globalDefinitions.hpp revision 13159:93edfbc19d0c
1/*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
26#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
27
28#ifdef TARGET_COMPILER_gcc
29# include "utilities/globalDefinitions_gcc.hpp"
30#endif
31#ifdef TARGET_COMPILER_visCPP
32# include "utilities/globalDefinitions_visCPP.hpp"
33#endif
34#ifdef TARGET_COMPILER_sparcWorks
35# include "utilities/globalDefinitions_sparcWorks.hpp"
36#endif
37#ifdef TARGET_COMPILER_xlc
38# include "utilities/globalDefinitions_xlc.hpp"
39#endif
40
41#ifndef NOINLINE
42#define NOINLINE
43#endif
44#ifndef ALWAYSINLINE
45#define ALWAYSINLINE inline
46#endif
47#ifndef PRAGMA_DIAG_PUSH
48#define PRAGMA_DIAG_PUSH
49#endif
50#ifndef PRAGMA_DIAG_POP
51#define PRAGMA_DIAG_POP
52#endif
53#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
54#define PRAGMA_FORMAT_NONLITERAL_IGNORED
55#endif
56#ifndef PRAGMA_FORMAT_IGNORED
57#define PRAGMA_FORMAT_IGNORED
58#endif
59#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
60#define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
61#endif
62#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
63#define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
64#endif
65#ifndef ATTRIBUTE_PRINTF
66#define ATTRIBUTE_PRINTF(fmt, vargs)
67#endif
68#ifndef ATTRIBUTE_SCANF
69#define ATTRIBUTE_SCANF(fmt, vargs)
70#endif
71
72#include "utilities/macros.hpp"
73
74// This file holds all globally used constants & types, class (forward)
75// declarations and a few frequently used utility functions.
76
77//----------------------------------------------------------------------------------------------------
78// Constants
79
80const int LogBytesPerShort   = 1;
81const int LogBytesPerInt     = 2;
82#ifdef _LP64
83const int LogBytesPerWord    = 3;
84#else
85const int LogBytesPerWord    = 2;
86#endif
87const int LogBytesPerLong    = 3;
88
89const int BytesPerShort      = 1 << LogBytesPerShort;
90const int BytesPerInt        = 1 << LogBytesPerInt;
91const int BytesPerWord       = 1 << LogBytesPerWord;
92const int BytesPerLong       = 1 << LogBytesPerLong;
93
94const int LogBitsPerByte     = 3;
95const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
96const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
97const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
98const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
99
100const int BitsPerByte        = 1 << LogBitsPerByte;
101const int BitsPerShort       = 1 << LogBitsPerShort;
102const int BitsPerInt         = 1 << LogBitsPerInt;
103const int BitsPerWord        = 1 << LogBitsPerWord;
104const int BitsPerLong        = 1 << LogBitsPerLong;
105
106const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
107const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
108
109const int WordsPerLong       = 2;       // Number of stack entries for longs
110
111const int oopSize            = sizeof(char*); // Full-width oop
112extern int heapOopSize;                       // Oop within a java object
113const int wordSize           = sizeof(char*);
114const int longSize           = sizeof(jlong);
115const int jintSize           = sizeof(jint);
116const int size_tSize         = sizeof(size_t);
117
118const int BytesPerOop        = BytesPerWord;  // Full-width oop
119
120extern int LogBytesPerHeapOop;                // Oop within a java object
121extern int LogBitsPerHeapOop;
122extern int BytesPerHeapOop;
123extern int BitsPerHeapOop;
124
125const int BitsPerJavaInteger = 32;
126const int BitsPerJavaLong    = 64;
127const int BitsPerSize_t      = size_tSize * BitsPerByte;
128
129// Size of a char[] needed to represent a jint as a string in decimal.
130const int jintAsStringSize = 12;
131
132// In fact this should be
133// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
134// see os::set_memory_serialize_page()
135#ifdef _LP64
136const int SerializePageShiftCount = 4;
137#else
138const int SerializePageShiftCount = 3;
139#endif
140
141// An opaque struct of heap-word width, so that HeapWord* can be a generic
142// pointer into the heap.  We require that object sizes be measured in
143// units of heap words, so that that
144//   HeapWord* hw;
145//   hw += oop(hw)->foo();
146// works, where foo is a method (like size or scavenge) that returns the
147// object size.
148class HeapWord {
149  friend class VMStructs;
150 private:
151  char* i;
152#ifndef PRODUCT
153 public:
154  char* value() { return i; }
155#endif
156};
157
158// Analogous opaque struct for metadata allocated from
159// metaspaces.
160class MetaWord {
161 private:
162  char* i;
163};
164
165// HeapWordSize must be 2^LogHeapWordSize.
166const int HeapWordSize        = sizeof(HeapWord);
167#ifdef _LP64
168const int LogHeapWordSize     = 3;
169#else
170const int LogHeapWordSize     = 2;
171#endif
172const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
173const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
174
175// The larger HeapWordSize for 64bit requires larger heaps
176// for the same application running in 64bit.  See bug 4967770.
177// The minimum alignment to a heap word size is done.  Other
178// parts of the memory system may require additional alignment
179// and are responsible for those alignments.
180#ifdef _LP64
181#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
182#else
183#define ScaleForWordSize(x) (x)
184#endif
185
186// The minimum number of native machine words necessary to contain "byte_size"
187// bytes.
188inline size_t heap_word_size(size_t byte_size) {
189  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
190}
191
192//-------------------------------------------
193// Constant for jlong (standardized by C++11)
194
195// Build a 64bit integer constant
196#define CONST64(x)  (x ## LL)
197#define UCONST64(x) (x ## ULL)
198
199const jlong min_jlong = CONST64(0x8000000000000000);
200const jlong max_jlong = CONST64(0x7fffffffffffffff);
201
202const size_t K                  = 1024;
203const size_t M                  = K*K;
204const size_t G                  = M*K;
205const size_t HWperKB            = K / sizeof(HeapWord);
206
207// Constants for converting from a base unit to milli-base units.  For
208// example from seconds to milliseconds and microseconds
209
210const int MILLIUNITS    = 1000;         // milli units per base unit
211const int MICROUNITS    = 1000000;      // micro units per base unit
212const int NANOUNITS     = 1000000000;   // nano units per base unit
213
214const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
215const jint  NANOSECS_PER_MILLISEC = 1000000;
216
217inline const char* proper_unit_for_byte_size(size_t s) {
218#ifdef _LP64
219  if (s >= 10*G) {
220    return "G";
221  }
222#endif
223  if (s >= 10*M) {
224    return "M";
225  } else if (s >= 10*K) {
226    return "K";
227  } else {
228    return "B";
229  }
230}
231
232template <class T>
233inline T byte_size_in_proper_unit(T s) {
234#ifdef _LP64
235  if (s >= 10*G) {
236    return (T)(s/G);
237  }
238#endif
239  if (s >= 10*M) {
240    return (T)(s/M);
241  } else if (s >= 10*K) {
242    return (T)(s/K);
243  } else {
244    return s;
245  }
246}
247
248inline const char* exact_unit_for_byte_size(size_t s) {
249#ifdef _LP64
250  if (s >= G && (s % G) == 0) {
251    return "G";
252  }
253#endif
254  if (s >= M && (s % M) == 0) {
255    return "M";
256  }
257  if (s >= K && (s % K) == 0) {
258    return "K";
259  }
260  return "B";
261}
262
263inline size_t byte_size_in_exact_unit(size_t s) {
264#ifdef _LP64
265  if (s >= G && (s % G) == 0) {
266    return s / G;
267  }
268#endif
269  if (s >= M && (s % M) == 0) {
270    return s / M;
271  }
272  if (s >= K && (s % K) == 0) {
273    return s / K;
274  }
275  return s;
276}
277
278//----------------------------------------------------------------------------------------------------
279// VM type definitions
280
281// intx and uintx are the 'extended' int and 'extended' unsigned int types;
282// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
283
284typedef intptr_t  intx;
285typedef uintptr_t uintx;
286
287const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
288const intx  max_intx  = (uintx)min_intx - 1;
289const uintx max_uintx = (uintx)-1;
290
291// Table of values:
292//      sizeof intx         4               8
293// min_intx             0x80000000      0x8000000000000000
294// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
295// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
296
297typedef unsigned int uint;   NEEDS_CLEANUP
298
299
300//----------------------------------------------------------------------------------------------------
301// Java type definitions
302
303// All kinds of 'plain' byte addresses
304typedef   signed char s_char;
305typedef unsigned char u_char;
306typedef u_char*       address;
307typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
308                                    // except for some implementations of a C++
309                                    // linkage pointer to function. Should never
310                                    // need one of those to be placed in this
311                                    // type anyway.
312
313//  Utility functions to "portably" (?) bit twiddle pointers
314//  Where portable means keep ANSI C++ compilers quiet
315
316inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
317inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
318
319//  Utility functions to "portably" make cast to/from function pointers.
320
321inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
322inline address_word  castable_address(address x)              { return address_word(x) ; }
323inline address_word  castable_address(void* x)                { return address_word(x) ; }
324
325// Pointer subtraction.
326// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
327// the range we might need to find differences from one end of the heap
328// to the other.
329// A typical use might be:
330//     if (pointer_delta(end(), top()) >= size) {
331//       // enough room for an object of size
332//       ...
333// and then additions like
334//       ... top() + size ...
335// are safe because we know that top() is at least size below end().
336inline size_t pointer_delta(const volatile void* left,
337                            const volatile void* right,
338                            size_t element_size) {
339  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
340}
341
342// A version specialized for HeapWord*'s.
343inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
344  return pointer_delta(left, right, sizeof(HeapWord));
345}
346// A version specialized for MetaWord*'s.
347inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
348  return pointer_delta(left, right, sizeof(MetaWord));
349}
350
351//
352// ANSI C++ does not allow casting from one pointer type to a function pointer
353// directly without at best a warning. This macro accomplishes it silently
354// In every case that is present at this point the value be cast is a pointer
355// to a C linkage function. In some case the type used for the cast reflects
356// that linkage and a picky compiler would not complain. In other cases because
357// there is no convenient place to place a typedef with extern C linkage (i.e
358// a platform dependent header file) it doesn't. At this point no compiler seems
359// picky enough to catch these instances (which are few). It is possible that
360// using templates could fix these for all cases. This use of templates is likely
361// so far from the middle of the road that it is likely to be problematic in
362// many C++ compilers.
363//
364#define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
365#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
366
367// Unsigned byte types for os and stream.hpp
368
369// Unsigned one, two, four and eigth byte quantities used for describing
370// the .class file format. See JVM book chapter 4.
371
372typedef jubyte  u1;
373typedef jushort u2;
374typedef juint   u4;
375typedef julong  u8;
376
377const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
378const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
379const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
380const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
381
382typedef jbyte  s1;
383typedef jshort s2;
384typedef jint   s4;
385typedef jlong  s8;
386
387const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
388const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
389const jshort min_jshort = -(1 << 15);    // smallest jshort
390const jshort max_jshort = (1 << 15) - 1; // largest jshort
391
392const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
393const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
394
395//----------------------------------------------------------------------------------------------------
396// JVM spec restrictions
397
398const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
399
400// Default ProtectionDomainCacheSize values
401
402const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
403
404//----------------------------------------------------------------------------------------------------
405// Default and minimum StringTableSize values
406
407const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
408const int minimumStringTableSize = 1009;
409
410const int defaultSymbolTableSize = 20011;
411const int minimumSymbolTableSize = 1009;
412
413
414//----------------------------------------------------------------------------------------------------
415// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
416//
417// Determines whether on-the-fly class replacement and frame popping are enabled.
418
419#define HOTSWAP
420
421//----------------------------------------------------------------------------------------------------
422// Object alignment, in units of HeapWords.
423//
424// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
425// reference fields can be naturally aligned.
426
427extern int MinObjAlignment;
428extern int MinObjAlignmentInBytes;
429extern int MinObjAlignmentInBytesMask;
430
431extern int LogMinObjAlignment;
432extern int LogMinObjAlignmentInBytes;
433
434const int LogKlassAlignmentInBytes = 3;
435const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
436const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
437const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
438
439// Maximal size of heap where unscaled compression can be used. Also upper bound
440// for heap placement: 4GB.
441const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
442// Maximal size of heap where compressed oops can be used. Also upper bound for heap
443// placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
444extern uint64_t OopEncodingHeapMax;
445
446// Maximal size of compressed class space. Above this limit compression is not possible.
447// Also upper bound for placement of zero based class space. (Class space is further limited
448// to be < 3G, see arguments.cpp.)
449const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
450
451// Machine dependent stuff
452
453// The maximum size of the code cache.  Can be overridden by targets.
454#define CODE_CACHE_SIZE_LIMIT (2*G)
455// Allow targets to reduce the default size of the code cache.
456#define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
457
458#include CPU_HEADER(globalDefinitions)
459
460// To assure the IRIW property on processors that are not multiple copy
461// atomic, sync instructions must be issued between volatile reads to
462// assure their ordering, instead of after volatile stores.
463// (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
464// by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
465#ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
466const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
467#else
468const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
469#endif
470
471// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
472// Note: this value must be a power of 2
473
474#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
475
476// Signed variants of alignment helpers.  There are two versions of each, a macro
477// for use in places like enum definitions that require compile-time constant
478// expressions and a function for all other places so as to get type checking.
479
480#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
481
482inline bool is_size_aligned(size_t size, size_t alignment) {
483  return align_size_up_(size, alignment) == size;
484}
485
486inline bool is_ptr_aligned(const void* ptr, size_t alignment) {
487  return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
488}
489
490inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
491  return align_size_up_(size, alignment);
492}
493
494#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
495
496inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
497  return align_size_down_(size, alignment);
498}
499
500#define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
501
502inline void* align_ptr_up(const void* ptr, size_t alignment) {
503  return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
504}
505
506inline void* align_ptr_down(void* ptr, size_t alignment) {
507  return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
508}
509
510inline volatile void* align_ptr_down(volatile void* ptr, size_t alignment) {
511  return (volatile void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
512}
513
514// Align metaspace objects by rounding up to natural word boundary
515
516inline intptr_t align_metadata_size(intptr_t size) {
517  return align_size_up(size, 1);
518}
519
520// Align objects in the Java Heap by rounding up their size, in HeapWord units.
521// Since the size is given in words this is somewhat of a nop, but
522// distinguishes it from align_object_size.
523inline intptr_t align_object_size(intptr_t size) {
524  return align_size_up(size, MinObjAlignment);
525}
526
527inline bool is_object_aligned(intptr_t addr) {
528  return addr == align_object_size(addr);
529}
530
531// Pad out certain offsets to jlong alignment, in HeapWord units.
532
533inline intptr_t align_object_offset(intptr_t offset) {
534  return align_size_up(offset, HeapWordsPerLong);
535}
536
537// Align down with a lower bound. If the aligning results in 0, return 'alignment'.
538
539inline size_t align_size_down_bounded(size_t size, size_t alignment) {
540  size_t aligned_size = align_size_down_(size, alignment);
541  return aligned_size > 0 ? aligned_size : alignment;
542}
543
544// Clamp an address to be within a specific page
545// 1. If addr is on the page it is returned as is
546// 2. If addr is above the page_address the start of the *next* page will be returned
547// 3. Otherwise, if addr is below the page_address the start of the page will be returned
548inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
549  if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
550    // address is in the specified page, just return it as is
551    return addr;
552  } else if (addr > page_address) {
553    // address is above specified page, return start of next page
554    return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
555  } else {
556    // address is below specified page, return start of page
557    return (address)align_size_down(intptr_t(page_address), page_size);
558  }
559}
560
561
562// The expected size in bytes of a cache line, used to pad data structures.
563#ifndef DEFAULT_CACHE_LINE_SIZE
564  #define DEFAULT_CACHE_LINE_SIZE 64
565#endif
566
567
568//----------------------------------------------------------------------------------------------------
569// Utility macros for compilers
570// used to silence compiler warnings
571
572#define Unused_Variable(var) var
573
574
575//----------------------------------------------------------------------------------------------------
576// Miscellaneous
577
578// 6302670 Eliminate Hotspot __fabsf dependency
579// All fabs() callers should call this function instead, which will implicitly
580// convert the operand to double, avoiding a dependency on __fabsf which
581// doesn't exist in early versions of Solaris 8.
582inline double fabsd(double value) {
583  return fabs(value);
584}
585
586// Returns numerator/denominator as percentage value from 0 to 100. If denominator
587// is zero, return 0.0.
588template<typename T>
589inline double percent_of(T numerator, T denominator) {
590  return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
591}
592
593//----------------------------------------------------------------------------------------------------
594// Special casts
595// Cast floats into same-size integers and vice-versa w/o changing bit-pattern
596typedef union {
597  jfloat f;
598  jint i;
599} FloatIntConv;
600
601typedef union {
602  jdouble d;
603  jlong l;
604  julong ul;
605} DoubleLongConv;
606
607inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
608inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
609
610inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
611inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
612inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
613
614inline jint low (jlong value)                    { return jint(value); }
615inline jint high(jlong value)                    { return jint(value >> 32); }
616
617// the fancy casts are a hopefully portable way
618// to do unsigned 32 to 64 bit type conversion
619inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
620                                                   *value |= (jlong)(julong)(juint)low; }
621
622inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
623                                                   *value |= (jlong)high       << 32; }
624
625inline jlong jlong_from(jint h, jint l) {
626  jlong result = 0; // initialization to avoid warning
627  set_high(&result, h);
628  set_low(&result,  l);
629  return result;
630}
631
632union jlong_accessor {
633  jint  words[2];
634  jlong long_value;
635};
636
637void basic_types_init(); // cannot define here; uses assert
638
639
640// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
641enum BasicType {
642  T_BOOLEAN     =  4,
643  T_CHAR        =  5,
644  T_FLOAT       =  6,
645  T_DOUBLE      =  7,
646  T_BYTE        =  8,
647  T_SHORT       =  9,
648  T_INT         = 10,
649  T_LONG        = 11,
650  T_OBJECT      = 12,
651  T_ARRAY       = 13,
652  T_VOID        = 14,
653  T_ADDRESS     = 15,
654  T_NARROWOOP   = 16,
655  T_METADATA    = 17,
656  T_NARROWKLASS = 18,
657  T_CONFLICT    = 19, // for stack value type with conflicting contents
658  T_ILLEGAL     = 99
659};
660
661inline bool is_java_primitive(BasicType t) {
662  return T_BOOLEAN <= t && t <= T_LONG;
663}
664
665inline bool is_subword_type(BasicType t) {
666  // these guys are processed exactly like T_INT in calling sequences:
667  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
668}
669
670inline bool is_signed_subword_type(BasicType t) {
671  return (t == T_BYTE || t == T_SHORT);
672}
673
674// Convert a char from a classfile signature to a BasicType
675inline BasicType char2type(char c) {
676  switch( c ) {
677  case 'B': return T_BYTE;
678  case 'C': return T_CHAR;
679  case 'D': return T_DOUBLE;
680  case 'F': return T_FLOAT;
681  case 'I': return T_INT;
682  case 'J': return T_LONG;
683  case 'S': return T_SHORT;
684  case 'Z': return T_BOOLEAN;
685  case 'V': return T_VOID;
686  case 'L': return T_OBJECT;
687  case '[': return T_ARRAY;
688  }
689  return T_ILLEGAL;
690}
691
692extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
693inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
694extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
695extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
696inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
697extern BasicType name2type(const char* name);
698
699// Auxiliary math routines
700// least common multiple
701extern size_t lcm(size_t a, size_t b);
702
703
704// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
705enum BasicTypeSize {
706  T_BOOLEAN_size     = 1,
707  T_CHAR_size        = 1,
708  T_FLOAT_size       = 1,
709  T_DOUBLE_size      = 2,
710  T_BYTE_size        = 1,
711  T_SHORT_size       = 1,
712  T_INT_size         = 1,
713  T_LONG_size        = 2,
714  T_OBJECT_size      = 1,
715  T_ARRAY_size       = 1,
716  T_NARROWOOP_size   = 1,
717  T_NARROWKLASS_size = 1,
718  T_VOID_size        = 0
719};
720
721
722// maps a BasicType to its instance field storage type:
723// all sub-word integral types are widened to T_INT
724extern BasicType type2field[T_CONFLICT+1];
725extern BasicType type2wfield[T_CONFLICT+1];
726
727
728// size in bytes
729enum ArrayElementSize {
730  T_BOOLEAN_aelem_bytes     = 1,
731  T_CHAR_aelem_bytes        = 2,
732  T_FLOAT_aelem_bytes       = 4,
733  T_DOUBLE_aelem_bytes      = 8,
734  T_BYTE_aelem_bytes        = 1,
735  T_SHORT_aelem_bytes       = 2,
736  T_INT_aelem_bytes         = 4,
737  T_LONG_aelem_bytes        = 8,
738#ifdef _LP64
739  T_OBJECT_aelem_bytes      = 8,
740  T_ARRAY_aelem_bytes       = 8,
741#else
742  T_OBJECT_aelem_bytes      = 4,
743  T_ARRAY_aelem_bytes       = 4,
744#endif
745  T_NARROWOOP_aelem_bytes   = 4,
746  T_NARROWKLASS_aelem_bytes = 4,
747  T_VOID_aelem_bytes        = 0
748};
749
750extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
751#ifdef ASSERT
752extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
753#else
754inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
755#endif
756
757
758// JavaValue serves as a container for arbitrary Java values.
759
760class JavaValue {
761
762 public:
763  typedef union JavaCallValue {
764    jfloat   f;
765    jdouble  d;
766    jint     i;
767    jlong    l;
768    jobject  h;
769  } JavaCallValue;
770
771 private:
772  BasicType _type;
773  JavaCallValue _value;
774
775 public:
776  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
777
778  JavaValue(jfloat value) {
779    _type    = T_FLOAT;
780    _value.f = value;
781  }
782
783  JavaValue(jdouble value) {
784    _type    = T_DOUBLE;
785    _value.d = value;
786  }
787
788 jfloat get_jfloat() const { return _value.f; }
789 jdouble get_jdouble() const { return _value.d; }
790 jint get_jint() const { return _value.i; }
791 jlong get_jlong() const { return _value.l; }
792 jobject get_jobject() const { return _value.h; }
793 JavaCallValue* get_value_addr() { return &_value; }
794 BasicType get_type() const { return _type; }
795
796 void set_jfloat(jfloat f) { _value.f = f;}
797 void set_jdouble(jdouble d) { _value.d = d;}
798 void set_jint(jint i) { _value.i = i;}
799 void set_jlong(jlong l) { _value.l = l;}
800 void set_jobject(jobject h) { _value.h = h;}
801 void set_type(BasicType t) { _type = t; }
802
803 jboolean get_jboolean() const { return (jboolean) (_value.i);}
804 jbyte get_jbyte() const { return (jbyte) (_value.i);}
805 jchar get_jchar() const { return (jchar) (_value.i);}
806 jshort get_jshort() const { return (jshort) (_value.i);}
807
808};
809
810
811#define STACK_BIAS      0
812// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
813// in order to extend the reach of the stack pointer.
814#if defined(SPARC) && defined(_LP64)
815#undef STACK_BIAS
816#define STACK_BIAS      0x7ff
817#endif
818
819
820// TosState describes the top-of-stack state before and after the execution of
821// a bytecode or method. The top-of-stack value may be cached in one or more CPU
822// registers. The TosState corresponds to the 'machine representation' of this cached
823// value. There's 4 states corresponding to the JAVA types int, long, float & double
824// as well as a 5th state in case the top-of-stack value is actually on the top
825// of stack (in memory) and thus not cached. The atos state corresponds to the itos
826// state when it comes to machine representation but is used separately for (oop)
827// type specific operations (e.g. verification code).
828
829enum TosState {         // describes the tos cache contents
830  btos = 0,             // byte, bool tos cached
831  ztos = 1,             // byte, bool tos cached
832  ctos = 2,             // char tos cached
833  stos = 3,             // short tos cached
834  itos = 4,             // int tos cached
835  ltos = 5,             // long tos cached
836  ftos = 6,             // float tos cached
837  dtos = 7,             // double tos cached
838  atos = 8,             // object cached
839  vtos = 9,             // tos not cached
840  number_of_states,
841  ilgl                  // illegal state: should not occur
842};
843
844
845inline TosState as_TosState(BasicType type) {
846  switch (type) {
847    case T_BYTE   : return btos;
848    case T_BOOLEAN: return ztos;
849    case T_CHAR   : return ctos;
850    case T_SHORT  : return stos;
851    case T_INT    : return itos;
852    case T_LONG   : return ltos;
853    case T_FLOAT  : return ftos;
854    case T_DOUBLE : return dtos;
855    case T_VOID   : return vtos;
856    case T_ARRAY  : // fall through
857    case T_OBJECT : return atos;
858  }
859  return ilgl;
860}
861
862inline BasicType as_BasicType(TosState state) {
863  switch (state) {
864    case btos : return T_BYTE;
865    case ztos : return T_BOOLEAN;
866    case ctos : return T_CHAR;
867    case stos : return T_SHORT;
868    case itos : return T_INT;
869    case ltos : return T_LONG;
870    case ftos : return T_FLOAT;
871    case dtos : return T_DOUBLE;
872    case atos : return T_OBJECT;
873    case vtos : return T_VOID;
874  }
875  return T_ILLEGAL;
876}
877
878
879// Helper function to convert BasicType info into TosState
880// Note: Cannot define here as it uses global constant at the time being.
881TosState as_TosState(BasicType type);
882
883
884// JavaThreadState keeps track of which part of the code a thread is executing in. This
885// information is needed by the safepoint code.
886//
887// There are 4 essential states:
888//
889//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
890//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
891//  _thread_in_vm       : Executing in the vm
892//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
893//
894// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
895// a transition from one state to another. These extra states makes it possible for the safepoint code to
896// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
897//
898// Given a state, the xxxx_trans state can always be found by adding 1.
899//
900enum JavaThreadState {
901  _thread_uninitialized     =  0, // should never happen (missing initialization)
902  _thread_new               =  2, // just starting up, i.e., in process of being initialized
903  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
904  _thread_in_native         =  4, // running in native code
905  _thread_in_native_trans   =  5, // corresponding transition state
906  _thread_in_vm             =  6, // running in VM
907  _thread_in_vm_trans       =  7, // corresponding transition state
908  _thread_in_Java           =  8, // running in Java or in stub code
909  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
910  _thread_blocked           = 10, // blocked in vm
911  _thread_blocked_trans     = 11, // corresponding transition state
912  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
913};
914
915
916
917//----------------------------------------------------------------------------------------------------
918// 'Forward' declarations of frequently used classes
919// (in order to reduce interface dependencies & reduce
920// number of unnecessary compilations after changes)
921
922class ClassFileStream;
923
924class Event;
925
926class Thread;
927class  VMThread;
928class  JavaThread;
929class Threads;
930
931class VM_Operation;
932class VMOperationQueue;
933
934class CodeBlob;
935class  CompiledMethod;
936class   nmethod;
937class RuntimeBlob;
938class  OSRAdapter;
939class  I2CAdapter;
940class  C2IAdapter;
941class CompiledIC;
942class relocInfo;
943class ScopeDesc;
944class PcDesc;
945
946class Recompiler;
947class Recompilee;
948class RecompilationPolicy;
949class RFrame;
950class  CompiledRFrame;
951class  InterpretedRFrame;
952
953class frame;
954
955class vframe;
956class   javaVFrame;
957class     interpretedVFrame;
958class     compiledVFrame;
959class     deoptimizedVFrame;
960class   externalVFrame;
961class     entryVFrame;
962
963class RegisterMap;
964
965class Mutex;
966class Monitor;
967class BasicLock;
968class BasicObjectLock;
969
970class PeriodicTask;
971
972class JavaCallWrapper;
973
974class   oopDesc;
975class   metaDataOopDesc;
976
977class NativeCall;
978
979class zone;
980
981class StubQueue;
982
983class outputStream;
984
985class ResourceArea;
986
987class DebugInformationRecorder;
988class ScopeValue;
989class CompressedStream;
990class   DebugInfoReadStream;
991class   DebugInfoWriteStream;
992class LocationValue;
993class ConstantValue;
994class IllegalValue;
995
996class PrivilegedElement;
997class MonitorArray;
998
999class MonitorInfo;
1000
1001class OffsetClosure;
1002class OopMapCache;
1003class InterpreterOopMap;
1004class OopMapCacheEntry;
1005class OSThread;
1006
1007typedef int (*OSThreadStartFunc)(void*);
1008
1009class Space;
1010
1011class JavaValue;
1012class methodHandle;
1013class JavaCallArguments;
1014
1015// Basic support for errors (general debug facilities not defined at this point fo the include phase)
1016
1017extern void basic_fatal(const char* msg);
1018
1019
1020//----------------------------------------------------------------------------------------------------
1021// Special constants for debugging
1022
1023const jint     badInt           = -3;                       // generic "bad int" value
1024const long     badAddressVal    = -2;                       // generic "bad address" value
1025const long     badOopVal        = -1;                       // generic "bad oop" value
1026const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1027const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1028const int      badResourceValue = 0xAB;                     // value used to zap resource area
1029const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1030const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1031const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1032const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1033const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1034const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1035const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1036const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1037
1038
1039// (These must be implemented as #defines because C++ compilers are
1040// not obligated to inline non-integral constants!)
1041#define       badAddress        ((address)::badAddressVal)
1042#define       badOop            (cast_to_oop(::badOopVal))
1043#define       badHeapWord       (::badHeapWordVal)
1044#define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1045
1046// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1047#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1048
1049//----------------------------------------------------------------------------------------------------
1050// Utility functions for bitfield manipulations
1051
1052const intptr_t AllBits    = ~0; // all bits set in a word
1053const intptr_t NoBits     =  0; // no bits set in a word
1054const jlong    NoLongBits =  0; // no bits set in a long
1055const intptr_t OneBit     =  1; // only right_most bit set in a word
1056
1057// get a word with the n.th or the right-most or left-most n bits set
1058// (note: #define used only so that they can be used in enum constant definitions)
1059#define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1060#define right_n_bits(n)   (nth_bit(n) - 1)
1061#define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1062
1063// bit-operations using a mask m
1064inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1065inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1066inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1067inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1068inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1069
1070// bit-operations using the n.th bit
1071inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1072inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1073inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1074
1075// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1076inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1077  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1078}
1079
1080
1081//----------------------------------------------------------------------------------------------------
1082// Utility functions for integers
1083
1084// Avoid use of global min/max macros which may cause unwanted double
1085// evaluation of arguments.
1086#ifdef max
1087#undef max
1088#endif
1089
1090#ifdef min
1091#undef min
1092#endif
1093
1094#define max(a,b) Do_not_use_max_use_MAX2_instead
1095#define min(a,b) Do_not_use_min_use_MIN2_instead
1096
1097// It is necessary to use templates here. Having normal overloaded
1098// functions does not work because it is necessary to provide both 32-
1099// and 64-bit overloaded functions, which does not work, and having
1100// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1101// will be even more error-prone than macros.
1102template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1103template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1104template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1105template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1106template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1107template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1108
1109template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1110
1111// true if x is a power of 2, false otherwise
1112inline bool is_power_of_2(intptr_t x) {
1113  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1114}
1115
1116// long version of is_power_of_2
1117inline bool is_power_of_2_long(jlong x) {
1118  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1119}
1120
1121// Returns largest i such that 2^i <= x.
1122// If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1123// If x == 0, the function returns -1.
1124inline int log2_intptr(intptr_t x) {
1125  int i = -1;
1126  uintptr_t p = 1;
1127  while (p != 0 && p <= (uintptr_t)x) {
1128    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1129    i++; p *= 2;
1130  }
1131  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1132  // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1133  return i;
1134}
1135
1136//* largest i such that 2^i <= x
1137//  A negative value of 'x' will return '63'
1138inline int log2_long(jlong x) {
1139  int i = -1;
1140  julong p =  1;
1141  while (p != 0 && p <= (julong)x) {
1142    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1143    i++; p *= 2;
1144  }
1145  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1146  // (if p = 0 then overflow occurred and i = 63)
1147  return i;
1148}
1149
1150//* the argument must be exactly a power of 2
1151inline int exact_log2(intptr_t x) {
1152  #ifdef ASSERT
1153    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1154  #endif
1155  return log2_intptr(x);
1156}
1157
1158//* the argument must be exactly a power of 2
1159inline int exact_log2_long(jlong x) {
1160  #ifdef ASSERT
1161    if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1162  #endif
1163  return log2_long(x);
1164}
1165
1166
1167// returns integer round-up to the nearest multiple of s (s must be a power of two)
1168inline intptr_t round_to(intptr_t x, uintx s) {
1169  #ifdef ASSERT
1170    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1171  #endif
1172  const uintx m = s - 1;
1173  return mask_bits(x + m, ~m);
1174}
1175
1176// returns integer round-down to the nearest multiple of s (s must be a power of two)
1177inline intptr_t round_down(intptr_t x, uintx s) {
1178  #ifdef ASSERT
1179    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1180  #endif
1181  const uintx m = s - 1;
1182  return mask_bits(x, ~m);
1183}
1184
1185
1186inline bool is_odd (intx x) { return x & 1;      }
1187inline bool is_even(intx x) { return !is_odd(x); }
1188
1189// "to" should be greater than "from."
1190inline intx byte_size(void* from, void* to) {
1191  return (address)to - (address)from;
1192}
1193
1194//----------------------------------------------------------------------------------------------------
1195// Avoid non-portable casts with these routines (DEPRECATED)
1196
1197// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1198//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1199
1200// Given sequence of four bytes, build into a 32-bit word
1201// following the conventions used in class files.
1202// On the 386, this could be realized with a simple address cast.
1203//
1204
1205// This routine takes eight bytes:
1206inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1207  return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1208       |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1209       |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1210       |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1211       |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1212       |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1213       |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1214       |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1215}
1216
1217// This routine takes four bytes:
1218inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1219  return  (( u4(c1) << 24 )  &  0xff000000)
1220       |  (( u4(c2) << 16 )  &  0x00ff0000)
1221       |  (( u4(c3) <<  8 )  &  0x0000ff00)
1222       |  (( u4(c4) <<  0 )  &  0x000000ff);
1223}
1224
1225// And this one works if the four bytes are contiguous in memory:
1226inline u4 build_u4_from( u1* p ) {
1227  return  build_u4_from( p[0], p[1], p[2], p[3] );
1228}
1229
1230// Ditto for two-byte ints:
1231inline u2 build_u2_from( u1 c1, u1 c2 ) {
1232  return  u2((( u2(c1) <<  8 )  &  0xff00)
1233          |  (( u2(c2) <<  0 )  &  0x00ff));
1234}
1235
1236// And this one works if the two bytes are contiguous in memory:
1237inline u2 build_u2_from( u1* p ) {
1238  return  build_u2_from( p[0], p[1] );
1239}
1240
1241// Ditto for floats:
1242inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1243  u4 u = build_u4_from( c1, c2, c3, c4 );
1244  return  *(jfloat*)&u;
1245}
1246
1247inline jfloat build_float_from( u1* p ) {
1248  u4 u = build_u4_from( p );
1249  return  *(jfloat*)&u;
1250}
1251
1252
1253// now (64-bit) longs
1254
1255inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1256  return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1257       |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1258       |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1259       |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1260       |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1261       |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1262       |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1263       |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1264}
1265
1266inline jlong build_long_from( u1* p ) {
1267  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1268}
1269
1270
1271// Doubles, too!
1272inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1273  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1274  return  *(jdouble*)&u;
1275}
1276
1277inline jdouble build_double_from( u1* p ) {
1278  jlong u = build_long_from( p );
1279  return  *(jdouble*)&u;
1280}
1281
1282
1283// Portable routines to go the other way:
1284
1285inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1286  c1 = u1(x >> 8);
1287  c2 = u1(x);
1288}
1289
1290inline void explode_short_to( u2 x, u1* p ) {
1291  explode_short_to( x, p[0], p[1]);
1292}
1293
1294inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1295  c1 = u1(x >> 24);
1296  c2 = u1(x >> 16);
1297  c3 = u1(x >>  8);
1298  c4 = u1(x);
1299}
1300
1301inline void explode_int_to( u4 x, u1* p ) {
1302  explode_int_to( x, p[0], p[1], p[2], p[3]);
1303}
1304
1305
1306// Pack and extract shorts to/from ints:
1307
1308inline int extract_low_short_from_int(jint x) {
1309  return x & 0xffff;
1310}
1311
1312inline int extract_high_short_from_int(jint x) {
1313  return (x >> 16) & 0xffff;
1314}
1315
1316inline int build_int_from_shorts( jushort low, jushort high ) {
1317  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1318}
1319
1320// Convert pointer to intptr_t, for use in printing pointers.
1321inline intptr_t p2i(const void * p) {
1322  return (intptr_t) p;
1323}
1324
1325// swap a & b
1326template<class T> static void swap(T& a, T& b) {
1327  T tmp = a;
1328  a = b;
1329  b = tmp;
1330}
1331
1332// Printf-style formatters for fixed- and variable-width types as pointers and
1333// integers.  These are derived from the definitions in inttypes.h.  If the platform
1334// doesn't provide appropriate definitions, they should be provided in
1335// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1336
1337#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1338
1339// Format 32-bit quantities.
1340#define INT32_FORMAT           "%" PRId32
1341#define UINT32_FORMAT          "%" PRIu32
1342#define INT32_FORMAT_W(width)  "%" #width PRId32
1343#define UINT32_FORMAT_W(width) "%" #width PRIu32
1344
1345#define PTR32_FORMAT           "0x%08" PRIx32
1346#define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
1347
1348// Format 64-bit quantities.
1349#define INT64_FORMAT           "%" PRId64
1350#define UINT64_FORMAT          "%" PRIu64
1351#define UINT64_FORMAT_X        "%" PRIx64
1352#define INT64_FORMAT_W(width)  "%" #width PRId64
1353#define UINT64_FORMAT_W(width) "%" #width PRIu64
1354
1355#define PTR64_FORMAT           "0x%016" PRIx64
1356
1357// Format jlong, if necessary
1358#ifndef JLONG_FORMAT
1359#define JLONG_FORMAT           INT64_FORMAT
1360#endif
1361#ifndef JULONG_FORMAT
1362#define JULONG_FORMAT          UINT64_FORMAT
1363#endif
1364#ifndef JULONG_FORMAT_X
1365#define JULONG_FORMAT_X        UINT64_FORMAT_X
1366#endif
1367
1368// Format pointers which change size between 32- and 64-bit.
1369#ifdef  _LP64
1370#define INTPTR_FORMAT "0x%016" PRIxPTR
1371#define PTR_FORMAT    "0x%016" PRIxPTR
1372#else   // !_LP64
1373#define INTPTR_FORMAT "0x%08"  PRIxPTR
1374#define PTR_FORMAT    "0x%08"  PRIxPTR
1375#endif  // _LP64
1376
1377#define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1378
1379#define SSIZE_FORMAT             "%"   PRIdPTR
1380#define SIZE_FORMAT              "%"   PRIuPTR
1381#define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1382#define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1383#define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1384#define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1385
1386#define INTX_FORMAT           "%" PRIdPTR
1387#define UINTX_FORMAT          "%" PRIuPTR
1388#define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1389#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1390
1391
1392#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1393
1394//----------------------------------------------------------------------------------------------------
1395// Sum and product which can never overflow: they wrap, just like the
1396// Java operations.  Note that we don't intend these to be used for
1397// general-purpose arithmetic: their purpose is to emulate Java
1398// operations.
1399
1400// The goal of this code to avoid undefined or implementation-defined
1401// behavior.  The use of an lvalue to reference cast is explicitly
1402// permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1403// 15 in C++03]
1404#define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1405inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1406  UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1407  ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1408  return reinterpret_cast<TYPE&>(ures);                 \
1409}
1410
1411JAVA_INTEGER_OP(+, java_add, jint, juint)
1412JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1413JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1414JAVA_INTEGER_OP(+, java_add, jlong, julong)
1415JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1416JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1417
1418#undef JAVA_INTEGER_OP
1419
1420// Dereference vptr
1421// All C++ compilers that we know of have the vtbl pointer in the first
1422// word.  If there are exceptions, this function needs to be made compiler
1423// specific.
1424static inline void* dereference_vptr(const void* addr) {
1425  return *(void**)addr;
1426}
1427
1428#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
1429