globalDefinitions.hpp revision 7882:694f5e5bb982
138451Smsmith/*
238451Smsmith * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
338451Smsmith * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
438451Smsmith *
538451Smsmith * This code is free software; you can redistribute it and/or modify it
638451Smsmith * under the terms of the GNU General Public License version 2 only, as
738451Smsmith * published by the Free Software Foundation.
838451Smsmith *
938451Smsmith * This code is distributed in the hope that it will be useful, but WITHOUT
1038451Smsmith * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1138451Smsmith * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
1238451Smsmith * version 2 for more details (a copy is included in the LICENSE file that
1338451Smsmith * accompanied this code).
1438451Smsmith *
1538451Smsmith * You should have received a copy of the GNU General Public License version
1638451Smsmith * 2 along with this work; if not, write to the Free Software Foundation,
1738451Smsmith * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1838451Smsmith *
1938451Smsmith * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
2038451Smsmith * or visit www.oracle.com if you need additional information or have any
2138451Smsmith * questions.
2238451Smsmith *
2338451Smsmith */
2438451Smsmith
2538451Smsmith#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
2638451Smsmith#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
2738451Smsmith
2838451Smsmith#ifndef __STDC_FORMAT_MACROS
2938451Smsmith#define __STDC_FORMAT_MACROS
3038451Smsmith#endif
3138451Smsmith
3238451Smsmith#ifdef TARGET_COMPILER_gcc
3338451Smsmith# include "utilities/globalDefinitions_gcc.hpp"
3438451Smsmith#endif
3538451Smsmith#ifdef TARGET_COMPILER_visCPP
3638451Smsmith# include "utilities/globalDefinitions_visCPP.hpp"
3738451Smsmith#endif
3884221Sdillon#ifdef TARGET_COMPILER_sparcWorks
3984221Sdillon# include "utilities/globalDefinitions_sparcWorks.hpp"
4084221Sdillon#endif
4138451Smsmith#ifdef TARGET_COMPILER_xlc
4238451Smsmith# include "utilities/globalDefinitions_xlc.hpp"
4338451Smsmith#endif
4438451Smsmith
4538451Smsmith#ifndef PRAGMA_DIAG_PUSH
4638451Smsmith#define PRAGMA_DIAG_PUSH
4738451Smsmith#endif
4838451Smsmith#ifndef PRAGMA_DIAG_POP
4938451Smsmith#define PRAGMA_DIAG_POP
5038451Smsmith#endif
5138451Smsmith#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
5238451Smsmith#define PRAGMA_FORMAT_NONLITERAL_IGNORED
5338451Smsmith#endif
5438451Smsmith#ifndef PRAGMA_FORMAT_IGNORED
5538451Smsmith#define PRAGMA_FORMAT_IGNORED
5638451Smsmith#endif
57329100Skevans#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
5838451Smsmith#define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
5992913Sobrien#endif
6092913Sobrien#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
6138451Smsmith#define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
6238451Smsmith#endif
6338451Smsmith#ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
6438451Smsmith#define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
6538451Smsmith#endif
6638451Smsmith#ifndef ATTRIBUTE_PRINTF
6738451Smsmith#define ATTRIBUTE_PRINTF(fmt, vargs)
6838451Smsmith#endif
6938451Smsmith#ifndef ATTRIBUTE_SCANF
7038451Smsmith#define ATTRIBUTE_SCANF(fmt, vargs)
7138451Smsmith#endif
7238451Smsmith
7338451Smsmith
7438451Smsmith#include "utilities/macros.hpp"
7538451Smsmith
7638451Smsmith// This file holds all globally used constants & types, class (forward)
7738451Smsmith// declarations and a few frequently used utility functions.
7838451Smsmith
7938451Smsmith//----------------------------------------------------------------------------------------------------
8038451Smsmith// Constants
8138451Smsmith
8238451Smsmithconst int LogBytesPerShort   = 1;
8338451Smsmithconst int LogBytesPerInt     = 2;
84329100Skevans#ifdef _LP64
85329100Skevansconst int LogBytesPerWord    = 3;
86329100Skevans#else
8738451Smsmithconst int LogBytesPerWord    = 2;
8838451Smsmith#endif
89329100Skevansconst int LogBytesPerLong    = 3;
90329100Skevans
9138451Smsmithconst int BytesPerShort      = 1 << LogBytesPerShort;
9292913Sobrienconst int BytesPerInt        = 1 << LogBytesPerInt;
9392913Sobrienconst int BytesPerWord       = 1 << LogBytesPerWord;
94329100Skevansconst int BytesPerLong       = 1 << LogBytesPerLong;
9538451Smsmith
9638451Smsmithconst int LogBitsPerByte     = 3;
9738451Smsmithconst int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
9838451Smsmithconst int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
9938451Smsmithconst int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
10038451Smsmithconst int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
101329100Skevans
102329100Skevansconst int BitsPerByte        = 1 << LogBitsPerByte;
103329100Skevansconst int BitsPerShort       = 1 << LogBitsPerShort;
104329100Skevansconst int BitsPerInt         = 1 << LogBitsPerInt;
10538451Smsmithconst int BitsPerWord        = 1 << LogBitsPerWord;
106329100Skevansconst int BitsPerLong        = 1 << LogBitsPerLong;
10738451Smsmith
108329100Skevansconst int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
10938451Smsmithconst int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
11038451Smsmith
11138451Smsmithconst int WordsPerLong       = 2;       // Number of stack entries for longs
11238451Smsmith
11338451Smsmithconst int oopSize            = sizeof(char*); // Full-width oop
11438451Smsmithextern int heapOopSize;                       // Oop within a java object
11538451Smsmithconst int wordSize           = sizeof(char*);
11638451Smsmithconst int longSize           = sizeof(jlong);
117329100Skevansconst int jintSize           = sizeof(jint);
11838451Smsmithconst int size_tSize         = sizeof(size_t);
11938451Smsmith
120329100Skevansconst int BytesPerOop        = BytesPerWord;  // Full-width oop
121329100Skevans
122329100Skevansextern int LogBytesPerHeapOop;                // Oop within a java object
12338451Smsmithextern int LogBitsPerHeapOop;
12438451Smsmithextern int BytesPerHeapOop;
12538451Smsmithextern int BitsPerHeapOop;
12638451Smsmith
12738451Smsmithconst int BitsPerJavaInteger = 32;
12838451Smsmithconst int BitsPerJavaLong    = 64;
12938451Smsmithconst int BitsPerSize_t      = size_tSize * BitsPerByte;
13038451Smsmith
13138451Smsmith// Size of a char[] needed to represent a jint as a string in decimal.
13238451Smsmithconst int jintAsStringSize = 12;
13338451Smsmith
134329100Skevans// In fact this should be
13538451Smsmith// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
13692913Sobrien// see os::set_memory_serialize_page()
13738451Smsmith#ifdef _LP64
13892913Sobrienconst int SerializePageShiftCount = 4;
13938451Smsmith#else
14038451Smsmithconst int SerializePageShiftCount = 3;
14138451Smsmith#endif
14238451Smsmith
14338451Smsmith// An opaque struct of heap-word width, so that HeapWord* can be a generic
14438451Smsmith// pointer into the heap.  We require that object sizes be measured in
14538451Smsmith// units of heap words, so that that
14638451Smsmith//   HeapWord* hw;
14738451Smsmith//   hw += oop(hw)->foo();
148// works, where foo is a method (like size or scavenge) that returns the
149// object size.
150class HeapWord {
151  friend class VMStructs;
152 private:
153  char* i;
154#ifndef PRODUCT
155 public:
156  char* value() { return i; }
157#endif
158};
159
160// Analogous opaque struct for metadata allocated from
161// metaspaces.
162class MetaWord {
163  friend class VMStructs;
164 private:
165  char* i;
166};
167
168// HeapWordSize must be 2^LogHeapWordSize.
169const int HeapWordSize        = sizeof(HeapWord);
170#ifdef _LP64
171const int LogHeapWordSize     = 3;
172#else
173const int LogHeapWordSize     = 2;
174#endif
175const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
176const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
177
178// The larger HeapWordSize for 64bit requires larger heaps
179// for the same application running in 64bit.  See bug 4967770.
180// The minimum alignment to a heap word size is done.  Other
181// parts of the memory system may require additional alignment
182// and are responsible for those alignments.
183#ifdef _LP64
184#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
185#else
186#define ScaleForWordSize(x) (x)
187#endif
188
189// The minimum number of native machine words necessary to contain "byte_size"
190// bytes.
191inline size_t heap_word_size(size_t byte_size) {
192  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
193}
194
195const size_t K                  = 1024;
196const size_t M                  = K*K;
197const size_t G                  = M*K;
198const size_t HWperKB            = K / sizeof(HeapWord);
199
200const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
201const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
202
203// Constants for converting from a base unit to milli-base units.  For
204// example from seconds to milliseconds and microseconds
205
206const int MILLIUNITS    = 1000;         // milli units per base unit
207const int MICROUNITS    = 1000000;      // micro units per base unit
208const int NANOUNITS     = 1000000000;   // nano units per base unit
209
210const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
211const jint  NANOSECS_PER_MILLISEC = 1000000;
212
213inline const char* proper_unit_for_byte_size(size_t s) {
214#ifdef _LP64
215  if (s >= 10*G) {
216    return "G";
217  }
218#endif
219  if (s >= 10*M) {
220    return "M";
221  } else if (s >= 10*K) {
222    return "K";
223  } else {
224    return "B";
225  }
226}
227
228template <class T>
229inline T byte_size_in_proper_unit(T s) {
230#ifdef _LP64
231  if (s >= 10*G) {
232    return (T)(s/G);
233  }
234#endif
235  if (s >= 10*M) {
236    return (T)(s/M);
237  } else if (s >= 10*K) {
238    return (T)(s/K);
239  } else {
240    return s;
241  }
242}
243
244//----------------------------------------------------------------------------------------------------
245// VM type definitions
246
247// intx and uintx are the 'extended' int and 'extended' unsigned int types;
248// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
249
250typedef intptr_t  intx;
251typedef uintptr_t uintx;
252
253const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
254const intx  max_intx  = (uintx)min_intx - 1;
255const uintx max_uintx = (uintx)-1;
256
257// Table of values:
258//      sizeof intx         4               8
259// min_intx             0x80000000      0x8000000000000000
260// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
261// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
262
263typedef unsigned int uint;   NEEDS_CLEANUP
264
265
266//----------------------------------------------------------------------------------------------------
267// Java type definitions
268
269// All kinds of 'plain' byte addresses
270typedef   signed char s_char;
271typedef unsigned char u_char;
272typedef u_char*       address;
273typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
274                                    // except for some implementations of a C++
275                                    // linkage pointer to function. Should never
276                                    // need one of those to be placed in this
277                                    // type anyway.
278
279//  Utility functions to "portably" (?) bit twiddle pointers
280//  Where portable means keep ANSI C++ compilers quiet
281
282inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
283inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
284
285//  Utility functions to "portably" make cast to/from function pointers.
286
287inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
288inline address_word  castable_address(address x)              { return address_word(x) ; }
289inline address_word  castable_address(void* x)                { return address_word(x) ; }
290
291// Pointer subtraction.
292// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
293// the range we might need to find differences from one end of the heap
294// to the other.
295// A typical use might be:
296//     if (pointer_delta(end(), top()) >= size) {
297//       // enough room for an object of size
298//       ...
299// and then additions like
300//       ... top() + size ...
301// are safe because we know that top() is at least size below end().
302inline size_t pointer_delta(const void* left,
303                            const void* right,
304                            size_t element_size) {
305  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
306}
307// A version specialized for HeapWord*'s.
308inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
309  return pointer_delta(left, right, sizeof(HeapWord));
310}
311// A version specialized for MetaWord*'s.
312inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
313  return pointer_delta(left, right, sizeof(MetaWord));
314}
315
316//
317// ANSI C++ does not allow casting from one pointer type to a function pointer
318// directly without at best a warning. This macro accomplishes it silently
319// In every case that is present at this point the value be cast is a pointer
320// to a C linkage function. In somecase the type used for the cast reflects
321// that linkage and a picky compiler would not complain. In other cases because
322// there is no convenient place to place a typedef with extern C linkage (i.e
323// a platform dependent header file) it doesn't. At this point no compiler seems
324// picky enough to catch these instances (which are few). It is possible that
325// using templates could fix these for all cases. This use of templates is likely
326// so far from the middle of the road that it is likely to be problematic in
327// many C++ compilers.
328//
329#define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
330#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
331
332// Unsigned byte types for os and stream.hpp
333
334// Unsigned one, two, four and eigth byte quantities used for describing
335// the .class file format. See JVM book chapter 4.
336
337typedef jubyte  u1;
338typedef jushort u2;
339typedef juint   u4;
340typedef julong  u8;
341
342const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
343const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
344const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
345const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
346
347typedef jbyte  s1;
348typedef jshort s2;
349typedef jint   s4;
350typedef jlong  s8;
351
352//----------------------------------------------------------------------------------------------------
353// JVM spec restrictions
354
355const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
356
357// Default ProtectionDomainCacheSize values
358
359const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
360
361//----------------------------------------------------------------------------------------------------
362// Default and minimum StringTableSize values
363
364const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
365const int minimumStringTableSize = 1009;
366
367const int defaultSymbolTableSize = 20011;
368const int minimumSymbolTableSize = 1009;
369
370
371//----------------------------------------------------------------------------------------------------
372// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
373//
374// Determines whether on-the-fly class replacement and frame popping are enabled.
375
376#define HOTSWAP
377
378//----------------------------------------------------------------------------------------------------
379// Object alignment, in units of HeapWords.
380//
381// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
382// reference fields can be naturally aligned.
383
384extern int MinObjAlignment;
385extern int MinObjAlignmentInBytes;
386extern int MinObjAlignmentInBytesMask;
387
388extern int LogMinObjAlignment;
389extern int LogMinObjAlignmentInBytes;
390
391const int LogKlassAlignmentInBytes = 3;
392const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
393const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
394const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
395
396// Maximal size of heap where unscaled compression can be used. Also upper bound
397// for heap placement: 4GB.
398const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
399// Maximal size of heap where compressed oops can be used. Also upper bound for heap
400// placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
401extern uint64_t OopEncodingHeapMax;
402
403// Maximal size of compressed class space. Above this limit compression is not possible.
404// Also upper bound for placement of zero based class space. (Class space is further limited
405// to be < 3G, see arguments.cpp.)
406const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
407
408// Machine dependent stuff
409
410#if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
411// Include Restricted Transactional Memory lock eliding optimization
412#define INCLUDE_RTM_OPT 1
413#define RTM_OPT_ONLY(code) code
414#else
415#define INCLUDE_RTM_OPT 0
416#define RTM_OPT_ONLY(code)
417#endif
418// States of Restricted Transactional Memory usage.
419enum RTMState {
420  NoRTM      = 0x2, // Don't use RTM
421  UseRTM     = 0x1, // Use RTM
422  ProfileRTM = 0x0  // Use RTM with abort ratio calculation
423};
424
425// The maximum size of the code cache.  Can be overridden by targets.
426#define CODE_CACHE_SIZE_LIMIT (2*G)
427// Allow targets to reduce the default size of the code cache.
428#define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
429
430#ifdef TARGET_ARCH_x86
431# include "globalDefinitions_x86.hpp"
432#endif
433#ifdef TARGET_ARCH_sparc
434# include "globalDefinitions_sparc.hpp"
435#endif
436#ifdef TARGET_ARCH_zero
437# include "globalDefinitions_zero.hpp"
438#endif
439#ifdef TARGET_ARCH_arm
440# include "globalDefinitions_arm.hpp"
441#endif
442#ifdef TARGET_ARCH_ppc
443# include "globalDefinitions_ppc.hpp"
444#endif
445#ifdef TARGET_ARCH_aarch64
446# include "globalDefinitions_aarch64.hpp"
447#endif
448
449/*
450 * If a platform does not support native stack walking
451 * the platform specific globalDefinitions (above)
452 * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
453 */
454#ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
455#define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
456#endif
457
458// To assure the IRIW property on processors that are not multiple copy
459// atomic, sync instructions must be issued between volatile reads to
460// assure their ordering, instead of after volatile stores.
461// (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
462// by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
463#ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
464const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
465#else
466const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
467#endif
468
469// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
470// Note: this value must be a power of 2
471
472#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
473
474// Signed variants of alignment helpers.  There are two versions of each, a macro
475// for use in places like enum definitions that require compile-time constant
476// expressions and a function for all other places so as to get type checking.
477
478#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
479
480inline bool is_size_aligned(size_t size, size_t alignment) {
481  return align_size_up_(size, alignment) == size;
482}
483
484inline bool is_ptr_aligned(void* ptr, size_t alignment) {
485  return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
486}
487
488inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
489  return align_size_up_(size, alignment);
490}
491
492#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
493
494inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
495  return align_size_down_(size, alignment);
496}
497
498#define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
499
500inline void* align_ptr_up(void* ptr, size_t alignment) {
501  return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
502}
503
504inline void* align_ptr_down(void* ptr, size_t alignment) {
505  return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
506}
507
508// Align objects by rounding up their size, in HeapWord units.
509
510#define align_object_size_(size) align_size_up_(size, MinObjAlignment)
511
512inline intptr_t align_object_size(intptr_t size) {
513  return align_size_up(size, MinObjAlignment);
514}
515
516inline bool is_object_aligned(intptr_t addr) {
517  return addr == align_object_size(addr);
518}
519
520// Pad out certain offsets to jlong alignment, in HeapWord units.
521
522inline intptr_t align_object_offset(intptr_t offset) {
523  return align_size_up(offset, HeapWordsPerLong);
524}
525
526inline void* align_pointer_up(const void* addr, size_t size) {
527  return (void*) align_size_up_((uintptr_t)addr, size);
528}
529
530// Align down with a lower bound. If the aligning results in 0, return 'alignment'.
531
532inline size_t align_size_down_bounded(size_t size, size_t alignment) {
533  size_t aligned_size = align_size_down_(size, alignment);
534  return aligned_size > 0 ? aligned_size : alignment;
535}
536
537// Clamp an address to be within a specific page
538// 1. If addr is on the page it is returned as is
539// 2. If addr is above the page_address the start of the *next* page will be returned
540// 3. Otherwise, if addr is below the page_address the start of the page will be returned
541inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
542  if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
543    // address is in the specified page, just return it as is
544    return addr;
545  } else if (addr > page_address) {
546    // address is above specified page, return start of next page
547    return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
548  } else {
549    // address is below specified page, return start of page
550    return (address)align_size_down(intptr_t(page_address), page_size);
551  }
552}
553
554
555// The expected size in bytes of a cache line, used to pad data structures.
556#ifndef DEFAULT_CACHE_LINE_SIZE
557  #define DEFAULT_CACHE_LINE_SIZE 64
558#endif
559
560
561//----------------------------------------------------------------------------------------------------
562// Utility macros for compilers
563// used to silence compiler warnings
564
565#define Unused_Variable(var) var
566
567
568//----------------------------------------------------------------------------------------------------
569// Miscellaneous
570
571// 6302670 Eliminate Hotspot __fabsf dependency
572// All fabs() callers should call this function instead, which will implicitly
573// convert the operand to double, avoiding a dependency on __fabsf which
574// doesn't exist in early versions of Solaris 8.
575inline double fabsd(double value) {
576  return fabs(value);
577}
578
579//----------------------------------------------------------------------------------------------------
580// Special casts
581// Cast floats into same-size integers and vice-versa w/o changing bit-pattern
582typedef union {
583  jfloat f;
584  jint i;
585} FloatIntConv;
586
587typedef union {
588  jdouble d;
589  jlong l;
590  julong ul;
591} DoubleLongConv;
592
593inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
594inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
595
596inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
597inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
598inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
599
600inline jint low (jlong value)                    { return jint(value); }
601inline jint high(jlong value)                    { return jint(value >> 32); }
602
603// the fancy casts are a hopefully portable way
604// to do unsigned 32 to 64 bit type conversion
605inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
606                                                   *value |= (jlong)(julong)(juint)low; }
607
608inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
609                                                   *value |= (jlong)high       << 32; }
610
611inline jlong jlong_from(jint h, jint l) {
612  jlong result = 0; // initialization to avoid warning
613  set_high(&result, h);
614  set_low(&result,  l);
615  return result;
616}
617
618union jlong_accessor {
619  jint  words[2];
620  jlong long_value;
621};
622
623void basic_types_init(); // cannot define here; uses assert
624
625
626// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
627enum BasicType {
628  T_BOOLEAN     =  4,
629  T_CHAR        =  5,
630  T_FLOAT       =  6,
631  T_DOUBLE      =  7,
632  T_BYTE        =  8,
633  T_SHORT       =  9,
634  T_INT         = 10,
635  T_LONG        = 11,
636  T_OBJECT      = 12,
637  T_ARRAY       = 13,
638  T_VOID        = 14,
639  T_ADDRESS     = 15,
640  T_NARROWOOP   = 16,
641  T_METADATA    = 17,
642  T_NARROWKLASS = 18,
643  T_CONFLICT    = 19, // for stack value type with conflicting contents
644  T_ILLEGAL     = 99
645};
646
647inline bool is_java_primitive(BasicType t) {
648  return T_BOOLEAN <= t && t <= T_LONG;
649}
650
651inline bool is_subword_type(BasicType t) {
652  // these guys are processed exactly like T_INT in calling sequences:
653  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
654}
655
656inline bool is_signed_subword_type(BasicType t) {
657  return (t == T_BYTE || t == T_SHORT);
658}
659
660// Convert a char from a classfile signature to a BasicType
661inline BasicType char2type(char c) {
662  switch( c ) {
663  case 'B': return T_BYTE;
664  case 'C': return T_CHAR;
665  case 'D': return T_DOUBLE;
666  case 'F': return T_FLOAT;
667  case 'I': return T_INT;
668  case 'J': return T_LONG;
669  case 'S': return T_SHORT;
670  case 'Z': return T_BOOLEAN;
671  case 'V': return T_VOID;
672  case 'L': return T_OBJECT;
673  case '[': return T_ARRAY;
674  }
675  return T_ILLEGAL;
676}
677
678extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
679inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
680extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
681extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
682inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
683extern BasicType name2type(const char* name);
684
685// Auxilary math routines
686// least common multiple
687extern size_t lcm(size_t a, size_t b);
688
689
690// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
691enum BasicTypeSize {
692  T_BOOLEAN_size     = 1,
693  T_CHAR_size        = 1,
694  T_FLOAT_size       = 1,
695  T_DOUBLE_size      = 2,
696  T_BYTE_size        = 1,
697  T_SHORT_size       = 1,
698  T_INT_size         = 1,
699  T_LONG_size        = 2,
700  T_OBJECT_size      = 1,
701  T_ARRAY_size       = 1,
702  T_NARROWOOP_size   = 1,
703  T_NARROWKLASS_size = 1,
704  T_VOID_size        = 0
705};
706
707
708// maps a BasicType to its instance field storage type:
709// all sub-word integral types are widened to T_INT
710extern BasicType type2field[T_CONFLICT+1];
711extern BasicType type2wfield[T_CONFLICT+1];
712
713
714// size in bytes
715enum ArrayElementSize {
716  T_BOOLEAN_aelem_bytes     = 1,
717  T_CHAR_aelem_bytes        = 2,
718  T_FLOAT_aelem_bytes       = 4,
719  T_DOUBLE_aelem_bytes      = 8,
720  T_BYTE_aelem_bytes        = 1,
721  T_SHORT_aelem_bytes       = 2,
722  T_INT_aelem_bytes         = 4,
723  T_LONG_aelem_bytes        = 8,
724#ifdef _LP64
725  T_OBJECT_aelem_bytes      = 8,
726  T_ARRAY_aelem_bytes       = 8,
727#else
728  T_OBJECT_aelem_bytes      = 4,
729  T_ARRAY_aelem_bytes       = 4,
730#endif
731  T_NARROWOOP_aelem_bytes   = 4,
732  T_NARROWKLASS_aelem_bytes = 4,
733  T_VOID_aelem_bytes        = 0
734};
735
736extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
737#ifdef ASSERT
738extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
739#else
740inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
741#endif
742
743
744// JavaValue serves as a container for arbitrary Java values.
745
746class JavaValue {
747
748 public:
749  typedef union JavaCallValue {
750    jfloat   f;
751    jdouble  d;
752    jint     i;
753    jlong    l;
754    jobject  h;
755  } JavaCallValue;
756
757 private:
758  BasicType _type;
759  JavaCallValue _value;
760
761 public:
762  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
763
764  JavaValue(jfloat value) {
765    _type    = T_FLOAT;
766    _value.f = value;
767  }
768
769  JavaValue(jdouble value) {
770    _type    = T_DOUBLE;
771    _value.d = value;
772  }
773
774 jfloat get_jfloat() const { return _value.f; }
775 jdouble get_jdouble() const { return _value.d; }
776 jint get_jint() const { return _value.i; }
777 jlong get_jlong() const { return _value.l; }
778 jobject get_jobject() const { return _value.h; }
779 JavaCallValue* get_value_addr() { return &_value; }
780 BasicType get_type() const { return _type; }
781
782 void set_jfloat(jfloat f) { _value.f = f;}
783 void set_jdouble(jdouble d) { _value.d = d;}
784 void set_jint(jint i) { _value.i = i;}
785 void set_jlong(jlong l) { _value.l = l;}
786 void set_jobject(jobject h) { _value.h = h;}
787 void set_type(BasicType t) { _type = t; }
788
789 jboolean get_jboolean() const { return (jboolean) (_value.i);}
790 jbyte get_jbyte() const { return (jbyte) (_value.i);}
791 jchar get_jchar() const { return (jchar) (_value.i);}
792 jshort get_jshort() const { return (jshort) (_value.i);}
793
794};
795
796
797#define STACK_BIAS      0
798// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
799// in order to extend the reach of the stack pointer.
800#if defined(SPARC) && defined(_LP64)
801#undef STACK_BIAS
802#define STACK_BIAS      0x7ff
803#endif
804
805
806// TosState describes the top-of-stack state before and after the execution of
807// a bytecode or method. The top-of-stack value may be cached in one or more CPU
808// registers. The TosState corresponds to the 'machine represention' of this cached
809// value. There's 4 states corresponding to the JAVA types int, long, float & double
810// as well as a 5th state in case the top-of-stack value is actually on the top
811// of stack (in memory) and thus not cached. The atos state corresponds to the itos
812// state when it comes to machine representation but is used separately for (oop)
813// type specific operations (e.g. verification code).
814
815enum TosState {         // describes the tos cache contents
816  btos = 0,             // byte, bool tos cached
817  ctos = 1,             // char tos cached
818  stos = 2,             // short tos cached
819  itos = 3,             // int tos cached
820  ltos = 4,             // long tos cached
821  ftos = 5,             // float tos cached
822  dtos = 6,             // double tos cached
823  atos = 7,             // object cached
824  vtos = 8,             // tos not cached
825  number_of_states,
826  ilgl                  // illegal state: should not occur
827};
828
829
830inline TosState as_TosState(BasicType type) {
831  switch (type) {
832    case T_BYTE   : return btos;
833    case T_BOOLEAN: return btos; // FIXME: Add ztos
834    case T_CHAR   : return ctos;
835    case T_SHORT  : return stos;
836    case T_INT    : return itos;
837    case T_LONG   : return ltos;
838    case T_FLOAT  : return ftos;
839    case T_DOUBLE : return dtos;
840    case T_VOID   : return vtos;
841    case T_ARRAY  : // fall through
842    case T_OBJECT : return atos;
843  }
844  return ilgl;
845}
846
847inline BasicType as_BasicType(TosState state) {
848  switch (state) {
849    //case ztos: return T_BOOLEAN;//FIXME
850    case btos : return T_BYTE;
851    case ctos : return T_CHAR;
852    case stos : return T_SHORT;
853    case itos : return T_INT;
854    case ltos : return T_LONG;
855    case ftos : return T_FLOAT;
856    case dtos : return T_DOUBLE;
857    case atos : return T_OBJECT;
858    case vtos : return T_VOID;
859  }
860  return T_ILLEGAL;
861}
862
863
864// Helper function to convert BasicType info into TosState
865// Note: Cannot define here as it uses global constant at the time being.
866TosState as_TosState(BasicType type);
867
868
869// JavaThreadState keeps track of which part of the code a thread is executing in. This
870// information is needed by the safepoint code.
871//
872// There are 4 essential states:
873//
874//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
875//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
876//  _thread_in_vm       : Executing in the vm
877//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
878//
879// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
880// a transition from one state to another. These extra states makes it possible for the safepoint code to
881// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
882//
883// Given a state, the xxx_trans state can always be found by adding 1.
884//
885enum JavaThreadState {
886  _thread_uninitialized     =  0, // should never happen (missing initialization)
887  _thread_new               =  2, // just starting up, i.e., in process of being initialized
888  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
889  _thread_in_native         =  4, // running in native code
890  _thread_in_native_trans   =  5, // corresponding transition state
891  _thread_in_vm             =  6, // running in VM
892  _thread_in_vm_trans       =  7, // corresponding transition state
893  _thread_in_Java           =  8, // running in Java or in stub code
894  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
895  _thread_blocked           = 10, // blocked in vm
896  _thread_blocked_trans     = 11, // corresponding transition state
897  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
898};
899
900
901// Handy constants for deciding which compiler mode to use.
902enum MethodCompilation {
903  InvocationEntryBci = -1     // i.e., not a on-stack replacement compilation
904};
905
906// Enumeration to distinguish tiers of compilation
907enum CompLevel {
908  CompLevel_any               = -1,
909  CompLevel_all               = -1,
910  CompLevel_none              = 0,         // Interpreter
911  CompLevel_simple            = 1,         // C1
912  CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
913  CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
914  CompLevel_full_optimization = 4,         // C2 or Shark
915
916#if defined(COMPILER2) || defined(SHARK)
917  CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
918#elif defined(COMPILER1)
919  CompLevel_highest_tier      = CompLevel_simple,             // pure C1
920#else
921  CompLevel_highest_tier      = CompLevel_none,
922#endif
923
924#if defined(TIERED)
925  CompLevel_initial_compile   = CompLevel_full_profile        // tiered
926#elif defined(COMPILER1)
927  CompLevel_initial_compile   = CompLevel_simple              // pure C1
928#elif defined(COMPILER2) || defined(SHARK)
929  CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
930#else
931  CompLevel_initial_compile   = CompLevel_none
932#endif
933};
934
935inline bool is_c1_compile(int comp_level) {
936  return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
937}
938
939inline bool is_c2_compile(int comp_level) {
940  return comp_level == CompLevel_full_optimization;
941}
942
943inline bool is_highest_tier_compile(int comp_level) {
944  return comp_level == CompLevel_highest_tier;
945}
946
947inline bool is_compile(int comp_level) {
948  return is_c1_compile(comp_level) || is_c2_compile(comp_level);
949}
950
951//----------------------------------------------------------------------------------------------------
952// 'Forward' declarations of frequently used classes
953// (in order to reduce interface dependencies & reduce
954// number of unnecessary compilations after changes)
955
956class symbolTable;
957class ClassFileStream;
958
959class Event;
960
961class Thread;
962class  VMThread;
963class  JavaThread;
964class Threads;
965
966class VM_Operation;
967class VMOperationQueue;
968
969class CodeBlob;
970class  nmethod;
971class  OSRAdapter;
972class  I2CAdapter;
973class  C2IAdapter;
974class CompiledIC;
975class relocInfo;
976class ScopeDesc;
977class PcDesc;
978
979class Recompiler;
980class Recompilee;
981class RecompilationPolicy;
982class RFrame;
983class  CompiledRFrame;
984class  InterpretedRFrame;
985
986class frame;
987
988class vframe;
989class   javaVFrame;
990class     interpretedVFrame;
991class     compiledVFrame;
992class     deoptimizedVFrame;
993class   externalVFrame;
994class     entryVFrame;
995
996class RegisterMap;
997
998class Mutex;
999class Monitor;
1000class BasicLock;
1001class BasicObjectLock;
1002
1003class PeriodicTask;
1004
1005class JavaCallWrapper;
1006
1007class   oopDesc;
1008class   metaDataOopDesc;
1009
1010class NativeCall;
1011
1012class zone;
1013
1014class StubQueue;
1015
1016class outputStream;
1017
1018class ResourceArea;
1019
1020class DebugInformationRecorder;
1021class ScopeValue;
1022class CompressedStream;
1023class   DebugInfoReadStream;
1024class   DebugInfoWriteStream;
1025class LocationValue;
1026class ConstantValue;
1027class IllegalValue;
1028
1029class PrivilegedElement;
1030class MonitorArray;
1031
1032class MonitorInfo;
1033
1034class OffsetClosure;
1035class OopMapCache;
1036class InterpreterOopMap;
1037class OopMapCacheEntry;
1038class OSThread;
1039
1040typedef int (*OSThreadStartFunc)(void*);
1041
1042class Space;
1043
1044class JavaValue;
1045class methodHandle;
1046class JavaCallArguments;
1047
1048// Basic support for errors (general debug facilities not defined at this point fo the include phase)
1049
1050extern void basic_fatal(const char* msg);
1051
1052
1053//----------------------------------------------------------------------------------------------------
1054// Special constants for debugging
1055
1056const jint     badInt           = -3;                       // generic "bad int" value
1057const long     badAddressVal    = -2;                       // generic "bad address" value
1058const long     badOopVal        = -1;                       // generic "bad oop" value
1059const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1060const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1061const int      badResourceValue = 0xAB;                     // value used to zap resource area
1062const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1063const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1064const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1065const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1066const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1067const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1068const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1069
1070
1071// (These must be implemented as #defines because C++ compilers are
1072// not obligated to inline non-integral constants!)
1073#define       badAddress        ((address)::badAddressVal)
1074#define       badOop            (cast_to_oop(::badOopVal))
1075#define       badHeapWord       (::badHeapWordVal)
1076#define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1077
1078// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1079#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1080
1081//----------------------------------------------------------------------------------------------------
1082// Utility functions for bitfield manipulations
1083
1084const intptr_t AllBits    = ~0; // all bits set in a word
1085const intptr_t NoBits     =  0; // no bits set in a word
1086const jlong    NoLongBits =  0; // no bits set in a long
1087const intptr_t OneBit     =  1; // only right_most bit set in a word
1088
1089// get a word with the n.th or the right-most or left-most n bits set
1090// (note: #define used only so that they can be used in enum constant definitions)
1091#define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1092#define right_n_bits(n)   (nth_bit(n) - 1)
1093#define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1094
1095// bit-operations using a mask m
1096inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1097inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1098inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1099inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1100inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1101
1102// bit-operations using the n.th bit
1103inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1104inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1105inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1106
1107// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1108inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1109  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1110}
1111
1112
1113//----------------------------------------------------------------------------------------------------
1114// Utility functions for integers
1115
1116// Avoid use of global min/max macros which may cause unwanted double
1117// evaluation of arguments.
1118#ifdef max
1119#undef max
1120#endif
1121
1122#ifdef min
1123#undef min
1124#endif
1125
1126#define max(a,b) Do_not_use_max_use_MAX2_instead
1127#define min(a,b) Do_not_use_min_use_MIN2_instead
1128
1129// It is necessary to use templates here. Having normal overloaded
1130// functions does not work because it is necessary to provide both 32-
1131// and 64-bit overloaded functions, which does not work, and having
1132// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1133// will be even more error-prone than macros.
1134template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1135template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1136template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1137template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1138template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1139template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1140
1141template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1142
1143// true if x is a power of 2, false otherwise
1144inline bool is_power_of_2(intptr_t x) {
1145  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1146}
1147
1148// long version of is_power_of_2
1149inline bool is_power_of_2_long(jlong x) {
1150  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1151}
1152
1153//* largest i such that 2^i <= x
1154//  A negative value of 'x' will return '31'
1155inline int log2_intptr(intptr_t x) {
1156  int i = -1;
1157  uintptr_t p =  1;
1158  while (p != 0 && p <= (uintptr_t)x) {
1159    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1160    i++; p *= 2;
1161  }
1162  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1163  // (if p = 0 then overflow occurred and i = 31)
1164  return i;
1165}
1166
1167//* largest i such that 2^i <= x
1168//  A negative value of 'x' will return '63'
1169inline int log2_long(jlong x) {
1170  int i = -1;
1171  julong p =  1;
1172  while (p != 0 && p <= (julong)x) {
1173    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1174    i++; p *= 2;
1175  }
1176  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1177  // (if p = 0 then overflow occurred and i = 63)
1178  return i;
1179}
1180
1181//* the argument must be exactly a power of 2
1182inline int exact_log2(intptr_t x) {
1183  #ifdef ASSERT
1184    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1185  #endif
1186  return log2_intptr(x);
1187}
1188
1189//* the argument must be exactly a power of 2
1190inline int exact_log2_long(jlong x) {
1191  #ifdef ASSERT
1192    if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1193  #endif
1194  return log2_long(x);
1195}
1196
1197
1198// returns integer round-up to the nearest multiple of s (s must be a power of two)
1199inline intptr_t round_to(intptr_t x, uintx s) {
1200  #ifdef ASSERT
1201    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1202  #endif
1203  const uintx m = s - 1;
1204  return mask_bits(x + m, ~m);
1205}
1206
1207// returns integer round-down to the nearest multiple of s (s must be a power of two)
1208inline intptr_t round_down(intptr_t x, uintx s) {
1209  #ifdef ASSERT
1210    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1211  #endif
1212  const uintx m = s - 1;
1213  return mask_bits(x, ~m);
1214}
1215
1216
1217inline bool is_odd (intx x) { return x & 1;      }
1218inline bool is_even(intx x) { return !is_odd(x); }
1219
1220// "to" should be greater than "from."
1221inline intx byte_size(void* from, void* to) {
1222  return (address)to - (address)from;
1223}
1224
1225//----------------------------------------------------------------------------------------------------
1226// Avoid non-portable casts with these routines (DEPRECATED)
1227
1228// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1229//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1230
1231// Given sequence of four bytes, build into a 32-bit word
1232// following the conventions used in class files.
1233// On the 386, this could be realized with a simple address cast.
1234//
1235
1236// This routine takes eight bytes:
1237inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1238  return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1239       |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1240       |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1241       |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1242       |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1243       |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1244       |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1245       |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1246}
1247
1248// This routine takes four bytes:
1249inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1250  return  (( u4(c1) << 24 )  &  0xff000000)
1251       |  (( u4(c2) << 16 )  &  0x00ff0000)
1252       |  (( u4(c3) <<  8 )  &  0x0000ff00)
1253       |  (( u4(c4) <<  0 )  &  0x000000ff);
1254}
1255
1256// And this one works if the four bytes are contiguous in memory:
1257inline u4 build_u4_from( u1* p ) {
1258  return  build_u4_from( p[0], p[1], p[2], p[3] );
1259}
1260
1261// Ditto for two-byte ints:
1262inline u2 build_u2_from( u1 c1, u1 c2 ) {
1263  return  u2((( u2(c1) <<  8 )  &  0xff00)
1264          |  (( u2(c2) <<  0 )  &  0x00ff));
1265}
1266
1267// And this one works if the two bytes are contiguous in memory:
1268inline u2 build_u2_from( u1* p ) {
1269  return  build_u2_from( p[0], p[1] );
1270}
1271
1272// Ditto for floats:
1273inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1274  u4 u = build_u4_from( c1, c2, c3, c4 );
1275  return  *(jfloat*)&u;
1276}
1277
1278inline jfloat build_float_from( u1* p ) {
1279  u4 u = build_u4_from( p );
1280  return  *(jfloat*)&u;
1281}
1282
1283
1284// now (64-bit) longs
1285
1286inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1287  return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1288       |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1289       |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1290       |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1291       |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1292       |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1293       |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1294       |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1295}
1296
1297inline jlong build_long_from( u1* p ) {
1298  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1299}
1300
1301
1302// Doubles, too!
1303inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1304  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1305  return  *(jdouble*)&u;
1306}
1307
1308inline jdouble build_double_from( u1* p ) {
1309  jlong u = build_long_from( p );
1310  return  *(jdouble*)&u;
1311}
1312
1313
1314// Portable routines to go the other way:
1315
1316inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1317  c1 = u1(x >> 8);
1318  c2 = u1(x);
1319}
1320
1321inline void explode_short_to( u2 x, u1* p ) {
1322  explode_short_to( x, p[0], p[1]);
1323}
1324
1325inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1326  c1 = u1(x >> 24);
1327  c2 = u1(x >> 16);
1328  c3 = u1(x >>  8);
1329  c4 = u1(x);
1330}
1331
1332inline void explode_int_to( u4 x, u1* p ) {
1333  explode_int_to( x, p[0], p[1], p[2], p[3]);
1334}
1335
1336
1337// Pack and extract shorts to/from ints:
1338
1339inline int extract_low_short_from_int(jint x) {
1340  return x & 0xffff;
1341}
1342
1343inline int extract_high_short_from_int(jint x) {
1344  return (x >> 16) & 0xffff;
1345}
1346
1347inline int build_int_from_shorts( jushort low, jushort high ) {
1348  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1349}
1350
1351// Convert pointer to intptr_t, for use in printing pointers.
1352inline intptr_t p2i(const void * p) {
1353  return (intptr_t) p;
1354}
1355
1356// Printf-style formatters for fixed- and variable-width types as pointers and
1357// integers.  These are derived from the definitions in inttypes.h.  If the platform
1358// doesn't provide appropriate definitions, they should be provided in
1359// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1360
1361#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1362
1363// Format 32-bit quantities.
1364#define INT32_FORMAT           "%" PRId32
1365#define UINT32_FORMAT          "%" PRIu32
1366#define INT32_FORMAT_W(width)  "%" #width PRId32
1367#define UINT32_FORMAT_W(width) "%" #width PRIu32
1368
1369#define PTR32_FORMAT           "0x%08" PRIx32
1370
1371// Format 64-bit quantities.
1372#define INT64_FORMAT           "%" PRId64
1373#define UINT64_FORMAT          "%" PRIu64
1374#define UINT64_FORMAT_X        "%" PRIx64
1375#define INT64_FORMAT_W(width)  "%" #width PRId64
1376#define UINT64_FORMAT_W(width) "%" #width PRIu64
1377
1378#define PTR64_FORMAT           "0x%016" PRIx64
1379
1380// Format jlong, if necessary
1381#ifndef JLONG_FORMAT
1382#define JLONG_FORMAT           INT64_FORMAT
1383#endif
1384#ifndef JULONG_FORMAT
1385#define JULONG_FORMAT          UINT64_FORMAT
1386#endif
1387#ifndef JULONG_FORMAT_X
1388#define JULONG_FORMAT_X        UINT64_FORMAT_X
1389#endif
1390
1391// Format pointers which change size between 32- and 64-bit.
1392#ifdef  _LP64
1393#define INTPTR_FORMAT "0x%016" PRIxPTR
1394#define PTR_FORMAT    "0x%016" PRIxPTR
1395#else   // !_LP64
1396#define INTPTR_FORMAT "0x%08"  PRIxPTR
1397#define PTR_FORMAT    "0x%08"  PRIxPTR
1398#endif  // _LP64
1399
1400#define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1401
1402#define SSIZE_FORMAT             "%"   PRIdPTR
1403#define SIZE_FORMAT              "%"   PRIuPTR
1404#define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1405#define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1406#define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1407#define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1408
1409#define INTX_FORMAT           "%" PRIdPTR
1410#define UINTX_FORMAT          "%" PRIuPTR
1411#define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1412#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1413
1414
1415// Enable zap-a-lot if in debug version.
1416
1417# ifdef ASSERT
1418# ifdef COMPILER2
1419#   define ENABLE_ZAP_DEAD_LOCALS
1420#endif /* COMPILER2 */
1421# endif /* ASSERT */
1422
1423#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1424
1425// Dereference vptr
1426// All C++ compilers that we know of have the vtbl pointer in the first
1427// word.  If there are exceptions, this function needs to be made compiler
1428// specific.
1429static inline void* dereference_vptr(const void* addr) {
1430  return *(void**)addr;
1431}
1432
1433#ifndef PRODUCT
1434
1435// For unit testing only
1436class GlobalDefinitions {
1437public:
1438  static void test_globals();
1439};
1440
1441#endif // PRODUCT
1442
1443#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
1444