thread.cpp revision 9898:2794bc7859f5
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/codeCacheExtensions.hpp"
32#include "code/scopeDesc.hpp"
33#include "compiler/compileBroker.hpp"
34#include "gc/shared/gcId.hpp"
35#include "gc/shared/gcLocker.inline.hpp"
36#include "gc/shared/workgroup.hpp"
37#include "interpreter/interpreter.hpp"
38#include "interpreter/linkResolver.hpp"
39#include "interpreter/oopMapCache.hpp"
40#include "jvmtifiles/jvmtiEnv.hpp"
41#include "logging/log.hpp"
42#include "logging/logConfiguration.hpp"
43#include "memory/metaspaceShared.hpp"
44#include "memory/oopFactory.hpp"
45#include "memory/universe.inline.hpp"
46#include "oops/instanceKlass.hpp"
47#include "oops/objArrayOop.hpp"
48#include "oops/oop.inline.hpp"
49#include "oops/symbol.hpp"
50#include "oops/verifyOopClosure.hpp"
51#include "prims/jvm_misc.hpp"
52#include "prims/jvmtiExport.hpp"
53#include "prims/jvmtiThreadState.hpp"
54#include "prims/privilegedStack.hpp"
55#include "runtime/arguments.hpp"
56#include "runtime/atomic.inline.hpp"
57#include "runtime/biasedLocking.hpp"
58#include "runtime/commandLineFlagConstraintList.hpp"
59#include "runtime/commandLineFlagRangeList.hpp"
60#include "runtime/deoptimization.hpp"
61#include "runtime/fprofiler.hpp"
62#include "runtime/frame.inline.hpp"
63#include "runtime/globals.hpp"
64#include "runtime/init.hpp"
65#include "runtime/interfaceSupport.hpp"
66#include "runtime/java.hpp"
67#include "runtime/javaCalls.hpp"
68#include "runtime/jniPeriodicChecker.hpp"
69#include "runtime/memprofiler.hpp"
70#include "runtime/mutexLocker.hpp"
71#include "runtime/objectMonitor.hpp"
72#include "runtime/orderAccess.inline.hpp"
73#include "runtime/osThread.hpp"
74#include "runtime/safepoint.hpp"
75#include "runtime/sharedRuntime.hpp"
76#include "runtime/statSampler.hpp"
77#include "runtime/stubRoutines.hpp"
78#include "runtime/sweeper.hpp"
79#include "runtime/task.hpp"
80#include "runtime/thread.inline.hpp"
81#include "runtime/threadCritical.hpp"
82#include "runtime/vframe.hpp"
83#include "runtime/vframeArray.hpp"
84#include "runtime/vframe_hp.hpp"
85#include "runtime/vmThread.hpp"
86#include "runtime/vm_operations.hpp"
87#include "runtime/vm_version.hpp"
88#include "services/attachListener.hpp"
89#include "services/management.hpp"
90#include "services/memTracker.hpp"
91#include "services/threadService.hpp"
92#include "trace/traceMacros.hpp"
93#include "trace/tracing.hpp"
94#include "utilities/defaultStream.hpp"
95#include "utilities/dtrace.hpp"
96#include "utilities/events.hpp"
97#include "utilities/macros.hpp"
98#include "utilities/preserveException.hpp"
99#if INCLUDE_ALL_GCS
100#include "gc/cms/concurrentMarkSweepThread.hpp"
101#include "gc/g1/concurrentMarkThread.inline.hpp"
102#include "gc/parallel/pcTasks.hpp"
103#endif // INCLUDE_ALL_GCS
104#if INCLUDE_JVMCI
105#include "jvmci/jvmciCompiler.hpp"
106#include "jvmci/jvmciRuntime.hpp"
107#endif
108#ifdef COMPILER1
109#include "c1/c1_Compiler.hpp"
110#endif
111#ifdef COMPILER2
112#include "opto/c2compiler.hpp"
113#include "opto/idealGraphPrinter.hpp"
114#endif
115#if INCLUDE_RTM_OPT
116#include "runtime/rtmLocking.hpp"
117#endif
118
119#ifdef DTRACE_ENABLED
120
121// Only bother with this argument setup if dtrace is available
122
123  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
124  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
125
126  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
127    {                                                                      \
128      ResourceMark rm(this);                                               \
129      int len = 0;                                                         \
130      const char* name = (javathread)->get_thread_name();                  \
131      len = strlen(name);                                                  \
132      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
133        (char *) name, len,                                                \
134        java_lang_Thread::thread_id((javathread)->threadObj()),            \
135        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
136        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
137    }
138
139#else //  ndef DTRACE_ENABLED
140
141  #define DTRACE_THREAD_PROBE(probe, javathread)
142
143#endif // ndef DTRACE_ENABLED
144
145#ifndef USE_LIBRARY_BASED_TLS_ONLY
146// Current thread is maintained as a thread-local variable
147THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
148#endif
149
150// Class hierarchy
151// - Thread
152//   - VMThread
153//   - WatcherThread
154//   - ConcurrentMarkSweepThread
155//   - JavaThread
156//     - CompilerThread
157
158// ======= Thread ========
159// Support for forcing alignment of thread objects for biased locking
160void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
161  if (UseBiasedLocking) {
162    const int alignment = markOopDesc::biased_lock_alignment;
163    size_t aligned_size = size + (alignment - sizeof(intptr_t));
164    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
165                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
166                                                         AllocFailStrategy::RETURN_NULL);
167    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
168    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
169           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
170           "JavaThread alignment code overflowed allocated storage");
171    if (TraceBiasedLocking) {
172      if (aligned_addr != real_malloc_addr) {
173        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
174                      p2i(real_malloc_addr), p2i(aligned_addr));
175      }
176    }
177    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
178    return aligned_addr;
179  } else {
180    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
181                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
182  }
183}
184
185void Thread::operator delete(void* p) {
186  if (UseBiasedLocking) {
187    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
188    FreeHeap(real_malloc_addr);
189  } else {
190    FreeHeap(p);
191  }
192}
193
194
195// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
196// JavaThread
197
198
199Thread::Thread() {
200  // stack and get_thread
201  set_stack_base(NULL);
202  set_stack_size(0);
203  set_self_raw_id(0);
204  set_lgrp_id(-1);
205  DEBUG_ONLY(clear_suspendible_thread();)
206
207  // allocated data structures
208  set_osthread(NULL);
209  set_resource_area(new (mtThread)ResourceArea());
210  DEBUG_ONLY(_current_resource_mark = NULL;)
211  set_handle_area(new (mtThread) HandleArea(NULL));
212  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
213  set_active_handles(NULL);
214  set_free_handle_block(NULL);
215  set_last_handle_mark(NULL);
216
217  // This initial value ==> never claimed.
218  _oops_do_parity = 0;
219
220  // the handle mark links itself to last_handle_mark
221  new HandleMark(this);
222
223  // plain initialization
224  debug_only(_owned_locks = NULL;)
225  debug_only(_allow_allocation_count = 0;)
226  NOT_PRODUCT(_allow_safepoint_count = 0;)
227  NOT_PRODUCT(_skip_gcalot = false;)
228  _jvmti_env_iteration_count = 0;
229  set_allocated_bytes(0);
230  _vm_operation_started_count = 0;
231  _vm_operation_completed_count = 0;
232  _current_pending_monitor = NULL;
233  _current_pending_monitor_is_from_java = true;
234  _current_waiting_monitor = NULL;
235  _num_nested_signal = 0;
236  omFreeList = NULL;
237  omFreeCount = 0;
238  omFreeProvision = 32;
239  omInUseList = NULL;
240  omInUseCount = 0;
241
242#ifdef ASSERT
243  _visited_for_critical_count = false;
244#endif
245
246  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
247                         Monitor::_safepoint_check_sometimes);
248  _suspend_flags = 0;
249
250  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
251  _hashStateX = os::random();
252  _hashStateY = 842502087;
253  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
254  _hashStateW = 273326509;
255
256  _OnTrap   = 0;
257  _schedctl = NULL;
258  _Stalled  = 0;
259  _TypeTag  = 0x2BAD;
260
261  // Many of the following fields are effectively final - immutable
262  // Note that nascent threads can't use the Native Monitor-Mutex
263  // construct until the _MutexEvent is initialized ...
264  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
265  // we might instead use a stack of ParkEvents that we could provision on-demand.
266  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
267  // and ::Release()
268  _ParkEvent   = ParkEvent::Allocate(this);
269  _SleepEvent  = ParkEvent::Allocate(this);
270  _MutexEvent  = ParkEvent::Allocate(this);
271  _MuxEvent    = ParkEvent::Allocate(this);
272
273#ifdef CHECK_UNHANDLED_OOPS
274  if (CheckUnhandledOops) {
275    _unhandled_oops = new UnhandledOops(this);
276  }
277#endif // CHECK_UNHANDLED_OOPS
278#ifdef ASSERT
279  if (UseBiasedLocking) {
280    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
281    assert(this == _real_malloc_address ||
282           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
283           "bug in forced alignment of thread objects");
284  }
285#endif // ASSERT
286}
287
288void Thread::initialize_thread_current() {
289#ifndef USE_LIBRARY_BASED_TLS_ONLY
290  assert(_thr_current == NULL, "Thread::current already initialized");
291  _thr_current = this;
292#endif
293  assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
294  ThreadLocalStorage::set_thread(this);
295  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
296}
297
298void Thread::clear_thread_current() {
299  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
300#ifndef USE_LIBRARY_BASED_TLS_ONLY
301  _thr_current = NULL;
302#endif
303  ThreadLocalStorage::set_thread(NULL);
304}
305
306void Thread::record_stack_base_and_size() {
307  set_stack_base(os::current_stack_base());
308  set_stack_size(os::current_stack_size());
309  // CR 7190089: on Solaris, primordial thread's stack is adjusted
310  // in initialize_thread(). Without the adjustment, stack size is
311  // incorrect if stack is set to unlimited (ulimit -s unlimited).
312  // So far, only Solaris has real implementation of initialize_thread().
313  //
314  // set up any platform-specific state.
315  os::initialize_thread(this);
316
317  // Set stack limits after thread is initialized.
318  if (is_Java_thread()) {
319    ((JavaThread*) this)->set_stack_overflow_limit();
320    ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
321  }
322#if INCLUDE_NMT
323  // record thread's native stack, stack grows downward
324  MemTracker::record_thread_stack(stack_end(), stack_size());
325#endif // INCLUDE_NMT
326}
327
328
329Thread::~Thread() {
330  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
331  ObjectSynchronizer::omFlush(this);
332
333  EVENT_THREAD_DESTRUCT(this);
334
335  // stack_base can be NULL if the thread is never started or exited before
336  // record_stack_base_and_size called. Although, we would like to ensure
337  // that all started threads do call record_stack_base_and_size(), there is
338  // not proper way to enforce that.
339#if INCLUDE_NMT
340  if (_stack_base != NULL) {
341    MemTracker::release_thread_stack(stack_end(), stack_size());
342#ifdef ASSERT
343    set_stack_base(NULL);
344#endif
345  }
346#endif // INCLUDE_NMT
347
348  // deallocate data structures
349  delete resource_area();
350  // since the handle marks are using the handle area, we have to deallocated the root
351  // handle mark before deallocating the thread's handle area,
352  assert(last_handle_mark() != NULL, "check we have an element");
353  delete last_handle_mark();
354  assert(last_handle_mark() == NULL, "check we have reached the end");
355
356  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
357  // We NULL out the fields for good hygiene.
358  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
359  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
360  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
361  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
362
363  delete handle_area();
364  delete metadata_handles();
365
366  // osthread() can be NULL, if creation of thread failed.
367  if (osthread() != NULL) os::free_thread(osthread());
368
369  delete _SR_lock;
370
371  // clear Thread::current if thread is deleting itself.
372  // Needed to ensure JNI correctly detects non-attached threads.
373  if (this == Thread::current()) {
374    clear_thread_current();
375  }
376
377  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
378}
379
380// NOTE: dummy function for assertion purpose.
381void Thread::run() {
382  ShouldNotReachHere();
383}
384
385#ifdef ASSERT
386// Private method to check for dangling thread pointer
387void check_for_dangling_thread_pointer(Thread *thread) {
388  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
389         "possibility of dangling Thread pointer");
390}
391#endif
392
393ThreadPriority Thread::get_priority(const Thread* const thread) {
394  ThreadPriority priority;
395  // Can return an error!
396  (void)os::get_priority(thread, priority);
397  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
398  return priority;
399}
400
401void Thread::set_priority(Thread* thread, ThreadPriority priority) {
402  debug_only(check_for_dangling_thread_pointer(thread);)
403  // Can return an error!
404  (void)os::set_priority(thread, priority);
405}
406
407
408void Thread::start(Thread* thread) {
409  // Start is different from resume in that its safety is guaranteed by context or
410  // being called from a Java method synchronized on the Thread object.
411  if (!DisableStartThread) {
412    if (thread->is_Java_thread()) {
413      // Initialize the thread state to RUNNABLE before starting this thread.
414      // Can not set it after the thread started because we do not know the
415      // exact thread state at that time. It could be in MONITOR_WAIT or
416      // in SLEEPING or some other state.
417      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
418                                          java_lang_Thread::RUNNABLE);
419    }
420    os::start_thread(thread);
421  }
422}
423
424// Enqueue a VM_Operation to do the job for us - sometime later
425void Thread::send_async_exception(oop java_thread, oop java_throwable) {
426  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
427  VMThread::execute(vm_stop);
428}
429
430
431// Check if an external suspend request has completed (or has been
432// cancelled). Returns true if the thread is externally suspended and
433// false otherwise.
434//
435// The bits parameter returns information about the code path through
436// the routine. Useful for debugging:
437//
438// set in is_ext_suspend_completed():
439// 0x00000001 - routine was entered
440// 0x00000010 - routine return false at end
441// 0x00000100 - thread exited (return false)
442// 0x00000200 - suspend request cancelled (return false)
443// 0x00000400 - thread suspended (return true)
444// 0x00001000 - thread is in a suspend equivalent state (return true)
445// 0x00002000 - thread is native and walkable (return true)
446// 0x00004000 - thread is native_trans and walkable (needed retry)
447//
448// set in wait_for_ext_suspend_completion():
449// 0x00010000 - routine was entered
450// 0x00020000 - suspend request cancelled before loop (return false)
451// 0x00040000 - thread suspended before loop (return true)
452// 0x00080000 - suspend request cancelled in loop (return false)
453// 0x00100000 - thread suspended in loop (return true)
454// 0x00200000 - suspend not completed during retry loop (return false)
455
456// Helper class for tracing suspend wait debug bits.
457//
458// 0x00000100 indicates that the target thread exited before it could
459// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
460// 0x00080000 each indicate a cancelled suspend request so they don't
461// count as wait failures either.
462#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
463
464class TraceSuspendDebugBits : public StackObj {
465 private:
466  JavaThread * jt;
467  bool         is_wait;
468  bool         called_by_wait;  // meaningful when !is_wait
469  uint32_t *   bits;
470
471 public:
472  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
473                        uint32_t *_bits) {
474    jt             = _jt;
475    is_wait        = _is_wait;
476    called_by_wait = _called_by_wait;
477    bits           = _bits;
478  }
479
480  ~TraceSuspendDebugBits() {
481    if (!is_wait) {
482#if 1
483      // By default, don't trace bits for is_ext_suspend_completed() calls.
484      // That trace is very chatty.
485      return;
486#else
487      if (!called_by_wait) {
488        // If tracing for is_ext_suspend_completed() is enabled, then only
489        // trace calls to it from wait_for_ext_suspend_completion()
490        return;
491      }
492#endif
493    }
494
495    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
496      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
497        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
498        ResourceMark rm;
499
500        tty->print_cr(
501                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
502                      jt->get_thread_name(), *bits);
503
504        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
505      }
506    }
507  }
508};
509#undef DEBUG_FALSE_BITS
510
511
512bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
513                                          uint32_t *bits) {
514  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
515
516  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
517  bool do_trans_retry;           // flag to force the retry
518
519  *bits |= 0x00000001;
520
521  do {
522    do_trans_retry = false;
523
524    if (is_exiting()) {
525      // Thread is in the process of exiting. This is always checked
526      // first to reduce the risk of dereferencing a freed JavaThread.
527      *bits |= 0x00000100;
528      return false;
529    }
530
531    if (!is_external_suspend()) {
532      // Suspend request is cancelled. This is always checked before
533      // is_ext_suspended() to reduce the risk of a rogue resume
534      // confusing the thread that made the suspend request.
535      *bits |= 0x00000200;
536      return false;
537    }
538
539    if (is_ext_suspended()) {
540      // thread is suspended
541      *bits |= 0x00000400;
542      return true;
543    }
544
545    // Now that we no longer do hard suspends of threads running
546    // native code, the target thread can be changing thread state
547    // while we are in this routine:
548    //
549    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
550    //
551    // We save a copy of the thread state as observed at this moment
552    // and make our decision about suspend completeness based on the
553    // copy. This closes the race where the thread state is seen as
554    // _thread_in_native_trans in the if-thread_blocked check, but is
555    // seen as _thread_blocked in if-thread_in_native_trans check.
556    JavaThreadState save_state = thread_state();
557
558    if (save_state == _thread_blocked && is_suspend_equivalent()) {
559      // If the thread's state is _thread_blocked and this blocking
560      // condition is known to be equivalent to a suspend, then we can
561      // consider the thread to be externally suspended. This means that
562      // the code that sets _thread_blocked has been modified to do
563      // self-suspension if the blocking condition releases. We also
564      // used to check for CONDVAR_WAIT here, but that is now covered by
565      // the _thread_blocked with self-suspension check.
566      //
567      // Return true since we wouldn't be here unless there was still an
568      // external suspend request.
569      *bits |= 0x00001000;
570      return true;
571    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
572      // Threads running native code will self-suspend on native==>VM/Java
573      // transitions. If its stack is walkable (should always be the case
574      // unless this function is called before the actual java_suspend()
575      // call), then the wait is done.
576      *bits |= 0x00002000;
577      return true;
578    } else if (!called_by_wait && !did_trans_retry &&
579               save_state == _thread_in_native_trans &&
580               frame_anchor()->walkable()) {
581      // The thread is transitioning from thread_in_native to another
582      // thread state. check_safepoint_and_suspend_for_native_trans()
583      // will force the thread to self-suspend. If it hasn't gotten
584      // there yet we may have caught the thread in-between the native
585      // code check above and the self-suspend. Lucky us. If we were
586      // called by wait_for_ext_suspend_completion(), then it
587      // will be doing the retries so we don't have to.
588      //
589      // Since we use the saved thread state in the if-statement above,
590      // there is a chance that the thread has already transitioned to
591      // _thread_blocked by the time we get here. In that case, we will
592      // make a single unnecessary pass through the logic below. This
593      // doesn't hurt anything since we still do the trans retry.
594
595      *bits |= 0x00004000;
596
597      // Once the thread leaves thread_in_native_trans for another
598      // thread state, we break out of this retry loop. We shouldn't
599      // need this flag to prevent us from getting back here, but
600      // sometimes paranoia is good.
601      did_trans_retry = true;
602
603      // We wait for the thread to transition to a more usable state.
604      for (int i = 1; i <= SuspendRetryCount; i++) {
605        // We used to do an "os::yield_all(i)" call here with the intention
606        // that yielding would increase on each retry. However, the parameter
607        // is ignored on Linux which means the yield didn't scale up. Waiting
608        // on the SR_lock below provides a much more predictable scale up for
609        // the delay. It also provides a simple/direct point to check for any
610        // safepoint requests from the VMThread
611
612        // temporarily drops SR_lock while doing wait with safepoint check
613        // (if we're a JavaThread - the WatcherThread can also call this)
614        // and increase delay with each retry
615        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
616
617        // check the actual thread state instead of what we saved above
618        if (thread_state() != _thread_in_native_trans) {
619          // the thread has transitioned to another thread state so
620          // try all the checks (except this one) one more time.
621          do_trans_retry = true;
622          break;
623        }
624      } // end retry loop
625
626
627    }
628  } while (do_trans_retry);
629
630  *bits |= 0x00000010;
631  return false;
632}
633
634// Wait for an external suspend request to complete (or be cancelled).
635// Returns true if the thread is externally suspended and false otherwise.
636//
637bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
638                                                 uint32_t *bits) {
639  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
640                             false /* !called_by_wait */, bits);
641
642  // local flag copies to minimize SR_lock hold time
643  bool is_suspended;
644  bool pending;
645  uint32_t reset_bits;
646
647  // set a marker so is_ext_suspend_completed() knows we are the caller
648  *bits |= 0x00010000;
649
650  // We use reset_bits to reinitialize the bits value at the top of
651  // each retry loop. This allows the caller to make use of any
652  // unused bits for their own marking purposes.
653  reset_bits = *bits;
654
655  {
656    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
657    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
658                                            delay, bits);
659    pending = is_external_suspend();
660  }
661  // must release SR_lock to allow suspension to complete
662
663  if (!pending) {
664    // A cancelled suspend request is the only false return from
665    // is_ext_suspend_completed() that keeps us from entering the
666    // retry loop.
667    *bits |= 0x00020000;
668    return false;
669  }
670
671  if (is_suspended) {
672    *bits |= 0x00040000;
673    return true;
674  }
675
676  for (int i = 1; i <= retries; i++) {
677    *bits = reset_bits;  // reinit to only track last retry
678
679    // We used to do an "os::yield_all(i)" call here with the intention
680    // that yielding would increase on each retry. However, the parameter
681    // is ignored on Linux which means the yield didn't scale up. Waiting
682    // on the SR_lock below provides a much more predictable scale up for
683    // the delay. It also provides a simple/direct point to check for any
684    // safepoint requests from the VMThread
685
686    {
687      MutexLocker ml(SR_lock());
688      // wait with safepoint check (if we're a JavaThread - the WatcherThread
689      // can also call this)  and increase delay with each retry
690      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
691
692      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
693                                              delay, bits);
694
695      // It is possible for the external suspend request to be cancelled
696      // (by a resume) before the actual suspend operation is completed.
697      // Refresh our local copy to see if we still need to wait.
698      pending = is_external_suspend();
699    }
700
701    if (!pending) {
702      // A cancelled suspend request is the only false return from
703      // is_ext_suspend_completed() that keeps us from staying in the
704      // retry loop.
705      *bits |= 0x00080000;
706      return false;
707    }
708
709    if (is_suspended) {
710      *bits |= 0x00100000;
711      return true;
712    }
713  } // end retry loop
714
715  // thread did not suspend after all our retries
716  *bits |= 0x00200000;
717  return false;
718}
719
720#ifndef PRODUCT
721void JavaThread::record_jump(address target, address instr, const char* file,
722                             int line) {
723
724  // This should not need to be atomic as the only way for simultaneous
725  // updates is via interrupts. Even then this should be rare or non-existent
726  // and we don't care that much anyway.
727
728  int index = _jmp_ring_index;
729  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
730  _jmp_ring[index]._target = (intptr_t) target;
731  _jmp_ring[index]._instruction = (intptr_t) instr;
732  _jmp_ring[index]._file = file;
733  _jmp_ring[index]._line = line;
734}
735#endif // PRODUCT
736
737// Called by flat profiler
738// Callers have already called wait_for_ext_suspend_completion
739// The assertion for that is currently too complex to put here:
740bool JavaThread::profile_last_Java_frame(frame* _fr) {
741  bool gotframe = false;
742  // self suspension saves needed state.
743  if (has_last_Java_frame() && _anchor.walkable()) {
744    *_fr = pd_last_frame();
745    gotframe = true;
746  }
747  return gotframe;
748}
749
750void Thread::interrupt(Thread* thread) {
751  debug_only(check_for_dangling_thread_pointer(thread);)
752  os::interrupt(thread);
753}
754
755bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
756  debug_only(check_for_dangling_thread_pointer(thread);)
757  // Note:  If clear_interrupted==false, this simply fetches and
758  // returns the value of the field osthread()->interrupted().
759  return os::is_interrupted(thread, clear_interrupted);
760}
761
762
763// GC Support
764bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
765  jint thread_parity = _oops_do_parity;
766  if (thread_parity != strong_roots_parity) {
767    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
768    if (res == thread_parity) {
769      return true;
770    } else {
771      guarantee(res == strong_roots_parity, "Or else what?");
772      return false;
773    }
774  }
775  return false;
776}
777
778void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
779  active_handles()->oops_do(f);
780  // Do oop for ThreadShadow
781  f->do_oop((oop*)&_pending_exception);
782  handle_area()->oops_do(f);
783}
784
785void Thread::nmethods_do(CodeBlobClosure* cf) {
786  // no nmethods in a generic thread...
787}
788
789void Thread::metadata_handles_do(void f(Metadata*)) {
790  // Only walk the Handles in Thread.
791  if (metadata_handles() != NULL) {
792    for (int i = 0; i< metadata_handles()->length(); i++) {
793      f(metadata_handles()->at(i));
794    }
795  }
796}
797
798void Thread::print_on(outputStream* st) const {
799  // get_priority assumes osthread initialized
800  if (osthread() != NULL) {
801    int os_prio;
802    if (os::get_native_priority(this, &os_prio) == OS_OK) {
803      st->print("os_prio=%d ", os_prio);
804    }
805    st->print("tid=" INTPTR_FORMAT " ", p2i(this));
806    ext().print_on(st);
807    osthread()->print_on(st);
808  }
809  debug_only(if (WizardMode) print_owned_locks_on(st);)
810}
811
812// Thread::print_on_error() is called by fatal error handler. Don't use
813// any lock or allocate memory.
814void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
815  if (is_VM_thread())                 st->print("VMThread");
816  else if (is_Compiler_thread())      st->print("CompilerThread");
817  else if (is_Java_thread())          st->print("JavaThread");
818  else if (is_GC_task_thread())       st->print("GCTaskThread");
819  else if (is_Watcher_thread())       st->print("WatcherThread");
820  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
821  else                                st->print("Thread");
822
823  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
824            p2i(stack_end()), p2i(stack_base()));
825
826  if (osthread()) {
827    st->print(" [id=%d]", osthread()->thread_id());
828  }
829}
830
831#ifdef ASSERT
832void Thread::print_owned_locks_on(outputStream* st) const {
833  Monitor *cur = _owned_locks;
834  if (cur == NULL) {
835    st->print(" (no locks) ");
836  } else {
837    st->print_cr(" Locks owned:");
838    while (cur) {
839      cur->print_on(st);
840      cur = cur->next();
841    }
842  }
843}
844
845static int ref_use_count  = 0;
846
847bool Thread::owns_locks_but_compiled_lock() const {
848  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
849    if (cur != Compile_lock) return true;
850  }
851  return false;
852}
853
854
855#endif
856
857#ifndef PRODUCT
858
859// The flag: potential_vm_operation notifies if this particular safepoint state could potential
860// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
861// no threads which allow_vm_block's are held
862void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
863  // Check if current thread is allowed to block at a safepoint
864  if (!(_allow_safepoint_count == 0)) {
865    fatal("Possible safepoint reached by thread that does not allow it");
866  }
867  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
868    fatal("LEAF method calling lock?");
869  }
870
871#ifdef ASSERT
872  if (potential_vm_operation && is_Java_thread()
873      && !Universe::is_bootstrapping()) {
874    // Make sure we do not hold any locks that the VM thread also uses.
875    // This could potentially lead to deadlocks
876    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
877      // Threads_lock is special, since the safepoint synchronization will not start before this is
878      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
879      // since it is used to transfer control between JavaThreads and the VMThread
880      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
881      if ((cur->allow_vm_block() &&
882           cur != Threads_lock &&
883           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
884           cur != VMOperationRequest_lock &&
885           cur != VMOperationQueue_lock) ||
886           cur->rank() == Mutex::special) {
887        fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
888      }
889    }
890  }
891
892  if (GCALotAtAllSafepoints) {
893    // We could enter a safepoint here and thus have a gc
894    InterfaceSupport::check_gc_alot();
895  }
896#endif
897}
898#endif
899
900bool Thread::is_in_stack(address adr) const {
901  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
902  address end = os::current_stack_pointer();
903  // Allow non Java threads to call this without stack_base
904  if (_stack_base == NULL) return true;
905  if (stack_base() >= adr && adr >= end) return true;
906
907  return false;
908}
909
910bool Thread::is_in_usable_stack(address adr) const {
911  size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
912  size_t usable_stack_size = _stack_size - stack_guard_size;
913
914  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
915}
916
917
918// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
919// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
920// used for compilation in the future. If that change is made, the need for these methods
921// should be revisited, and they should be removed if possible.
922
923bool Thread::is_lock_owned(address adr) const {
924  return on_local_stack(adr);
925}
926
927bool Thread::set_as_starting_thread() {
928  // NOTE: this must be called inside the main thread.
929  return os::create_main_thread((JavaThread*)this);
930}
931
932static void initialize_class(Symbol* class_name, TRAPS) {
933  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
934  InstanceKlass::cast(klass)->initialize(CHECK);
935}
936
937
938// Creates the initial ThreadGroup
939static Handle create_initial_thread_group(TRAPS) {
940  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
941  instanceKlassHandle klass (THREAD, k);
942
943  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
944  {
945    JavaValue result(T_VOID);
946    JavaCalls::call_special(&result,
947                            system_instance,
948                            klass,
949                            vmSymbols::object_initializer_name(),
950                            vmSymbols::void_method_signature(),
951                            CHECK_NH);
952  }
953  Universe::set_system_thread_group(system_instance());
954
955  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
956  {
957    JavaValue result(T_VOID);
958    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
959    JavaCalls::call_special(&result,
960                            main_instance,
961                            klass,
962                            vmSymbols::object_initializer_name(),
963                            vmSymbols::threadgroup_string_void_signature(),
964                            system_instance,
965                            string,
966                            CHECK_NH);
967  }
968  return main_instance;
969}
970
971// Creates the initial Thread
972static oop create_initial_thread(Handle thread_group, JavaThread* thread,
973                                 TRAPS) {
974  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
975  instanceKlassHandle klass (THREAD, k);
976  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
977
978  java_lang_Thread::set_thread(thread_oop(), thread);
979  java_lang_Thread::set_priority(thread_oop(), NormPriority);
980  thread->set_threadObj(thread_oop());
981
982  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
983
984  JavaValue result(T_VOID);
985  JavaCalls::call_special(&result, thread_oop,
986                          klass,
987                          vmSymbols::object_initializer_name(),
988                          vmSymbols::threadgroup_string_void_signature(),
989                          thread_group,
990                          string,
991                          CHECK_NULL);
992  return thread_oop();
993}
994
995static void call_initializeSystemClass(TRAPS) {
996  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
997  instanceKlassHandle klass (THREAD, k);
998
999  JavaValue result(T_VOID);
1000  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1001                         vmSymbols::void_method_signature(), CHECK);
1002}
1003
1004char java_runtime_name[128] = "";
1005char java_runtime_version[128] = "";
1006
1007// extract the JRE name from sun.misc.Version.java_runtime_name
1008static const char* get_java_runtime_name(TRAPS) {
1009  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1010                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1011  fieldDescriptor fd;
1012  bool found = k != NULL &&
1013               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1014                                                        vmSymbols::string_signature(), &fd);
1015  if (found) {
1016    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1017    if (name_oop == NULL) {
1018      return NULL;
1019    }
1020    const char* name = java_lang_String::as_utf8_string(name_oop,
1021                                                        java_runtime_name,
1022                                                        sizeof(java_runtime_name));
1023    return name;
1024  } else {
1025    return NULL;
1026  }
1027}
1028
1029// extract the JRE version from sun.misc.Version.java_runtime_version
1030static const char* get_java_runtime_version(TRAPS) {
1031  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1032                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1033  fieldDescriptor fd;
1034  bool found = k != NULL &&
1035               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1036                                                        vmSymbols::string_signature(), &fd);
1037  if (found) {
1038    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1039    if (name_oop == NULL) {
1040      return NULL;
1041    }
1042    const char* name = java_lang_String::as_utf8_string(name_oop,
1043                                                        java_runtime_version,
1044                                                        sizeof(java_runtime_version));
1045    return name;
1046  } else {
1047    return NULL;
1048  }
1049}
1050
1051// General purpose hook into Java code, run once when the VM is initialized.
1052// The Java library method itself may be changed independently from the VM.
1053static void call_postVMInitHook(TRAPS) {
1054  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1055  instanceKlassHandle klass (THREAD, k);
1056  if (klass.not_null()) {
1057    JavaValue result(T_VOID);
1058    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1059                           vmSymbols::void_method_signature(),
1060                           CHECK);
1061  }
1062}
1063
1064static void reset_vm_info_property(TRAPS) {
1065  // the vm info string
1066  ResourceMark rm(THREAD);
1067  const char *vm_info = VM_Version::vm_info_string();
1068
1069  // java.lang.System class
1070  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1071  instanceKlassHandle klass (THREAD, k);
1072
1073  // setProperty arguments
1074  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1075  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1076
1077  // return value
1078  JavaValue r(T_OBJECT);
1079
1080  // public static String setProperty(String key, String value);
1081  JavaCalls::call_static(&r,
1082                         klass,
1083                         vmSymbols::setProperty_name(),
1084                         vmSymbols::string_string_string_signature(),
1085                         key_str,
1086                         value_str,
1087                         CHECK);
1088}
1089
1090
1091void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1092                                    bool daemon, TRAPS) {
1093  assert(thread_group.not_null(), "thread group should be specified");
1094  assert(threadObj() == NULL, "should only create Java thread object once");
1095
1096  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1097  instanceKlassHandle klass (THREAD, k);
1098  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1099
1100  java_lang_Thread::set_thread(thread_oop(), this);
1101  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1102  set_threadObj(thread_oop());
1103
1104  JavaValue result(T_VOID);
1105  if (thread_name != NULL) {
1106    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1107    // Thread gets assigned specified name and null target
1108    JavaCalls::call_special(&result,
1109                            thread_oop,
1110                            klass,
1111                            vmSymbols::object_initializer_name(),
1112                            vmSymbols::threadgroup_string_void_signature(),
1113                            thread_group, // Argument 1
1114                            name,         // Argument 2
1115                            THREAD);
1116  } else {
1117    // Thread gets assigned name "Thread-nnn" and null target
1118    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1119    JavaCalls::call_special(&result,
1120                            thread_oop,
1121                            klass,
1122                            vmSymbols::object_initializer_name(),
1123                            vmSymbols::threadgroup_runnable_void_signature(),
1124                            thread_group, // Argument 1
1125                            Handle(),     // Argument 2
1126                            THREAD);
1127  }
1128
1129
1130  if (daemon) {
1131    java_lang_Thread::set_daemon(thread_oop());
1132  }
1133
1134  if (HAS_PENDING_EXCEPTION) {
1135    return;
1136  }
1137
1138  KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1139  Handle threadObj(THREAD, this->threadObj());
1140
1141  JavaCalls::call_special(&result,
1142                          thread_group,
1143                          group,
1144                          vmSymbols::add_method_name(),
1145                          vmSymbols::thread_void_signature(),
1146                          threadObj,          // Arg 1
1147                          THREAD);
1148}
1149
1150// NamedThread --  non-JavaThread subclasses with multiple
1151// uniquely named instances should derive from this.
1152NamedThread::NamedThread() : Thread() {
1153  _name = NULL;
1154  _processed_thread = NULL;
1155  _gc_id = GCId::undefined();
1156}
1157
1158NamedThread::~NamedThread() {
1159  if (_name != NULL) {
1160    FREE_C_HEAP_ARRAY(char, _name);
1161    _name = NULL;
1162  }
1163}
1164
1165void NamedThread::set_name(const char* format, ...) {
1166  guarantee(_name == NULL, "Only get to set name once.");
1167  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1168  guarantee(_name != NULL, "alloc failure");
1169  va_list ap;
1170  va_start(ap, format);
1171  jio_vsnprintf(_name, max_name_len, format, ap);
1172  va_end(ap);
1173}
1174
1175void NamedThread::initialize_named_thread() {
1176  set_native_thread_name(name());
1177}
1178
1179void NamedThread::print_on(outputStream* st) const {
1180  st->print("\"%s\" ", name());
1181  Thread::print_on(st);
1182  st->cr();
1183}
1184
1185
1186// ======= WatcherThread ========
1187
1188// The watcher thread exists to simulate timer interrupts.  It should
1189// be replaced by an abstraction over whatever native support for
1190// timer interrupts exists on the platform.
1191
1192WatcherThread* WatcherThread::_watcher_thread   = NULL;
1193bool WatcherThread::_startable = false;
1194volatile bool  WatcherThread::_should_terminate = false;
1195
1196WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1197  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1198  if (os::create_thread(this, os::watcher_thread)) {
1199    _watcher_thread = this;
1200
1201    // Set the watcher thread to the highest OS priority which should not be
1202    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1203    // is created. The only normal thread using this priority is the reference
1204    // handler thread, which runs for very short intervals only.
1205    // If the VMThread's priority is not lower than the WatcherThread profiling
1206    // will be inaccurate.
1207    os::set_priority(this, MaxPriority);
1208    if (!DisableStartThread) {
1209      os::start_thread(this);
1210    }
1211  }
1212}
1213
1214int WatcherThread::sleep() const {
1215  // The WatcherThread does not participate in the safepoint protocol
1216  // for the PeriodicTask_lock because it is not a JavaThread.
1217  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1218
1219  if (_should_terminate) {
1220    // check for termination before we do any housekeeping or wait
1221    return 0;  // we did not sleep.
1222  }
1223
1224  // remaining will be zero if there are no tasks,
1225  // causing the WatcherThread to sleep until a task is
1226  // enrolled
1227  int remaining = PeriodicTask::time_to_wait();
1228  int time_slept = 0;
1229
1230  // we expect this to timeout - we only ever get unparked when
1231  // we should terminate or when a new task has been enrolled
1232  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1233
1234  jlong time_before_loop = os::javaTimeNanos();
1235
1236  while (true) {
1237    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1238                                            remaining);
1239    jlong now = os::javaTimeNanos();
1240
1241    if (remaining == 0) {
1242      // if we didn't have any tasks we could have waited for a long time
1243      // consider the time_slept zero and reset time_before_loop
1244      time_slept = 0;
1245      time_before_loop = now;
1246    } else {
1247      // need to recalculate since we might have new tasks in _tasks
1248      time_slept = (int) ((now - time_before_loop) / 1000000);
1249    }
1250
1251    // Change to task list or spurious wakeup of some kind
1252    if (timedout || _should_terminate) {
1253      break;
1254    }
1255
1256    remaining = PeriodicTask::time_to_wait();
1257    if (remaining == 0) {
1258      // Last task was just disenrolled so loop around and wait until
1259      // another task gets enrolled
1260      continue;
1261    }
1262
1263    remaining -= time_slept;
1264    if (remaining <= 0) {
1265      break;
1266    }
1267  }
1268
1269  return time_slept;
1270}
1271
1272void WatcherThread::run() {
1273  assert(this == watcher_thread(), "just checking");
1274
1275  this->record_stack_base_and_size();
1276  this->set_native_thread_name(this->name());
1277  this->set_active_handles(JNIHandleBlock::allocate_block());
1278  while (true) {
1279    assert(watcher_thread() == Thread::current(), "thread consistency check");
1280    assert(watcher_thread() == this, "thread consistency check");
1281
1282    // Calculate how long it'll be until the next PeriodicTask work
1283    // should be done, and sleep that amount of time.
1284    int time_waited = sleep();
1285
1286    if (is_error_reported()) {
1287      // A fatal error has happened, the error handler(VMError::report_and_die)
1288      // should abort JVM after creating an error log file. However in some
1289      // rare cases, the error handler itself might deadlock. Here we try to
1290      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1291      //
1292      // This code is in WatcherThread because WatcherThread wakes up
1293      // periodically so the fatal error handler doesn't need to do anything;
1294      // also because the WatcherThread is less likely to crash than other
1295      // threads.
1296
1297      for (;;) {
1298        if (!ShowMessageBoxOnError
1299            && (OnError == NULL || OnError[0] == '\0')
1300            && Arguments::abort_hook() == NULL) {
1301          os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1302          fdStream err(defaultStream::output_fd());
1303          err.print_raw_cr("# [ timer expired, abort... ]");
1304          // skip atexit/vm_exit/vm_abort hooks
1305          os::die();
1306        }
1307
1308        // Wake up 5 seconds later, the fatal handler may reset OnError or
1309        // ShowMessageBoxOnError when it is ready to abort.
1310        os::sleep(this, 5 * 1000, false);
1311      }
1312    }
1313
1314    if (_should_terminate) {
1315      // check for termination before posting the next tick
1316      break;
1317    }
1318
1319    PeriodicTask::real_time_tick(time_waited);
1320  }
1321
1322  // Signal that it is terminated
1323  {
1324    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1325    _watcher_thread = NULL;
1326    Terminator_lock->notify();
1327  }
1328}
1329
1330void WatcherThread::start() {
1331  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1332
1333  if (watcher_thread() == NULL && _startable) {
1334    _should_terminate = false;
1335    // Create the single instance of WatcherThread
1336    new WatcherThread();
1337  }
1338}
1339
1340void WatcherThread::make_startable() {
1341  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342  _startable = true;
1343}
1344
1345void WatcherThread::stop() {
1346  {
1347    // Follow normal safepoint aware lock enter protocol since the
1348    // WatcherThread is stopped by another JavaThread.
1349    MutexLocker ml(PeriodicTask_lock);
1350    _should_terminate = true;
1351
1352    WatcherThread* watcher = watcher_thread();
1353    if (watcher != NULL) {
1354      // unpark the WatcherThread so it can see that it should terminate
1355      watcher->unpark();
1356    }
1357  }
1358
1359  MutexLocker mu(Terminator_lock);
1360
1361  while (watcher_thread() != NULL) {
1362    // This wait should make safepoint checks, wait without a timeout,
1363    // and wait as a suspend-equivalent condition.
1364    //
1365    // Note: If the FlatProfiler is running, then this thread is waiting
1366    // for the WatcherThread to terminate and the WatcherThread, via the
1367    // FlatProfiler task, is waiting for the external suspend request on
1368    // this thread to complete. wait_for_ext_suspend_completion() will
1369    // eventually timeout, but that takes time. Making this wait a
1370    // suspend-equivalent condition solves that timeout problem.
1371    //
1372    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1373                          Mutex::_as_suspend_equivalent_flag);
1374  }
1375}
1376
1377void WatcherThread::unpark() {
1378  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1379  PeriodicTask_lock->notify();
1380}
1381
1382void WatcherThread::print_on(outputStream* st) const {
1383  st->print("\"%s\" ", name());
1384  Thread::print_on(st);
1385  st->cr();
1386}
1387
1388// ======= JavaThread ========
1389
1390#if INCLUDE_JVMCI
1391
1392jlong* JavaThread::_jvmci_old_thread_counters;
1393
1394bool jvmci_counters_include(JavaThread* thread) {
1395  oop threadObj = thread->threadObj();
1396  return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1397}
1398
1399void JavaThread::collect_counters(typeArrayOop array) {
1400  if (JVMCICounterSize > 0) {
1401    MutexLocker tl(Threads_lock);
1402    for (int i = 0; i < array->length(); i++) {
1403      array->long_at_put(i, _jvmci_old_thread_counters[i]);
1404    }
1405    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1406      if (jvmci_counters_include(tp)) {
1407        for (int i = 0; i < array->length(); i++) {
1408          array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1409        }
1410      }
1411    }
1412  }
1413}
1414
1415#endif // INCLUDE_JVMCI
1416
1417// A JavaThread is a normal Java thread
1418
1419void JavaThread::initialize() {
1420  // Initialize fields
1421
1422  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1423  set_claimed_par_id(UINT_MAX);
1424
1425  set_saved_exception_pc(NULL);
1426  set_threadObj(NULL);
1427  _anchor.clear();
1428  set_entry_point(NULL);
1429  set_jni_functions(jni_functions());
1430  set_callee_target(NULL);
1431  set_vm_result(NULL);
1432  set_vm_result_2(NULL);
1433  set_vframe_array_head(NULL);
1434  set_vframe_array_last(NULL);
1435  set_deferred_locals(NULL);
1436  set_deopt_mark(NULL);
1437  set_deopt_nmethod(NULL);
1438  clear_must_deopt_id();
1439  set_monitor_chunks(NULL);
1440  set_next(NULL);
1441  set_thread_state(_thread_new);
1442  _terminated = _not_terminated;
1443  _privileged_stack_top = NULL;
1444  _array_for_gc = NULL;
1445  _suspend_equivalent = false;
1446  _in_deopt_handler = 0;
1447  _doing_unsafe_access = false;
1448  _stack_guard_state = stack_guard_unused;
1449#if INCLUDE_JVMCI
1450  _pending_monitorenter = false;
1451  _pending_deoptimization = -1;
1452  _pending_failed_speculation = NULL;
1453  _pending_transfer_to_interpreter = false;
1454  _jvmci._alternate_call_target = NULL;
1455  assert(_jvmci._implicit_exception_pc == NULL, "must be");
1456  if (JVMCICounterSize > 0) {
1457    _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1458    memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1459  } else {
1460    _jvmci_counters = NULL;
1461  }
1462#endif // INCLUDE_JVMCI
1463  _reserved_stack_activation = NULL;  // stack base not known yet
1464  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1465  _exception_pc  = 0;
1466  _exception_handler_pc = 0;
1467  _is_method_handle_return = 0;
1468  _jvmti_thread_state= NULL;
1469  _should_post_on_exceptions_flag = JNI_FALSE;
1470  _jvmti_get_loaded_classes_closure = NULL;
1471  _interp_only_mode    = 0;
1472  _special_runtime_exit_condition = _no_async_condition;
1473  _pending_async_exception = NULL;
1474  _thread_stat = NULL;
1475  _thread_stat = new ThreadStatistics();
1476  _blocked_on_compilation = false;
1477  _jni_active_critical = 0;
1478  _pending_jni_exception_check_fn = NULL;
1479  _do_not_unlock_if_synchronized = false;
1480  _cached_monitor_info = NULL;
1481  _parker = Parker::Allocate(this);
1482
1483#ifndef PRODUCT
1484  _jmp_ring_index = 0;
1485  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1486    record_jump(NULL, NULL, NULL, 0);
1487  }
1488#endif // PRODUCT
1489
1490  set_thread_profiler(NULL);
1491  if (FlatProfiler::is_active()) {
1492    // This is where we would decide to either give each thread it's own profiler
1493    // or use one global one from FlatProfiler,
1494    // or up to some count of the number of profiled threads, etc.
1495    ThreadProfiler* pp = new ThreadProfiler();
1496    pp->engage();
1497    set_thread_profiler(pp);
1498  }
1499
1500  // Setup safepoint state info for this thread
1501  ThreadSafepointState::create(this);
1502
1503  debug_only(_java_call_counter = 0);
1504
1505  // JVMTI PopFrame support
1506  _popframe_condition = popframe_inactive;
1507  _popframe_preserved_args = NULL;
1508  _popframe_preserved_args_size = 0;
1509  _frames_to_pop_failed_realloc = 0;
1510
1511  pd_initialize();
1512}
1513
1514#if INCLUDE_ALL_GCS
1515SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1516DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1517#endif // INCLUDE_ALL_GCS
1518
1519JavaThread::JavaThread(bool is_attaching_via_jni) :
1520                       Thread()
1521#if INCLUDE_ALL_GCS
1522                       , _satb_mark_queue(&_satb_mark_queue_set),
1523                       _dirty_card_queue(&_dirty_card_queue_set)
1524#endif // INCLUDE_ALL_GCS
1525{
1526  initialize();
1527  if (is_attaching_via_jni) {
1528    _jni_attach_state = _attaching_via_jni;
1529  } else {
1530    _jni_attach_state = _not_attaching_via_jni;
1531  }
1532  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1533}
1534
1535bool JavaThread::reguard_stack(address cur_sp) {
1536  if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1537      && _stack_guard_state != stack_guard_reserved_disabled) {
1538    return true; // Stack already guarded or guard pages not needed.
1539  }
1540
1541  if (register_stack_overflow()) {
1542    // For those architectures which have separate register and
1543    // memory stacks, we must check the register stack to see if
1544    // it has overflowed.
1545    return false;
1546  }
1547
1548  // Java code never executes within the yellow zone: the latter is only
1549  // there to provoke an exception during stack banging.  If java code
1550  // is executing there, either StackShadowPages should be larger, or
1551  // some exception code in c1, c2 or the interpreter isn't unwinding
1552  // when it should.
1553  guarantee(cur_sp > stack_reserved_zone_base(),
1554            "not enough space to reguard - increase StackShadowPages");
1555  if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1556    enable_stack_yellow_reserved_zone();
1557    if (reserved_stack_activation() != stack_base()) {
1558      set_reserved_stack_activation(stack_base());
1559    }
1560  } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1561    set_reserved_stack_activation(stack_base());
1562    enable_stack_reserved_zone();
1563  }
1564  return true;
1565}
1566
1567bool JavaThread::reguard_stack(void) {
1568  return reguard_stack(os::current_stack_pointer());
1569}
1570
1571
1572void JavaThread::block_if_vm_exited() {
1573  if (_terminated == _vm_exited) {
1574    // _vm_exited is set at safepoint, and Threads_lock is never released
1575    // we will block here forever
1576    Threads_lock->lock_without_safepoint_check();
1577    ShouldNotReachHere();
1578  }
1579}
1580
1581
1582// Remove this ifdef when C1 is ported to the compiler interface.
1583static void compiler_thread_entry(JavaThread* thread, TRAPS);
1584static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1585
1586JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1587                       Thread()
1588#if INCLUDE_ALL_GCS
1589                       , _satb_mark_queue(&_satb_mark_queue_set),
1590                       _dirty_card_queue(&_dirty_card_queue_set)
1591#endif // INCLUDE_ALL_GCS
1592{
1593  initialize();
1594  _jni_attach_state = _not_attaching_via_jni;
1595  set_entry_point(entry_point);
1596  // Create the native thread itself.
1597  // %note runtime_23
1598  os::ThreadType thr_type = os::java_thread;
1599  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1600                                                     os::java_thread;
1601  os::create_thread(this, thr_type, stack_sz);
1602  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1603  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1604  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1605  // the exception consists of creating the exception object & initializing it, initialization
1606  // will leave the VM via a JavaCall and then all locks must be unlocked).
1607  //
1608  // The thread is still suspended when we reach here. Thread must be explicit started
1609  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1610  // by calling Threads:add. The reason why this is not done here, is because the thread
1611  // object must be fully initialized (take a look at JVM_Start)
1612}
1613
1614JavaThread::~JavaThread() {
1615
1616  // JSR166 -- return the parker to the free list
1617  Parker::Release(_parker);
1618  _parker = NULL;
1619
1620  // Free any remaining  previous UnrollBlock
1621  vframeArray* old_array = vframe_array_last();
1622
1623  if (old_array != NULL) {
1624    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1625    old_array->set_unroll_block(NULL);
1626    delete old_info;
1627    delete old_array;
1628  }
1629
1630  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1631  if (deferred != NULL) {
1632    // This can only happen if thread is destroyed before deoptimization occurs.
1633    assert(deferred->length() != 0, "empty array!");
1634    do {
1635      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1636      deferred->remove_at(0);
1637      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1638      delete dlv;
1639    } while (deferred->length() != 0);
1640    delete deferred;
1641  }
1642
1643  // All Java related clean up happens in exit
1644  ThreadSafepointState::destroy(this);
1645  if (_thread_profiler != NULL) delete _thread_profiler;
1646  if (_thread_stat != NULL) delete _thread_stat;
1647
1648#if INCLUDE_JVMCI
1649  if (JVMCICounterSize > 0) {
1650    if (jvmci_counters_include(this)) {
1651      for (int i = 0; i < JVMCICounterSize; i++) {
1652        _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1653      }
1654    }
1655    FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1656  }
1657#endif // INCLUDE_JVMCI
1658}
1659
1660
1661// The first routine called by a new Java thread
1662void JavaThread::run() {
1663  // initialize thread-local alloc buffer related fields
1664  this->initialize_tlab();
1665
1666  // used to test validity of stack trace backs
1667  this->record_base_of_stack_pointer();
1668
1669  // Record real stack base and size.
1670  this->record_stack_base_and_size();
1671
1672  this->create_stack_guard_pages();
1673
1674  this->cache_global_variables();
1675
1676  // Thread is now sufficient initialized to be handled by the safepoint code as being
1677  // in the VM. Change thread state from _thread_new to _thread_in_vm
1678  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1679
1680  assert(JavaThread::current() == this, "sanity check");
1681  assert(!Thread::current()->owns_locks(), "sanity check");
1682
1683  DTRACE_THREAD_PROBE(start, this);
1684
1685  // This operation might block. We call that after all safepoint checks for a new thread has
1686  // been completed.
1687  this->set_active_handles(JNIHandleBlock::allocate_block());
1688
1689  if (JvmtiExport::should_post_thread_life()) {
1690    JvmtiExport::post_thread_start(this);
1691  }
1692
1693  EventThreadStart event;
1694  if (event.should_commit()) {
1695    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1696    event.commit();
1697  }
1698
1699  // We call another function to do the rest so we are sure that the stack addresses used
1700  // from there will be lower than the stack base just computed
1701  thread_main_inner();
1702
1703  // Note, thread is no longer valid at this point!
1704}
1705
1706
1707void JavaThread::thread_main_inner() {
1708  assert(JavaThread::current() == this, "sanity check");
1709  assert(this->threadObj() != NULL, "just checking");
1710
1711  // Execute thread entry point unless this thread has a pending exception
1712  // or has been stopped before starting.
1713  // Note: Due to JVM_StopThread we can have pending exceptions already!
1714  if (!this->has_pending_exception() &&
1715      !java_lang_Thread::is_stillborn(this->threadObj())) {
1716    {
1717      ResourceMark rm(this);
1718      this->set_native_thread_name(this->get_thread_name());
1719    }
1720    HandleMark hm(this);
1721    this->entry_point()(this, this);
1722  }
1723
1724  DTRACE_THREAD_PROBE(stop, this);
1725
1726  this->exit(false);
1727  delete this;
1728}
1729
1730
1731static void ensure_join(JavaThread* thread) {
1732  // We do not need to grap the Threads_lock, since we are operating on ourself.
1733  Handle threadObj(thread, thread->threadObj());
1734  assert(threadObj.not_null(), "java thread object must exist");
1735  ObjectLocker lock(threadObj, thread);
1736  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1737  thread->clear_pending_exception();
1738  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1739  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1740  // Clear the native thread instance - this makes isAlive return false and allows the join()
1741  // to complete once we've done the notify_all below
1742  java_lang_Thread::set_thread(threadObj(), NULL);
1743  lock.notify_all(thread);
1744  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1745  thread->clear_pending_exception();
1746}
1747
1748
1749// For any new cleanup additions, please check to see if they need to be applied to
1750// cleanup_failed_attach_current_thread as well.
1751void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1752  assert(this == JavaThread::current(), "thread consistency check");
1753
1754  HandleMark hm(this);
1755  Handle uncaught_exception(this, this->pending_exception());
1756  this->clear_pending_exception();
1757  Handle threadObj(this, this->threadObj());
1758  assert(threadObj.not_null(), "Java thread object should be created");
1759
1760  if (get_thread_profiler() != NULL) {
1761    get_thread_profiler()->disengage();
1762    ResourceMark rm;
1763    get_thread_profiler()->print(get_thread_name());
1764  }
1765
1766
1767  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1768  {
1769    EXCEPTION_MARK;
1770
1771    CLEAR_PENDING_EXCEPTION;
1772  }
1773  if (!destroy_vm) {
1774    if (uncaught_exception.not_null()) {
1775      EXCEPTION_MARK;
1776      // Call method Thread.dispatchUncaughtException().
1777      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1778      JavaValue result(T_VOID);
1779      JavaCalls::call_virtual(&result,
1780                              threadObj, thread_klass,
1781                              vmSymbols::dispatchUncaughtException_name(),
1782                              vmSymbols::throwable_void_signature(),
1783                              uncaught_exception,
1784                              THREAD);
1785      if (HAS_PENDING_EXCEPTION) {
1786        ResourceMark rm(this);
1787        jio_fprintf(defaultStream::error_stream(),
1788                    "\nException: %s thrown from the UncaughtExceptionHandler"
1789                    " in thread \"%s\"\n",
1790                    pending_exception()->klass()->external_name(),
1791                    get_thread_name());
1792        CLEAR_PENDING_EXCEPTION;
1793      }
1794    }
1795
1796    // Called before the java thread exit since we want to read info
1797    // from java_lang_Thread object
1798    EventThreadEnd event;
1799    if (event.should_commit()) {
1800      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1801      event.commit();
1802    }
1803
1804    // Call after last event on thread
1805    EVENT_THREAD_EXIT(this);
1806
1807    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1808    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1809    // is deprecated anyhow.
1810    if (!is_Compiler_thread()) {
1811      int count = 3;
1812      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1813        EXCEPTION_MARK;
1814        JavaValue result(T_VOID);
1815        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1816        JavaCalls::call_virtual(&result,
1817                                threadObj, thread_klass,
1818                                vmSymbols::exit_method_name(),
1819                                vmSymbols::void_method_signature(),
1820                                THREAD);
1821        CLEAR_PENDING_EXCEPTION;
1822      }
1823    }
1824    // notify JVMTI
1825    if (JvmtiExport::should_post_thread_life()) {
1826      JvmtiExport::post_thread_end(this);
1827    }
1828
1829    // We have notified the agents that we are exiting, before we go on,
1830    // we must check for a pending external suspend request and honor it
1831    // in order to not surprise the thread that made the suspend request.
1832    while (true) {
1833      {
1834        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1835        if (!is_external_suspend()) {
1836          set_terminated(_thread_exiting);
1837          ThreadService::current_thread_exiting(this);
1838          break;
1839        }
1840        // Implied else:
1841        // Things get a little tricky here. We have a pending external
1842        // suspend request, but we are holding the SR_lock so we
1843        // can't just self-suspend. So we temporarily drop the lock
1844        // and then self-suspend.
1845      }
1846
1847      ThreadBlockInVM tbivm(this);
1848      java_suspend_self();
1849
1850      // We're done with this suspend request, but we have to loop around
1851      // and check again. Eventually we will get SR_lock without a pending
1852      // external suspend request and will be able to mark ourselves as
1853      // exiting.
1854    }
1855    // no more external suspends are allowed at this point
1856  } else {
1857    // before_exit() has already posted JVMTI THREAD_END events
1858  }
1859
1860  // Notify waiters on thread object. This has to be done after exit() is called
1861  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1862  // group should have the destroyed bit set before waiters are notified).
1863  ensure_join(this);
1864  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1865
1866  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1867  // held by this thread must be released. The spec does not distinguish
1868  // between JNI-acquired and regular Java monitors. We can only see
1869  // regular Java monitors here if monitor enter-exit matching is broken.
1870  //
1871  // Optionally release any monitors for regular JavaThread exits. This
1872  // is provided as a work around for any bugs in monitor enter-exit
1873  // matching. This can be expensive so it is not enabled by default.
1874  //
1875  // ensure_join() ignores IllegalThreadStateExceptions, and so does
1876  // ObjectSynchronizer::release_monitors_owned_by_thread().
1877  if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1878    // Sanity check even though JNI DetachCurrentThread() would have
1879    // returned JNI_ERR if there was a Java frame. JavaThread exit
1880    // should be done executing Java code by the time we get here.
1881    assert(!this->has_last_Java_frame(),
1882           "should not have a Java frame when detaching or exiting");
1883    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1884    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1885  }
1886
1887  // These things needs to be done while we are still a Java Thread. Make sure that thread
1888  // is in a consistent state, in case GC happens
1889  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1890
1891  if (active_handles() != NULL) {
1892    JNIHandleBlock* block = active_handles();
1893    set_active_handles(NULL);
1894    JNIHandleBlock::release_block(block);
1895  }
1896
1897  if (free_handle_block() != NULL) {
1898    JNIHandleBlock* block = free_handle_block();
1899    set_free_handle_block(NULL);
1900    JNIHandleBlock::release_block(block);
1901  }
1902
1903  // These have to be removed while this is still a valid thread.
1904  remove_stack_guard_pages();
1905
1906  if (UseTLAB) {
1907    tlab().make_parsable(true);  // retire TLAB
1908  }
1909
1910  if (JvmtiEnv::environments_might_exist()) {
1911    JvmtiExport::cleanup_thread(this);
1912  }
1913
1914  // We must flush any deferred card marks before removing a thread from
1915  // the list of active threads.
1916  Universe::heap()->flush_deferred_store_barrier(this);
1917  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1918
1919#if INCLUDE_ALL_GCS
1920  // We must flush the G1-related buffers before removing a thread
1921  // from the list of active threads. We must do this after any deferred
1922  // card marks have been flushed (above) so that any entries that are
1923  // added to the thread's dirty card queue as a result are not lost.
1924  if (UseG1GC) {
1925    flush_barrier_queues();
1926  }
1927#endif // INCLUDE_ALL_GCS
1928
1929  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1930  Threads::remove(this);
1931}
1932
1933#if INCLUDE_ALL_GCS
1934// Flush G1-related queues.
1935void JavaThread::flush_barrier_queues() {
1936  satb_mark_queue().flush();
1937  dirty_card_queue().flush();
1938}
1939
1940void JavaThread::initialize_queues() {
1941  assert(!SafepointSynchronize::is_at_safepoint(),
1942         "we should not be at a safepoint");
1943
1944  SATBMarkQueue& satb_queue = satb_mark_queue();
1945  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1946  // The SATB queue should have been constructed with its active
1947  // field set to false.
1948  assert(!satb_queue.is_active(), "SATB queue should not be active");
1949  assert(satb_queue.is_empty(), "SATB queue should be empty");
1950  // If we are creating the thread during a marking cycle, we should
1951  // set the active field of the SATB queue to true.
1952  if (satb_queue_set.is_active()) {
1953    satb_queue.set_active(true);
1954  }
1955
1956  DirtyCardQueue& dirty_queue = dirty_card_queue();
1957  // The dirty card queue should have been constructed with its
1958  // active field set to true.
1959  assert(dirty_queue.is_active(), "dirty card queue should be active");
1960}
1961#endif // INCLUDE_ALL_GCS
1962
1963void JavaThread::cleanup_failed_attach_current_thread() {
1964  if (get_thread_profiler() != NULL) {
1965    get_thread_profiler()->disengage();
1966    ResourceMark rm;
1967    get_thread_profiler()->print(get_thread_name());
1968  }
1969
1970  if (active_handles() != NULL) {
1971    JNIHandleBlock* block = active_handles();
1972    set_active_handles(NULL);
1973    JNIHandleBlock::release_block(block);
1974  }
1975
1976  if (free_handle_block() != NULL) {
1977    JNIHandleBlock* block = free_handle_block();
1978    set_free_handle_block(NULL);
1979    JNIHandleBlock::release_block(block);
1980  }
1981
1982  // These have to be removed while this is still a valid thread.
1983  remove_stack_guard_pages();
1984
1985  if (UseTLAB) {
1986    tlab().make_parsable(true);  // retire TLAB, if any
1987  }
1988
1989#if INCLUDE_ALL_GCS
1990  if (UseG1GC) {
1991    flush_barrier_queues();
1992  }
1993#endif // INCLUDE_ALL_GCS
1994
1995  Threads::remove(this);
1996  delete this;
1997}
1998
1999
2000
2001
2002JavaThread* JavaThread::active() {
2003  Thread* thread = Thread::current();
2004  if (thread->is_Java_thread()) {
2005    return (JavaThread*) thread;
2006  } else {
2007    assert(thread->is_VM_thread(), "this must be a vm thread");
2008    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2009    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2010    assert(ret->is_Java_thread(), "must be a Java thread");
2011    return ret;
2012  }
2013}
2014
2015bool JavaThread::is_lock_owned(address adr) const {
2016  if (Thread::is_lock_owned(adr)) return true;
2017
2018  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2019    if (chunk->contains(adr)) return true;
2020  }
2021
2022  return false;
2023}
2024
2025
2026void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2027  chunk->set_next(monitor_chunks());
2028  set_monitor_chunks(chunk);
2029}
2030
2031void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2032  guarantee(monitor_chunks() != NULL, "must be non empty");
2033  if (monitor_chunks() == chunk) {
2034    set_monitor_chunks(chunk->next());
2035  } else {
2036    MonitorChunk* prev = monitor_chunks();
2037    while (prev->next() != chunk) prev = prev->next();
2038    prev->set_next(chunk->next());
2039  }
2040}
2041
2042// JVM support.
2043
2044// Note: this function shouldn't block if it's called in
2045// _thread_in_native_trans state (such as from
2046// check_special_condition_for_native_trans()).
2047void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2048
2049  if (has_last_Java_frame() && has_async_condition()) {
2050    // If we are at a polling page safepoint (not a poll return)
2051    // then we must defer async exception because live registers
2052    // will be clobbered by the exception path. Poll return is
2053    // ok because the call we a returning from already collides
2054    // with exception handling registers and so there is no issue.
2055    // (The exception handling path kills call result registers but
2056    //  this is ok since the exception kills the result anyway).
2057
2058    if (is_at_poll_safepoint()) {
2059      // if the code we are returning to has deoptimized we must defer
2060      // the exception otherwise live registers get clobbered on the
2061      // exception path before deoptimization is able to retrieve them.
2062      //
2063      RegisterMap map(this, false);
2064      frame caller_fr = last_frame().sender(&map);
2065      assert(caller_fr.is_compiled_frame(), "what?");
2066      if (caller_fr.is_deoptimized_frame()) {
2067        log_info(exceptions)("deferred async exception at compiled safepoint");
2068        return;
2069      }
2070    }
2071  }
2072
2073  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2074  if (condition == _no_async_condition) {
2075    // Conditions have changed since has_special_runtime_exit_condition()
2076    // was called:
2077    // - if we were here only because of an external suspend request,
2078    //   then that was taken care of above (or cancelled) so we are done
2079    // - if we were here because of another async request, then it has
2080    //   been cleared between the has_special_runtime_exit_condition()
2081    //   and now so again we are done
2082    return;
2083  }
2084
2085  // Check for pending async. exception
2086  if (_pending_async_exception != NULL) {
2087    // Only overwrite an already pending exception, if it is not a threadDeath.
2088    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2089
2090      // We cannot call Exceptions::_throw(...) here because we cannot block
2091      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2092
2093      if (log_is_enabled(Info, exceptions)) {
2094        ResourceMark rm;
2095        outputStream* logstream = LogHandle(exceptions)::info_stream();
2096        logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2097          if (has_last_Java_frame()) {
2098            frame f = last_frame();
2099           logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2100          }
2101        logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2102      }
2103      _pending_async_exception = NULL;
2104      clear_has_async_exception();
2105    }
2106  }
2107
2108  if (check_unsafe_error &&
2109      condition == _async_unsafe_access_error && !has_pending_exception()) {
2110    condition = _no_async_condition;  // done
2111    switch (thread_state()) {
2112    case _thread_in_vm: {
2113      JavaThread* THREAD = this;
2114      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2115    }
2116    case _thread_in_native: {
2117      ThreadInVMfromNative tiv(this);
2118      JavaThread* THREAD = this;
2119      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2120    }
2121    case _thread_in_Java: {
2122      ThreadInVMfromJava tiv(this);
2123      JavaThread* THREAD = this;
2124      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2125    }
2126    default:
2127      ShouldNotReachHere();
2128    }
2129  }
2130
2131  assert(condition == _no_async_condition || has_pending_exception() ||
2132         (!check_unsafe_error && condition == _async_unsafe_access_error),
2133         "must have handled the async condition, if no exception");
2134}
2135
2136void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2137  //
2138  // Check for pending external suspend. Internal suspend requests do
2139  // not use handle_special_runtime_exit_condition().
2140  // If JNIEnv proxies are allowed, don't self-suspend if the target
2141  // thread is not the current thread. In older versions of jdbx, jdbx
2142  // threads could call into the VM with another thread's JNIEnv so we
2143  // can be here operating on behalf of a suspended thread (4432884).
2144  bool do_self_suspend = is_external_suspend_with_lock();
2145  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2146    //
2147    // Because thread is external suspended the safepoint code will count
2148    // thread as at a safepoint. This can be odd because we can be here
2149    // as _thread_in_Java which would normally transition to _thread_blocked
2150    // at a safepoint. We would like to mark the thread as _thread_blocked
2151    // before calling java_suspend_self like all other callers of it but
2152    // we must then observe proper safepoint protocol. (We can't leave
2153    // _thread_blocked with a safepoint in progress). However we can be
2154    // here as _thread_in_native_trans so we can't use a normal transition
2155    // constructor/destructor pair because they assert on that type of
2156    // transition. We could do something like:
2157    //
2158    // JavaThreadState state = thread_state();
2159    // set_thread_state(_thread_in_vm);
2160    // {
2161    //   ThreadBlockInVM tbivm(this);
2162    //   java_suspend_self()
2163    // }
2164    // set_thread_state(_thread_in_vm_trans);
2165    // if (safepoint) block;
2166    // set_thread_state(state);
2167    //
2168    // but that is pretty messy. Instead we just go with the way the
2169    // code has worked before and note that this is the only path to
2170    // java_suspend_self that doesn't put the thread in _thread_blocked
2171    // mode.
2172
2173    frame_anchor()->make_walkable(this);
2174    java_suspend_self();
2175
2176    // We might be here for reasons in addition to the self-suspend request
2177    // so check for other async requests.
2178  }
2179
2180  if (check_asyncs) {
2181    check_and_handle_async_exceptions();
2182  }
2183}
2184
2185void JavaThread::send_thread_stop(oop java_throwable)  {
2186  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2187  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2188  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2189
2190  // Do not throw asynchronous exceptions against the compiler thread
2191  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2192  if (!can_call_java()) return;
2193
2194  {
2195    // Actually throw the Throwable against the target Thread - however
2196    // only if there is no thread death exception installed already.
2197    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2198      // If the topmost frame is a runtime stub, then we are calling into
2199      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2200      // must deoptimize the caller before continuing, as the compiled  exception handler table
2201      // may not be valid
2202      if (has_last_Java_frame()) {
2203        frame f = last_frame();
2204        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2205          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2206          RegisterMap reg_map(this, UseBiasedLocking);
2207          frame compiled_frame = f.sender(&reg_map);
2208          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2209            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2210          }
2211        }
2212      }
2213
2214      // Set async. pending exception in thread.
2215      set_pending_async_exception(java_throwable);
2216
2217      if (log_is_enabled(Info, exceptions)) {
2218         ResourceMark rm;
2219        log_info(exceptions)("Pending Async. exception installed of type: %s",
2220                             InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2221      }
2222      // for AbortVMOnException flag
2223      Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2224    }
2225  }
2226
2227
2228  // Interrupt thread so it will wake up from a potential wait()
2229  Thread::interrupt(this);
2230}
2231
2232// External suspension mechanism.
2233//
2234// Tell the VM to suspend a thread when ever it knows that it does not hold on
2235// to any VM_locks and it is at a transition
2236// Self-suspension will happen on the transition out of the vm.
2237// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2238//
2239// Guarantees on return:
2240//   + Target thread will not execute any new bytecode (that's why we need to
2241//     force a safepoint)
2242//   + Target thread will not enter any new monitors
2243//
2244void JavaThread::java_suspend() {
2245  { MutexLocker mu(Threads_lock);
2246    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2247      return;
2248    }
2249  }
2250
2251  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2252    if (!is_external_suspend()) {
2253      // a racing resume has cancelled us; bail out now
2254      return;
2255    }
2256
2257    // suspend is done
2258    uint32_t debug_bits = 0;
2259    // Warning: is_ext_suspend_completed() may temporarily drop the
2260    // SR_lock to allow the thread to reach a stable thread state if
2261    // it is currently in a transient thread state.
2262    if (is_ext_suspend_completed(false /* !called_by_wait */,
2263                                 SuspendRetryDelay, &debug_bits)) {
2264      return;
2265    }
2266  }
2267
2268  VM_ForceSafepoint vm_suspend;
2269  VMThread::execute(&vm_suspend);
2270}
2271
2272// Part II of external suspension.
2273// A JavaThread self suspends when it detects a pending external suspend
2274// request. This is usually on transitions. It is also done in places
2275// where continuing to the next transition would surprise the caller,
2276// e.g., monitor entry.
2277//
2278// Returns the number of times that the thread self-suspended.
2279//
2280// Note: DO NOT call java_suspend_self() when you just want to block current
2281//       thread. java_suspend_self() is the second stage of cooperative
2282//       suspension for external suspend requests and should only be used
2283//       to complete an external suspend request.
2284//
2285int JavaThread::java_suspend_self() {
2286  int ret = 0;
2287
2288  // we are in the process of exiting so don't suspend
2289  if (is_exiting()) {
2290    clear_external_suspend();
2291    return ret;
2292  }
2293
2294  assert(_anchor.walkable() ||
2295         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2296         "must have walkable stack");
2297
2298  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2299
2300  assert(!this->is_ext_suspended(),
2301         "a thread trying to self-suspend should not already be suspended");
2302
2303  if (this->is_suspend_equivalent()) {
2304    // If we are self-suspending as a result of the lifting of a
2305    // suspend equivalent condition, then the suspend_equivalent
2306    // flag is not cleared until we set the ext_suspended flag so
2307    // that wait_for_ext_suspend_completion() returns consistent
2308    // results.
2309    this->clear_suspend_equivalent();
2310  }
2311
2312  // A racing resume may have cancelled us before we grabbed SR_lock
2313  // above. Or another external suspend request could be waiting for us
2314  // by the time we return from SR_lock()->wait(). The thread
2315  // that requested the suspension may already be trying to walk our
2316  // stack and if we return now, we can change the stack out from under
2317  // it. This would be a "bad thing (TM)" and cause the stack walker
2318  // to crash. We stay self-suspended until there are no more pending
2319  // external suspend requests.
2320  while (is_external_suspend()) {
2321    ret++;
2322    this->set_ext_suspended();
2323
2324    // _ext_suspended flag is cleared by java_resume()
2325    while (is_ext_suspended()) {
2326      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2327    }
2328  }
2329
2330  return ret;
2331}
2332
2333#ifdef ASSERT
2334// verify the JavaThread has not yet been published in the Threads::list, and
2335// hence doesn't need protection from concurrent access at this stage
2336void JavaThread::verify_not_published() {
2337  if (!Threads_lock->owned_by_self()) {
2338    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2339    assert(!Threads::includes(this),
2340           "java thread shouldn't have been published yet!");
2341  } else {
2342    assert(!Threads::includes(this),
2343           "java thread shouldn't have been published yet!");
2344  }
2345}
2346#endif
2347
2348// Slow path when the native==>VM/Java barriers detect a safepoint is in
2349// progress or when _suspend_flags is non-zero.
2350// Current thread needs to self-suspend if there is a suspend request and/or
2351// block if a safepoint is in progress.
2352// Async exception ISN'T checked.
2353// Note only the ThreadInVMfromNative transition can call this function
2354// directly and when thread state is _thread_in_native_trans
2355void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2356  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2357
2358  JavaThread *curJT = JavaThread::current();
2359  bool do_self_suspend = thread->is_external_suspend();
2360
2361  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2362
2363  // If JNIEnv proxies are allowed, don't self-suspend if the target
2364  // thread is not the current thread. In older versions of jdbx, jdbx
2365  // threads could call into the VM with another thread's JNIEnv so we
2366  // can be here operating on behalf of a suspended thread (4432884).
2367  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2368    JavaThreadState state = thread->thread_state();
2369
2370    // We mark this thread_blocked state as a suspend-equivalent so
2371    // that a caller to is_ext_suspend_completed() won't be confused.
2372    // The suspend-equivalent state is cleared by java_suspend_self().
2373    thread->set_suspend_equivalent();
2374
2375    // If the safepoint code sees the _thread_in_native_trans state, it will
2376    // wait until the thread changes to other thread state. There is no
2377    // guarantee on how soon we can obtain the SR_lock and complete the
2378    // self-suspend request. It would be a bad idea to let safepoint wait for
2379    // too long. Temporarily change the state to _thread_blocked to
2380    // let the VM thread know that this thread is ready for GC. The problem
2381    // of changing thread state is that safepoint could happen just after
2382    // java_suspend_self() returns after being resumed, and VM thread will
2383    // see the _thread_blocked state. We must check for safepoint
2384    // after restoring the state and make sure we won't leave while a safepoint
2385    // is in progress.
2386    thread->set_thread_state(_thread_blocked);
2387    thread->java_suspend_self();
2388    thread->set_thread_state(state);
2389    // Make sure new state is seen by VM thread
2390    if (os::is_MP()) {
2391      if (UseMembar) {
2392        // Force a fence between the write above and read below
2393        OrderAccess::fence();
2394      } else {
2395        // Must use this rather than serialization page in particular on Windows
2396        InterfaceSupport::serialize_memory(thread);
2397      }
2398    }
2399  }
2400
2401  if (SafepointSynchronize::do_call_back()) {
2402    // If we are safepointing, then block the caller which may not be
2403    // the same as the target thread (see above).
2404    SafepointSynchronize::block(curJT);
2405  }
2406
2407  if (thread->is_deopt_suspend()) {
2408    thread->clear_deopt_suspend();
2409    RegisterMap map(thread, false);
2410    frame f = thread->last_frame();
2411    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2412      f = f.sender(&map);
2413    }
2414    if (f.id() == thread->must_deopt_id()) {
2415      thread->clear_must_deopt_id();
2416      f.deoptimize(thread);
2417    } else {
2418      fatal("missed deoptimization!");
2419    }
2420  }
2421}
2422
2423// Slow path when the native==>VM/Java barriers detect a safepoint is in
2424// progress or when _suspend_flags is non-zero.
2425// Current thread needs to self-suspend if there is a suspend request and/or
2426// block if a safepoint is in progress.
2427// Also check for pending async exception (not including unsafe access error).
2428// Note only the native==>VM/Java barriers can call this function and when
2429// thread state is _thread_in_native_trans.
2430void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2431  check_safepoint_and_suspend_for_native_trans(thread);
2432
2433  if (thread->has_async_exception()) {
2434    // We are in _thread_in_native_trans state, don't handle unsafe
2435    // access error since that may block.
2436    thread->check_and_handle_async_exceptions(false);
2437  }
2438}
2439
2440// This is a variant of the normal
2441// check_special_condition_for_native_trans with slightly different
2442// semantics for use by critical native wrappers.  It does all the
2443// normal checks but also performs the transition back into
2444// thread_in_Java state.  This is required so that critical natives
2445// can potentially block and perform a GC if they are the last thread
2446// exiting the GC_locker.
2447void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2448  check_special_condition_for_native_trans(thread);
2449
2450  // Finish the transition
2451  thread->set_thread_state(_thread_in_Java);
2452
2453  if (thread->do_critical_native_unlock()) {
2454    ThreadInVMfromJavaNoAsyncException tiv(thread);
2455    GC_locker::unlock_critical(thread);
2456    thread->clear_critical_native_unlock();
2457  }
2458}
2459
2460// We need to guarantee the Threads_lock here, since resumes are not
2461// allowed during safepoint synchronization
2462// Can only resume from an external suspension
2463void JavaThread::java_resume() {
2464  assert_locked_or_safepoint(Threads_lock);
2465
2466  // Sanity check: thread is gone, has started exiting or the thread
2467  // was not externally suspended.
2468  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2469    return;
2470  }
2471
2472  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2473
2474  clear_external_suspend();
2475
2476  if (is_ext_suspended()) {
2477    clear_ext_suspended();
2478    SR_lock()->notify_all();
2479  }
2480}
2481
2482size_t JavaThread::_stack_red_zone_size = 0;
2483size_t JavaThread::_stack_yellow_zone_size = 0;
2484size_t JavaThread::_stack_reserved_zone_size = 0;
2485size_t JavaThread::_stack_shadow_zone_size = 0;
2486
2487void JavaThread::create_stack_guard_pages() {
2488  if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2489  address low_addr = stack_end();
2490  size_t len = stack_guard_zone_size();
2491
2492  int allocate = os::allocate_stack_guard_pages();
2493  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2494
2495  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2496    warning("Attempt to allocate stack guard pages failed.");
2497    return;
2498  }
2499
2500  if (os::guard_memory((char *) low_addr, len)) {
2501    _stack_guard_state = stack_guard_enabled;
2502  } else {
2503    warning("Attempt to protect stack guard pages failed.");
2504    if (os::uncommit_memory((char *) low_addr, len)) {
2505      warning("Attempt to deallocate stack guard pages failed.");
2506    }
2507  }
2508}
2509
2510void JavaThread::remove_stack_guard_pages() {
2511  assert(Thread::current() == this, "from different thread");
2512  if (_stack_guard_state == stack_guard_unused) return;
2513  address low_addr = stack_end();
2514  size_t len = stack_guard_zone_size();
2515
2516  if (os::allocate_stack_guard_pages()) {
2517    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2518      _stack_guard_state = stack_guard_unused;
2519    } else {
2520      warning("Attempt to deallocate stack guard pages failed.");
2521    }
2522  } else {
2523    if (_stack_guard_state == stack_guard_unused) return;
2524    if (os::unguard_memory((char *) low_addr, len)) {
2525      _stack_guard_state = stack_guard_unused;
2526    } else {
2527      warning("Attempt to unprotect stack guard pages failed.");
2528    }
2529  }
2530}
2531
2532void JavaThread::enable_stack_reserved_zone() {
2533  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2534  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2535
2536  // The base notation is from the stack's point of view, growing downward.
2537  // We need to adjust it to work correctly with guard_memory()
2538  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2539
2540  guarantee(base < stack_base(),"Error calculating stack reserved zone");
2541  guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2542
2543  if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2544    _stack_guard_state = stack_guard_enabled;
2545  } else {
2546    warning("Attempt to guard stack reserved zone failed.");
2547  }
2548  enable_register_stack_guard();
2549}
2550
2551void JavaThread::disable_stack_reserved_zone() {
2552  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2553  assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2554
2555  // Simply return if called for a thread that does not use guard pages.
2556  if (_stack_guard_state == stack_guard_unused) return;
2557
2558  // The base notation is from the stack's point of view, growing downward.
2559  // We need to adjust it to work correctly with guard_memory()
2560  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2561
2562  if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2563    _stack_guard_state = stack_guard_reserved_disabled;
2564  } else {
2565    warning("Attempt to unguard stack reserved zone failed.");
2566  }
2567  disable_register_stack_guard();
2568}
2569
2570void JavaThread::enable_stack_yellow_reserved_zone() {
2571  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2572  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2573
2574  // The base notation is from the stacks point of view, growing downward.
2575  // We need to adjust it to work correctly with guard_memory()
2576  address base = stack_red_zone_base();
2577
2578  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2579  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2580
2581  if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2582    _stack_guard_state = stack_guard_enabled;
2583  } else {
2584    warning("Attempt to guard stack yellow zone failed.");
2585  }
2586  enable_register_stack_guard();
2587}
2588
2589void JavaThread::disable_stack_yellow_reserved_zone() {
2590  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2591  assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2592
2593  // Simply return if called for a thread that does not use guard pages.
2594  if (_stack_guard_state == stack_guard_unused) return;
2595
2596  // The base notation is from the stacks point of view, growing downward.
2597  // We need to adjust it to work correctly with guard_memory()
2598  address base = stack_red_zone_base();
2599
2600  if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2601    _stack_guard_state = stack_guard_yellow_reserved_disabled;
2602  } else {
2603    warning("Attempt to unguard stack yellow zone failed.");
2604  }
2605  disable_register_stack_guard();
2606}
2607
2608void JavaThread::enable_stack_red_zone() {
2609  // The base notation is from the stacks point of view, growing downward.
2610  // We need to adjust it to work correctly with guard_memory()
2611  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2612  address base = stack_red_zone_base() - stack_red_zone_size();
2613
2614  guarantee(base < stack_base(), "Error calculating stack red zone");
2615  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2616
2617  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2618    warning("Attempt to guard stack red zone failed.");
2619  }
2620}
2621
2622void JavaThread::disable_stack_red_zone() {
2623  // The base notation is from the stacks point of view, growing downward.
2624  // We need to adjust it to work correctly with guard_memory()
2625  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2626  address base = stack_red_zone_base() - stack_red_zone_size();
2627  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2628    warning("Attempt to unguard stack red zone failed.");
2629  }
2630}
2631
2632void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2633  // ignore is there is no stack
2634  if (!has_last_Java_frame()) return;
2635  // traverse the stack frames. Starts from top frame.
2636  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2637    frame* fr = fst.current();
2638    f(fr, fst.register_map());
2639  }
2640}
2641
2642
2643#ifndef PRODUCT
2644// Deoptimization
2645// Function for testing deoptimization
2646void JavaThread::deoptimize() {
2647  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2648  StackFrameStream fst(this, UseBiasedLocking);
2649  bool deopt = false;           // Dump stack only if a deopt actually happens.
2650  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2651  // Iterate over all frames in the thread and deoptimize
2652  for (; !fst.is_done(); fst.next()) {
2653    if (fst.current()->can_be_deoptimized()) {
2654
2655      if (only_at) {
2656        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2657        // consists of comma or carriage return separated numbers so
2658        // search for the current bci in that string.
2659        address pc = fst.current()->pc();
2660        nmethod* nm =  (nmethod*) fst.current()->cb();
2661        ScopeDesc* sd = nm->scope_desc_at(pc);
2662        char buffer[8];
2663        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2664        size_t len = strlen(buffer);
2665        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2666        while (found != NULL) {
2667          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2668              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2669            // Check that the bci found is bracketed by terminators.
2670            break;
2671          }
2672          found = strstr(found + 1, buffer);
2673        }
2674        if (!found) {
2675          continue;
2676        }
2677      }
2678
2679      if (DebugDeoptimization && !deopt) {
2680        deopt = true; // One-time only print before deopt
2681        tty->print_cr("[BEFORE Deoptimization]");
2682        trace_frames();
2683        trace_stack();
2684      }
2685      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2686    }
2687  }
2688
2689  if (DebugDeoptimization && deopt) {
2690    tty->print_cr("[AFTER Deoptimization]");
2691    trace_frames();
2692  }
2693}
2694
2695
2696// Make zombies
2697void JavaThread::make_zombies() {
2698  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2699    if (fst.current()->can_be_deoptimized()) {
2700      // it is a Java nmethod
2701      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2702      nm->make_not_entrant();
2703    }
2704  }
2705}
2706#endif // PRODUCT
2707
2708
2709void JavaThread::deoptimized_wrt_marked_nmethods() {
2710  if (!has_last_Java_frame()) return;
2711  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2712  StackFrameStream fst(this, UseBiasedLocking);
2713  for (; !fst.is_done(); fst.next()) {
2714    if (fst.current()->should_be_deoptimized()) {
2715      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2716    }
2717  }
2718}
2719
2720
2721// If the caller is a NamedThread, then remember, in the current scope,
2722// the given JavaThread in its _processed_thread field.
2723class RememberProcessedThread: public StackObj {
2724  NamedThread* _cur_thr;
2725 public:
2726  RememberProcessedThread(JavaThread* jthr) {
2727    Thread* thread = Thread::current();
2728    if (thread->is_Named_thread()) {
2729      _cur_thr = (NamedThread *)thread;
2730      _cur_thr->set_processed_thread(jthr);
2731    } else {
2732      _cur_thr = NULL;
2733    }
2734  }
2735
2736  ~RememberProcessedThread() {
2737    if (_cur_thr) {
2738      _cur_thr->set_processed_thread(NULL);
2739    }
2740  }
2741};
2742
2743void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2744  // Verify that the deferred card marks have been flushed.
2745  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2746
2747  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2748  // since there may be more than one thread using each ThreadProfiler.
2749
2750  // Traverse the GCHandles
2751  Thread::oops_do(f, cld_f, cf);
2752
2753  JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2754
2755  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2756         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2757
2758  if (has_last_Java_frame()) {
2759    // Record JavaThread to GC thread
2760    RememberProcessedThread rpt(this);
2761
2762    // Traverse the privileged stack
2763    if (_privileged_stack_top != NULL) {
2764      _privileged_stack_top->oops_do(f);
2765    }
2766
2767    // traverse the registered growable array
2768    if (_array_for_gc != NULL) {
2769      for (int index = 0; index < _array_for_gc->length(); index++) {
2770        f->do_oop(_array_for_gc->adr_at(index));
2771      }
2772    }
2773
2774    // Traverse the monitor chunks
2775    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2776      chunk->oops_do(f);
2777    }
2778
2779    // Traverse the execution stack
2780    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2781      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2782    }
2783  }
2784
2785  // callee_target is never live across a gc point so NULL it here should
2786  // it still contain a methdOop.
2787
2788  set_callee_target(NULL);
2789
2790  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2791  // If we have deferred set_locals there might be oops waiting to be
2792  // written
2793  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2794  if (list != NULL) {
2795    for (int i = 0; i < list->length(); i++) {
2796      list->at(i)->oops_do(f);
2797    }
2798  }
2799
2800  // Traverse instance variables at the end since the GC may be moving things
2801  // around using this function
2802  f->do_oop((oop*) &_threadObj);
2803  f->do_oop((oop*) &_vm_result);
2804  f->do_oop((oop*) &_exception_oop);
2805  f->do_oop((oop*) &_pending_async_exception);
2806
2807  if (jvmti_thread_state() != NULL) {
2808    jvmti_thread_state()->oops_do(f);
2809  }
2810}
2811
2812void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2813  Thread::nmethods_do(cf);  // (super method is a no-op)
2814
2815  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2816         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2817
2818  if (has_last_Java_frame()) {
2819    // Traverse the execution stack
2820    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2821      fst.current()->nmethods_do(cf);
2822    }
2823  }
2824}
2825
2826void JavaThread::metadata_do(void f(Metadata*)) {
2827  if (has_last_Java_frame()) {
2828    // Traverse the execution stack to call f() on the methods in the stack
2829    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2830      fst.current()->metadata_do(f);
2831    }
2832  } else if (is_Compiler_thread()) {
2833    // need to walk ciMetadata in current compile tasks to keep alive.
2834    CompilerThread* ct = (CompilerThread*)this;
2835    if (ct->env() != NULL) {
2836      ct->env()->metadata_do(f);
2837    }
2838    if (ct->task() != NULL) {
2839      ct->task()->metadata_do(f);
2840    }
2841  }
2842}
2843
2844// Printing
2845const char* _get_thread_state_name(JavaThreadState _thread_state) {
2846  switch (_thread_state) {
2847  case _thread_uninitialized:     return "_thread_uninitialized";
2848  case _thread_new:               return "_thread_new";
2849  case _thread_new_trans:         return "_thread_new_trans";
2850  case _thread_in_native:         return "_thread_in_native";
2851  case _thread_in_native_trans:   return "_thread_in_native_trans";
2852  case _thread_in_vm:             return "_thread_in_vm";
2853  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2854  case _thread_in_Java:           return "_thread_in_Java";
2855  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2856  case _thread_blocked:           return "_thread_blocked";
2857  case _thread_blocked_trans:     return "_thread_blocked_trans";
2858  default:                        return "unknown thread state";
2859  }
2860}
2861
2862#ifndef PRODUCT
2863void JavaThread::print_thread_state_on(outputStream *st) const {
2864  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2865};
2866void JavaThread::print_thread_state() const {
2867  print_thread_state_on(tty);
2868}
2869#endif // PRODUCT
2870
2871// Called by Threads::print() for VM_PrintThreads operation
2872void JavaThread::print_on(outputStream *st) const {
2873  st->print("\"%s\" ", get_thread_name());
2874  oop thread_oop = threadObj();
2875  if (thread_oop != NULL) {
2876    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2877    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2878    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2879  }
2880  Thread::print_on(st);
2881  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2882  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2883  if (thread_oop != NULL) {
2884    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2885  }
2886#ifndef PRODUCT
2887  print_thread_state_on(st);
2888  _safepoint_state->print_on(st);
2889#endif // PRODUCT
2890}
2891
2892// Called by fatal error handler. The difference between this and
2893// JavaThread::print() is that we can't grab lock or allocate memory.
2894void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2895  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2896  oop thread_obj = threadObj();
2897  if (thread_obj != NULL) {
2898    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2899  }
2900  st->print(" [");
2901  st->print("%s", _get_thread_state_name(_thread_state));
2902  if (osthread()) {
2903    st->print(", id=%d", osthread()->thread_id());
2904  }
2905  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2906            p2i(stack_end()), p2i(stack_base()));
2907  st->print("]");
2908  return;
2909}
2910
2911// Verification
2912
2913static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2914
2915void JavaThread::verify() {
2916  // Verify oops in the thread.
2917  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2918
2919  // Verify the stack frames.
2920  frames_do(frame_verify);
2921}
2922
2923// CR 6300358 (sub-CR 2137150)
2924// Most callers of this method assume that it can't return NULL but a
2925// thread may not have a name whilst it is in the process of attaching to
2926// the VM - see CR 6412693, and there are places where a JavaThread can be
2927// seen prior to having it's threadObj set (eg JNI attaching threads and
2928// if vm exit occurs during initialization). These cases can all be accounted
2929// for such that this method never returns NULL.
2930const char* JavaThread::get_thread_name() const {
2931#ifdef ASSERT
2932  // early safepoints can hit while current thread does not yet have TLS
2933  if (!SafepointSynchronize::is_at_safepoint()) {
2934    Thread *cur = Thread::current();
2935    if (!(cur->is_Java_thread() && cur == this)) {
2936      // Current JavaThreads are allowed to get their own name without
2937      // the Threads_lock.
2938      assert_locked_or_safepoint(Threads_lock);
2939    }
2940  }
2941#endif // ASSERT
2942  return get_thread_name_string();
2943}
2944
2945// Returns a non-NULL representation of this thread's name, or a suitable
2946// descriptive string if there is no set name
2947const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2948  const char* name_str;
2949  oop thread_obj = threadObj();
2950  if (thread_obj != NULL) {
2951    oop name = java_lang_Thread::name(thread_obj);
2952    if (name != NULL) {
2953      if (buf == NULL) {
2954        name_str = java_lang_String::as_utf8_string(name);
2955      } else {
2956        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2957      }
2958    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2959      name_str = "<no-name - thread is attaching>";
2960    } else {
2961      name_str = Thread::name();
2962    }
2963  } else {
2964    name_str = Thread::name();
2965  }
2966  assert(name_str != NULL, "unexpected NULL thread name");
2967  return name_str;
2968}
2969
2970
2971const char* JavaThread::get_threadgroup_name() const {
2972  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2973  oop thread_obj = threadObj();
2974  if (thread_obj != NULL) {
2975    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2976    if (thread_group != NULL) {
2977      // ThreadGroup.name can be null
2978      return java_lang_ThreadGroup::name(thread_group);
2979    }
2980  }
2981  return NULL;
2982}
2983
2984const char* JavaThread::get_parent_name() const {
2985  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2986  oop thread_obj = threadObj();
2987  if (thread_obj != NULL) {
2988    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2989    if (thread_group != NULL) {
2990      oop parent = java_lang_ThreadGroup::parent(thread_group);
2991      if (parent != NULL) {
2992        // ThreadGroup.name can be null
2993        return java_lang_ThreadGroup::name(parent);
2994      }
2995    }
2996  }
2997  return NULL;
2998}
2999
3000ThreadPriority JavaThread::java_priority() const {
3001  oop thr_oop = threadObj();
3002  if (thr_oop == NULL) return NormPriority; // Bootstrapping
3003  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3004  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3005  return priority;
3006}
3007
3008void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3009
3010  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3011  // Link Java Thread object <-> C++ Thread
3012
3013  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3014  // and put it into a new Handle.  The Handle "thread_oop" can then
3015  // be used to pass the C++ thread object to other methods.
3016
3017  // Set the Java level thread object (jthread) field of the
3018  // new thread (a JavaThread *) to C++ thread object using the
3019  // "thread_oop" handle.
3020
3021  // Set the thread field (a JavaThread *) of the
3022  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3023
3024  Handle thread_oop(Thread::current(),
3025                    JNIHandles::resolve_non_null(jni_thread));
3026  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3027         "must be initialized");
3028  set_threadObj(thread_oop());
3029  java_lang_Thread::set_thread(thread_oop(), this);
3030
3031  if (prio == NoPriority) {
3032    prio = java_lang_Thread::priority(thread_oop());
3033    assert(prio != NoPriority, "A valid priority should be present");
3034  }
3035
3036  // Push the Java priority down to the native thread; needs Threads_lock
3037  Thread::set_priority(this, prio);
3038
3039  prepare_ext();
3040
3041  // Add the new thread to the Threads list and set it in motion.
3042  // We must have threads lock in order to call Threads::add.
3043  // It is crucial that we do not block before the thread is
3044  // added to the Threads list for if a GC happens, then the java_thread oop
3045  // will not be visited by GC.
3046  Threads::add(this);
3047}
3048
3049oop JavaThread::current_park_blocker() {
3050  // Support for JSR-166 locks
3051  oop thread_oop = threadObj();
3052  if (thread_oop != NULL &&
3053      JDK_Version::current().supports_thread_park_blocker()) {
3054    return java_lang_Thread::park_blocker(thread_oop);
3055  }
3056  return NULL;
3057}
3058
3059
3060void JavaThread::print_stack_on(outputStream* st) {
3061  if (!has_last_Java_frame()) return;
3062  ResourceMark rm;
3063  HandleMark   hm;
3064
3065  RegisterMap reg_map(this);
3066  vframe* start_vf = last_java_vframe(&reg_map);
3067  int count = 0;
3068  for (vframe* f = start_vf; f; f = f->sender()) {
3069    if (f->is_java_frame()) {
3070      javaVFrame* jvf = javaVFrame::cast(f);
3071      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3072
3073      // Print out lock information
3074      if (JavaMonitorsInStackTrace) {
3075        jvf->print_lock_info_on(st, count);
3076      }
3077    } else {
3078      // Ignore non-Java frames
3079    }
3080
3081    // Bail-out case for too deep stacks
3082    count++;
3083    if (MaxJavaStackTraceDepth == count) return;
3084  }
3085}
3086
3087
3088// JVMTI PopFrame support
3089void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3090  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3091  if (in_bytes(size_in_bytes) != 0) {
3092    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3093    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3094    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3095  }
3096}
3097
3098void* JavaThread::popframe_preserved_args() {
3099  return _popframe_preserved_args;
3100}
3101
3102ByteSize JavaThread::popframe_preserved_args_size() {
3103  return in_ByteSize(_popframe_preserved_args_size);
3104}
3105
3106WordSize JavaThread::popframe_preserved_args_size_in_words() {
3107  int sz = in_bytes(popframe_preserved_args_size());
3108  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3109  return in_WordSize(sz / wordSize);
3110}
3111
3112void JavaThread::popframe_free_preserved_args() {
3113  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3114  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3115  _popframe_preserved_args = NULL;
3116  _popframe_preserved_args_size = 0;
3117}
3118
3119#ifndef PRODUCT
3120
3121void JavaThread::trace_frames() {
3122  tty->print_cr("[Describe stack]");
3123  int frame_no = 1;
3124  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3125    tty->print("  %d. ", frame_no++);
3126    fst.current()->print_value_on(tty, this);
3127    tty->cr();
3128  }
3129}
3130
3131class PrintAndVerifyOopClosure: public OopClosure {
3132 protected:
3133  template <class T> inline void do_oop_work(T* p) {
3134    oop obj = oopDesc::load_decode_heap_oop(p);
3135    if (obj == NULL) return;
3136    tty->print(INTPTR_FORMAT ": ", p2i(p));
3137    if (obj->is_oop_or_null()) {
3138      if (obj->is_objArray()) {
3139        tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3140      } else {
3141        obj->print();
3142      }
3143    } else {
3144      tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3145    }
3146    tty->cr();
3147  }
3148 public:
3149  virtual void do_oop(oop* p) { do_oop_work(p); }
3150  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3151};
3152
3153
3154static void oops_print(frame* f, const RegisterMap *map) {
3155  PrintAndVerifyOopClosure print;
3156  f->print_value();
3157  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3158}
3159
3160// Print our all the locations that contain oops and whether they are
3161// valid or not.  This useful when trying to find the oldest frame
3162// where an oop has gone bad since the frame walk is from youngest to
3163// oldest.
3164void JavaThread::trace_oops() {
3165  tty->print_cr("[Trace oops]");
3166  frames_do(oops_print);
3167}
3168
3169
3170#ifdef ASSERT
3171// Print or validate the layout of stack frames
3172void JavaThread::print_frame_layout(int depth, bool validate_only) {
3173  ResourceMark rm;
3174  PRESERVE_EXCEPTION_MARK;
3175  FrameValues values;
3176  int frame_no = 0;
3177  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3178    fst.current()->describe(values, ++frame_no);
3179    if (depth == frame_no) break;
3180  }
3181  if (validate_only) {
3182    values.validate();
3183  } else {
3184    tty->print_cr("[Describe stack layout]");
3185    values.print(this);
3186  }
3187}
3188#endif
3189
3190void JavaThread::trace_stack_from(vframe* start_vf) {
3191  ResourceMark rm;
3192  int vframe_no = 1;
3193  for (vframe* f = start_vf; f; f = f->sender()) {
3194    if (f->is_java_frame()) {
3195      javaVFrame::cast(f)->print_activation(vframe_no++);
3196    } else {
3197      f->print();
3198    }
3199    if (vframe_no > StackPrintLimit) {
3200      tty->print_cr("...<more frames>...");
3201      return;
3202    }
3203  }
3204}
3205
3206
3207void JavaThread::trace_stack() {
3208  if (!has_last_Java_frame()) return;
3209  ResourceMark rm;
3210  HandleMark   hm;
3211  RegisterMap reg_map(this);
3212  trace_stack_from(last_java_vframe(&reg_map));
3213}
3214
3215
3216#endif // PRODUCT
3217
3218
3219javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3220  assert(reg_map != NULL, "a map must be given");
3221  frame f = last_frame();
3222  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3223    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3224  }
3225  return NULL;
3226}
3227
3228
3229Klass* JavaThread::security_get_caller_class(int depth) {
3230  vframeStream vfst(this);
3231  vfst.security_get_caller_frame(depth);
3232  if (!vfst.at_end()) {
3233    return vfst.method()->method_holder();
3234  }
3235  return NULL;
3236}
3237
3238static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3239  assert(thread->is_Compiler_thread(), "must be compiler thread");
3240  CompileBroker::compiler_thread_loop();
3241}
3242
3243static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3244  NMethodSweeper::sweeper_loop();
3245}
3246
3247// Create a CompilerThread
3248CompilerThread::CompilerThread(CompileQueue* queue,
3249                               CompilerCounters* counters)
3250                               : JavaThread(&compiler_thread_entry) {
3251  _env   = NULL;
3252  _log   = NULL;
3253  _task  = NULL;
3254  _queue = queue;
3255  _counters = counters;
3256  _buffer_blob = NULL;
3257  _compiler = NULL;
3258
3259#ifndef PRODUCT
3260  _ideal_graph_printer = NULL;
3261#endif
3262}
3263
3264bool CompilerThread::can_call_java() const {
3265  return _compiler != NULL && _compiler->is_jvmci();
3266}
3267
3268// Create sweeper thread
3269CodeCacheSweeperThread::CodeCacheSweeperThread()
3270: JavaThread(&sweeper_thread_entry) {
3271  _scanned_nmethod = NULL;
3272}
3273void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3274  JavaThread::oops_do(f, cld_f, cf);
3275  if (_scanned_nmethod != NULL && cf != NULL) {
3276    // Safepoints can occur when the sweeper is scanning an nmethod so
3277    // process it here to make sure it isn't unloaded in the middle of
3278    // a scan.
3279    cf->do_code_blob(_scanned_nmethod);
3280  }
3281}
3282
3283
3284// ======= Threads ========
3285
3286// The Threads class links together all active threads, and provides
3287// operations over all threads.  It is protected by its own Mutex
3288// lock, which is also used in other contexts to protect thread
3289// operations from having the thread being operated on from exiting
3290// and going away unexpectedly (e.g., safepoint synchronization)
3291
3292JavaThread* Threads::_thread_list = NULL;
3293int         Threads::_number_of_threads = 0;
3294int         Threads::_number_of_non_daemon_threads = 0;
3295int         Threads::_return_code = 0;
3296int         Threads::_thread_claim_parity = 0;
3297size_t      JavaThread::_stack_size_at_create = 0;
3298#ifdef ASSERT
3299bool        Threads::_vm_complete = false;
3300#endif
3301
3302// All JavaThreads
3303#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3304
3305// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3306void Threads::threads_do(ThreadClosure* tc) {
3307  assert_locked_or_safepoint(Threads_lock);
3308  // ALL_JAVA_THREADS iterates through all JavaThreads
3309  ALL_JAVA_THREADS(p) {
3310    tc->do_thread(p);
3311  }
3312  // Someday we could have a table or list of all non-JavaThreads.
3313  // For now, just manually iterate through them.
3314  tc->do_thread(VMThread::vm_thread());
3315  Universe::heap()->gc_threads_do(tc);
3316  WatcherThread *wt = WatcherThread::watcher_thread();
3317  // Strictly speaking, the following NULL check isn't sufficient to make sure
3318  // the data for WatcherThread is still valid upon being examined. However,
3319  // considering that WatchThread terminates when the VM is on the way to
3320  // exit at safepoint, the chance of the above is extremely small. The right
3321  // way to prevent termination of WatcherThread would be to acquire
3322  // Terminator_lock, but we can't do that without violating the lock rank
3323  // checking in some cases.
3324  if (wt != NULL) {
3325    tc->do_thread(wt);
3326  }
3327
3328  // If CompilerThreads ever become non-JavaThreads, add them here
3329}
3330
3331void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3332  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3333
3334  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3335    create_vm_init_libraries();
3336  }
3337
3338  initialize_class(vmSymbols::java_lang_String(), CHECK);
3339
3340  // Inject CompactStrings value after the static initializers for String ran.
3341  java_lang_String::set_compact_strings(CompactStrings);
3342
3343  // Initialize java_lang.System (needed before creating the thread)
3344  initialize_class(vmSymbols::java_lang_System(), CHECK);
3345  // The VM creates & returns objects of this class. Make sure it's initialized.
3346  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3347  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3348  Handle thread_group = create_initial_thread_group(CHECK);
3349  Universe::set_main_thread_group(thread_group());
3350  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3351  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3352  main_thread->set_threadObj(thread_object);
3353  // Set thread status to running since main thread has
3354  // been started and running.
3355  java_lang_Thread::set_thread_status(thread_object,
3356                                      java_lang_Thread::RUNNABLE);
3357
3358  // The VM preresolves methods to these classes. Make sure that they get initialized
3359  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3360  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3361  call_initializeSystemClass(CHECK);
3362
3363  // get the Java runtime name after java.lang.System is initialized
3364  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3365  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3366
3367  // an instance of OutOfMemory exception has been allocated earlier
3368  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3369  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3370  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3371  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3372  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3373  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3374  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3375  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3376}
3377
3378void Threads::initialize_jsr292_core_classes(TRAPS) {
3379  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3380  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3381  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3382}
3383
3384jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3385  extern void JDK_Version_init();
3386
3387  // Preinitialize version info.
3388  VM_Version::early_initialize();
3389
3390  // Check version
3391  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3392
3393  // Initialize the output stream module
3394  ostream_init();
3395
3396  // Process java launcher properties.
3397  Arguments::process_sun_java_launcher_properties(args);
3398
3399  // Initialize the os module before using TLS
3400  os::init();
3401
3402  // Record VM creation timing statistics
3403  TraceVmCreationTime create_vm_timer;
3404  create_vm_timer.start();
3405
3406  // Initialize system properties.
3407  Arguments::init_system_properties();
3408
3409  // So that JDK version can be used as a discriminator when parsing arguments
3410  JDK_Version_init();
3411
3412  // Update/Initialize System properties after JDK version number is known
3413  Arguments::init_version_specific_system_properties();
3414
3415  // Make sure to initialize log configuration *before* parsing arguments
3416  LogConfiguration::initialize(create_vm_timer.begin_time());
3417
3418  // Parse arguments
3419  jint parse_result = Arguments::parse(args);
3420  if (parse_result != JNI_OK) return parse_result;
3421
3422  os::init_before_ergo();
3423
3424  jint ergo_result = Arguments::apply_ergo();
3425  if (ergo_result != JNI_OK) return ergo_result;
3426
3427  // Final check of all ranges after ergonomics which may change values.
3428  if (!CommandLineFlagRangeList::check_ranges()) {
3429    return JNI_EINVAL;
3430  }
3431
3432  // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3433  bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3434  if (!constraint_result) {
3435    return JNI_EINVAL;
3436  }
3437
3438  if (PauseAtStartup) {
3439    os::pause();
3440  }
3441
3442  HOTSPOT_VM_INIT_BEGIN();
3443
3444  // Timing (must come after argument parsing)
3445  TraceTime timer("Create VM", TraceStartupTime);
3446
3447  // Initialize the os module after parsing the args
3448  jint os_init_2_result = os::init_2();
3449  if (os_init_2_result != JNI_OK) return os_init_2_result;
3450
3451  jint adjust_after_os_result = Arguments::adjust_after_os();
3452  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3453
3454  // Initialize library-based TLS
3455  ThreadLocalStorage::init();
3456
3457  // Initialize output stream logging
3458  ostream_init_log();
3459
3460  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3461  // Must be before create_vm_init_agents()
3462  if (Arguments::init_libraries_at_startup()) {
3463    convert_vm_init_libraries_to_agents();
3464  }
3465
3466  // Launch -agentlib/-agentpath and converted -Xrun agents
3467  if (Arguments::init_agents_at_startup()) {
3468    create_vm_init_agents();
3469  }
3470
3471  // Initialize Threads state
3472  _thread_list = NULL;
3473  _number_of_threads = 0;
3474  _number_of_non_daemon_threads = 0;
3475
3476  // Initialize global data structures and create system classes in heap
3477  vm_init_globals();
3478
3479#if INCLUDE_JVMCI
3480  if (JVMCICounterSize > 0) {
3481    JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3482    memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3483  } else {
3484    JavaThread::_jvmci_old_thread_counters = NULL;
3485  }
3486#endif // INCLUDE_JVMCI
3487
3488  // Attach the main thread to this os thread
3489  JavaThread* main_thread = new JavaThread();
3490  main_thread->set_thread_state(_thread_in_vm);
3491  main_thread->initialize_thread_current();
3492  // must do this before set_active_handles
3493  main_thread->record_stack_base_and_size();
3494  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3495
3496  if (!main_thread->set_as_starting_thread()) {
3497    vm_shutdown_during_initialization(
3498                                      "Failed necessary internal allocation. Out of swap space");
3499    delete main_thread;
3500    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3501    return JNI_ENOMEM;
3502  }
3503
3504  // Enable guard page *after* os::create_main_thread(), otherwise it would
3505  // crash Linux VM, see notes in os_linux.cpp.
3506  main_thread->create_stack_guard_pages();
3507
3508  // Initialize Java-Level synchronization subsystem
3509  ObjectMonitor::Initialize();
3510
3511  // Initialize global modules
3512  jint status = init_globals();
3513  if (status != JNI_OK) {
3514    delete main_thread;
3515    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3516    return status;
3517  }
3518
3519  // Should be done after the heap is fully created
3520  main_thread->cache_global_variables();
3521
3522  HandleMark hm;
3523
3524  { MutexLocker mu(Threads_lock);
3525    Threads::add(main_thread);
3526  }
3527
3528  // Any JVMTI raw monitors entered in onload will transition into
3529  // real raw monitor. VM is setup enough here for raw monitor enter.
3530  JvmtiExport::transition_pending_onload_raw_monitors();
3531
3532  // Create the VMThread
3533  { TraceTime timer("Start VMThread", TraceStartupTime);
3534    VMThread::create();
3535    Thread* vmthread = VMThread::vm_thread();
3536
3537    if (!os::create_thread(vmthread, os::vm_thread)) {
3538      vm_exit_during_initialization("Cannot create VM thread. "
3539                                    "Out of system resources.");
3540    }
3541
3542    // Wait for the VM thread to become ready, and VMThread::run to initialize
3543    // Monitors can have spurious returns, must always check another state flag
3544    {
3545      MutexLocker ml(Notify_lock);
3546      os::start_thread(vmthread);
3547      while (vmthread->active_handles() == NULL) {
3548        Notify_lock->wait();
3549      }
3550    }
3551  }
3552
3553  assert(Universe::is_fully_initialized(), "not initialized");
3554  if (VerifyDuringStartup) {
3555    // Make sure we're starting with a clean slate.
3556    VM_Verify verify_op;
3557    VMThread::execute(&verify_op);
3558  }
3559
3560  Thread* THREAD = Thread::current();
3561
3562  // At this point, the Universe is initialized, but we have not executed
3563  // any byte code.  Now is a good time (the only time) to dump out the
3564  // internal state of the JVM for sharing.
3565  if (DumpSharedSpaces) {
3566    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3567    ShouldNotReachHere();
3568  }
3569
3570  // Always call even when there are not JVMTI environments yet, since environments
3571  // may be attached late and JVMTI must track phases of VM execution
3572  JvmtiExport::enter_start_phase();
3573
3574  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3575  JvmtiExport::post_vm_start();
3576
3577  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3578
3579  // We need this for ClassDataSharing - the initial vm.info property is set
3580  // with the default value of CDS "sharing" which may be reset through
3581  // command line options.
3582  reset_vm_info_property(CHECK_JNI_ERR);
3583
3584  quicken_jni_functions();
3585
3586  // Must be run after init_ft which initializes ft_enabled
3587  if (TRACE_INITIALIZE() != JNI_OK) {
3588    vm_exit_during_initialization("Failed to initialize tracing backend");
3589  }
3590
3591  // Set flag that basic initialization has completed. Used by exceptions and various
3592  // debug stuff, that does not work until all basic classes have been initialized.
3593  set_init_completed();
3594
3595  LogConfiguration::post_initialize();
3596  Metaspace::post_initialize();
3597
3598  HOTSPOT_VM_INIT_END();
3599
3600  // record VM initialization completion time
3601#if INCLUDE_MANAGEMENT
3602  Management::record_vm_init_completed();
3603#endif // INCLUDE_MANAGEMENT
3604
3605  // Compute system loader. Note that this has to occur after set_init_completed, since
3606  // valid exceptions may be thrown in the process.
3607  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3608  // set_init_completed has just been called, causing exceptions not to be shortcut
3609  // anymore. We call vm_exit_during_initialization directly instead.
3610  SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3611
3612#if INCLUDE_ALL_GCS
3613  // Support for ConcurrentMarkSweep. This should be cleaned up
3614  // and better encapsulated. The ugly nested if test would go away
3615  // once things are properly refactored. XXX YSR
3616  if (UseConcMarkSweepGC || UseG1GC) {
3617    if (UseConcMarkSweepGC) {
3618      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3619    } else {
3620      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3621    }
3622  }
3623#endif // INCLUDE_ALL_GCS
3624
3625  // Always call even when there are not JVMTI environments yet, since environments
3626  // may be attached late and JVMTI must track phases of VM execution
3627  JvmtiExport::enter_live_phase();
3628
3629  // Signal Dispatcher needs to be started before VMInit event is posted
3630  os::signal_init();
3631
3632  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3633  if (!DisableAttachMechanism) {
3634    AttachListener::vm_start();
3635    if (StartAttachListener || AttachListener::init_at_startup()) {
3636      AttachListener::init();
3637    }
3638  }
3639
3640  // Launch -Xrun agents
3641  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3642  // back-end can launch with -Xdebug -Xrunjdwp.
3643  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3644    create_vm_init_libraries();
3645  }
3646
3647  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3648  JvmtiExport::post_vm_initialized();
3649
3650  if (TRACE_START() != JNI_OK) {
3651    vm_exit_during_initialization("Failed to start tracing backend.");
3652  }
3653
3654  if (CleanChunkPoolAsync) {
3655    Chunk::start_chunk_pool_cleaner_task();
3656  }
3657
3658#if INCLUDE_JVMCI
3659  if (EnableJVMCI) {
3660    const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3661    if (jvmciCompiler != NULL) {
3662      JVMCIRuntime::save_compiler(jvmciCompiler);
3663    }
3664  }
3665#endif // INCLUDE_JVMCI
3666
3667  // initialize compiler(s)
3668#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3669  CompileBroker::compilation_init(CHECK_JNI_ERR);
3670#endif
3671
3672  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3673  // It is done after compilers are initialized, because otherwise compilations of
3674  // signature polymorphic MH intrinsics can be missed
3675  // (see SystemDictionary::find_method_handle_intrinsic).
3676  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3677
3678#if INCLUDE_MANAGEMENT
3679  Management::initialize(THREAD);
3680
3681  if (HAS_PENDING_EXCEPTION) {
3682    // management agent fails to start possibly due to
3683    // configuration problem and is responsible for printing
3684    // stack trace if appropriate. Simply exit VM.
3685    vm_exit(1);
3686  }
3687#endif // INCLUDE_MANAGEMENT
3688
3689  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3690  if (MemProfiling)                   MemProfiler::engage();
3691  StatSampler::engage();
3692  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3693
3694  BiasedLocking::init();
3695
3696#if INCLUDE_RTM_OPT
3697  RTMLockingCounters::init();
3698#endif
3699
3700  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3701    call_postVMInitHook(THREAD);
3702    // The Java side of PostVMInitHook.run must deal with all
3703    // exceptions and provide means of diagnosis.
3704    if (HAS_PENDING_EXCEPTION) {
3705      CLEAR_PENDING_EXCEPTION;
3706    }
3707  }
3708
3709  {
3710    MutexLocker ml(PeriodicTask_lock);
3711    // Make sure the WatcherThread can be started by WatcherThread::start()
3712    // or by dynamic enrollment.
3713    WatcherThread::make_startable();
3714    // Start up the WatcherThread if there are any periodic tasks
3715    // NOTE:  All PeriodicTasks should be registered by now. If they
3716    //   aren't, late joiners might appear to start slowly (we might
3717    //   take a while to process their first tick).
3718    if (PeriodicTask::num_tasks() > 0) {
3719      WatcherThread::start();
3720    }
3721  }
3722
3723  CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3724
3725  create_vm_timer.end();
3726#ifdef ASSERT
3727  _vm_complete = true;
3728#endif
3729  return JNI_OK;
3730}
3731
3732// type for the Agent_OnLoad and JVM_OnLoad entry points
3733extern "C" {
3734  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3735}
3736// Find a command line agent library and return its entry point for
3737//         -agentlib:  -agentpath:   -Xrun
3738// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3739static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3740                                    const char *on_load_symbols[],
3741                                    size_t num_symbol_entries) {
3742  OnLoadEntry_t on_load_entry = NULL;
3743  void *library = NULL;
3744
3745  if (!agent->valid()) {
3746    char buffer[JVM_MAXPATHLEN];
3747    char ebuf[1024] = "";
3748    const char *name = agent->name();
3749    const char *msg = "Could not find agent library ";
3750
3751    // First check to see if agent is statically linked into executable
3752    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3753      library = agent->os_lib();
3754    } else if (agent->is_absolute_path()) {
3755      library = os::dll_load(name, ebuf, sizeof ebuf);
3756      if (library == NULL) {
3757        const char *sub_msg = " in absolute path, with error: ";
3758        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3759        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3760        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3761        // If we can't find the agent, exit.
3762        vm_exit_during_initialization(buf, NULL);
3763        FREE_C_HEAP_ARRAY(char, buf);
3764      }
3765    } else {
3766      // Try to load the agent from the standard dll directory
3767      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3768                             name)) {
3769        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3770      }
3771      if (library == NULL) { // Try the local directory
3772        char ns[1] = {0};
3773        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3774          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3775        }
3776        if (library == NULL) {
3777          const char *sub_msg = " on the library path, with error: ";
3778          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3779          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3780          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3781          // If we can't find the agent, exit.
3782          vm_exit_during_initialization(buf, NULL);
3783          FREE_C_HEAP_ARRAY(char, buf);
3784        }
3785      }
3786    }
3787    agent->set_os_lib(library);
3788    agent->set_valid();
3789  }
3790
3791  // Find the OnLoad function.
3792  on_load_entry =
3793    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3794                                                          false,
3795                                                          on_load_symbols,
3796                                                          num_symbol_entries));
3797  return on_load_entry;
3798}
3799
3800// Find the JVM_OnLoad entry point
3801static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3802  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3803  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3804}
3805
3806// Find the Agent_OnLoad entry point
3807static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3808  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3809  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3810}
3811
3812// For backwards compatibility with -Xrun
3813// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3814// treated like -agentpath:
3815// Must be called before agent libraries are created
3816void Threads::convert_vm_init_libraries_to_agents() {
3817  AgentLibrary* agent;
3818  AgentLibrary* next;
3819
3820  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3821    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3822    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3823
3824    // If there is an JVM_OnLoad function it will get called later,
3825    // otherwise see if there is an Agent_OnLoad
3826    if (on_load_entry == NULL) {
3827      on_load_entry = lookup_agent_on_load(agent);
3828      if (on_load_entry != NULL) {
3829        // switch it to the agent list -- so that Agent_OnLoad will be called,
3830        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3831        Arguments::convert_library_to_agent(agent);
3832      } else {
3833        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3834      }
3835    }
3836  }
3837}
3838
3839// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3840// Invokes Agent_OnLoad
3841// Called very early -- before JavaThreads exist
3842void Threads::create_vm_init_agents() {
3843  extern struct JavaVM_ main_vm;
3844  AgentLibrary* agent;
3845
3846  JvmtiExport::enter_onload_phase();
3847
3848  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3849    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3850
3851    if (on_load_entry != NULL) {
3852      // Invoke the Agent_OnLoad function
3853      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3854      if (err != JNI_OK) {
3855        vm_exit_during_initialization("agent library failed to init", agent->name());
3856      }
3857    } else {
3858      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3859    }
3860  }
3861  JvmtiExport::enter_primordial_phase();
3862}
3863
3864extern "C" {
3865  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3866}
3867
3868void Threads::shutdown_vm_agents() {
3869  // Send any Agent_OnUnload notifications
3870  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3871  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3872  extern struct JavaVM_ main_vm;
3873  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3874
3875    // Find the Agent_OnUnload function.
3876    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3877                                                   os::find_agent_function(agent,
3878                                                   false,
3879                                                   on_unload_symbols,
3880                                                   num_symbol_entries));
3881
3882    // Invoke the Agent_OnUnload function
3883    if (unload_entry != NULL) {
3884      JavaThread* thread = JavaThread::current();
3885      ThreadToNativeFromVM ttn(thread);
3886      HandleMark hm(thread);
3887      (*unload_entry)(&main_vm);
3888    }
3889  }
3890}
3891
3892// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3893// Invokes JVM_OnLoad
3894void Threads::create_vm_init_libraries() {
3895  extern struct JavaVM_ main_vm;
3896  AgentLibrary* agent;
3897
3898  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3899    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3900
3901    if (on_load_entry != NULL) {
3902      // Invoke the JVM_OnLoad function
3903      JavaThread* thread = JavaThread::current();
3904      ThreadToNativeFromVM ttn(thread);
3905      HandleMark hm(thread);
3906      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3907      if (err != JNI_OK) {
3908        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3909      }
3910    } else {
3911      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3912    }
3913  }
3914}
3915
3916JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3917  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3918
3919  JavaThread* java_thread = NULL;
3920  // Sequential search for now.  Need to do better optimization later.
3921  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3922    oop tobj = thread->threadObj();
3923    if (!thread->is_exiting() &&
3924        tobj != NULL &&
3925        java_tid == java_lang_Thread::thread_id(tobj)) {
3926      java_thread = thread;
3927      break;
3928    }
3929  }
3930  return java_thread;
3931}
3932
3933
3934// Last thread running calls java.lang.Shutdown.shutdown()
3935void JavaThread::invoke_shutdown_hooks() {
3936  HandleMark hm(this);
3937
3938  // We could get here with a pending exception, if so clear it now.
3939  if (this->has_pending_exception()) {
3940    this->clear_pending_exception();
3941  }
3942
3943  EXCEPTION_MARK;
3944  Klass* k =
3945    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3946                                      THREAD);
3947  if (k != NULL) {
3948    // SystemDictionary::resolve_or_null will return null if there was
3949    // an exception.  If we cannot load the Shutdown class, just don't
3950    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3951    // and finalizers (if runFinalizersOnExit is set) won't be run.
3952    // Note that if a shutdown hook was registered or runFinalizersOnExit
3953    // was called, the Shutdown class would have already been loaded
3954    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3955    instanceKlassHandle shutdown_klass (THREAD, k);
3956    JavaValue result(T_VOID);
3957    JavaCalls::call_static(&result,
3958                           shutdown_klass,
3959                           vmSymbols::shutdown_method_name(),
3960                           vmSymbols::void_method_signature(),
3961                           THREAD);
3962  }
3963  CLEAR_PENDING_EXCEPTION;
3964}
3965
3966// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3967// the program falls off the end of main(). Another VM exit path is through
3968// vm_exit() when the program calls System.exit() to return a value or when
3969// there is a serious error in VM. The two shutdown paths are not exactly
3970// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3971// and VM_Exit op at VM level.
3972//
3973// Shutdown sequence:
3974//   + Shutdown native memory tracking if it is on
3975//   + Wait until we are the last non-daemon thread to execute
3976//     <-- every thing is still working at this moment -->
3977//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3978//        shutdown hooks, run finalizers if finalization-on-exit
3979//   + Call before_exit(), prepare for VM exit
3980//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3981//        currently the only user of this mechanism is File.deleteOnExit())
3982//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3983//        post thread end and vm death events to JVMTI,
3984//        stop signal thread
3985//   + Call JavaThread::exit(), it will:
3986//      > release JNI handle blocks, remove stack guard pages
3987//      > remove this thread from Threads list
3988//     <-- no more Java code from this thread after this point -->
3989//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3990//     the compiler threads at safepoint
3991//     <-- do not use anything that could get blocked by Safepoint -->
3992//   + Disable tracing at JNI/JVM barriers
3993//   + Set _vm_exited flag for threads that are still running native code
3994//   + Delete this thread
3995//   + Call exit_globals()
3996//      > deletes tty
3997//      > deletes PerfMemory resources
3998//   + Return to caller
3999
4000bool Threads::destroy_vm() {
4001  JavaThread* thread = JavaThread::current();
4002
4003#ifdef ASSERT
4004  _vm_complete = false;
4005#endif
4006  // Wait until we are the last non-daemon thread to execute
4007  { MutexLocker nu(Threads_lock);
4008    while (Threads::number_of_non_daemon_threads() > 1)
4009      // This wait should make safepoint checks, wait without a timeout,
4010      // and wait as a suspend-equivalent condition.
4011      //
4012      // Note: If the FlatProfiler is running and this thread is waiting
4013      // for another non-daemon thread to finish, then the FlatProfiler
4014      // is waiting for the external suspend request on this thread to
4015      // complete. wait_for_ext_suspend_completion() will eventually
4016      // timeout, but that takes time. Making this wait a suspend-
4017      // equivalent condition solves that timeout problem.
4018      //
4019      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4020                         Mutex::_as_suspend_equivalent_flag);
4021  }
4022
4023  // Hang forever on exit if we are reporting an error.
4024  if (ShowMessageBoxOnError && is_error_reported()) {
4025    os::infinite_sleep();
4026  }
4027  os::wait_for_keypress_at_exit();
4028
4029  // run Java level shutdown hooks
4030  thread->invoke_shutdown_hooks();
4031
4032  before_exit(thread);
4033
4034  thread->exit(true);
4035
4036  // Stop VM thread.
4037  {
4038    // 4945125 The vm thread comes to a safepoint during exit.
4039    // GC vm_operations can get caught at the safepoint, and the
4040    // heap is unparseable if they are caught. Grab the Heap_lock
4041    // to prevent this. The GC vm_operations will not be able to
4042    // queue until after the vm thread is dead. After this point,
4043    // we'll never emerge out of the safepoint before the VM exits.
4044
4045    MutexLocker ml(Heap_lock);
4046
4047    VMThread::wait_for_vm_thread_exit();
4048    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4049    VMThread::destroy();
4050  }
4051
4052  // clean up ideal graph printers
4053#if defined(COMPILER2) && !defined(PRODUCT)
4054  IdealGraphPrinter::clean_up();
4055#endif
4056
4057  // Now, all Java threads are gone except daemon threads. Daemon threads
4058  // running Java code or in VM are stopped by the Safepoint. However,
4059  // daemon threads executing native code are still running.  But they
4060  // will be stopped at native=>Java/VM barriers. Note that we can't
4061  // simply kill or suspend them, as it is inherently deadlock-prone.
4062
4063  VM_Exit::set_vm_exited();
4064
4065  notify_vm_shutdown();
4066
4067  delete thread;
4068
4069#if INCLUDE_JVMCI
4070  if (JVMCICounterSize > 0) {
4071    FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4072  }
4073#endif
4074
4075  // exit_globals() will delete tty
4076  exit_globals();
4077
4078  LogConfiguration::finalize();
4079
4080  return true;
4081}
4082
4083
4084jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4085  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4086  return is_supported_jni_version(version);
4087}
4088
4089
4090jboolean Threads::is_supported_jni_version(jint version) {
4091  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4092  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4093  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4094  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4095  return JNI_FALSE;
4096}
4097
4098
4099void Threads::add(JavaThread* p, bool force_daemon) {
4100  // The threads lock must be owned at this point
4101  assert_locked_or_safepoint(Threads_lock);
4102
4103  // See the comment for this method in thread.hpp for its purpose and
4104  // why it is called here.
4105  p->initialize_queues();
4106  p->set_next(_thread_list);
4107  _thread_list = p;
4108  _number_of_threads++;
4109  oop threadObj = p->threadObj();
4110  bool daemon = true;
4111  // Bootstrapping problem: threadObj can be null for initial
4112  // JavaThread (or for threads attached via JNI)
4113  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4114    _number_of_non_daemon_threads++;
4115    daemon = false;
4116  }
4117
4118  ThreadService::add_thread(p, daemon);
4119
4120  // Possible GC point.
4121  Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4122}
4123
4124void Threads::remove(JavaThread* p) {
4125  // Extra scope needed for Thread_lock, so we can check
4126  // that we do not remove thread without safepoint code notice
4127  { MutexLocker ml(Threads_lock);
4128
4129    assert(includes(p), "p must be present");
4130
4131    JavaThread* current = _thread_list;
4132    JavaThread* prev    = NULL;
4133
4134    while (current != p) {
4135      prev    = current;
4136      current = current->next();
4137    }
4138
4139    if (prev) {
4140      prev->set_next(current->next());
4141    } else {
4142      _thread_list = p->next();
4143    }
4144    _number_of_threads--;
4145    oop threadObj = p->threadObj();
4146    bool daemon = true;
4147    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4148      _number_of_non_daemon_threads--;
4149      daemon = false;
4150
4151      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4152      // on destroy_vm will wake up.
4153      if (number_of_non_daemon_threads() == 1) {
4154        Threads_lock->notify_all();
4155      }
4156    }
4157    ThreadService::remove_thread(p, daemon);
4158
4159    // Make sure that safepoint code disregard this thread. This is needed since
4160    // the thread might mess around with locks after this point. This can cause it
4161    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4162    // of this thread since it is removed from the queue.
4163    p->set_terminated_value();
4164  } // unlock Threads_lock
4165
4166  // Since Events::log uses a lock, we grab it outside the Threads_lock
4167  Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4168}
4169
4170// Threads_lock must be held when this is called (or must be called during a safepoint)
4171bool Threads::includes(JavaThread* p) {
4172  assert(Threads_lock->is_locked(), "sanity check");
4173  ALL_JAVA_THREADS(q) {
4174    if (q == p) {
4175      return true;
4176    }
4177  }
4178  return false;
4179}
4180
4181// Operations on the Threads list for GC.  These are not explicitly locked,
4182// but the garbage collector must provide a safe context for them to run.
4183// In particular, these things should never be called when the Threads_lock
4184// is held by some other thread. (Note: the Safepoint abstraction also
4185// uses the Threads_lock to guarantee this property. It also makes sure that
4186// all threads gets blocked when exiting or starting).
4187
4188void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4189  ALL_JAVA_THREADS(p) {
4190    p->oops_do(f, cld_f, cf);
4191  }
4192  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4193}
4194
4195void Threads::change_thread_claim_parity() {
4196  // Set the new claim parity.
4197  assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4198         "Not in range.");
4199  _thread_claim_parity++;
4200  if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4201  assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4202         "Not in range.");
4203}
4204
4205#ifdef ASSERT
4206void Threads::assert_all_threads_claimed() {
4207  ALL_JAVA_THREADS(p) {
4208    const int thread_parity = p->oops_do_parity();
4209    assert((thread_parity == _thread_claim_parity),
4210           "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4211  }
4212}
4213#endif // ASSERT
4214
4215void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4216  int cp = Threads::thread_claim_parity();
4217  ALL_JAVA_THREADS(p) {
4218    if (p->claim_oops_do(is_par, cp)) {
4219      p->oops_do(f, cld_f, cf);
4220    }
4221  }
4222  VMThread* vmt = VMThread::vm_thread();
4223  if (vmt->claim_oops_do(is_par, cp)) {
4224    vmt->oops_do(f, cld_f, cf);
4225  }
4226}
4227
4228#if INCLUDE_ALL_GCS
4229// Used by ParallelScavenge
4230void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4231  ALL_JAVA_THREADS(p) {
4232    q->enqueue(new ThreadRootsTask(p));
4233  }
4234  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4235}
4236
4237// Used by Parallel Old
4238void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4239  ALL_JAVA_THREADS(p) {
4240    q->enqueue(new ThreadRootsMarkingTask(p));
4241  }
4242  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4243}
4244#endif // INCLUDE_ALL_GCS
4245
4246void Threads::nmethods_do(CodeBlobClosure* cf) {
4247  ALL_JAVA_THREADS(p) {
4248    p->nmethods_do(cf);
4249  }
4250  VMThread::vm_thread()->nmethods_do(cf);
4251}
4252
4253void Threads::metadata_do(void f(Metadata*)) {
4254  ALL_JAVA_THREADS(p) {
4255    p->metadata_do(f);
4256  }
4257}
4258
4259class ThreadHandlesClosure : public ThreadClosure {
4260  void (*_f)(Metadata*);
4261 public:
4262  ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4263  virtual void do_thread(Thread* thread) {
4264    thread->metadata_handles_do(_f);
4265  }
4266};
4267
4268void Threads::metadata_handles_do(void f(Metadata*)) {
4269  // Only walk the Handles in Thread.
4270  ThreadHandlesClosure handles_closure(f);
4271  threads_do(&handles_closure);
4272}
4273
4274void Threads::deoptimized_wrt_marked_nmethods() {
4275  ALL_JAVA_THREADS(p) {
4276    p->deoptimized_wrt_marked_nmethods();
4277  }
4278}
4279
4280
4281// Get count Java threads that are waiting to enter the specified monitor.
4282GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4283                                                         address monitor,
4284                                                         bool doLock) {
4285  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4286         "must grab Threads_lock or be at safepoint");
4287  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4288
4289  int i = 0;
4290  {
4291    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4292    ALL_JAVA_THREADS(p) {
4293      if (!p->can_call_java()) continue;
4294
4295      address pending = (address)p->current_pending_monitor();
4296      if (pending == monitor) {             // found a match
4297        if (i < count) result->append(p);   // save the first count matches
4298        i++;
4299      }
4300    }
4301  }
4302  return result;
4303}
4304
4305
4306JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4307                                                      bool doLock) {
4308  assert(doLock ||
4309         Threads_lock->owned_by_self() ||
4310         SafepointSynchronize::is_at_safepoint(),
4311         "must grab Threads_lock or be at safepoint");
4312
4313  // NULL owner means not locked so we can skip the search
4314  if (owner == NULL) return NULL;
4315
4316  {
4317    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4318    ALL_JAVA_THREADS(p) {
4319      // first, see if owner is the address of a Java thread
4320      if (owner == (address)p) return p;
4321    }
4322  }
4323  // Cannot assert on lack of success here since this function may be
4324  // used by code that is trying to report useful problem information
4325  // like deadlock detection.
4326  if (UseHeavyMonitors) return NULL;
4327
4328  // If we didn't find a matching Java thread and we didn't force use of
4329  // heavyweight monitors, then the owner is the stack address of the
4330  // Lock Word in the owning Java thread's stack.
4331  //
4332  JavaThread* the_owner = NULL;
4333  {
4334    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4335    ALL_JAVA_THREADS(q) {
4336      if (q->is_lock_owned(owner)) {
4337        the_owner = q;
4338        break;
4339      }
4340    }
4341  }
4342  // cannot assert on lack of success here; see above comment
4343  return the_owner;
4344}
4345
4346// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4347void Threads::print_on(outputStream* st, bool print_stacks,
4348                       bool internal_format, bool print_concurrent_locks) {
4349  char buf[32];
4350  st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4351
4352  st->print_cr("Full thread dump %s (%s %s):",
4353               Abstract_VM_Version::vm_name(),
4354               Abstract_VM_Version::vm_release(),
4355               Abstract_VM_Version::vm_info_string());
4356  st->cr();
4357
4358#if INCLUDE_SERVICES
4359  // Dump concurrent locks
4360  ConcurrentLocksDump concurrent_locks;
4361  if (print_concurrent_locks) {
4362    concurrent_locks.dump_at_safepoint();
4363  }
4364#endif // INCLUDE_SERVICES
4365
4366  ALL_JAVA_THREADS(p) {
4367    ResourceMark rm;
4368    p->print_on(st);
4369    if (print_stacks) {
4370      if (internal_format) {
4371        p->trace_stack();
4372      } else {
4373        p->print_stack_on(st);
4374      }
4375    }
4376    st->cr();
4377#if INCLUDE_SERVICES
4378    if (print_concurrent_locks) {
4379      concurrent_locks.print_locks_on(p, st);
4380    }
4381#endif // INCLUDE_SERVICES
4382  }
4383
4384  VMThread::vm_thread()->print_on(st);
4385  st->cr();
4386  Universe::heap()->print_gc_threads_on(st);
4387  WatcherThread* wt = WatcherThread::watcher_thread();
4388  if (wt != NULL) {
4389    wt->print_on(st);
4390    st->cr();
4391  }
4392  CompileBroker::print_compiler_threads_on(st);
4393  st->flush();
4394}
4395
4396// Threads::print_on_error() is called by fatal error handler. It's possible
4397// that VM is not at safepoint and/or current thread is inside signal handler.
4398// Don't print stack trace, as the stack may not be walkable. Don't allocate
4399// memory (even in resource area), it might deadlock the error handler.
4400void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4401                             int buflen) {
4402  bool found_current = false;
4403  st->print_cr("Java Threads: ( => current thread )");
4404  ALL_JAVA_THREADS(thread) {
4405    bool is_current = (current == thread);
4406    found_current = found_current || is_current;
4407
4408    st->print("%s", is_current ? "=>" : "  ");
4409
4410    st->print(PTR_FORMAT, p2i(thread));
4411    st->print(" ");
4412    thread->print_on_error(st, buf, buflen);
4413    st->cr();
4414  }
4415  st->cr();
4416
4417  st->print_cr("Other Threads:");
4418  if (VMThread::vm_thread()) {
4419    bool is_current = (current == VMThread::vm_thread());
4420    found_current = found_current || is_current;
4421    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4422
4423    st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4424    st->print(" ");
4425    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4426    st->cr();
4427  }
4428  WatcherThread* wt = WatcherThread::watcher_thread();
4429  if (wt != NULL) {
4430    bool is_current = (current == wt);
4431    found_current = found_current || is_current;
4432    st->print("%s", is_current ? "=>" : "  ");
4433
4434    st->print(PTR_FORMAT, p2i(wt));
4435    st->print(" ");
4436    wt->print_on_error(st, buf, buflen);
4437    st->cr();
4438  }
4439  if (!found_current) {
4440    st->cr();
4441    st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4442    current->print_on_error(st, buf, buflen);
4443    st->cr();
4444  }
4445}
4446
4447// Internal SpinLock and Mutex
4448// Based on ParkEvent
4449
4450// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4451//
4452// We employ SpinLocks _only for low-contention, fixed-length
4453// short-duration critical sections where we're concerned
4454// about native mutex_t or HotSpot Mutex:: latency.
4455// The mux construct provides a spin-then-block mutual exclusion
4456// mechanism.
4457//
4458// Testing has shown that contention on the ListLock guarding gFreeList
4459// is common.  If we implement ListLock as a simple SpinLock it's common
4460// for the JVM to devolve to yielding with little progress.  This is true
4461// despite the fact that the critical sections protected by ListLock are
4462// extremely short.
4463//
4464// TODO-FIXME: ListLock should be of type SpinLock.
4465// We should make this a 1st-class type, integrated into the lock
4466// hierarchy as leaf-locks.  Critically, the SpinLock structure
4467// should have sufficient padding to avoid false-sharing and excessive
4468// cache-coherency traffic.
4469
4470
4471typedef volatile int SpinLockT;
4472
4473void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4474  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4475    return;   // normal fast-path return
4476  }
4477
4478  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4479  TEVENT(SpinAcquire - ctx);
4480  int ctr = 0;
4481  int Yields = 0;
4482  for (;;) {
4483    while (*adr != 0) {
4484      ++ctr;
4485      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4486        if (Yields > 5) {
4487          os::naked_short_sleep(1);
4488        } else {
4489          os::naked_yield();
4490          ++Yields;
4491        }
4492      } else {
4493        SpinPause();
4494      }
4495    }
4496    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4497  }
4498}
4499
4500void Thread::SpinRelease(volatile int * adr) {
4501  assert(*adr != 0, "invariant");
4502  OrderAccess::fence();      // guarantee at least release consistency.
4503  // Roach-motel semantics.
4504  // It's safe if subsequent LDs and STs float "up" into the critical section,
4505  // but prior LDs and STs within the critical section can't be allowed
4506  // to reorder or float past the ST that releases the lock.
4507  // Loads and stores in the critical section - which appear in program
4508  // order before the store that releases the lock - must also appear
4509  // before the store that releases the lock in memory visibility order.
4510  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4511  // the ST of 0 into the lock-word which releases the lock, so fence
4512  // more than covers this on all platforms.
4513  *adr = 0;
4514}
4515
4516// muxAcquire and muxRelease:
4517//
4518// *  muxAcquire and muxRelease support a single-word lock-word construct.
4519//    The LSB of the word is set IFF the lock is held.
4520//    The remainder of the word points to the head of a singly-linked list
4521//    of threads blocked on the lock.
4522//
4523// *  The current implementation of muxAcquire-muxRelease uses its own
4524//    dedicated Thread._MuxEvent instance.  If we're interested in
4525//    minimizing the peak number of extant ParkEvent instances then
4526//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4527//    as certain invariants were satisfied.  Specifically, care would need
4528//    to be taken with regards to consuming unpark() "permits".
4529//    A safe rule of thumb is that a thread would never call muxAcquire()
4530//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4531//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4532//    consume an unpark() permit intended for monitorenter, for instance.
4533//    One way around this would be to widen the restricted-range semaphore
4534//    implemented in park().  Another alternative would be to provide
4535//    multiple instances of the PlatformEvent() for each thread.  One
4536//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4537//
4538// *  Usage:
4539//    -- Only as leaf locks
4540//    -- for short-term locking only as muxAcquire does not perform
4541//       thread state transitions.
4542//
4543// Alternatives:
4544// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4545//    but with parking or spin-then-park instead of pure spinning.
4546// *  Use Taura-Oyama-Yonenzawa locks.
4547// *  It's possible to construct a 1-0 lock if we encode the lockword as
4548//    (List,LockByte).  Acquire will CAS the full lockword while Release
4549//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4550//    acquiring threads use timers (ParkTimed) to detect and recover from
4551//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4552//    boundaries by using placement-new.
4553// *  Augment MCS with advisory back-link fields maintained with CAS().
4554//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4555//    The validity of the backlinks must be ratified before we trust the value.
4556//    If the backlinks are invalid the exiting thread must back-track through the
4557//    the forward links, which are always trustworthy.
4558// *  Add a successor indication.  The LockWord is currently encoded as
4559//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4560//    to provide the usual futile-wakeup optimization.
4561//    See RTStt for details.
4562// *  Consider schedctl.sc_nopreempt to cover the critical section.
4563//
4564
4565
4566typedef volatile intptr_t MutexT;      // Mux Lock-word
4567enum MuxBits { LOCKBIT = 1 };
4568
4569void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4570  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4571  if (w == 0) return;
4572  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4573    return;
4574  }
4575
4576  TEVENT(muxAcquire - Contention);
4577  ParkEvent * const Self = Thread::current()->_MuxEvent;
4578  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4579  for (;;) {
4580    int its = (os::is_MP() ? 100 : 0) + 1;
4581
4582    // Optional spin phase: spin-then-park strategy
4583    while (--its >= 0) {
4584      w = *Lock;
4585      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4586        return;
4587      }
4588    }
4589
4590    Self->reset();
4591    Self->OnList = intptr_t(Lock);
4592    // The following fence() isn't _strictly necessary as the subsequent
4593    // CAS() both serializes execution and ratifies the fetched *Lock value.
4594    OrderAccess::fence();
4595    for (;;) {
4596      w = *Lock;
4597      if ((w & LOCKBIT) == 0) {
4598        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4599          Self->OnList = 0;   // hygiene - allows stronger asserts
4600          return;
4601        }
4602        continue;      // Interference -- *Lock changed -- Just retry
4603      }
4604      assert(w & LOCKBIT, "invariant");
4605      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4606      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4607    }
4608
4609    while (Self->OnList != 0) {
4610      Self->park();
4611    }
4612  }
4613}
4614
4615void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4616  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4617  if (w == 0) return;
4618  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4619    return;
4620  }
4621
4622  TEVENT(muxAcquire - Contention);
4623  ParkEvent * ReleaseAfter = NULL;
4624  if (ev == NULL) {
4625    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4626  }
4627  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4628  for (;;) {
4629    guarantee(ev->OnList == 0, "invariant");
4630    int its = (os::is_MP() ? 100 : 0) + 1;
4631
4632    // Optional spin phase: spin-then-park strategy
4633    while (--its >= 0) {
4634      w = *Lock;
4635      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4636        if (ReleaseAfter != NULL) {
4637          ParkEvent::Release(ReleaseAfter);
4638        }
4639        return;
4640      }
4641    }
4642
4643    ev->reset();
4644    ev->OnList = intptr_t(Lock);
4645    // The following fence() isn't _strictly necessary as the subsequent
4646    // CAS() both serializes execution and ratifies the fetched *Lock value.
4647    OrderAccess::fence();
4648    for (;;) {
4649      w = *Lock;
4650      if ((w & LOCKBIT) == 0) {
4651        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4652          ev->OnList = 0;
4653          // We call ::Release while holding the outer lock, thus
4654          // artificially lengthening the critical section.
4655          // Consider deferring the ::Release() until the subsequent unlock(),
4656          // after we've dropped the outer lock.
4657          if (ReleaseAfter != NULL) {
4658            ParkEvent::Release(ReleaseAfter);
4659          }
4660          return;
4661        }
4662        continue;      // Interference -- *Lock changed -- Just retry
4663      }
4664      assert(w & LOCKBIT, "invariant");
4665      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4666      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4667    }
4668
4669    while (ev->OnList != 0) {
4670      ev->park();
4671    }
4672  }
4673}
4674
4675// Release() must extract a successor from the list and then wake that thread.
4676// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4677// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4678// Release() would :
4679// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4680// (B) Extract a successor from the private list "in-hand"
4681// (C) attempt to CAS() the residual back into *Lock over null.
4682//     If there were any newly arrived threads and the CAS() would fail.
4683//     In that case Release() would detach the RATs, re-merge the list in-hand
4684//     with the RATs and repeat as needed.  Alternately, Release() might
4685//     detach and extract a successor, but then pass the residual list to the wakee.
4686//     The wakee would be responsible for reattaching and remerging before it
4687//     competed for the lock.
4688//
4689// Both "pop" and DMR are immune from ABA corruption -- there can be
4690// multiple concurrent pushers, but only one popper or detacher.
4691// This implementation pops from the head of the list.  This is unfair,
4692// but tends to provide excellent throughput as hot threads remain hot.
4693// (We wake recently run threads first).
4694//
4695// All paths through muxRelease() will execute a CAS.
4696// Release consistency -- We depend on the CAS in muxRelease() to provide full
4697// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4698// executed within the critical section are complete and globally visible before the
4699// store (CAS) to the lock-word that releases the lock becomes globally visible.
4700void Thread::muxRelease(volatile intptr_t * Lock)  {
4701  for (;;) {
4702    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4703    assert(w & LOCKBIT, "invariant");
4704    if (w == LOCKBIT) return;
4705    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4706    assert(List != NULL, "invariant");
4707    assert(List->OnList == intptr_t(Lock), "invariant");
4708    ParkEvent * const nxt = List->ListNext;
4709    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4710
4711    // The following CAS() releases the lock and pops the head element.
4712    // The CAS() also ratifies the previously fetched lock-word value.
4713    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4714      continue;
4715    }
4716    List->OnList = 0;
4717    OrderAccess::fence();
4718    List->unpark();
4719    return;
4720  }
4721}
4722
4723
4724void Threads::verify() {
4725  ALL_JAVA_THREADS(p) {
4726    p->verify();
4727  }
4728  VMThread* thread = VMThread::vm_thread();
4729  if (thread != NULL) thread->verify();
4730}
4731