globalDefinitions.hpp revision 2904:e7dead7e90af
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
26#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
27
28#ifndef __STDC_FORMAT_MACROS
29#define __STDC_FORMAT_MACROS
30#endif
31
32#ifdef TARGET_COMPILER_gcc
33# include "utilities/globalDefinitions_gcc.hpp"
34#endif
35#ifdef TARGET_COMPILER_visCPP
36# include "utilities/globalDefinitions_visCPP.hpp"
37#endif
38#ifdef TARGET_COMPILER_sparcWorks
39# include "utilities/globalDefinitions_sparcWorks.hpp"
40#endif
41
42#include "utilities/macros.hpp"
43
44// This file holds all globally used constants & types, class (forward)
45// declarations and a few frequently used utility functions.
46
47//----------------------------------------------------------------------------------------------------
48// Constants
49
50const int LogBytesPerShort   = 1;
51const int LogBytesPerInt     = 2;
52#ifdef _LP64
53const int LogBytesPerWord    = 3;
54#else
55const int LogBytesPerWord    = 2;
56#endif
57const int LogBytesPerLong    = 3;
58
59const int BytesPerShort      = 1 << LogBytesPerShort;
60const int BytesPerInt        = 1 << LogBytesPerInt;
61const int BytesPerWord       = 1 << LogBytesPerWord;
62const int BytesPerLong       = 1 << LogBytesPerLong;
63
64const int LogBitsPerByte     = 3;
65const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
66const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
67const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
68const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
69
70const int BitsPerByte        = 1 << LogBitsPerByte;
71const int BitsPerShort       = 1 << LogBitsPerShort;
72const int BitsPerInt         = 1 << LogBitsPerInt;
73const int BitsPerWord        = 1 << LogBitsPerWord;
74const int BitsPerLong        = 1 << LogBitsPerLong;
75
76const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
77const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
78
79const int WordsPerLong       = 2;       // Number of stack entries for longs
80
81const int oopSize            = sizeof(char*); // Full-width oop
82extern int heapOopSize;                       // Oop within a java object
83const int wordSize           = sizeof(char*);
84const int longSize           = sizeof(jlong);
85const int jintSize           = sizeof(jint);
86const int size_tSize         = sizeof(size_t);
87
88const int BytesPerOop        = BytesPerWord;  // Full-width oop
89
90extern int LogBytesPerHeapOop;                // Oop within a java object
91extern int LogBitsPerHeapOop;
92extern int BytesPerHeapOop;
93extern int BitsPerHeapOop;
94
95// Oop encoding heap max
96extern uint64_t OopEncodingHeapMax;
97
98const int BitsPerJavaInteger = 32;
99const int BitsPerJavaLong    = 64;
100const int BitsPerSize_t      = size_tSize * BitsPerByte;
101
102// Size of a char[] needed to represent a jint as a string in decimal.
103const int jintAsStringSize = 12;
104
105// In fact this should be
106// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
107// see os::set_memory_serialize_page()
108#ifdef _LP64
109const int SerializePageShiftCount = 4;
110#else
111const int SerializePageShiftCount = 3;
112#endif
113
114// An opaque struct of heap-word width, so that HeapWord* can be a generic
115// pointer into the heap.  We require that object sizes be measured in
116// units of heap words, so that that
117//   HeapWord* hw;
118//   hw += oop(hw)->foo();
119// works, where foo is a method (like size or scavenge) that returns the
120// object size.
121class HeapWord {
122  friend class VMStructs;
123 private:
124  char* i;
125#ifndef PRODUCT
126 public:
127  char* value() { return i; }
128#endif
129};
130
131// HeapWordSize must be 2^LogHeapWordSize.
132const int HeapWordSize        = sizeof(HeapWord);
133#ifdef _LP64
134const int LogHeapWordSize     = 3;
135#else
136const int LogHeapWordSize     = 2;
137#endif
138const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
139const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
140
141// The larger HeapWordSize for 64bit requires larger heaps
142// for the same application running in 64bit.  See bug 4967770.
143// The minimum alignment to a heap word size is done.  Other
144// parts of the memory system may required additional alignment
145// and are responsible for those alignments.
146#ifdef _LP64
147#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
148#else
149#define ScaleForWordSize(x) (x)
150#endif
151
152// The minimum number of native machine words necessary to contain "byte_size"
153// bytes.
154inline size_t heap_word_size(size_t byte_size) {
155  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
156}
157
158
159const size_t K                  = 1024;
160const size_t M                  = K*K;
161const size_t G                  = M*K;
162const size_t HWperKB            = K / sizeof(HeapWord);
163
164const size_t LOG_K              = 10;
165const size_t LOG_M              = 2 * LOG_K;
166const size_t LOG_G              = 2 * LOG_M;
167
168const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
169const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
170
171// Constants for converting from a base unit to milli-base units.  For
172// example from seconds to milliseconds and microseconds
173
174const int MILLIUNITS    = 1000;         // milli units per base unit
175const int MICROUNITS    = 1000000;      // micro units per base unit
176const int NANOUNITS     = 1000000000;   // nano units per base unit
177
178const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
179const jint  NANOSECS_PER_MILLISEC = 1000000;
180
181inline const char* proper_unit_for_byte_size(size_t s) {
182  if (s >= 10*M) {
183    return "M";
184  } else if (s >= 10*K) {
185    return "K";
186  } else {
187    return "B";
188  }
189}
190
191inline size_t byte_size_in_proper_unit(size_t s) {
192  if (s >= 10*M) {
193    return s/M;
194  } else if (s >= 10*K) {
195    return s/K;
196  } else {
197    return s;
198  }
199}
200
201
202//----------------------------------------------------------------------------------------------------
203// VM type definitions
204
205// intx and uintx are the 'extended' int and 'extended' unsigned int types;
206// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
207
208typedef intptr_t  intx;
209typedef uintptr_t uintx;
210
211const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
212const intx  max_intx  = (uintx)min_intx - 1;
213const uintx max_uintx = (uintx)-1;
214
215// Table of values:
216//      sizeof intx         4               8
217// min_intx             0x80000000      0x8000000000000000
218// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
219// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
220
221typedef unsigned int uint;   NEEDS_CLEANUP
222
223
224//----------------------------------------------------------------------------------------------------
225// Java type definitions
226
227// All kinds of 'plain' byte addresses
228typedef   signed char s_char;
229typedef unsigned char u_char;
230typedef u_char*       address;
231typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
232                                    // except for some implementations of a C++
233                                    // linkage pointer to function. Should never
234                                    // need one of those to be placed in this
235                                    // type anyway.
236
237//  Utility functions to "portably" (?) bit twiddle pointers
238//  Where portable means keep ANSI C++ compilers quiet
239
240inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
241inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
242
243//  Utility functions to "portably" make cast to/from function pointers.
244
245inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
246inline address_word  castable_address(address x)              { return address_word(x) ; }
247inline address_word  castable_address(void* x)                { return address_word(x) ; }
248
249// Pointer subtraction.
250// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
251// the range we might need to find differences from one end of the heap
252// to the other.
253// A typical use might be:
254//     if (pointer_delta(end(), top()) >= size) {
255//       // enough room for an object of size
256//       ...
257// and then additions like
258//       ... top() + size ...
259// are safe because we know that top() is at least size below end().
260inline size_t pointer_delta(const void* left,
261                            const void* right,
262                            size_t element_size) {
263  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
264}
265// A version specialized for HeapWord*'s.
266inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
267  return pointer_delta(left, right, sizeof(HeapWord));
268}
269
270//
271// ANSI C++ does not allow casting from one pointer type to a function pointer
272// directly without at best a warning. This macro accomplishes it silently
273// In every case that is present at this point the value be cast is a pointer
274// to a C linkage function. In somecase the type used for the cast reflects
275// that linkage and a picky compiler would not complain. In other cases because
276// there is no convenient place to place a typedef with extern C linkage (i.e
277// a platform dependent header file) it doesn't. At this point no compiler seems
278// picky enough to catch these instances (which are few). It is possible that
279// using templates could fix these for all cases. This use of templates is likely
280// so far from the middle of the road that it is likely to be problematic in
281// many C++ compilers.
282//
283#define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
284#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
285
286// Unsigned byte types for os and stream.hpp
287
288// Unsigned one, two, four and eigth byte quantities used for describing
289// the .class file format. See JVM book chapter 4.
290
291typedef jubyte  u1;
292typedef jushort u2;
293typedef juint   u4;
294typedef julong  u8;
295
296const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
297const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
298const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
299const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
300
301//----------------------------------------------------------------------------------------------------
302// JVM spec restrictions
303
304const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
305
306
307//----------------------------------------------------------------------------------------------------
308// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
309//
310// Determines whether on-the-fly class replacement and frame popping are enabled.
311
312#define HOTSWAP
313
314//----------------------------------------------------------------------------------------------------
315// Object alignment, in units of HeapWords.
316//
317// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
318// reference fields can be naturally aligned.
319
320extern int MinObjAlignment;
321extern int MinObjAlignmentInBytes;
322extern int MinObjAlignmentInBytesMask;
323
324extern int LogMinObjAlignment;
325extern int LogMinObjAlignmentInBytes;
326
327// Machine dependent stuff
328
329#ifdef TARGET_ARCH_x86
330# include "globalDefinitions_x86.hpp"
331#endif
332#ifdef TARGET_ARCH_sparc
333# include "globalDefinitions_sparc.hpp"
334#endif
335#ifdef TARGET_ARCH_zero
336# include "globalDefinitions_zero.hpp"
337#endif
338#ifdef TARGET_ARCH_arm
339# include "globalDefinitions_arm.hpp"
340#endif
341#ifdef TARGET_ARCH_ppc
342# include "globalDefinitions_ppc.hpp"
343#endif
344
345
346// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
347// Note: this value must be a power of 2
348
349#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
350
351// Signed variants of alignment helpers.  There are two versions of each, a macro
352// for use in places like enum definitions that require compile-time constant
353// expressions and a function for all other places so as to get type checking.
354
355#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
356
357inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
358  return align_size_up_(size, alignment);
359}
360
361#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
362
363inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
364  return align_size_down_(size, alignment);
365}
366
367// Align objects by rounding up their size, in HeapWord units.
368
369#define align_object_size_(size) align_size_up_(size, MinObjAlignment)
370
371inline intptr_t align_object_size(intptr_t size) {
372  return align_size_up(size, MinObjAlignment);
373}
374
375inline bool is_object_aligned(intptr_t addr) {
376  return addr == align_object_size(addr);
377}
378
379// Pad out certain offsets to jlong alignment, in HeapWord units.
380
381inline intptr_t align_object_offset(intptr_t offset) {
382  return align_size_up(offset, HeapWordsPerLong);
383}
384
385// The expected size in bytes of a cache line, used to pad data structures.
386#define DEFAULT_CACHE_LINE_SIZE 64
387
388// Bytes needed to pad type to avoid cache-line sharing; alignment should be the
389// expected cache line size (a power of two).  The first addend avoids sharing
390// when the start address is not a multiple of alignment; the second maintains
391// alignment of starting addresses that happen to be a multiple.
392#define PADDING_SIZE(type, alignment)                           \
393  ((alignment) + align_size_up_(sizeof(type), alignment))
394
395// Templates to create a subclass padded to avoid cache line sharing.  These are
396// effective only when applied to derived-most (leaf) classes.
397
398// When no args are passed to the base ctor.
399template <class T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
400class Padded: public T {
401private:
402  char _pad_buf_[PADDING_SIZE(T, alignment)];
403};
404
405// When either 0 or 1 args may be passed to the base ctor.
406template <class T, typename Arg1T, size_t alignment = DEFAULT_CACHE_LINE_SIZE>
407class Padded01: public T {
408public:
409  Padded01(): T() { }
410  Padded01(Arg1T arg1): T(arg1) { }
411private:
412  char _pad_buf_[PADDING_SIZE(T, alignment)];
413};
414
415//----------------------------------------------------------------------------------------------------
416// Utility macros for compilers
417// used to silence compiler warnings
418
419#define Unused_Variable(var) var
420
421
422//----------------------------------------------------------------------------------------------------
423// Miscellaneous
424
425// 6302670 Eliminate Hotspot __fabsf dependency
426// All fabs() callers should call this function instead, which will implicitly
427// convert the operand to double, avoiding a dependency on __fabsf which
428// doesn't exist in early versions of Solaris 8.
429inline double fabsd(double value) {
430  return fabs(value);
431}
432
433inline jint low (jlong value)                    { return jint(value); }
434inline jint high(jlong value)                    { return jint(value >> 32); }
435
436// the fancy casts are a hopefully portable way
437// to do unsigned 32 to 64 bit type conversion
438inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
439                                                   *value |= (jlong)(julong)(juint)low; }
440
441inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
442                                                   *value |= (jlong)high       << 32; }
443
444inline jlong jlong_from(jint h, jint l) {
445  jlong result = 0; // initialization to avoid warning
446  set_high(&result, h);
447  set_low(&result,  l);
448  return result;
449}
450
451union jlong_accessor {
452  jint  words[2];
453  jlong long_value;
454};
455
456void basic_types_init(); // cannot define here; uses assert
457
458
459// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
460enum BasicType {
461  T_BOOLEAN  =  4,
462  T_CHAR     =  5,
463  T_FLOAT    =  6,
464  T_DOUBLE   =  7,
465  T_BYTE     =  8,
466  T_SHORT    =  9,
467  T_INT      = 10,
468  T_LONG     = 11,
469  T_OBJECT   = 12,
470  T_ARRAY    = 13,
471  T_VOID     = 14,
472  T_ADDRESS  = 15,
473  T_NARROWOOP= 16,
474  T_CONFLICT = 17, // for stack value type with conflicting contents
475  T_ILLEGAL  = 99
476};
477
478inline bool is_java_primitive(BasicType t) {
479  return T_BOOLEAN <= t && t <= T_LONG;
480}
481
482inline bool is_subword_type(BasicType t) {
483  // these guys are processed exactly like T_INT in calling sequences:
484  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
485}
486
487inline bool is_signed_subword_type(BasicType t) {
488  return (t == T_BYTE || t == T_SHORT);
489}
490
491// Convert a char from a classfile signature to a BasicType
492inline BasicType char2type(char c) {
493  switch( c ) {
494  case 'B': return T_BYTE;
495  case 'C': return T_CHAR;
496  case 'D': return T_DOUBLE;
497  case 'F': return T_FLOAT;
498  case 'I': return T_INT;
499  case 'J': return T_LONG;
500  case 'S': return T_SHORT;
501  case 'Z': return T_BOOLEAN;
502  case 'V': return T_VOID;
503  case 'L': return T_OBJECT;
504  case '[': return T_ARRAY;
505  }
506  return T_ILLEGAL;
507}
508
509extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
510inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
511extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
512extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
513inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
514extern BasicType name2type(const char* name);
515
516// Auxilary math routines
517// least common multiple
518extern size_t lcm(size_t a, size_t b);
519
520
521// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
522enum BasicTypeSize {
523  T_BOOLEAN_size = 1,
524  T_CHAR_size    = 1,
525  T_FLOAT_size   = 1,
526  T_DOUBLE_size  = 2,
527  T_BYTE_size    = 1,
528  T_SHORT_size   = 1,
529  T_INT_size     = 1,
530  T_LONG_size    = 2,
531  T_OBJECT_size  = 1,
532  T_ARRAY_size   = 1,
533  T_NARROWOOP_size = 1,
534  T_VOID_size    = 0
535};
536
537
538// maps a BasicType to its instance field storage type:
539// all sub-word integral types are widened to T_INT
540extern BasicType type2field[T_CONFLICT+1];
541extern BasicType type2wfield[T_CONFLICT+1];
542
543
544// size in bytes
545enum ArrayElementSize {
546  T_BOOLEAN_aelem_bytes = 1,
547  T_CHAR_aelem_bytes    = 2,
548  T_FLOAT_aelem_bytes   = 4,
549  T_DOUBLE_aelem_bytes  = 8,
550  T_BYTE_aelem_bytes    = 1,
551  T_SHORT_aelem_bytes   = 2,
552  T_INT_aelem_bytes     = 4,
553  T_LONG_aelem_bytes    = 8,
554#ifdef _LP64
555  T_OBJECT_aelem_bytes  = 8,
556  T_ARRAY_aelem_bytes   = 8,
557#else
558  T_OBJECT_aelem_bytes  = 4,
559  T_ARRAY_aelem_bytes   = 4,
560#endif
561  T_NARROWOOP_aelem_bytes = 4,
562  T_VOID_aelem_bytes    = 0
563};
564
565extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
566#ifdef ASSERT
567extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
568#else
569inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
570#endif
571
572
573// JavaValue serves as a container for arbitrary Java values.
574
575class JavaValue {
576
577 public:
578  typedef union JavaCallValue {
579    jfloat   f;
580    jdouble  d;
581    jint     i;
582    jlong    l;
583    jobject  h;
584  } JavaCallValue;
585
586 private:
587  BasicType _type;
588  JavaCallValue _value;
589
590 public:
591  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
592
593  JavaValue(jfloat value) {
594    _type    = T_FLOAT;
595    _value.f = value;
596  }
597
598  JavaValue(jdouble value) {
599    _type    = T_DOUBLE;
600    _value.d = value;
601  }
602
603 jfloat get_jfloat() const { return _value.f; }
604 jdouble get_jdouble() const { return _value.d; }
605 jint get_jint() const { return _value.i; }
606 jlong get_jlong() const { return _value.l; }
607 jobject get_jobject() const { return _value.h; }
608 JavaCallValue* get_value_addr() { return &_value; }
609 BasicType get_type() const { return _type; }
610
611 void set_jfloat(jfloat f) { _value.f = f;}
612 void set_jdouble(jdouble d) { _value.d = d;}
613 void set_jint(jint i) { _value.i = i;}
614 void set_jlong(jlong l) { _value.l = l;}
615 void set_jobject(jobject h) { _value.h = h;}
616 void set_type(BasicType t) { _type = t; }
617
618 jboolean get_jboolean() const { return (jboolean) (_value.i);}
619 jbyte get_jbyte() const { return (jbyte) (_value.i);}
620 jchar get_jchar() const { return (jchar) (_value.i);}
621 jshort get_jshort() const { return (jshort) (_value.i);}
622
623};
624
625
626#define STACK_BIAS      0
627// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
628// in order to extend the reach of the stack pointer.
629#if defined(SPARC) && defined(_LP64)
630#undef STACK_BIAS
631#define STACK_BIAS      0x7ff
632#endif
633
634
635// TosState describes the top-of-stack state before and after the execution of
636// a bytecode or method. The top-of-stack value may be cached in one or more CPU
637// registers. The TosState corresponds to the 'machine represention' of this cached
638// value. There's 4 states corresponding to the JAVA types int, long, float & double
639// as well as a 5th state in case the top-of-stack value is actually on the top
640// of stack (in memory) and thus not cached. The atos state corresponds to the itos
641// state when it comes to machine representation but is used separately for (oop)
642// type specific operations (e.g. verification code).
643
644enum TosState {         // describes the tos cache contents
645  btos = 0,             // byte, bool tos cached
646  ctos = 1,             // char tos cached
647  stos = 2,             // short tos cached
648  itos = 3,             // int tos cached
649  ltos = 4,             // long tos cached
650  ftos = 5,             // float tos cached
651  dtos = 6,             // double tos cached
652  atos = 7,             // object cached
653  vtos = 8,             // tos not cached
654  number_of_states,
655  ilgl                  // illegal state: should not occur
656};
657
658
659inline TosState as_TosState(BasicType type) {
660  switch (type) {
661    case T_BYTE   : return btos;
662    case T_BOOLEAN: return btos; // FIXME: Add ztos
663    case T_CHAR   : return ctos;
664    case T_SHORT  : return stos;
665    case T_INT    : return itos;
666    case T_LONG   : return ltos;
667    case T_FLOAT  : return ftos;
668    case T_DOUBLE : return dtos;
669    case T_VOID   : return vtos;
670    case T_ARRAY  : // fall through
671    case T_OBJECT : return atos;
672  }
673  return ilgl;
674}
675
676inline BasicType as_BasicType(TosState state) {
677  switch (state) {
678    //case ztos: return T_BOOLEAN;//FIXME
679    case btos : return T_BYTE;
680    case ctos : return T_CHAR;
681    case stos : return T_SHORT;
682    case itos : return T_INT;
683    case ltos : return T_LONG;
684    case ftos : return T_FLOAT;
685    case dtos : return T_DOUBLE;
686    case atos : return T_OBJECT;
687    case vtos : return T_VOID;
688  }
689  return T_ILLEGAL;
690}
691
692
693// Helper function to convert BasicType info into TosState
694// Note: Cannot define here as it uses global constant at the time being.
695TosState as_TosState(BasicType type);
696
697
698// ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
699
700enum ReferenceType {
701 REF_NONE,      // Regular class
702 REF_OTHER,     // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
703 REF_SOFT,      // Subclass of java/lang/ref/SoftReference
704 REF_WEAK,      // Subclass of java/lang/ref/WeakReference
705 REF_FINAL,     // Subclass of java/lang/ref/FinalReference
706 REF_PHANTOM    // Subclass of java/lang/ref/PhantomReference
707};
708
709
710// JavaThreadState keeps track of which part of the code a thread is executing in. This
711// information is needed by the safepoint code.
712//
713// There are 4 essential states:
714//
715//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
716//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
717//  _thread_in_vm       : Executing in the vm
718//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
719//
720// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
721// a transition from one state to another. These extra states makes it possible for the safepoint code to
722// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
723//
724// Given a state, the xxx_trans state can always be found by adding 1.
725//
726enum JavaThreadState {
727  _thread_uninitialized     =  0, // should never happen (missing initialization)
728  _thread_new               =  2, // just starting up, i.e., in process of being initialized
729  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
730  _thread_in_native         =  4, // running in native code
731  _thread_in_native_trans   =  5, // corresponding transition state
732  _thread_in_vm             =  6, // running in VM
733  _thread_in_vm_trans       =  7, // corresponding transition state
734  _thread_in_Java           =  8, // running in Java or in stub code
735  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
736  _thread_blocked           = 10, // blocked in vm
737  _thread_blocked_trans     = 11, // corresponding transition state
738  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
739};
740
741
742// Handy constants for deciding which compiler mode to use.
743enum MethodCompilation {
744  InvocationEntryBci = -1,     // i.e., not a on-stack replacement compilation
745  InvalidOSREntryBci = -2
746};
747
748// Enumeration to distinguish tiers of compilation
749enum CompLevel {
750  CompLevel_any               = -1,
751  CompLevel_all               = -1,
752  CompLevel_none              = 0,         // Interpreter
753  CompLevel_simple            = 1,         // C1
754  CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
755  CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
756  CompLevel_full_optimization = 4,         // C2 or Shark
757
758#if defined(COMPILER2) || defined(SHARK)
759  CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
760#elif defined(COMPILER1)
761  CompLevel_highest_tier      = CompLevel_simple,             // pure C1
762#else
763  CompLevel_highest_tier      = CompLevel_none,
764#endif
765
766#if defined(TIERED)
767  CompLevel_initial_compile   = CompLevel_full_profile        // tiered
768#elif defined(COMPILER1)
769  CompLevel_initial_compile   = CompLevel_simple              // pure C1
770#elif defined(COMPILER2) || defined(SHARK)
771  CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
772#else
773  CompLevel_initial_compile   = CompLevel_none
774#endif
775};
776
777inline bool is_c1_compile(int comp_level) {
778  return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
779}
780
781inline bool is_c2_compile(int comp_level) {
782  return comp_level == CompLevel_full_optimization;
783}
784
785inline bool is_highest_tier_compile(int comp_level) {
786  return comp_level == CompLevel_highest_tier;
787}
788
789//----------------------------------------------------------------------------------------------------
790// 'Forward' declarations of frequently used classes
791// (in order to reduce interface dependencies & reduce
792// number of unnecessary compilations after changes)
793
794class symbolTable;
795class ClassFileStream;
796
797class Event;
798
799class Thread;
800class  VMThread;
801class  JavaThread;
802class Threads;
803
804class VM_Operation;
805class VMOperationQueue;
806
807class CodeBlob;
808class  nmethod;
809class  OSRAdapter;
810class  I2CAdapter;
811class  C2IAdapter;
812class CompiledIC;
813class relocInfo;
814class ScopeDesc;
815class PcDesc;
816
817class Recompiler;
818class Recompilee;
819class RecompilationPolicy;
820class RFrame;
821class  CompiledRFrame;
822class  InterpretedRFrame;
823
824class frame;
825
826class vframe;
827class   javaVFrame;
828class     interpretedVFrame;
829class     compiledVFrame;
830class     deoptimizedVFrame;
831class   externalVFrame;
832class     entryVFrame;
833
834class RegisterMap;
835
836class Mutex;
837class Monitor;
838class BasicLock;
839class BasicObjectLock;
840
841class PeriodicTask;
842
843class JavaCallWrapper;
844
845class   oopDesc;
846
847class NativeCall;
848
849class zone;
850
851class StubQueue;
852
853class outputStream;
854
855class ResourceArea;
856
857class DebugInformationRecorder;
858class ScopeValue;
859class CompressedStream;
860class   DebugInfoReadStream;
861class   DebugInfoWriteStream;
862class LocationValue;
863class ConstantValue;
864class IllegalValue;
865
866class PrivilegedElement;
867class MonitorArray;
868
869class MonitorInfo;
870
871class OffsetClosure;
872class OopMapCache;
873class InterpreterOopMap;
874class OopMapCacheEntry;
875class OSThread;
876
877typedef int (*OSThreadStartFunc)(void*);
878
879class Space;
880
881class JavaValue;
882class methodHandle;
883class JavaCallArguments;
884
885// Basic support for errors (general debug facilities not defined at this point fo the include phase)
886
887extern void basic_fatal(const char* msg);
888
889
890//----------------------------------------------------------------------------------------------------
891// Special constants for debugging
892
893const jint     badInt           = -3;                       // generic "bad int" value
894const long     badAddressVal    = -2;                       // generic "bad address" value
895const long     badOopVal        = -1;                       // generic "bad oop" value
896const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
897const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
898const int      badResourceValue = 0xAB;                     // value used to zap resource area
899const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
900const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
901const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
902const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
903const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
904const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
905
906
907// (These must be implemented as #defines because C++ compilers are
908// not obligated to inline non-integral constants!)
909#define       badAddress        ((address)::badAddressVal)
910#define       badOop            ((oop)::badOopVal)
911#define       badHeapWord       (::badHeapWordVal)
912#define       badJNIHandle      ((oop)::badJNIHandleVal)
913
914// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
915#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
916
917//----------------------------------------------------------------------------------------------------
918// Utility functions for bitfield manipulations
919
920const intptr_t AllBits    = ~0; // all bits set in a word
921const intptr_t NoBits     =  0; // no bits set in a word
922const jlong    NoLongBits =  0; // no bits set in a long
923const intptr_t OneBit     =  1; // only right_most bit set in a word
924
925// get a word with the n.th or the right-most or left-most n bits set
926// (note: #define used only so that they can be used in enum constant definitions)
927#define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
928#define right_n_bits(n)   (nth_bit(n) - 1)
929#define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
930
931// bit-operations using a mask m
932inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
933inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
934inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
935inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
936inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
937
938// bit-operations using the n.th bit
939inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
940inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
941inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
942
943// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
944inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
945  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
946}
947
948
949//----------------------------------------------------------------------------------------------------
950// Utility functions for integers
951
952// Avoid use of global min/max macros which may cause unwanted double
953// evaluation of arguments.
954#ifdef max
955#undef max
956#endif
957
958#ifdef min
959#undef min
960#endif
961
962#define max(a,b) Do_not_use_max_use_MAX2_instead
963#define min(a,b) Do_not_use_min_use_MIN2_instead
964
965// It is necessary to use templates here. Having normal overloaded
966// functions does not work because it is necessary to provide both 32-
967// and 64-bit overloaded functions, which does not work, and having
968// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
969// will be even more error-prone than macros.
970template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
971template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
972template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
973template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
974template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
975template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
976
977template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
978
979// true if x is a power of 2, false otherwise
980inline bool is_power_of_2(intptr_t x) {
981  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
982}
983
984// long version of is_power_of_2
985inline bool is_power_of_2_long(jlong x) {
986  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
987}
988
989//* largest i such that 2^i <= x
990//  A negative value of 'x' will return '31'
991inline int log2_intptr(intptr_t x) {
992  int i = -1;
993  uintptr_t p =  1;
994  while (p != 0 && p <= (uintptr_t)x) {
995    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
996    i++; p *= 2;
997  }
998  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
999  // (if p = 0 then overflow occurred and i = 31)
1000  return i;
1001}
1002
1003//* largest i such that 2^i <= x
1004//  A negative value of 'x' will return '63'
1005inline int log2_long(jlong x) {
1006  int i = -1;
1007  julong p =  1;
1008  while (p != 0 && p <= (julong)x) {
1009    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1010    i++; p *= 2;
1011  }
1012  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1013  // (if p = 0 then overflow occurred and i = 63)
1014  return i;
1015}
1016
1017//* the argument must be exactly a power of 2
1018inline int exact_log2(intptr_t x) {
1019  #ifdef ASSERT
1020    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1021  #endif
1022  return log2_intptr(x);
1023}
1024
1025//* the argument must be exactly a power of 2
1026inline int exact_log2_long(jlong x) {
1027  #ifdef ASSERT
1028    if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1029  #endif
1030  return log2_long(x);
1031}
1032
1033
1034// returns integer round-up to the nearest multiple of s (s must be a power of two)
1035inline intptr_t round_to(intptr_t x, uintx s) {
1036  #ifdef ASSERT
1037    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1038  #endif
1039  const uintx m = s - 1;
1040  return mask_bits(x + m, ~m);
1041}
1042
1043// returns integer round-down to the nearest multiple of s (s must be a power of two)
1044inline intptr_t round_down(intptr_t x, uintx s) {
1045  #ifdef ASSERT
1046    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1047  #endif
1048  const uintx m = s - 1;
1049  return mask_bits(x, ~m);
1050}
1051
1052
1053inline bool is_odd (intx x) { return x & 1;      }
1054inline bool is_even(intx x) { return !is_odd(x); }
1055
1056// "to" should be greater than "from."
1057inline intx byte_size(void* from, void* to) {
1058  return (address)to - (address)from;
1059}
1060
1061//----------------------------------------------------------------------------------------------------
1062// Avoid non-portable casts with these routines (DEPRECATED)
1063
1064// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1065//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1066
1067// Given sequence of four bytes, build into a 32-bit word
1068// following the conventions used in class files.
1069// On the 386, this could be realized with a simple address cast.
1070//
1071
1072// This routine takes eight bytes:
1073inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1074  return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1075       |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1076       |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1077       |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1078       |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1079       |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1080       |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1081       |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1082}
1083
1084// This routine takes four bytes:
1085inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1086  return  (( u4(c1) << 24 )  &  0xff000000)
1087       |  (( u4(c2) << 16 )  &  0x00ff0000)
1088       |  (( u4(c3) <<  8 )  &  0x0000ff00)
1089       |  (( u4(c4) <<  0 )  &  0x000000ff);
1090}
1091
1092// And this one works if the four bytes are contiguous in memory:
1093inline u4 build_u4_from( u1* p ) {
1094  return  build_u4_from( p[0], p[1], p[2], p[3] );
1095}
1096
1097// Ditto for two-byte ints:
1098inline u2 build_u2_from( u1 c1, u1 c2 ) {
1099  return  u2((( u2(c1) <<  8 )  &  0xff00)
1100          |  (( u2(c2) <<  0 )  &  0x00ff));
1101}
1102
1103// And this one works if the two bytes are contiguous in memory:
1104inline u2 build_u2_from( u1* p ) {
1105  return  build_u2_from( p[0], p[1] );
1106}
1107
1108// Ditto for floats:
1109inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1110  u4 u = build_u4_from( c1, c2, c3, c4 );
1111  return  *(jfloat*)&u;
1112}
1113
1114inline jfloat build_float_from( u1* p ) {
1115  u4 u = build_u4_from( p );
1116  return  *(jfloat*)&u;
1117}
1118
1119
1120// now (64-bit) longs
1121
1122inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1123  return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1124       |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1125       |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1126       |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1127       |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1128       |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1129       |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1130       |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1131}
1132
1133inline jlong build_long_from( u1* p ) {
1134  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1135}
1136
1137
1138// Doubles, too!
1139inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1140  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1141  return  *(jdouble*)&u;
1142}
1143
1144inline jdouble build_double_from( u1* p ) {
1145  jlong u = build_long_from( p );
1146  return  *(jdouble*)&u;
1147}
1148
1149
1150// Portable routines to go the other way:
1151
1152inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1153  c1 = u1(x >> 8);
1154  c2 = u1(x);
1155}
1156
1157inline void explode_short_to( u2 x, u1* p ) {
1158  explode_short_to( x, p[0], p[1]);
1159}
1160
1161inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1162  c1 = u1(x >> 24);
1163  c2 = u1(x >> 16);
1164  c3 = u1(x >>  8);
1165  c4 = u1(x);
1166}
1167
1168inline void explode_int_to( u4 x, u1* p ) {
1169  explode_int_to( x, p[0], p[1], p[2], p[3]);
1170}
1171
1172
1173// Pack and extract shorts to/from ints:
1174
1175inline int extract_low_short_from_int(jint x) {
1176  return x & 0xffff;
1177}
1178
1179inline int extract_high_short_from_int(jint x) {
1180  return (x >> 16) & 0xffff;
1181}
1182
1183inline int build_int_from_shorts( jushort low, jushort high ) {
1184  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1185}
1186
1187// Printf-style formatters for fixed- and variable-width types as pointers and
1188// integers.  These are derived from the definitions in inttypes.h.  If the platform
1189// doesn't provide appropriate definitions, they should be provided in
1190// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1191
1192#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1193
1194// Format 32-bit quantities.
1195#define INT32_FORMAT           "%" PRId32
1196#define UINT32_FORMAT          "%" PRIu32
1197#define INT32_FORMAT_W(width)  "%" #width PRId32
1198#define UINT32_FORMAT_W(width) "%" #width PRIu32
1199
1200#define PTR32_FORMAT           "0x%08" PRIx32
1201
1202// Format 64-bit quantities.
1203#define INT64_FORMAT           "%" PRId64
1204#define UINT64_FORMAT          "%" PRIu64
1205#define INT64_FORMAT_W(width)  "%" #width PRId64
1206#define UINT64_FORMAT_W(width) "%" #width PRIu64
1207
1208#define PTR64_FORMAT           "0x%016" PRIx64
1209
1210// Format pointers which change size between 32- and 64-bit.
1211#ifdef  _LP64
1212#define INTPTR_FORMAT "0x%016" PRIxPTR
1213#define PTR_FORMAT    "0x%016" PRIxPTR
1214#else   // !_LP64
1215#define INTPTR_FORMAT "0x%08"  PRIxPTR
1216#define PTR_FORMAT    "0x%08"  PRIxPTR
1217#endif  // _LP64
1218
1219#define SSIZE_FORMAT          "%" PRIdPTR
1220#define SIZE_FORMAT           "%" PRIuPTR
1221#define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
1222#define SIZE_FORMAT_W(width)  "%" #width PRIuPTR
1223
1224#define INTX_FORMAT           "%" PRIdPTR
1225#define UINTX_FORMAT          "%" PRIuPTR
1226#define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1227#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1228
1229
1230// Enable zap-a-lot if in debug version.
1231
1232# ifdef ASSERT
1233# ifdef COMPILER2
1234#   define ENABLE_ZAP_DEAD_LOCALS
1235#endif /* COMPILER2 */
1236# endif /* ASSERT */
1237
1238#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1239
1240#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
1241