vframeArray.cpp revision 3465:d2a62e0f25eb
1/*
2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/vmSymbols.hpp"
27#include "interpreter/interpreter.hpp"
28#include "memory/allocation.inline.hpp"
29#include "memory/resourceArea.hpp"
30#include "memory/universe.inline.hpp"
31#include "oops/methodDataOop.hpp"
32#include "oops/oop.inline.hpp"
33#include "prims/jvmtiThreadState.hpp"
34#include "runtime/handles.inline.hpp"
35#include "runtime/monitorChunk.hpp"
36#include "runtime/sharedRuntime.hpp"
37#include "runtime/vframe.hpp"
38#include "runtime/vframeArray.hpp"
39#include "runtime/vframe_hp.hpp"
40#include "utilities/events.hpp"
41#ifdef COMPILER2
42#include "opto/runtime.hpp"
43#endif
44
45
46int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
47
48void vframeArrayElement::free_monitors(JavaThread* jt) {
49  if (_monitors != NULL) {
50     MonitorChunk* chunk = _monitors;
51     _monitors = NULL;
52     jt->remove_monitor_chunk(chunk);
53     delete chunk;
54  }
55}
56
57void vframeArrayElement::fill_in(compiledVFrame* vf) {
58
59// Copy the information from the compiled vframe to the
60// interpreter frame we will be creating to replace vf
61
62  _method = vf->method();
63  _bci    = vf->raw_bci();
64  _reexecute = vf->should_reexecute();
65
66  int index;
67
68  // Get the monitors off-stack
69
70  GrowableArray<MonitorInfo*>* list = vf->monitors();
71  if (list->is_empty()) {
72    _monitors = NULL;
73  } else {
74
75    // Allocate monitor chunk
76    _monitors = new MonitorChunk(list->length());
77    vf->thread()->add_monitor_chunk(_monitors);
78
79    // Migrate the BasicLocks from the stack to the monitor chunk
80    for (index = 0; index < list->length(); index++) {
81      MonitorInfo* monitor = list->at(index);
82      assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
83      assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
84      BasicObjectLock* dest = _monitors->at(index);
85      dest->set_obj(monitor->owner());
86      monitor->lock()->move_to(monitor->owner(), dest->lock());
87    }
88  }
89
90  // Convert the vframe locals and expressions to off stack
91  // values. Because we will not gc all oops can be converted to
92  // intptr_t (i.e. a stack slot) and we are fine. This is
93  // good since we are inside a HandleMark and the oops in our
94  // collection would go away between packing them here and
95  // unpacking them in unpack_on_stack.
96
97  // First the locals go off-stack
98
99  // FIXME this seems silly it creates a StackValueCollection
100  // in order to get the size to then copy them and
101  // convert the types to intptr_t size slots. Seems like it
102  // could do it in place... Still uses less memory than the
103  // old way though
104
105  StackValueCollection *locs = vf->locals();
106  _locals = new StackValueCollection(locs->size());
107  for(index = 0; index < locs->size(); index++) {
108    StackValue* value = locs->at(index);
109    switch(value->type()) {
110      case T_OBJECT:
111        assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
112        // preserve object type
113        _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
114        break;
115      case T_CONFLICT:
116        // A dead local.  Will be initialized to null/zero.
117        _locals->add( new StackValue());
118        break;
119      case T_INT:
120        _locals->add( new StackValue(value->get_int()));
121        break;
122      default:
123        ShouldNotReachHere();
124    }
125  }
126
127  // Now the expressions off-stack
128  // Same silliness as above
129
130  StackValueCollection *exprs = vf->expressions();
131  _expressions = new StackValueCollection(exprs->size());
132  for(index = 0; index < exprs->size(); index++) {
133    StackValue* value = exprs->at(index);
134    switch(value->type()) {
135      case T_OBJECT:
136        assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
137        // preserve object type
138        _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
139        break;
140      case T_CONFLICT:
141        // A dead stack element.  Will be initialized to null/zero.
142        // This can occur when the compiler emits a state in which stack
143        // elements are known to be dead (because of an imminent exception).
144        _expressions->add( new StackValue());
145        break;
146      case T_INT:
147        _expressions->add( new StackValue(value->get_int()));
148        break;
149      default:
150        ShouldNotReachHere();
151    }
152  }
153}
154
155int unpack_counter = 0;
156
157void vframeArrayElement::unpack_on_stack(int caller_actual_parameters,
158                                         int callee_parameters,
159                                         int callee_locals,
160                                         frame* caller,
161                                         bool is_top_frame,
162                                         int exec_mode) {
163  JavaThread* thread = (JavaThread*) Thread::current();
164
165  // Look at bci and decide on bcp and continuation pc
166  address bcp;
167  // C++ interpreter doesn't need a pc since it will figure out what to do when it
168  // begins execution
169  address pc;
170  bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
171                             // rather than the one associated with bcp
172  if (raw_bci() == SynchronizationEntryBCI) {
173    // We are deoptimizing while hanging in prologue code for synchronized method
174    bcp = method()->bcp_from(0); // first byte code
175    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
176  } else if (should_reexecute()) { //reexecute this bytecode
177    assert(is_top_frame, "reexecute allowed only for the top frame");
178    bcp = method()->bcp_from(bci());
179    pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
180  } else {
181    bcp = method()->bcp_from(bci());
182    pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
183    use_next_mdp = true;
184  }
185  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
186
187  // Monitorenter and pending exceptions:
188  //
189  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
190  // because there is no safepoint at the null pointer check (it is either handled explicitly
191  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
192  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
193  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
194  // the monitorenter to place it in the proper exception range.
195  //
196  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
197  // in which case bcp should point to the monitorenter since it is within the exception's range.
198
199  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
200  assert(thread->deopt_nmethod() != NULL, "nmethod should be known");
201  guarantee(!(thread->deopt_nmethod()->is_compiled_by_c2() &&
202              *bcp == Bytecodes::_monitorenter             &&
203              exec_mode == Deoptimization::Unpack_exception),
204            "shouldn't get exception during monitorenter");
205
206  int popframe_preserved_args_size_in_bytes = 0;
207  int popframe_preserved_args_size_in_words = 0;
208  if (is_top_frame) {
209    JvmtiThreadState *state = thread->jvmti_thread_state();
210    if (JvmtiExport::can_pop_frame() &&
211        (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
212      if (thread->has_pending_popframe()) {
213        // Pop top frame after deoptimization
214#ifndef CC_INTERP
215        pc = Interpreter::remove_activation_preserving_args_entry();
216#else
217        // Do an uncommon trap type entry. c++ interpreter will know
218        // to pop frame and preserve the args
219        pc = Interpreter::deopt_entry(vtos, 0);
220        use_next_mdp = false;
221#endif
222      } else {
223        // Reexecute invoke in top frame
224        pc = Interpreter::deopt_entry(vtos, 0);
225        use_next_mdp = false;
226        popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
227        // Note: the PopFrame-related extension of the expression stack size is done in
228        // Deoptimization::fetch_unroll_info_helper
229        popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
230      }
231    } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
232      // Force early return from top frame after deoptimization
233#ifndef CC_INTERP
234      pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
235#else
236     // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
237#endif
238    } else {
239      // Possibly override the previous pc computation of the top (youngest) frame
240      switch (exec_mode) {
241      case Deoptimization::Unpack_deopt:
242        // use what we've got
243        break;
244      case Deoptimization::Unpack_exception:
245        // exception is pending
246        pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
247        // [phh] We're going to end up in some handler or other, so it doesn't
248        // matter what mdp we point to.  See exception_handler_for_exception()
249        // in interpreterRuntime.cpp.
250        break;
251      case Deoptimization::Unpack_uncommon_trap:
252      case Deoptimization::Unpack_reexecute:
253        // redo last byte code
254        pc  = Interpreter::deopt_entry(vtos, 0);
255        use_next_mdp = false;
256        break;
257      default:
258        ShouldNotReachHere();
259      }
260    }
261  }
262
263  // Setup the interpreter frame
264
265  assert(method() != NULL, "method must exist");
266  int temps = expressions()->size();
267
268  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
269
270  Interpreter::layout_activation(method(),
271                                 temps + callee_parameters,
272                                 popframe_preserved_args_size_in_words,
273                                 locks,
274                                 caller_actual_parameters,
275                                 callee_parameters,
276                                 callee_locals,
277                                 caller,
278                                 iframe(),
279                                 is_top_frame);
280
281  // Update the pc in the frame object and overwrite the temporary pc
282  // we placed in the skeletal frame now that we finally know the
283  // exact interpreter address we should use.
284
285  _frame.patch_pc(thread, pc);
286
287  assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
288
289  BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
290  for (int index = 0; index < locks; index++) {
291    top = iframe()->previous_monitor_in_interpreter_frame(top);
292    BasicObjectLock* src = _monitors->at(index);
293    top->set_obj(src->obj());
294    src->lock()->move_to(src->obj(), top->lock());
295  }
296  if (ProfileInterpreter) {
297    iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
298  }
299  iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
300  if (ProfileInterpreter) {
301    methodDataOop mdo = method()->method_data();
302    if (mdo != NULL) {
303      int bci = iframe()->interpreter_frame_bci();
304      if (use_next_mdp) ++bci;
305      address mdp = mdo->bci_to_dp(bci);
306      iframe()->interpreter_frame_set_mdp(mdp);
307    }
308  }
309
310  // Unpack expression stack
311  // If this is an intermediate frame (i.e. not top frame) then this
312  // only unpacks the part of the expression stack not used by callee
313  // as parameters. The callee parameters are unpacked as part of the
314  // callee locals.
315  int i;
316  for(i = 0; i < expressions()->size(); i++) {
317    StackValue *value = expressions()->at(i);
318    intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
319    switch(value->type()) {
320      case T_INT:
321        *addr = value->get_int();
322        break;
323      case T_OBJECT:
324        *addr = value->get_int(T_OBJECT);
325        break;
326      case T_CONFLICT:
327        // A dead stack slot.  Initialize to null in case it is an oop.
328        *addr = NULL_WORD;
329        break;
330      default:
331        ShouldNotReachHere();
332    }
333  }
334
335
336  // Unpack the locals
337  for(i = 0; i < locals()->size(); i++) {
338    StackValue *value = locals()->at(i);
339    intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
340    switch(value->type()) {
341      case T_INT:
342        *addr = value->get_int();
343        break;
344      case T_OBJECT:
345        *addr = value->get_int(T_OBJECT);
346        break;
347      case T_CONFLICT:
348        // A dead location. If it is an oop then we need a NULL to prevent GC from following it
349        *addr = NULL_WORD;
350        break;
351      default:
352        ShouldNotReachHere();
353    }
354  }
355
356  if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
357    // An interpreted frame was popped but it returns to a deoptimized
358    // frame. The incoming arguments to the interpreted activation
359    // were preserved in thread-local storage by the
360    // remove_activation_preserving_args_entry in the interpreter; now
361    // we put them back into the just-unpacked interpreter frame.
362    // Note that this assumes that the locals arena grows toward lower
363    // addresses.
364    if (popframe_preserved_args_size_in_words != 0) {
365      void* saved_args = thread->popframe_preserved_args();
366      assert(saved_args != NULL, "must have been saved by interpreter");
367#ifdef ASSERT
368      assert(popframe_preserved_args_size_in_words <=
369             iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
370             "expression stack size should have been extended");
371#endif // ASSERT
372      int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
373      intptr_t* base;
374      if (frame::interpreter_frame_expression_stack_direction() < 0) {
375        base = iframe()->interpreter_frame_expression_stack_at(top_element);
376      } else {
377        base = iframe()->interpreter_frame_expression_stack();
378      }
379      Copy::conjoint_jbytes(saved_args,
380                            base,
381                            popframe_preserved_args_size_in_bytes);
382      thread->popframe_free_preserved_args();
383    }
384  }
385
386#ifndef PRODUCT
387  if (TraceDeoptimization && Verbose) {
388    ttyLocker ttyl;
389    tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
390    iframe()->print_on(tty);
391    RegisterMap map(thread);
392    vframe* f = vframe::new_vframe(iframe(), &map, thread);
393    f->print();
394
395    tty->print_cr("locals size     %d", locals()->size());
396    tty->print_cr("expression size %d", expressions()->size());
397
398    method()->print_value();
399    tty->cr();
400    // method()->print_codes();
401  } else if (TraceDeoptimization) {
402    tty->print("     ");
403    method()->print_value();
404    Bytecodes::Code code = Bytecodes::java_code_at(method(), bcp);
405    int bci = method()->bci_from(bcp);
406    tty->print(" - %s", Bytecodes::name(code));
407    tty->print(" @ bci %d ", bci);
408    tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
409  }
410#endif // PRODUCT
411
412  // The expression stack and locals are in the resource area don't leave
413  // a dangling pointer in the vframeArray we leave around for debug
414  // purposes
415
416  _locals = _expressions = NULL;
417
418}
419
420int vframeArrayElement::on_stack_size(int caller_actual_parameters,
421                                      int callee_parameters,
422                                      int callee_locals,
423                                      bool is_top_frame,
424                                      int popframe_extra_stack_expression_els) const {
425  assert(method()->max_locals() == locals()->size(), "just checking");
426  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
427  int temps = expressions()->size();
428  return Interpreter::size_activation(method(),
429                                      temps + callee_parameters,
430                                      popframe_extra_stack_expression_els,
431                                      locks,
432                                      caller_actual_parameters,
433                                      callee_parameters,
434                                      callee_locals,
435                                      is_top_frame);
436}
437
438
439
440vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
441                                   RegisterMap *reg_map, frame sender, frame caller, frame self) {
442
443  // Allocate the vframeArray
444  vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
445                                                     sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
446                                                     mtCompiler);
447  result->_frames = chunk->length();
448  result->_owner_thread = thread;
449  result->_sender = sender;
450  result->_caller = caller;
451  result->_original = self;
452  result->set_unroll_block(NULL); // initialize it
453  result->fill_in(thread, frame_size, chunk, reg_map);
454  return result;
455}
456
457void vframeArray::fill_in(JavaThread* thread,
458                          int frame_size,
459                          GrowableArray<compiledVFrame*>* chunk,
460                          const RegisterMap *reg_map) {
461  // Set owner first, it is used when adding monitor chunks
462
463  _frame_size = frame_size;
464  for(int i = 0; i < chunk->length(); i++) {
465    element(i)->fill_in(chunk->at(i));
466  }
467
468  // Copy registers for callee-saved registers
469  if (reg_map != NULL) {
470    for(int i = 0; i < RegisterMap::reg_count; i++) {
471#ifdef AMD64
472      // The register map has one entry for every int (32-bit value), so
473      // 64-bit physical registers have two entries in the map, one for
474      // each half.  Ignore the high halves of 64-bit registers, just like
475      // frame::oopmapreg_to_location does.
476      //
477      // [phh] FIXME: this is a temporary hack!  This code *should* work
478      // correctly w/o this hack, possibly by changing RegisterMap::pd_location
479      // in frame_amd64.cpp and the values of the phantom high half registers
480      // in amd64.ad.
481      //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
482        intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
483        _callee_registers[i] = src != NULL ? *src : NULL_WORD;
484        //      } else {
485        //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
486        //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
487        //      }
488#else
489      jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
490      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
491#endif
492      if (src == NULL) {
493        set_location_valid(i, false);
494      } else {
495        set_location_valid(i, true);
496        jint* dst = (jint*) register_location(i);
497        *dst = *src;
498      }
499    }
500  }
501}
502
503void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode, int caller_actual_parameters) {
504  // stack picture
505  //   unpack_frame
506  //   [new interpreter frames ] (frames are skeletal but walkable)
507  //   caller_frame
508  //
509  //  This routine fills in the missing data for the skeletal interpreter frames
510  //  in the above picture.
511
512  // Find the skeletal interpreter frames to unpack into
513  RegisterMap map(JavaThread::current(), false);
514  // Get the youngest frame we will unpack (last to be unpacked)
515  frame me = unpack_frame.sender(&map);
516  int index;
517  for (index = 0; index < frames(); index++ ) {
518    *element(index)->iframe() = me;
519    // Get the caller frame (possibly skeletal)
520    me = me.sender(&map);
521  }
522
523  frame caller_frame = me;
524
525  // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
526
527  // Unpack the frames from the oldest (frames() -1) to the youngest (0)
528
529  for (index = frames() - 1; index >= 0 ; index--) {
530    int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
531    int callee_locals     = index == 0 ? 0 : element(index-1)->method()->max_locals();
532    element(index)->unpack_on_stack(caller_actual_parameters,
533                                    callee_parameters,
534                                    callee_locals,
535                                    &caller_frame,
536                                    index == 0,
537                                    exec_mode);
538    if (index == frames() - 1) {
539      Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
540    }
541    caller_frame = *element(index)->iframe();
542    caller_actual_parameters = callee_parameters;
543  }
544
545
546  deallocate_monitor_chunks();
547}
548
549void vframeArray::deallocate_monitor_chunks() {
550  JavaThread* jt = JavaThread::current();
551  for (int index = 0; index < frames(); index++ ) {
552     element(index)->free_monitors(jt);
553  }
554}
555
556#ifndef PRODUCT
557
558bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
559  if (owner_thread() != thread) return false;
560  int index = 0;
561#if 0 // FIXME can't do this comparison
562
563  // Compare only within vframe array.
564  for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
565    if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
566    index++;
567  }
568  if (index != chunk->length()) return false;
569#endif
570
571  return true;
572}
573
574#endif
575
576address vframeArray::register_location(int i) const {
577  assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
578  return (address) & _callee_registers[i];
579}
580
581
582#ifndef PRODUCT
583
584// Printing
585
586// Note: we cannot have print_on as const, as we allocate inside the method
587void vframeArray::print_on_2(outputStream* st)  {
588  st->print_cr(" - sp: " INTPTR_FORMAT, sp());
589  st->print(" - thread: ");
590  Thread::current()->print();
591  st->print_cr(" - frame size: %d", frame_size());
592  for (int index = 0; index < frames() ; index++ ) {
593    element(index)->print(st);
594  }
595}
596
597void vframeArrayElement::print(outputStream* st) {
598  st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
599}
600
601void vframeArray::print_value_on(outputStream* st) const {
602  st->print_cr("vframeArray [%d] ", frames());
603}
604
605
606#endif
607