vframeArray.cpp revision 3602:da91efe96a93
1/*
2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "interpreter/bytecode.hpp"
28#include "interpreter/interpreter.hpp"
29#include "memory/allocation.inline.hpp"
30#include "memory/resourceArea.hpp"
31#include "memory/universe.inline.hpp"
32#include "oops/methodData.hpp"
33#include "oops/oop.inline.hpp"
34#include "prims/jvmtiThreadState.hpp"
35#include "runtime/handles.inline.hpp"
36#include "runtime/monitorChunk.hpp"
37#include "runtime/sharedRuntime.hpp"
38#include "runtime/vframe.hpp"
39#include "runtime/vframeArray.hpp"
40#include "runtime/vframe_hp.hpp"
41#include "utilities/events.hpp"
42#ifdef COMPILER2
43#include "opto/runtime.hpp"
44#endif
45
46
47int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
48
49void vframeArrayElement::free_monitors(JavaThread* jt) {
50  if (_monitors != NULL) {
51     MonitorChunk* chunk = _monitors;
52     _monitors = NULL;
53     jt->remove_monitor_chunk(chunk);
54     delete chunk;
55  }
56}
57
58void vframeArrayElement::fill_in(compiledVFrame* vf) {
59
60// Copy the information from the compiled vframe to the
61// interpreter frame we will be creating to replace vf
62
63  _method = vf->method();
64  _bci    = vf->raw_bci();
65  _reexecute = vf->should_reexecute();
66
67  int index;
68
69  // Get the monitors off-stack
70
71  GrowableArray<MonitorInfo*>* list = vf->monitors();
72  if (list->is_empty()) {
73    _monitors = NULL;
74  } else {
75
76    // Allocate monitor chunk
77    _monitors = new MonitorChunk(list->length());
78    vf->thread()->add_monitor_chunk(_monitors);
79
80    // Migrate the BasicLocks from the stack to the monitor chunk
81    for (index = 0; index < list->length(); index++) {
82      MonitorInfo* monitor = list->at(index);
83      assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
84      assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
85      BasicObjectLock* dest = _monitors->at(index);
86      dest->set_obj(monitor->owner());
87      monitor->lock()->move_to(monitor->owner(), dest->lock());
88    }
89  }
90
91  // Convert the vframe locals and expressions to off stack
92  // values. Because we will not gc all oops can be converted to
93  // intptr_t (i.e. a stack slot) and we are fine. This is
94  // good since we are inside a HandleMark and the oops in our
95  // collection would go away between packing them here and
96  // unpacking them in unpack_on_stack.
97
98  // First the locals go off-stack
99
100  // FIXME this seems silly it creates a StackValueCollection
101  // in order to get the size to then copy them and
102  // convert the types to intptr_t size slots. Seems like it
103  // could do it in place... Still uses less memory than the
104  // old way though
105
106  StackValueCollection *locs = vf->locals();
107  _locals = new StackValueCollection(locs->size());
108  for(index = 0; index < locs->size(); index++) {
109    StackValue* value = locs->at(index);
110    switch(value->type()) {
111      case T_OBJECT:
112        assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
113        // preserve object type
114        _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
115        break;
116      case T_CONFLICT:
117        // A dead local.  Will be initialized to null/zero.
118        _locals->add( new StackValue());
119        break;
120      case T_INT:
121        _locals->add( new StackValue(value->get_int()));
122        break;
123      default:
124        ShouldNotReachHere();
125    }
126  }
127
128  // Now the expressions off-stack
129  // Same silliness as above
130
131  StackValueCollection *exprs = vf->expressions();
132  _expressions = new StackValueCollection(exprs->size());
133  for(index = 0; index < exprs->size(); index++) {
134    StackValue* value = exprs->at(index);
135    switch(value->type()) {
136      case T_OBJECT:
137        assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
138        // preserve object type
139        _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
140        break;
141      case T_CONFLICT:
142        // A dead stack element.  Will be initialized to null/zero.
143        // This can occur when the compiler emits a state in which stack
144        // elements are known to be dead (because of an imminent exception).
145        _expressions->add( new StackValue());
146        break;
147      case T_INT:
148        _expressions->add( new StackValue(value->get_int()));
149        break;
150      default:
151        ShouldNotReachHere();
152    }
153  }
154}
155
156int unpack_counter = 0;
157
158void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
159                                         int callee_parameters,
160                                         int callee_locals,
161                                         frame* caller,
162                                         bool is_top_frame,
163                                         int exec_mode) {
164  JavaThread* thread = (JavaThread*) Thread::current();
165
166  // Look at bci and decide on bcp and continuation pc
167  address bcp;
168  // C++ interpreter doesn't need a pc since it will figure out what to do when it
169  // begins execution
170  address pc;
171  bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
172                             // rather than the one associated with bcp
173  if (raw_bci() == SynchronizationEntryBCI) {
174    // We are deoptimizing while hanging in prologue code for synchronized method
175    bcp = method()->bcp_from(0); // first byte code
176    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
177  } else if (should_reexecute()) { //reexecute this bytecode
178    assert(is_top_frame, "reexecute allowed only for the top frame");
179    bcp = method()->bcp_from(bci());
180    pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
181  } else {
182    bcp = method()->bcp_from(bci());
183    pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
184    use_next_mdp = true;
185  }
186  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
187
188  // Monitorenter and pending exceptions:
189  //
190  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
191  // because there is no safepoint at the null pointer check (it is either handled explicitly
192  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
193  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
194  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
195  // the monitorenter to place it in the proper exception range.
196  //
197  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
198  // in which case bcp should point to the monitorenter since it is within the exception's range.
199
200  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
201  assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
202  guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
203              *bcp == Bytecodes::_monitorenter             &&
204              exec_mode == Deoptimization::Unpack_exception),
205            "shouldn't get exception during monitorenter");
206
207  int popframe_preserved_args_size_in_bytes = 0;
208  int popframe_preserved_args_size_in_words = 0;
209  if (is_top_frame) {
210    JvmtiThreadState *state = thread->jvmti_thread_state();
211    if (JvmtiExport::can_pop_frame() &&
212        (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
213      if (thread->has_pending_popframe()) {
214        // Pop top frame after deoptimization
215#ifndef CC_INTERP
216        pc = Interpreter::remove_activation_preserving_args_entry();
217#else
218        // Do an uncommon trap type entry. c++ interpreter will know
219        // to pop frame and preserve the args
220        pc = Interpreter::deopt_entry(vtos, 0);
221        use_next_mdp = false;
222#endif
223      } else {
224        // Reexecute invoke in top frame
225        pc = Interpreter::deopt_entry(vtos, 0);
226        use_next_mdp = false;
227        popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
228        // Note: the PopFrame-related extension of the expression stack size is done in
229        // Deoptimization::fetch_unroll_info_helper
230        popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
231      }
232    } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
233      // Force early return from top frame after deoptimization
234#ifndef CC_INTERP
235      pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
236#else
237     // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
238#endif
239    } else {
240      // Possibly override the previous pc computation of the top (youngest) frame
241      switch (exec_mode) {
242      case Deoptimization::Unpack_deopt:
243        // use what we've got
244        break;
245      case Deoptimization::Unpack_exception:
246        // exception is pending
247        pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
248        // [phh] We're going to end up in some handler or other, so it doesn't
249        // matter what mdp we point to.  See exception_handler_for_exception()
250        // in interpreterRuntime.cpp.
251        break;
252      case Deoptimization::Unpack_uncommon_trap:
253      case Deoptimization::Unpack_reexecute:
254        // redo last byte code
255        pc  = Interpreter::deopt_entry(vtos, 0);
256        use_next_mdp = false;
257        break;
258      default:
259        ShouldNotReachHere();
260      }
261    }
262  }
263
264  // Setup the interpreter frame
265
266  assert(method() != NULL, "method must exist");
267  int temps = expressions()->size();
268
269  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
270
271  Interpreter::layout_activation(method(),
272                                 temps + callee_parameters,
273                                 popframe_preserved_args_size_in_words,
274                                 locks,
275                                 caller_actual_parameters,
276                                 callee_parameters,
277                                 callee_locals,
278                                 caller,
279                                 iframe(),
280                                 is_top_frame);
281
282  // Update the pc in the frame object and overwrite the temporary pc
283  // we placed in the skeletal frame now that we finally know the
284  // exact interpreter address we should use.
285
286  _frame.patch_pc(thread, pc);
287
288  assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
289
290  BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
291  for (int index = 0; index < locks; index++) {
292    top = iframe()->previous_monitor_in_interpreter_frame(top);
293    BasicObjectLock* src = _monitors->at(index);
294    top->set_obj(src->obj());
295    src->lock()->move_to(src->obj(), top->lock());
296  }
297  if (ProfileInterpreter) {
298    iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
299  }
300  iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
301  if (ProfileInterpreter) {
302    MethodData* mdo = method()->method_data();
303    if (mdo != NULL) {
304      int bci = iframe()->interpreter_frame_bci();
305      if (use_next_mdp) ++bci;
306      address mdp = mdo->bci_to_dp(bci);
307      iframe()->interpreter_frame_set_mdp(mdp);
308    }
309  }
310
311  // Unpack expression stack
312  // If this is an intermediate frame (i.e. not top frame) then this
313  // only unpacks the part of the expression stack not used by callee
314  // as parameters. The callee parameters are unpacked as part of the
315  // callee locals.
316  int i;
317  for(i = 0; i < expressions()->size(); i++) {
318    StackValue *value = expressions()->at(i);
319    intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
320    switch(value->type()) {
321      case T_INT:
322        *addr = value->get_int();
323        break;
324      case T_OBJECT:
325        *addr = value->get_int(T_OBJECT);
326        break;
327      case T_CONFLICT:
328        // A dead stack slot.  Initialize to null in case it is an oop.
329        *addr = NULL_WORD;
330        break;
331      default:
332        ShouldNotReachHere();
333    }
334  }
335
336
337  // Unpack the locals
338  for(i = 0; i < locals()->size(); i++) {
339    StackValue *value = locals()->at(i);
340    intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
341    switch(value->type()) {
342      case T_INT:
343        *addr = value->get_int();
344        break;
345      case T_OBJECT:
346        *addr = value->get_int(T_OBJECT);
347        break;
348      case T_CONFLICT:
349        // A dead location. If it is an oop then we need a NULL to prevent GC from following it
350        *addr = NULL_WORD;
351        break;
352      default:
353        ShouldNotReachHere();
354    }
355  }
356
357  if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
358    // An interpreted frame was popped but it returns to a deoptimized
359    // frame. The incoming arguments to the interpreted activation
360    // were preserved in thread-local storage by the
361    // remove_activation_preserving_args_entry in the interpreter; now
362    // we put them back into the just-unpacked interpreter frame.
363    // Note that this assumes that the locals arena grows toward lower
364    // addresses.
365    if (popframe_preserved_args_size_in_words != 0) {
366      void* saved_args = thread->popframe_preserved_args();
367      assert(saved_args != NULL, "must have been saved by interpreter");
368#ifdef ASSERT
369      assert(popframe_preserved_args_size_in_words <=
370             iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
371             "expression stack size should have been extended");
372#endif // ASSERT
373      int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
374      intptr_t* base;
375      if (frame::interpreter_frame_expression_stack_direction() < 0) {
376        base = iframe()->interpreter_frame_expression_stack_at(top_element);
377      } else {
378        base = iframe()->interpreter_frame_expression_stack();
379      }
380      Copy::conjoint_jbytes(saved_args,
381                            base,
382                            popframe_preserved_args_size_in_bytes);
383      thread->popframe_free_preserved_args();
384    }
385  }
386
387#ifndef PRODUCT
388  if (TraceDeoptimization && Verbose) {
389    ttyLocker ttyl;
390    tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
391    iframe()->print_on(tty);
392    RegisterMap map(thread);
393    vframe* f = vframe::new_vframe(iframe(), &map, thread);
394    f->print();
395
396    tty->print_cr("locals size     %d", locals()->size());
397    tty->print_cr("expression size %d", expressions()->size());
398
399    method()->print_value();
400    tty->cr();
401    // method()->print_codes();
402  } else if (TraceDeoptimization) {
403    tty->print("     ");
404    method()->print_value();
405    Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
406    int bci = method()->bci_from(bcp);
407    tty->print(" - %s", Bytecodes::name(code));
408    tty->print(" @ bci %d ", bci);
409    tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
410  }
411#endif // PRODUCT
412
413  // The expression stack and locals are in the resource area don't leave
414  // a dangling pointer in the vframeArray we leave around for debug
415  // purposes
416
417  _locals = _expressions = NULL;
418
419}
420
421int vframeArrayElement::on_stack_size(int caller_actual_parameters,
422                                      int callee_parameters,
423                                      int callee_locals,
424                                      bool is_top_frame,
425                                      int popframe_extra_stack_expression_els) const {
426  assert(method()->max_locals() == locals()->size(), "just checking");
427  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
428  int temps = expressions()->size();
429  return Interpreter::size_activation(method(),
430                                      temps + callee_parameters,
431                                      popframe_extra_stack_expression_els,
432                                      locks,
433                                      caller_actual_parameters,
434                                      callee_parameters,
435                                      callee_locals,
436                                      is_top_frame);
437}
438
439
440
441vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
442                                   RegisterMap *reg_map, frame sender, frame caller, frame self) {
443
444  // Allocate the vframeArray
445  vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
446                                                     sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
447                                                     mtCompiler);
448  result->_frames = chunk->length();
449  result->_owner_thread = thread;
450  result->_sender = sender;
451  result->_caller = caller;
452  result->_original = self;
453  result->set_unroll_block(NULL); // initialize it
454  result->fill_in(thread, frame_size, chunk, reg_map);
455  return result;
456}
457
458void vframeArray::fill_in(JavaThread* thread,
459                          int frame_size,
460                          GrowableArray<compiledVFrame*>* chunk,
461                          const RegisterMap *reg_map) {
462  // Set owner first, it is used when adding monitor chunks
463
464  _frame_size = frame_size;
465  for(int i = 0; i < chunk->length(); i++) {
466    element(i)->fill_in(chunk->at(i));
467  }
468
469  // Copy registers for callee-saved registers
470  if (reg_map != NULL) {
471    for(int i = 0; i < RegisterMap::reg_count; i++) {
472#ifdef AMD64
473      // The register map has one entry for every int (32-bit value), so
474      // 64-bit physical registers have two entries in the map, one for
475      // each half.  Ignore the high halves of 64-bit registers, just like
476      // frame::oopmapreg_to_location does.
477      //
478      // [phh] FIXME: this is a temporary hack!  This code *should* work
479      // correctly w/o this hack, possibly by changing RegisterMap::pd_location
480      // in frame_amd64.cpp and the values of the phantom high half registers
481      // in amd64.ad.
482      //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
483        intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
484        _callee_registers[i] = src != NULL ? *src : NULL_WORD;
485        //      } else {
486        //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
487        //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
488        //      }
489#else
490      jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
491      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
492#endif
493      if (src == NULL) {
494        set_location_valid(i, false);
495      } else {
496        set_location_valid(i, true);
497        jint* dst = (jint*) register_location(i);
498        *dst = *src;
499      }
500    }
501  }
502}
503
504void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
505  // stack picture
506  //   unpack_frame
507  //   [new interpreter frames ] (frames are skeletal but walkable)
508  //   caller_frame
509  //
510  //  This routine fills in the missing data for the skeletal interpreter frames
511  //  in the above picture.
512
513  // Find the skeletal interpreter frames to unpack into
514  JavaThread* THREAD = JavaThread::current();
515  RegisterMap map(THREAD, false);
516  // Get the youngest frame we will unpack (last to be unpacked)
517  frame me = unpack_frame.sender(&map);
518  int index;
519  for (index = 0; index < frames(); index++ ) {
520    *element(index)->iframe() = me;
521    // Get the caller frame (possibly skeletal)
522    me = me.sender(&map);
523  }
524
525  // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
526  // Unpack the frames from the oldest (frames() -1) to the youngest (0)
527  frame caller_frame = me;
528  for (index = frames() - 1; index >= 0 ; index--) {
529    vframeArrayElement* elem = element(index);  // caller
530    int callee_parameters, callee_locals;
531    if (index == 0) {
532      callee_parameters = callee_locals = 0;
533    } else {
534      methodHandle caller = elem->method();
535      methodHandle callee = element(index - 1)->method();
536      Bytecode_invoke inv(caller, elem->bci());
537      // invokedynamic instructions don't have a class but obviously don't have a MemberName appendix.
538      // NOTE:  Use machinery here that avoids resolving of any kind.
539      const bool has_member_arg =
540          !inv.is_invokedynamic() && MethodHandles::has_member_arg(inv.klass(), inv.name());
541      callee_parameters = callee->size_of_parameters() + (has_member_arg ? 1 : 0);
542      callee_locals     = callee->max_locals();
543    }
544    elem->unpack_on_stack(caller_actual_parameters,
545                          callee_parameters,
546                          callee_locals,
547                          &caller_frame,
548                          index == 0,
549                          exec_mode);
550    if (index == frames() - 1) {
551      Deoptimization::unwind_callee_save_values(elem->iframe(), this);
552    }
553    caller_frame = *elem->iframe();
554    caller_actual_parameters = callee_parameters;
555  }
556  deallocate_monitor_chunks();
557}
558
559void vframeArray::deallocate_monitor_chunks() {
560  JavaThread* jt = JavaThread::current();
561  for (int index = 0; index < frames(); index++ ) {
562     element(index)->free_monitors(jt);
563  }
564}
565
566#ifndef PRODUCT
567
568bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
569  if (owner_thread() != thread) return false;
570  int index = 0;
571#if 0 // FIXME can't do this comparison
572
573  // Compare only within vframe array.
574  for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
575    if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
576    index++;
577  }
578  if (index != chunk->length()) return false;
579#endif
580
581  return true;
582}
583
584#endif
585
586address vframeArray::register_location(int i) const {
587  assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
588  return (address) & _callee_registers[i];
589}
590
591
592#ifndef PRODUCT
593
594// Printing
595
596// Note: we cannot have print_on as const, as we allocate inside the method
597void vframeArray::print_on_2(outputStream* st)  {
598  st->print_cr(" - sp: " INTPTR_FORMAT, sp());
599  st->print(" - thread: ");
600  Thread::current()->print();
601  st->print_cr(" - frame size: %d", frame_size());
602  for (int index = 0; index < frames() ; index++ ) {
603    element(index)->print(st);
604  }
605}
606
607void vframeArrayElement::print(outputStream* st) {
608  st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
609}
610
611void vframeArray::print_value_on(outputStream* st) const {
612  st->print_cr("vframeArray [%d] ", frames());
613}
614
615
616#endif
617