globalDefinitions.hpp revision 4802:f2110083203d
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
26#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
27
28#ifndef __STDC_FORMAT_MACROS
29#define __STDC_FORMAT_MACROS
30#endif
31
32#ifdef TARGET_COMPILER_gcc
33# include "utilities/globalDefinitions_gcc.hpp"
34#endif
35#ifdef TARGET_COMPILER_visCPP
36# include "utilities/globalDefinitions_visCPP.hpp"
37#endif
38#ifdef TARGET_COMPILER_sparcWorks
39# include "utilities/globalDefinitions_sparcWorks.hpp"
40#endif
41
42#include "utilities/macros.hpp"
43
44// This file holds all globally used constants & types, class (forward)
45// declarations and a few frequently used utility functions.
46
47//----------------------------------------------------------------------------------------------------
48// Constants
49
50const int LogBytesPerShort   = 1;
51const int LogBytesPerInt     = 2;
52#ifdef _LP64
53const int LogBytesPerWord    = 3;
54#else
55const int LogBytesPerWord    = 2;
56#endif
57const int LogBytesPerLong    = 3;
58
59const int BytesPerShort      = 1 << LogBytesPerShort;
60const int BytesPerInt        = 1 << LogBytesPerInt;
61const int BytesPerWord       = 1 << LogBytesPerWord;
62const int BytesPerLong       = 1 << LogBytesPerLong;
63
64const int LogBitsPerByte     = 3;
65const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
66const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
67const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
68const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
69
70const int BitsPerByte        = 1 << LogBitsPerByte;
71const int BitsPerShort       = 1 << LogBitsPerShort;
72const int BitsPerInt         = 1 << LogBitsPerInt;
73const int BitsPerWord        = 1 << LogBitsPerWord;
74const int BitsPerLong        = 1 << LogBitsPerLong;
75
76const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
77const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
78
79const int WordsPerLong       = 2;       // Number of stack entries for longs
80
81const int oopSize            = sizeof(char*); // Full-width oop
82extern int heapOopSize;                       // Oop within a java object
83const int wordSize           = sizeof(char*);
84const int longSize           = sizeof(jlong);
85const int jintSize           = sizeof(jint);
86const int size_tSize         = sizeof(size_t);
87
88const int BytesPerOop        = BytesPerWord;  // Full-width oop
89
90extern int LogBytesPerHeapOop;                // Oop within a java object
91extern int LogBitsPerHeapOop;
92extern int BytesPerHeapOop;
93extern int BitsPerHeapOop;
94
95// Oop encoding heap max
96extern uint64_t OopEncodingHeapMax;
97
98const int BitsPerJavaInteger = 32;
99const int BitsPerJavaLong    = 64;
100const int BitsPerSize_t      = size_tSize * BitsPerByte;
101
102// Size of a char[] needed to represent a jint as a string in decimal.
103const int jintAsStringSize = 12;
104
105// In fact this should be
106// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
107// see os::set_memory_serialize_page()
108#ifdef _LP64
109const int SerializePageShiftCount = 4;
110#else
111const int SerializePageShiftCount = 3;
112#endif
113
114// An opaque struct of heap-word width, so that HeapWord* can be a generic
115// pointer into the heap.  We require that object sizes be measured in
116// units of heap words, so that that
117//   HeapWord* hw;
118//   hw += oop(hw)->foo();
119// works, where foo is a method (like size or scavenge) that returns the
120// object size.
121class HeapWord {
122  friend class VMStructs;
123 private:
124  char* i;
125#ifndef PRODUCT
126 public:
127  char* value() { return i; }
128#endif
129};
130
131// Analogous opaque struct for metadata allocated from
132// metaspaces.
133class MetaWord {
134  friend class VMStructs;
135 private:
136  char* i;
137};
138
139// HeapWordSize must be 2^LogHeapWordSize.
140const int HeapWordSize        = sizeof(HeapWord);
141#ifdef _LP64
142const int LogHeapWordSize     = 3;
143#else
144const int LogHeapWordSize     = 2;
145#endif
146const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
147const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
148
149// The larger HeapWordSize for 64bit requires larger heaps
150// for the same application running in 64bit.  See bug 4967770.
151// The minimum alignment to a heap word size is done.  Other
152// parts of the memory system may required additional alignment
153// and are responsible for those alignments.
154#ifdef _LP64
155#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
156#else
157#define ScaleForWordSize(x) (x)
158#endif
159
160// The minimum number of native machine words necessary to contain "byte_size"
161// bytes.
162inline size_t heap_word_size(size_t byte_size) {
163  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
164}
165
166
167const size_t K                  = 1024;
168const size_t M                  = K*K;
169const size_t G                  = M*K;
170const size_t HWperKB            = K / sizeof(HeapWord);
171
172const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
173const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
174
175// Constants for converting from a base unit to milli-base units.  For
176// example from seconds to milliseconds and microseconds
177
178const int MILLIUNITS    = 1000;         // milli units per base unit
179const int MICROUNITS    = 1000000;      // micro units per base unit
180const int NANOUNITS     = 1000000000;   // nano units per base unit
181
182const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
183const jint  NANOSECS_PER_MILLISEC = 1000000;
184
185inline const char* proper_unit_for_byte_size(size_t s) {
186#ifdef _LP64
187  if (s >= 10*G) {
188    return "G";
189  }
190#endif
191  if (s >= 10*M) {
192    return "M";
193  } else if (s >= 10*K) {
194    return "K";
195  } else {
196    return "B";
197  }
198}
199
200template <class T>
201inline T byte_size_in_proper_unit(T s) {
202#ifdef _LP64
203  if (s >= 10*G) {
204    return (T)(s/G);
205  }
206#endif
207  if (s >= 10*M) {
208    return (T)(s/M);
209  } else if (s >= 10*K) {
210    return (T)(s/K);
211  } else {
212    return s;
213  }
214}
215
216//----------------------------------------------------------------------------------------------------
217// VM type definitions
218
219// intx and uintx are the 'extended' int and 'extended' unsigned int types;
220// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
221
222typedef intptr_t  intx;
223typedef uintptr_t uintx;
224
225const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
226const intx  max_intx  = (uintx)min_intx - 1;
227const uintx max_uintx = (uintx)-1;
228
229// Table of values:
230//      sizeof intx         4               8
231// min_intx             0x80000000      0x8000000000000000
232// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
233// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
234
235typedef unsigned int uint;   NEEDS_CLEANUP
236
237
238//----------------------------------------------------------------------------------------------------
239// Java type definitions
240
241// All kinds of 'plain' byte addresses
242typedef   signed char s_char;
243typedef unsigned char u_char;
244typedef u_char*       address;
245typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
246                                    // except for some implementations of a C++
247                                    // linkage pointer to function. Should never
248                                    // need one of those to be placed in this
249                                    // type anyway.
250
251//  Utility functions to "portably" (?) bit twiddle pointers
252//  Where portable means keep ANSI C++ compilers quiet
253
254inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
255inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
256
257//  Utility functions to "portably" make cast to/from function pointers.
258
259inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
260inline address_word  castable_address(address x)              { return address_word(x) ; }
261inline address_word  castable_address(void* x)                { return address_word(x) ; }
262
263// Pointer subtraction.
264// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
265// the range we might need to find differences from one end of the heap
266// to the other.
267// A typical use might be:
268//     if (pointer_delta(end(), top()) >= size) {
269//       // enough room for an object of size
270//       ...
271// and then additions like
272//       ... top() + size ...
273// are safe because we know that top() is at least size below end().
274inline size_t pointer_delta(const void* left,
275                            const void* right,
276                            size_t element_size) {
277  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
278}
279// A version specialized for HeapWord*'s.
280inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
281  return pointer_delta(left, right, sizeof(HeapWord));
282}
283// A version specialized for MetaWord*'s.
284inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
285  return pointer_delta(left, right, sizeof(MetaWord));
286}
287
288//
289// ANSI C++ does not allow casting from one pointer type to a function pointer
290// directly without at best a warning. This macro accomplishes it silently
291// In every case that is present at this point the value be cast is a pointer
292// to a C linkage function. In somecase the type used for the cast reflects
293// that linkage and a picky compiler would not complain. In other cases because
294// there is no convenient place to place a typedef with extern C linkage (i.e
295// a platform dependent header file) it doesn't. At this point no compiler seems
296// picky enough to catch these instances (which are few). It is possible that
297// using templates could fix these for all cases. This use of templates is likely
298// so far from the middle of the road that it is likely to be problematic in
299// many C++ compilers.
300//
301#define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
302#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
303
304// Unsigned byte types for os and stream.hpp
305
306// Unsigned one, two, four and eigth byte quantities used for describing
307// the .class file format. See JVM book chapter 4.
308
309typedef jubyte  u1;
310typedef jushort u2;
311typedef juint   u4;
312typedef julong  u8;
313
314const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
315const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
316const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
317const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
318
319typedef jbyte  s1;
320typedef jshort s2;
321typedef jint   s4;
322typedef jlong  s8;
323
324//----------------------------------------------------------------------------------------------------
325// JVM spec restrictions
326
327const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
328
329
330//----------------------------------------------------------------------------------------------------
331// Default and minimum StringTableSize values
332
333const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
334const int minimumStringTableSize=1009;
335
336
337//----------------------------------------------------------------------------------------------------
338// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
339//
340// Determines whether on-the-fly class replacement and frame popping are enabled.
341
342#define HOTSWAP
343
344//----------------------------------------------------------------------------------------------------
345// Object alignment, in units of HeapWords.
346//
347// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
348// reference fields can be naturally aligned.
349
350extern int MinObjAlignment;
351extern int MinObjAlignmentInBytes;
352extern int MinObjAlignmentInBytesMask;
353
354extern int LogMinObjAlignment;
355extern int LogMinObjAlignmentInBytes;
356
357const int LogKlassAlignmentInBytes = 3;
358const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
359const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
360const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
361
362// Klass encoding metaspace max size
363const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
364
365// Machine dependent stuff
366
367#ifdef TARGET_ARCH_x86
368# include "globalDefinitions_x86.hpp"
369#endif
370#ifdef TARGET_ARCH_sparc
371# include "globalDefinitions_sparc.hpp"
372#endif
373#ifdef TARGET_ARCH_zero
374# include "globalDefinitions_zero.hpp"
375#endif
376#ifdef TARGET_ARCH_arm
377# include "globalDefinitions_arm.hpp"
378#endif
379#ifdef TARGET_ARCH_ppc
380# include "globalDefinitions_ppc.hpp"
381#endif
382
383/*
384 * If a platform does not support NMT_detail
385 * the platform specific globalDefinitions (above)
386 * can set PLATFORM_NMT_DETAIL_SUPPORTED to false
387 */
388#ifndef PLATFORM_NMT_DETAIL_SUPPORTED
389#define PLATFORM_NMT_DETAIL_SUPPORTED true
390#endif
391
392// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
393// Note: this value must be a power of 2
394
395#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
396
397// Signed variants of alignment helpers.  There are two versions of each, a macro
398// for use in places like enum definitions that require compile-time constant
399// expressions and a function for all other places so as to get type checking.
400
401#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
402
403inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
404  return align_size_up_(size, alignment);
405}
406
407#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
408
409inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
410  return align_size_down_(size, alignment);
411}
412
413// Align objects by rounding up their size, in HeapWord units.
414
415#define align_object_size_(size) align_size_up_(size, MinObjAlignment)
416
417inline intptr_t align_object_size(intptr_t size) {
418  return align_size_up(size, MinObjAlignment);
419}
420
421inline bool is_object_aligned(intptr_t addr) {
422  return addr == align_object_size(addr);
423}
424
425// Pad out certain offsets to jlong alignment, in HeapWord units.
426
427inline intptr_t align_object_offset(intptr_t offset) {
428  return align_size_up(offset, HeapWordsPerLong);
429}
430
431// Clamp an address to be within a specific page
432// 1. If addr is on the page it is returned as is
433// 2. If addr is above the page_address the start of the *next* page will be returned
434// 3. Otherwise, if addr is below the page_address the start of the page will be returned
435inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
436  if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
437    // address is in the specified page, just return it as is
438    return addr;
439  } else if (addr > page_address) {
440    // address is above specified page, return start of next page
441    return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
442  } else {
443    // address is below specified page, return start of page
444    return (address)align_size_down(intptr_t(page_address), page_size);
445  }
446}
447
448
449// The expected size in bytes of a cache line, used to pad data structures.
450#define DEFAULT_CACHE_LINE_SIZE 64
451
452// Bytes needed to pad type to avoid cache-line sharing; alignment should be the
453// expected cache line size (a power of two).  The first addend avoids sharing
454// when the start address is not a multiple of alignment; the second maintains
455// alignment of starting addresses that happen to be a multiple.
456#define PADDING_SIZE(type, alignment)                           \
457  ((alignment) + align_size_up_(sizeof(type), alignment))
458
459// Templates to create a subclass padded to avoid cache line sharing.  These are
460// effective only when applied to derived-most (leaf) classes.
461
462// When no args are passed to the base ctor.
463template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
464class Padded: public T {
465private:
466  char _pad_buf_[PADDING_SIZE(T, alignment)];
467};
468
469// When either 0 or 1 args may be passed to the base ctor.
470template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
471class Padded01: public T {
472public:
473  Padded01(): T() { }
474  Padded01(Arg1T arg1): T(arg1) { }
475private:
476  char _pad_buf_[PADDING_SIZE(T, alignment)];
477};
478
479//----------------------------------------------------------------------------------------------------
480// Utility macros for compilers
481// used to silence compiler warnings
482
483#define Unused_Variable(var) var
484
485
486//----------------------------------------------------------------------------------------------------
487// Miscellaneous
488
489// 6302670 Eliminate Hotspot __fabsf dependency
490// All fabs() callers should call this function instead, which will implicitly
491// convert the operand to double, avoiding a dependency on __fabsf which
492// doesn't exist in early versions of Solaris 8.
493inline double fabsd(double value) {
494  return fabs(value);
495}
496
497inline jint low (jlong value)                    { return jint(value); }
498inline jint high(jlong value)                    { return jint(value >> 32); }
499
500// the fancy casts are a hopefully portable way
501// to do unsigned 32 to 64 bit type conversion
502inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
503                                                   *value |= (jlong)(julong)(juint)low; }
504
505inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
506                                                   *value |= (jlong)high       << 32; }
507
508inline jlong jlong_from(jint h, jint l) {
509  jlong result = 0; // initialization to avoid warning
510  set_high(&result, h);
511  set_low(&result,  l);
512  return result;
513}
514
515union jlong_accessor {
516  jint  words[2];
517  jlong long_value;
518};
519
520void basic_types_init(); // cannot define here; uses assert
521
522
523// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
524enum BasicType {
525  T_BOOLEAN     =  4,
526  T_CHAR        =  5,
527  T_FLOAT       =  6,
528  T_DOUBLE      =  7,
529  T_BYTE        =  8,
530  T_SHORT       =  9,
531  T_INT         = 10,
532  T_LONG        = 11,
533  T_OBJECT      = 12,
534  T_ARRAY       = 13,
535  T_VOID        = 14,
536  T_ADDRESS     = 15,
537  T_NARROWOOP   = 16,
538  T_METADATA    = 17,
539  T_NARROWKLASS = 18,
540  T_CONFLICT    = 19, // for stack value type with conflicting contents
541  T_ILLEGAL     = 99
542};
543
544inline bool is_java_primitive(BasicType t) {
545  return T_BOOLEAN <= t && t <= T_LONG;
546}
547
548inline bool is_subword_type(BasicType t) {
549  // these guys are processed exactly like T_INT in calling sequences:
550  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
551}
552
553inline bool is_signed_subword_type(BasicType t) {
554  return (t == T_BYTE || t == T_SHORT);
555}
556
557// Convert a char from a classfile signature to a BasicType
558inline BasicType char2type(char c) {
559  switch( c ) {
560  case 'B': return T_BYTE;
561  case 'C': return T_CHAR;
562  case 'D': return T_DOUBLE;
563  case 'F': return T_FLOAT;
564  case 'I': return T_INT;
565  case 'J': return T_LONG;
566  case 'S': return T_SHORT;
567  case 'Z': return T_BOOLEAN;
568  case 'V': return T_VOID;
569  case 'L': return T_OBJECT;
570  case '[': return T_ARRAY;
571  }
572  return T_ILLEGAL;
573}
574
575extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
576inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
577extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
578extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
579inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
580extern BasicType name2type(const char* name);
581
582// Auxilary math routines
583// least common multiple
584extern size_t lcm(size_t a, size_t b);
585
586
587// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
588enum BasicTypeSize {
589  T_BOOLEAN_size     = 1,
590  T_CHAR_size        = 1,
591  T_FLOAT_size       = 1,
592  T_DOUBLE_size      = 2,
593  T_BYTE_size        = 1,
594  T_SHORT_size       = 1,
595  T_INT_size         = 1,
596  T_LONG_size        = 2,
597  T_OBJECT_size      = 1,
598  T_ARRAY_size       = 1,
599  T_NARROWOOP_size   = 1,
600  T_NARROWKLASS_size = 1,
601  T_VOID_size        = 0
602};
603
604
605// maps a BasicType to its instance field storage type:
606// all sub-word integral types are widened to T_INT
607extern BasicType type2field[T_CONFLICT+1];
608extern BasicType type2wfield[T_CONFLICT+1];
609
610
611// size in bytes
612enum ArrayElementSize {
613  T_BOOLEAN_aelem_bytes     = 1,
614  T_CHAR_aelem_bytes        = 2,
615  T_FLOAT_aelem_bytes       = 4,
616  T_DOUBLE_aelem_bytes      = 8,
617  T_BYTE_aelem_bytes        = 1,
618  T_SHORT_aelem_bytes       = 2,
619  T_INT_aelem_bytes         = 4,
620  T_LONG_aelem_bytes        = 8,
621#ifdef _LP64
622  T_OBJECT_aelem_bytes      = 8,
623  T_ARRAY_aelem_bytes       = 8,
624#else
625  T_OBJECT_aelem_bytes      = 4,
626  T_ARRAY_aelem_bytes       = 4,
627#endif
628  T_NARROWOOP_aelem_bytes   = 4,
629  T_NARROWKLASS_aelem_bytes = 4,
630  T_VOID_aelem_bytes        = 0
631};
632
633extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
634#ifdef ASSERT
635extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
636#else
637inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
638#endif
639
640
641// JavaValue serves as a container for arbitrary Java values.
642
643class JavaValue {
644
645 public:
646  typedef union JavaCallValue {
647    jfloat   f;
648    jdouble  d;
649    jint     i;
650    jlong    l;
651    jobject  h;
652  } JavaCallValue;
653
654 private:
655  BasicType _type;
656  JavaCallValue _value;
657
658 public:
659  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
660
661  JavaValue(jfloat value) {
662    _type    = T_FLOAT;
663    _value.f = value;
664  }
665
666  JavaValue(jdouble value) {
667    _type    = T_DOUBLE;
668    _value.d = value;
669  }
670
671 jfloat get_jfloat() const { return _value.f; }
672 jdouble get_jdouble() const { return _value.d; }
673 jint get_jint() const { return _value.i; }
674 jlong get_jlong() const { return _value.l; }
675 jobject get_jobject() const { return _value.h; }
676 JavaCallValue* get_value_addr() { return &_value; }
677 BasicType get_type() const { return _type; }
678
679 void set_jfloat(jfloat f) { _value.f = f;}
680 void set_jdouble(jdouble d) { _value.d = d;}
681 void set_jint(jint i) { _value.i = i;}
682 void set_jlong(jlong l) { _value.l = l;}
683 void set_jobject(jobject h) { _value.h = h;}
684 void set_type(BasicType t) { _type = t; }
685
686 jboolean get_jboolean() const { return (jboolean) (_value.i);}
687 jbyte get_jbyte() const { return (jbyte) (_value.i);}
688 jchar get_jchar() const { return (jchar) (_value.i);}
689 jshort get_jshort() const { return (jshort) (_value.i);}
690
691};
692
693
694#define STACK_BIAS      0
695// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
696// in order to extend the reach of the stack pointer.
697#if defined(SPARC) && defined(_LP64)
698#undef STACK_BIAS
699#define STACK_BIAS      0x7ff
700#endif
701
702
703// TosState describes the top-of-stack state before and after the execution of
704// a bytecode or method. The top-of-stack value may be cached in one or more CPU
705// registers. The TosState corresponds to the 'machine represention' of this cached
706// value. There's 4 states corresponding to the JAVA types int, long, float & double
707// as well as a 5th state in case the top-of-stack value is actually on the top
708// of stack (in memory) and thus not cached. The atos state corresponds to the itos
709// state when it comes to machine representation but is used separately for (oop)
710// type specific operations (e.g. verification code).
711
712enum TosState {         // describes the tos cache contents
713  btos = 0,             // byte, bool tos cached
714  ctos = 1,             // char tos cached
715  stos = 2,             // short tos cached
716  itos = 3,             // int tos cached
717  ltos = 4,             // long tos cached
718  ftos = 5,             // float tos cached
719  dtos = 6,             // double tos cached
720  atos = 7,             // object cached
721  vtos = 8,             // tos not cached
722  number_of_states,
723  ilgl                  // illegal state: should not occur
724};
725
726
727inline TosState as_TosState(BasicType type) {
728  switch (type) {
729    case T_BYTE   : return btos;
730    case T_BOOLEAN: return btos; // FIXME: Add ztos
731    case T_CHAR   : return ctos;
732    case T_SHORT  : return stos;
733    case T_INT    : return itos;
734    case T_LONG   : return ltos;
735    case T_FLOAT  : return ftos;
736    case T_DOUBLE : return dtos;
737    case T_VOID   : return vtos;
738    case T_ARRAY  : // fall through
739    case T_OBJECT : return atos;
740  }
741  return ilgl;
742}
743
744inline BasicType as_BasicType(TosState state) {
745  switch (state) {
746    //case ztos: return T_BOOLEAN;//FIXME
747    case btos : return T_BYTE;
748    case ctos : return T_CHAR;
749    case stos : return T_SHORT;
750    case itos : return T_INT;
751    case ltos : return T_LONG;
752    case ftos : return T_FLOAT;
753    case dtos : return T_DOUBLE;
754    case atos : return T_OBJECT;
755    case vtos : return T_VOID;
756  }
757  return T_ILLEGAL;
758}
759
760
761// Helper function to convert BasicType info into TosState
762// Note: Cannot define here as it uses global constant at the time being.
763TosState as_TosState(BasicType type);
764
765
766// JavaThreadState keeps track of which part of the code a thread is executing in. This
767// information is needed by the safepoint code.
768//
769// There are 4 essential states:
770//
771//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
772//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
773//  _thread_in_vm       : Executing in the vm
774//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
775//
776// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
777// a transition from one state to another. These extra states makes it possible for the safepoint code to
778// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
779//
780// Given a state, the xxx_trans state can always be found by adding 1.
781//
782enum JavaThreadState {
783  _thread_uninitialized     =  0, // should never happen (missing initialization)
784  _thread_new               =  2, // just starting up, i.e., in process of being initialized
785  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
786  _thread_in_native         =  4, // running in native code
787  _thread_in_native_trans   =  5, // corresponding transition state
788  _thread_in_vm             =  6, // running in VM
789  _thread_in_vm_trans       =  7, // corresponding transition state
790  _thread_in_Java           =  8, // running in Java or in stub code
791  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
792  _thread_blocked           = 10, // blocked in vm
793  _thread_blocked_trans     = 11, // corresponding transition state
794  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
795};
796
797
798// Handy constants for deciding which compiler mode to use.
799enum MethodCompilation {
800  InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
801  InvalidOSREntryBci = -2
802};
803
804// Enumeration to distinguish tiers of compilation
805enum CompLevel {
806  CompLevel_any               = -1,
807  CompLevel_all               = -1,
808  CompLevel_none              = 0,         // Interpreter
809  CompLevel_simple            = 1,         // C1
810  CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
811  CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
812  CompLevel_full_optimization = 4,         // C2 or Shark
813
814#if defined(COMPILER2) || defined(SHARK)
815  CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
816#elif defined(COMPILER1)
817  CompLevel_highest_tier      = CompLevel_simple,             // pure C1
818#else
819  CompLevel_highest_tier      = CompLevel_none,
820#endif
821
822#if defined(TIERED)
823  CompLevel_initial_compile   = CompLevel_full_profile        // tiered
824#elif defined(COMPILER1)
825  CompLevel_initial_compile   = CompLevel_simple              // pure C1
826#elif defined(COMPILER2) || defined(SHARK)
827  CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
828#else
829  CompLevel_initial_compile   = CompLevel_none
830#endif
831};
832
833inline bool is_c1_compile(int comp_level) {
834  return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
835}
836
837inline bool is_c2_compile(int comp_level) {
838  return comp_level == CompLevel_full_optimization;
839}
840
841inline bool is_highest_tier_compile(int comp_level) {
842  return comp_level == CompLevel_highest_tier;
843}
844
845inline bool is_compile(int comp_level) {
846  return is_c1_compile(comp_level) || is_c2_compile(comp_level);
847}
848
849//----------------------------------------------------------------------------------------------------
850// 'Forward' declarations of frequently used classes
851// (in order to reduce interface dependencies & reduce
852// number of unnecessary compilations after changes)
853
854class symbolTable;
855class ClassFileStream;
856
857class Event;
858
859class Thread;
860class  VMThread;
861class  JavaThread;
862class Threads;
863
864class VM_Operation;
865class VMOperationQueue;
866
867class CodeBlob;
868class  nmethod;
869class  OSRAdapter;
870class  I2CAdapter;
871class  C2IAdapter;
872class CompiledIC;
873class relocInfo;
874class ScopeDesc;
875class PcDesc;
876
877class Recompiler;
878class Recompilee;
879class RecompilationPolicy;
880class RFrame;
881class  CompiledRFrame;
882class  InterpretedRFrame;
883
884class frame;
885
886class vframe;
887class   javaVFrame;
888class     interpretedVFrame;
889class     compiledVFrame;
890class     deoptimizedVFrame;
891class   externalVFrame;
892class     entryVFrame;
893
894class RegisterMap;
895
896class Mutex;
897class Monitor;
898class BasicLock;
899class BasicObjectLock;
900
901class PeriodicTask;
902
903class JavaCallWrapper;
904
905class   oopDesc;
906class   metaDataOopDesc;
907
908class NativeCall;
909
910class zone;
911
912class StubQueue;
913
914class outputStream;
915
916class ResourceArea;
917
918class DebugInformationRecorder;
919class ScopeValue;
920class CompressedStream;
921class   DebugInfoReadStream;
922class   DebugInfoWriteStream;
923class LocationValue;
924class ConstantValue;
925class IllegalValue;
926
927class PrivilegedElement;
928class MonitorArray;
929
930class MonitorInfo;
931
932class OffsetClosure;
933class OopMapCache;
934class InterpreterOopMap;
935class OopMapCacheEntry;
936class OSThread;
937
938typedef int (*OSThreadStartFunc)(void*);
939
940class Space;
941
942class JavaValue;
943class methodHandle;
944class JavaCallArguments;
945
946// Basic support for errors (general debug facilities not defined at this point fo the include phase)
947
948extern void basic_fatal(const char* msg);
949
950
951//----------------------------------------------------------------------------------------------------
952// Special constants for debugging
953
954const jint     badInt           = -3;                       // generic "bad int" value
955const long     badAddressVal    = -2;                       // generic "bad address" value
956const long     badOopVal        = -1;                       // generic "bad oop" value
957const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
958const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
959const int      badResourceValue = 0xAB;                     // value used to zap resource area
960const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
961const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
962const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
963const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
964const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
965const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
966const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
967
968
969// (These must be implemented as #defines because C++ compilers are
970// not obligated to inline non-integral constants!)
971#define       badAddress        ((address)::badAddressVal)
972#define       badOop            ((oop)::badOopVal)
973#define       badHeapWord       (::badHeapWordVal)
974#define       badJNIHandle      ((oop)::badJNIHandleVal)
975
976// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
977#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
978
979//----------------------------------------------------------------------------------------------------
980// Utility functions for bitfield manipulations
981
982const intptr_t AllBits    = ~0; // all bits set in a word
983const intptr_t NoBits     =  0; // no bits set in a word
984const jlong    NoLongBits =  0; // no bits set in a long
985const intptr_t OneBit     =  1; // only right_most bit set in a word
986
987// get a word with the n.th or the right-most or left-most n bits set
988// (note: #define used only so that they can be used in enum constant definitions)
989#define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
990#define right_n_bits(n)   (nth_bit(n) - 1)
991#define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
992
993// bit-operations using a mask m
994inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
995inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
996inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
997inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
998inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
999
1000// bit-operations using the n.th bit
1001inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1002inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1003inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1004
1005// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1006inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1007  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1008}
1009
1010
1011//----------------------------------------------------------------------------------------------------
1012// Utility functions for integers
1013
1014// Avoid use of global min/max macros which may cause unwanted double
1015// evaluation of arguments.
1016#ifdef max
1017#undef max
1018#endif
1019
1020#ifdef min
1021#undef min
1022#endif
1023
1024#define max(a,b) Do_not_use_max_use_MAX2_instead
1025#define min(a,b) Do_not_use_min_use_MIN2_instead
1026
1027// It is necessary to use templates here. Having normal overloaded
1028// functions does not work because it is necessary to provide both 32-
1029// and 64-bit overloaded functions, which does not work, and having
1030// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1031// will be even more error-prone than macros.
1032template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1033template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1034template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1035template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1036template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1037template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1038
1039template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1040
1041// true if x is a power of 2, false otherwise
1042inline bool is_power_of_2(intptr_t x) {
1043  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1044}
1045
1046// long version of is_power_of_2
1047inline bool is_power_of_2_long(jlong x) {
1048  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1049}
1050
1051//* largest i such that 2^i <= x
1052//  A negative value of 'x' will return '31'
1053inline int log2_intptr(intptr_t x) {
1054  int i = -1;
1055  uintptr_t p =  1;
1056  while (p != 0 && p <= (uintptr_t)x) {
1057    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1058    i++; p *= 2;
1059  }
1060  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1061  // (if p = 0 then overflow occurred and i = 31)
1062  return i;
1063}
1064
1065//* largest i such that 2^i <= x
1066//  A negative value of 'x' will return '63'
1067inline int log2_long(jlong x) {
1068  int i = -1;
1069  julong p =  1;
1070  while (p != 0 && p <= (julong)x) {
1071    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1072    i++; p *= 2;
1073  }
1074  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1075  // (if p = 0 then overflow occurred and i = 63)
1076  return i;
1077}
1078
1079//* the argument must be exactly a power of 2
1080inline int exact_log2(intptr_t x) {
1081  #ifdef ASSERT
1082    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1083  #endif
1084  return log2_intptr(x);
1085}
1086
1087//* the argument must be exactly a power of 2
1088inline int exact_log2_long(jlong x) {
1089  #ifdef ASSERT
1090    if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1091  #endif
1092  return log2_long(x);
1093}
1094
1095
1096// returns integer round-up to the nearest multiple of s (s must be a power of two)
1097inline intptr_t round_to(intptr_t x, uintx s) {
1098  #ifdef ASSERT
1099    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1100  #endif
1101  const uintx m = s - 1;
1102  return mask_bits(x + m, ~m);
1103}
1104
1105// returns integer round-down to the nearest multiple of s (s must be a power of two)
1106inline intptr_t round_down(intptr_t x, uintx s) {
1107  #ifdef ASSERT
1108    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1109  #endif
1110  const uintx m = s - 1;
1111  return mask_bits(x, ~m);
1112}
1113
1114
1115inline bool is_odd (intx x) { return x & 1;      }
1116inline bool is_even(intx x) { return !is_odd(x); }
1117
1118// "to" should be greater than "from."
1119inline intx byte_size(void* from, void* to) {
1120  return (address)to - (address)from;
1121}
1122
1123//----------------------------------------------------------------------------------------------------
1124// Avoid non-portable casts with these routines (DEPRECATED)
1125
1126// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1127//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1128
1129// Given sequence of four bytes, build into a 32-bit word
1130// following the conventions used in class files.
1131// On the 386, this could be realized with a simple address cast.
1132//
1133
1134// This routine takes eight bytes:
1135inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1136  return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1137       |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1138       |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1139       |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1140       |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1141       |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1142       |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1143       |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1144}
1145
1146// This routine takes four bytes:
1147inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1148  return  (( u4(c1) << 24 )  &  0xff000000)
1149       |  (( u4(c2) << 16 )  &  0x00ff0000)
1150       |  (( u4(c3) <<  8 )  &  0x0000ff00)
1151       |  (( u4(c4) <<  0 )  &  0x000000ff);
1152}
1153
1154// And this one works if the four bytes are contiguous in memory:
1155inline u4 build_u4_from( u1* p ) {
1156  return  build_u4_from( p[0], p[1], p[2], p[3] );
1157}
1158
1159// Ditto for two-byte ints:
1160inline u2 build_u2_from( u1 c1, u1 c2 ) {
1161  return  u2((( u2(c1) <<  8 )  &  0xff00)
1162          |  (( u2(c2) <<  0 )  &  0x00ff));
1163}
1164
1165// And this one works if the two bytes are contiguous in memory:
1166inline u2 build_u2_from( u1* p ) {
1167  return  build_u2_from( p[0], p[1] );
1168}
1169
1170// Ditto for floats:
1171inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1172  u4 u = build_u4_from( c1, c2, c3, c4 );
1173  return  *(jfloat*)&u;
1174}
1175
1176inline jfloat build_float_from( u1* p ) {
1177  u4 u = build_u4_from( p );
1178  return  *(jfloat*)&u;
1179}
1180
1181
1182// now (64-bit) longs
1183
1184inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1185  return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1186       |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1187       |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1188       |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1189       |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1190       |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1191       |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1192       |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1193}
1194
1195inline jlong build_long_from( u1* p ) {
1196  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1197}
1198
1199
1200// Doubles, too!
1201inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1202  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1203  return  *(jdouble*)&u;
1204}
1205
1206inline jdouble build_double_from( u1* p ) {
1207  jlong u = build_long_from( p );
1208  return  *(jdouble*)&u;
1209}
1210
1211
1212// Portable routines to go the other way:
1213
1214inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1215  c1 = u1(x >> 8);
1216  c2 = u1(x);
1217}
1218
1219inline void explode_short_to( u2 x, u1* p ) {
1220  explode_short_to( x, p[0], p[1]);
1221}
1222
1223inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1224  c1 = u1(x >> 24);
1225  c2 = u1(x >> 16);
1226  c3 = u1(x >>  8);
1227  c4 = u1(x);
1228}
1229
1230inline void explode_int_to( u4 x, u1* p ) {
1231  explode_int_to( x, p[0], p[1], p[2], p[3]);
1232}
1233
1234
1235// Pack and extract shorts to/from ints:
1236
1237inline int extract_low_short_from_int(jint x) {
1238  return x & 0xffff;
1239}
1240
1241inline int extract_high_short_from_int(jint x) {
1242  return (x >> 16) & 0xffff;
1243}
1244
1245inline int build_int_from_shorts( jushort low, jushort high ) {
1246  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1247}
1248
1249// Printf-style formatters for fixed- and variable-width types as pointers and
1250// integers.  These are derived from the definitions in inttypes.h.  If the platform
1251// doesn't provide appropriate definitions, they should be provided in
1252// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1253
1254#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1255
1256// Format 32-bit quantities.
1257#define INT32_FORMAT           "%" PRId32
1258#define UINT32_FORMAT          "%" PRIu32
1259#define INT32_FORMAT_W(width)  "%" #width PRId32
1260#define UINT32_FORMAT_W(width) "%" #width PRIu32
1261
1262#define PTR32_FORMAT           "0x%08" PRIx32
1263
1264// Format 64-bit quantities.
1265#define INT64_FORMAT           "%" PRId64
1266#define UINT64_FORMAT          "%" PRIu64
1267#define INT64_FORMAT_W(width)  "%" #width PRId64
1268#define UINT64_FORMAT_W(width) "%" #width PRIu64
1269
1270#define PTR64_FORMAT           "0x%016" PRIx64
1271
1272// Format jlong, if necessary
1273#ifndef JLONG_FORMAT
1274#define JLONG_FORMAT           INT64_FORMAT
1275#endif
1276#ifndef JULONG_FORMAT
1277#define JULONG_FORMAT          UINT64_FORMAT
1278#endif
1279
1280// Format pointers which change size between 32- and 64-bit.
1281#ifdef  _LP64
1282#define INTPTR_FORMAT "0x%016" PRIxPTR
1283#define PTR_FORMAT    "0x%016" PRIxPTR
1284#else   // !_LP64
1285#define INTPTR_FORMAT "0x%08"  PRIxPTR
1286#define PTR_FORMAT    "0x%08"  PRIxPTR
1287#endif  // _LP64
1288
1289#define SSIZE_FORMAT          "%" PRIdPTR
1290#define SIZE_FORMAT           "%" PRIuPTR
1291#define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1292#define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
1293
1294#define INTX_FORMAT           "%" PRIdPTR
1295#define UINTX_FORMAT          "%" PRIuPTR
1296#define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1297#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1298
1299
1300// Enable zap-a-lot if in debug version.
1301
1302# ifdef ASSERT
1303# ifdef COMPILER2
1304#   define ENABLE_ZAP_DEAD_LOCALS
1305#endif /* COMPILER2 */
1306# endif /* ASSERT */
1307
1308#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1309
1310// Dereference vptr
1311// All C++ compilers that we know of have the vtbl pointer in the first
1312// word.  If there are exceptions, this function needs to be made compiler
1313// specific.
1314static inline void* dereference_vptr(void* addr) {
1315  return *(void**)addr;
1316}
1317
1318
1319#ifndef PRODUCT
1320
1321// For unit testing only
1322class GlobalDefinitions {
1323public:
1324  static void test_globals();
1325};
1326
1327#endif // PRODUCT
1328
1329#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
1330