globalDefinitions.hpp revision 4030:203f64878aab
1/*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
26#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
27
28#ifndef __STDC_FORMAT_MACROS
29#define __STDC_FORMAT_MACROS
30#endif
31
32#ifdef TARGET_COMPILER_gcc
33# include "utilities/globalDefinitions_gcc.hpp"
34#endif
35#ifdef TARGET_COMPILER_visCPP
36# include "utilities/globalDefinitions_visCPP.hpp"
37#endif
38#ifdef TARGET_COMPILER_sparcWorks
39# include "utilities/globalDefinitions_sparcWorks.hpp"
40#endif
41
42#include "utilities/macros.hpp"
43
44// This file holds all globally used constants & types, class (forward)
45// declarations and a few frequently used utility functions.
46
47//----------------------------------------------------------------------------------------------------
48// Constants
49
50const int LogBytesPerShort   = 1;
51const int LogBytesPerInt     = 2;
52#ifdef _LP64
53const int LogBytesPerWord    = 3;
54#else
55const int LogBytesPerWord    = 2;
56#endif
57const int LogBytesPerLong    = 3;
58
59const int BytesPerShort      = 1 << LogBytesPerShort;
60const int BytesPerInt        = 1 << LogBytesPerInt;
61const int BytesPerWord       = 1 << LogBytesPerWord;
62const int BytesPerLong       = 1 << LogBytesPerLong;
63
64const int LogBitsPerByte     = 3;
65const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
66const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
67const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
68const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
69
70const int BitsPerByte        = 1 << LogBitsPerByte;
71const int BitsPerShort       = 1 << LogBitsPerShort;
72const int BitsPerInt         = 1 << LogBitsPerInt;
73const int BitsPerWord        = 1 << LogBitsPerWord;
74const int BitsPerLong        = 1 << LogBitsPerLong;
75
76const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
77const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
78
79const int WordsPerLong       = 2;       // Number of stack entries for longs
80
81const int oopSize            = sizeof(char*); // Full-width oop
82extern int heapOopSize;                       // Oop within a java object
83const int wordSize           = sizeof(char*);
84const int longSize           = sizeof(jlong);
85const int jintSize           = sizeof(jint);
86const int size_tSize         = sizeof(size_t);
87
88const int BytesPerOop        = BytesPerWord;  // Full-width oop
89
90extern int LogBytesPerHeapOop;                // Oop within a java object
91extern int LogBitsPerHeapOop;
92extern int BytesPerHeapOop;
93extern int BitsPerHeapOop;
94
95// Oop encoding heap max
96extern uint64_t OopEncodingHeapMax;
97
98const int BitsPerJavaInteger = 32;
99const int BitsPerJavaLong    = 64;
100const int BitsPerSize_t      = size_tSize * BitsPerByte;
101
102// Size of a char[] needed to represent a jint as a string in decimal.
103const int jintAsStringSize = 12;
104
105// In fact this should be
106// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
107// see os::set_memory_serialize_page()
108#ifdef _LP64
109const int SerializePageShiftCount = 4;
110#else
111const int SerializePageShiftCount = 3;
112#endif
113
114// An opaque struct of heap-word width, so that HeapWord* can be a generic
115// pointer into the heap.  We require that object sizes be measured in
116// units of heap words, so that that
117//   HeapWord* hw;
118//   hw += oop(hw)->foo();
119// works, where foo is a method (like size or scavenge) that returns the
120// object size.
121class HeapWord {
122  friend class VMStructs;
123 private:
124  char* i;
125#ifndef PRODUCT
126 public:
127  char* value() { return i; }
128#endif
129};
130
131// Analogous opaque struct for metadata allocated from
132// metaspaces.
133class MetaWord {
134  friend class VMStructs;
135 private:
136  char* i;
137};
138
139// HeapWordSize must be 2^LogHeapWordSize.
140const int HeapWordSize        = sizeof(HeapWord);
141#ifdef _LP64
142const int LogHeapWordSize     = 3;
143#else
144const int LogHeapWordSize     = 2;
145#endif
146const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
147const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
148
149// The larger HeapWordSize for 64bit requires larger heaps
150// for the same application running in 64bit.  See bug 4967770.
151// The minimum alignment to a heap word size is done.  Other
152// parts of the memory system may required additional alignment
153// and are responsible for those alignments.
154#ifdef _LP64
155#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
156#else
157#define ScaleForWordSize(x) (x)
158#endif
159
160// The minimum number of native machine words necessary to contain "byte_size"
161// bytes.
162inline size_t heap_word_size(size_t byte_size) {
163  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
164}
165
166
167const size_t K                  = 1024;
168const size_t M                  = K*K;
169const size_t G                  = M*K;
170const size_t HWperKB            = K / sizeof(HeapWord);
171
172const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
173const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
174
175// Constants for converting from a base unit to milli-base units.  For
176// example from seconds to milliseconds and microseconds
177
178const int MILLIUNITS    = 1000;         // milli units per base unit
179const int MICROUNITS    = 1000000;      // micro units per base unit
180const int NANOUNITS     = 1000000000;   // nano units per base unit
181
182const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
183const jint  NANOSECS_PER_MILLISEC = 1000000;
184
185inline const char* proper_unit_for_byte_size(size_t s) {
186#ifdef _LP64
187  if (s >= 10*G) {
188    return "G";
189  }
190#endif
191  if (s >= 10*M) {
192    return "M";
193  } else if (s >= 10*K) {
194    return "K";
195  } else {
196    return "B";
197  }
198}
199
200template <class T>
201inline T byte_size_in_proper_unit(T s) {
202#ifdef _LP64
203  if (s >= 10*G) {
204    return (T)(s/G);
205  }
206#endif
207  if (s >= 10*M) {
208    return (T)(s/M);
209  } else if (s >= 10*K) {
210    return (T)(s/K);
211  } else {
212    return s;
213  }
214}
215
216//----------------------------------------------------------------------------------------------------
217// VM type definitions
218
219// intx and uintx are the 'extended' int and 'extended' unsigned int types;
220// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
221
222typedef intptr_t  intx;
223typedef uintptr_t uintx;
224
225const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
226const intx  max_intx  = (uintx)min_intx - 1;
227const uintx max_uintx = (uintx)-1;
228
229// Table of values:
230//      sizeof intx         4               8
231// min_intx             0x80000000      0x8000000000000000
232// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
233// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
234
235typedef unsigned int uint;   NEEDS_CLEANUP
236
237
238//----------------------------------------------------------------------------------------------------
239// Java type definitions
240
241// All kinds of 'plain' byte addresses
242typedef   signed char s_char;
243typedef unsigned char u_char;
244typedef u_char*       address;
245typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
246                                    // except for some implementations of a C++
247                                    // linkage pointer to function. Should never
248                                    // need one of those to be placed in this
249                                    // type anyway.
250
251//  Utility functions to "portably" (?) bit twiddle pointers
252//  Where portable means keep ANSI C++ compilers quiet
253
254inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
255inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
256
257//  Utility functions to "portably" make cast to/from function pointers.
258
259inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
260inline address_word  castable_address(address x)              { return address_word(x) ; }
261inline address_word  castable_address(void* x)                { return address_word(x) ; }
262
263// Pointer subtraction.
264// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
265// the range we might need to find differences from one end of the heap
266// to the other.
267// A typical use might be:
268//     if (pointer_delta(end(), top()) >= size) {
269//       // enough room for an object of size
270//       ...
271// and then additions like
272//       ... top() + size ...
273// are safe because we know that top() is at least size below end().
274inline size_t pointer_delta(const void* left,
275                            const void* right,
276                            size_t element_size) {
277  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
278}
279// A version specialized for HeapWord*'s.
280inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
281  return pointer_delta(left, right, sizeof(HeapWord));
282}
283// A version specialized for MetaWord*'s.
284inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
285  return pointer_delta(left, right, sizeof(MetaWord));
286}
287
288//
289// ANSI C++ does not allow casting from one pointer type to a function pointer
290// directly without at best a warning. This macro accomplishes it silently
291// In every case that is present at this point the value be cast is a pointer
292// to a C linkage function. In somecase the type used for the cast reflects
293// that linkage and a picky compiler would not complain. In other cases because
294// there is no convenient place to place a typedef with extern C linkage (i.e
295// a platform dependent header file) it doesn't. At this point no compiler seems
296// picky enough to catch these instances (which are few). It is possible that
297// using templates could fix these for all cases. This use of templates is likely
298// so far from the middle of the road that it is likely to be problematic in
299// many C++ compilers.
300//
301#define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
302#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
303
304// Unsigned byte types for os and stream.hpp
305
306// Unsigned one, two, four and eigth byte quantities used for describing
307// the .class file format. See JVM book chapter 4.
308
309typedef jubyte  u1;
310typedef jushort u2;
311typedef juint   u4;
312typedef julong  u8;
313
314const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
315const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
316const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
317const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
318
319typedef jbyte  s1;
320typedef jshort s2;
321typedef jint   s4;
322typedef jlong  s8;
323
324//----------------------------------------------------------------------------------------------------
325// JVM spec restrictions
326
327const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
328
329
330//----------------------------------------------------------------------------------------------------
331// Minimum StringTableSize value
332
333const int defaultStringTableSize=1009;
334
335
336//----------------------------------------------------------------------------------------------------
337// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
338//
339// Determines whether on-the-fly class replacement and frame popping are enabled.
340
341#define HOTSWAP
342
343//----------------------------------------------------------------------------------------------------
344// Object alignment, in units of HeapWords.
345//
346// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
347// reference fields can be naturally aligned.
348
349extern int MinObjAlignment;
350extern int MinObjAlignmentInBytes;
351extern int MinObjAlignmentInBytesMask;
352
353extern int LogMinObjAlignment;
354extern int LogMinObjAlignmentInBytes;
355
356const int LogKlassAlignmentInBytes = 3;
357const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
358const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
359const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
360
361// Klass encoding metaspace max size
362const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
363
364// Machine dependent stuff
365
366#ifdef TARGET_ARCH_x86
367# include "globalDefinitions_x86.hpp"
368#endif
369#ifdef TARGET_ARCH_sparc
370# include "globalDefinitions_sparc.hpp"
371#endif
372#ifdef TARGET_ARCH_zero
373# include "globalDefinitions_zero.hpp"
374#endif
375#ifdef TARGET_ARCH_arm
376# include "globalDefinitions_arm.hpp"
377#endif
378#ifdef TARGET_ARCH_ppc
379# include "globalDefinitions_ppc.hpp"
380#endif
381
382
383// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
384// Note: this value must be a power of 2
385
386#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
387
388// Signed variants of alignment helpers.  There are two versions of each, a macro
389// for use in places like enum definitions that require compile-time constant
390// expressions and a function for all other places so as to get type checking.
391
392#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
393
394inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
395  return align_size_up_(size, alignment);
396}
397
398#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
399
400inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
401  return align_size_down_(size, alignment);
402}
403
404// Align objects by rounding up their size, in HeapWord units.
405
406#define align_object_size_(size) align_size_up_(size, MinObjAlignment)
407
408inline intptr_t align_object_size(intptr_t size) {
409  return align_size_up(size, MinObjAlignment);
410}
411
412inline bool is_object_aligned(intptr_t addr) {
413  return addr == align_object_size(addr);
414}
415
416// Pad out certain offsets to jlong alignment, in HeapWord units.
417
418inline intptr_t align_object_offset(intptr_t offset) {
419  return align_size_up(offset, HeapWordsPerLong);
420}
421
422// The expected size in bytes of a cache line, used to pad data structures.
423#define DEFAULT_CACHE_LINE_SIZE 64
424
425// Bytes needed to pad type to avoid cache-line sharing; alignment should be the
426// expected cache line size (a power of two).  The first addend avoids sharing
427// when the start address is not a multiple of alignment; the second maintains
428// alignment of starting addresses that happen to be a multiple.
429#define PADDING_SIZE(type, alignment)                           \
430  ((alignment) + align_size_up_(sizeof(type), alignment))
431
432// Templates to create a subclass padded to avoid cache line sharing.  These are
433// effective only when applied to derived-most (leaf) classes.
434
435// When no args are passed to the base ctor.
436template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
437class Padded: public T {
438private:
439  char _pad_buf_[PADDING_SIZE(T, alignment)];
440};
441
442// When either 0 or 1 args may be passed to the base ctor.
443template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
444class Padded01: public T {
445public:
446  Padded01(): T() { }
447  Padded01(Arg1T arg1): T(arg1) { }
448private:
449  char _pad_buf_[PADDING_SIZE(T, alignment)];
450};
451
452//----------------------------------------------------------------------------------------------------
453// Utility macros for compilers
454// used to silence compiler warnings
455
456#define Unused_Variable(var) var
457
458
459//----------------------------------------------------------------------------------------------------
460// Miscellaneous
461
462// 6302670 Eliminate Hotspot __fabsf dependency
463// All fabs() callers should call this function instead, which will implicitly
464// convert the operand to double, avoiding a dependency on __fabsf which
465// doesn't exist in early versions of Solaris 8.
466inline double fabsd(double value) {
467  return fabs(value);
468}
469
470inline jint low (jlong value)                    { return jint(value); }
471inline jint high(jlong value)                    { return jint(value >> 32); }
472
473// the fancy casts are a hopefully portable way
474// to do unsigned 32 to 64 bit type conversion
475inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
476                                                   *value |= (jlong)(julong)(juint)low; }
477
478inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
479                                                   *value |= (jlong)high       << 32; }
480
481inline jlong jlong_from(jint h, jint l) {
482  jlong result = 0; // initialization to avoid warning
483  set_high(&result, h);
484  set_low(&result,  l);
485  return result;
486}
487
488union jlong_accessor {
489  jint  words[2];
490  jlong long_value;
491};
492
493void basic_types_init(); // cannot define here; uses assert
494
495
496// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
497enum BasicType {
498  T_BOOLEAN     =  4,
499  T_CHAR        =  5,
500  T_FLOAT       =  6,
501  T_DOUBLE      =  7,
502  T_BYTE        =  8,
503  T_SHORT       =  9,
504  T_INT         = 10,
505  T_LONG        = 11,
506  T_OBJECT      = 12,
507  T_ARRAY       = 13,
508  T_VOID        = 14,
509  T_ADDRESS     = 15,
510  T_NARROWOOP   = 16,
511  T_METADATA    = 17,
512  T_NARROWKLASS = 18,
513  T_CONFLICT    = 19, // for stack value type with conflicting contents
514  T_ILLEGAL     = 99
515};
516
517inline bool is_java_primitive(BasicType t) {
518  return T_BOOLEAN <= t && t <= T_LONG;
519}
520
521inline bool is_subword_type(BasicType t) {
522  // these guys are processed exactly like T_INT in calling sequences:
523  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
524}
525
526inline bool is_signed_subword_type(BasicType t) {
527  return (t == T_BYTE || t == T_SHORT);
528}
529
530// Convert a char from a classfile signature to a BasicType
531inline BasicType char2type(char c) {
532  switch( c ) {
533  case 'B': return T_BYTE;
534  case 'C': return T_CHAR;
535  case 'D': return T_DOUBLE;
536  case 'F': return T_FLOAT;
537  case 'I': return T_INT;
538  case 'J': return T_LONG;
539  case 'S': return T_SHORT;
540  case 'Z': return T_BOOLEAN;
541  case 'V': return T_VOID;
542  case 'L': return T_OBJECT;
543  case '[': return T_ARRAY;
544  }
545  return T_ILLEGAL;
546}
547
548extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
549inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
550extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
551extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
552inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
553extern BasicType name2type(const char* name);
554
555// Auxilary math routines
556// least common multiple
557extern size_t lcm(size_t a, size_t b);
558
559
560// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
561enum BasicTypeSize {
562  T_BOOLEAN_size     = 1,
563  T_CHAR_size        = 1,
564  T_FLOAT_size       = 1,
565  T_DOUBLE_size      = 2,
566  T_BYTE_size        = 1,
567  T_SHORT_size       = 1,
568  T_INT_size         = 1,
569  T_LONG_size        = 2,
570  T_OBJECT_size      = 1,
571  T_ARRAY_size       = 1,
572  T_NARROWOOP_size   = 1,
573  T_NARROWKLASS_size = 1,
574  T_VOID_size        = 0
575};
576
577
578// maps a BasicType to its instance field storage type:
579// all sub-word integral types are widened to T_INT
580extern BasicType type2field[T_CONFLICT+1];
581extern BasicType type2wfield[T_CONFLICT+1];
582
583
584// size in bytes
585enum ArrayElementSize {
586  T_BOOLEAN_aelem_bytes     = 1,
587  T_CHAR_aelem_bytes        = 2,
588  T_FLOAT_aelem_bytes       = 4,
589  T_DOUBLE_aelem_bytes      = 8,
590  T_BYTE_aelem_bytes        = 1,
591  T_SHORT_aelem_bytes       = 2,
592  T_INT_aelem_bytes         = 4,
593  T_LONG_aelem_bytes        = 8,
594#ifdef _LP64
595  T_OBJECT_aelem_bytes      = 8,
596  T_ARRAY_aelem_bytes       = 8,
597#else
598  T_OBJECT_aelem_bytes      = 4,
599  T_ARRAY_aelem_bytes       = 4,
600#endif
601  T_NARROWOOP_aelem_bytes   = 4,
602  T_NARROWKLASS_aelem_bytes = 4,
603  T_VOID_aelem_bytes        = 0
604};
605
606extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
607#ifdef ASSERT
608extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
609#else
610inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
611#endif
612
613
614// JavaValue serves as a container for arbitrary Java values.
615
616class JavaValue {
617
618 public:
619  typedef union JavaCallValue {
620    jfloat   f;
621    jdouble  d;
622    jint     i;
623    jlong    l;
624    jobject  h;
625  } JavaCallValue;
626
627 private:
628  BasicType _type;
629  JavaCallValue _value;
630
631 public:
632  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
633
634  JavaValue(jfloat value) {
635    _type    = T_FLOAT;
636    _value.f = value;
637  }
638
639  JavaValue(jdouble value) {
640    _type    = T_DOUBLE;
641    _value.d = value;
642  }
643
644 jfloat get_jfloat() const { return _value.f; }
645 jdouble get_jdouble() const { return _value.d; }
646 jint get_jint() const { return _value.i; }
647 jlong get_jlong() const { return _value.l; }
648 jobject get_jobject() const { return _value.h; }
649 JavaCallValue* get_value_addr() { return &_value; }
650 BasicType get_type() const { return _type; }
651
652 void set_jfloat(jfloat f) { _value.f = f;}
653 void set_jdouble(jdouble d) { _value.d = d;}
654 void set_jint(jint i) { _value.i = i;}
655 void set_jlong(jlong l) { _value.l = l;}
656 void set_jobject(jobject h) { _value.h = h;}
657 void set_type(BasicType t) { _type = t; }
658
659 jboolean get_jboolean() const { return (jboolean) (_value.i);}
660 jbyte get_jbyte() const { return (jbyte) (_value.i);}
661 jchar get_jchar() const { return (jchar) (_value.i);}
662 jshort get_jshort() const { return (jshort) (_value.i);}
663
664};
665
666
667#define STACK_BIAS      0
668// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
669// in order to extend the reach of the stack pointer.
670#if defined(SPARC) && defined(_LP64)
671#undef STACK_BIAS
672#define STACK_BIAS      0x7ff
673#endif
674
675
676// TosState describes the top-of-stack state before and after the execution of
677// a bytecode or method. The top-of-stack value may be cached in one or more CPU
678// registers. The TosState corresponds to the 'machine represention' of this cached
679// value. There's 4 states corresponding to the JAVA types int, long, float & double
680// as well as a 5th state in case the top-of-stack value is actually on the top
681// of stack (in memory) and thus not cached. The atos state corresponds to the itos
682// state when it comes to machine representation but is used separately for (oop)
683// type specific operations (e.g. verification code).
684
685enum TosState {         // describes the tos cache contents
686  btos = 0,             // byte, bool tos cached
687  ctos = 1,             // char tos cached
688  stos = 2,             // short tos cached
689  itos = 3,             // int tos cached
690  ltos = 4,             // long tos cached
691  ftos = 5,             // float tos cached
692  dtos = 6,             // double tos cached
693  atos = 7,             // object cached
694  vtos = 8,             // tos not cached
695  number_of_states,
696  ilgl                  // illegal state: should not occur
697};
698
699
700inline TosState as_TosState(BasicType type) {
701  switch (type) {
702    case T_BYTE   : return btos;
703    case T_BOOLEAN: return btos; // FIXME: Add ztos
704    case T_CHAR   : return ctos;
705    case T_SHORT  : return stos;
706    case T_INT    : return itos;
707    case T_LONG   : return ltos;
708    case T_FLOAT  : return ftos;
709    case T_DOUBLE : return dtos;
710    case T_VOID   : return vtos;
711    case T_ARRAY  : // fall through
712    case T_OBJECT : return atos;
713  }
714  return ilgl;
715}
716
717inline BasicType as_BasicType(TosState state) {
718  switch (state) {
719    //case ztos: return T_BOOLEAN;//FIXME
720    case btos : return T_BYTE;
721    case ctos : return T_CHAR;
722    case stos : return T_SHORT;
723    case itos : return T_INT;
724    case ltos : return T_LONG;
725    case ftos : return T_FLOAT;
726    case dtos : return T_DOUBLE;
727    case atos : return T_OBJECT;
728    case vtos : return T_VOID;
729  }
730  return T_ILLEGAL;
731}
732
733
734// Helper function to convert BasicType info into TosState
735// Note: Cannot define here as it uses global constant at the time being.
736TosState as_TosState(BasicType type);
737
738
739// ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
740
741enum ReferenceType {
742 REF_NONE,      // Regular class
743 REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
744 REF_SOFT,      // Subclass of java/lang/ref/SoftReference
745 REF_WEAK,      // Subclass of java/lang/ref/WeakReference
746 REF_FINAL,     // Subclass of java/lang/ref/FinalReference
747 REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
748};
749
750
751// JavaThreadState keeps track of which part of the code a thread is executing in. This
752// information is needed by the safepoint code.
753//
754// There are 4 essential states:
755//
756//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
757//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
758//  _thread_in_vm       : Executing in the vm
759//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
760//
761// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
762// a transition from one state to another. These extra states makes it possible for the safepoint code to
763// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
764//
765// Given a state, the xxx_trans state can always be found by adding 1.
766//
767enum JavaThreadState {
768  _thread_uninitialized     =  0, // should never happen (missing initialization)
769  _thread_new               =  2, // just starting up, i.e., in process of being initialized
770  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
771  _thread_in_native         =  4, // running in native code
772  _thread_in_native_trans   =  5, // corresponding transition state
773  _thread_in_vm             =  6, // running in VM
774  _thread_in_vm_trans       =  7, // corresponding transition state
775  _thread_in_Java           =  8, // running in Java or in stub code
776  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
777  _thread_blocked           = 10, // blocked in vm
778  _thread_blocked_trans     = 11, // corresponding transition state
779  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
780};
781
782
783// Handy constants for deciding which compiler mode to use.
784enum MethodCompilation {
785  InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
786  InvalidOSREntryBci = -2
787};
788
789// Enumeration to distinguish tiers of compilation
790enum CompLevel {
791  CompLevel_any               = -1,
792  CompLevel_all               = -1,
793  CompLevel_none              = 0,         // Interpreter
794  CompLevel_simple            = 1,         // C1
795  CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
796  CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
797  CompLevel_full_optimization = 4,         // C2 or Shark
798
799#if defined(COMPILER2) || defined(SHARK)
800  CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
801#elif defined(COMPILER1)
802  CompLevel_highest_tier      = CompLevel_simple,             // pure C1
803#else
804  CompLevel_highest_tier      = CompLevel_none,
805#endif
806
807#if defined(TIERED)
808  CompLevel_initial_compile   = CompLevel_full_profile        // tiered
809#elif defined(COMPILER1)
810  CompLevel_initial_compile   = CompLevel_simple              // pure C1
811#elif defined(COMPILER2) || defined(SHARK)
812  CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
813#else
814  CompLevel_initial_compile   = CompLevel_none
815#endif
816};
817
818inline bool is_c1_compile(int comp_level) {
819  return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
820}
821
822inline bool is_c2_compile(int comp_level) {
823  return comp_level == CompLevel_full_optimization;
824}
825
826inline bool is_highest_tier_compile(int comp_level) {
827  return comp_level == CompLevel_highest_tier;
828}
829
830//----------------------------------------------------------------------------------------------------
831// 'Forward' declarations of frequently used classes
832// (in order to reduce interface dependencies & reduce
833// number of unnecessary compilations after changes)
834
835class symbolTable;
836class ClassFileStream;
837
838class Event;
839
840class Thread;
841class  VMThread;
842class  JavaThread;
843class Threads;
844
845class VM_Operation;
846class VMOperationQueue;
847
848class CodeBlob;
849class  nmethod;
850class  OSRAdapter;
851class  I2CAdapter;
852class  C2IAdapter;
853class CompiledIC;
854class relocInfo;
855class ScopeDesc;
856class PcDesc;
857
858class Recompiler;
859class Recompilee;
860class RecompilationPolicy;
861class RFrame;
862class  CompiledRFrame;
863class  InterpretedRFrame;
864
865class frame;
866
867class vframe;
868class   javaVFrame;
869class     interpretedVFrame;
870class     compiledVFrame;
871class     deoptimizedVFrame;
872class   externalVFrame;
873class     entryVFrame;
874
875class RegisterMap;
876
877class Mutex;
878class Monitor;
879class BasicLock;
880class BasicObjectLock;
881
882class PeriodicTask;
883
884class JavaCallWrapper;
885
886class   oopDesc;
887class   metaDataOopDesc;
888
889class NativeCall;
890
891class zone;
892
893class StubQueue;
894
895class outputStream;
896
897class ResourceArea;
898
899class DebugInformationRecorder;
900class ScopeValue;
901class CompressedStream;
902class   DebugInfoReadStream;
903class   DebugInfoWriteStream;
904class LocationValue;
905class ConstantValue;
906class IllegalValue;
907
908class PrivilegedElement;
909class MonitorArray;
910
911class MonitorInfo;
912
913class OffsetClosure;
914class OopMapCache;
915class InterpreterOopMap;
916class OopMapCacheEntry;
917class OSThread;
918
919typedef int (*OSThreadStartFunc)(void*);
920
921class Space;
922
923class JavaValue;
924class methodHandle;
925class JavaCallArguments;
926
927// Basic support for errors (general debug facilities not defined at this point fo the include phase)
928
929extern void basic_fatal(const char* msg);
930
931
932//----------------------------------------------------------------------------------------------------
933// Special constants for debugging
934
935const jint     badInt           = -3;                       // generic "bad int" value
936const long     badAddressVal    = -2;                       // generic "bad address" value
937const long     badOopVal        = -1;                       // generic "bad oop" value
938const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
939const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
940const int      badResourceValue = 0xAB;                     // value used to zap resource area
941const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
942const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
943const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
944const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
945const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
946const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
947const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
948
949
950// (These must be implemented as #defines because C++ compilers are
951// not obligated to inline non-integral constants!)
952#define       badAddress        ((address)::badAddressVal)
953#define       badOop            ((oop)::badOopVal)
954#define       badHeapWord       (::badHeapWordVal)
955#define       badJNIHandle      ((oop)::badJNIHandleVal)
956
957// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
958#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
959
960//----------------------------------------------------------------------------------------------------
961// Utility functions for bitfield manipulations
962
963const intptr_t AllBits    = ~0; // all bits set in a word
964const intptr_t NoBits     =  0; // no bits set in a word
965const jlong    NoLongBits =  0; // no bits set in a long
966const intptr_t OneBit     =  1; // only right_most bit set in a word
967
968// get a word with the n.th or the right-most or left-most n bits set
969// (note: #define used only so that they can be used in enum constant definitions)
970#define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
971#define right_n_bits(n)   (nth_bit(n) - 1)
972#define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
973
974// bit-operations using a mask m
975inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
976inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
977inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
978inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
979inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
980
981// bit-operations using the n.th bit
982inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
983inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
984inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
985
986// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
987inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
988  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
989}
990
991
992//----------------------------------------------------------------------------------------------------
993// Utility functions for integers
994
995// Avoid use of global min/max macros which may cause unwanted double
996// evaluation of arguments.
997#ifdef max
998#undef max
999#endif
1000
1001#ifdef min
1002#undef min
1003#endif
1004
1005#define max(a,b) Do_not_use_max_use_MAX2_instead
1006#define min(a,b) Do_not_use_min_use_MIN2_instead
1007
1008// It is necessary to use templates here. Having normal overloaded
1009// functions does not work because it is necessary to provide both 32-
1010// and 64-bit overloaded functions, which does not work, and having
1011// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1012// will be even more error-prone than macros.
1013template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1014template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1015template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1016template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1017template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1018template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1019
1020template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1021
1022// true if x is a power of 2, false otherwise
1023inline bool is_power_of_2(intptr_t x) {
1024  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1025}
1026
1027// long version of is_power_of_2
1028inline bool is_power_of_2_long(jlong x) {
1029  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1030}
1031
1032//* largest i such that 2^i <= x
1033//  A negative value of 'x' will return '31'
1034inline int log2_intptr(intptr_t x) {
1035  int i = -1;
1036  uintptr_t p =  1;
1037  while (p != 0 && p <= (uintptr_t)x) {
1038    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1039    i++; p *= 2;
1040  }
1041  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1042  // (if p = 0 then overflow occurred and i = 31)
1043  return i;
1044}
1045
1046//* largest i such that 2^i <= x
1047//  A negative value of 'x' will return '63'
1048inline int log2_long(jlong x) {
1049  int i = -1;
1050  julong p =  1;
1051  while (p != 0 && p <= (julong)x) {
1052    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1053    i++; p *= 2;
1054  }
1055  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1056  // (if p = 0 then overflow occurred and i = 63)
1057  return i;
1058}
1059
1060//* the argument must be exactly a power of 2
1061inline int exact_log2(intptr_t x) {
1062  #ifdef ASSERT
1063    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1064  #endif
1065  return log2_intptr(x);
1066}
1067
1068//* the argument must be exactly a power of 2
1069inline int exact_log2_long(jlong x) {
1070  #ifdef ASSERT
1071    if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1072  #endif
1073  return log2_long(x);
1074}
1075
1076
1077// returns integer round-up to the nearest multiple of s (s must be a power of two)
1078inline intptr_t round_to(intptr_t x, uintx s) {
1079  #ifdef ASSERT
1080    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1081  #endif
1082  const uintx m = s - 1;
1083  return mask_bits(x + m, ~m);
1084}
1085
1086// returns integer round-down to the nearest multiple of s (s must be a power of two)
1087inline intptr_t round_down(intptr_t x, uintx s) {
1088  #ifdef ASSERT
1089    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1090  #endif
1091  const uintx m = s - 1;
1092  return mask_bits(x, ~m);
1093}
1094
1095
1096inline bool is_odd (intx x) { return x & 1;      }
1097inline bool is_even(intx x) { return !is_odd(x); }
1098
1099// "to" should be greater than "from."
1100inline intx byte_size(void* from, void* to) {
1101  return (address)to - (address)from;
1102}
1103
1104//----------------------------------------------------------------------------------------------------
1105// Avoid non-portable casts with these routines (DEPRECATED)
1106
1107// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1108//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1109
1110// Given sequence of four bytes, build into a 32-bit word
1111// following the conventions used in class files.
1112// On the 386, this could be realized with a simple address cast.
1113//
1114
1115// This routine takes eight bytes:
1116inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1117  return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1118       |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1119       |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1120       |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1121       |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1122       |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1123       |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1124       |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1125}
1126
1127// This routine takes four bytes:
1128inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1129  return  (( u4(c1) << 24 )  &  0xff000000)
1130       |  (( u4(c2) << 16 )  &  0x00ff0000)
1131       |  (( u4(c3) <<  8 )  &  0x0000ff00)
1132       |  (( u4(c4) <<  0 )  &  0x000000ff);
1133}
1134
1135// And this one works if the four bytes are contiguous in memory:
1136inline u4 build_u4_from( u1* p ) {
1137  return  build_u4_from( p[0], p[1], p[2], p[3] );
1138}
1139
1140// Ditto for two-byte ints:
1141inline u2 build_u2_from( u1 c1, u1 c2 ) {
1142  return  u2((( u2(c1) <<  8 )  &  0xff00)
1143          |  (( u2(c2) <<  0 )  &  0x00ff));
1144}
1145
1146// And this one works if the two bytes are contiguous in memory:
1147inline u2 build_u2_from( u1* p ) {
1148  return  build_u2_from( p[0], p[1] );
1149}
1150
1151// Ditto for floats:
1152inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1153  u4 u = build_u4_from( c1, c2, c3, c4 );
1154  return  *(jfloat*)&u;
1155}
1156
1157inline jfloat build_float_from( u1* p ) {
1158  u4 u = build_u4_from( p );
1159  return  *(jfloat*)&u;
1160}
1161
1162
1163// now (64-bit) longs
1164
1165inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1166  return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1167       |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1168       |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1169       |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1170       |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1171       |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1172       |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1173       |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1174}
1175
1176inline jlong build_long_from( u1* p ) {
1177  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1178}
1179
1180
1181// Doubles, too!
1182inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1183  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1184  return  *(jdouble*)&u;
1185}
1186
1187inline jdouble build_double_from( u1* p ) {
1188  jlong u = build_long_from( p );
1189  return  *(jdouble*)&u;
1190}
1191
1192
1193// Portable routines to go the other way:
1194
1195inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1196  c1 = u1(x >> 8);
1197  c2 = u1(x);
1198}
1199
1200inline void explode_short_to( u2 x, u1* p ) {
1201  explode_short_to( x, p[0], p[1]);
1202}
1203
1204inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1205  c1 = u1(x >> 24);
1206  c2 = u1(x >> 16);
1207  c3 = u1(x >>  8);
1208  c4 = u1(x);
1209}
1210
1211inline void explode_int_to( u4 x, u1* p ) {
1212  explode_int_to( x, p[0], p[1], p[2], p[3]);
1213}
1214
1215
1216// Pack and extract shorts to/from ints:
1217
1218inline int extract_low_short_from_int(jint x) {
1219  return x & 0xffff;
1220}
1221
1222inline int extract_high_short_from_int(jint x) {
1223  return (x >> 16) & 0xffff;
1224}
1225
1226inline int build_int_from_shorts( jushort low, jushort high ) {
1227  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1228}
1229
1230// Printf-style formatters for fixed- and variable-width types as pointers and
1231// integers.  These are derived from the definitions in inttypes.h.  If the platform
1232// doesn't provide appropriate definitions, they should be provided in
1233// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1234
1235#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1236
1237// Format 32-bit quantities.
1238#define INT32_FORMAT           "%" PRId32
1239#define UINT32_FORMAT          "%" PRIu32
1240#define INT32_FORMAT_W(width)  "%" #width PRId32
1241#define UINT32_FORMAT_W(width) "%" #width PRIu32
1242
1243#define PTR32_FORMAT           "0x%08" PRIx32
1244
1245// Format 64-bit quantities.
1246#define INT64_FORMAT           "%" PRId64
1247#define UINT64_FORMAT          "%" PRIu64
1248#define INT64_FORMAT_W(width)  "%" #width PRId64
1249#define UINT64_FORMAT_W(width) "%" #width PRIu64
1250
1251#define PTR64_FORMAT           "0x%016" PRIx64
1252
1253// Format jlong, if necessary
1254#ifndef JLONG_FORMAT
1255#define JLONG_FORMAT           INT64_FORMAT
1256#endif
1257#ifndef JULONG_FORMAT
1258#define JULONG_FORMAT          UINT64_FORMAT
1259#endif
1260
1261// Format pointers which change size between 32- and 64-bit.
1262#ifdef  _LP64
1263#define INTPTR_FORMAT "0x%016" PRIxPTR
1264#define PTR_FORMAT    "0x%016" PRIxPTR
1265#else   // !_LP64
1266#define INTPTR_FORMAT "0x%08"  PRIxPTR
1267#define PTR_FORMAT    "0x%08"  PRIxPTR
1268#endif  // _LP64
1269
1270#define SSIZE_FORMAT          "%" PRIdPTR
1271#define SIZE_FORMAT           "%" PRIuPTR
1272#define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1273#define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
1274
1275#define INTX_FORMAT           "%" PRIdPTR
1276#define UINTX_FORMAT          "%" PRIuPTR
1277#define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1278#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1279
1280
1281// Enable zap-a-lot if in debug version.
1282
1283# ifdef ASSERT
1284# ifdef COMPILER2
1285#   define ENABLE_ZAP_DEAD_LOCALS
1286#endif /* COMPILER2 */
1287# endif /* ASSERT */
1288
1289#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1290
1291// Dereference vptr
1292// All C++ compilers that we know of have the vtbl pointer in the first
1293// word.  If there are exceptions, this function needs to be made compiler
1294// specific.
1295static inline void* dereference_vptr(void* addr) {
1296  return *(void**)addr;
1297}
1298
1299#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
1300