vframeArray.cpp revision 9099:115188e14c15
1117395Skan/*
2117395Skan * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3117395Skan * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4117395Skan *
5117395Skan * This code is free software; you can redistribute it and/or modify it
6117395Skan * under the terms of the GNU General Public License version 2 only, as
7117395Skan * published by the Free Software Foundation.
8117395Skan *
9117395Skan * This code is distributed in the hope that it will be useful, but WITHOUT
10117395Skan * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11117395Skan * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12117395Skan * version 2 for more details (a copy is included in the LICENSE file that
13117395Skan * accompanied this code).
14117395Skan *
15117395Skan * You should have received a copy of the GNU General Public License version
16117395Skan * 2 along with this work; if not, write to the Free Software Foundation,
17117395Skan * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18117395Skan *
19117395Skan * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20117395Skan * or visit www.oracle.com if you need additional information or have any
21117395Skan * questions.
22117395Skan *
23117395Skan */
24117395Skan
25117395Skan#include "precompiled.hpp"
26117395Skan#include "classfile/vmSymbols.hpp"
27117395Skan#include "code/vmreg.inline.hpp"
28117395Skan#include "interpreter/bytecode.hpp"
29117395Skan#include "interpreter/interpreter.hpp"
30117395Skan#include "memory/allocation.inline.hpp"
31117395Skan#include "memory/resourceArea.hpp"
32117395Skan#include "memory/universe.inline.hpp"
33117395Skan#include "oops/methodData.hpp"
34117395Skan#include "oops/oop.inline.hpp"
35117395Skan#include "prims/jvmtiThreadState.hpp"
36117395Skan#include "runtime/handles.inline.hpp"
37117395Skan#include "runtime/monitorChunk.hpp"
38117395Skan#include "runtime/sharedRuntime.hpp"
39117395Skan#include "runtime/vframe.hpp"
40117395Skan#include "runtime/vframeArray.hpp"
41117395Skan#include "runtime/vframe_hp.hpp"
42117395Skan#include "utilities/events.hpp"
43#ifdef COMPILER2
44#include "opto/runtime.hpp"
45#endif
46
47int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
48
49void vframeArrayElement::free_monitors(JavaThread* jt) {
50  if (_monitors != NULL) {
51     MonitorChunk* chunk = _monitors;
52     _monitors = NULL;
53     jt->remove_monitor_chunk(chunk);
54     delete chunk;
55  }
56}
57
58void vframeArrayElement::fill_in(compiledVFrame* vf, bool realloc_failures) {
59
60// Copy the information from the compiled vframe to the
61// interpreter frame we will be creating to replace vf
62
63  _method = vf->method();
64  _bci    = vf->raw_bci();
65  _reexecute = vf->should_reexecute();
66#ifdef ASSERT
67  _removed_monitors = false;
68#endif
69
70  int index;
71
72  // Get the monitors off-stack
73
74  GrowableArray<MonitorInfo*>* list = vf->monitors();
75  if (list->is_empty()) {
76    _monitors = NULL;
77  } else {
78
79    // Allocate monitor chunk
80    _monitors = new MonitorChunk(list->length());
81    vf->thread()->add_monitor_chunk(_monitors);
82
83    // Migrate the BasicLocks from the stack to the monitor chunk
84    for (index = 0; index < list->length(); index++) {
85      MonitorInfo* monitor = list->at(index);
86      assert(!monitor->owner_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
87      BasicObjectLock* dest = _monitors->at(index);
88      if (monitor->owner_is_scalar_replaced()) {
89        dest->set_obj(NULL);
90      } else {
91        assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
92        dest->set_obj(monitor->owner());
93        monitor->lock()->move_to(monitor->owner(), dest->lock());
94      }
95    }
96  }
97
98  // Convert the vframe locals and expressions to off stack
99  // values. Because we will not gc all oops can be converted to
100  // intptr_t (i.e. a stack slot) and we are fine. This is
101  // good since we are inside a HandleMark and the oops in our
102  // collection would go away between packing them here and
103  // unpacking them in unpack_on_stack.
104
105  // First the locals go off-stack
106
107  // FIXME this seems silly it creates a StackValueCollection
108  // in order to get the size to then copy them and
109  // convert the types to intptr_t size slots. Seems like it
110  // could do it in place... Still uses less memory than the
111  // old way though
112
113  StackValueCollection *locs = vf->locals();
114  _locals = new StackValueCollection(locs->size());
115  for(index = 0; index < locs->size(); index++) {
116    StackValue* value = locs->at(index);
117    switch(value->type()) {
118      case T_OBJECT:
119        assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
120        // preserve object type
121        _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
122        break;
123      case T_CONFLICT:
124        // A dead local.  Will be initialized to null/zero.
125        _locals->add( new StackValue());
126        break;
127      case T_INT:
128        _locals->add( new StackValue(value->get_int()));
129        break;
130      default:
131        ShouldNotReachHere();
132    }
133  }
134
135  // Now the expressions off-stack
136  // Same silliness as above
137
138  StackValueCollection *exprs = vf->expressions();
139  _expressions = new StackValueCollection(exprs->size());
140  for(index = 0; index < exprs->size(); index++) {
141    StackValue* value = exprs->at(index);
142    switch(value->type()) {
143      case T_OBJECT:
144        assert(!value->obj_is_scalar_replaced() || realloc_failures, "object should be reallocated already");
145        // preserve object type
146        _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
147        break;
148      case T_CONFLICT:
149        // A dead stack element.  Will be initialized to null/zero.
150        // This can occur when the compiler emits a state in which stack
151        // elements are known to be dead (because of an imminent exception).
152        _expressions->add( new StackValue());
153        break;
154      case T_INT:
155        _expressions->add( new StackValue(value->get_int()));
156        break;
157      default:
158        ShouldNotReachHere();
159    }
160  }
161}
162
163int unpack_counter = 0;
164
165void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
166                                         int callee_parameters,
167                                         int callee_locals,
168                                         frame* caller,
169                                         bool is_top_frame,
170                                         bool is_bottom_frame,
171                                         int exec_mode) {
172  JavaThread* thread = (JavaThread*) Thread::current();
173
174  // Look at bci and decide on bcp and continuation pc
175  address bcp;
176  // C++ interpreter doesn't need a pc since it will figure out what to do when it
177  // begins execution
178  address pc;
179  bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
180                             // rather than the one associated with bcp
181  if (raw_bci() == SynchronizationEntryBCI) {
182    // We are deoptimizing while hanging in prologue code for synchronized method
183    bcp = method()->bcp_from(0); // first byte code
184    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
185  } else if (should_reexecute()) { //reexecute this bytecode
186    assert(is_top_frame, "reexecute allowed only for the top frame");
187    bcp = method()->bcp_from(bci());
188    pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
189  } else {
190    bcp = method()->bcp_from(bci());
191    pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
192    use_next_mdp = true;
193  }
194  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
195
196  // Monitorenter and pending exceptions:
197  //
198  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
199  // because there is no safepoint at the null pointer check (it is either handled explicitly
200  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
201  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
202  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
203  // the monitorenter to place it in the proper exception range.
204  //
205  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
206  // in which case bcp should point to the monitorenter since it is within the exception's range.
207
208  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
209  assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
210  guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
211              *bcp == Bytecodes::_monitorenter             &&
212              exec_mode == Deoptimization::Unpack_exception),
213            "shouldn't get exception during monitorenter");
214
215  int popframe_preserved_args_size_in_bytes = 0;
216  int popframe_preserved_args_size_in_words = 0;
217  if (is_top_frame) {
218    JvmtiThreadState *state = thread->jvmti_thread_state();
219    if (JvmtiExport::can_pop_frame() &&
220        (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
221      if (thread->has_pending_popframe()) {
222        // Pop top frame after deoptimization
223#ifndef CC_INTERP
224        pc = Interpreter::remove_activation_preserving_args_entry();
225#else
226        // Do an uncommon trap type entry. c++ interpreter will know
227        // to pop frame and preserve the args
228        pc = Interpreter::deopt_entry(vtos, 0);
229        use_next_mdp = false;
230#endif
231      } else {
232        // Reexecute invoke in top frame
233        pc = Interpreter::deopt_entry(vtos, 0);
234        use_next_mdp = false;
235        popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
236        // Note: the PopFrame-related extension of the expression stack size is done in
237        // Deoptimization::fetch_unroll_info_helper
238        popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
239      }
240    } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
241      // Force early return from top frame after deoptimization
242#ifndef CC_INTERP
243      pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
244#endif
245    } else {
246      // Possibly override the previous pc computation of the top (youngest) frame
247      switch (exec_mode) {
248      case Deoptimization::Unpack_deopt:
249        // use what we've got
250        break;
251      case Deoptimization::Unpack_exception:
252        // exception is pending
253        pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
254        // [phh] We're going to end up in some handler or other, so it doesn't
255        // matter what mdp we point to.  See exception_handler_for_exception()
256        // in interpreterRuntime.cpp.
257        break;
258      case Deoptimization::Unpack_uncommon_trap:
259      case Deoptimization::Unpack_reexecute:
260        // redo last byte code
261        pc  = Interpreter::deopt_entry(vtos, 0);
262        use_next_mdp = false;
263        break;
264      default:
265        ShouldNotReachHere();
266      }
267    }
268  }
269
270  // Setup the interpreter frame
271
272  assert(method() != NULL, "method must exist");
273  int temps = expressions()->size();
274
275  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
276
277  Interpreter::layout_activation(method(),
278                                 temps + callee_parameters,
279                                 popframe_preserved_args_size_in_words,
280                                 locks,
281                                 caller_actual_parameters,
282                                 callee_parameters,
283                                 callee_locals,
284                                 caller,
285                                 iframe(),
286                                 is_top_frame,
287                                 is_bottom_frame);
288
289  // Update the pc in the frame object and overwrite the temporary pc
290  // we placed in the skeletal frame now that we finally know the
291  // exact interpreter address we should use.
292
293  _frame.patch_pc(thread, pc);
294
295  assert (!method()->is_synchronized() || locks > 0 || _removed_monitors, "synchronized methods must have monitors");
296
297  BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
298  for (int index = 0; index < locks; index++) {
299    top = iframe()->previous_monitor_in_interpreter_frame(top);
300    BasicObjectLock* src = _monitors->at(index);
301    top->set_obj(src->obj());
302    src->lock()->move_to(src->obj(), top->lock());
303  }
304  if (ProfileInterpreter) {
305    iframe()->interpreter_frame_set_mdp(0); // clear out the mdp.
306  }
307  iframe()->interpreter_frame_set_bcp(bcp);
308  if (ProfileInterpreter) {
309    MethodData* mdo = method()->method_data();
310    if (mdo != NULL) {
311      int bci = iframe()->interpreter_frame_bci();
312      if (use_next_mdp) ++bci;
313      address mdp = mdo->bci_to_dp(bci);
314      iframe()->interpreter_frame_set_mdp(mdp);
315    }
316  }
317
318  // Unpack expression stack
319  // If this is an intermediate frame (i.e. not top frame) then this
320  // only unpacks the part of the expression stack not used by callee
321  // as parameters. The callee parameters are unpacked as part of the
322  // callee locals.
323  int i;
324  for(i = 0; i < expressions()->size(); i++) {
325    StackValue *value = expressions()->at(i);
326    intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
327    switch(value->type()) {
328      case T_INT:
329        *addr = value->get_int();
330        break;
331      case T_OBJECT:
332        *addr = value->get_int(T_OBJECT);
333        break;
334      case T_CONFLICT:
335        // A dead stack slot.  Initialize to null in case it is an oop.
336        *addr = NULL_WORD;
337        break;
338      default:
339        ShouldNotReachHere();
340    }
341  }
342
343
344  // Unpack the locals
345  for(i = 0; i < locals()->size(); i++) {
346    StackValue *value = locals()->at(i);
347    intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
348    switch(value->type()) {
349      case T_INT:
350        *addr = value->get_int();
351        break;
352      case T_OBJECT:
353        *addr = value->get_int(T_OBJECT);
354        break;
355      case T_CONFLICT:
356        // A dead location. If it is an oop then we need a NULL to prevent GC from following it
357        *addr = NULL_WORD;
358        break;
359      default:
360        ShouldNotReachHere();
361    }
362  }
363
364  if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
365    // An interpreted frame was popped but it returns to a deoptimized
366    // frame. The incoming arguments to the interpreted activation
367    // were preserved in thread-local storage by the
368    // remove_activation_preserving_args_entry in the interpreter; now
369    // we put them back into the just-unpacked interpreter frame.
370    // Note that this assumes that the locals arena grows toward lower
371    // addresses.
372    if (popframe_preserved_args_size_in_words != 0) {
373      void* saved_args = thread->popframe_preserved_args();
374      assert(saved_args != NULL, "must have been saved by interpreter");
375#ifdef ASSERT
376      assert(popframe_preserved_args_size_in_words <=
377             iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
378             "expression stack size should have been extended");
379#endif // ASSERT
380      int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
381      intptr_t* base;
382      if (frame::interpreter_frame_expression_stack_direction() < 0) {
383        base = iframe()->interpreter_frame_expression_stack_at(top_element);
384      } else {
385        base = iframe()->interpreter_frame_expression_stack();
386      }
387      Copy::conjoint_jbytes(saved_args,
388                            base,
389                            popframe_preserved_args_size_in_bytes);
390      thread->popframe_free_preserved_args();
391    }
392  }
393
394#ifndef PRODUCT
395  if (TraceDeoptimization && Verbose) {
396    ttyLocker ttyl;
397    tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
398    iframe()->print_on(tty);
399    RegisterMap map(thread);
400    vframe* f = vframe::new_vframe(iframe(), &map, thread);
401    f->print();
402
403    tty->print_cr("locals size     %d", locals()->size());
404    tty->print_cr("expression size %d", expressions()->size());
405
406    method()->print_value();
407    tty->cr();
408    // method()->print_codes();
409  } else if (TraceDeoptimization) {
410    tty->print("     ");
411    method()->print_value();
412    Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
413    int bci = method()->bci_from(bcp);
414    tty->print(" - %s", Bytecodes::name(code));
415    tty->print(" @ bci %d ", bci);
416    tty->print_cr("sp = " PTR_FORMAT, p2i(iframe()->sp()));
417  }
418#endif // PRODUCT
419
420  // The expression stack and locals are in the resource area don't leave
421  // a dangling pointer in the vframeArray we leave around for debug
422  // purposes
423
424  _locals = _expressions = NULL;
425
426}
427
428int vframeArrayElement::on_stack_size(int callee_parameters,
429                                      int callee_locals,
430                                      bool is_top_frame,
431                                      int popframe_extra_stack_expression_els) const {
432  assert(method()->max_locals() == locals()->size(), "just checking");
433  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
434  int temps = expressions()->size();
435  return Interpreter::size_activation(method()->max_stack(),
436                                      temps + callee_parameters,
437                                      popframe_extra_stack_expression_els,
438                                      locks,
439                                      callee_parameters,
440                                      callee_locals,
441                                      is_top_frame);
442}
443
444
445
446vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
447                                   RegisterMap *reg_map, frame sender, frame caller, frame self,
448                                   bool realloc_failures) {
449
450  // Allocate the vframeArray
451  vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
452                                                     sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
453                                                     mtCompiler);
454  result->_frames = chunk->length();
455  result->_owner_thread = thread;
456  result->_sender = sender;
457  result->_caller = caller;
458  result->_original = self;
459  result->set_unroll_block(NULL); // initialize it
460  result->fill_in(thread, frame_size, chunk, reg_map, realloc_failures);
461  return result;
462}
463
464void vframeArray::fill_in(JavaThread* thread,
465                          int frame_size,
466                          GrowableArray<compiledVFrame*>* chunk,
467                          const RegisterMap *reg_map,
468                          bool realloc_failures) {
469  // Set owner first, it is used when adding monitor chunks
470
471  _frame_size = frame_size;
472  for(int i = 0; i < chunk->length(); i++) {
473    element(i)->fill_in(chunk->at(i), realloc_failures);
474  }
475
476  // Copy registers for callee-saved registers
477  if (reg_map != NULL) {
478    for(int i = 0; i < RegisterMap::reg_count; i++) {
479#ifdef AMD64
480      // The register map has one entry for every int (32-bit value), so
481      // 64-bit physical registers have two entries in the map, one for
482      // each half.  Ignore the high halves of 64-bit registers, just like
483      // frame::oopmapreg_to_location does.
484      //
485      // [phh] FIXME: this is a temporary hack!  This code *should* work
486      // correctly w/o this hack, possibly by changing RegisterMap::pd_location
487      // in frame_amd64.cpp and the values of the phantom high half registers
488      // in amd64.ad.
489      //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
490        intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
491        _callee_registers[i] = src != NULL ? *src : NULL_WORD;
492        //      } else {
493        //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
494        //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
495        //      }
496#else
497      jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
498      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
499#endif
500      if (src == NULL) {
501        set_location_valid(i, false);
502      } else {
503        set_location_valid(i, true);
504        jint* dst = (jint*) register_location(i);
505        *dst = *src;
506      }
507    }
508  }
509}
510
511void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
512  // stack picture
513  //   unpack_frame
514  //   [new interpreter frames ] (frames are skeletal but walkable)
515  //   caller_frame
516  //
517  //  This routine fills in the missing data for the skeletal interpreter frames
518  //  in the above picture.
519
520  // Find the skeletal interpreter frames to unpack into
521  JavaThread* THREAD = JavaThread::current();
522  RegisterMap map(THREAD, false);
523  // Get the youngest frame we will unpack (last to be unpacked)
524  frame me = unpack_frame.sender(&map);
525  int index;
526  for (index = 0; index < frames(); index++ ) {
527    *element(index)->iframe() = me;
528    // Get the caller frame (possibly skeletal)
529    me = me.sender(&map);
530  }
531
532  // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
533  // Unpack the frames from the oldest (frames() -1) to the youngest (0)
534  frame* caller_frame = &me;
535  for (index = frames() - 1; index >= 0 ; index--) {
536    vframeArrayElement* elem = element(index);  // caller
537    int callee_parameters, callee_locals;
538    if (index == 0) {
539      callee_parameters = callee_locals = 0;
540    } else {
541      methodHandle caller = elem->method();
542      methodHandle callee = element(index - 1)->method();
543      Bytecode_invoke inv(caller, elem->bci());
544      // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
545      // NOTE:  Use machinery here that avoids resolving of any kind.
546      const bool has_member_arg =
547          !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
548      callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
549      callee_locals     = callee->max_locals();
550    }
551    elem->unpack_on_stack(caller_actual_parameters,
552                          callee_parameters,
553                          callee_locals,
554                          caller_frame,
555                          index == 0,
556                          index == frames() - 1,
557                          exec_mode);
558    if (index == frames() - 1) {
559      Deoptimization::unwind_callee_save_values(elem->iframe(), this);
560    }
561    caller_frame = elem->iframe();
562    caller_actual_parameters = callee_parameters;
563  }
564  deallocate_monitor_chunks();
565}
566
567void vframeArray::deallocate_monitor_chunks() {
568  JavaThread* jt = JavaThread::current();
569  for (int index = 0; index < frames(); index++ ) {
570     element(index)->free_monitors(jt);
571  }
572}
573
574#ifndef PRODUCT
575
576bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
577  if (owner_thread() != thread) return false;
578  int index = 0;
579#if 0 // FIXME can't do this comparison
580
581  // Compare only within vframe array.
582  for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
583    if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
584    index++;
585  }
586  if (index != chunk->length()) return false;
587#endif
588
589  return true;
590}
591
592#endif
593
594address vframeArray::register_location(int i) const {
595  assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
596  return (address) & _callee_registers[i];
597}
598
599
600#ifndef PRODUCT
601
602// Printing
603
604// Note: we cannot have print_on as const, as we allocate inside the method
605void vframeArray::print_on_2(outputStream* st)  {
606  st->print_cr(" - sp: " INTPTR_FORMAT, p2i(sp()));
607  st->print(" - thread: ");
608  Thread::current()->print();
609  st->print_cr(" - frame size: %d", frame_size());
610  for (int index = 0; index < frames() ; index++ ) {
611    element(index)->print(st);
612  }
613}
614
615void vframeArrayElement::print(outputStream* st) {
616  st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, p2i(iframe()->sp()));
617}
618
619void vframeArray::print_value_on(outputStream* st) const {
620  st->print_cr("vframeArray [%d] ", frames());
621}
622
623
624#endif
625