vframeArray.cpp revision 6760:22b98ab2a69f
1/*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "code/vmreg.inline.hpp"
28#include "interpreter/bytecode.hpp"
29#include "interpreter/interpreter.hpp"
30#include "memory/allocation.inline.hpp"
31#include "memory/resourceArea.hpp"
32#include "memory/universe.inline.hpp"
33#include "oops/methodData.hpp"
34#include "oops/oop.inline.hpp"
35#include "prims/jvmtiThreadState.hpp"
36#include "runtime/handles.inline.hpp"
37#include "runtime/monitorChunk.hpp"
38#include "runtime/sharedRuntime.hpp"
39#include "runtime/vframe.hpp"
40#include "runtime/vframeArray.hpp"
41#include "runtime/vframe_hp.hpp"
42#include "utilities/events.hpp"
43#ifdef COMPILER2
44#include "opto/runtime.hpp"
45#endif
46
47PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
48
49int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
50
51void vframeArrayElement::free_monitors(JavaThread* jt) {
52  if (_monitors != NULL) {
53     MonitorChunk* chunk = _monitors;
54     _monitors = NULL;
55     jt->remove_monitor_chunk(chunk);
56     delete chunk;
57  }
58}
59
60void vframeArrayElement::fill_in(compiledVFrame* vf) {
61
62// Copy the information from the compiled vframe to the
63// interpreter frame we will be creating to replace vf
64
65  _method = vf->method();
66  _bci    = vf->raw_bci();
67  _reexecute = vf->should_reexecute();
68
69  int index;
70
71  // Get the monitors off-stack
72
73  GrowableArray<MonitorInfo*>* list = vf->monitors();
74  if (list->is_empty()) {
75    _monitors = NULL;
76  } else {
77
78    // Allocate monitor chunk
79    _monitors = new MonitorChunk(list->length());
80    vf->thread()->add_monitor_chunk(_monitors);
81
82    // Migrate the BasicLocks from the stack to the monitor chunk
83    for (index = 0; index < list->length(); index++) {
84      MonitorInfo* monitor = list->at(index);
85      assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
86      assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
87      BasicObjectLock* dest = _monitors->at(index);
88      dest->set_obj(monitor->owner());
89      monitor->lock()->move_to(monitor->owner(), dest->lock());
90    }
91  }
92
93  // Convert the vframe locals and expressions to off stack
94  // values. Because we will not gc all oops can be converted to
95  // intptr_t (i.e. a stack slot) and we are fine. This is
96  // good since we are inside a HandleMark and the oops in our
97  // collection would go away between packing them here and
98  // unpacking them in unpack_on_stack.
99
100  // First the locals go off-stack
101
102  // FIXME this seems silly it creates a StackValueCollection
103  // in order to get the size to then copy them and
104  // convert the types to intptr_t size slots. Seems like it
105  // could do it in place... Still uses less memory than the
106  // old way though
107
108  StackValueCollection *locs = vf->locals();
109  _locals = new StackValueCollection(locs->size());
110  for(index = 0; index < locs->size(); index++) {
111    StackValue* value = locs->at(index);
112    switch(value->type()) {
113      case T_OBJECT:
114        assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
115        // preserve object type
116        _locals->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
117        break;
118      case T_CONFLICT:
119        // A dead local.  Will be initialized to null/zero.
120        _locals->add( new StackValue());
121        break;
122      case T_INT:
123        _locals->add( new StackValue(value->get_int()));
124        break;
125      default:
126        ShouldNotReachHere();
127    }
128  }
129
130  // Now the expressions off-stack
131  // Same silliness as above
132
133  StackValueCollection *exprs = vf->expressions();
134  _expressions = new StackValueCollection(exprs->size());
135  for(index = 0; index < exprs->size(); index++) {
136    StackValue* value = exprs->at(index);
137    switch(value->type()) {
138      case T_OBJECT:
139        assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
140        // preserve object type
141        _expressions->add( new StackValue(cast_from_oop<intptr_t>((value->get_obj()())), T_OBJECT ));
142        break;
143      case T_CONFLICT:
144        // A dead stack element.  Will be initialized to null/zero.
145        // This can occur when the compiler emits a state in which stack
146        // elements are known to be dead (because of an imminent exception).
147        _expressions->add( new StackValue());
148        break;
149      case T_INT:
150        _expressions->add( new StackValue(value->get_int()));
151        break;
152      default:
153        ShouldNotReachHere();
154    }
155  }
156}
157
158int unpack_counter = 0;
159
160void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
161                                         int callee_parameters,
162                                         int callee_locals,
163                                         frame* caller,
164                                         bool is_top_frame,
165                                         bool is_bottom_frame,
166                                         int exec_mode) {
167  JavaThread* thread = (JavaThread*) Thread::current();
168
169  // Look at bci and decide on bcp and continuation pc
170  address bcp;
171  // C++ interpreter doesn't need a pc since it will figure out what to do when it
172  // begins execution
173  address pc;
174  bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
175                             // rather than the one associated with bcp
176  if (raw_bci() == SynchronizationEntryBCI) {
177    // We are deoptimizing while hanging in prologue code for synchronized method
178    bcp = method()->bcp_from(0); // first byte code
179    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
180  } else if (should_reexecute()) { //reexecute this bytecode
181    assert(is_top_frame, "reexecute allowed only for the top frame");
182    bcp = method()->bcp_from(bci());
183    pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
184  } else {
185    bcp = method()->bcp_from(bci());
186    pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
187    use_next_mdp = true;
188  }
189  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
190
191  // Monitorenter and pending exceptions:
192  //
193  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
194  // because there is no safepoint at the null pointer check (it is either handled explicitly
195  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
196  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
197  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
198  // the monitorenter to place it in the proper exception range.
199  //
200  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
201  // in which case bcp should point to the monitorenter since it is within the exception's range.
202
203  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
204  assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
205  guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
206              *bcp == Bytecodes::_monitorenter             &&
207              exec_mode == Deoptimization::Unpack_exception),
208            "shouldn't get exception during monitorenter");
209
210  int popframe_preserved_args_size_in_bytes = 0;
211  int popframe_preserved_args_size_in_words = 0;
212  if (is_top_frame) {
213    JvmtiThreadState *state = thread->jvmti_thread_state();
214    if (JvmtiExport::can_pop_frame() &&
215        (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
216      if (thread->has_pending_popframe()) {
217        // Pop top frame after deoptimization
218#ifndef CC_INTERP
219        pc = Interpreter::remove_activation_preserving_args_entry();
220#else
221        // Do an uncommon trap type entry. c++ interpreter will know
222        // to pop frame and preserve the args
223        pc = Interpreter::deopt_entry(vtos, 0);
224        use_next_mdp = false;
225#endif
226      } else {
227        // Reexecute invoke in top frame
228        pc = Interpreter::deopt_entry(vtos, 0);
229        use_next_mdp = false;
230        popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
231        // Note: the PopFrame-related extension of the expression stack size is done in
232        // Deoptimization::fetch_unroll_info_helper
233        popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
234      }
235    } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
236      // Force early return from top frame after deoptimization
237#ifndef CC_INTERP
238      pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
239#endif
240    } else {
241      // Possibly override the previous pc computation of the top (youngest) frame
242      switch (exec_mode) {
243      case Deoptimization::Unpack_deopt:
244        // use what we've got
245        break;
246      case Deoptimization::Unpack_exception:
247        // exception is pending
248        pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
249        // [phh] We're going to end up in some handler or other, so it doesn't
250        // matter what mdp we point to.  See exception_handler_for_exception()
251        // in interpreterRuntime.cpp.
252        break;
253      case Deoptimization::Unpack_uncommon_trap:
254      case Deoptimization::Unpack_reexecute:
255        // redo last byte code
256        pc  = Interpreter::deopt_entry(vtos, 0);
257        use_next_mdp = false;
258        break;
259      default:
260        ShouldNotReachHere();
261      }
262    }
263  }
264
265  // Setup the interpreter frame
266
267  assert(method() != NULL, "method must exist");
268  int temps = expressions()->size();
269
270  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
271
272  Interpreter::layout_activation(method(),
273                                 temps + callee_parameters,
274                                 popframe_preserved_args_size_in_words,
275                                 locks,
276                                 caller_actual_parameters,
277                                 callee_parameters,
278                                 callee_locals,
279                                 caller,
280                                 iframe(),
281                                 is_top_frame,
282                                 is_bottom_frame);
283
284  // Update the pc in the frame object and overwrite the temporary pc
285  // we placed in the skeletal frame now that we finally know the
286  // exact interpreter address we should use.
287
288  _frame.patch_pc(thread, pc);
289
290  assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
291
292  BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
293  for (int index = 0; index < locks; index++) {
294    top = iframe()->previous_monitor_in_interpreter_frame(top);
295    BasicObjectLock* src = _monitors->at(index);
296    top->set_obj(src->obj());
297    src->lock()->move_to(src->obj(), top->lock());
298  }
299  if (ProfileInterpreter) {
300    iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
301  }
302  iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
303  if (ProfileInterpreter) {
304    MethodData* mdo = method()->method_data();
305    if (mdo != NULL) {
306      int bci = iframe()->interpreter_frame_bci();
307      if (use_next_mdp) ++bci;
308      address mdp = mdo->bci_to_dp(bci);
309      iframe()->interpreter_frame_set_mdp(mdp);
310    }
311  }
312
313  // Unpack expression stack
314  // If this is an intermediate frame (i.e. not top frame) then this
315  // only unpacks the part of the expression stack not used by callee
316  // as parameters. The callee parameters are unpacked as part of the
317  // callee locals.
318  int i;
319  for(i = 0; i < expressions()->size(); i++) {
320    StackValue *value = expressions()->at(i);
321    intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
322    switch(value->type()) {
323      case T_INT:
324        *addr = value->get_int();
325        break;
326      case T_OBJECT:
327        *addr = value->get_int(T_OBJECT);
328        break;
329      case T_CONFLICT:
330        // A dead stack slot.  Initialize to null in case it is an oop.
331        *addr = NULL_WORD;
332        break;
333      default:
334        ShouldNotReachHere();
335    }
336  }
337
338
339  // Unpack the locals
340  for(i = 0; i < locals()->size(); i++) {
341    StackValue *value = locals()->at(i);
342    intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
343    switch(value->type()) {
344      case T_INT:
345        *addr = value->get_int();
346        break;
347      case T_OBJECT:
348        *addr = value->get_int(T_OBJECT);
349        break;
350      case T_CONFLICT:
351        // A dead location. If it is an oop then we need a NULL to prevent GC from following it
352        *addr = NULL_WORD;
353        break;
354      default:
355        ShouldNotReachHere();
356    }
357  }
358
359  if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
360    // An interpreted frame was popped but it returns to a deoptimized
361    // frame. The incoming arguments to the interpreted activation
362    // were preserved in thread-local storage by the
363    // remove_activation_preserving_args_entry in the interpreter; now
364    // we put them back into the just-unpacked interpreter frame.
365    // Note that this assumes that the locals arena grows toward lower
366    // addresses.
367    if (popframe_preserved_args_size_in_words != 0) {
368      void* saved_args = thread->popframe_preserved_args();
369      assert(saved_args != NULL, "must have been saved by interpreter");
370#ifdef ASSERT
371      assert(popframe_preserved_args_size_in_words <=
372             iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
373             "expression stack size should have been extended");
374#endif // ASSERT
375      int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
376      intptr_t* base;
377      if (frame::interpreter_frame_expression_stack_direction() < 0) {
378        base = iframe()->interpreter_frame_expression_stack_at(top_element);
379      } else {
380        base = iframe()->interpreter_frame_expression_stack();
381      }
382      Copy::conjoint_jbytes(saved_args,
383                            base,
384                            popframe_preserved_args_size_in_bytes);
385      thread->popframe_free_preserved_args();
386    }
387  }
388
389#ifndef PRODUCT
390  if (TraceDeoptimization && Verbose) {
391    ttyLocker ttyl;
392    tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
393    iframe()->print_on(tty);
394    RegisterMap map(thread);
395    vframe* f = vframe::new_vframe(iframe(), &map, thread);
396    f->print();
397
398    tty->print_cr("locals size     %d", locals()->size());
399    tty->print_cr("expression size %d", expressions()->size());
400
401    method()->print_value();
402    tty->cr();
403    // method()->print_codes();
404  } else if (TraceDeoptimization) {
405    tty->print("     ");
406    method()->print_value();
407    Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
408    int bci = method()->bci_from(bcp);
409    tty->print(" - %s", Bytecodes::name(code));
410    tty->print(" @ bci %d ", bci);
411    tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
412  }
413#endif // PRODUCT
414
415  // The expression stack and locals are in the resource area don't leave
416  // a dangling pointer in the vframeArray we leave around for debug
417  // purposes
418
419  _locals = _expressions = NULL;
420
421}
422
423int vframeArrayElement::on_stack_size(int callee_parameters,
424                                      int callee_locals,
425                                      bool is_top_frame,
426                                      int popframe_extra_stack_expression_els) const {
427  assert(method()->max_locals() == locals()->size(), "just checking");
428  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
429  int temps = expressions()->size();
430  return Interpreter::size_activation(method()->max_stack(),
431                                      temps + callee_parameters,
432                                      popframe_extra_stack_expression_els,
433                                      locks,
434                                      callee_parameters,
435                                      callee_locals,
436                                      is_top_frame);
437}
438
439
440
441vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
442                                   RegisterMap *reg_map, frame sender, frame caller, frame self) {
443
444  // Allocate the vframeArray
445  vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
446                                                     sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
447                                                     mtCompiler);
448  result->_frames = chunk->length();
449  result->_owner_thread = thread;
450  result->_sender = sender;
451  result->_caller = caller;
452  result->_original = self;
453  result->set_unroll_block(NULL); // initialize it
454  result->fill_in(thread, frame_size, chunk, reg_map);
455  return result;
456}
457
458void vframeArray::fill_in(JavaThread* thread,
459                          int frame_size,
460                          GrowableArray<compiledVFrame*>* chunk,
461                          const RegisterMap *reg_map) {
462  // Set owner first, it is used when adding monitor chunks
463
464  _frame_size = frame_size;
465  for(int i = 0; i < chunk->length(); i++) {
466    element(i)->fill_in(chunk->at(i));
467  }
468
469  // Copy registers for callee-saved registers
470  if (reg_map != NULL) {
471    for(int i = 0; i < RegisterMap::reg_count; i++) {
472#ifdef AMD64
473      // The register map has one entry for every int (32-bit value), so
474      // 64-bit physical registers have two entries in the map, one for
475      // each half.  Ignore the high halves of 64-bit registers, just like
476      // frame::oopmapreg_to_location does.
477      //
478      // [phh] FIXME: this is a temporary hack!  This code *should* work
479      // correctly w/o this hack, possibly by changing RegisterMap::pd_location
480      // in frame_amd64.cpp and the values of the phantom high half registers
481      // in amd64.ad.
482      //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
483        intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
484        _callee_registers[i] = src != NULL ? *src : NULL_WORD;
485        //      } else {
486        //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
487        //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
488        //      }
489#else
490      jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
491      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
492#endif
493      if (src == NULL) {
494        set_location_valid(i, false);
495      } else {
496        set_location_valid(i, true);
497        jint* dst = (jint*) register_location(i);
498        *dst = *src;
499      }
500    }
501  }
502}
503
504void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
505  // stack picture
506  //   unpack_frame
507  //   [new interpreter frames ] (frames are skeletal but walkable)
508  //   caller_frame
509  //
510  //  This routine fills in the missing data for the skeletal interpreter frames
511  //  in the above picture.
512
513  // Find the skeletal interpreter frames to unpack into
514  JavaThread* THREAD = JavaThread::current();
515  RegisterMap map(THREAD, false);
516  // Get the youngest frame we will unpack (last to be unpacked)
517  frame me = unpack_frame.sender(&map);
518  int index;
519  for (index = 0; index < frames(); index++ ) {
520    *element(index)->iframe() = me;
521    // Get the caller frame (possibly skeletal)
522    me = me.sender(&map);
523  }
524
525  // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
526  // Unpack the frames from the oldest (frames() -1) to the youngest (0)
527  frame* caller_frame = &me;
528  for (index = frames() - 1; index >= 0 ; index--) {
529    vframeArrayElement* elem = element(index);  // caller
530    int callee_parameters, callee_locals;
531    if (index == 0) {
532      callee_parameters = callee_locals = 0;
533    } else {
534      methodHandle caller = elem->method();
535      methodHandle callee = element(index - 1)->method();
536      Bytecode_invoke inv(caller, elem->bci());
537      // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
538      // NOTE:  Use machinery here that avoids resolving of any kind.
539      const bool has_member_arg =
540          !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
541      callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
542      callee_locals     = callee->max_locals();
543    }
544    elem->unpack_on_stack(caller_actual_parameters,
545                          callee_parameters,
546                          callee_locals,
547                          caller_frame,
548                          index == 0,
549                          index == frames() - 1,
550                          exec_mode);
551    if (index == frames() - 1) {
552      Deoptimization::unwind_callee_save_values(elem->iframe(), this);
553    }
554    caller_frame = elem->iframe();
555    caller_actual_parameters = callee_parameters;
556  }
557  deallocate_monitor_chunks();
558}
559
560void vframeArray::deallocate_monitor_chunks() {
561  JavaThread* jt = JavaThread::current();
562  for (int index = 0; index < frames(); index++ ) {
563     element(index)->free_monitors(jt);
564  }
565}
566
567#ifndef PRODUCT
568
569bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
570  if (owner_thread() != thread) return false;
571  int index = 0;
572#if 0 // FIXME can't do this comparison
573
574  // Compare only within vframe array.
575  for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
576    if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
577    index++;
578  }
579  if (index != chunk->length()) return false;
580#endif
581
582  return true;
583}
584
585#endif
586
587address vframeArray::register_location(int i) const {
588  assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
589  return (address) & _callee_registers[i];
590}
591
592
593#ifndef PRODUCT
594
595// Printing
596
597// Note: we cannot have print_on as const, as we allocate inside the method
598void vframeArray::print_on_2(outputStream* st)  {
599  st->print_cr(" - sp: " INTPTR_FORMAT, sp());
600  st->print(" - thread: ");
601  Thread::current()->print();
602  st->print_cr(" - frame size: %d", frame_size());
603  for (int index = 0; index < frames() ; index++ ) {
604    element(index)->print(st);
605  }
606}
607
608void vframeArrayElement::print(outputStream* st) {
609  st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
610}
611
612void vframeArray::print_value_on(outputStream* st) const {
613  st->print_cr("vframeArray [%d] ", frames());
614}
615
616
617#endif
618