globalDefinitions.hpp revision 513:2328d1d3f8cf
1190214Srpaulo/*
2190214Srpaulo * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
3190214Srpaulo * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4190214Srpaulo *
5190214Srpaulo * This code is free software; you can redistribute it and/or modify it
6190214Srpaulo * under the terms of the GNU General Public License version 2 only, as
7190214Srpaulo * published by the Free Software Foundation.
8190214Srpaulo *
9190214Srpaulo * This code is distributed in the hope that it will be useful, but WITHOUT
10190214Srpaulo * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11190214Srpaulo * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12190214Srpaulo * version 2 for more details (a copy is included in the LICENSE file that
13190214Srpaulo * accompanied this code).
14190214Srpaulo *
15190214Srpaulo * You should have received a copy of the GNU General Public License version
16190214Srpaulo * 2 along with this work; if not, write to the Free Software Foundation,
17190214Srpaulo * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18190214Srpaulo *
19190214Srpaulo * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20190214Srpaulo * CA 95054 USA or visit www.sun.com if you need additional information or
21190214Srpaulo * have any questions.
22190214Srpaulo *
23190214Srpaulo */
24190214Srpaulo
25190214Srpaulo// This file holds all globally used constants & types, class (forward)
26190214Srpaulo// declarations and a few frequently used utility functions.
27190214Srpaulo
28190214Srpaulo//----------------------------------------------------------------------------------------------------
29190214Srpaulo// Constants
30190214Srpaulo
31190214Srpauloconst int LogBytesPerShort   = 1;
32190214Srpauloconst int LogBytesPerInt     = 2;
33190214Srpaulo#ifdef _LP64
34190214Srpauloconst int LogBytesPerWord    = 3;
35190214Srpaulo#else
36190214Srpauloconst int LogBytesPerWord    = 2;
37190214Srpaulo#endif
38190214Srpauloconst int LogBytesPerLong    = 3;
39190214Srpaulo
40190214Srpauloconst int BytesPerShort      = 1 << LogBytesPerShort;
41190214Srpauloconst int BytesPerInt        = 1 << LogBytesPerInt;
42190214Srpauloconst int BytesPerWord       = 1 << LogBytesPerWord;
43const int BytesPerLong       = 1 << LogBytesPerLong;
44
45const int LogBitsPerByte     = 3;
46const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
47const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
48const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
49const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
50
51const int BitsPerByte        = 1 << LogBitsPerByte;
52const int BitsPerShort       = 1 << LogBitsPerShort;
53const int BitsPerInt         = 1 << LogBitsPerInt;
54const int BitsPerWord        = 1 << LogBitsPerWord;
55const int BitsPerLong        = 1 << LogBitsPerLong;
56
57const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
58const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
59
60const int WordsPerLong       = 2;       // Number of stack entries for longs
61
62const int oopSize            = sizeof(char*); // Full-width oop
63extern int heapOopSize;                       // Oop within a java object
64const int wordSize           = sizeof(char*);
65const int longSize           = sizeof(jlong);
66const int jintSize           = sizeof(jint);
67const int size_tSize         = sizeof(size_t);
68
69const int BytesPerOop        = BytesPerWord;  // Full-width oop
70
71extern int LogBytesPerHeapOop;                // Oop within a java object
72extern int LogBitsPerHeapOop;
73extern int BytesPerHeapOop;
74extern int BitsPerHeapOop;
75
76const int BitsPerJavaInteger = 32;
77const int BitsPerSize_t      = size_tSize * BitsPerByte;
78
79// Size of a char[] needed to represent a jint as a string in decimal.
80const int jintAsStringSize = 12;
81
82// In fact this should be
83// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
84// see os::set_memory_serialize_page()
85#ifdef _LP64
86const int SerializePageShiftCount = 4;
87#else
88const int SerializePageShiftCount = 3;
89#endif
90
91// An opaque struct of heap-word width, so that HeapWord* can be a generic
92// pointer into the heap.  We require that object sizes be measured in
93// units of heap words, so that that
94//   HeapWord* hw;
95//   hw += oop(hw)->foo();
96// works, where foo is a method (like size or scavenge) that returns the
97// object size.
98class HeapWord {
99  friend class VMStructs;
100 private:
101  char* i;
102#ifndef PRODUCT
103 public:
104  char* value() { return i; }
105#endif
106};
107
108// HeapWordSize must be 2^LogHeapWordSize.
109const int HeapWordSize        = sizeof(HeapWord);
110#ifdef _LP64
111const int LogHeapWordSize     = 3;
112#else
113const int LogHeapWordSize     = 2;
114#endif
115const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
116const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
117
118// The larger HeapWordSize for 64bit requires larger heaps
119// for the same application running in 64bit.  See bug 4967770.
120// The minimum alignment to a heap word size is done.  Other
121// parts of the memory system may required additional alignment
122// and are responsible for those alignments.
123#ifdef _LP64
124#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
125#else
126#define ScaleForWordSize(x) (x)
127#endif
128
129// The minimum number of native machine words necessary to contain "byte_size"
130// bytes.
131inline size_t heap_word_size(size_t byte_size) {
132  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
133}
134
135
136const size_t K                  = 1024;
137const size_t M                  = K*K;
138const size_t G                  = M*K;
139const size_t HWperKB            = K / sizeof(HeapWord);
140
141const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
142const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
143
144// Constants for converting from a base unit to milli-base units.  For
145// example from seconds to milliseconds and microseconds
146
147const int MILLIUNITS    = 1000;         // milli units per base unit
148const int MICROUNITS    = 1000000;      // micro units per base unit
149const int NANOUNITS     = 1000000000;   // nano units per base unit
150
151inline const char* proper_unit_for_byte_size(size_t s) {
152  if (s >= 10*M) {
153    return "M";
154  } else if (s >= 10*K) {
155    return "K";
156  } else {
157    return "B";
158  }
159}
160
161inline size_t byte_size_in_proper_unit(size_t s) {
162  if (s >= 10*M) {
163    return s/M;
164  } else if (s >= 10*K) {
165    return s/K;
166  } else {
167    return s;
168  }
169}
170
171
172//----------------------------------------------------------------------------------------------------
173// VM type definitions
174
175// intx and uintx are the 'extended' int and 'extended' unsigned int types;
176// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
177
178typedef intptr_t  intx;
179typedef uintptr_t uintx;
180
181const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
182const intx  max_intx  = (uintx)min_intx - 1;
183const uintx max_uintx = (uintx)-1;
184
185// Table of values:
186//      sizeof intx         4               8
187// min_intx             0x80000000      0x8000000000000000
188// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
189// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
190
191typedef unsigned int uint;   NEEDS_CLEANUP
192
193
194//----------------------------------------------------------------------------------------------------
195// Java type definitions
196
197// All kinds of 'plain' byte addresses
198typedef   signed char s_char;
199typedef unsigned char u_char;
200typedef u_char*       address;
201typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
202                                    // except for some implementations of a C++
203                                    // linkage pointer to function. Should never
204                                    // need one of those to be placed in this
205                                    // type anyway.
206
207//  Utility functions to "portably" (?) bit twiddle pointers
208//  Where portable means keep ANSI C++ compilers quiet
209
210inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
211inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
212
213//  Utility functions to "portably" make cast to/from function pointers.
214
215inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
216inline address_word  castable_address(address x)              { return address_word(x) ; }
217inline address_word  castable_address(void* x)                { return address_word(x) ; }
218
219// Pointer subtraction.
220// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
221// the range we might need to find differences from one end of the heap
222// to the other.
223// A typical use might be:
224//     if (pointer_delta(end(), top()) >= size) {
225//       // enough room for an object of size
226//       ...
227// and then additions like
228//       ... top() + size ...
229// are safe because we know that top() is at least size below end().
230inline size_t pointer_delta(const void* left,
231                            const void* right,
232                            size_t element_size) {
233  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
234}
235// A version specialized for HeapWord*'s.
236inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
237  return pointer_delta(left, right, sizeof(HeapWord));
238}
239
240//
241// ANSI C++ does not allow casting from one pointer type to a function pointer
242// directly without at best a warning. This macro accomplishes it silently
243// In every case that is present at this point the value be cast is a pointer
244// to a C linkage function. In somecase the type used for the cast reflects
245// that linkage and a picky compiler would not complain. In other cases because
246// there is no convenient place to place a typedef with extern C linkage (i.e
247// a platform dependent header file) it doesn't. At this point no compiler seems
248// picky enough to catch these instances (which are few). It is possible that
249// using templates could fix these for all cases. This use of templates is likely
250// so far from the middle of the road that it is likely to be problematic in
251// many C++ compilers.
252//
253#define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
254#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
255
256// Unsigned byte types for os and stream.hpp
257
258// Unsigned one, two, four and eigth byte quantities used for describing
259// the .class file format. See JVM book chapter 4.
260
261typedef jubyte  u1;
262typedef jushort u2;
263typedef juint   u4;
264typedef julong  u8;
265
266const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
267const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
268const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
269const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
270
271//----------------------------------------------------------------------------------------------------
272// JVM spec restrictions
273
274const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
275
276
277//----------------------------------------------------------------------------------------------------
278// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
279//
280// Determines whether on-the-fly class replacement and frame popping are enabled.
281
282#define HOTSWAP
283
284//----------------------------------------------------------------------------------------------------
285// Object alignment, in units of HeapWords.
286//
287// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
288// reference fields can be naturally aligned.
289
290const int MinObjAlignment            = HeapWordsPerLong;
291const int MinObjAlignmentInBytes     = MinObjAlignment * HeapWordSize;
292const int MinObjAlignmentInBytesMask = MinObjAlignmentInBytes - 1;
293
294const int LogMinObjAlignment         = LogHeapWordsPerLong;
295const int LogMinObjAlignmentInBytes  = LogMinObjAlignment + LogHeapWordSize;
296
297// Machine dependent stuff
298
299#include "incls/_globalDefinitions_pd.hpp.incl"
300
301// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
302// Note: this value must be a power of 2
303
304#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
305
306// Signed variants of alignment helpers.  There are two versions of each, a macro
307// for use in places like enum definitions that require compile-time constant
308// expressions and a function for all other places so as to get type checking.
309
310#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
311
312inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
313  return align_size_up_(size, alignment);
314}
315
316#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
317
318inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
319  return align_size_down_(size, alignment);
320}
321
322// Align objects by rounding up their size, in HeapWord units.
323
324#define align_object_size_(size) align_size_up_(size, MinObjAlignment)
325
326inline intptr_t align_object_size(intptr_t size) {
327  return align_size_up(size, MinObjAlignment);
328}
329
330// Pad out certain offsets to jlong alignment, in HeapWord units.
331
332#define align_object_offset_(offset) align_size_up_(offset, HeapWordsPerLong)
333
334inline intptr_t align_object_offset(intptr_t offset) {
335  return align_size_up(offset, HeapWordsPerLong);
336}
337
338inline bool is_object_aligned(intptr_t offset) {
339  return offset == align_object_offset(offset);
340}
341
342
343//----------------------------------------------------------------------------------------------------
344// Utility macros for compilers
345// used to silence compiler warnings
346
347#define Unused_Variable(var) var
348
349
350//----------------------------------------------------------------------------------------------------
351// Miscellaneous
352
353// 6302670 Eliminate Hotspot __fabsf dependency
354// All fabs() callers should call this function instead, which will implicitly
355// convert the operand to double, avoiding a dependency on __fabsf which
356// doesn't exist in early versions of Solaris 8.
357inline double fabsd(double value) {
358  return fabs(value);
359}
360
361inline jint low (jlong value)                    { return jint(value); }
362inline jint high(jlong value)                    { return jint(value >> 32); }
363
364// the fancy casts are a hopefully portable way
365// to do unsigned 32 to 64 bit type conversion
366inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
367                                                   *value |= (jlong)(julong)(juint)low; }
368
369inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
370                                                   *value |= (jlong)high       << 32; }
371
372inline jlong jlong_from(jint h, jint l) {
373  jlong result = 0; // initialization to avoid warning
374  set_high(&result, h);
375  set_low(&result,  l);
376  return result;
377}
378
379union jlong_accessor {
380  jint  words[2];
381  jlong long_value;
382};
383
384void basic_types_init(); // cannot define here; uses assert
385
386
387// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
388enum BasicType {
389  T_BOOLEAN  =  4,
390  T_CHAR     =  5,
391  T_FLOAT    =  6,
392  T_DOUBLE   =  7,
393  T_BYTE     =  8,
394  T_SHORT    =  9,
395  T_INT      = 10,
396  T_LONG     = 11,
397  T_OBJECT   = 12,
398  T_ARRAY    = 13,
399  T_VOID     = 14,
400  T_ADDRESS  = 15,
401  T_NARROWOOP= 16,
402  T_CONFLICT = 17, // for stack value type with conflicting contents
403  T_ILLEGAL  = 99
404};
405
406inline bool is_java_primitive(BasicType t) {
407  return T_BOOLEAN <= t && t <= T_LONG;
408}
409
410// Convert a char from a classfile signature to a BasicType
411inline BasicType char2type(char c) {
412  switch( c ) {
413  case 'B': return T_BYTE;
414  case 'C': return T_CHAR;
415  case 'D': return T_DOUBLE;
416  case 'F': return T_FLOAT;
417  case 'I': return T_INT;
418  case 'J': return T_LONG;
419  case 'S': return T_SHORT;
420  case 'Z': return T_BOOLEAN;
421  case 'V': return T_VOID;
422  case 'L': return T_OBJECT;
423  case '[': return T_ARRAY;
424  }
425  return T_ILLEGAL;
426}
427
428extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
429inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
430extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
431extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
432inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
433extern BasicType name2type(const char* name);
434
435// Auxilary math routines
436// least common multiple
437extern size_t lcm(size_t a, size_t b);
438
439
440// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
441enum BasicTypeSize {
442  T_BOOLEAN_size = 1,
443  T_CHAR_size    = 1,
444  T_FLOAT_size   = 1,
445  T_DOUBLE_size  = 2,
446  T_BYTE_size    = 1,
447  T_SHORT_size   = 1,
448  T_INT_size     = 1,
449  T_LONG_size    = 2,
450  T_OBJECT_size  = 1,
451  T_ARRAY_size   = 1,
452  T_NARROWOOP_size = 1,
453  T_VOID_size    = 0
454};
455
456
457// maps a BasicType to its instance field storage type:
458// all sub-word integral types are widened to T_INT
459extern BasicType type2field[T_CONFLICT+1];
460extern BasicType type2wfield[T_CONFLICT+1];
461
462
463// size in bytes
464enum ArrayElementSize {
465  T_BOOLEAN_aelem_bytes = 1,
466  T_CHAR_aelem_bytes    = 2,
467  T_FLOAT_aelem_bytes   = 4,
468  T_DOUBLE_aelem_bytes  = 8,
469  T_BYTE_aelem_bytes    = 1,
470  T_SHORT_aelem_bytes   = 2,
471  T_INT_aelem_bytes     = 4,
472  T_LONG_aelem_bytes    = 8,
473#ifdef _LP64
474  T_OBJECT_aelem_bytes  = 8,
475  T_ARRAY_aelem_bytes   = 8,
476#else
477  T_OBJECT_aelem_bytes  = 4,
478  T_ARRAY_aelem_bytes   = 4,
479#endif
480  T_NARROWOOP_aelem_bytes = 4,
481  T_VOID_aelem_bytes    = 0
482};
483
484extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
485#ifdef ASSERT
486extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
487#else
488inline int type2aelembytes(BasicType t) { return _type2aelembytes[t]; }
489#endif
490
491
492// JavaValue serves as a container for arbitrary Java values.
493
494class JavaValue {
495
496 public:
497  typedef union JavaCallValue {
498    jfloat   f;
499    jdouble  d;
500    jint     i;
501    jlong    l;
502    jobject  h;
503  } JavaCallValue;
504
505 private:
506  BasicType _type;
507  JavaCallValue _value;
508
509 public:
510  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
511
512  JavaValue(jfloat value) {
513    _type    = T_FLOAT;
514    _value.f = value;
515  }
516
517  JavaValue(jdouble value) {
518    _type    = T_DOUBLE;
519    _value.d = value;
520  }
521
522 jfloat get_jfloat() const { return _value.f; }
523 jdouble get_jdouble() const { return _value.d; }
524 jint get_jint() const { return _value.i; }
525 jlong get_jlong() const { return _value.l; }
526 jobject get_jobject() const { return _value.h; }
527 JavaCallValue* get_value_addr() { return &_value; }
528 BasicType get_type() const { return _type; }
529
530 void set_jfloat(jfloat f) { _value.f = f;}
531 void set_jdouble(jdouble d) { _value.d = d;}
532 void set_jint(jint i) { _value.i = i;}
533 void set_jlong(jlong l) { _value.l = l;}
534 void set_jobject(jobject h) { _value.h = h;}
535 void set_type(BasicType t) { _type = t; }
536
537 jboolean get_jboolean() const { return (jboolean) (_value.i);}
538 jbyte get_jbyte() const { return (jbyte) (_value.i);}
539 jchar get_jchar() const { return (jchar) (_value.i);}
540 jshort get_jshort() const { return (jshort) (_value.i);}
541
542};
543
544
545#define STACK_BIAS      0
546// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
547// in order to extend the reach of the stack pointer.
548#if defined(SPARC) && defined(_LP64)
549#undef STACK_BIAS
550#define STACK_BIAS      0x7ff
551#endif
552
553
554// TosState describes the top-of-stack state before and after the execution of
555// a bytecode or method. The top-of-stack value may be cached in one or more CPU
556// registers. The TosState corresponds to the 'machine represention' of this cached
557// value. There's 4 states corresponding to the JAVA types int, long, float & double
558// as well as a 5th state in case the top-of-stack value is actually on the top
559// of stack (in memory) and thus not cached. The atos state corresponds to the itos
560// state when it comes to machine representation but is used separately for (oop)
561// type specific operations (e.g. verification code).
562
563enum TosState {         // describes the tos cache contents
564  btos = 0,             // byte, bool tos cached
565  ctos = 1,             // short, char tos cached
566  stos = 2,             // short, char tos cached
567  itos = 3,             // int tos cached
568  ltos = 4,             // long tos cached
569  ftos = 5,             // float tos cached
570  dtos = 6,             // double tos cached
571  atos = 7,             // object cached
572  vtos = 8,             // tos not cached
573  number_of_states,
574  ilgl                  // illegal state: should not occur
575};
576
577
578inline TosState as_TosState(BasicType type) {
579  switch (type) {
580    case T_BYTE   : return btos;
581    case T_BOOLEAN: return btos;
582    case T_CHAR   : return ctos;
583    case T_SHORT  : return stos;
584    case T_INT    : return itos;
585    case T_LONG   : return ltos;
586    case T_FLOAT  : return ftos;
587    case T_DOUBLE : return dtos;
588    case T_VOID   : return vtos;
589    case T_ARRAY  : // fall through
590    case T_OBJECT : return atos;
591  }
592  return ilgl;
593}
594
595
596// Helper function to convert BasicType info into TosState
597// Note: Cannot define here as it uses global constant at the time being.
598TosState as_TosState(BasicType type);
599
600
601// ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
602
603enum ReferenceType {
604 REF_NONE,      // Regular class
605 REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
606 REF_SOFT,      // Subclass of java/lang/ref/SoftReference
607 REF_WEAK,      // Subclass of java/lang/ref/WeakReference
608 REF_FINAL,     // Subclass of java/lang/ref/FinalReference
609 REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
610};
611
612
613// JavaThreadState keeps track of which part of the code a thread is executing in. This
614// information is needed by the safepoint code.
615//
616// There are 4 essential states:
617//
618//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
619//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
620//  _thread_in_vm       : Executing in the vm
621//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
622//
623// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
624// a transition from one state to another. These extra states makes it possible for the safepoint code to
625// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
626//
627// Given a state, the xxx_trans state can always be found by adding 1.
628//
629enum JavaThreadState {
630  _thread_uninitialized     =  0, // should never happen (missing initialization)
631  _thread_new               =  2, // just starting up, i.e., in process of being initialized
632  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
633  _thread_in_native         =  4, // running in native code
634  _thread_in_native_trans   =  5, // corresponding transition state
635  _thread_in_vm             =  6, // running in VM
636  _thread_in_vm_trans       =  7, // corresponding transition state
637  _thread_in_Java           =  8, // running in Java or in stub code
638  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
639  _thread_blocked           = 10, // blocked in vm
640  _thread_blocked_trans     = 11, // corresponding transition state
641  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
642};
643
644
645// Handy constants for deciding which compiler mode to use.
646enum MethodCompilation {
647  InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
648  InvalidOSREntryBci = -2
649};
650
651// Enumeration to distinguish tiers of compilation
652enum CompLevel {
653  CompLevel_none              = 0,
654  CompLevel_fast_compile      = 1,
655  CompLevel_full_optimization = 2,
656
657  CompLevel_highest_tier      = CompLevel_full_optimization,
658#ifdef TIERED
659  CompLevel_initial_compile   = CompLevel_fast_compile
660#else
661  CompLevel_initial_compile   = CompLevel_full_optimization
662#endif // TIERED
663};
664
665inline bool is_tier1_compile(int comp_level) {
666  return comp_level == CompLevel_fast_compile;
667}
668inline bool is_tier2_compile(int comp_level) {
669  return comp_level == CompLevel_full_optimization;
670}
671inline bool is_highest_tier_compile(int comp_level) {
672  return comp_level == CompLevel_highest_tier;
673}
674
675//----------------------------------------------------------------------------------------------------
676// 'Forward' declarations of frequently used classes
677// (in order to reduce interface dependencies & reduce
678// number of unnecessary compilations after changes)
679
680class symbolTable;
681class ClassFileStream;
682
683class Event;
684
685class Thread;
686class  VMThread;
687class  JavaThread;
688class Threads;
689
690class VM_Operation;
691class VMOperationQueue;
692
693class CodeBlob;
694class  nmethod;
695class  OSRAdapter;
696class  I2CAdapter;
697class  C2IAdapter;
698class CompiledIC;
699class relocInfo;
700class ScopeDesc;
701class PcDesc;
702
703class Recompiler;
704class Recompilee;
705class RecompilationPolicy;
706class RFrame;
707class  CompiledRFrame;
708class  InterpretedRFrame;
709
710class frame;
711
712class vframe;
713class   javaVFrame;
714class     interpretedVFrame;
715class     compiledVFrame;
716class     deoptimizedVFrame;
717class   externalVFrame;
718class     entryVFrame;
719
720class RegisterMap;
721
722class Mutex;
723class Monitor;
724class BasicLock;
725class BasicObjectLock;
726
727class PeriodicTask;
728
729class JavaCallWrapper;
730
731class   oopDesc;
732
733class NativeCall;
734
735class zone;
736
737class StubQueue;
738
739class outputStream;
740
741class ResourceArea;
742
743class DebugInformationRecorder;
744class ScopeValue;
745class CompressedStream;
746class   DebugInfoReadStream;
747class   DebugInfoWriteStream;
748class LocationValue;
749class ConstantValue;
750class IllegalValue;
751
752class PrivilegedElement;
753class MonitorArray;
754
755class MonitorInfo;
756
757class OffsetClosure;
758class OopMapCache;
759class InterpreterOopMap;
760class OopMapCacheEntry;
761class OSThread;
762
763typedef int (*OSThreadStartFunc)(void*);
764
765class Space;
766
767class JavaValue;
768class methodHandle;
769class JavaCallArguments;
770
771// Basic support for errors (general debug facilities not defined at this point fo the include phase)
772
773extern void basic_fatal(const char* msg);
774
775
776//----------------------------------------------------------------------------------------------------
777// Special constants for debugging
778
779const jint     badInt           = -3;                       // generic "bad int" value
780const long     badAddressVal    = -2;                       // generic "bad address" value
781const long     badOopVal        = -1;                       // generic "bad oop" value
782const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
783const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
784const int      badResourceValue = 0xAB;                     // value used to zap resource area
785const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
786const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
787const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
788const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
789const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
790const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
791
792
793// (These must be implemented as #defines because C++ compilers are
794// not obligated to inline non-integral constants!)
795#define       badAddress        ((address)::badAddressVal)
796#define       badOop            ((oop)::badOopVal)
797#define       badHeapWord       (::badHeapWordVal)
798#define       badJNIHandle      ((oop)::badJNIHandleVal)
799
800
801//----------------------------------------------------------------------------------------------------
802// Utility functions for bitfield manipulations
803
804const intptr_t AllBits    = ~0; // all bits set in a word
805const intptr_t NoBits     =  0; // no bits set in a word
806const jlong    NoLongBits =  0; // no bits set in a long
807const intptr_t OneBit     =  1; // only right_most bit set in a word
808
809// get a word with the n.th or the right-most or left-most n bits set
810// (note: #define used only so that they can be used in enum constant definitions)
811#define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
812#define right_n_bits(n)   (nth_bit(n) - 1)
813#define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
814
815// bit-operations using a mask m
816inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
817inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
818inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
819inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
820inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
821
822// bit-operations using the n.th bit
823inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
824inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
825inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
826
827// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
828inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
829  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
830}
831
832
833//----------------------------------------------------------------------------------------------------
834// Utility functions for integers
835
836// Avoid use of global min/max macros which may cause unwanted double
837// evaluation of arguments.
838#ifdef max
839#undef max
840#endif
841
842#ifdef min
843#undef min
844#endif
845
846#define max(a,b) Do_not_use_max_use_MAX2_instead
847#define min(a,b) Do_not_use_min_use_MIN2_instead
848
849// It is necessary to use templates here. Having normal overloaded
850// functions does not work because it is necessary to provide both 32-
851// and 64-bit overloaded functions, which does not work, and having
852// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
853// will be even more error-prone than macros.
854template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
855template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
856template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
857template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
858template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
859template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
860
861template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
862
863// true if x is a power of 2, false otherwise
864inline bool is_power_of_2(intptr_t x) {
865  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
866}
867
868// long version of is_power_of_2
869inline bool is_power_of_2_long(jlong x) {
870  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
871}
872
873//* largest i such that 2^i <= x
874//  A negative value of 'x' will return '31'
875inline int log2_intptr(intptr_t x) {
876  int i = -1;
877  uintptr_t p =  1;
878  while (p != 0 && p <= (uintptr_t)x) {
879    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
880    i++; p *= 2;
881  }
882  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
883  // (if p = 0 then overflow occured and i = 31)
884  return i;
885}
886
887//* largest i such that 2^i <= x
888//  A negative value of 'x' will return '63'
889inline int log2_long(jlong x) {
890  int i = -1;
891  julong p =  1;
892  while (p != 0 && p <= (julong)x) {
893    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
894    i++; p *= 2;
895  }
896  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
897  // (if p = 0 then overflow occured and i = 63)
898  return i;
899}
900
901//* the argument must be exactly a power of 2
902inline int exact_log2(intptr_t x) {
903  #ifdef ASSERT
904    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
905  #endif
906  return log2_intptr(x);
907}
908
909
910// returns integer round-up to the nearest multiple of s (s must be a power of two)
911inline intptr_t round_to(intptr_t x, uintx s) {
912  #ifdef ASSERT
913    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
914  #endif
915  const uintx m = s - 1;
916  return mask_bits(x + m, ~m);
917}
918
919// returns integer round-down to the nearest multiple of s (s must be a power of two)
920inline intptr_t round_down(intptr_t x, uintx s) {
921  #ifdef ASSERT
922    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
923  #endif
924  const uintx m = s - 1;
925  return mask_bits(x, ~m);
926}
927
928
929inline bool is_odd (intx x) { return x & 1;      }
930inline bool is_even(intx x) { return !is_odd(x); }
931
932// "to" should be greater than "from."
933inline intx byte_size(void* from, void* to) {
934  return (address)to - (address)from;
935}
936
937//----------------------------------------------------------------------------------------------------
938// Avoid non-portable casts with these routines (DEPRECATED)
939
940// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
941//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
942
943// Given sequence of four bytes, build into a 32-bit word
944// following the conventions used in class files.
945// On the 386, this could be realized with a simple address cast.
946//
947
948// This routine takes eight bytes:
949inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
950  return  ( u8(c1) << 56 )  &  ( u8(0xff) << 56 )
951       |  ( u8(c2) << 48 )  &  ( u8(0xff) << 48 )
952       |  ( u8(c3) << 40 )  &  ( u8(0xff) << 40 )
953       |  ( u8(c4) << 32 )  &  ( u8(0xff) << 32 )
954       |  ( u8(c5) << 24 )  &  ( u8(0xff) << 24 )
955       |  ( u8(c6) << 16 )  &  ( u8(0xff) << 16 )
956       |  ( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 )
957       |  ( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 );
958}
959
960// This routine takes four bytes:
961inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
962  return  ( u4(c1) << 24 )  &  0xff000000
963       |  ( u4(c2) << 16 )  &  0x00ff0000
964       |  ( u4(c3) <<  8 )  &  0x0000ff00
965       |  ( u4(c4) <<  0 )  &  0x000000ff;
966}
967
968// And this one works if the four bytes are contiguous in memory:
969inline u4 build_u4_from( u1* p ) {
970  return  build_u4_from( p[0], p[1], p[2], p[3] );
971}
972
973// Ditto for two-byte ints:
974inline u2 build_u2_from( u1 c1, u1 c2 ) {
975  return  u2(( u2(c1) <<  8 )  &  0xff00
976          |  ( u2(c2) <<  0 )  &  0x00ff);
977}
978
979// And this one works if the two bytes are contiguous in memory:
980inline u2 build_u2_from( u1* p ) {
981  return  build_u2_from( p[0], p[1] );
982}
983
984// Ditto for floats:
985inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
986  u4 u = build_u4_from( c1, c2, c3, c4 );
987  return  *(jfloat*)&u;
988}
989
990inline jfloat build_float_from( u1* p ) {
991  u4 u = build_u4_from( p );
992  return  *(jfloat*)&u;
993}
994
995
996// now (64-bit) longs
997
998inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
999  return  ( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 )
1000       |  ( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 )
1001       |  ( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 )
1002       |  ( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 )
1003       |  ( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 )
1004       |  ( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 )
1005       |  ( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 )
1006       |  ( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 );
1007}
1008
1009inline jlong build_long_from( u1* p ) {
1010  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1011}
1012
1013
1014// Doubles, too!
1015inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1016  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1017  return  *(jdouble*)&u;
1018}
1019
1020inline jdouble build_double_from( u1* p ) {
1021  jlong u = build_long_from( p );
1022  return  *(jdouble*)&u;
1023}
1024
1025
1026// Portable routines to go the other way:
1027
1028inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1029  c1 = u1(x >> 8);
1030  c2 = u1(x);
1031}
1032
1033inline void explode_short_to( u2 x, u1* p ) {
1034  explode_short_to( x, p[0], p[1]);
1035}
1036
1037inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1038  c1 = u1(x >> 24);
1039  c2 = u1(x >> 16);
1040  c3 = u1(x >>  8);
1041  c4 = u1(x);
1042}
1043
1044inline void explode_int_to( u4 x, u1* p ) {
1045  explode_int_to( x, p[0], p[1], p[2], p[3]);
1046}
1047
1048
1049// Pack and extract shorts to/from ints:
1050
1051inline int extract_low_short_from_int(jint x) {
1052  return x & 0xffff;
1053}
1054
1055inline int extract_high_short_from_int(jint x) {
1056  return (x >> 16) & 0xffff;
1057}
1058
1059inline int build_int_from_shorts( jushort low, jushort high ) {
1060  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1061}
1062
1063// Printf-style formatters for fixed- and variable-width types as pointers and
1064// integers.
1065//
1066// Each compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1067// must define the macro FORMAT64_MODIFIER, which is the modifier for '%x' or
1068// '%d' formats to indicate a 64-bit quantity; commonly "l" (in LP64) or "ll"
1069// (in ILP32).
1070
1071// Format 32-bit quantities.
1072#define INT32_FORMAT  "%d"
1073#define UINT32_FORMAT "%u"
1074#define INT32_FORMAT_W(width)   "%" #width "d"
1075#define UINT32_FORMAT_W(width)  "%" #width "u"
1076
1077#define PTR32_FORMAT  "0x%08x"
1078
1079// Format 64-bit quantities.
1080#define INT64_FORMAT  "%" FORMAT64_MODIFIER "d"
1081#define UINT64_FORMAT "%" FORMAT64_MODIFIER "u"
1082#define PTR64_FORMAT  "0x%016" FORMAT64_MODIFIER "x"
1083
1084#define INT64_FORMAT_W(width)  "%" #width FORMAT64_MODIFIER "d"
1085#define UINT64_FORMAT_W(width) "%" #width FORMAT64_MODIFIER "u"
1086
1087// Format macros that allow the field width to be specified.  The width must be
1088// a string literal (e.g., "8") or a macro that evaluates to one.
1089#ifdef _LP64
1090#define UINTX_FORMAT_W(width)   UINT64_FORMAT_W(width)
1091#define SSIZE_FORMAT_W(width)   INT64_FORMAT_W(width)
1092#define SIZE_FORMAT_W(width)    UINT64_FORMAT_W(width)
1093#else
1094#define UINTX_FORMAT_W(width)   UINT32_FORMAT_W(width)
1095#define SSIZE_FORMAT_W(width)   INT32_FORMAT_W(width)
1096#define SIZE_FORMAT_W(width)    UINT32_FORMAT_W(width)
1097#endif // _LP64
1098
1099// Format pointers and size_t (or size_t-like integer types) which change size
1100// between 32- and 64-bit. The pointer format theoretically should be "%p",
1101// however, it has different output on different platforms. On Windows, the data
1102// will be padded with zeros automatically. On Solaris, we can use "%016p" &
1103// "%08p" on 64 bit & 32 bit platforms to make the data padded with extra zeros.
1104// On Linux, "%016p" or "%08p" is not be allowed, at least on the latest GCC
1105// 4.3.2. So we have to use "%016x" or "%08x" to simulate the printing format.
1106// GCC 4.3.2, however requires the data to be converted to "intptr_t" when
1107// using "%x".
1108#ifdef  _LP64
1109#define PTR_FORMAT    PTR64_FORMAT
1110#define UINTX_FORMAT  UINT64_FORMAT
1111#define INTX_FORMAT   INT64_FORMAT
1112#define SIZE_FORMAT   UINT64_FORMAT
1113#define SSIZE_FORMAT  INT64_FORMAT
1114#else   // !_LP64
1115#define PTR_FORMAT    PTR32_FORMAT
1116#define UINTX_FORMAT  UINT32_FORMAT
1117#define INTX_FORMAT   INT32_FORMAT
1118#define SIZE_FORMAT   UINT32_FORMAT
1119#define SSIZE_FORMAT  INT32_FORMAT
1120#endif  // _LP64
1121
1122#define INTPTR_FORMAT PTR_FORMAT
1123
1124// Enable zap-a-lot if in debug version.
1125
1126# ifdef ASSERT
1127# ifdef COMPILER2
1128#   define ENABLE_ZAP_DEAD_LOCALS
1129#endif /* COMPILER2 */
1130# endif /* ASSERT */
1131
1132#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1133