vframeArray.cpp revision 9111:a41fe5ffa839
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "code/vmreg.inline.hpp"
28#include "interpreter/bytecode.hpp"
29#include "interpreter/interpreter.hpp"
30#include "memory/allocation.inline.hpp"
31#include "memory/resourceArea.hpp"
32#include "memory/universe.inline.hpp"
33#include "oops/methodData.hpp"
34#include "oops/oop.inline.hpp"
35#include "prims/jvmtiThreadState.hpp"
36#include "runtime/handles.inline.hpp"
37#include "runtime/monitorChunk.hpp"
38#include "runtime/sharedRuntime.hpp"
39#include "runtime/vframe.hpp"
40#include "runtime/vframeArray.hpp"
41#include "runtime/vframe_hp.hpp"
42#include "utilities/events.hpp"
43#ifdef COMPILER2
44#include "opto/runtime.hpp"
45#endif
46
47PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
48
49int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
50
51void vframeArrayElement::free_monitors(JavaThread* jt) {
52  if (_monitors != NULL) {
53     MonitorChunk* chunk = _monitors;
54     _monitors = NULL;
55     jt->remove_monitor_chunk(chunk);
56     delete chunk;
57  }
58}
59
60void vframeArrayElement::fill_in(compiledVFrame* vf, bool realloc_failures) {
61
62// Copy the information from the compiled vframe to the
63// interpreter frame we will be creating to replace vf
64
65  _method = vf->method();
66  _bci    = vf->raw_bci();
67  _reexecute = vf->should_reexecute();
68#ifdef ASSERT
69  _removed_monitors = false;
70#endif
71
72  int index;
73
74  // Get the monitors off-stack
75
76  GrowableArray<MonitorInfo*>* list = vf->monitors();
77  if (list->is_empty()) {
78    _monitors = NULL;
79  } else {
80
81    // Allocate monitor chunk
82    _monitors = new MonitorChunk(list->length());
83    vf->thread()->add_monitor_chunk(_monitors);
84
85    // Migrate the BasicLocks from the stack to the monitor chunk
86    for (index = 0; index < list->length(); index++) {
87      MonitorInfo* monitor = list->at(index);
88      assert(!monitor->owner_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
89      BasicObjectLock* dest = _monitors->at(index);
90      if (monitor->owner_is_scalar_replaced()) {
91        dest->set_obj(NULL);
92      } else {
93        assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
94        dest->set_obj(monitor->owner());
95        monitor->lock()->move_to(monitor->owner(), dest->lock());
96      }
97    }
98  }
99
100  // Convert the vframe locals and expressions to off stack
101  // values. Because we will not gc all oops can be converted to
102  // intptr_t (i.e. a stack slot) and we are fine. This is
103  // good since we are inside a HandleMark and the oops in our
104  // collection would go away between packing them here and
105  // unpacking them in unpack_on_stack.
106
107  // First the locals go off-stack
108
109  // FIXME this seems silly it creates a StackValueCollection
110  // in order to get the size to then copy them and
111  // convert the types to intptr_t size slots. Seems like it
112  // could do it in place... Still uses less memory than the
113  // old way though
114
115  StackValueCollection *locs = vf->locals();
116  _locals = new StackValueCollection(locs->size());
117  for(index = 0; index < locs->size(); index++) {
118    StackValue* value = locs->at(index);
119    switch(value->type()) {
120      case T_OBJECT:
121        assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
122        // preserve object type
123        _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
124        break;
125      case T_CONFLICT:
126        // A dead local.  Will be initialized to null/zero.
127        _locals->add( new StackValue());
128        break;
129      case T_INT:
130        _locals->add( new StackValue(value->get_int()));
131        break;
132      default:
133        ShouldNotReachHere();
134    }
135  }
136
137  // Now the expressions off-stack
138  // Same silliness as above
139
140  StackValueCollection *exprs = vf->expressions();
141  _expressions = new StackValueCollection(exprs->size());
142  for(index = 0; index < exprs->size(); index++) {
143    StackValue* value = exprs->at(index);
144    switch(value->type()) {
145      case T_OBJECT:
146        assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
147        // preserve object type
148        _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
149        break;
150      case T_CONFLICT:
151        // A dead stack element.  Will be initialized to null/zero.
152        // This can occur when the compiler emits a state in which stack
153        // elements are known to be dead (because of an imminent exception).
154        _expressions->add( new StackValue());
155        break;
156      case T_INT:
157        _expressions->add( new StackValue(value->get_int()));
158        break;
159      default:
160        ShouldNotReachHere();
161    }
162  }
163}
164
165int unpack_counter = 0;
166
167void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
168                                         int callee_parameters,
169                                         int callee_locals,
170                                         frame* caller,
171                                         bool is_top_frame,
172                                         bool is_bottom_frame,
173                                         int exec_mode) {
174  JavaThread* thread = (JavaThread*) Thread::current();
175
176  // Look at bci and decide on bcp and continuation pc
177  address bcp;
178  // C++ interpreter doesn't need a pc since it will figure out what to do when it
179  // begins execution
180  address pc;
181  bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
182                             // rather than the one associated with bcp
183  if (raw_bci() == SynchronizationEntryBCI) {
184    // We are deoptimizing while hanging in prologue code for synchronized method
185    bcp = method()->bcp_from(0); // first byte code
186    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
187  } else if (should_reexecute()) { //reexecute this bytecode
188    assert(is_top_frame, "reexecute allowed only for the top frame");
189    bcp = method()->bcp_from(bci());
190    pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
191  } else {
192    bcp = method()->bcp_from(bci());
193    pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
194    use_next_mdp = true;
195  }
196  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
197
198  // Monitorenter and pending exceptions:
199  //
200  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
201  // because there is no safepoint at the null pointer check (it is either handled explicitly
202  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
203  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
204  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
205  // the monitorenter to place it in the proper exception range.
206  //
207  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
208  // in which case bcp should point to the monitorenter since it is within the exception's range.
209
210  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
211  assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
212  guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
213              *bcp == Bytecodes::_monitorenter             &&
214              exec_mode == Deoptimization::Unpack_exception),
215            "shouldn't get exception during monitorenter");
216
217  int popframe_preserved_args_size_in_bytes = 0;
218  int popframe_preserved_args_size_in_words = 0;
219  if (is_top_frame) {
220    JvmtiThreadState *state = thread->jvmti_thread_state();
221    if (JvmtiExport::can_pop_frame() &&
222        (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
223      if (thread->has_pending_popframe()) {
224        // Pop top frame after deoptimization
225#ifndef CC_INTERP
226        pc = Interpreter::remove_activation_preserving_args_entry();
227#else
228        // Do an uncommon trap type entry. c++ interpreter will know
229        // to pop frame and preserve the args
230        pc = Interpreter::deopt_entry(vtos, 0);
231        use_next_mdp = false;
232#endif
233      } else {
234        // Reexecute invoke in top frame
235        pc = Interpreter::deopt_entry(vtos, 0);
236        use_next_mdp = false;
237        popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
238        // Note: the PopFrame-related extension of the expression stack size is done in
239        // Deoptimization::fetch_unroll_info_helper
240        popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
241      }
242    } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
243      // Force early return from top frame after deoptimization
244#ifndef CC_INTERP
245      pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
246#endif
247    } else {
248      // Possibly override the previous pc computation of the top (youngest) frame
249      switch (exec_mode) {
250      case Deoptimization::Unpack_deopt:
251        // use what we've got
252        break;
253      case Deoptimization::Unpack_exception:
254        // exception is pending
255        pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
256        // [phh] We're going to end up in some handler or other, so it doesn't
257        // matter what mdp we point to.  See exception_handler_for_exception()
258        // in interpreterRuntime.cpp.
259        break;
260      case Deoptimization::Unpack_uncommon_trap:
261      case Deoptimization::Unpack_reexecute:
262        // redo last byte code
263        pc  = Interpreter::deopt_entry(vtos, 0);
264        use_next_mdp = false;
265        break;
266      default:
267        ShouldNotReachHere();
268      }
269    }
270  }
271
272  // Setup the interpreter frame
273
274  assert(method() != NULL, "method must exist");
275  int temps = expressions()->size();
276
277  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
278
279  Interpreter::layout_activation(method(),
280                                 temps + callee_parameters,
281                                 popframe_preserved_args_size_in_words,
282                                 locks,
283                                 caller_actual_parameters,
284                                 callee_parameters,
285                                 callee_locals,
286                                 caller,
287                                 iframe(),
288                                 is_top_frame,
289                                 is_bottom_frame);
290
291  // Update the pc in the frame object and overwrite the temporary pc
292  // we placed in the skeletal frame now that we finally know the
293  // exact interpreter address we should use.
294
295  _frame.patch_pc(thread, pc);
296
297  assert (!method()->is_synchronized() || locks > 0 || _removed_monitors || raw_bci() == SynchronizationEntryBCI, "synchronized methods must have monitors");
298
299  BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
300  for (int index = 0; index < locks; index++) {
301    top = iframe()->previous_monitor_in_interpreter_frame(top);
302    BasicObjectLock* src = _monitors->at(index);
303    top->set_obj(src->obj());
304    src->lock()->move_to(src->obj(), top->lock());
305  }
306  if (ProfileInterpreter) {
307    iframe()->interpreter_frame_set_mdp(0); // clear out the mdp.
308  }
309  iframe()->interpreter_frame_set_bcp(bcp);
310  if (ProfileInterpreter) {
311    MethodData* mdo = method()->method_data();
312    if (mdo != NULL) {
313      int bci = iframe()->interpreter_frame_bci();
314      if (use_next_mdp) ++bci;
315      address mdp = mdo->bci_to_dp(bci);
316      iframe()->interpreter_frame_set_mdp(mdp);
317    }
318  }
319
320  if (PrintDeoptimizationDetails) {
321    tty->print_cr("Expressions size: %d", expressions()->size());
322  }
323
324  // Unpack expression stack
325  // If this is an intermediate frame (i.e. not top frame) then this
326  // only unpacks the part of the expression stack not used by callee
327  // as parameters. The callee parameters are unpacked as part of the
328  // callee locals.
329  int i;
330  for(i = 0; i < expressions()->size(); i++) {
331    StackValue *value = expressions()->at(i);
332    intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
333    switch(value->type()) {
334      case T_INT:
335        *addr = value->get_int();
336#ifndef PRODUCT
337        if (PrintDeoptimizationDetails) {
338          tty->print_cr("Reconstructed expression %d (INT): %d", i, (int)(*addr));
339        }
340#endif
341        break;
342      case T_OBJECT:
343        *addr = value->get_int(T_OBJECT);
344#ifndef PRODUCT
345        if (PrintDeoptimizationDetails) {
346          tty->print("Reconstructed expression %d (OBJECT): ", i);
347          oop o = (oop)(address)(*addr);
348          if (o == NULL) {
349            tty->print_cr("NULL");
350          } else {
351            ResourceMark rm;
352            tty->print_raw_cr(o->klass()->name()->as_C_string());
353          }
354        }
355#endif
356        break;
357      case T_CONFLICT:
358        // A dead stack slot.  Initialize to null in case it is an oop.
359        *addr = NULL_WORD;
360        break;
361      default:
362        ShouldNotReachHere();
363    }
364  }
365
366
367  // Unpack the locals
368  for(i = 0; i < locals()->size(); i++) {
369    StackValue *value = locals()->at(i);
370    intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
371    switch(value->type()) {
372      case T_INT:
373        *addr = value->get_int();
374#ifndef PRODUCT
375        if (PrintDeoptimizationDetails) {
376          tty->print_cr("Reconstructed local %d (INT): %d", i, (int)(*addr));
377        }
378#endif
379        break;
380      case T_OBJECT:
381        *addr = value->get_int(T_OBJECT);
382#ifndef PRODUCT
383        if (PrintDeoptimizationDetails) {
384          tty->print("Reconstructed local %d (OBJECT): ", i);
385          oop o = (oop)(address)(*addr);
386          if (o == NULL) {
387            tty->print_cr("NULL");
388          } else {
389            ResourceMark rm;
390            tty->print_raw_cr(o->klass()->name()->as_C_string());
391          }
392        }
393#endif
394        break;
395      case T_CONFLICT:
396        // A dead location. If it is an oop then we need a NULL to prevent GC from following it
397        *addr = NULL_WORD;
398        break;
399      default:
400        ShouldNotReachHere();
401    }
402  }
403
404  if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
405    // An interpreted frame was popped but it returns to a deoptimized
406    // frame. The incoming arguments to the interpreted activation
407    // were preserved in thread-local storage by the
408    // remove_activation_preserving_args_entry in the interpreter; now
409    // we put them back into the just-unpacked interpreter frame.
410    // Note that this assumes that the locals arena grows toward lower
411    // addresses.
412    if (popframe_preserved_args_size_in_words != 0) {
413      void* saved_args = thread->popframe_preserved_args();
414      assert(saved_args != NULL, "must have been saved by interpreter");
415#ifdef ASSERT
416      assert(popframe_preserved_args_size_in_words <=
417             iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
418             "expression stack size should have been extended");
419#endif // ASSERT
420      int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
421      intptr_t* base;
422      if (frame::interpreter_frame_expression_stack_direction() < 0) {
423        base = iframe()->interpreter_frame_expression_stack_at(top_element);
424      } else {
425        base = iframe()->interpreter_frame_expression_stack();
426      }
427      Copy::conjoint_jbytes(saved_args,
428                            base,
429                            popframe_preserved_args_size_in_bytes);
430      thread->popframe_free_preserved_args();
431    }
432  }
433
434#ifndef PRODUCT
435  if (PrintDeoptimizationDetails) {
436    ttyLocker ttyl;
437    tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
438    iframe()->print_on(tty);
439    RegisterMap map(thread);
440    vframe* f = vframe::new_vframe(iframe(), &map, thread);
441    f->print();
442
443    tty->print_cr("locals size     %d", locals()->size());
444    tty->print_cr("expression size %d", expressions()->size());
445
446    method()->print_value();
447    tty->cr();
448    // method()->print_codes();
449  } else if (TraceDeoptimization) {
450    tty->print("     ");
451    method()->print_value();
452    Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
453    int bci = method()->bci_from(bcp);
454    tty->print(" - %s", Bytecodes::name(code));
455    tty->print(" @ bci %d ", bci);
456    tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
457  }
458#endif // PRODUCT
459
460  // The expression stack and locals are in the resource area don't leave
461  // a dangling pointer in the vframeArray we leave around for debug
462  // purposes
463
464  _locals = _expressions = NULL;
465
466}
467
468int vframeArrayElement::on_stack_size(int callee_parameters,
469                                      int callee_locals,
470                                      bool is_top_frame,
471                                      int popframe_extra_stack_expression_els) const {
472  assert(method()->max_locals() == locals()->size(), "just checking");
473  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
474  int temps = expressions()->size();
475  return Interpreter::size_activation(method()->max_stack(),
476                                      temps + callee_parameters,
477                                      popframe_extra_stack_expression_els,
478                                      locks,
479                                      callee_parameters,
480                                      callee_locals,
481                                      is_top_frame);
482}
483
484
485
486vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
487                                   RegisterMap *reg_map, frame sender, frame caller, frame self,
488                                   bool realloc_failures) {
489
490  // Allocate the vframeArray
491  vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
492                                                     sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
493                                                     mtCompiler);
494  result->_frames = chunk->length();
495  result->_owner_thread = thread;
496  result->_sender = sender;
497  result->_caller = caller;
498  result->_original = self;
499  result->set_unroll_block(NULL); // initialize it
500  result->fill_in(thread, frame_size, chunk, reg_map, realloc_failures);
501  return result;
502}
503
504void vframeArray::fill_in(JavaThread* thread,
505                          int frame_size,
506                          GrowableArray<compiledVFrame*>* chunk,
507                          const RegisterMap *reg_map,
508                          bool realloc_failures) {
509  // Set owner first, it is used when adding monitor chunks
510
511  _frame_size = frame_size;
512  for(int i = 0; i < chunk->length(); i++) {
513    element(i)->fill_in(chunk->at(i), realloc_failures);
514  }
515
516  // Copy registers for callee-saved registers
517  if (reg_map != NULL) {
518    for(int i = 0; i < RegisterMap::reg_count; i++) {
519#ifdef AMD64
520      // The register map has one entry for every int (32-bit value), so
521      // 64-bit physical registers have two entries in the map, one for
522      // each half.  Ignore the high halves of 64-bit registers, just like
523      // frame::oopmapreg_to_location does.
524      //
525      // [phh] FIXME: this is a temporary hack!  This code *should* work
526      // correctly w/o this hack, possibly by changing RegisterMap::pd_location
527      // in frame_amd64.cpp and the values of the phantom high half registers
528      // in amd64.ad.
529      //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
530        intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
531        _callee_registers[i] = src != NULL ? *src : NULL_WORD;
532        //      } else {
533        //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
534        //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
535        //      }
536#else
537      jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
538      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
539#endif
540      if (src == NULL) {
541        set_location_valid(i, false);
542      } else {
543        set_location_valid(i, true);
544        jint* dst = (jint*) register_location(i);
545        *dst = *src;
546      }
547    }
548  }
549}
550
551void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
552  // stack picture
553  //   unpack_frame
554  //   [new interpreter frames ] (frames are skeletal but walkable)
555  //   caller_frame
556  //
557  //  This routine fills in the missing data for the skeletal interpreter frames
558  //  in the above picture.
559
560  // Find the skeletal interpreter frames to unpack into
561  JavaThread* THREAD = JavaThread::current();
562  RegisterMap map(THREAD, false);
563  // Get the youngest frame we will unpack (last to be unpacked)
564  frame me = unpack_frame.sender(&map);
565  int index;
566  for (index = 0; index < frames(); index++ ) {
567    *element(index)->iframe() = me;
568    // Get the caller frame (possibly skeletal)
569    me = me.sender(&map);
570  }
571
572  // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
573  // Unpack the frames from the oldest (frames() -1) to the youngest (0)
574  frame* caller_frame = &me;
575  for (index = frames() - 1; index >= 0 ; index--) {
576    vframeArrayElement* elem = element(index);  // caller
577    int callee_parameters, callee_locals;
578    if (index == 0) {
579      callee_parameters = callee_locals = 0;
580    } else {
581      methodHandle caller = elem->method();
582      methodHandle callee = element(index - 1)->method();
583      Bytecode_invoke inv(caller, elem->bci());
584      // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
585      // NOTE:  Use machinery here that avoids resolving of any kind.
586      const bool has_member_arg =
587          !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
588      callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
589      callee_locals     = callee->max_locals();
590    }
591    elem->unpack_on_stack(caller_actual_parameters,
592                          callee_parameters,
593                          callee_locals,
594                          caller_frame,
595                          index == 0,
596                          index == frames() - 1,
597                          exec_mode);
598    if (index == frames() - 1) {
599      Deoptimization::unwind_callee_save_values(elem->iframe(), this);
600    }
601    caller_frame = elem->iframe();
602    caller_actual_parameters = callee_parameters;
603  }
604  deallocate_monitor_chunks();
605}
606
607void vframeArray::deallocate_monitor_chunks() {
608  JavaThread* jt = JavaThread::current();
609  for (int index = 0; index < frames(); index++ ) {
610     element(index)->free_monitors(jt);
611  }
612}
613
614#ifndef PRODUCT
615
616bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
617  if (owner_thread() != thread) return false;
618  int index = 0;
619#if 0 // FIXME can't do this comparison
620
621  // Compare only within vframe array.
622  for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
623    if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
624    index++;
625  }
626  if (index != chunk->length()) return false;
627#endif
628
629  return true;
630}
631
632#endif
633
634address vframeArray::register_location(int i) const {
635  assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
636  return (address) & _callee_registers[i];
637}
638
639
640#ifndef PRODUCT
641
642// Printing
643
644// Note: we cannot have print_on as const, as we allocate inside the method
645void vframeArray::print_on_2(outputStream* st)  {
646  st->print_cr(" - sp: " INTPTR_FORMAT, sp());
647  st->print(" - thread: ");
648  Thread::current()->print();
649  st->print_cr(" - frame size: %d", frame_size());
650  for (int index = 0; index < frames() ; index++ ) {
651    element(index)->print(st);
652  }
653}
654
655void vframeArrayElement::print(outputStream* st) {
656  st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
657}
658
659void vframeArray::print_value_on(outputStream* st) const {
660  st->print_cr("vframeArray [%d] ", frames());
661}
662
663
664#endif
665