globalDefinitions.hpp revision 12252:d9aa9adb7dd2
1323136Sdes/*
276259Sgreen * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
376259Sgreen * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
476259Sgreen *
576259Sgreen * This code is free software; you can redistribute it and/or modify it
676259Sgreen * under the terms of the GNU General Public License version 2 only, as
792555Sdes * published by the Free Software Foundation.
876259Sgreen *
976259Sgreen * This code is distributed in the hope that it will be useful, but WITHOUT
1076259Sgreen * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11162856Sdes * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12294332Sdes * version 2 for more details (a copy is included in the LICENSE file that
13106130Sdes * accompanied this code).
14162856Sdes *
15162856Sdes * You should have received a copy of the GNU General Public License version
16162856Sdes * 2 along with this work; if not, write to the Free Software Foundation,
17162856Sdes * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1876259Sgreen *
19162856Sdes * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20162856Sdes * or visit www.oracle.com if you need additional information or have any
21162856Sdes * questions.
2276259Sgreen *
2376259Sgreen */
24162856Sdes
25162856Sdes#ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
26162856Sdes#define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
27162856Sdes
28162856Sdes#ifndef __STDC_FORMAT_MACROS
29162856Sdes#define __STDC_FORMAT_MACROS
30162856Sdes#endif
31162856Sdes
32162856Sdes#ifdef TARGET_COMPILER_gcc
3376259Sgreen# include "utilities/globalDefinitions_gcc.hpp"
3476259Sgreen#endif
3576259Sgreen#ifdef TARGET_COMPILER_visCPP
36294332Sdes# include "utilities/globalDefinitions_visCPP.hpp"
37294332Sdes#endif
38162856Sdes#ifdef TARGET_COMPILER_sparcWorks
3992555Sdes# include "utilities/globalDefinitions_sparcWorks.hpp"
4092555Sdes#endif
4192555Sdes#ifdef TARGET_COMPILER_xlc
4292555Sdes# include "utilities/globalDefinitions_xlc.hpp"
4392555Sdes#endif
4476259Sgreen
4576259Sgreen#ifndef NOINLINE
4692555Sdes#define NOINLINE
47147005Sdes#endif
48294332Sdes#ifndef ALWAYSINLINE
49294332Sdes#define ALWAYSINLINE inline
5076259Sgreen#endif
5198941Sdes#ifndef PRAGMA_DIAG_PUSH
5298941Sdes#define PRAGMA_DIAG_PUSH
5398941Sdes#endif
5476259Sgreen#ifndef PRAGMA_DIAG_POP
5592555Sdes#define PRAGMA_DIAG_POP
5676259Sgreen#endif
57221420Sdes#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
58221420Sdes#define PRAGMA_FORMAT_NONLITERAL_IGNORED
59221420Sdes#endif
60221420Sdes#ifndef PRAGMA_FORMAT_IGNORED
61261320Sdes#define PRAGMA_FORMAT_IGNORED
6292555Sdes#endif
63296633Sdes#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
64294328Sdes#define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
6592555Sdes#endif
66147005Sdes#ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
67147005Sdes#define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
6876259Sgreen#endif
6976259Sgreen#ifndef ATTRIBUTE_PRINTF
7076259Sgreen#define ATTRIBUTE_PRINTF(fmt, vargs)
7176259Sgreen#endif
7276259Sgreen#ifndef ATTRIBUTE_SCANF
7376259Sgreen#define ATTRIBUTE_SCANF(fmt, vargs)
7476259Sgreen#endif
7576259Sgreen
7676259Sgreen#include "utilities/macros.hpp"
7776259Sgreen
78162856Sdes// This file holds all globally used constants & types, class (forward)
7976259Sgreen// declarations and a few frequently used utility functions.
8076259Sgreen
81294332Sdes//----------------------------------------------------------------------------------------------------
82294332Sdes// Constants
8376259Sgreen
8476259Sgreenconst int LogBytesPerShort   = 1;
8576259Sgreenconst int LogBytesPerInt     = 2;
8676259Sgreen#ifdef _LP64
8776259Sgreenconst int LogBytesPerWord    = 3;
8876259Sgreen#else
8976259Sgreenconst int LogBytesPerWord    = 2;
9076259Sgreen#endif
9176259Sgreenconst int LogBytesPerLong    = 3;
9276259Sgreen
9376259Sgreenconst int BytesPerShort      = 1 << LogBytesPerShort;
9476259Sgreenconst int BytesPerInt        = 1 << LogBytesPerInt;
9576259Sgreenconst int BytesPerWord       = 1 << LogBytesPerWord;
9676259Sgreenconst int BytesPerLong       = 1 << LogBytesPerLong;
9792555Sdes
98294336Sdesconst int LogBitsPerByte     = 3;
9976259Sgreenconst int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
10076259Sgreenconst int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
10176259Sgreenconst int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
10276259Sgreenconst int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
10376259Sgreen
104294332Sdesconst int BitsPerByte        = 1 << LogBitsPerByte;
10576259Sgreenconst int BitsPerShort       = 1 << LogBitsPerShort;
10676259Sgreenconst int BitsPerInt         = 1 << LogBitsPerInt;
10776259Sgreenconst int BitsPerWord        = 1 << LogBitsPerWord;
10876259Sgreenconst int BitsPerLong        = 1 << LogBitsPerLong;
10976259Sgreen
11076259Sgreenconst int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
11176259Sgreenconst int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
112294332Sdes
113294332Sdesconst int WordsPerLong       = 2;       // Number of stack entries for longs
11492555Sdes
11576259Sgreenconst int oopSize            = sizeof(char*); // Full-width oop
11676259Sgreenextern int heapOopSize;                       // Oop within a java object
11798941Sdesconst int wordSize           = sizeof(char*);
11876259Sgreenconst int longSize           = sizeof(jlong);
11976259Sgreenconst int jintSize           = sizeof(jint);
12076259Sgreenconst int size_tSize         = sizeof(size_t);
12176259Sgreen
12276259Sgreenconst int BytesPerOop        = BytesPerWord;  // Full-width oop
123126277Sdes
12476259Sgreenextern int LogBytesPerHeapOop;                // Oop within a java object
12576259Sgreenextern int LogBitsPerHeapOop;
12698941Sdesextern int BytesPerHeapOop;
127126277Sdesextern int BitsPerHeapOop;
12898941Sdes
12976259Sgreenconst int BitsPerJavaInteger = 32;
13076259Sgreenconst int BitsPerJavaLong    = 64;
13192555Sdesconst int BitsPerSize_t      = size_tSize * BitsPerByte;
13276259Sgreen
13376259Sgreen// Size of a char[] needed to represent a jint as a string in decimal.
13498941Sdesconst int jintAsStringSize = 12;
13576259Sgreen
13698941Sdes// In fact this should be
137106130Sdes// log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
13876259Sgreen// see os::set_memory_serialize_page()
13976259Sgreen#ifdef _LP64
14098941Sdesconst int SerializePageShiftCount = 4;
14176259Sgreen#else
14276259Sgreenconst int SerializePageShiftCount = 3;
14376259Sgreen#endif
14476259Sgreen
14576259Sgreen// An opaque struct of heap-word width, so that HeapWord* can be a generic
14698941Sdes// pointer into the heap.  We require that object sizes be measured in
14798941Sdes// units of heap words, so that that
14898941Sdes//   HeapWord* hw;
14976259Sgreen//   hw += oop(hw)->foo();
15076259Sgreen// works, where foo is a method (like size or scavenge) that returns the
15176259Sgreen// object size.
15276259Sgreenclass HeapWord {
15376259Sgreen  friend class VMStructs;
15476259Sgreen private:
15576259Sgreen  char* i;
15676259Sgreen#ifndef PRODUCT
15792555Sdes public:
15876259Sgreen  char* value() { return i; }
15976259Sgreen#endif
16076259Sgreen};
16176259Sgreen
16276259Sgreen// Analogous opaque struct for metadata allocated from
16376259Sgreen// metaspaces.
16476259Sgreenclass MetaWord {
16576259Sgreen private:
16676259Sgreen  char* i;
16776259Sgreen};
16876259Sgreen
16976259Sgreen// HeapWordSize must be 2^LogHeapWordSize.
17076259Sgreenconst int HeapWordSize        = sizeof(HeapWord);
17176259Sgreen#ifdef _LP64
17276259Sgreenconst int LogHeapWordSize     = 3;
17376259Sgreen#else
17476259Sgreenconst int LogHeapWordSize     = 2;
17576259Sgreen#endif
17676259Sgreenconst int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
17776259Sgreenconst int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
17876259Sgreen
17992555Sdes// The larger HeapWordSize for 64bit requires larger heaps
18076259Sgreen// for the same application running in 64bit.  See bug 4967770.
18176259Sgreen// The minimum alignment to a heap word size is done.  Other
18276259Sgreen// parts of the memory system may require additional alignment
18376259Sgreen// and are responsible for those alignments.
18476259Sgreen#ifdef _LP64
18576259Sgreen#define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
18676259Sgreen#else
18776259Sgreen#define ScaleForWordSize(x) (x)
18876259Sgreen#endif
18976259Sgreen
190294328Sdes// The minimum number of native machine words necessary to contain "byte_size"
191294332Sdes// bytes.
19292555Sdesinline size_t heap_word_size(size_t byte_size) {
19376259Sgreen  return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
194294332Sdes}
195294332Sdes
196294332Sdes//-------------------------------------------
197294332Sdes// Constant for jlong (standardized by C++11)
19876259Sgreen
19976259Sgreen// Build a 64bit integer constant
200294332Sdes#define CONST64(x)  (x ## LL)
201294332Sdes#define UCONST64(x) (x ## ULL)
202294332Sdes
203294332Sdesconst jlong min_jlong = CONST64(0x8000000000000000);
204294332Sdesconst jlong max_jlong = CONST64(0x7fffffffffffffff);
205294332Sdes
20676259Sgreenconst size_t K                  = 1024;
207294332Sdesconst size_t M                  = K*K;
208294332Sdesconst size_t G                  = M*K;
209294332Sdesconst size_t HWperKB            = K / sizeof(HeapWord);
210294332Sdes
211294332Sdes// Constants for converting from a base unit to milli-base units.  For
21292555Sdes// example from seconds to milliseconds and microseconds
213294332Sdes
21492555Sdesconst int MILLIUNITS    = 1000;         // milli units per base unit
21576259Sgreenconst int MICROUNITS    = 1000000;      // micro units per base unit
216294332Sdesconst int NANOUNITS     = 1000000000;   // nano units per base unit
217294332Sdes
218294332Sdesconst jlong NANOSECS_PER_SEC      = CONST64(1000000000);
219294332Sdesconst jint  NANOSECS_PER_MILLISEC = 1000000;
220294332Sdes
221294332Sdesinline const char* proper_unit_for_byte_size(size_t s) {
222294332Sdes#ifdef _LP64
223294332Sdes  if (s >= 10*G) {
224294332Sdes    return "G";
225294332Sdes  }
226294332Sdes#endif
227294332Sdes  if (s >= 10*M) {
228294332Sdes    return "M";
229294332Sdes  } else if (s >= 10*K) {
23076259Sgreen    return "K";
231294332Sdes  } else {
23276259Sgreen    return "B";
23392555Sdes  }
23492555Sdes}
235294328Sdes
23692555Sdestemplate <class T>
23792555Sdesinline T byte_size_in_proper_unit(T s) {
238294332Sdes#ifdef _LP64
23992555Sdes  if (s >= 10*G) {
240294332Sdes    return (T)(s/G);
241294332Sdes  }
242294332Sdes#endif
243294332Sdes  if (s >= 10*M) {
244294332Sdes    return (T)(s/M);
245294332Sdes  } else if (s >= 10*K) {
24692555Sdes    return (T)(s/K);
24792555Sdes  } else {
24892555Sdes    return s;
24992555Sdes  }
25092555Sdes}
25192555Sdes
25292555Sdesinline const char* exact_unit_for_byte_size(size_t s) {
25392555Sdes#ifdef _LP64
25492555Sdes  if (s >= G && (s % G) == 0) {
25592555Sdes    return "G";
25692555Sdes  }
25792555Sdes#endif
25892555Sdes  if (s >= M && (s % M) == 0) {
25992555Sdes    return "M";
26092555Sdes  }
26192555Sdes  if (s >= K && (s % K) == 0) {
26292555Sdes    return "K";
26392555Sdes  }
264294332Sdes  return "B";
26592555Sdes}
26692555Sdes
267294328Sdesinline size_t byte_size_in_exact_unit(size_t s) {
268294332Sdes#ifdef _LP64
26992555Sdes  if (s >= G && (s % G) == 0) {
27092555Sdes    return s / G;
271296633Sdes  }
272296633Sdes#endif
273296633Sdes  if (s >= M && (s % M) == 0) {
274296633Sdes    return s / M;
275296633Sdes  }
276296633Sdes  if (s >= K && (s % K) == 0) {
277296633Sdes    return s / K;
278296633Sdes  }
279296633Sdes  return s;
280296633Sdes}
281296633Sdes
282296633Sdes//----------------------------------------------------------------------------------------------------
283296633Sdes// VM type definitions
284296633Sdes
285296633Sdes// intx and uintx are the 'extended' int and 'extended' unsigned int types;
286296633Sdes// they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
287296633Sdes
288296633Sdestypedef intptr_t  intx;
289296633Sdestypedef uintptr_t uintx;
290296633Sdes
291296633Sdesconst intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
292296633Sdesconst intx  max_intx  = (uintx)min_intx - 1;
293296633Sdesconst uintx max_uintx = (uintx)-1;
294296633Sdes
295296633Sdes// Table of values:
296296633Sdes//      sizeof intx         4               8
297294332Sdes// min_intx             0x80000000      0x8000000000000000
298294332Sdes// max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
299294332Sdes// max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
300294332Sdes
301294332Sdestypedef unsigned int uint;   NEEDS_CLEANUP
302294328Sdes
303294332Sdes
304294332Sdes//----------------------------------------------------------------------------------------------------
305323129Sdes// Java type definitions
306323129Sdes
307323129Sdes// All kinds of 'plain' byte addresses
308294332Sdestypedef   signed char s_char;
309294332Sdestypedef unsigned char u_char;
310294332Sdestypedef u_char*       address;
311294332Sdestypedef uintptr_t     address_word; // unsigned integer which will hold a pointer
312294332Sdes                                    // except for some implementations of a C++
313294328Sdes                                    // linkage pointer to function. Should never
314294332Sdes                                    // need one of those to be placed in this
315294332Sdes                                    // type anyway.
316294332Sdes
317294332Sdes//  Utility functions to "portably" (?) bit twiddle pointers
318294332Sdes//  Where portable means keep ANSI C++ compilers quiet
319294332Sdes
320294332Sdesinline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
32192555Sdesinline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
32292555Sdes
32392555Sdes//  Utility functions to "portably" make cast to/from function pointers.
324323136Sdes
32592555Sdesinline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
326296633Sdesinline address_word  castable_address(address x)              { return address_word(x) ; }
327323136Sdesinline address_word  castable_address(void* x)                { return address_word(x) ; }
328147005Sdes
329323136Sdes// Pointer subtraction.
330323136Sdes// The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
331323136Sdes// the range we might need to find differences from one end of the heap
332147005Sdes// to the other.
333323136Sdes// A typical use might be:
334296633Sdes//     if (pointer_delta(end(), top()) >= size) {
335323136Sdes//       // enough room for an object of size
336294332Sdes//       ...
33776259Sgreen// and then additions like
338294336Sdes//       ... top() + size ...
33976259Sgreen// are safe because we know that top() is at least size below end().
34076259Sgreeninline size_t pointer_delta(const volatile void* left,
341296633Sdes                            const volatile void* right,
342296633Sdes                            size_t element_size) {
343296633Sdes  return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
344296633Sdes}
345296633Sdes
346296633Sdes// A version specialized for HeapWord*'s.
347296633Sdesinline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
348296633Sdes  return pointer_delta(left, right, sizeof(HeapWord));
349296633Sdes}
350296633Sdes// A version specialized for MetaWord*'s.
351296633Sdesinline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
352296633Sdes  return pointer_delta(left, right, sizeof(MetaWord));
353296633Sdes}
354296633Sdes
355296633Sdes//
356296633Sdes// ANSI C++ does not allow casting from one pointer type to a function pointer
357296633Sdes// directly without at best a warning. This macro accomplishes it silently
358296633Sdes// In every case that is present at this point the value be cast is a pointer
35992555Sdes// to a C linkage function. In some case the type used for the cast reflects
36076259Sgreen// that linkage and a picky compiler would not complain. In other cases because
36176259Sgreen// there is no convenient place to place a typedef with extern C linkage (i.e
36276259Sgreen// a platform dependent header file) it doesn't. At this point no compiler seems
36376259Sgreen// picky enough to catch these instances (which are few). It is possible that
36476259Sgreen// using templates could fix these for all cases. This use of templates is likely
36576259Sgreen// so far from the middle of the road that it is likely to be problematic in
36692555Sdes// many C++ compilers.
36776259Sgreen//
36892555Sdes#define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
36976259Sgreen#define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
370294332Sdes
371294332Sdes// Unsigned byte types for os and stream.hpp
372294332Sdes
373294332Sdes// Unsigned one, two, four and eigth byte quantities used for describing
37476259Sgreen// the .class file format. See JVM book chapter 4.
375124211Sdes
37676259Sgreentypedef jubyte  u1;
37776259Sgreentypedef jushort u2;
37876259Sgreentypedef juint   u4;
37976259Sgreentypedef julong  u8;
380137019Sdes
381137019Sdesconst jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
38276259Sgreenconst jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
38376259Sgreenconst juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
38476259Sgreenconst julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
38576259Sgreen
38676259Sgreentypedef jbyte  s1;
38776259Sgreentypedef jshort s2;
38876259Sgreentypedef jint   s4;
38976259Sgreentypedef jlong  s8;
39076259Sgreen
39176259Sgreenconst jbyte min_jbyte = -(1 << 7);       // smallest jbyte
39276259Sgreenconst jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
39376259Sgreenconst jshort min_jshort = -(1 << 15);    // smallest jshort
39492555Sdesconst jshort max_jshort = (1 << 15) - 1; // largest jshort
39592555Sdes
39676259Sgreenconst jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
397106130Sdesconst jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
39876259Sgreen
39976259Sgreen//----------------------------------------------------------------------------------------------------
40076259Sgreen// JVM spec restrictions
40176259Sgreen
40276259Sgreenconst int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
40376259Sgreen
40476259Sgreen// Default ProtectionDomainCacheSize values
405255767Sdes
40676259Sgreenconst int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
40776259Sgreen
40876259Sgreen//----------------------------------------------------------------------------------------------------
40976259Sgreen// Default and minimum StringTableSize values
41076259Sgreen
41176259Sgreenconst int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
41276259Sgreenconst int minimumStringTableSize = 1009;
41376259Sgreen
41476259Sgreenconst int defaultSymbolTableSize = 20011;
415296633Sdesconst int minimumSymbolTableSize = 1009;
41676259Sgreen
41776259Sgreen
41876259Sgreen//----------------------------------------------------------------------------------------------------
41976259Sgreen// HotSwap - for JVMTI   aka Class File Replacement and PopFrame
42076259Sgreen//
42176259Sgreen// Determines whether on-the-fly class replacement and frame popping are enabled.
42276259Sgreen
42376259Sgreen#define HOTSWAP
42476259Sgreen
42592555Sdes//----------------------------------------------------------------------------------------------------
42676259Sgreen// Object alignment, in units of HeapWords.
42776259Sgreen//
42876259Sgreen// Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
42976259Sgreen// reference fields can be naturally aligned.
43076259Sgreen
43176259Sgreenextern int MinObjAlignment;
43276259Sgreenextern int MinObjAlignmentInBytes;
43376259Sgreenextern int MinObjAlignmentInBytesMask;
43492555Sdes
43576259Sgreenextern int LogMinObjAlignment;
43676259Sgreenextern int LogMinObjAlignmentInBytes;
43776259Sgreen
43876259Sgreenconst int LogKlassAlignmentInBytes = 3;
43976259Sgreenconst int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
440255767Sdesconst int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
441255767Sdesconst int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
44276259Sgreen
443255767Sdes// Maximal size of heap where unscaled compression can be used. Also upper bound
44476259Sgreen// for heap placement: 4GB.
44592555Sdesconst  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
446294332Sdes// Maximal size of heap where compressed oops can be used. Also upper bound for heap
447294332Sdes// placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
448294332Sdesextern uint64_t OopEncodingHeapMax;
449294332Sdes
450294332Sdes// Maximal size of compressed class space. Above this limit compression is not possible.
45176259Sgreen// Also upper bound for placement of zero based class space. (Class space is further limited
45276259Sgreen// to be < 3G, see arguments.cpp.)
45376259Sgreenconst  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
45476259Sgreen
45576259Sgreen// Machine dependent stuff
45692555Sdes
45776259Sgreen// The maximum size of the code cache.  Can be overridden by targets.
45876259Sgreen#define CODE_CACHE_SIZE_LIMIT (2*G)
45976259Sgreen// Allow targets to reduce the default size of the code cache.
46076259Sgreen#define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
46176259Sgreen
46276259Sgreen#include CPU_HEADER(globalDefinitions)
46376259Sgreen
46476259Sgreen// To assure the IRIW property on processors that are not multiple copy
46592555Sdes// atomic, sync instructions must be issued between volatile reads to
46676259Sgreen// assure their ordering, instead of after volatile stores.
46776259Sgreen// (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
468106130Sdes// by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
46976259Sgreen#ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
47076259Sgreenconst bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
47192555Sdes#else
47276259Sgreenconst bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
47376259Sgreen#endif
47476259Sgreen
47576259Sgreen// The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
47692555Sdes// Note: this value must be a power of 2
47776259Sgreen
47876259Sgreen#define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
479149753Sdes
48092555Sdes// Signed variants of alignment helpers.  There are two versions of each, a macro
48192555Sdes// for use in places like enum definitions that require compile-time constant
48276259Sgreen// expressions and a function for all other places so as to get type checking.
48376259Sgreen
48476259Sgreen#define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
485157019Sdes
486157019Sdesinline bool is_size_aligned(size_t size, size_t alignment) {
487157019Sdes  return align_size_up_(size, alignment) == size;
488157019Sdes}
489157019Sdes
490157019Sdesinline bool is_ptr_aligned(void* ptr, size_t alignment) {
491157019Sdes  return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
492157019Sdes}
493157019Sdes
494157019Sdesinline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
495157019Sdes  return align_size_up_(size, alignment);
496157019Sdes}
49792555Sdes
498149753Sdes#define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
499149753Sdes
500149753Sdesinline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
501149753Sdes  return align_size_down_(size, alignment);
502149753Sdes}
503149753Sdes
504149753Sdes#define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
505149753Sdes
50676259Sgreeninline void* align_ptr_up(const void* ptr, size_t alignment) {
507149753Sdes  return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
508149753Sdes}
50976259Sgreen
51076259Sgreeninline void* align_ptr_down(void* ptr, size_t alignment) {
51176259Sgreen  return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
51276259Sgreen}
51376259Sgreen
51476259Sgreeninline volatile void* align_ptr_down(volatile void* ptr, size_t alignment) {
51576259Sgreen  return (volatile void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
51676259Sgreen}
51776259Sgreen
518294332Sdes// Align metaspace objects by rounding up to natural word boundary
519294332Sdes
520294332Sdesinline intptr_t align_metadata_size(intptr_t size) {
521294332Sdes  return align_size_up(size, 1);
52292555Sdes}
52392555Sdes
524294332Sdes// Align objects in the Java Heap by rounding up their size, in HeapWord units.
52592555Sdes// Since the size is given in words this is somewhat of a nop, but
526294332Sdes// distinguishes it from align_object_size.
52792555Sdesinline intptr_t align_object_size(intptr_t size) {
52892555Sdes  return align_size_up(size, MinObjAlignment);
52992555Sdes}
53092555Sdes
53192555Sdesinline bool is_object_aligned(intptr_t addr) {
53292555Sdes  return addr == align_object_size(addr);
53392555Sdes}
53492555Sdes
53592555Sdes// Pad out certain offsets to jlong alignment, in HeapWord units.
53692555Sdes
53792555Sdesinline intptr_t align_object_offset(intptr_t offset) {
538294336Sdes  return align_size_up(offset, HeapWordsPerLong);
53992555Sdes}
54092555Sdes
54192555Sdes// Align down with a lower bound. If the aligning results in 0, return 'alignment'.
542149753Sdes
543149753Sdesinline size_t align_size_down_bounded(size_t size, size_t alignment) {
544149753Sdes  size_t aligned_size = align_size_down_(size, alignment);
545149753Sdes  return aligned_size > 0 ? aligned_size : alignment;
546149753Sdes}
547149753Sdes
54876259Sgreen// Clamp an address to be within a specific page
54976259Sgreen// 1. If addr is on the page it is returned as is
55076259Sgreen// 2. If addr is above the page_address the start of the *next* page will be returned
55176259Sgreen// 3. Otherwise, if addr is below the page_address the start of the page will be returned
55292555Sdesinline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
553294332Sdes  if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
55492555Sdes    // address is in the specified page, just return it as is
55592555Sdes    return addr;
55692555Sdes  } else if (addr > page_address) {
55776259Sgreen    // address is above specified page, return start of next page
55876259Sgreen    return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
55976259Sgreen  } else {
56076259Sgreen    // address is below specified page, return start of page
56192555Sdes    return (address)align_size_down(intptr_t(page_address), page_size);
56276259Sgreen  }
56376259Sgreen}
564106130Sdes
565149753Sdes
56676259Sgreen// The expected size in bytes of a cache line, used to pad data structures.
56776259Sgreen#ifndef DEFAULT_CACHE_LINE_SIZE
56876259Sgreen  #define DEFAULT_CACHE_LINE_SIZE 64
56976259Sgreen#endif
57076259Sgreen
571137019Sdes
572149753Sdes//----------------------------------------------------------------------------------------------------
57376259Sgreen// Utility macros for compilers
57476259Sgreen// used to silence compiler warnings
57576259Sgreen
57676259Sgreen#define Unused_Variable(var) var
57776259Sgreen
57876259Sgreen
57976259Sgreen//----------------------------------------------------------------------------------------------------
58076259Sgreen// Miscellaneous
58176259Sgreen
58276259Sgreen// 6302670 Eliminate Hotspot __fabsf dependency
58376259Sgreen// All fabs() callers should call this function instead, which will implicitly
58476259Sgreen// convert the operand to double, avoiding a dependency on __fabsf which
58576259Sgreen// doesn't exist in early versions of Solaris 8.
58676259Sgreeninline double fabsd(double value) {
58776259Sgreen  return fabs(value);
588294328Sdes}
58976259Sgreen
59092555Sdes// Returns numerator/denominator as percentage value from 0 to 100. If denominator
59176259Sgreen// is zero, return 0.0.
59276259Sgreentemplate<typename T>
593294328Sdesinline double percent_of(T numerator, T denominator) {
59476259Sgreen  return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
59576259Sgreen}
59676259Sgreen
59776259Sgreen//----------------------------------------------------------------------------------------------------
59876259Sgreen// Special casts
59976259Sgreen// Cast floats into same-size integers and vice-versa w/o changing bit-pattern
60076259Sgreentypedef union {
60176259Sgreen  jfloat f;
60292555Sdes  jint i;
60376259Sgreen} FloatIntConv;
60476259Sgreen
605106130Sdestypedef union {
60676259Sgreen  jdouble d;
607106130Sdes  jlong l;
60876259Sgreen  julong ul;
60976259Sgreen} DoubleLongConv;
61076259Sgreen
61198675Sdesinline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
61276259Sgreeninline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
61376259Sgreen
61476259Sgreeninline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
61576259Sgreeninline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
61676259Sgreeninline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
61776259Sgreen
61876259Sgreeninline jint low (jlong value)                    { return jint(value); }
61976259Sgreeninline jint high(jlong value)                    { return jint(value >> 32); }
62076259Sgreen
62176259Sgreen// the fancy casts are a hopefully portable way
62276259Sgreen// to do unsigned 32 to 64 bit type conversion
623226046Sdesinline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
62476259Sgreen                                                   *value |= (jlong)(julong)(juint)low; }
625162856Sdes
626162856Sdesinline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
627162856Sdes                                                   *value |= (jlong)high       << 32; }
628162856Sdes
62976259Sgreeninline jlong jlong_from(jint h, jint l) {
63076259Sgreen  jlong result = 0; // initialization to avoid warning
631181111Sdes  set_high(&result, h);
63276259Sgreen  set_low(&result,  l);
63376259Sgreen  return result;
63476259Sgreen}
63576259Sgreen
63676259Sgreenunion jlong_accessor {
63776259Sgreen  jint  words[2];
63876259Sgreen  jlong long_value;
63976259Sgreen};
64076259Sgreen
641255767Sdesvoid basic_types_init(); // cannot define here; uses assert
642255767Sdes
64376259Sgreen
64498675Sdes// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
64576259Sgreenenum BasicType {
64676259Sgreen  T_BOOLEAN     =  4,
64776259Sgreen  T_CHAR        =  5,
64876259Sgreen  T_FLOAT       =  6,
64998675Sdes  T_DOUBLE      =  7,
65076259Sgreen  T_BYTE        =  8,
65176259Sgreen  T_SHORT       =  9,
65276259Sgreen  T_INT         = 10,
65376259Sgreen  T_LONG        = 11,
65492555Sdes  T_OBJECT      = 12,
65592555Sdes  T_ARRAY       = 13,
65676259Sgreen  T_VOID        = 14,
65792555Sdes  T_ADDRESS     = 15,
65892555Sdes  T_NARROWOOP   = 16,
65976259Sgreen  T_METADATA    = 17,
66092555Sdes  T_NARROWKLASS = 18,
66192555Sdes  T_CONFLICT    = 19, // for stack value type with conflicting contents
662261320Sdes  T_ILLEGAL     = 99
66392555Sdes};
66492555Sdes
66592555Sdesinline bool is_java_primitive(BasicType t) {
66692555Sdes  return T_BOOLEAN <= t && t <= T_LONG;
66776259Sgreen}
66876259Sgreen
66976259Sgreeninline bool is_subword_type(BasicType t) {
67076259Sgreen  // these guys are processed exactly like T_INT in calling sequences:
67176259Sgreen  return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
67292555Sdes}
67392555Sdes
67492555Sdesinline bool is_signed_subword_type(BasicType t) {
675106130Sdes  return (t == T_BYTE || t == T_SHORT);
67692555Sdes}
67792555Sdes
67892555Sdes// Convert a char from a classfile signature to a BasicType
679294332Sdesinline BasicType char2type(char c) {
68092555Sdes  switch( c ) {
68192555Sdes  case 'B': return T_BYTE;
68292555Sdes  case 'C': return T_CHAR;
68376259Sgreen  case 'D': return T_DOUBLE;
68476259Sgreen  case 'F': return T_FLOAT;
685192595Sdes  case 'I': return T_INT;
686296633Sdes  case 'J': return T_LONG;
687192595Sdes  case 'S': return T_SHORT;
68892555Sdes  case 'Z': return T_BOOLEAN;
68992555Sdes  case 'V': return T_VOID;
69076259Sgreen  case 'L': return T_OBJECT;
69176259Sgreen  case '[': return T_ARRAY;
69276259Sgreen  }
69376259Sgreen  return T_ILLEGAL;
69476259Sgreen}
69592555Sdes
696215116Sdesextern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
697215116Sdesinline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
698215116Sdesextern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
699215116Sdesextern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
70076259Sgreeninline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
70192555Sdesextern BasicType name2type(const char* name);
70292555Sdes
70392555Sdes// Auxiliary math routines
704296633Sdes// least common multiple
705124211Sdesextern size_t lcm(size_t a, size_t b);
70698941Sdes
70776259Sgreen
70876259Sgreen// NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
709157019Sdesenum BasicTypeSize {
710157019Sdes  T_BOOLEAN_size     = 1,
711157019Sdes  T_CHAR_size        = 1,
71292555Sdes  T_FLOAT_size       = 1,
71376259Sgreen  T_DOUBLE_size      = 2,
71476259Sgreen  T_BYTE_size        = 1,
715296633Sdes  T_SHORT_size       = 1,
71692555Sdes  T_INT_size         = 1,
717147005Sdes  T_LONG_size        = 2,
718147005Sdes  T_OBJECT_size      = 1,
719147005Sdes  T_ARRAY_size       = 1,
720296633Sdes  T_NARROWOOP_size   = 1,
721296633Sdes  T_NARROWKLASS_size = 1,
722296633Sdes  T_VOID_size        = 0
72392555Sdes};
72492555Sdes
725192595Sdes
72692555Sdes// maps a BasicType to its instance field storage type:
72792555Sdes// all sub-word integral types are widened to T_INT
72892555Sdesextern BasicType type2field[T_CONFLICT+1];
72992555Sdesextern BasicType type2wfield[T_CONFLICT+1];
73092555Sdes
731106130Sdes
732106130Sdes// size in bytes
733106130Sdesenum ArrayElementSize {
73476259Sgreen  T_BOOLEAN_aelem_bytes     = 1,
735106130Sdes  T_CHAR_aelem_bytes        = 2,
73692555Sdes  T_FLOAT_aelem_bytes       = 4,
73792555Sdes  T_DOUBLE_aelem_bytes      = 8,
73892555Sdes  T_BYTE_aelem_bytes        = 1,
73992555Sdes  T_SHORT_aelem_bytes       = 2,
74092555Sdes  T_INT_aelem_bytes         = 4,
74192555Sdes  T_LONG_aelem_bytes        = 8,
74292555Sdes#ifdef _LP64
74392555Sdes  T_OBJECT_aelem_bytes      = 8,
74492555Sdes  T_ARRAY_aelem_bytes       = 8,
74592555Sdes#else
74692555Sdes  T_OBJECT_aelem_bytes      = 4,
74792555Sdes  T_ARRAY_aelem_bytes       = 4,
74892555Sdes#endif
74992555Sdes  T_NARROWOOP_aelem_bytes   = 4,
75092555Sdes  T_NARROWKLASS_aelem_bytes = 4,
75192555Sdes  T_VOID_aelem_bytes        = 0
75292555Sdes};
75392555Sdes
75492555Sdesextern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
75592555Sdes#ifdef ASSERT
756294332Sdesextern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
757323136Sdes#else
75892555Sdesinline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
759323136Sdes#endif
76092555Sdes
76192555Sdes
76292555Sdes// JavaValue serves as a container for arbitrary Java values.
763323136Sdes
76492555Sdesclass JavaValue {
76592555Sdes
76692555Sdes public:
767221420Sdes  typedef union JavaCallValue {
768221420Sdes    jfloat   f;
769221420Sdes    jdouble  d;
77092555Sdes    jint     i;
77192555Sdes    jlong    l;
77292555Sdes    jobject  h;
773261320Sdes  } JavaCallValue;
774261320Sdes
775261320Sdes private:
77692555Sdes  BasicType _type;
777323136Sdes  JavaCallValue _value;
778323136Sdes
77992555Sdes public:
78092555Sdes  JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
78192555Sdes
78292555Sdes  JavaValue(jfloat value) {
78392555Sdes    _type    = T_FLOAT;
78492555Sdes    _value.f = value;
78592555Sdes  }
78692555Sdes
78792555Sdes  JavaValue(jdouble value) {
78892555Sdes    _type    = T_DOUBLE;
78992555Sdes    _value.d = value;
79092555Sdes  }
79192555Sdes
79276259Sgreen jfloat get_jfloat() const { return _value.f; }
79376259Sgreen jdouble get_jdouble() const { return _value.d; }
79492555Sdes jint get_jint() const { return _value.i; }
79576259Sgreen jlong get_jlong() const { return _value.l; }
79676259Sgreen jobject get_jobject() const { return _value.h; }
79792555Sdes JavaCallValue* get_value_addr() { return &_value; }
79892555Sdes BasicType get_type() const { return _type; }
79976259Sgreen
80076259Sgreen void set_jfloat(jfloat f) { _value.f = f;}
80176259Sgreen void set_jdouble(jdouble d) { _value.d = d;}
80276259Sgreen void set_jint(jint i) { _value.i = i;}
80376259Sgreen void set_jlong(jlong l) { _value.l = l;}
80476259Sgreen void set_jobject(jobject h) { _value.h = h;}
80576259Sgreen void set_type(BasicType t) { _type = t; }
80676259Sgreen
80776259Sgreen jboolean get_jboolean() const { return (jboolean) (_value.i);}
808162856Sdes jbyte get_jbyte() const { return (jbyte) (_value.i);}
80976259Sgreen jchar get_jchar() const { return (jchar) (_value.i);}
810162856Sdes jshort get_jshort() const { return (jshort) (_value.i);}
811162856Sdes
81276259Sgreen};
813215116Sdes
814215116Sdes
815215116Sdes#define STACK_BIAS      0
816215116Sdes// V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
817215116Sdes// in order to extend the reach of the stack pointer.
818215116Sdes#if defined(SPARC) && defined(_LP64)
819215116Sdes#undef STACK_BIAS
82076259Sgreen#define STACK_BIAS      0x7ff
821215116Sdes#endif
822215116Sdes
823215116Sdes
824215116Sdes// TosState describes the top-of-stack state before and after the execution of
825215116Sdes// a bytecode or method. The top-of-stack value may be cached in one or more CPU
826215116Sdes// registers. The TosState corresponds to the 'machine representation' of this cached
827215116Sdes// value. There's 4 states corresponding to the JAVA types int, long, float & double
828215116Sdes// as well as a 5th state in case the top-of-stack value is actually on the top
829215116Sdes// of stack (in memory) and thus not cached. The atos state corresponds to the itos
830215116Sdes// state when it comes to machine representation but is used separately for (oop)
831215116Sdes// type specific operations (e.g. verification code).
832215116Sdes
833215116Sdesenum TosState {         // describes the tos cache contents
834215116Sdes  btos = 0,             // byte, bool tos cached
835215116Sdes  ztos = 1,             // byte, bool tos cached
836215116Sdes  ctos = 2,             // char tos cached
83792555Sdes  stos = 3,             // short tos cached
838215116Sdes  itos = 4,             // int tos cached
839215116Sdes  ltos = 5,             // long tos cached
84076259Sgreen  ftos = 6,             // float tos cached
841215116Sdes  dtos = 7,             // double tos cached
842215116Sdes  atos = 8,             // object cached
843215116Sdes  vtos = 9,             // tos not cached
844215116Sdes  number_of_states,
845215116Sdes  ilgl                  // illegal state: should not occur
846215116Sdes};
84792555Sdes
84892555Sdes
84992555Sdesinline TosState as_TosState(BasicType type) {
85092555Sdes  switch (type) {
85192555Sdes    case T_BYTE   : return btos;
85276259Sgreen    case T_BOOLEAN: return ztos;
85376259Sgreen    case T_CHAR   : return ctos;
85476259Sgreen    case T_SHORT  : return stos;
85576259Sgreen    case T_INT    : return itos;
85676259Sgreen    case T_LONG   : return ltos;
857    case T_FLOAT  : return ftos;
858    case T_DOUBLE : return dtos;
859    case T_VOID   : return vtos;
860    case T_ARRAY  : // fall through
861    case T_OBJECT : return atos;
862  }
863  return ilgl;
864}
865
866inline BasicType as_BasicType(TosState state) {
867  switch (state) {
868    case btos : return T_BYTE;
869    case ztos : return T_BOOLEAN;
870    case ctos : return T_CHAR;
871    case stos : return T_SHORT;
872    case itos : return T_INT;
873    case ltos : return T_LONG;
874    case ftos : return T_FLOAT;
875    case dtos : return T_DOUBLE;
876    case atos : return T_OBJECT;
877    case vtos : return T_VOID;
878  }
879  return T_ILLEGAL;
880}
881
882
883// Helper function to convert BasicType info into TosState
884// Note: Cannot define here as it uses global constant at the time being.
885TosState as_TosState(BasicType type);
886
887
888// JavaThreadState keeps track of which part of the code a thread is executing in. This
889// information is needed by the safepoint code.
890//
891// There are 4 essential states:
892//
893//  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
894//  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
895//  _thread_in_vm       : Executing in the vm
896//  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
897//
898// Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
899// a transition from one state to another. These extra states makes it possible for the safepoint code to
900// handle certain thread_states without having to suspend the thread - making the safepoint code faster.
901//
902// Given a state, the xxxx_trans state can always be found by adding 1.
903//
904enum JavaThreadState {
905  _thread_uninitialized     =  0, // should never happen (missing initialization)
906  _thread_new               =  2, // just starting up, i.e., in process of being initialized
907  _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
908  _thread_in_native         =  4, // running in native code
909  _thread_in_native_trans   =  5, // corresponding transition state
910  _thread_in_vm             =  6, // running in VM
911  _thread_in_vm_trans       =  7, // corresponding transition state
912  _thread_in_Java           =  8, // running in Java or in stub code
913  _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
914  _thread_blocked           = 10, // blocked in vm
915  _thread_blocked_trans     = 11, // corresponding transition state
916  _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
917};
918
919
920
921//----------------------------------------------------------------------------------------------------
922// 'Forward' declarations of frequently used classes
923// (in order to reduce interface dependencies & reduce
924// number of unnecessary compilations after changes)
925
926class ClassFileStream;
927
928class Event;
929
930class Thread;
931class  VMThread;
932class  JavaThread;
933class Threads;
934
935class VM_Operation;
936class VMOperationQueue;
937
938class CodeBlob;
939class  CompiledMethod;
940class   nmethod;
941class RuntimeBlob;
942class  OSRAdapter;
943class  I2CAdapter;
944class  C2IAdapter;
945class CompiledIC;
946class relocInfo;
947class ScopeDesc;
948class PcDesc;
949
950class Recompiler;
951class Recompilee;
952class RecompilationPolicy;
953class RFrame;
954class  CompiledRFrame;
955class  InterpretedRFrame;
956
957class frame;
958
959class vframe;
960class   javaVFrame;
961class     interpretedVFrame;
962class     compiledVFrame;
963class     deoptimizedVFrame;
964class   externalVFrame;
965class     entryVFrame;
966
967class RegisterMap;
968
969class Mutex;
970class Monitor;
971class BasicLock;
972class BasicObjectLock;
973
974class PeriodicTask;
975
976class JavaCallWrapper;
977
978class   oopDesc;
979class   metaDataOopDesc;
980
981class NativeCall;
982
983class zone;
984
985class StubQueue;
986
987class outputStream;
988
989class ResourceArea;
990
991class DebugInformationRecorder;
992class ScopeValue;
993class CompressedStream;
994class   DebugInfoReadStream;
995class   DebugInfoWriteStream;
996class LocationValue;
997class ConstantValue;
998class IllegalValue;
999
1000class PrivilegedElement;
1001class MonitorArray;
1002
1003class MonitorInfo;
1004
1005class OffsetClosure;
1006class OopMapCache;
1007class InterpreterOopMap;
1008class OopMapCacheEntry;
1009class OSThread;
1010
1011typedef int (*OSThreadStartFunc)(void*);
1012
1013class Space;
1014
1015class JavaValue;
1016class methodHandle;
1017class JavaCallArguments;
1018
1019// Basic support for errors (general debug facilities not defined at this point fo the include phase)
1020
1021extern void basic_fatal(const char* msg);
1022
1023
1024//----------------------------------------------------------------------------------------------------
1025// Special constants for debugging
1026
1027const jint     badInt           = -3;                       // generic "bad int" value
1028const long     badAddressVal    = -2;                       // generic "bad address" value
1029const long     badOopVal        = -1;                       // generic "bad oop" value
1030const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1031const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1032const int      badResourceValue = 0xAB;                     // value used to zap resource area
1033const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1034const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1035const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1036const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1037const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1038const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1039const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1040const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1041
1042
1043// (These must be implemented as #defines because C++ compilers are
1044// not obligated to inline non-integral constants!)
1045#define       badAddress        ((address)::badAddressVal)
1046#define       badOop            (cast_to_oop(::badOopVal))
1047#define       badHeapWord       (::badHeapWordVal)
1048#define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1049
1050// Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1051#define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1052
1053//----------------------------------------------------------------------------------------------------
1054// Utility functions for bitfield manipulations
1055
1056const intptr_t AllBits    = ~0; // all bits set in a word
1057const intptr_t NoBits     =  0; // no bits set in a word
1058const jlong    NoLongBits =  0; // no bits set in a long
1059const intptr_t OneBit     =  1; // only right_most bit set in a word
1060
1061// get a word with the n.th or the right-most or left-most n bits set
1062// (note: #define used only so that they can be used in enum constant definitions)
1063#define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1064#define right_n_bits(n)   (nth_bit(n) - 1)
1065#define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1066
1067// bit-operations using a mask m
1068inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1069inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1070inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1071inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1072inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1073
1074// bit-operations using the n.th bit
1075inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1076inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1077inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1078
1079// returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1080inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1081  return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1082}
1083
1084
1085//----------------------------------------------------------------------------------------------------
1086// Utility functions for integers
1087
1088// Avoid use of global min/max macros which may cause unwanted double
1089// evaluation of arguments.
1090#ifdef max
1091#undef max
1092#endif
1093
1094#ifdef min
1095#undef min
1096#endif
1097
1098#define max(a,b) Do_not_use_max_use_MAX2_instead
1099#define min(a,b) Do_not_use_min_use_MIN2_instead
1100
1101// It is necessary to use templates here. Having normal overloaded
1102// functions does not work because it is necessary to provide both 32-
1103// and 64-bit overloaded functions, which does not work, and having
1104// explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1105// will be even more error-prone than macros.
1106template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1107template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1108template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1109template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1110template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1111template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1112
1113template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1114
1115// true if x is a power of 2, false otherwise
1116inline bool is_power_of_2(intptr_t x) {
1117  return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1118}
1119
1120// long version of is_power_of_2
1121inline bool is_power_of_2_long(jlong x) {
1122  return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1123}
1124
1125// Returns largest i such that 2^i <= x.
1126// If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1127// If x == 0, the function returns -1.
1128inline int log2_intptr(intptr_t x) {
1129  int i = -1;
1130  uintptr_t p = 1;
1131  while (p != 0 && p <= (uintptr_t)x) {
1132    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1133    i++; p *= 2;
1134  }
1135  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1136  // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1137  return i;
1138}
1139
1140//* largest i such that 2^i <= x
1141//  A negative value of 'x' will return '63'
1142inline int log2_long(jlong x) {
1143  int i = -1;
1144  julong p =  1;
1145  while (p != 0 && p <= (julong)x) {
1146    // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1147    i++; p *= 2;
1148  }
1149  // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1150  // (if p = 0 then overflow occurred and i = 63)
1151  return i;
1152}
1153
1154//* the argument must be exactly a power of 2
1155inline int exact_log2(intptr_t x) {
1156  #ifdef ASSERT
1157    if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1158  #endif
1159  return log2_intptr(x);
1160}
1161
1162//* the argument must be exactly a power of 2
1163inline int exact_log2_long(jlong x) {
1164  #ifdef ASSERT
1165    if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1166  #endif
1167  return log2_long(x);
1168}
1169
1170
1171// returns integer round-up to the nearest multiple of s (s must be a power of two)
1172inline intptr_t round_to(intptr_t x, uintx s) {
1173  #ifdef ASSERT
1174    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1175  #endif
1176  const uintx m = s - 1;
1177  return mask_bits(x + m, ~m);
1178}
1179
1180// returns integer round-down to the nearest multiple of s (s must be a power of two)
1181inline intptr_t round_down(intptr_t x, uintx s) {
1182  #ifdef ASSERT
1183    if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1184  #endif
1185  const uintx m = s - 1;
1186  return mask_bits(x, ~m);
1187}
1188
1189
1190inline bool is_odd (intx x) { return x & 1;      }
1191inline bool is_even(intx x) { return !is_odd(x); }
1192
1193// "to" should be greater than "from."
1194inline intx byte_size(void* from, void* to) {
1195  return (address)to - (address)from;
1196}
1197
1198//----------------------------------------------------------------------------------------------------
1199// Avoid non-portable casts with these routines (DEPRECATED)
1200
1201// NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1202//       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1203
1204// Given sequence of four bytes, build into a 32-bit word
1205// following the conventions used in class files.
1206// On the 386, this could be realized with a simple address cast.
1207//
1208
1209// This routine takes eight bytes:
1210inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1211  return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1212       |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1213       |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1214       |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1215       |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1216       |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1217       |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1218       |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1219}
1220
1221// This routine takes four bytes:
1222inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1223  return  (( u4(c1) << 24 )  &  0xff000000)
1224       |  (( u4(c2) << 16 )  &  0x00ff0000)
1225       |  (( u4(c3) <<  8 )  &  0x0000ff00)
1226       |  (( u4(c4) <<  0 )  &  0x000000ff);
1227}
1228
1229// And this one works if the four bytes are contiguous in memory:
1230inline u4 build_u4_from( u1* p ) {
1231  return  build_u4_from( p[0], p[1], p[2], p[3] );
1232}
1233
1234// Ditto for two-byte ints:
1235inline u2 build_u2_from( u1 c1, u1 c2 ) {
1236  return  u2((( u2(c1) <<  8 )  &  0xff00)
1237          |  (( u2(c2) <<  0 )  &  0x00ff));
1238}
1239
1240// And this one works if the two bytes are contiguous in memory:
1241inline u2 build_u2_from( u1* p ) {
1242  return  build_u2_from( p[0], p[1] );
1243}
1244
1245// Ditto for floats:
1246inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1247  u4 u = build_u4_from( c1, c2, c3, c4 );
1248  return  *(jfloat*)&u;
1249}
1250
1251inline jfloat build_float_from( u1* p ) {
1252  u4 u = build_u4_from( p );
1253  return  *(jfloat*)&u;
1254}
1255
1256
1257// now (64-bit) longs
1258
1259inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1260  return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1261       |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1262       |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1263       |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1264       |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1265       |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1266       |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1267       |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1268}
1269
1270inline jlong build_long_from( u1* p ) {
1271  return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1272}
1273
1274
1275// Doubles, too!
1276inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1277  jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1278  return  *(jdouble*)&u;
1279}
1280
1281inline jdouble build_double_from( u1* p ) {
1282  jlong u = build_long_from( p );
1283  return  *(jdouble*)&u;
1284}
1285
1286
1287// Portable routines to go the other way:
1288
1289inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1290  c1 = u1(x >> 8);
1291  c2 = u1(x);
1292}
1293
1294inline void explode_short_to( u2 x, u1* p ) {
1295  explode_short_to( x, p[0], p[1]);
1296}
1297
1298inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1299  c1 = u1(x >> 24);
1300  c2 = u1(x >> 16);
1301  c3 = u1(x >>  8);
1302  c4 = u1(x);
1303}
1304
1305inline void explode_int_to( u4 x, u1* p ) {
1306  explode_int_to( x, p[0], p[1], p[2], p[3]);
1307}
1308
1309
1310// Pack and extract shorts to/from ints:
1311
1312inline int extract_low_short_from_int(jint x) {
1313  return x & 0xffff;
1314}
1315
1316inline int extract_high_short_from_int(jint x) {
1317  return (x >> 16) & 0xffff;
1318}
1319
1320inline int build_int_from_shorts( jushort low, jushort high ) {
1321  return ((int)((unsigned int)high << 16) | (unsigned int)low);
1322}
1323
1324// Convert pointer to intptr_t, for use in printing pointers.
1325inline intptr_t p2i(const void * p) {
1326  return (intptr_t) p;
1327}
1328
1329// swap a & b
1330template<class T> static void swap(T& a, T& b) {
1331  T tmp = a;
1332  a = b;
1333  b = tmp;
1334}
1335
1336// Printf-style formatters for fixed- and variable-width types as pointers and
1337// integers.  These are derived from the definitions in inttypes.h.  If the platform
1338// doesn't provide appropriate definitions, they should be provided in
1339// the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1340
1341#define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1342
1343// Format 32-bit quantities.
1344#define INT32_FORMAT           "%" PRId32
1345#define UINT32_FORMAT          "%" PRIu32
1346#define INT32_FORMAT_W(width)  "%" #width PRId32
1347#define UINT32_FORMAT_W(width) "%" #width PRIu32
1348
1349#define PTR32_FORMAT           "0x%08" PRIx32
1350#define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
1351
1352// Format 64-bit quantities.
1353#define INT64_FORMAT           "%" PRId64
1354#define UINT64_FORMAT          "%" PRIu64
1355#define UINT64_FORMAT_X        "%" PRIx64
1356#define INT64_FORMAT_W(width)  "%" #width PRId64
1357#define UINT64_FORMAT_W(width) "%" #width PRIu64
1358
1359#define PTR64_FORMAT           "0x%016" PRIx64
1360
1361// Format jlong, if necessary
1362#ifndef JLONG_FORMAT
1363#define JLONG_FORMAT           INT64_FORMAT
1364#endif
1365#ifndef JULONG_FORMAT
1366#define JULONG_FORMAT          UINT64_FORMAT
1367#endif
1368#ifndef JULONG_FORMAT_X
1369#define JULONG_FORMAT_X        UINT64_FORMAT_X
1370#endif
1371
1372// Format pointers which change size between 32- and 64-bit.
1373#ifdef  _LP64
1374#define INTPTR_FORMAT "0x%016" PRIxPTR
1375#define PTR_FORMAT    "0x%016" PRIxPTR
1376#else   // !_LP64
1377#define INTPTR_FORMAT "0x%08"  PRIxPTR
1378#define PTR_FORMAT    "0x%08"  PRIxPTR
1379#endif  // _LP64
1380
1381#define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1382
1383#define SSIZE_FORMAT             "%"   PRIdPTR
1384#define SIZE_FORMAT              "%"   PRIuPTR
1385#define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1386#define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1387#define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1388#define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1389
1390#define INTX_FORMAT           "%" PRIdPTR
1391#define UINTX_FORMAT          "%" PRIuPTR
1392#define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1393#define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1394
1395
1396#define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1397
1398//----------------------------------------------------------------------------------------------------
1399// Sum and product which can never overflow: they wrap, just like the
1400// Java operations.  Note that we don't intend these to be used for
1401// general-purpose arithmetic: their purpose is to emulate Java
1402// operations.
1403
1404// The goal of this code to avoid undefined or implementation-defined
1405// behavior.  The use of an lvalue to reference cast is explicitly
1406// permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1407// 15 in C++03]
1408#define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1409inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1410  UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1411  ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1412  return reinterpret_cast<TYPE&>(ures);                 \
1413}
1414
1415JAVA_INTEGER_OP(+, java_add, jint, juint)
1416JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1417JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1418JAVA_INTEGER_OP(+, java_add, jlong, julong)
1419JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1420JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1421
1422#undef JAVA_INTEGER_OP
1423
1424// Dereference vptr
1425// All C++ compilers that we know of have the vtbl pointer in the first
1426// word.  If there are exceptions, this function needs to be made compiler
1427// specific.
1428static inline void* dereference_vptr(const void* addr) {
1429  return *(void**)addr;
1430}
1431
1432#endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
1433