JavaCallValue* get_value_addr() { return &_value; }
776 BasicType get_type() const { return _type; }
777
778 void set_jfloat(jfloat f) { _value.f = f;}
779 void set_jdouble(jdouble d) { _value.d = d;}
780 void set_jint(jint i) { _value.i = i;}
781 void set_jlong(jlong l) { _value.l = l;}
782 void set_jobject(jobject h) { _value.h = h;}
783 void set_type(BasicType t) { _type = t; }
784
785 jboolean get_jboolean() const { return (jboolean) (_value.i);}
786 jbyte get_jbyte() const { return (jbyte) (_value.i);}
787 jchar get_jchar() const { return (jchar) (_value.i);}
788 jshort get_jshort() const { return (jshort) (_value.i);}
789
790};
791
792
793#define STACK_BIAS      0
794// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
795// in order to extend the reach of the stack pointer.
796#if defined(SPARC) && defined(_LP64)
797#undef STACK_BIAS
798#define STACK_BIAS      0x7ff
799#endif
800
801
802// TosState describes the top-of-stack state before and after the execution of
803// a bytecode or method. The top-of-stack value may be cached in one or more CPU
804// registers. The TosState corresponds to the 'machine represention' of this cached
805// value. There's 4 states corresponding to the JAVA types int, long, float & double
806// as well as a 5th state in case the top-of-stack value is actually on the top
807// of stack (in memory) and thus not cached. The atos state corresponds to the itos
808// state when it comes to machine representation but is used separately for (oop)
809// type specific operations (e.g. verification code).
810
811enum TosState {         // describes the tos cache contents
812  btos = 0,             // byte, bool tos cached
813  ctos = 1,             // char tos cached
814  stos = 2,             // short tos cached
815  itos = 3,             // int tos cached
816  ltos = 4,             // long tos cached
817  ftos = 5,             // float tos cached
818  dtos = 6,             // double tos cached
819  atos = 7,             // object cached
820  vtos = 8,             // tos not cached
821  number_of_states,
822  ilgl                  // illegal state: should not occur
823};
824
825
826inline TosState as_TosState(BasicType type) {
827  switch (type) {
828    case T_BYTE   : return btos;
829    case T_BOOLEAN: return btos; // FIXME: Add ztos
830    case T_CHAR   : return ctos;
831    case T_SHORT  : return stos;
832    case T_INT    : return itos;
833    case T_LONG   : return ltos;
834    case T_FLOAT  : return ftos;
835    case T_DOUBLE : return dtos;
836    case T_VOID   : return vtos;
837    case T_ARRAY  : // fall through
838    case T_OBJECT : return atos;
839  }
840  return ilgl;
841}
842
843inline BasicType as_BasicType(TosState state) {
844  switch (state) {
845    //case ztos: return T_BOOLEAN;//FIXME
846    case btos : return T_BYTE;
847    case ctos : return T_CHAR;
848    case stos : return T_SHORT;
849    case itos : return T_INT;
850    case ltos : return T_LONG;
851    case ftos : return T_FLOAT;
852    case dtos : return T_DOUBLE;
853    case atos : return T_OBJECT;
854    case vtos : return T_VOID;
855  }
856  return T_ILLEGAL;
857}
858
859
860// Helper function to convert BasicType info into TosState
861// Note: Cannot define here as it uses global constant at the time being.
862TosState as_TosState(BasicType type);
863
864
865// JavaThreadState keeps track of which part of the code a thread is executing in. This
866// information is needed by the safepoint code.
867//
868// There are 4 essential states:
869//
870//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
871//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
872//  _thread_in_vm       : Executing in the vm
873//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
874//
875// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
876// a transition from one state to another. These extra states makes it possible for the safepoint code to
877// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
878//
879// Given a state, the xxx_trans state can always be found by adding 1.
880//
881enum JavaThreadState {
882  _thread_uninitialized     =  0, // should never happen (missing initialization)
883  _thread_new               =  2, // just starting up, i.e., in process of being initialized
884  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
885  _thread_in_native         =  4, // running in native code
886  _thread_in_native_trans   =  5, // corresponding transition state
887  _thread_in_vm             =  6, // running in VM
888  _thread_in_vm_trans       =  7, // corresponding transition state
889  _thread_in_Java           =  8, // running in Java or in stub code
890  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
891  _thread_blocked           = 10, // blocked in vm
892  _thread_blocked_trans     = 11, // corresponding transition state
893  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
894};
895
896
897// Handy constants for deciding which compiler mode to use.
898enum MethodCompilation {
899  InvocationEntryBci = -1     // i.e., not a on-stack replacement compilation
900};
901
902// Enumeration to distinguish tiers of compilation
903enum CompLevel {
904  CompLevel_any               = -1,
905  CompLevel_all               = -1,
906  CompLevel_none              = 0,         // Interpreter
907  CompLevel_simple            = 1,         // C1
908  CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
909  CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
910  CompLevel_full_optimization = 4,         // C2, Shark or JVMCI
911
912#if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
913  CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered or JVMCI and tiered
914#elif defined(COMPILER1)
915  CompLevel_highest_tier      = CompLevel_simple,             // pure C1 or JVMCI
916#else
917  CompLevel_highest_tier      = CompLevel_none,
918#endif
919
920#if defined(TIERED)
921  CompLevel_initial_compile   = CompLevel_full_profile        // tiered
922#elif defined(COMPILER1) || INCLUDE_JVMCI
923  CompLevel_initial_compile   = CompLevel_simple              // pure C1 or JVMCI
924#elif defined(COMPILER2) || defined(SHARK)
925  CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
926#else
927  CompLevel_initial_compile   = CompLevel_none
928#endif
929};
930
931inline bool is_c1_compile(int comp_level) {
932  return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
933}
934
935inline bool is_c2_compile(int comp_level) {
936  return comp_level == CompLevel_full_optimization;
937}
938
939inline bool is_highest_tier_compile(int comp_level) {
940  return comp_level == CompLevel_highest_tier;
941}
942
943inline bool is_compile(int comp_level) {
944  return is_c1_compile(comp_level) || is_c2_compile(comp_level);
945}
946
947//----------------------------------------------------------------------------------------------------
948// 'Forward' declarations of frequently used classes
949// (in order to reduce interface dependencies & reduce
950// number of unnecessary compilations after changes)
951
952class ClassFileStream;
953
954class Event;
955
956class Thread;
957class  VMThread;
958class  JavaThread;
959class Threads;
960
961class VM_Operation;
962class VMOperationQueue;
963
964class CodeBlob;
965class  nmethod;
966class  OSRAdapter;
967class  I2CAdapter;
968class  C2IAdapter;
969class CompiledIC;
970class relocInfo;
971class ScopeDesc;
972class PcDesc;
973
974class Recompiler;
975class Recompilee;
976class RecompilationPolicy;
977class RFrame;
978class  CompiledRFrame;
979class  InterpretedRFrame;
980
981class frame;
982
983class vframe;
984class   javaVFrame;
985class     interpretedVFrame;
986class     compiledVFrame;
987class     deoptimizedVFrame;
988class   externalVFrame;
989class     entryVFrame;
990
991class RegisterMap;
992
993class Mutex;
994class Monitor;
995class BasicLock;
996class BasicObjectLock;
997
998class PeriodicTask;
999
1000class JavaCallWrapper;
1001
1002class   oopDesc;
1003class   metaDataOopDesc;
1004
1005class NativeCall;
1006
1007class zone;
1008
1009class StubQueue;
1010
1011class outputStream;
1012
1013class ResourceArea;
1014
1015class DebugInformationRecorder;
1016class ScopeValue;
1017class CompressedStream;
1018class   DebugInfoReadStream;
1019class   DebugInfoWriteStream;
1020class LocationValue;
1021class ConstantValue;
1022class IllegalValue;
1023
1024class PrivilegedElement;
1025class MonitorArray;
1026
1027class MonitorInfo;
1028
1029class OffsetClosure;
1030class OopMapCache;
1031class InterpreterOopMap;
1032class OopMapCacheEntry;
1033class OSThread;
1034
1035typedef int (*OSThreadStartFunc)(void*);
1036
1037class Space;
1038
1039class JavaValue;
1040class methodHandle;
1041class JavaCallArguments;
1042
1043// Basic support for errors (general debug facilities not defined at this point fo the include phase)
1044
1045extern void basic_fatal(const char* msg);
1046
1047
1048//----------------------------------------------------------------------------------------------------
1049// Special constants for debugging
1050
1051const jint     badInt           = -3;                       // generic "bad int" value
1052const long     badAddressVal    = -2;                       // generic "bad address" value
1053const long     badOopVal        = -1;                       // generic "bad oop" value
1054const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1055const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1056const int      badResourceValue = 0xAB;                     // value used to zap resource area
1057const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1058const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1059const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1060const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1061const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1062const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1063const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1064
1065
1066// (These must be implemented as #defines because C++ compilers are
1067// not obligated to inline non-integral constants!)
1068#define       badAddress        ((address)::badAddressVal)
1069#define       badOop            (cast_to_oop(::badOopVal))
1070#define       badHeapWord       (::badHeapWordVal)
1071#define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1072
1073// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1074#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1075
1076//----------------------------------------------------------------------------------------------------
1077// Utility functions for bitfield manipulations
1078
1079const intptr_t AllBits    = ~0; // all bits set in a word
1080const intptr_t NoBits     =  0; // no bits set in a word
1081const jlong    NoLongBits =  0; // no bits set in a long
1082const intptr_t OneBit     =  1; // only right_most bit set in a word
1083
1084// get a word with the n.th or the right-most or left-most n bits set
1085// (note: #define used only so that they can be used in enum constant definitions)
1086#define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1087#define right_n_bits(n)   (nth_bit(n) - 1)
1088#define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1089
1090// bit-operations using a mask m
1091inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1092inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1093inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1094inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1095inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1096
1097// bit-operations using the n.th bit
1098inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1099inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1100inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1101
1102// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1103inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1104  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1105}
1106
1107
1108//----------------------------------------------------------------------------------------------------
1109// Utility functions for integers
1110
1111// Avoid use of global min/max macros which may cause unwanted double
1112// evaluation of arguments.
1113#ifdef max
1114#undef max
1115#endif
1116
1117#ifdef min
1118#undef min
1119#endif
1120
1121#define max(a,b) Do_not_use_max_use_MAX2_instead
1122#define min(a,b) Do_not_use_min_use_MIN2_instead
1123
1124// It is necessary to use templates here. Having normal overloaded
1125// functions does not work because it is necessary to provide both 32-
1126// and 64-bit overloaded functions, which does not work, and having
1127// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1128// will be even more error-prone than macros.
1129template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1130template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1131template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1132template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1133template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1134template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1135
1136template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1137
1138// true if x is a power of 2, false otherwise
1139inline bool is_power_of_2(intptr_t x) {
1140  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1141}
1142
1143// long version of is_power_of_2
1144inline bool is_power_of_2_long(jlong x) {
1145  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1146}
1147
1148// Returns largest i such that 2^i <= x.
1149// If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1150// If x == 0, the function returns -1.
1151inline int log2_intptr(intptr_t x) {
1152  int i = -1;
1153  uintptr_t p = 1;
1154  while (p != 0 && p <= (uintptr_t)x) {
1155    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1156    i++; p *= 2;
1157  }
1158  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1159  // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1160  return i;
1161}
1162
1163//* largest i such that 2^i <= x
1164//  A negative value of 'x' will return '63'
1165inline int log2_long(jlong x) {
1166  int i = -1;
1167  julong p =  1;
1168  while (p != 0 && p <= (julong)x) {
1169    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1170    i++; p *= 2;
1171  }
1172  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1173  // (if p = 0 then overflow occurred and i = 63)
1174  return i;
1175}
1176
1177//* the argument must be exactly a power of 2
1178inline int exact_log2(intptr_t x) {
1179  #ifdef ASSERT
1180    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1181  #endif
1182  return log2_intptr(x);
1183}
1184
1185//* the argument must be exactly a power of 2
1186inline int exact_log2_long(jlong x) {
1187  #ifdef ASSERT
1188    if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1189  #endif
1190  return log2_long(x);
1191}
1192
1193
1194// returns integer round-up to the nearest multiple of s (s must be a power of two)
1195inline intptr_t round_to(intptr_t x, uintx s) {
1196  #ifdef ASSERT
1197    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1198  #endif
1199  const uintx m = s - 1;
1200  return mask_bits(x + m, ~m);
1201}
1202
1203// returns integer round-down to the nearest multiple of s (s must be a power of two)
1204inline intptr_t round_down(intptr_t x, uintx s) {
1205  #ifdef ASSERT
1206    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1207  #endif
1208  const uintx m = s - 1;
1209  return mask_bits(x, ~m);
1210}
1211
1212
1213inline bool is_odd (intx x) { return x & 1;      }
1214inline bool is_even(intx x) { return !is_odd(x); }
1215
1216// "to" should be greater than "from."
1217inline intx byte_size(void* from, void* to) {
1218  return (address)to - (address)from;
1219}
1220
1221//----------------------------------------------------------------------------------------------------
1222// Avoid non-portable casts with these routines (DEPRECATED)
1223
1224// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1225//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1226
1227// Given sequence of four bytes, build into a 32-bit word
1228// following the conventions used in class files.
1229// On the 386, this could be realized with a simple address cast.
1230//
1231
1232// This routine takes eight bytes:
1233inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1234  return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1235       |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1236       |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1237       |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1238       |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1239       |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1240       |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1241       |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1242}
1243
1244// This routine takes four bytes:
1245inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1246  return  (( u4(c1) << 24 )  &  0xff000000)
1247       |  (( u4(c2) << 16 )  &  0x00ff0000)
1248       |  (( u4(c3) <<  8 )  &  0x0000ff00)
1249       |  (( u4(c4) <<  0 )  &  0x000000ff);
1250}
1251
1252// And this one works if the four bytes are contiguous in memory:
1253inline u4 build_u4_from( u1* p ) {
1254  return  build_u4_from( p[0], p[1], p[2], p[3] );
1255}
1256
1257// Ditto for two-byte ints:
1258inline u2 build_u2_from( u1 c1, u1 c2 ) {
1259  return  u2((( u2(c1) <<  8 )  &  0xff00)
1260          |  (( u2(c2) <<  0 )  &  0x00ff));
1261}
1262
1263// And this one works if the two bytes are contiguous in memory:
1264inline u2 build_u2_from( u1* p ) {
1265  return  build_u2_from( p[0], p[1] );
1266}
1267
1268// Ditto for floats:
1269inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1270  u4 u = build_u4_from( c1, c2, c3, c4 );
1271  return  *(jfloat*)&u;
1272}
1273
1274inline jfloat build_float_from( u1* p ) {
1275  u4 u = build_u4_from( p );
1276  return  *(jfloat*)&u;
1277}
1278
1279
1280// now (64-bit) longs
1281
1282inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1283  return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1284       |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1285       |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1286       |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1287       |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1288       |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1289       |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1290       |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1291}
1292
1293inline jlong build_long_from( u1* p ) {
1294  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1295}
1296
1297
1298// Doubles, too!
1299inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1300  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1301  return  *(jdouble*)&u;
1302}
1303
1304inline jdouble build_double_from( u1* p ) {
1305  jlong u = build_long_from( p );
1306  return  *(jdouble*)&u;
1307}
1308
1309
1310// Portable routines to go the other way:
1311
1312inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1313  c1 = u1(x >> 8);
1314  c2 = u1(x);
1315}
1316
1317inline void explode_short_to( u2 x, u1* p ) {
1318  explode_short_to( x, p[0], p[1]);
1319}
1320
1321inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1322  c1 = u1(x >> 24);
1323  c2 = u1(x >> 16);
1324  c3 = u1(x >>  8);
1325  c4 = u1(x);
1326}
1327
1328inline void explode_int_to( u4 x, u1* p ) {
1329  explode_int_to( x, p[0], p[1], p[2], p[3]);
1330}
1331
1332
1333// Pack and extract shorts to/from ints:
1334
1335inline int extract_low_short_from_int(jint x) {
1336  return x & 0xffff;
1337}
1338
1339inline int extract_high_short_from_int(jint x) {
1340  return (x >> 16) & 0xffff;
1341}
1342
1343inline int build_int_from_shorts( jushort low, jushort high ) {
1344  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1345}
1346
1347// Convert pointer to intptr_t, for use in printing pointers.
1348inline intptr_t p2i(const void * p) {
1349  return (intptr_t) p;
1350}
1351
1352// swap a & b
1353template<class T> static void swap(T& a, T& b) {
1354  T tmp = a;
1355  a = b;
1356  b = tmp;
1357}
1358
1359// Printf-style formatters for fixed- and variable-width types as pointers and
1360// integers.  These are derived from the definitions in inttypes.h.  If the platform
1361// doesn't provide appropriate definitions, they should be provided in
1362// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1363
1364#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1365
1366// Format 32-bit quantities.
1367#define INT32_FORMAT           "%" PRId32
1368#define UINT32_FORMAT          "%" PRIu32
1369#define INT32_FORMAT_W(width)  "%" #width PRId32
1370#define UINT32_FORMAT_W(width) "%" #width PRIu32
1371
1372#define PTR32_FORMAT           "0x%08" PRIx32
1373#define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
1374
1375// Format 64-bit quantities.
1376#define INT64_FORMAT           "%" PRId64
1377#define UINT64_FORMAT          "%" PRIu64
1378#define UINT64_FORMAT_X        "%" PRIx64
1379#define INT64_FORMAT_W(width)  "%" #width PRId64
1380#define UINT64_FORMAT_W(width) "%" #width PRIu64
1381
1382#define PTR64_FORMAT           "0x%016" PRIx64
1383
1384// Format jlong, if necessary
1385#ifndef JLONG_FORMAT
1386#define JLONG_FORMAT           INT64_FORMAT
1387#endif
1388#ifndef JULONG_FORMAT
1389#define JULONG_FORMAT          UINT64_FORMAT
1390#endif
1391#ifndef JULONG_FORMAT_X
1392#define JULONG_FORMAT_X        UINT64_FORMAT_X
1393#endif
1394
1395// Format pointers which change size between 32- and 64-bit.
1396#ifdef  _LP64
1397#define INTPTR_FORMAT "0x%016" PRIxPTR
1398#define PTR_FORMAT    "0x%016" PRIxPTR
1399#else   // !_LP64
1400#define INTPTR_FORMAT "0x%08"  PRIxPTR
1401#define PTR_FORMAT    "0x%08"  PRIxPTR
1402#endif  // _LP64
1403
1404#define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1405
1406#define SSIZE_FORMAT             "%"   PRIdPTR
1407#define SIZE_FORMAT              "%"   PRIuPTR
1408#define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1409#define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1410#define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1411#define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1412
1413#define INTX_FORMAT           "%" PRIdPTR
1414#define UINTX_FORMAT          "%" PRIuPTR
1415#define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1416#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1417
1418
1419#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1420
1421//----------------------------------------------------------------------------------------------------
1422// Sum and product which can never overflow: they wrap, just like the
1423// Java operations.  Note that we don't intend these to be used for
1424// general-purpose arithmetic: their purpose is to emulate Java
1425// operations.
1426
1427// The goal of this code to avoid undefined or implementation-defined
1428// behaviour.  The use of an lvalue to reference cast is explicitly
1429// permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1430// 15 in C++03]
1431#define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1432inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1433  UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1434  ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1435  return reinterpret_cast<TYPE&>(ures);                 \
1436}
1437
1438JAVA_INTEGER_OP(+, java_add, jint, juint)
1439JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1440JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1441JAVA_INTEGER_OP(+, java_add, jlong, julong)
1442JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1443JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1444
1445#undef JAVA_INTEGER_OP
1446
1447// Dereference vptr
1448// All C++ compilers that we know of have the vtbl pointer in the first
1449// word.  If there are exceptions, this function needs to be made compiler
1450// specific.
1451static inline void* dereference_vptr(const void* addr) {
1452  return *(void**)addr;
1453}
1454
1455#ifndef PRODUCT
1456
1457// For unit testing only
1458class GlobalDefinitions {
1459public:
1460  static void test_globals();
1461};
1462
1463#endif // PRODUCT
1464
1465#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
1466