vframeArray.cpp revision 0:a61af66fc99e
1181905Sed/*
2181905Sed * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
3181905Sed * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4181905Sed *
5181905Sed * This code is free software; you can redistribute it and/or modify it
6181905Sed * under the terms of the GNU General Public License version 2 only, as
7181905Sed * published by the Free Software Foundation.
8181905Sed *
9181905Sed * This code is distributed in the hope that it will be useful, but WITHOUT
10181905Sed * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11181905Sed * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12181905Sed * version 2 for more details (a copy is included in the LICENSE file that
13181905Sed * accompanied this code).
14181905Sed *
15181905Sed * You should have received a copy of the GNU General Public License version
16181905Sed * 2 along with this work; if not, write to the Free Software Foundation,
17181905Sed * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18181905Sed *
19181905Sed * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20181905Sed * CA 95054 USA or visit www.sun.com if you need additional information or
21181905Sed * have any questions.
22181905Sed *
23181905Sed */
24181905Sed
25181905Sed# include "incls/_precompiled.incl"
26181905Sed# include "incls/_vframeArray.cpp.incl"
27181905Sed
28181905Sed
29181905Sedint vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
30181905Sed
31181905Sedvoid vframeArrayElement::free_monitors(JavaThread* jt) {
32181905Sed  if (_monitors != NULL) {
33181905Sed     MonitorChunk* chunk = _monitors;
34181905Sed     _monitors = NULL;
35181905Sed     jt->remove_monitor_chunk(chunk);
36181905Sed     delete chunk;
37181905Sed  }
38181905Sed}
39181905Sed
40181905Sedvoid vframeArrayElement::fill_in(compiledVFrame* vf) {
41188497Sed
42181905Sed// Copy the information from the compiled vframe to the
43181905Sed// interpreter frame we will be creating to replace vf
44181905Sed
45181905Sed  _method = vf->method();
46181905Sed  _bci    = vf->raw_bci();
47181905Sed
48181905Sed  int index;
49181905Sed
50181905Sed  // Get the monitors off-stack
51181905Sed
52181905Sed  GrowableArray<MonitorInfo*>* list = vf->monitors();
53181905Sed  if (list->is_empty()) {
54181905Sed    _monitors = NULL;
55181905Sed  } else {
56181905Sed
57181905Sed    // Allocate monitor chunk
58181905Sed    _monitors = new MonitorChunk(list->length());
59181905Sed    vf->thread()->add_monitor_chunk(_monitors);
60181905Sed
61181905Sed    // Migrate the BasicLocks from the stack to the monitor chunk
62181905Sed    for (index = 0; index < list->length(); index++) {
63181905Sed      MonitorInfo* monitor = list->at(index);
64181905Sed      assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
65181905Sed      BasicObjectLock* dest = _monitors->at(index);
66181905Sed      dest->set_obj(monitor->owner());
67181905Sed      monitor->lock()->move_to(monitor->owner(), dest->lock());
68181905Sed    }
69181905Sed  }
70181905Sed
71181905Sed  // Convert the vframe locals and expressions to off stack
72181905Sed  // values. Because we will not gc all oops can be converted to
73181905Sed  // intptr_t (i.e. a stack slot) and we are fine. This is
74181905Sed  // good since we are inside a HandleMark and the oops in our
75181905Sed  // collection would go away between packing them here and
76181905Sed  // unpacking them in unpack_on_stack.
77181905Sed
78181905Sed  // First the locals go off-stack
79181905Sed
80181905Sed  // FIXME this seems silly it creates a StackValueCollection
81181905Sed  // in order to get the size to then copy them and
82181905Sed  // convert the types to intptr_t size slots. Seems like it
83181905Sed  // could do it in place... Still uses less memory than the
84223576Sed  // old way though
85188497Sed
86188497Sed  StackValueCollection *locs = vf->locals();
87181905Sed  _locals = new StackValueCollection(locs->size());
88181905Sed  for(index = 0; index < locs->size(); index++) {
89240412Semaste    StackValue* value = locs->at(index);
90181905Sed    switch(value->type()) {
91181905Sed      case T_OBJECT:
92        // preserve object type
93        _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
94        break;
95      case T_CONFLICT:
96        // A dead local.  Will be initialized to null/zero.
97        _locals->add( new StackValue());
98        break;
99      case T_INT:
100        _locals->add( new StackValue(value->get_int()));
101        break;
102      default:
103        ShouldNotReachHere();
104    }
105  }
106
107  // Now the expressions off-stack
108  // Same silliness as above
109
110  StackValueCollection *exprs = vf->expressions();
111  _expressions = new StackValueCollection(exprs->size());
112  for(index = 0; index < exprs->size(); index++) {
113    StackValue* value = exprs->at(index);
114    switch(value->type()) {
115      case T_OBJECT:
116        // preserve object type
117        _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
118        break;
119      case T_CONFLICT:
120        // A dead stack element.  Will be initialized to null/zero.
121        // This can occur when the compiler emits a state in which stack
122        // elements are known to be dead (because of an imminent exception).
123        _expressions->add( new StackValue());
124        break;
125      case T_INT:
126        _expressions->add( new StackValue(value->get_int()));
127        break;
128      default:
129        ShouldNotReachHere();
130    }
131  }
132}
133
134int unpack_counter = 0;
135
136void vframeArrayElement::unpack_on_stack(int callee_parameters,
137                                         int callee_locals,
138                                         frame* caller,
139                                         bool is_top_frame,
140                                         int exec_mode) {
141  JavaThread* thread = (JavaThread*) Thread::current();
142
143  // Look at bci and decide on bcp and continuation pc
144  address bcp;
145  // C++ interpreter doesn't need a pc since it will figure out what to do when it
146  // begins execution
147  address pc;
148  bool use_next_mdp; // true if we should use the mdp associated with the next bci
149                     // rather than the one associated with bcp
150  if (raw_bci() == SynchronizationEntryBCI) {
151    // We are deoptimizing while hanging in prologue code for synchronized method
152    bcp = method()->bcp_from(0); // first byte code
153    pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
154    use_next_mdp = false;
155  } else {
156    bcp = method()->bcp_from(bci());
157    pc  = Interpreter::continuation_for(method(), bcp, callee_parameters, is_top_frame, use_next_mdp);
158  }
159  assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
160
161  // Monitorenter and pending exceptions:
162  //
163  // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
164  // because there is no safepoint at the null pointer check (it is either handled explicitly
165  // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
166  // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
167  // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
168  // the monitorenter to place it in the proper exception range.
169  //
170  // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
171  // in which case bcp should point to the monitorenter since it is within the exception's range.
172
173  assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
174  // TIERED Must know the compiler of the deoptee QQQ
175  COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
176                              "shouldn't get exception during monitorenter");)
177
178  int popframe_preserved_args_size_in_bytes = 0;
179  int popframe_preserved_args_size_in_words = 0;
180  if (is_top_frame) {
181  JvmtiThreadState *state = thread->jvmti_thread_state();
182    if (JvmtiExport::can_pop_frame() &&
183        (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
184      if (thread->has_pending_popframe()) {
185        // Pop top frame after deoptimization
186#ifndef CC_INTERP
187        pc = Interpreter::remove_activation_preserving_args_entry();
188#else
189        // Do an uncommon trap type entry. c++ interpreter will know
190        // to pop frame and preserve the args
191        pc = Interpreter::deopt_entry(vtos, 0);
192        use_next_mdp = false;
193#endif
194      } else {
195        // Reexecute invoke in top frame
196        pc = Interpreter::deopt_entry(vtos, 0);
197        use_next_mdp = false;
198        popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
199        // Note: the PopFrame-related extension of the expression stack size is done in
200        // Deoptimization::fetch_unroll_info_helper
201        popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
202      }
203    } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
204      // Force early return from top frame after deoptimization
205#ifndef CC_INTERP
206      pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
207#else
208     // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
209#endif
210    } else {
211      // Possibly override the previous pc computation of the top (youngest) frame
212      switch (exec_mode) {
213      case Deoptimization::Unpack_deopt:
214        // use what we've got
215        break;
216      case Deoptimization::Unpack_exception:
217        // exception is pending
218        pc = SharedRuntime::raw_exception_handler_for_return_address(pc);
219        // [phh] We're going to end up in some handler or other, so it doesn't
220        // matter what mdp we point to.  See exception_handler_for_exception()
221        // in interpreterRuntime.cpp.
222        break;
223      case Deoptimization::Unpack_uncommon_trap:
224      case Deoptimization::Unpack_reexecute:
225        // redo last byte code
226        pc  = Interpreter::deopt_entry(vtos, 0);
227        use_next_mdp = false;
228        break;
229      default:
230        ShouldNotReachHere();
231      }
232    }
233  }
234
235  // Setup the interpreter frame
236
237  assert(method() != NULL, "method must exist");
238  int temps = expressions()->size();
239
240  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
241
242  Interpreter::layout_activation(method(),
243                                 temps + callee_parameters,
244                                 popframe_preserved_args_size_in_words,
245                                 locks,
246                                 callee_parameters,
247                                 callee_locals,
248                                 caller,
249                                 iframe(),
250                                 is_top_frame);
251
252  // Update the pc in the frame object and overwrite the temporary pc
253  // we placed in the skeletal frame now that we finally know the
254  // exact interpreter address we should use.
255
256  _frame.patch_pc(thread, pc);
257
258  assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
259
260  BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
261  for (int index = 0; index < locks; index++) {
262    top = iframe()->previous_monitor_in_interpreter_frame(top);
263    BasicObjectLock* src = _monitors->at(index);
264    top->set_obj(src->obj());
265    src->lock()->move_to(src->obj(), top->lock());
266  }
267  if (ProfileInterpreter) {
268    iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
269  }
270  iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
271  if (ProfileInterpreter) {
272    methodDataOop mdo = method()->method_data();
273    if (mdo != NULL) {
274      int bci = iframe()->interpreter_frame_bci();
275      if (use_next_mdp) ++bci;
276      address mdp = mdo->bci_to_dp(bci);
277      iframe()->interpreter_frame_set_mdp(mdp);
278    }
279  }
280
281  // Unpack expression stack
282  // If this is an intermediate frame (i.e. not top frame) then this
283  // only unpacks the part of the expression stack not used by callee
284  // as parameters. The callee parameters are unpacked as part of the
285  // callee locals.
286  int i;
287  for(i = 0; i < expressions()->size(); i++) {
288    StackValue *value = expressions()->at(i);
289    intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
290    switch(value->type()) {
291      case T_INT:
292        *addr = value->get_int();
293        break;
294      case T_OBJECT:
295        *addr = value->get_int(T_OBJECT);
296        break;
297      case T_CONFLICT:
298        // A dead stack slot.  Initialize to null in case it is an oop.
299        *addr = NULL_WORD;
300        break;
301      default:
302        ShouldNotReachHere();
303    }
304    if (TaggedStackInterpreter) {
305      // Write tag to the stack
306      iframe()->interpreter_frame_set_expression_stack_tag(i,
307                                  frame::tag_for_basic_type(value->type()));
308    }
309  }
310
311
312  // Unpack the locals
313  for(i = 0; i < locals()->size(); i++) {
314    StackValue *value = locals()->at(i);
315    intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
316    switch(value->type()) {
317      case T_INT:
318        *addr = value->get_int();
319        break;
320      case T_OBJECT:
321        *addr = value->get_int(T_OBJECT);
322        break;
323      case T_CONFLICT:
324        // A dead location. If it is an oop then we need a NULL to prevent GC from following it
325        *addr = NULL_WORD;
326        break;
327      default:
328        ShouldNotReachHere();
329    }
330    if (TaggedStackInterpreter) {
331      // Write tag to stack
332      iframe()->interpreter_frame_set_local_tag(i,
333                                  frame::tag_for_basic_type(value->type()));
334    }
335  }
336
337  if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
338    // An interpreted frame was popped but it returns to a deoptimized
339    // frame. The incoming arguments to the interpreted activation
340    // were preserved in thread-local storage by the
341    // remove_activation_preserving_args_entry in the interpreter; now
342    // we put them back into the just-unpacked interpreter frame.
343    // Note that this assumes that the locals arena grows toward lower
344    // addresses.
345    if (popframe_preserved_args_size_in_words != 0) {
346      void* saved_args = thread->popframe_preserved_args();
347      assert(saved_args != NULL, "must have been saved by interpreter");
348#ifdef ASSERT
349      int stack_words = Interpreter::stackElementWords();
350      assert(popframe_preserved_args_size_in_words <=
351             iframe()->interpreter_frame_expression_stack_size()*stack_words,
352             "expression stack size should have been extended");
353#endif // ASSERT
354      int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
355      intptr_t* base;
356      if (frame::interpreter_frame_expression_stack_direction() < 0) {
357        base = iframe()->interpreter_frame_expression_stack_at(top_element);
358      } else {
359        base = iframe()->interpreter_frame_expression_stack();
360      }
361      Copy::conjoint_bytes(saved_args,
362                           base,
363                           popframe_preserved_args_size_in_bytes);
364      thread->popframe_free_preserved_args();
365    }
366  }
367
368#ifndef PRODUCT
369  if (TraceDeoptimization && Verbose) {
370    ttyLocker ttyl;
371    tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
372    iframe()->print_on(tty);
373    RegisterMap map(thread);
374    vframe* f = vframe::new_vframe(iframe(), &map, thread);
375    f->print();
376    iframe()->interpreter_frame_print_on(tty);
377
378    tty->print_cr("locals size     %d", locals()->size());
379    tty->print_cr("expression size %d", expressions()->size());
380
381    method()->print_value();
382    tty->cr();
383    // method()->print_codes();
384  } else if (TraceDeoptimization) {
385    tty->print("     ");
386    method()->print_value();
387    Bytecodes::Code code = Bytecodes::java_code_at(bcp);
388    int bci = method()->bci_from(bcp);
389    tty->print(" - %s", Bytecodes::name(code));
390    tty->print(" @ bci %d ", bci);
391    tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
392  }
393#endif // PRODUCT
394
395  // The expression stack and locals are in the resource area don't leave
396  // a dangling pointer in the vframeArray we leave around for debug
397  // purposes
398
399  _locals = _expressions = NULL;
400
401}
402
403int vframeArrayElement::on_stack_size(int callee_parameters,
404                                      int callee_locals,
405                                      bool is_top_frame,
406                                      int popframe_extra_stack_expression_els) const {
407  assert(method()->max_locals() == locals()->size(), "just checking");
408  int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
409  int temps = expressions()->size();
410  return Interpreter::size_activation(method(),
411                                      temps + callee_parameters,
412                                      popframe_extra_stack_expression_els,
413                                      locks,
414                                      callee_parameters,
415                                      callee_locals,
416                                      is_top_frame);
417}
418
419
420
421vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
422                                   RegisterMap *reg_map, frame sender, frame caller, frame self) {
423
424  // Allocate the vframeArray
425  vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
426                                                     sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
427                                                     "vframeArray::allocate");
428  result->_frames = chunk->length();
429  result->_owner_thread = thread;
430  result->_sender = sender;
431  result->_caller = caller;
432  result->_original = self;
433  result->set_unroll_block(NULL); // initialize it
434  result->fill_in(thread, frame_size, chunk, reg_map);
435  return result;
436}
437
438void vframeArray::fill_in(JavaThread* thread,
439                          int frame_size,
440                          GrowableArray<compiledVFrame*>* chunk,
441                          const RegisterMap *reg_map) {
442  // Set owner first, it is used when adding monitor chunks
443
444  _frame_size = frame_size;
445  for(int i = 0; i < chunk->length(); i++) {
446    element(i)->fill_in(chunk->at(i));
447  }
448
449  // Copy registers for callee-saved registers
450  if (reg_map != NULL) {
451    for(int i = 0; i < RegisterMap::reg_count; i++) {
452#ifdef AMD64
453      // The register map has one entry for every int (32-bit value), so
454      // 64-bit physical registers have two entries in the map, one for
455      // each half.  Ignore the high halves of 64-bit registers, just like
456      // frame::oopmapreg_to_location does.
457      //
458      // [phh] FIXME: this is a temporary hack!  This code *should* work
459      // correctly w/o this hack, possibly by changing RegisterMap::pd_location
460      // in frame_amd64.cpp and the values of the phantom high half registers
461      // in amd64.ad.
462      //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
463        intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
464        _callee_registers[i] = src != NULL ? *src : NULL_WORD;
465        //      } else {
466        //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
467        //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
468        //      }
469#else
470      jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
471      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
472#endif
473      if (src == NULL) {
474        set_location_valid(i, false);
475      } else {
476        set_location_valid(i, true);
477        jint* dst = (jint*) register_location(i);
478        *dst = *src;
479      }
480    }
481  }
482}
483
484void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode) {
485  // stack picture
486  //   unpack_frame
487  //   [new interpreter frames ] (frames are skeletal but walkable)
488  //   caller_frame
489  //
490  //  This routine fills in the missing data for the skeletal interpreter frames
491  //  in the above picture.
492
493  // Find the skeletal interpreter frames to unpack into
494  RegisterMap map(JavaThread::current(), false);
495  // Get the youngest frame we will unpack (last to be unpacked)
496  frame me = unpack_frame.sender(&map);
497  int index;
498  for (index = 0; index < frames(); index++ ) {
499    *element(index)->iframe() = me;
500    // Get the caller frame (possibly skeletal)
501    me = me.sender(&map);
502  }
503
504  frame caller_frame = me;
505
506  // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
507
508  // Unpack the frames from the oldest (frames() -1) to the youngest (0)
509
510  for (index = frames() - 1; index >= 0 ; index--) {
511    int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
512    int callee_locals     = index == 0 ? 0 : element(index-1)->method()->max_locals();
513    element(index)->unpack_on_stack(callee_parameters,
514                                    callee_locals,
515                                    &caller_frame,
516                                    index == 0,
517                                    exec_mode);
518    if (index == frames() - 1) {
519      Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
520    }
521    caller_frame = *element(index)->iframe();
522  }
523
524
525  deallocate_monitor_chunks();
526}
527
528void vframeArray::deallocate_monitor_chunks() {
529  JavaThread* jt = JavaThread::current();
530  for (int index = 0; index < frames(); index++ ) {
531     element(index)->free_monitors(jt);
532  }
533}
534
535#ifndef PRODUCT
536
537bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
538  if (owner_thread() != thread) return false;
539  int index = 0;
540#if 0 // FIXME can't do this comparison
541
542  // Compare only within vframe array.
543  for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
544    if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
545    index++;
546  }
547  if (index != chunk->length()) return false;
548#endif
549
550  return true;
551}
552
553#endif
554
555address vframeArray::register_location(int i) const {
556  assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
557  return (address) & _callee_registers[i];
558}
559
560
561#ifndef PRODUCT
562
563// Printing
564
565// Note: we cannot have print_on as const, as we allocate inside the method
566void vframeArray::print_on_2(outputStream* st)  {
567  st->print_cr(" - sp: " INTPTR_FORMAT, sp());
568  st->print(" - thread: ");
569  Thread::current()->print();
570  st->print_cr(" - frame size: %d", frame_size());
571  for (int index = 0; index < frames() ; index++ ) {
572    element(index)->print(st);
573  }
574}
575
576void vframeArrayElement::print(outputStream* st) {
577  st->print_cr(" - interpreter_frame -> sp: ", INTPTR_FORMAT, iframe()->sp());
578}
579
580void vframeArray::print_value_on(outputStream* st) const {
581  st->print_cr("vframeArray [%d] ", frames());
582}
583
584
585#endif
586