globalDefinitions.hpp revision 13249:a2753984d2c1
1/*
2 * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
26#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
27
28#include "utilities/compilerWarnings.hpp"
29#include "utilities/debug.hpp"
30#include "utilities/macros.hpp"
31
32#include COMPILER_HEADER(utilities/globalDefinitions)
33
34// Defaults for macros that might be defined per compiler.
35#ifndef NOINLINE
36#define NOINLINE
37#endif
38#ifndef ALWAYSINLINE
39#define ALWAYSINLINE inline
40#endif
41
42// This file holds all globally used constants & types, class (forward)
43// declarations and a few frequently used utility functions.
44
45//----------------------------------------------------------------------------------------------------
46// Printf-style formatters for fixed- and variable-width types as pointers and
47// integers.  These are derived from the definitions in inttypes.h.  If the platform
48// doesn't provide appropriate definitions, they should be provided in
49// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
50
51#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
52
53// Format 32-bit quantities.
54#define INT32_FORMAT           "%" PRId32
55#define UINT32_FORMAT          "%" PRIu32
56#define INT32_FORMAT_W(width)  "%" #width PRId32
57#define UINT32_FORMAT_W(width) "%" #width PRIu32
58
59#define PTR32_FORMAT           "0x%08" PRIx32
60#define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
61
62// Format 64-bit quantities.
63#define INT64_FORMAT           "%" PRId64
64#define UINT64_FORMAT          "%" PRIu64
65#define UINT64_FORMAT_X        "%" PRIx64
66#define INT64_FORMAT_W(width)  "%" #width PRId64
67#define UINT64_FORMAT_W(width) "%" #width PRIu64
68
69#define PTR64_FORMAT           "0x%016" PRIx64
70
71// Format jlong, if necessary
72#ifndef JLONG_FORMAT
73#define JLONG_FORMAT           INT64_FORMAT
74#endif
75#ifndef JULONG_FORMAT
76#define JULONG_FORMAT          UINT64_FORMAT
77#endif
78#ifndef JULONG_FORMAT_X
79#define JULONG_FORMAT_X        UINT64_FORMAT_X
80#endif
81
82// Format pointers which change size between 32- and 64-bit.
83#ifdef  _LP64
84#define INTPTR_FORMAT "0x%016" PRIxPTR
85#define PTR_FORMAT    "0x%016" PRIxPTR
86#else   // !_LP64
87#define INTPTR_FORMAT "0x%08"  PRIxPTR
88#define PTR_FORMAT    "0x%08"  PRIxPTR
89#endif  // _LP64
90
91#define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
92
93#define SSIZE_FORMAT             "%"   PRIdPTR
94#define SIZE_FORMAT              "%"   PRIuPTR
95#define SIZE_FORMAT_HEX          "0x%" PRIxPTR
96#define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
97#define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
98#define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
99
100#define INTX_FORMAT           "%" PRIdPTR
101#define UINTX_FORMAT          "%" PRIuPTR
102#define INTX_FORMAT_W(width)  "%" #width PRIdPTR
103#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
104
105//----------------------------------------------------------------------------------------------------
106// Constants
107
108const int LogBytesPerShort   = 1;
109const int LogBytesPerInt     = 2;
110#ifdef _LP64
111const int LogBytesPerWord    = 3;
112#else
113const int LogBytesPerWord    = 2;
114#endif
115const int LogBytesPerLong    = 3;
116
117const int BytesPerShort      = 1 << LogBytesPerShort;
118const int BytesPerInt        = 1 << LogBytesPerInt;
119const int BytesPerWord       = 1 << LogBytesPerWord;
120const int BytesPerLong       = 1 << LogBytesPerLong;
121
122const int LogBitsPerByte     = 3;
123const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
124const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
125const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
126const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
127
128const int BitsPerByte        = 1 << LogBitsPerByte;
129const int BitsPerShort       = 1 << LogBitsPerShort;
130const int BitsPerInt         = 1 << LogBitsPerInt;
131const int BitsPerWord        = 1 << LogBitsPerWord;
132const int BitsPerLong        = 1 << LogBitsPerLong;
133
134const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
135const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
136
137const int WordsPerLong       = 2;       // Number of stack entries for longs
138
139const int oopSize            = sizeof(char*); // Full-width oop
140extern int heapOopSize;                       // Oop within a java object
141const int wordSize           = sizeof(char*);
142const int longSize           = sizeof(jlong);
143const int jintSize           = sizeof(jint);
144const int size_tSize         = sizeof(size_t);
145
146const int BytesPerOop        = BytesPerWord;  // Full-width oop
147
148extern int LogBytesPerHeapOop;                // Oop within a java object
149extern int LogBitsPerHeapOop;
150extern int BytesPerHeapOop;
151extern int BitsPerHeapOop;
152
153const int BitsPerJavaInteger = 32;
154const int BitsPerJavaLong    = 64;
155const int BitsPerSize_t      = size_tSize * BitsPerByte;
156
157// Size of a char[] needed to represent a jint as a string in decimal.
158const int jintAsStringSize = 12;
159
160// In fact this should be
161// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
162// see os::set_memory_serialize_page()
163#ifdef _LP64
164const int SerializePageShiftCount = 4;
165#else
166const int SerializePageShiftCount = 3;
167#endif
168
169// An opaque struct of heap-word width, so that HeapWord* can be a generic
170// pointer into the heap.  We require that object sizes be measured in
171// units of heap words, so that that
172//   HeapWord* hw;
173//   hw += oop(hw)->foo();
174// works, where foo is a method (like size or scavenge) that returns the
175// object size.
176class HeapWord {
177  friend class VMStructs;
178 private:
179  char* i;
180#ifndef PRODUCT
181 public:
182  char* value() { return i; }
183#endif
184};
185
186// Analogous opaque struct for metadata allocated from
187// metaspaces.
188class MetaWord {
189 private:
190  char* i;
191};
192
193// HeapWordSize must be 2^LogHeapWordSize.
194const int HeapWordSize        = sizeof(HeapWord);
195#ifdef _LP64
196const int LogHeapWordSize     = 3;
197#else
198const int LogHeapWordSize     = 2;
199#endif
200const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
201const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
202
203// The minimum number of native machine words necessary to contain "byte_size"
204// bytes.
205inline size_t heap_word_size(size_t byte_size) {
206  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
207}
208
209//-------------------------------------------
210// Constant for jlong (standardized by C++11)
211
212// Build a 64bit integer constant
213#define CONST64(x)  (x ## LL)
214#define UCONST64(x) (x ## ULL)
215
216const jlong min_jlong = CONST64(0x8000000000000000);
217const jlong max_jlong = CONST64(0x7fffffffffffffff);
218
219const size_t K                  = 1024;
220const size_t M                  = K*K;
221const size_t G                  = M*K;
222const size_t HWperKB            = K / sizeof(HeapWord);
223
224// Constants for converting from a base unit to milli-base units.  For
225// example from seconds to milliseconds and microseconds
226
227const int MILLIUNITS    = 1000;         // milli units per base unit
228const int MICROUNITS    = 1000000;      // micro units per base unit
229const int NANOUNITS     = 1000000000;   // nano units per base unit
230
231const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
232const jint  NANOSECS_PER_MILLISEC = 1000000;
233
234inline const char* proper_unit_for_byte_size(size_t s) {
235#ifdef _LP64
236  if (s >= 10*G) {
237    return "G";
238  }
239#endif
240  if (s >= 10*M) {
241    return "M";
242  } else if (s >= 10*K) {
243    return "K";
244  } else {
245    return "B";
246  }
247}
248
249template <class T>
250inline T byte_size_in_proper_unit(T s) {
251#ifdef _LP64
252  if (s >= 10*G) {
253    return (T)(s/G);
254  }
255#endif
256  if (s >= 10*M) {
257    return (T)(s/M);
258  } else if (s >= 10*K) {
259    return (T)(s/K);
260  } else {
261    return s;
262  }
263}
264
265inline const char* exact_unit_for_byte_size(size_t s) {
266#ifdef _LP64
267  if (s >= G && (s % G) == 0) {
268    return "G";
269  }
270#endif
271  if (s >= M && (s % M) == 0) {
272    return "M";
273  }
274  if (s >= K && (s % K) == 0) {
275    return "K";
276  }
277  return "B";
278}
279
280inline size_t byte_size_in_exact_unit(size_t s) {
281#ifdef _LP64
282  if (s >= G && (s % G) == 0) {
283    return s / G;
284  }
285#endif
286  if (s >= M && (s % M) == 0) {
287    return s / M;
288  }
289  if (s >= K && (s % K) == 0) {
290    return s / K;
291  }
292  return s;
293}
294
295//----------------------------------------------------------------------------------------------------
296// VM type definitions
297
298// intx and uintx are the 'extended' int and 'extended' unsigned int types;
299// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
300
301typedef intptr_t  intx;
302typedef uintptr_t uintx;
303
304const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
305const intx  max_intx  = (uintx)min_intx - 1;
306const uintx max_uintx = (uintx)-1;
307
308// Table of values:
309//      sizeof intx         4               8
310// min_intx             0x80000000      0x8000000000000000
311// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
312// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
313
314typedef unsigned int uint;   NEEDS_CLEANUP
315
316
317//----------------------------------------------------------------------------------------------------
318// Java type definitions
319
320// All kinds of 'plain' byte addresses
321typedef   signed char s_char;
322typedef unsigned char u_char;
323typedef u_char*       address;
324typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
325                                    // except for some implementations of a C++
326                                    // linkage pointer to function. Should never
327                                    // need one of those to be placed in this
328                                    // type anyway.
329
330//  Utility functions to "portably" (?) bit twiddle pointers
331//  Where portable means keep ANSI C++ compilers quiet
332
333inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
334inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
335
336//  Utility functions to "portably" make cast to/from function pointers.
337
338inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
339inline address_word  castable_address(address x)              { return address_word(x) ; }
340inline address_word  castable_address(void* x)                { return address_word(x) ; }
341
342// Pointer subtraction.
343// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
344// the range we might need to find differences from one end of the heap
345// to the other.
346// A typical use might be:
347//     if (pointer_delta(end(), top()) >= size) {
348//       // enough room for an object of size
349//       ...
350// and then additions like
351//       ... top() + size ...
352// are safe because we know that top() is at least size below end().
353inline size_t pointer_delta(const volatile void* left,
354                            const volatile void* right,
355                            size_t element_size) {
356  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
357}
358
359// A version specialized for HeapWord*'s.
360inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
361  return pointer_delta(left, right, sizeof(HeapWord));
362}
363// A version specialized for MetaWord*'s.
364inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
365  return pointer_delta(left, right, sizeof(MetaWord));
366}
367
368//
369// ANSI C++ does not allow casting from one pointer type to a function pointer
370// directly without at best a warning. This macro accomplishes it silently
371// In every case that is present at this point the value be cast is a pointer
372// to a C linkage function. In some case the type used for the cast reflects
373// that linkage and a picky compiler would not complain. In other cases because
374// there is no convenient place to place a typedef with extern C linkage (i.e
375// a platform dependent header file) it doesn't. At this point no compiler seems
376// picky enough to catch these instances (which are few). It is possible that
377// using templates could fix these for all cases. This use of templates is likely
378// so far from the middle of the road that it is likely to be problematic in
379// many C++ compilers.
380//
381#define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
382#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
383
384// Unsigned byte types for os and stream.hpp
385
386// Unsigned one, two, four and eigth byte quantities used for describing
387// the .class file format. See JVM book chapter 4.
388
389typedef jubyte  u1;
390typedef jushort u2;
391typedef juint   u4;
392typedef julong  u8;
393
394const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
395const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
396const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
397const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
398
399typedef jbyte  s1;
400typedef jshort s2;
401typedef jint   s4;
402typedef jlong  s8;
403
404const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
405const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
406const jshort min_jshort = -(1 << 15);    // smallest jshort
407const jshort max_jshort = (1 << 15) - 1; // largest jshort
408
409const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
410const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
411
412//----------------------------------------------------------------------------------------------------
413// JVM spec restrictions
414
415const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
416
417// Default ProtectionDomainCacheSize values
418
419const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
420
421//----------------------------------------------------------------------------------------------------
422// Default and minimum StringTableSize values
423
424const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
425const int minimumStringTableSize = 1009;
426
427const int defaultSymbolTableSize = 20011;
428const int minimumSymbolTableSize = 1009;
429
430
431//----------------------------------------------------------------------------------------------------
432// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
433//
434// Determines whether on-the-fly class replacement and frame popping are enabled.
435
436#define HOTSWAP
437
438//----------------------------------------------------------------------------------------------------
439// Object alignment, in units of HeapWords.
440//
441// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
442// reference fields can be naturally aligned.
443
444extern int MinObjAlignment;
445extern int MinObjAlignmentInBytes;
446extern int MinObjAlignmentInBytesMask;
447
448extern int LogMinObjAlignment;
449extern int LogMinObjAlignmentInBytes;
450
451const int LogKlassAlignmentInBytes = 3;
452const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
453const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
454const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
455
456// Maximal size of heap where unscaled compression can be used. Also upper bound
457// for heap placement: 4GB.
458const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
459// Maximal size of heap where compressed oops can be used. Also upper bound for heap
460// placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
461extern uint64_t OopEncodingHeapMax;
462
463// Maximal size of compressed class space. Above this limit compression is not possible.
464// Also upper bound for placement of zero based class space. (Class space is further limited
465// to be < 3G, see arguments.cpp.)
466const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
467
468// Machine dependent stuff
469
470// The maximum size of the code cache.  Can be overridden by targets.
471#define CODE_CACHE_SIZE_LIMIT (2*G)
472// Allow targets to reduce the default size of the code cache.
473#define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
474
475#include CPU_HEADER(globalDefinitions)
476
477// To assure the IRIW property on processors that are not multiple copy
478// atomic, sync instructions must be issued between volatile reads to
479// assure their ordering, instead of after volatile stores.
480// (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
481// by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
482#ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
483const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
484#else
485const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
486#endif
487
488// The expected size in bytes of a cache line, used to pad data structures.
489#ifndef DEFAULT_CACHE_LINE_SIZE
490  #define DEFAULT_CACHE_LINE_SIZE 64
491#endif
492
493
494//----------------------------------------------------------------------------------------------------
495// Utility macros for compilers
496// used to silence compiler warnings
497
498#define Unused_Variable(var) var
499
500
501//----------------------------------------------------------------------------------------------------
502// Miscellaneous
503
504// 6302670 Eliminate Hotspot __fabsf dependency
505// All fabs() callers should call this function instead, which will implicitly
506// convert the operand to double, avoiding a dependency on __fabsf which
507// doesn't exist in early versions of Solaris 8.
508inline double fabsd(double value) {
509  return fabs(value);
510}
511
512// Returns numerator/denominator as percentage value from 0 to 100. If denominator
513// is zero, return 0.0.
514template<typename T>
515inline double percent_of(T numerator, T denominator) {
516  return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
517}
518
519//----------------------------------------------------------------------------------------------------
520// Special casts
521// Cast floats into same-size integers and vice-versa w/o changing bit-pattern
522typedef union {
523  jfloat f;
524  jint i;
525} FloatIntConv;
526
527typedef union {
528  jdouble d;
529  jlong l;
530  julong ul;
531} DoubleLongConv;
532
533inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
534inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
535
536inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
537inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
538inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
539
540inline jint low (jlong value)                    { return jint(value); }
541inline jint high(jlong value)                    { return jint(value >> 32); }
542
543// the fancy casts are a hopefully portable way
544// to do unsigned 32 to 64 bit type conversion
545inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
546                                                   *value |= (jlong)(julong)(juint)low; }
547
548inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
549                                                   *value |= (jlong)high       << 32; }
550
551inline jlong jlong_from(jint h, jint l) {
552  jlong result = 0; // initialization to avoid warning
553  set_high(&result, h);
554  set_low(&result,  l);
555  return result;
556}
557
558union jlong_accessor {
559  jint  words[2];
560  jlong long_value;
561};
562
563void basic_types_init(); // cannot define here; uses assert
564
565
566// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
567enum BasicType {
568  T_BOOLEAN     =  4,
569  T_CHAR        =  5,
570  T_FLOAT       =  6,
571  T_DOUBLE      =  7,
572  T_BYTE        =  8,
573  T_SHORT       =  9,
574  T_INT         = 10,
575  T_LONG        = 11,
576  T_OBJECT      = 12,
577  T_ARRAY       = 13,
578  T_VOID        = 14,
579  T_ADDRESS     = 15,
580  T_NARROWOOP   = 16,
581  T_METADATA    = 17,
582  T_NARROWKLASS = 18,
583  T_CONFLICT    = 19, // for stack value type with conflicting contents
584  T_ILLEGAL     = 99
585};
586
587inline bool is_java_primitive(BasicType t) {
588  return T_BOOLEAN <= t && t <= T_LONG;
589}
590
591inline bool is_subword_type(BasicType t) {
592  // these guys are processed exactly like T_INT in calling sequences:
593  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
594}
595
596inline bool is_signed_subword_type(BasicType t) {
597  return (t == T_BYTE || t == T_SHORT);
598}
599
600// Convert a char from a classfile signature to a BasicType
601inline BasicType char2type(char c) {
602  switch( c ) {
603  case 'B': return T_BYTE;
604  case 'C': return T_CHAR;
605  case 'D': return T_DOUBLE;
606  case 'F': return T_FLOAT;
607  case 'I': return T_INT;
608  case 'J': return T_LONG;
609  case 'S': return T_SHORT;
610  case 'Z': return T_BOOLEAN;
611  case 'V': return T_VOID;
612  case 'L': return T_OBJECT;
613  case '[': return T_ARRAY;
614  }
615  return T_ILLEGAL;
616}
617
618extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
619inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
620extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
621extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
622inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
623extern BasicType name2type(const char* name);
624
625// Auxiliary math routines
626// least common multiple
627extern size_t lcm(size_t a, size_t b);
628
629
630// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
631enum BasicTypeSize {
632  T_BOOLEAN_size     = 1,
633  T_CHAR_size        = 1,
634  T_FLOAT_size       = 1,
635  T_DOUBLE_size      = 2,
636  T_BYTE_size        = 1,
637  T_SHORT_size       = 1,
638  T_INT_size         = 1,
639  T_LONG_size        = 2,
640  T_OBJECT_size      = 1,
641  T_ARRAY_size       = 1,
642  T_NARROWOOP_size   = 1,
643  T_NARROWKLASS_size = 1,
644  T_VOID_size        = 0
645};
646
647
648// maps a BasicType to its instance field storage type:
649// all sub-word integral types are widened to T_INT
650extern BasicType type2field[T_CONFLICT+1];
651extern BasicType type2wfield[T_CONFLICT+1];
652
653
654// size in bytes
655enum ArrayElementSize {
656  T_BOOLEAN_aelem_bytes     = 1,
657  T_CHAR_aelem_bytes        = 2,
658  T_FLOAT_aelem_bytes       = 4,
659  T_DOUBLE_aelem_bytes      = 8,
660  T_BYTE_aelem_bytes        = 1,
661  T_SHORT_aelem_bytes       = 2,
662  T_INT_aelem_bytes         = 4,
663  T_LONG_aelem_bytes        = 8,
664#ifdef _LP64
665  T_OBJECT_aelem_bytes      = 8,
666  T_ARRAY_aelem_bytes       = 8,
667#else
668  T_OBJECT_aelem_bytes      = 4,
669  T_ARRAY_aelem_bytes       = 4,
670#endif
671  T_NARROWOOP_aelem_bytes   = 4,
672  T_NARROWKLASS_aelem_bytes = 4,
673  T_VOID_aelem_bytes        = 0
674};
675
676extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
677#ifdef ASSERT
678extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
679#else
680inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
681#endif
682
683
684// JavaValue serves as a container for arbitrary Java values.
685
686class JavaValue {
687
688 public:
689  typedef union JavaCallValue {
690    jfloat   f;
691    jdouble  d;
692    jint     i;
693    jlong    l;
694    jobject  h;
695  } JavaCallValue;
696
697 private:
698  BasicType _type;
699  JavaCallValue _value;
700
701 public:
702  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
703
704  JavaValue(jfloat value) {
705    _type    = T_FLOAT;
706    _value.f = value;
707  }
708
709  JavaValue(jdouble value) {
710    _type    = T_DOUBLE;
711    _value.d = value;
712  }
713
714 jfloat get_jfloat() const { return _value.f; }
715 jdouble get_jdouble() const { return _value.d; }
716 jint get_jint() const { return _value.i; }
717 jlong get_jlong() const { return _value.l; }
718 jobject get_jobject() const { return _value.h; }
719 JavaCallValue* get_value_addr() { return &_value; }
720 BasicType get_type() const { return _type; }
721
722 void set_jfloat(jfloat f) { _value.f = f;}
723 void set_jdouble(jdouble d) { _value.d = d;}
724 void set_jint(jint i) { _value.i = i;}
725 void set_jlong(jlong l) { _value.l = l;}
726 void set_jobject(jobject h) { _value.h = h;}
727 void set_type(BasicType t) { _type = t; }
728
729 jboolean get_jboolean() const { return (jboolean) (_value.i);}
730 jbyte get_jbyte() const { return (jbyte) (_value.i);}
731 jchar get_jchar() const { return (jchar) (_value.i);}
732 jshort get_jshort() const { return (jshort) (_value.i);}
733
734};
735
736
737#define STACK_BIAS      0
738// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
739// in order to extend the reach of the stack pointer.
740#if defined(SPARC) && defined(_LP64)
741#undef STACK_BIAS
742#define STACK_BIAS      0x7ff
743#endif
744
745
746// TosState describes the top-of-stack state before and after the execution of
747// a bytecode or method. The top-of-stack value may be cached in one or more CPU
748// registers. The TosState corresponds to the 'machine representation' of this cached
749// value. There's 4 states corresponding to the JAVA types int, long, float & double
750// as well as a 5th state in case the top-of-stack value is actually on the top
751// of stack (in memory) and thus not cached. The atos state corresponds to the itos
752// state when it comes to machine representation but is used separately for (oop)
753// type specific operations (e.g. verification code).
754
755enum TosState {         // describes the tos cache contents
756  btos = 0,             // byte, bool tos cached
757  ztos = 1,             // byte, bool tos cached
758  ctos = 2,             // char tos cached
759  stos = 3,             // short tos cached
760  itos = 4,             // int tos cached
761  ltos = 5,             // long tos cached
762  ftos = 6,             // float tos cached
763  dtos = 7,             // double tos cached
764  atos = 8,             // object cached
765  vtos = 9,             // tos not cached
766  number_of_states,
767  ilgl                  // illegal state: should not occur
768};
769
770
771inline TosState as_TosState(BasicType type) {
772  switch (type) {
773    case T_BYTE   : return btos;
774    case T_BOOLEAN: return ztos;
775    case T_CHAR   : return ctos;
776    case T_SHORT  : return stos;
777    case T_INT    : return itos;
778    case T_LONG   : return ltos;
779    case T_FLOAT  : return ftos;
780    case T_DOUBLE : return dtos;
781    case T_VOID   : return vtos;
782    case T_ARRAY  : // fall through
783    case T_OBJECT : return atos;
784  }
785  return ilgl;
786}
787
788inline BasicType as_BasicType(TosState state) {
789  switch (state) {
790    case btos : return T_BYTE;
791    case ztos : return T_BOOLEAN;
792    case ctos : return T_CHAR;
793    case stos : return T_SHORT;
794    case itos : return T_INT;
795    case ltos : return T_LONG;
796    case ftos : return T_FLOAT;
797    case dtos : return T_DOUBLE;
798    case atos : return T_OBJECT;
799    case vtos : return T_VOID;
800  }
801  return T_ILLEGAL;
802}
803
804
805// Helper function to convert BasicType info into TosState
806// Note: Cannot define here as it uses global constant at the time being.
807TosState as_TosState(BasicType type);
808
809
810// JavaThreadState keeps track of which part of the code a thread is executing in. This
811// information is needed by the safepoint code.
812//
813// There are 4 essential states:
814//
815//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
816//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
817//  _thread_in_vm       : Executing in the vm
818//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
819//
820// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
821// a transition from one state to another. These extra states makes it possible for the safepoint code to
822// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
823//
824// Given a state, the xxxx_trans state can always be found by adding 1.
825//
826enum JavaThreadState {
827  _thread_uninitialized     =  0, // should never happen (missing initialization)
828  _thread_new               =  2, // just starting up, i.e., in process of being initialized
829  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
830  _thread_in_native         =  4, // running in native code
831  _thread_in_native_trans   =  5, // corresponding transition state
832  _thread_in_vm             =  6, // running in VM
833  _thread_in_vm_trans       =  7, // corresponding transition state
834  _thread_in_Java           =  8, // running in Java or in stub code
835  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
836  _thread_blocked           = 10, // blocked in vm
837  _thread_blocked_trans     = 11, // corresponding transition state
838  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
839};
840
841
842
843//----------------------------------------------------------------------------------------------------
844// 'Forward' declarations of frequently used classes
845// (in order to reduce interface dependencies & reduce
846// number of unnecessary compilations after changes)
847
848class ClassFileStream;
849
850class Event;
851
852class Thread;
853class  VMThread;
854class  JavaThread;
855class Threads;
856
857class VM_Operation;
858class VMOperationQueue;
859
860class CodeBlob;
861class  CompiledMethod;
862class   nmethod;
863class RuntimeBlob;
864class  OSRAdapter;
865class  I2CAdapter;
866class  C2IAdapter;
867class CompiledIC;
868class relocInfo;
869class ScopeDesc;
870class PcDesc;
871
872class Recompiler;
873class Recompilee;
874class RecompilationPolicy;
875class RFrame;
876class  CompiledRFrame;
877class  InterpretedRFrame;
878
879class vframe;
880class   javaVFrame;
881class     interpretedVFrame;
882class     compiledVFrame;
883class     deoptimizedVFrame;
884class   externalVFrame;
885class     entryVFrame;
886
887class RegisterMap;
888
889class Mutex;
890class Monitor;
891class BasicLock;
892class BasicObjectLock;
893
894class PeriodicTask;
895
896class JavaCallWrapper;
897
898class   oopDesc;
899class   metaDataOopDesc;
900
901class NativeCall;
902
903class zone;
904
905class StubQueue;
906
907class outputStream;
908
909class ResourceArea;
910
911class DebugInformationRecorder;
912class ScopeValue;
913class CompressedStream;
914class   DebugInfoReadStream;
915class   DebugInfoWriteStream;
916class LocationValue;
917class ConstantValue;
918class IllegalValue;
919
920class PrivilegedElement;
921class MonitorArray;
922
923class MonitorInfo;
924
925class OffsetClosure;
926class OopMapCache;
927class InterpreterOopMap;
928class OopMapCacheEntry;
929class OSThread;
930
931typedef int (*OSThreadStartFunc)(void*);
932
933class Space;
934
935class JavaValue;
936class methodHandle;
937class JavaCallArguments;
938
939// Basic support for errors.
940extern void basic_fatal(const char* msg);
941
942//----------------------------------------------------------------------------------------------------
943// Special constants for debugging
944
945const jint     badInt           = -3;                       // generic "bad int" value
946const long     badAddressVal    = -2;                       // generic "bad address" value
947const long     badOopVal        = -1;                       // generic "bad oop" value
948const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
949const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
950const int      badResourceValue = 0xAB;                     // value used to zap resource area
951const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
952const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
953const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
954const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
955const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
956const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
957const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
958const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
959
960
961// (These must be implemented as #defines because C++ compilers are
962// not obligated to inline non-integral constants!)
963#define       badAddress        ((address)::badAddressVal)
964#define       badOop            (cast_to_oop(::badOopVal))
965#define       badHeapWord       (::badHeapWordVal)
966#define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
967
968// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
969#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
970
971//----------------------------------------------------------------------------------------------------
972// Utility functions for bitfield manipulations
973
974const intptr_t AllBits    = ~0; // all bits set in a word
975const intptr_t NoBits     =  0; // no bits set in a word
976const jlong    NoLongBits =  0; // no bits set in a long
977const intptr_t OneBit     =  1; // only right_most bit set in a word
978
979// get a word with the n.th or the right-most or left-most n bits set
980// (note: #define used only so that they can be used in enum constant definitions)
981#define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
982#define right_n_bits(n)   (nth_bit(n) - 1)
983#define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
984
985// bit-operations using a mask m
986inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
987inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
988inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
989inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
990inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
991
992// bit-operations using the n.th bit
993inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
994inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
995inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
996
997// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
998inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
999  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1000}
1001
1002
1003//----------------------------------------------------------------------------------------------------
1004// Utility functions for integers
1005
1006// Avoid use of global min/max macros which may cause unwanted double
1007// evaluation of arguments.
1008#ifdef max
1009#undef max
1010#endif
1011
1012#ifdef min
1013#undef min
1014#endif
1015
1016// The following defines serve the purpose of preventing use of accidentally
1017// included min max macros from compiling, while continuing to allow innocent
1018// min and max identifiers in the code to compile as intended.
1019#define max max
1020#define min min
1021
1022// It is necessary to use templates here. Having normal overloaded
1023// functions does not work because it is necessary to provide both 32-
1024// and 64-bit overloaded functions, which does not work, and having
1025// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1026// will be even more error-prone than macros.
1027template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1028template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1029template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1030template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1031template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1032template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1033
1034template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1035
1036// true if x is a power of 2, false otherwise
1037inline bool is_power_of_2(intptr_t x) {
1038  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1039}
1040
1041// long version of is_power_of_2
1042inline bool is_power_of_2_long(jlong x) {
1043  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1044}
1045
1046// Returns largest i such that 2^i <= x.
1047// If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1048// If x == 0, the function returns -1.
1049inline int log2_intptr(intptr_t x) {
1050  int i = -1;
1051  uintptr_t p = 1;
1052  while (p != 0 && p <= (uintptr_t)x) {
1053    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1054    i++; p *= 2;
1055  }
1056  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1057  // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1058  return i;
1059}
1060
1061//* largest i such that 2^i <= x
1062//  A negative value of 'x' will return '63'
1063inline int log2_long(jlong x) {
1064  int i = -1;
1065  julong p =  1;
1066  while (p != 0 && p <= (julong)x) {
1067    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1068    i++; p *= 2;
1069  }
1070  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1071  // (if p = 0 then overflow occurred and i = 63)
1072  return i;
1073}
1074
1075//* the argument must be exactly a power of 2
1076inline int exact_log2(intptr_t x) {
1077  assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1078  return log2_intptr(x);
1079}
1080
1081//* the argument must be exactly a power of 2
1082inline int exact_log2_long(jlong x) {
1083  assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1084  return log2_long(x);
1085}
1086
1087inline bool is_odd (intx x) { return x & 1;      }
1088inline bool is_even(intx x) { return !is_odd(x); }
1089
1090// "to" should be greater than "from."
1091inline intx byte_size(void* from, void* to) {
1092  return (address)to - (address)from;
1093}
1094
1095//----------------------------------------------------------------------------------------------------
1096// Avoid non-portable casts with these routines (DEPRECATED)
1097
1098// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1099//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1100
1101// Given sequence of four bytes, build into a 32-bit word
1102// following the conventions used in class files.
1103// On the 386, this could be realized with a simple address cast.
1104//
1105
1106// This routine takes eight bytes:
1107inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1108  return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1109       |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1110       |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1111       |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1112       |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1113       |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1114       |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1115       |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1116}
1117
1118// This routine takes four bytes:
1119inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1120  return  (( u4(c1) << 24 )  &  0xff000000)
1121       |  (( u4(c2) << 16 )  &  0x00ff0000)
1122       |  (( u4(c3) <<  8 )  &  0x0000ff00)
1123       |  (( u4(c4) <<  0 )  &  0x000000ff);
1124}
1125
1126// And this one works if the four bytes are contiguous in memory:
1127inline u4 build_u4_from( u1* p ) {
1128  return  build_u4_from( p[0], p[1], p[2], p[3] );
1129}
1130
1131// Ditto for two-byte ints:
1132inline u2 build_u2_from( u1 c1, u1 c2 ) {
1133  return  u2((( u2(c1) <<  8 )  &  0xff00)
1134          |  (( u2(c2) <<  0 )  &  0x00ff));
1135}
1136
1137// And this one works if the two bytes are contiguous in memory:
1138inline u2 build_u2_from( u1* p ) {
1139  return  build_u2_from( p[0], p[1] );
1140}
1141
1142// Ditto for floats:
1143inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1144  u4 u = build_u4_from( c1, c2, c3, c4 );
1145  return  *(jfloat*)&u;
1146}
1147
1148inline jfloat build_float_from( u1* p ) {
1149  u4 u = build_u4_from( p );
1150  return  *(jfloat*)&u;
1151}
1152
1153
1154// now (64-bit) longs
1155
1156inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1157  return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1158       |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1159       |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1160       |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1161       |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1162       |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1163       |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1164       |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1165}
1166
1167inline jlong build_long_from( u1* p ) {
1168  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1169}
1170
1171
1172// Doubles, too!
1173inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1174  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1175  return  *(jdouble*)&u;
1176}
1177
1178inline jdouble build_double_from( u1* p ) {
1179  jlong u = build_long_from( p );
1180  return  *(jdouble*)&u;
1181}
1182
1183
1184// Portable routines to go the other way:
1185
1186inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1187  c1 = u1(x >> 8);
1188  c2 = u1(x);
1189}
1190
1191inline void explode_short_to( u2 x, u1* p ) {
1192  explode_short_to( x, p[0], p[1]);
1193}
1194
1195inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1196  c1 = u1(x >> 24);
1197  c2 = u1(x >> 16);
1198  c3 = u1(x >>  8);
1199  c4 = u1(x);
1200}
1201
1202inline void explode_int_to( u4 x, u1* p ) {
1203  explode_int_to( x, p[0], p[1], p[2], p[3]);
1204}
1205
1206
1207// Pack and extract shorts to/from ints:
1208
1209inline int extract_low_short_from_int(jint x) {
1210  return x & 0xffff;
1211}
1212
1213inline int extract_high_short_from_int(jint x) {
1214  return (x >> 16) & 0xffff;
1215}
1216
1217inline int build_int_from_shorts( jushort low, jushort high ) {
1218  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1219}
1220
1221// Convert pointer to intptr_t, for use in printing pointers.
1222inline intptr_t p2i(const void * p) {
1223  return (intptr_t) p;
1224}
1225
1226// swap a & b
1227template<class T> static void swap(T& a, T& b) {
1228  T tmp = a;
1229  a = b;
1230  b = tmp;
1231}
1232
1233#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1234
1235//----------------------------------------------------------------------------------------------------
1236// Sum and product which can never overflow: they wrap, just like the
1237// Java operations.  Note that we don't intend these to be used for
1238// general-purpose arithmetic: their purpose is to emulate Java
1239// operations.
1240
1241// The goal of this code to avoid undefined or implementation-defined
1242// behavior.  The use of an lvalue to reference cast is explicitly
1243// permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1244// 15 in C++03]
1245#define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1246inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1247  UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1248  ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1249  return reinterpret_cast<TYPE&>(ures);                 \
1250}
1251
1252JAVA_INTEGER_OP(+, java_add, jint, juint)
1253JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1254JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1255JAVA_INTEGER_OP(+, java_add, jlong, julong)
1256JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1257JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1258
1259#undef JAVA_INTEGER_OP
1260
1261// Dereference vptr
1262// All C++ compilers that we know of have the vtbl pointer in the first
1263// word.  If there are exceptions, this function needs to be made compiler
1264// specific.
1265static inline void* dereference_vptr(const void* addr) {
1266  return *(void**)addr;
1267}
1268
1269#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
1270