thread.cpp revision 9867:3125c4a60cc9
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/codeCacheExtensions.hpp"
32#include "code/scopeDesc.hpp"
33#include "compiler/compileBroker.hpp"
34#include "gc/shared/gcId.hpp"
35#include "gc/shared/gcLocker.inline.hpp"
36#include "gc/shared/workgroup.hpp"
37#include "interpreter/interpreter.hpp"
38#include "interpreter/linkResolver.hpp"
39#include "interpreter/oopMapCache.hpp"
40#include "jvmtifiles/jvmtiEnv.hpp"
41#include "logging/logConfiguration.hpp"
42#include "memory/metaspaceShared.hpp"
43#include "memory/oopFactory.hpp"
44#include "memory/universe.inline.hpp"
45#include "oops/instanceKlass.hpp"
46#include "oops/objArrayOop.hpp"
47#include "oops/oop.inline.hpp"
48#include "oops/symbol.hpp"
49#include "oops/verifyOopClosure.hpp"
50#include "prims/jvm_misc.hpp"
51#include "prims/jvmtiExport.hpp"
52#include "prims/jvmtiThreadState.hpp"
53#include "prims/privilegedStack.hpp"
54#include "runtime/arguments.hpp"
55#include "runtime/atomic.inline.hpp"
56#include "runtime/biasedLocking.hpp"
57#include "runtime/commandLineFlagConstraintList.hpp"
58#include "runtime/commandLineFlagRangeList.hpp"
59#include "runtime/deoptimization.hpp"
60#include "runtime/fprofiler.hpp"
61#include "runtime/frame.inline.hpp"
62#include "runtime/globals.hpp"
63#include "runtime/init.hpp"
64#include "runtime/interfaceSupport.hpp"
65#include "runtime/java.hpp"
66#include "runtime/javaCalls.hpp"
67#include "runtime/jniPeriodicChecker.hpp"
68#include "runtime/memprofiler.hpp"
69#include "runtime/mutexLocker.hpp"
70#include "runtime/objectMonitor.hpp"
71#include "runtime/orderAccess.inline.hpp"
72#include "runtime/osThread.hpp"
73#include "runtime/safepoint.hpp"
74#include "runtime/sharedRuntime.hpp"
75#include "runtime/statSampler.hpp"
76#include "runtime/stubRoutines.hpp"
77#include "runtime/sweeper.hpp"
78#include "runtime/task.hpp"
79#include "runtime/thread.inline.hpp"
80#include "runtime/threadCritical.hpp"
81#include "runtime/vframe.hpp"
82#include "runtime/vframeArray.hpp"
83#include "runtime/vframe_hp.hpp"
84#include "runtime/vmThread.hpp"
85#include "runtime/vm_operations.hpp"
86#include "runtime/vm_version.hpp"
87#include "services/attachListener.hpp"
88#include "services/management.hpp"
89#include "services/memTracker.hpp"
90#include "services/threadService.hpp"
91#include "trace/traceMacros.hpp"
92#include "trace/tracing.hpp"
93#include "utilities/defaultStream.hpp"
94#include "utilities/dtrace.hpp"
95#include "utilities/events.hpp"
96#include "utilities/macros.hpp"
97#include "utilities/preserveException.hpp"
98#if INCLUDE_ALL_GCS
99#include "gc/cms/concurrentMarkSweepThread.hpp"
100#include "gc/g1/concurrentMarkThread.inline.hpp"
101#include "gc/parallel/pcTasks.hpp"
102#endif // INCLUDE_ALL_GCS
103#if INCLUDE_JVMCI
104#include "jvmci/jvmciCompiler.hpp"
105#include "jvmci/jvmciRuntime.hpp"
106#endif
107#ifdef COMPILER1
108#include "c1/c1_Compiler.hpp"
109#endif
110#ifdef COMPILER2
111#include "opto/c2compiler.hpp"
112#include "opto/idealGraphPrinter.hpp"
113#endif
114#if INCLUDE_RTM_OPT
115#include "runtime/rtmLocking.hpp"
116#endif
117
118#ifdef DTRACE_ENABLED
119
120// Only bother with this argument setup if dtrace is available
121
122  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
123  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
124
125  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
126    {                                                                      \
127      ResourceMark rm(this);                                               \
128      int len = 0;                                                         \
129      const char* name = (javathread)->get_thread_name();                  \
130      len = strlen(name);                                                  \
131      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
132        (char *) name, len,                                                \
133        java_lang_Thread::thread_id((javathread)->threadObj()),            \
134        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
135        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
136    }
137
138#else //  ndef DTRACE_ENABLED
139
140  #define DTRACE_THREAD_PROBE(probe, javathread)
141
142#endif // ndef DTRACE_ENABLED
143
144#ifndef USE_LIBRARY_BASED_TLS_ONLY
145// Current thread is maintained as a thread-local variable
146THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
147#endif
148
149// Class hierarchy
150// - Thread
151//   - VMThread
152//   - WatcherThread
153//   - ConcurrentMarkSweepThread
154//   - JavaThread
155//     - CompilerThread
156
157// ======= Thread ========
158// Support for forcing alignment of thread objects for biased locking
159void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
160  if (UseBiasedLocking) {
161    const int alignment = markOopDesc::biased_lock_alignment;
162    size_t aligned_size = size + (alignment - sizeof(intptr_t));
163    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
164                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
165                                                         AllocFailStrategy::RETURN_NULL);
166    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
167    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
168           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
169           "JavaThread alignment code overflowed allocated storage");
170    if (TraceBiasedLocking) {
171      if (aligned_addr != real_malloc_addr) {
172        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
173                      p2i(real_malloc_addr), p2i(aligned_addr));
174      }
175    }
176    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
177    return aligned_addr;
178  } else {
179    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
180                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
181  }
182}
183
184void Thread::operator delete(void* p) {
185  if (UseBiasedLocking) {
186    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
187    FreeHeap(real_malloc_addr);
188  } else {
189    FreeHeap(p);
190  }
191}
192
193
194// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
195// JavaThread
196
197
198Thread::Thread() {
199  // stack and get_thread
200  set_stack_base(NULL);
201  set_stack_size(0);
202  set_self_raw_id(0);
203  set_lgrp_id(-1);
204  DEBUG_ONLY(clear_suspendible_thread();)
205
206  // allocated data structures
207  set_osthread(NULL);
208  set_resource_area(new (mtThread)ResourceArea());
209  DEBUG_ONLY(_current_resource_mark = NULL;)
210  set_handle_area(new (mtThread) HandleArea(NULL));
211  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
212  set_active_handles(NULL);
213  set_free_handle_block(NULL);
214  set_last_handle_mark(NULL);
215
216  // This initial value ==> never claimed.
217  _oops_do_parity = 0;
218
219  // the handle mark links itself to last_handle_mark
220  new HandleMark(this);
221
222  // plain initialization
223  debug_only(_owned_locks = NULL;)
224  debug_only(_allow_allocation_count = 0;)
225  NOT_PRODUCT(_allow_safepoint_count = 0;)
226  NOT_PRODUCT(_skip_gcalot = false;)
227  _jvmti_env_iteration_count = 0;
228  set_allocated_bytes(0);
229  _vm_operation_started_count = 0;
230  _vm_operation_completed_count = 0;
231  _current_pending_monitor = NULL;
232  _current_pending_monitor_is_from_java = true;
233  _current_waiting_monitor = NULL;
234  _num_nested_signal = 0;
235  omFreeList = NULL;
236  omFreeCount = 0;
237  omFreeProvision = 32;
238  omInUseList = NULL;
239  omInUseCount = 0;
240
241#ifdef ASSERT
242  _visited_for_critical_count = false;
243#endif
244
245  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
246                         Monitor::_safepoint_check_sometimes);
247  _suspend_flags = 0;
248
249  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
250  _hashStateX = os::random();
251  _hashStateY = 842502087;
252  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
253  _hashStateW = 273326509;
254
255  _OnTrap   = 0;
256  _schedctl = NULL;
257  _Stalled  = 0;
258  _TypeTag  = 0x2BAD;
259
260  // Many of the following fields are effectively final - immutable
261  // Note that nascent threads can't use the Native Monitor-Mutex
262  // construct until the _MutexEvent is initialized ...
263  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
264  // we might instead use a stack of ParkEvents that we could provision on-demand.
265  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
266  // and ::Release()
267  _ParkEvent   = ParkEvent::Allocate(this);
268  _SleepEvent  = ParkEvent::Allocate(this);
269  _MutexEvent  = ParkEvent::Allocate(this);
270  _MuxEvent    = ParkEvent::Allocate(this);
271
272#ifdef CHECK_UNHANDLED_OOPS
273  if (CheckUnhandledOops) {
274    _unhandled_oops = new UnhandledOops(this);
275  }
276#endif // CHECK_UNHANDLED_OOPS
277#ifdef ASSERT
278  if (UseBiasedLocking) {
279    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
280    assert(this == _real_malloc_address ||
281           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
282           "bug in forced alignment of thread objects");
283  }
284#endif // ASSERT
285}
286
287void Thread::initialize_thread_current() {
288#ifndef USE_LIBRARY_BASED_TLS_ONLY
289  assert(_thr_current == NULL, "Thread::current already initialized");
290  _thr_current = this;
291#endif
292  assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
293  ThreadLocalStorage::set_thread(this);
294  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
295}
296
297void Thread::clear_thread_current() {
298  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
299#ifndef USE_LIBRARY_BASED_TLS_ONLY
300  _thr_current = NULL;
301#endif
302  ThreadLocalStorage::set_thread(NULL);
303}
304
305void Thread::record_stack_base_and_size() {
306  set_stack_base(os::current_stack_base());
307  set_stack_size(os::current_stack_size());
308  if (is_Java_thread()) {
309    ((JavaThread*) this)->set_stack_overflow_limit();
310    ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
311  }
312  // CR 7190089: on Solaris, primordial thread's stack is adjusted
313  // in initialize_thread(). Without the adjustment, stack size is
314  // incorrect if stack is set to unlimited (ulimit -s unlimited).
315  // So far, only Solaris has real implementation of initialize_thread().
316  //
317  // set up any platform-specific state.
318  os::initialize_thread(this);
319
320#if INCLUDE_NMT
321  // record thread's native stack, stack grows downward
322  MemTracker::record_thread_stack(stack_end(), stack_size());
323#endif // INCLUDE_NMT
324}
325
326
327Thread::~Thread() {
328  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
329  ObjectSynchronizer::omFlush(this);
330
331  EVENT_THREAD_DESTRUCT(this);
332
333  // stack_base can be NULL if the thread is never started or exited before
334  // record_stack_base_and_size called. Although, we would like to ensure
335  // that all started threads do call record_stack_base_and_size(), there is
336  // not proper way to enforce that.
337#if INCLUDE_NMT
338  if (_stack_base != NULL) {
339    MemTracker::release_thread_stack(stack_end(), stack_size());
340#ifdef ASSERT
341    set_stack_base(NULL);
342#endif
343  }
344#endif // INCLUDE_NMT
345
346  // deallocate data structures
347  delete resource_area();
348  // since the handle marks are using the handle area, we have to deallocated the root
349  // handle mark before deallocating the thread's handle area,
350  assert(last_handle_mark() != NULL, "check we have an element");
351  delete last_handle_mark();
352  assert(last_handle_mark() == NULL, "check we have reached the end");
353
354  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
355  // We NULL out the fields for good hygiene.
356  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
357  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
358  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
359  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
360
361  delete handle_area();
362  delete metadata_handles();
363
364  // osthread() can be NULL, if creation of thread failed.
365  if (osthread() != NULL) os::free_thread(osthread());
366
367  delete _SR_lock;
368
369  // clear Thread::current if thread is deleting itself.
370  // Needed to ensure JNI correctly detects non-attached threads.
371  if (this == Thread::current()) {
372    clear_thread_current();
373  }
374
375  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
376}
377
378// NOTE: dummy function for assertion purpose.
379void Thread::run() {
380  ShouldNotReachHere();
381}
382
383#ifdef ASSERT
384// Private method to check for dangling thread pointer
385void check_for_dangling_thread_pointer(Thread *thread) {
386  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
387         "possibility of dangling Thread pointer");
388}
389#endif
390
391ThreadPriority Thread::get_priority(const Thread* const thread) {
392  ThreadPriority priority;
393  // Can return an error!
394  (void)os::get_priority(thread, priority);
395  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
396  return priority;
397}
398
399void Thread::set_priority(Thread* thread, ThreadPriority priority) {
400  debug_only(check_for_dangling_thread_pointer(thread);)
401  // Can return an error!
402  (void)os::set_priority(thread, priority);
403}
404
405
406void Thread::start(Thread* thread) {
407  // Start is different from resume in that its safety is guaranteed by context or
408  // being called from a Java method synchronized on the Thread object.
409  if (!DisableStartThread) {
410    if (thread->is_Java_thread()) {
411      // Initialize the thread state to RUNNABLE before starting this thread.
412      // Can not set it after the thread started because we do not know the
413      // exact thread state at that time. It could be in MONITOR_WAIT or
414      // in SLEEPING or some other state.
415      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
416                                          java_lang_Thread::RUNNABLE);
417    }
418    os::start_thread(thread);
419  }
420}
421
422// Enqueue a VM_Operation to do the job for us - sometime later
423void Thread::send_async_exception(oop java_thread, oop java_throwable) {
424  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
425  VMThread::execute(vm_stop);
426}
427
428
429// Check if an external suspend request has completed (or has been
430// cancelled). Returns true if the thread is externally suspended and
431// false otherwise.
432//
433// The bits parameter returns information about the code path through
434// the routine. Useful for debugging:
435//
436// set in is_ext_suspend_completed():
437// 0x00000001 - routine was entered
438// 0x00000010 - routine return false at end
439// 0x00000100 - thread exited (return false)
440// 0x00000200 - suspend request cancelled (return false)
441// 0x00000400 - thread suspended (return true)
442// 0x00001000 - thread is in a suspend equivalent state (return true)
443// 0x00002000 - thread is native and walkable (return true)
444// 0x00004000 - thread is native_trans and walkable (needed retry)
445//
446// set in wait_for_ext_suspend_completion():
447// 0x00010000 - routine was entered
448// 0x00020000 - suspend request cancelled before loop (return false)
449// 0x00040000 - thread suspended before loop (return true)
450// 0x00080000 - suspend request cancelled in loop (return false)
451// 0x00100000 - thread suspended in loop (return true)
452// 0x00200000 - suspend not completed during retry loop (return false)
453
454// Helper class for tracing suspend wait debug bits.
455//
456// 0x00000100 indicates that the target thread exited before it could
457// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
458// 0x00080000 each indicate a cancelled suspend request so they don't
459// count as wait failures either.
460#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
461
462class TraceSuspendDebugBits : public StackObj {
463 private:
464  JavaThread * jt;
465  bool         is_wait;
466  bool         called_by_wait;  // meaningful when !is_wait
467  uint32_t *   bits;
468
469 public:
470  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
471                        uint32_t *_bits) {
472    jt             = _jt;
473    is_wait        = _is_wait;
474    called_by_wait = _called_by_wait;
475    bits           = _bits;
476  }
477
478  ~TraceSuspendDebugBits() {
479    if (!is_wait) {
480#if 1
481      // By default, don't trace bits for is_ext_suspend_completed() calls.
482      // That trace is very chatty.
483      return;
484#else
485      if (!called_by_wait) {
486        // If tracing for is_ext_suspend_completed() is enabled, then only
487        // trace calls to it from wait_for_ext_suspend_completion()
488        return;
489      }
490#endif
491    }
492
493    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
494      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
495        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
496        ResourceMark rm;
497
498        tty->print_cr(
499                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
500                      jt->get_thread_name(), *bits);
501
502        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
503      }
504    }
505  }
506};
507#undef DEBUG_FALSE_BITS
508
509
510bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
511                                          uint32_t *bits) {
512  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
513
514  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
515  bool do_trans_retry;           // flag to force the retry
516
517  *bits |= 0x00000001;
518
519  do {
520    do_trans_retry = false;
521
522    if (is_exiting()) {
523      // Thread is in the process of exiting. This is always checked
524      // first to reduce the risk of dereferencing a freed JavaThread.
525      *bits |= 0x00000100;
526      return false;
527    }
528
529    if (!is_external_suspend()) {
530      // Suspend request is cancelled. This is always checked before
531      // is_ext_suspended() to reduce the risk of a rogue resume
532      // confusing the thread that made the suspend request.
533      *bits |= 0x00000200;
534      return false;
535    }
536
537    if (is_ext_suspended()) {
538      // thread is suspended
539      *bits |= 0x00000400;
540      return true;
541    }
542
543    // Now that we no longer do hard suspends of threads running
544    // native code, the target thread can be changing thread state
545    // while we are in this routine:
546    //
547    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
548    //
549    // We save a copy of the thread state as observed at this moment
550    // and make our decision about suspend completeness based on the
551    // copy. This closes the race where the thread state is seen as
552    // _thread_in_native_trans in the if-thread_blocked check, but is
553    // seen as _thread_blocked in if-thread_in_native_trans check.
554    JavaThreadState save_state = thread_state();
555
556    if (save_state == _thread_blocked && is_suspend_equivalent()) {
557      // If the thread's state is _thread_blocked and this blocking
558      // condition is known to be equivalent to a suspend, then we can
559      // consider the thread to be externally suspended. This means that
560      // the code that sets _thread_blocked has been modified to do
561      // self-suspension if the blocking condition releases. We also
562      // used to check for CONDVAR_WAIT here, but that is now covered by
563      // the _thread_blocked with self-suspension check.
564      //
565      // Return true since we wouldn't be here unless there was still an
566      // external suspend request.
567      *bits |= 0x00001000;
568      return true;
569    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
570      // Threads running native code will self-suspend on native==>VM/Java
571      // transitions. If its stack is walkable (should always be the case
572      // unless this function is called before the actual java_suspend()
573      // call), then the wait is done.
574      *bits |= 0x00002000;
575      return true;
576    } else if (!called_by_wait && !did_trans_retry &&
577               save_state == _thread_in_native_trans &&
578               frame_anchor()->walkable()) {
579      // The thread is transitioning from thread_in_native to another
580      // thread state. check_safepoint_and_suspend_for_native_trans()
581      // will force the thread to self-suspend. If it hasn't gotten
582      // there yet we may have caught the thread in-between the native
583      // code check above and the self-suspend. Lucky us. If we were
584      // called by wait_for_ext_suspend_completion(), then it
585      // will be doing the retries so we don't have to.
586      //
587      // Since we use the saved thread state in the if-statement above,
588      // there is a chance that the thread has already transitioned to
589      // _thread_blocked by the time we get here. In that case, we will
590      // make a single unnecessary pass through the logic below. This
591      // doesn't hurt anything since we still do the trans retry.
592
593      *bits |= 0x00004000;
594
595      // Once the thread leaves thread_in_native_trans for another
596      // thread state, we break out of this retry loop. We shouldn't
597      // need this flag to prevent us from getting back here, but
598      // sometimes paranoia is good.
599      did_trans_retry = true;
600
601      // We wait for the thread to transition to a more usable state.
602      for (int i = 1; i <= SuspendRetryCount; i++) {
603        // We used to do an "os::yield_all(i)" call here with the intention
604        // that yielding would increase on each retry. However, the parameter
605        // is ignored on Linux which means the yield didn't scale up. Waiting
606        // on the SR_lock below provides a much more predictable scale up for
607        // the delay. It also provides a simple/direct point to check for any
608        // safepoint requests from the VMThread
609
610        // temporarily drops SR_lock while doing wait with safepoint check
611        // (if we're a JavaThread - the WatcherThread can also call this)
612        // and increase delay with each retry
613        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
614
615        // check the actual thread state instead of what we saved above
616        if (thread_state() != _thread_in_native_trans) {
617          // the thread has transitioned to another thread state so
618          // try all the checks (except this one) one more time.
619          do_trans_retry = true;
620          break;
621        }
622      } // end retry loop
623
624
625    }
626  } while (do_trans_retry);
627
628  *bits |= 0x00000010;
629  return false;
630}
631
632// Wait for an external suspend request to complete (or be cancelled).
633// Returns true if the thread is externally suspended and false otherwise.
634//
635bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
636                                                 uint32_t *bits) {
637  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
638                             false /* !called_by_wait */, bits);
639
640  // local flag copies to minimize SR_lock hold time
641  bool is_suspended;
642  bool pending;
643  uint32_t reset_bits;
644
645  // set a marker so is_ext_suspend_completed() knows we are the caller
646  *bits |= 0x00010000;
647
648  // We use reset_bits to reinitialize the bits value at the top of
649  // each retry loop. This allows the caller to make use of any
650  // unused bits for their own marking purposes.
651  reset_bits = *bits;
652
653  {
654    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
655    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
656                                            delay, bits);
657    pending = is_external_suspend();
658  }
659  // must release SR_lock to allow suspension to complete
660
661  if (!pending) {
662    // A cancelled suspend request is the only false return from
663    // is_ext_suspend_completed() that keeps us from entering the
664    // retry loop.
665    *bits |= 0x00020000;
666    return false;
667  }
668
669  if (is_suspended) {
670    *bits |= 0x00040000;
671    return true;
672  }
673
674  for (int i = 1; i <= retries; i++) {
675    *bits = reset_bits;  // reinit to only track last retry
676
677    // We used to do an "os::yield_all(i)" call here with the intention
678    // that yielding would increase on each retry. However, the parameter
679    // is ignored on Linux which means the yield didn't scale up. Waiting
680    // on the SR_lock below provides a much more predictable scale up for
681    // the delay. It also provides a simple/direct point to check for any
682    // safepoint requests from the VMThread
683
684    {
685      MutexLocker ml(SR_lock());
686      // wait with safepoint check (if we're a JavaThread - the WatcherThread
687      // can also call this)  and increase delay with each retry
688      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
689
690      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
691                                              delay, bits);
692
693      // It is possible for the external suspend request to be cancelled
694      // (by a resume) before the actual suspend operation is completed.
695      // Refresh our local copy to see if we still need to wait.
696      pending = is_external_suspend();
697    }
698
699    if (!pending) {
700      // A cancelled suspend request is the only false return from
701      // is_ext_suspend_completed() that keeps us from staying in the
702      // retry loop.
703      *bits |= 0x00080000;
704      return false;
705    }
706
707    if (is_suspended) {
708      *bits |= 0x00100000;
709      return true;
710    }
711  } // end retry loop
712
713  // thread did not suspend after all our retries
714  *bits |= 0x00200000;
715  return false;
716}
717
718#ifndef PRODUCT
719void JavaThread::record_jump(address target, address instr, const char* file,
720                             int line) {
721
722  // This should not need to be atomic as the only way for simultaneous
723  // updates is via interrupts. Even then this should be rare or non-existent
724  // and we don't care that much anyway.
725
726  int index = _jmp_ring_index;
727  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
728  _jmp_ring[index]._target = (intptr_t) target;
729  _jmp_ring[index]._instruction = (intptr_t) instr;
730  _jmp_ring[index]._file = file;
731  _jmp_ring[index]._line = line;
732}
733#endif // PRODUCT
734
735// Called by flat profiler
736// Callers have already called wait_for_ext_suspend_completion
737// The assertion for that is currently too complex to put here:
738bool JavaThread::profile_last_Java_frame(frame* _fr) {
739  bool gotframe = false;
740  // self suspension saves needed state.
741  if (has_last_Java_frame() && _anchor.walkable()) {
742    *_fr = pd_last_frame();
743    gotframe = true;
744  }
745  return gotframe;
746}
747
748void Thread::interrupt(Thread* thread) {
749  debug_only(check_for_dangling_thread_pointer(thread);)
750  os::interrupt(thread);
751}
752
753bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
754  debug_only(check_for_dangling_thread_pointer(thread);)
755  // Note:  If clear_interrupted==false, this simply fetches and
756  // returns the value of the field osthread()->interrupted().
757  return os::is_interrupted(thread, clear_interrupted);
758}
759
760
761// GC Support
762bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
763  jint thread_parity = _oops_do_parity;
764  if (thread_parity != strong_roots_parity) {
765    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
766    if (res == thread_parity) {
767      return true;
768    } else {
769      guarantee(res == strong_roots_parity, "Or else what?");
770      return false;
771    }
772  }
773  return false;
774}
775
776void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
777  active_handles()->oops_do(f);
778  // Do oop for ThreadShadow
779  f->do_oop((oop*)&_pending_exception);
780  handle_area()->oops_do(f);
781}
782
783void Thread::nmethods_do(CodeBlobClosure* cf) {
784  // no nmethods in a generic thread...
785}
786
787void Thread::metadata_handles_do(void f(Metadata*)) {
788  // Only walk the Handles in Thread.
789  if (metadata_handles() != NULL) {
790    for (int i = 0; i< metadata_handles()->length(); i++) {
791      f(metadata_handles()->at(i));
792    }
793  }
794}
795
796void Thread::print_on(outputStream* st) const {
797  // get_priority assumes osthread initialized
798  if (osthread() != NULL) {
799    int os_prio;
800    if (os::get_native_priority(this, &os_prio) == OS_OK) {
801      st->print("os_prio=%d ", os_prio);
802    }
803    st->print("tid=" INTPTR_FORMAT " ", p2i(this));
804    ext().print_on(st);
805    osthread()->print_on(st);
806  }
807  debug_only(if (WizardMode) print_owned_locks_on(st);)
808}
809
810// Thread::print_on_error() is called by fatal error handler. Don't use
811// any lock or allocate memory.
812void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
813  if (is_VM_thread())                 st->print("VMThread");
814  else if (is_Compiler_thread())      st->print("CompilerThread");
815  else if (is_Java_thread())          st->print("JavaThread");
816  else if (is_GC_task_thread())       st->print("GCTaskThread");
817  else if (is_Watcher_thread())       st->print("WatcherThread");
818  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
819  else                                st->print("Thread");
820
821  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
822            p2i(stack_end()), p2i(stack_base()));
823
824  if (osthread()) {
825    st->print(" [id=%d]", osthread()->thread_id());
826  }
827}
828
829#ifdef ASSERT
830void Thread::print_owned_locks_on(outputStream* st) const {
831  Monitor *cur = _owned_locks;
832  if (cur == NULL) {
833    st->print(" (no locks) ");
834  } else {
835    st->print_cr(" Locks owned:");
836    while (cur) {
837      cur->print_on(st);
838      cur = cur->next();
839    }
840  }
841}
842
843static int ref_use_count  = 0;
844
845bool Thread::owns_locks_but_compiled_lock() const {
846  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
847    if (cur != Compile_lock) return true;
848  }
849  return false;
850}
851
852
853#endif
854
855#ifndef PRODUCT
856
857// The flag: potential_vm_operation notifies if this particular safepoint state could potential
858// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
859// no threads which allow_vm_block's are held
860void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
861  // Check if current thread is allowed to block at a safepoint
862  if (!(_allow_safepoint_count == 0)) {
863    fatal("Possible safepoint reached by thread that does not allow it");
864  }
865  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
866    fatal("LEAF method calling lock?");
867  }
868
869#ifdef ASSERT
870  if (potential_vm_operation && is_Java_thread()
871      && !Universe::is_bootstrapping()) {
872    // Make sure we do not hold any locks that the VM thread also uses.
873    // This could potentially lead to deadlocks
874    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
875      // Threads_lock is special, since the safepoint synchronization will not start before this is
876      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
877      // since it is used to transfer control between JavaThreads and the VMThread
878      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
879      if ((cur->allow_vm_block() &&
880           cur != Threads_lock &&
881           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
882           cur != VMOperationRequest_lock &&
883           cur != VMOperationQueue_lock) ||
884           cur->rank() == Mutex::special) {
885        fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
886      }
887    }
888  }
889
890  if (GCALotAtAllSafepoints) {
891    // We could enter a safepoint here and thus have a gc
892    InterfaceSupport::check_gc_alot();
893  }
894#endif
895}
896#endif
897
898bool Thread::is_in_stack(address adr) const {
899  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
900  address end = os::current_stack_pointer();
901  // Allow non Java threads to call this without stack_base
902  if (_stack_base == NULL) return true;
903  if (stack_base() >= adr && adr >= end) return true;
904
905  return false;
906}
907
908bool Thread::is_in_usable_stack(address adr) const {
909  size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
910  size_t usable_stack_size = _stack_size - stack_guard_size;
911
912  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
913}
914
915
916// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
917// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
918// used for compilation in the future. If that change is made, the need for these methods
919// should be revisited, and they should be removed if possible.
920
921bool Thread::is_lock_owned(address adr) const {
922  return on_local_stack(adr);
923}
924
925bool Thread::set_as_starting_thread() {
926  // NOTE: this must be called inside the main thread.
927  return os::create_main_thread((JavaThread*)this);
928}
929
930static void initialize_class(Symbol* class_name, TRAPS) {
931  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
932  InstanceKlass::cast(klass)->initialize(CHECK);
933}
934
935
936// Creates the initial ThreadGroup
937static Handle create_initial_thread_group(TRAPS) {
938  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
939  instanceKlassHandle klass (THREAD, k);
940
941  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
942  {
943    JavaValue result(T_VOID);
944    JavaCalls::call_special(&result,
945                            system_instance,
946                            klass,
947                            vmSymbols::object_initializer_name(),
948                            vmSymbols::void_method_signature(),
949                            CHECK_NH);
950  }
951  Universe::set_system_thread_group(system_instance());
952
953  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
954  {
955    JavaValue result(T_VOID);
956    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
957    JavaCalls::call_special(&result,
958                            main_instance,
959                            klass,
960                            vmSymbols::object_initializer_name(),
961                            vmSymbols::threadgroup_string_void_signature(),
962                            system_instance,
963                            string,
964                            CHECK_NH);
965  }
966  return main_instance;
967}
968
969// Creates the initial Thread
970static oop create_initial_thread(Handle thread_group, JavaThread* thread,
971                                 TRAPS) {
972  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
973  instanceKlassHandle klass (THREAD, k);
974  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
975
976  java_lang_Thread::set_thread(thread_oop(), thread);
977  java_lang_Thread::set_priority(thread_oop(), NormPriority);
978  thread->set_threadObj(thread_oop());
979
980  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
981
982  JavaValue result(T_VOID);
983  JavaCalls::call_special(&result, thread_oop,
984                          klass,
985                          vmSymbols::object_initializer_name(),
986                          vmSymbols::threadgroup_string_void_signature(),
987                          thread_group,
988                          string,
989                          CHECK_NULL);
990  return thread_oop();
991}
992
993static void call_initializeSystemClass(TRAPS) {
994  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
995  instanceKlassHandle klass (THREAD, k);
996
997  JavaValue result(T_VOID);
998  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
999                         vmSymbols::void_method_signature(), CHECK);
1000}
1001
1002char java_runtime_name[128] = "";
1003char java_runtime_version[128] = "";
1004
1005// extract the JRE name from sun.misc.Version.java_runtime_name
1006static const char* get_java_runtime_name(TRAPS) {
1007  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1008                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1009  fieldDescriptor fd;
1010  bool found = k != NULL &&
1011               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1012                                                        vmSymbols::string_signature(), &fd);
1013  if (found) {
1014    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1015    if (name_oop == NULL) {
1016      return NULL;
1017    }
1018    const char* name = java_lang_String::as_utf8_string(name_oop,
1019                                                        java_runtime_name,
1020                                                        sizeof(java_runtime_name));
1021    return name;
1022  } else {
1023    return NULL;
1024  }
1025}
1026
1027// extract the JRE version from sun.misc.Version.java_runtime_version
1028static const char* get_java_runtime_version(TRAPS) {
1029  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1030                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1031  fieldDescriptor fd;
1032  bool found = k != NULL &&
1033               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1034                                                        vmSymbols::string_signature(), &fd);
1035  if (found) {
1036    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1037    if (name_oop == NULL) {
1038      return NULL;
1039    }
1040    const char* name = java_lang_String::as_utf8_string(name_oop,
1041                                                        java_runtime_version,
1042                                                        sizeof(java_runtime_version));
1043    return name;
1044  } else {
1045    return NULL;
1046  }
1047}
1048
1049// General purpose hook into Java code, run once when the VM is initialized.
1050// The Java library method itself may be changed independently from the VM.
1051static void call_postVMInitHook(TRAPS) {
1052  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1053  instanceKlassHandle klass (THREAD, k);
1054  if (klass.not_null()) {
1055    JavaValue result(T_VOID);
1056    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1057                           vmSymbols::void_method_signature(),
1058                           CHECK);
1059  }
1060}
1061
1062static void reset_vm_info_property(TRAPS) {
1063  // the vm info string
1064  ResourceMark rm(THREAD);
1065  const char *vm_info = VM_Version::vm_info_string();
1066
1067  // java.lang.System class
1068  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1069  instanceKlassHandle klass (THREAD, k);
1070
1071  // setProperty arguments
1072  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1073  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1074
1075  // return value
1076  JavaValue r(T_OBJECT);
1077
1078  // public static String setProperty(String key, String value);
1079  JavaCalls::call_static(&r,
1080                         klass,
1081                         vmSymbols::setProperty_name(),
1082                         vmSymbols::string_string_string_signature(),
1083                         key_str,
1084                         value_str,
1085                         CHECK);
1086}
1087
1088
1089void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1090                                    bool daemon, TRAPS) {
1091  assert(thread_group.not_null(), "thread group should be specified");
1092  assert(threadObj() == NULL, "should only create Java thread object once");
1093
1094  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1095  instanceKlassHandle klass (THREAD, k);
1096  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1097
1098  java_lang_Thread::set_thread(thread_oop(), this);
1099  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1100  set_threadObj(thread_oop());
1101
1102  JavaValue result(T_VOID);
1103  if (thread_name != NULL) {
1104    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1105    // Thread gets assigned specified name and null target
1106    JavaCalls::call_special(&result,
1107                            thread_oop,
1108                            klass,
1109                            vmSymbols::object_initializer_name(),
1110                            vmSymbols::threadgroup_string_void_signature(),
1111                            thread_group, // Argument 1
1112                            name,         // Argument 2
1113                            THREAD);
1114  } else {
1115    // Thread gets assigned name "Thread-nnn" and null target
1116    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1117    JavaCalls::call_special(&result,
1118                            thread_oop,
1119                            klass,
1120                            vmSymbols::object_initializer_name(),
1121                            vmSymbols::threadgroup_runnable_void_signature(),
1122                            thread_group, // Argument 1
1123                            Handle(),     // Argument 2
1124                            THREAD);
1125  }
1126
1127
1128  if (daemon) {
1129    java_lang_Thread::set_daemon(thread_oop());
1130  }
1131
1132  if (HAS_PENDING_EXCEPTION) {
1133    return;
1134  }
1135
1136  KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1137  Handle threadObj(THREAD, this->threadObj());
1138
1139  JavaCalls::call_special(&result,
1140                          thread_group,
1141                          group,
1142                          vmSymbols::add_method_name(),
1143                          vmSymbols::thread_void_signature(),
1144                          threadObj,          // Arg 1
1145                          THREAD);
1146}
1147
1148// NamedThread --  non-JavaThread subclasses with multiple
1149// uniquely named instances should derive from this.
1150NamedThread::NamedThread() : Thread() {
1151  _name = NULL;
1152  _processed_thread = NULL;
1153  _gc_id = GCId::undefined();
1154}
1155
1156NamedThread::~NamedThread() {
1157  if (_name != NULL) {
1158    FREE_C_HEAP_ARRAY(char, _name);
1159    _name = NULL;
1160  }
1161}
1162
1163void NamedThread::set_name(const char* format, ...) {
1164  guarantee(_name == NULL, "Only get to set name once.");
1165  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1166  guarantee(_name != NULL, "alloc failure");
1167  va_list ap;
1168  va_start(ap, format);
1169  jio_vsnprintf(_name, max_name_len, format, ap);
1170  va_end(ap);
1171}
1172
1173void NamedThread::initialize_named_thread() {
1174  set_native_thread_name(name());
1175}
1176
1177void NamedThread::print_on(outputStream* st) const {
1178  st->print("\"%s\" ", name());
1179  Thread::print_on(st);
1180  st->cr();
1181}
1182
1183
1184// ======= WatcherThread ========
1185
1186// The watcher thread exists to simulate timer interrupts.  It should
1187// be replaced by an abstraction over whatever native support for
1188// timer interrupts exists on the platform.
1189
1190WatcherThread* WatcherThread::_watcher_thread   = NULL;
1191bool WatcherThread::_startable = false;
1192volatile bool  WatcherThread::_should_terminate = false;
1193
1194WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1195  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1196  if (os::create_thread(this, os::watcher_thread)) {
1197    _watcher_thread = this;
1198
1199    // Set the watcher thread to the highest OS priority which should not be
1200    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1201    // is created. The only normal thread using this priority is the reference
1202    // handler thread, which runs for very short intervals only.
1203    // If the VMThread's priority is not lower than the WatcherThread profiling
1204    // will be inaccurate.
1205    os::set_priority(this, MaxPriority);
1206    if (!DisableStartThread) {
1207      os::start_thread(this);
1208    }
1209  }
1210}
1211
1212int WatcherThread::sleep() const {
1213  // The WatcherThread does not participate in the safepoint protocol
1214  // for the PeriodicTask_lock because it is not a JavaThread.
1215  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1216
1217  if (_should_terminate) {
1218    // check for termination before we do any housekeeping or wait
1219    return 0;  // we did not sleep.
1220  }
1221
1222  // remaining will be zero if there are no tasks,
1223  // causing the WatcherThread to sleep until a task is
1224  // enrolled
1225  int remaining = PeriodicTask::time_to_wait();
1226  int time_slept = 0;
1227
1228  // we expect this to timeout - we only ever get unparked when
1229  // we should terminate or when a new task has been enrolled
1230  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1231
1232  jlong time_before_loop = os::javaTimeNanos();
1233
1234  while (true) {
1235    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1236                                            remaining);
1237    jlong now = os::javaTimeNanos();
1238
1239    if (remaining == 0) {
1240      // if we didn't have any tasks we could have waited for a long time
1241      // consider the time_slept zero and reset time_before_loop
1242      time_slept = 0;
1243      time_before_loop = now;
1244    } else {
1245      // need to recalculate since we might have new tasks in _tasks
1246      time_slept = (int) ((now - time_before_loop) / 1000000);
1247    }
1248
1249    // Change to task list or spurious wakeup of some kind
1250    if (timedout || _should_terminate) {
1251      break;
1252    }
1253
1254    remaining = PeriodicTask::time_to_wait();
1255    if (remaining == 0) {
1256      // Last task was just disenrolled so loop around and wait until
1257      // another task gets enrolled
1258      continue;
1259    }
1260
1261    remaining -= time_slept;
1262    if (remaining <= 0) {
1263      break;
1264    }
1265  }
1266
1267  return time_slept;
1268}
1269
1270void WatcherThread::run() {
1271  assert(this == watcher_thread(), "just checking");
1272
1273  this->record_stack_base_and_size();
1274  this->set_native_thread_name(this->name());
1275  this->set_active_handles(JNIHandleBlock::allocate_block());
1276  while (true) {
1277    assert(watcher_thread() == Thread::current(), "thread consistency check");
1278    assert(watcher_thread() == this, "thread consistency check");
1279
1280    // Calculate how long it'll be until the next PeriodicTask work
1281    // should be done, and sleep that amount of time.
1282    int time_waited = sleep();
1283
1284    if (is_error_reported()) {
1285      // A fatal error has happened, the error handler(VMError::report_and_die)
1286      // should abort JVM after creating an error log file. However in some
1287      // rare cases, the error handler itself might deadlock. Here we try to
1288      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1289      //
1290      // This code is in WatcherThread because WatcherThread wakes up
1291      // periodically so the fatal error handler doesn't need to do anything;
1292      // also because the WatcherThread is less likely to crash than other
1293      // threads.
1294
1295      for (;;) {
1296        if (!ShowMessageBoxOnError
1297            && (OnError == NULL || OnError[0] == '\0')
1298            && Arguments::abort_hook() == NULL) {
1299          os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1300          fdStream err(defaultStream::output_fd());
1301          err.print_raw_cr("# [ timer expired, abort... ]");
1302          // skip atexit/vm_exit/vm_abort hooks
1303          os::die();
1304        }
1305
1306        // Wake up 5 seconds later, the fatal handler may reset OnError or
1307        // ShowMessageBoxOnError when it is ready to abort.
1308        os::sleep(this, 5 * 1000, false);
1309      }
1310    }
1311
1312    if (_should_terminate) {
1313      // check for termination before posting the next tick
1314      break;
1315    }
1316
1317    PeriodicTask::real_time_tick(time_waited);
1318  }
1319
1320  // Signal that it is terminated
1321  {
1322    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1323    _watcher_thread = NULL;
1324    Terminator_lock->notify();
1325  }
1326}
1327
1328void WatcherThread::start() {
1329  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1330
1331  if (watcher_thread() == NULL && _startable) {
1332    _should_terminate = false;
1333    // Create the single instance of WatcherThread
1334    new WatcherThread();
1335  }
1336}
1337
1338void WatcherThread::make_startable() {
1339  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1340  _startable = true;
1341}
1342
1343void WatcherThread::stop() {
1344  {
1345    // Follow normal safepoint aware lock enter protocol since the
1346    // WatcherThread is stopped by another JavaThread.
1347    MutexLocker ml(PeriodicTask_lock);
1348    _should_terminate = true;
1349
1350    WatcherThread* watcher = watcher_thread();
1351    if (watcher != NULL) {
1352      // unpark the WatcherThread so it can see that it should terminate
1353      watcher->unpark();
1354    }
1355  }
1356
1357  MutexLocker mu(Terminator_lock);
1358
1359  while (watcher_thread() != NULL) {
1360    // This wait should make safepoint checks, wait without a timeout,
1361    // and wait as a suspend-equivalent condition.
1362    //
1363    // Note: If the FlatProfiler is running, then this thread is waiting
1364    // for the WatcherThread to terminate and the WatcherThread, via the
1365    // FlatProfiler task, is waiting for the external suspend request on
1366    // this thread to complete. wait_for_ext_suspend_completion() will
1367    // eventually timeout, but that takes time. Making this wait a
1368    // suspend-equivalent condition solves that timeout problem.
1369    //
1370    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1371                          Mutex::_as_suspend_equivalent_flag);
1372  }
1373}
1374
1375void WatcherThread::unpark() {
1376  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1377  PeriodicTask_lock->notify();
1378}
1379
1380void WatcherThread::print_on(outputStream* st) const {
1381  st->print("\"%s\" ", name());
1382  Thread::print_on(st);
1383  st->cr();
1384}
1385
1386// ======= JavaThread ========
1387
1388#if INCLUDE_JVMCI
1389
1390jlong* JavaThread::_jvmci_old_thread_counters;
1391
1392bool jvmci_counters_include(JavaThread* thread) {
1393  oop threadObj = thread->threadObj();
1394  return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1395}
1396
1397void JavaThread::collect_counters(typeArrayOop array) {
1398  if (JVMCICounterSize > 0) {
1399    MutexLocker tl(Threads_lock);
1400    for (int i = 0; i < array->length(); i++) {
1401      array->long_at_put(i, _jvmci_old_thread_counters[i]);
1402    }
1403    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1404      if (jvmci_counters_include(tp)) {
1405        for (int i = 0; i < array->length(); i++) {
1406          array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1407        }
1408      }
1409    }
1410  }
1411}
1412
1413#endif // INCLUDE_JVMCI
1414
1415// A JavaThread is a normal Java thread
1416
1417void JavaThread::initialize() {
1418  // Initialize fields
1419
1420  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1421  set_claimed_par_id(UINT_MAX);
1422
1423  set_saved_exception_pc(NULL);
1424  set_threadObj(NULL);
1425  _anchor.clear();
1426  set_entry_point(NULL);
1427  set_jni_functions(jni_functions());
1428  set_callee_target(NULL);
1429  set_vm_result(NULL);
1430  set_vm_result_2(NULL);
1431  set_vframe_array_head(NULL);
1432  set_vframe_array_last(NULL);
1433  set_deferred_locals(NULL);
1434  set_deopt_mark(NULL);
1435  set_deopt_nmethod(NULL);
1436  clear_must_deopt_id();
1437  set_monitor_chunks(NULL);
1438  set_next(NULL);
1439  set_thread_state(_thread_new);
1440  _terminated = _not_terminated;
1441  _privileged_stack_top = NULL;
1442  _array_for_gc = NULL;
1443  _suspend_equivalent = false;
1444  _in_deopt_handler = 0;
1445  _doing_unsafe_access = false;
1446  _stack_guard_state = stack_guard_unused;
1447#if INCLUDE_JVMCI
1448  _pending_monitorenter = false;
1449  _pending_deoptimization = -1;
1450  _pending_failed_speculation = NULL;
1451  _pending_transfer_to_interpreter = false;
1452  _jvmci._alternate_call_target = NULL;
1453  assert(_jvmci._implicit_exception_pc == NULL, "must be");
1454  if (JVMCICounterSize > 0) {
1455    _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1456    memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1457  } else {
1458    _jvmci_counters = NULL;
1459  }
1460#endif // INCLUDE_JVMCI
1461  _reserved_stack_activation = NULL;  // stack base not known yet
1462  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1463  _exception_pc  = 0;
1464  _exception_handler_pc = 0;
1465  _is_method_handle_return = 0;
1466  _jvmti_thread_state= NULL;
1467  _should_post_on_exceptions_flag = JNI_FALSE;
1468  _jvmti_get_loaded_classes_closure = NULL;
1469  _interp_only_mode    = 0;
1470  _special_runtime_exit_condition = _no_async_condition;
1471  _pending_async_exception = NULL;
1472  _thread_stat = NULL;
1473  _thread_stat = new ThreadStatistics();
1474  _blocked_on_compilation = false;
1475  _jni_active_critical = 0;
1476  _pending_jni_exception_check_fn = NULL;
1477  _do_not_unlock_if_synchronized = false;
1478  _cached_monitor_info = NULL;
1479  _parker = Parker::Allocate(this);
1480
1481#ifndef PRODUCT
1482  _jmp_ring_index = 0;
1483  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1484    record_jump(NULL, NULL, NULL, 0);
1485  }
1486#endif // PRODUCT
1487
1488  set_thread_profiler(NULL);
1489  if (FlatProfiler::is_active()) {
1490    // This is where we would decide to either give each thread it's own profiler
1491    // or use one global one from FlatProfiler,
1492    // or up to some count of the number of profiled threads, etc.
1493    ThreadProfiler* pp = new ThreadProfiler();
1494    pp->engage();
1495    set_thread_profiler(pp);
1496  }
1497
1498  // Setup safepoint state info for this thread
1499  ThreadSafepointState::create(this);
1500
1501  debug_only(_java_call_counter = 0);
1502
1503  // JVMTI PopFrame support
1504  _popframe_condition = popframe_inactive;
1505  _popframe_preserved_args = NULL;
1506  _popframe_preserved_args_size = 0;
1507  _frames_to_pop_failed_realloc = 0;
1508
1509  pd_initialize();
1510}
1511
1512#if INCLUDE_ALL_GCS
1513SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1514DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1515#endif // INCLUDE_ALL_GCS
1516
1517JavaThread::JavaThread(bool is_attaching_via_jni) :
1518                       Thread()
1519#if INCLUDE_ALL_GCS
1520                       , _satb_mark_queue(&_satb_mark_queue_set),
1521                       _dirty_card_queue(&_dirty_card_queue_set)
1522#endif // INCLUDE_ALL_GCS
1523{
1524  initialize();
1525  if (is_attaching_via_jni) {
1526    _jni_attach_state = _attaching_via_jni;
1527  } else {
1528    _jni_attach_state = _not_attaching_via_jni;
1529  }
1530  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1531}
1532
1533bool JavaThread::reguard_stack(address cur_sp) {
1534  if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1535      && _stack_guard_state != stack_guard_reserved_disabled) {
1536    return true; // Stack already guarded or guard pages not needed.
1537  }
1538
1539  if (register_stack_overflow()) {
1540    // For those architectures which have separate register and
1541    // memory stacks, we must check the register stack to see if
1542    // it has overflowed.
1543    return false;
1544  }
1545
1546  // Java code never executes within the yellow zone: the latter is only
1547  // there to provoke an exception during stack banging.  If java code
1548  // is executing there, either StackShadowPages should be larger, or
1549  // some exception code in c1, c2 or the interpreter isn't unwinding
1550  // when it should.
1551  guarantee(cur_sp > stack_reserved_zone_base(),
1552            "not enough space to reguard - increase StackShadowPages");
1553  if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1554    enable_stack_yellow_reserved_zone();
1555    if (reserved_stack_activation() != stack_base()) {
1556      set_reserved_stack_activation(stack_base());
1557    }
1558  } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1559    set_reserved_stack_activation(stack_base());
1560    enable_stack_reserved_zone();
1561  }
1562  return true;
1563}
1564
1565bool JavaThread::reguard_stack(void) {
1566  return reguard_stack(os::current_stack_pointer());
1567}
1568
1569
1570void JavaThread::block_if_vm_exited() {
1571  if (_terminated == _vm_exited) {
1572    // _vm_exited is set at safepoint, and Threads_lock is never released
1573    // we will block here forever
1574    Threads_lock->lock_without_safepoint_check();
1575    ShouldNotReachHere();
1576  }
1577}
1578
1579
1580// Remove this ifdef when C1 is ported to the compiler interface.
1581static void compiler_thread_entry(JavaThread* thread, TRAPS);
1582static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1583
1584JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1585                       Thread()
1586#if INCLUDE_ALL_GCS
1587                       , _satb_mark_queue(&_satb_mark_queue_set),
1588                       _dirty_card_queue(&_dirty_card_queue_set)
1589#endif // INCLUDE_ALL_GCS
1590{
1591  initialize();
1592  _jni_attach_state = _not_attaching_via_jni;
1593  set_entry_point(entry_point);
1594  // Create the native thread itself.
1595  // %note runtime_23
1596  os::ThreadType thr_type = os::java_thread;
1597  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1598                                                     os::java_thread;
1599  os::create_thread(this, thr_type, stack_sz);
1600  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1601  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1602  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1603  // the exception consists of creating the exception object & initializing it, initialization
1604  // will leave the VM via a JavaCall and then all locks must be unlocked).
1605  //
1606  // The thread is still suspended when we reach here. Thread must be explicit started
1607  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1608  // by calling Threads:add. The reason why this is not done here, is because the thread
1609  // object must be fully initialized (take a look at JVM_Start)
1610}
1611
1612JavaThread::~JavaThread() {
1613
1614  // JSR166 -- return the parker to the free list
1615  Parker::Release(_parker);
1616  _parker = NULL;
1617
1618  // Free any remaining  previous UnrollBlock
1619  vframeArray* old_array = vframe_array_last();
1620
1621  if (old_array != NULL) {
1622    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1623    old_array->set_unroll_block(NULL);
1624    delete old_info;
1625    delete old_array;
1626  }
1627
1628  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1629  if (deferred != NULL) {
1630    // This can only happen if thread is destroyed before deoptimization occurs.
1631    assert(deferred->length() != 0, "empty array!");
1632    do {
1633      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1634      deferred->remove_at(0);
1635      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1636      delete dlv;
1637    } while (deferred->length() != 0);
1638    delete deferred;
1639  }
1640
1641  // All Java related clean up happens in exit
1642  ThreadSafepointState::destroy(this);
1643  if (_thread_profiler != NULL) delete _thread_profiler;
1644  if (_thread_stat != NULL) delete _thread_stat;
1645
1646#if INCLUDE_JVMCI
1647  if (JVMCICounterSize > 0) {
1648    if (jvmci_counters_include(this)) {
1649      for (int i = 0; i < JVMCICounterSize; i++) {
1650        _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1651      }
1652    }
1653    FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1654  }
1655#endif // INCLUDE_JVMCI
1656}
1657
1658
1659// The first routine called by a new Java thread
1660void JavaThread::run() {
1661  // initialize thread-local alloc buffer related fields
1662  this->initialize_tlab();
1663
1664  // used to test validity of stack trace backs
1665  this->record_base_of_stack_pointer();
1666
1667  // Record real stack base and size.
1668  this->record_stack_base_and_size();
1669
1670  this->create_stack_guard_pages();
1671
1672  this->cache_global_variables();
1673
1674  // Thread is now sufficient initialized to be handled by the safepoint code as being
1675  // in the VM. Change thread state from _thread_new to _thread_in_vm
1676  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1677
1678  assert(JavaThread::current() == this, "sanity check");
1679  assert(!Thread::current()->owns_locks(), "sanity check");
1680
1681  DTRACE_THREAD_PROBE(start, this);
1682
1683  // This operation might block. We call that after all safepoint checks for a new thread has
1684  // been completed.
1685  this->set_active_handles(JNIHandleBlock::allocate_block());
1686
1687  if (JvmtiExport::should_post_thread_life()) {
1688    JvmtiExport::post_thread_start(this);
1689  }
1690
1691  EventThreadStart event;
1692  if (event.should_commit()) {
1693    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1694    event.commit();
1695  }
1696
1697  // We call another function to do the rest so we are sure that the stack addresses used
1698  // from there will be lower than the stack base just computed
1699  thread_main_inner();
1700
1701  // Note, thread is no longer valid at this point!
1702}
1703
1704
1705void JavaThread::thread_main_inner() {
1706  assert(JavaThread::current() == this, "sanity check");
1707  assert(this->threadObj() != NULL, "just checking");
1708
1709  // Execute thread entry point unless this thread has a pending exception
1710  // or has been stopped before starting.
1711  // Note: Due to JVM_StopThread we can have pending exceptions already!
1712  if (!this->has_pending_exception() &&
1713      !java_lang_Thread::is_stillborn(this->threadObj())) {
1714    {
1715      ResourceMark rm(this);
1716      this->set_native_thread_name(this->get_thread_name());
1717    }
1718    HandleMark hm(this);
1719    this->entry_point()(this, this);
1720  }
1721
1722  DTRACE_THREAD_PROBE(stop, this);
1723
1724  this->exit(false);
1725  delete this;
1726}
1727
1728
1729static void ensure_join(JavaThread* thread) {
1730  // We do not need to grap the Threads_lock, since we are operating on ourself.
1731  Handle threadObj(thread, thread->threadObj());
1732  assert(threadObj.not_null(), "java thread object must exist");
1733  ObjectLocker lock(threadObj, thread);
1734  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1735  thread->clear_pending_exception();
1736  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1737  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1738  // Clear the native thread instance - this makes isAlive return false and allows the join()
1739  // to complete once we've done the notify_all below
1740  java_lang_Thread::set_thread(threadObj(), NULL);
1741  lock.notify_all(thread);
1742  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1743  thread->clear_pending_exception();
1744}
1745
1746
1747// For any new cleanup additions, please check to see if they need to be applied to
1748// cleanup_failed_attach_current_thread as well.
1749void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1750  assert(this == JavaThread::current(), "thread consistency check");
1751
1752  HandleMark hm(this);
1753  Handle uncaught_exception(this, this->pending_exception());
1754  this->clear_pending_exception();
1755  Handle threadObj(this, this->threadObj());
1756  assert(threadObj.not_null(), "Java thread object should be created");
1757
1758  if (get_thread_profiler() != NULL) {
1759    get_thread_profiler()->disengage();
1760    ResourceMark rm;
1761    get_thread_profiler()->print(get_thread_name());
1762  }
1763
1764
1765  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1766  {
1767    EXCEPTION_MARK;
1768
1769    CLEAR_PENDING_EXCEPTION;
1770  }
1771  if (!destroy_vm) {
1772    if (uncaught_exception.not_null()) {
1773      EXCEPTION_MARK;
1774      // Call method Thread.dispatchUncaughtException().
1775      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1776      JavaValue result(T_VOID);
1777      JavaCalls::call_virtual(&result,
1778                              threadObj, thread_klass,
1779                              vmSymbols::dispatchUncaughtException_name(),
1780                              vmSymbols::throwable_void_signature(),
1781                              uncaught_exception,
1782                              THREAD);
1783      if (HAS_PENDING_EXCEPTION) {
1784        ResourceMark rm(this);
1785        jio_fprintf(defaultStream::error_stream(),
1786                    "\nException: %s thrown from the UncaughtExceptionHandler"
1787                    " in thread \"%s\"\n",
1788                    pending_exception()->klass()->external_name(),
1789                    get_thread_name());
1790        CLEAR_PENDING_EXCEPTION;
1791      }
1792    }
1793
1794    // Called before the java thread exit since we want to read info
1795    // from java_lang_Thread object
1796    EventThreadEnd event;
1797    if (event.should_commit()) {
1798      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1799      event.commit();
1800    }
1801
1802    // Call after last event on thread
1803    EVENT_THREAD_EXIT(this);
1804
1805    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1806    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1807    // is deprecated anyhow.
1808    if (!is_Compiler_thread()) {
1809      int count = 3;
1810      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1811        EXCEPTION_MARK;
1812        JavaValue result(T_VOID);
1813        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1814        JavaCalls::call_virtual(&result,
1815                                threadObj, thread_klass,
1816                                vmSymbols::exit_method_name(),
1817                                vmSymbols::void_method_signature(),
1818                                THREAD);
1819        CLEAR_PENDING_EXCEPTION;
1820      }
1821    }
1822    // notify JVMTI
1823    if (JvmtiExport::should_post_thread_life()) {
1824      JvmtiExport::post_thread_end(this);
1825    }
1826
1827    // We have notified the agents that we are exiting, before we go on,
1828    // we must check for a pending external suspend request and honor it
1829    // in order to not surprise the thread that made the suspend request.
1830    while (true) {
1831      {
1832        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1833        if (!is_external_suspend()) {
1834          set_terminated(_thread_exiting);
1835          ThreadService::current_thread_exiting(this);
1836          break;
1837        }
1838        // Implied else:
1839        // Things get a little tricky here. We have a pending external
1840        // suspend request, but we are holding the SR_lock so we
1841        // can't just self-suspend. So we temporarily drop the lock
1842        // and then self-suspend.
1843      }
1844
1845      ThreadBlockInVM tbivm(this);
1846      java_suspend_self();
1847
1848      // We're done with this suspend request, but we have to loop around
1849      // and check again. Eventually we will get SR_lock without a pending
1850      // external suspend request and will be able to mark ourselves as
1851      // exiting.
1852    }
1853    // no more external suspends are allowed at this point
1854  } else {
1855    // before_exit() has already posted JVMTI THREAD_END events
1856  }
1857
1858  // Notify waiters on thread object. This has to be done after exit() is called
1859  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1860  // group should have the destroyed bit set before waiters are notified).
1861  ensure_join(this);
1862  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1863
1864  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1865  // held by this thread must be released. The spec does not distinguish
1866  // between JNI-acquired and regular Java monitors. We can only see
1867  // regular Java monitors here if monitor enter-exit matching is broken.
1868  //
1869  // Optionally release any monitors for regular JavaThread exits. This
1870  // is provided as a work around for any bugs in monitor enter-exit
1871  // matching. This can be expensive so it is not enabled by default.
1872  //
1873  // ensure_join() ignores IllegalThreadStateExceptions, and so does
1874  // ObjectSynchronizer::release_monitors_owned_by_thread().
1875  if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1876    // Sanity check even though JNI DetachCurrentThread() would have
1877    // returned JNI_ERR if there was a Java frame. JavaThread exit
1878    // should be done executing Java code by the time we get here.
1879    assert(!this->has_last_Java_frame(),
1880           "should not have a Java frame when detaching or exiting");
1881    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1882    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1883  }
1884
1885  // These things needs to be done while we are still a Java Thread. Make sure that thread
1886  // is in a consistent state, in case GC happens
1887  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1888
1889  if (active_handles() != NULL) {
1890    JNIHandleBlock* block = active_handles();
1891    set_active_handles(NULL);
1892    JNIHandleBlock::release_block(block);
1893  }
1894
1895  if (free_handle_block() != NULL) {
1896    JNIHandleBlock* block = free_handle_block();
1897    set_free_handle_block(NULL);
1898    JNIHandleBlock::release_block(block);
1899  }
1900
1901  // These have to be removed while this is still a valid thread.
1902  remove_stack_guard_pages();
1903
1904  if (UseTLAB) {
1905    tlab().make_parsable(true);  // retire TLAB
1906  }
1907
1908  if (JvmtiEnv::environments_might_exist()) {
1909    JvmtiExport::cleanup_thread(this);
1910  }
1911
1912  // We must flush any deferred card marks before removing a thread from
1913  // the list of active threads.
1914  Universe::heap()->flush_deferred_store_barrier(this);
1915  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1916
1917#if INCLUDE_ALL_GCS
1918  // We must flush the G1-related buffers before removing a thread
1919  // from the list of active threads. We must do this after any deferred
1920  // card marks have been flushed (above) so that any entries that are
1921  // added to the thread's dirty card queue as a result are not lost.
1922  if (UseG1GC) {
1923    flush_barrier_queues();
1924  }
1925#endif // INCLUDE_ALL_GCS
1926
1927  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1928  Threads::remove(this);
1929}
1930
1931#if INCLUDE_ALL_GCS
1932// Flush G1-related queues.
1933void JavaThread::flush_barrier_queues() {
1934  satb_mark_queue().flush();
1935  dirty_card_queue().flush();
1936}
1937
1938void JavaThread::initialize_queues() {
1939  assert(!SafepointSynchronize::is_at_safepoint(),
1940         "we should not be at a safepoint");
1941
1942  SATBMarkQueue& satb_queue = satb_mark_queue();
1943  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1944  // The SATB queue should have been constructed with its active
1945  // field set to false.
1946  assert(!satb_queue.is_active(), "SATB queue should not be active");
1947  assert(satb_queue.is_empty(), "SATB queue should be empty");
1948  // If we are creating the thread during a marking cycle, we should
1949  // set the active field of the SATB queue to true.
1950  if (satb_queue_set.is_active()) {
1951    satb_queue.set_active(true);
1952  }
1953
1954  DirtyCardQueue& dirty_queue = dirty_card_queue();
1955  // The dirty card queue should have been constructed with its
1956  // active field set to true.
1957  assert(dirty_queue.is_active(), "dirty card queue should be active");
1958}
1959#endif // INCLUDE_ALL_GCS
1960
1961void JavaThread::cleanup_failed_attach_current_thread() {
1962  if (get_thread_profiler() != NULL) {
1963    get_thread_profiler()->disengage();
1964    ResourceMark rm;
1965    get_thread_profiler()->print(get_thread_name());
1966  }
1967
1968  if (active_handles() != NULL) {
1969    JNIHandleBlock* block = active_handles();
1970    set_active_handles(NULL);
1971    JNIHandleBlock::release_block(block);
1972  }
1973
1974  if (free_handle_block() != NULL) {
1975    JNIHandleBlock* block = free_handle_block();
1976    set_free_handle_block(NULL);
1977    JNIHandleBlock::release_block(block);
1978  }
1979
1980  // These have to be removed while this is still a valid thread.
1981  remove_stack_guard_pages();
1982
1983  if (UseTLAB) {
1984    tlab().make_parsable(true);  // retire TLAB, if any
1985  }
1986
1987#if INCLUDE_ALL_GCS
1988  if (UseG1GC) {
1989    flush_barrier_queues();
1990  }
1991#endif // INCLUDE_ALL_GCS
1992
1993  Threads::remove(this);
1994  delete this;
1995}
1996
1997
1998
1999
2000JavaThread* JavaThread::active() {
2001  Thread* thread = Thread::current();
2002  if (thread->is_Java_thread()) {
2003    return (JavaThread*) thread;
2004  } else {
2005    assert(thread->is_VM_thread(), "this must be a vm thread");
2006    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2007    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2008    assert(ret->is_Java_thread(), "must be a Java thread");
2009    return ret;
2010  }
2011}
2012
2013bool JavaThread::is_lock_owned(address adr) const {
2014  if (Thread::is_lock_owned(adr)) return true;
2015
2016  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2017    if (chunk->contains(adr)) return true;
2018  }
2019
2020  return false;
2021}
2022
2023
2024void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2025  chunk->set_next(monitor_chunks());
2026  set_monitor_chunks(chunk);
2027}
2028
2029void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2030  guarantee(monitor_chunks() != NULL, "must be non empty");
2031  if (monitor_chunks() == chunk) {
2032    set_monitor_chunks(chunk->next());
2033  } else {
2034    MonitorChunk* prev = monitor_chunks();
2035    while (prev->next() != chunk) prev = prev->next();
2036    prev->set_next(chunk->next());
2037  }
2038}
2039
2040// JVM support.
2041
2042// Note: this function shouldn't block if it's called in
2043// _thread_in_native_trans state (such as from
2044// check_special_condition_for_native_trans()).
2045void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2046
2047  if (has_last_Java_frame() && has_async_condition()) {
2048    // If we are at a polling page safepoint (not a poll return)
2049    // then we must defer async exception because live registers
2050    // will be clobbered by the exception path. Poll return is
2051    // ok because the call we a returning from already collides
2052    // with exception handling registers and so there is no issue.
2053    // (The exception handling path kills call result registers but
2054    //  this is ok since the exception kills the result anyway).
2055
2056    if (is_at_poll_safepoint()) {
2057      // if the code we are returning to has deoptimized we must defer
2058      // the exception otherwise live registers get clobbered on the
2059      // exception path before deoptimization is able to retrieve them.
2060      //
2061      RegisterMap map(this, false);
2062      frame caller_fr = last_frame().sender(&map);
2063      assert(caller_fr.is_compiled_frame(), "what?");
2064      if (caller_fr.is_deoptimized_frame()) {
2065        if (TraceExceptions) {
2066          ResourceMark rm;
2067          tty->print_cr("deferred async exception at compiled safepoint");
2068        }
2069        return;
2070      }
2071    }
2072  }
2073
2074  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2075  if (condition == _no_async_condition) {
2076    // Conditions have changed since has_special_runtime_exit_condition()
2077    // was called:
2078    // - if we were here only because of an external suspend request,
2079    //   then that was taken care of above (or cancelled) so we are done
2080    // - if we were here because of another async request, then it has
2081    //   been cleared between the has_special_runtime_exit_condition()
2082    //   and now so again we are done
2083    return;
2084  }
2085
2086  // Check for pending async. exception
2087  if (_pending_async_exception != NULL) {
2088    // Only overwrite an already pending exception, if it is not a threadDeath.
2089    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2090
2091      // We cannot call Exceptions::_throw(...) here because we cannot block
2092      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2093
2094      if (TraceExceptions) {
2095        ResourceMark rm;
2096        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2097        if (has_last_Java_frame()) {
2098          frame f = last_frame();
2099          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2100        }
2101        tty->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2102      }
2103      _pending_async_exception = NULL;
2104      clear_has_async_exception();
2105    }
2106  }
2107
2108  if (check_unsafe_error &&
2109      condition == _async_unsafe_access_error && !has_pending_exception()) {
2110    condition = _no_async_condition;  // done
2111    switch (thread_state()) {
2112    case _thread_in_vm: {
2113      JavaThread* THREAD = this;
2114      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2115    }
2116    case _thread_in_native: {
2117      ThreadInVMfromNative tiv(this);
2118      JavaThread* THREAD = this;
2119      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2120    }
2121    case _thread_in_Java: {
2122      ThreadInVMfromJava tiv(this);
2123      JavaThread* THREAD = this;
2124      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2125    }
2126    default:
2127      ShouldNotReachHere();
2128    }
2129  }
2130
2131  assert(condition == _no_async_condition || has_pending_exception() ||
2132         (!check_unsafe_error && condition == _async_unsafe_access_error),
2133         "must have handled the async condition, if no exception");
2134}
2135
2136void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2137  //
2138  // Check for pending external suspend. Internal suspend requests do
2139  // not use handle_special_runtime_exit_condition().
2140  // If JNIEnv proxies are allowed, don't self-suspend if the target
2141  // thread is not the current thread. In older versions of jdbx, jdbx
2142  // threads could call into the VM with another thread's JNIEnv so we
2143  // can be here operating on behalf of a suspended thread (4432884).
2144  bool do_self_suspend = is_external_suspend_with_lock();
2145  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2146    //
2147    // Because thread is external suspended the safepoint code will count
2148    // thread as at a safepoint. This can be odd because we can be here
2149    // as _thread_in_Java which would normally transition to _thread_blocked
2150    // at a safepoint. We would like to mark the thread as _thread_blocked
2151    // before calling java_suspend_self like all other callers of it but
2152    // we must then observe proper safepoint protocol. (We can't leave
2153    // _thread_blocked with a safepoint in progress). However we can be
2154    // here as _thread_in_native_trans so we can't use a normal transition
2155    // constructor/destructor pair because they assert on that type of
2156    // transition. We could do something like:
2157    //
2158    // JavaThreadState state = thread_state();
2159    // set_thread_state(_thread_in_vm);
2160    // {
2161    //   ThreadBlockInVM tbivm(this);
2162    //   java_suspend_self()
2163    // }
2164    // set_thread_state(_thread_in_vm_trans);
2165    // if (safepoint) block;
2166    // set_thread_state(state);
2167    //
2168    // but that is pretty messy. Instead we just go with the way the
2169    // code has worked before and note that this is the only path to
2170    // java_suspend_self that doesn't put the thread in _thread_blocked
2171    // mode.
2172
2173    frame_anchor()->make_walkable(this);
2174    java_suspend_self();
2175
2176    // We might be here for reasons in addition to the self-suspend request
2177    // so check for other async requests.
2178  }
2179
2180  if (check_asyncs) {
2181    check_and_handle_async_exceptions();
2182  }
2183}
2184
2185void JavaThread::send_thread_stop(oop java_throwable)  {
2186  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2187  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2188  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2189
2190  // Do not throw asynchronous exceptions against the compiler thread
2191  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2192  if (!can_call_java()) return;
2193
2194  {
2195    // Actually throw the Throwable against the target Thread - however
2196    // only if there is no thread death exception installed already.
2197    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2198      // If the topmost frame is a runtime stub, then we are calling into
2199      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2200      // must deoptimize the caller before continuing, as the compiled  exception handler table
2201      // may not be valid
2202      if (has_last_Java_frame()) {
2203        frame f = last_frame();
2204        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2205          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2206          RegisterMap reg_map(this, UseBiasedLocking);
2207          frame compiled_frame = f.sender(&reg_map);
2208          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2209            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2210          }
2211        }
2212      }
2213
2214      // Set async. pending exception in thread.
2215      set_pending_async_exception(java_throwable);
2216
2217      if (TraceExceptions) {
2218        ResourceMark rm;
2219        tty->print_cr("Pending Async. exception installed of type: %s", _pending_async_exception->klass()->external_name());
2220      }
2221      // for AbortVMOnException flag
2222      Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2223    }
2224  }
2225
2226
2227  // Interrupt thread so it will wake up from a potential wait()
2228  Thread::interrupt(this);
2229}
2230
2231// External suspension mechanism.
2232//
2233// Tell the VM to suspend a thread when ever it knows that it does not hold on
2234// to any VM_locks and it is at a transition
2235// Self-suspension will happen on the transition out of the vm.
2236// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2237//
2238// Guarantees on return:
2239//   + Target thread will not execute any new bytecode (that's why we need to
2240//     force a safepoint)
2241//   + Target thread will not enter any new monitors
2242//
2243void JavaThread::java_suspend() {
2244  { MutexLocker mu(Threads_lock);
2245    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2246      return;
2247    }
2248  }
2249
2250  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2251    if (!is_external_suspend()) {
2252      // a racing resume has cancelled us; bail out now
2253      return;
2254    }
2255
2256    // suspend is done
2257    uint32_t debug_bits = 0;
2258    // Warning: is_ext_suspend_completed() may temporarily drop the
2259    // SR_lock to allow the thread to reach a stable thread state if
2260    // it is currently in a transient thread state.
2261    if (is_ext_suspend_completed(false /* !called_by_wait */,
2262                                 SuspendRetryDelay, &debug_bits)) {
2263      return;
2264    }
2265  }
2266
2267  VM_ForceSafepoint vm_suspend;
2268  VMThread::execute(&vm_suspend);
2269}
2270
2271// Part II of external suspension.
2272// A JavaThread self suspends when it detects a pending external suspend
2273// request. This is usually on transitions. It is also done in places
2274// where continuing to the next transition would surprise the caller,
2275// e.g., monitor entry.
2276//
2277// Returns the number of times that the thread self-suspended.
2278//
2279// Note: DO NOT call java_suspend_self() when you just want to block current
2280//       thread. java_suspend_self() is the second stage of cooperative
2281//       suspension for external suspend requests and should only be used
2282//       to complete an external suspend request.
2283//
2284int JavaThread::java_suspend_self() {
2285  int ret = 0;
2286
2287  // we are in the process of exiting so don't suspend
2288  if (is_exiting()) {
2289    clear_external_suspend();
2290    return ret;
2291  }
2292
2293  assert(_anchor.walkable() ||
2294         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2295         "must have walkable stack");
2296
2297  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2298
2299  assert(!this->is_ext_suspended(),
2300         "a thread trying to self-suspend should not already be suspended");
2301
2302  if (this->is_suspend_equivalent()) {
2303    // If we are self-suspending as a result of the lifting of a
2304    // suspend equivalent condition, then the suspend_equivalent
2305    // flag is not cleared until we set the ext_suspended flag so
2306    // that wait_for_ext_suspend_completion() returns consistent
2307    // results.
2308    this->clear_suspend_equivalent();
2309  }
2310
2311  // A racing resume may have cancelled us before we grabbed SR_lock
2312  // above. Or another external suspend request could be waiting for us
2313  // by the time we return from SR_lock()->wait(). The thread
2314  // that requested the suspension may already be trying to walk our
2315  // stack and if we return now, we can change the stack out from under
2316  // it. This would be a "bad thing (TM)" and cause the stack walker
2317  // to crash. We stay self-suspended until there are no more pending
2318  // external suspend requests.
2319  while (is_external_suspend()) {
2320    ret++;
2321    this->set_ext_suspended();
2322
2323    // _ext_suspended flag is cleared by java_resume()
2324    while (is_ext_suspended()) {
2325      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2326    }
2327  }
2328
2329  return ret;
2330}
2331
2332#ifdef ASSERT
2333// verify the JavaThread has not yet been published in the Threads::list, and
2334// hence doesn't need protection from concurrent access at this stage
2335void JavaThread::verify_not_published() {
2336  if (!Threads_lock->owned_by_self()) {
2337    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2338    assert(!Threads::includes(this),
2339           "java thread shouldn't have been published yet!");
2340  } else {
2341    assert(!Threads::includes(this),
2342           "java thread shouldn't have been published yet!");
2343  }
2344}
2345#endif
2346
2347// Slow path when the native==>VM/Java barriers detect a safepoint is in
2348// progress or when _suspend_flags is non-zero.
2349// Current thread needs to self-suspend if there is a suspend request and/or
2350// block if a safepoint is in progress.
2351// Async exception ISN'T checked.
2352// Note only the ThreadInVMfromNative transition can call this function
2353// directly and when thread state is _thread_in_native_trans
2354void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2355  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2356
2357  JavaThread *curJT = JavaThread::current();
2358  bool do_self_suspend = thread->is_external_suspend();
2359
2360  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2361
2362  // If JNIEnv proxies are allowed, don't self-suspend if the target
2363  // thread is not the current thread. In older versions of jdbx, jdbx
2364  // threads could call into the VM with another thread's JNIEnv so we
2365  // can be here operating on behalf of a suspended thread (4432884).
2366  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2367    JavaThreadState state = thread->thread_state();
2368
2369    // We mark this thread_blocked state as a suspend-equivalent so
2370    // that a caller to is_ext_suspend_completed() won't be confused.
2371    // The suspend-equivalent state is cleared by java_suspend_self().
2372    thread->set_suspend_equivalent();
2373
2374    // If the safepoint code sees the _thread_in_native_trans state, it will
2375    // wait until the thread changes to other thread state. There is no
2376    // guarantee on how soon we can obtain the SR_lock and complete the
2377    // self-suspend request. It would be a bad idea to let safepoint wait for
2378    // too long. Temporarily change the state to _thread_blocked to
2379    // let the VM thread know that this thread is ready for GC. The problem
2380    // of changing thread state is that safepoint could happen just after
2381    // java_suspend_self() returns after being resumed, and VM thread will
2382    // see the _thread_blocked state. We must check for safepoint
2383    // after restoring the state and make sure we won't leave while a safepoint
2384    // is in progress.
2385    thread->set_thread_state(_thread_blocked);
2386    thread->java_suspend_self();
2387    thread->set_thread_state(state);
2388    // Make sure new state is seen by VM thread
2389    if (os::is_MP()) {
2390      if (UseMembar) {
2391        // Force a fence between the write above and read below
2392        OrderAccess::fence();
2393      } else {
2394        // Must use this rather than serialization page in particular on Windows
2395        InterfaceSupport::serialize_memory(thread);
2396      }
2397    }
2398  }
2399
2400  if (SafepointSynchronize::do_call_back()) {
2401    // If we are safepointing, then block the caller which may not be
2402    // the same as the target thread (see above).
2403    SafepointSynchronize::block(curJT);
2404  }
2405
2406  if (thread->is_deopt_suspend()) {
2407    thread->clear_deopt_suspend();
2408    RegisterMap map(thread, false);
2409    frame f = thread->last_frame();
2410    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2411      f = f.sender(&map);
2412    }
2413    if (f.id() == thread->must_deopt_id()) {
2414      thread->clear_must_deopt_id();
2415      f.deoptimize(thread);
2416    } else {
2417      fatal("missed deoptimization!");
2418    }
2419  }
2420}
2421
2422// Slow path when the native==>VM/Java barriers detect a safepoint is in
2423// progress or when _suspend_flags is non-zero.
2424// Current thread needs to self-suspend if there is a suspend request and/or
2425// block if a safepoint is in progress.
2426// Also check for pending async exception (not including unsafe access error).
2427// Note only the native==>VM/Java barriers can call this function and when
2428// thread state is _thread_in_native_trans.
2429void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2430  check_safepoint_and_suspend_for_native_trans(thread);
2431
2432  if (thread->has_async_exception()) {
2433    // We are in _thread_in_native_trans state, don't handle unsafe
2434    // access error since that may block.
2435    thread->check_and_handle_async_exceptions(false);
2436  }
2437}
2438
2439// This is a variant of the normal
2440// check_special_condition_for_native_trans with slightly different
2441// semantics for use by critical native wrappers.  It does all the
2442// normal checks but also performs the transition back into
2443// thread_in_Java state.  This is required so that critical natives
2444// can potentially block and perform a GC if they are the last thread
2445// exiting the GC_locker.
2446void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2447  check_special_condition_for_native_trans(thread);
2448
2449  // Finish the transition
2450  thread->set_thread_state(_thread_in_Java);
2451
2452  if (thread->do_critical_native_unlock()) {
2453    ThreadInVMfromJavaNoAsyncException tiv(thread);
2454    GC_locker::unlock_critical(thread);
2455    thread->clear_critical_native_unlock();
2456  }
2457}
2458
2459// We need to guarantee the Threads_lock here, since resumes are not
2460// allowed during safepoint synchronization
2461// Can only resume from an external suspension
2462void JavaThread::java_resume() {
2463  assert_locked_or_safepoint(Threads_lock);
2464
2465  // Sanity check: thread is gone, has started exiting or the thread
2466  // was not externally suspended.
2467  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2468    return;
2469  }
2470
2471  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2472
2473  clear_external_suspend();
2474
2475  if (is_ext_suspended()) {
2476    clear_ext_suspended();
2477    SR_lock()->notify_all();
2478  }
2479}
2480
2481size_t JavaThread::_stack_red_zone_size = 0;
2482size_t JavaThread::_stack_yellow_zone_size = 0;
2483size_t JavaThread::_stack_reserved_zone_size = 0;
2484size_t JavaThread::_stack_shadow_zone_size = 0;
2485
2486void JavaThread::create_stack_guard_pages() {
2487  if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2488  address low_addr = stack_end();
2489  size_t len = stack_guard_zone_size();
2490
2491  int allocate = os::allocate_stack_guard_pages();
2492  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2493
2494  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2495    warning("Attempt to allocate stack guard pages failed.");
2496    return;
2497  }
2498
2499  if (os::guard_memory((char *) low_addr, len)) {
2500    _stack_guard_state = stack_guard_enabled;
2501  } else {
2502    warning("Attempt to protect stack guard pages failed.");
2503    if (os::uncommit_memory((char *) low_addr, len)) {
2504      warning("Attempt to deallocate stack guard pages failed.");
2505    }
2506  }
2507}
2508
2509void JavaThread::remove_stack_guard_pages() {
2510  assert(Thread::current() == this, "from different thread");
2511  if (_stack_guard_state == stack_guard_unused) return;
2512  address low_addr = stack_end();
2513  size_t len = stack_guard_zone_size();
2514
2515  if (os::allocate_stack_guard_pages()) {
2516    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2517      _stack_guard_state = stack_guard_unused;
2518    } else {
2519      warning("Attempt to deallocate stack guard pages failed.");
2520    }
2521  } else {
2522    if (_stack_guard_state == stack_guard_unused) return;
2523    if (os::unguard_memory((char *) low_addr, len)) {
2524      _stack_guard_state = stack_guard_unused;
2525    } else {
2526      warning("Attempt to unprotect stack guard pages failed.");
2527    }
2528  }
2529}
2530
2531void JavaThread::enable_stack_reserved_zone() {
2532  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2533  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2534
2535  // The base notation is from the stack's point of view, growing downward.
2536  // We need to adjust it to work correctly with guard_memory()
2537  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2538
2539  guarantee(base < stack_base(),"Error calculating stack reserved zone");
2540  guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2541
2542  if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2543    _stack_guard_state = stack_guard_enabled;
2544  } else {
2545    warning("Attempt to guard stack reserved zone failed.");
2546  }
2547  enable_register_stack_guard();
2548}
2549
2550void JavaThread::disable_stack_reserved_zone() {
2551  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2552  assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2553
2554  // Simply return if called for a thread that does not use guard pages.
2555  if (_stack_guard_state == stack_guard_unused) return;
2556
2557  // The base notation is from the stack's point of view, growing downward.
2558  // We need to adjust it to work correctly with guard_memory()
2559  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2560
2561  if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2562    _stack_guard_state = stack_guard_reserved_disabled;
2563  } else {
2564    warning("Attempt to unguard stack reserved zone failed.");
2565  }
2566  disable_register_stack_guard();
2567}
2568
2569void JavaThread::enable_stack_yellow_reserved_zone() {
2570  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2571  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2572
2573  // The base notation is from the stacks point of view, growing downward.
2574  // We need to adjust it to work correctly with guard_memory()
2575  address base = stack_red_zone_base();
2576
2577  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2578  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2579
2580  if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2581    _stack_guard_state = stack_guard_enabled;
2582  } else {
2583    warning("Attempt to guard stack yellow zone failed.");
2584  }
2585  enable_register_stack_guard();
2586}
2587
2588void JavaThread::disable_stack_yellow_reserved_zone() {
2589  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2590  assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2591
2592  // Simply return if called for a thread that does not use guard pages.
2593  if (_stack_guard_state == stack_guard_unused) return;
2594
2595  // The base notation is from the stacks point of view, growing downward.
2596  // We need to adjust it to work correctly with guard_memory()
2597  address base = stack_red_zone_base();
2598
2599  if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2600    _stack_guard_state = stack_guard_yellow_reserved_disabled;
2601  } else {
2602    warning("Attempt to unguard stack yellow zone failed.");
2603  }
2604  disable_register_stack_guard();
2605}
2606
2607void JavaThread::enable_stack_red_zone() {
2608  // The base notation is from the stacks point of view, growing downward.
2609  // We need to adjust it to work correctly with guard_memory()
2610  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2611  address base = stack_red_zone_base() - stack_red_zone_size();
2612
2613  guarantee(base < stack_base(), "Error calculating stack red zone");
2614  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2615
2616  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2617    warning("Attempt to guard stack red zone failed.");
2618  }
2619}
2620
2621void JavaThread::disable_stack_red_zone() {
2622  // The base notation is from the stacks point of view, growing downward.
2623  // We need to adjust it to work correctly with guard_memory()
2624  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2625  address base = stack_red_zone_base() - stack_red_zone_size();
2626  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2627    warning("Attempt to unguard stack red zone failed.");
2628  }
2629}
2630
2631void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2632  // ignore is there is no stack
2633  if (!has_last_Java_frame()) return;
2634  // traverse the stack frames. Starts from top frame.
2635  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2636    frame* fr = fst.current();
2637    f(fr, fst.register_map());
2638  }
2639}
2640
2641
2642#ifndef PRODUCT
2643// Deoptimization
2644// Function for testing deoptimization
2645void JavaThread::deoptimize() {
2646  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2647  StackFrameStream fst(this, UseBiasedLocking);
2648  bool deopt = false;           // Dump stack only if a deopt actually happens.
2649  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2650  // Iterate over all frames in the thread and deoptimize
2651  for (; !fst.is_done(); fst.next()) {
2652    if (fst.current()->can_be_deoptimized()) {
2653
2654      if (only_at) {
2655        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2656        // consists of comma or carriage return separated numbers so
2657        // search for the current bci in that string.
2658        address pc = fst.current()->pc();
2659        nmethod* nm =  (nmethod*) fst.current()->cb();
2660        ScopeDesc* sd = nm->scope_desc_at(pc);
2661        char buffer[8];
2662        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2663        size_t len = strlen(buffer);
2664        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2665        while (found != NULL) {
2666          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2667              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2668            // Check that the bci found is bracketed by terminators.
2669            break;
2670          }
2671          found = strstr(found + 1, buffer);
2672        }
2673        if (!found) {
2674          continue;
2675        }
2676      }
2677
2678      if (DebugDeoptimization && !deopt) {
2679        deopt = true; // One-time only print before deopt
2680        tty->print_cr("[BEFORE Deoptimization]");
2681        trace_frames();
2682        trace_stack();
2683      }
2684      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2685    }
2686  }
2687
2688  if (DebugDeoptimization && deopt) {
2689    tty->print_cr("[AFTER Deoptimization]");
2690    trace_frames();
2691  }
2692}
2693
2694
2695// Make zombies
2696void JavaThread::make_zombies() {
2697  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2698    if (fst.current()->can_be_deoptimized()) {
2699      // it is a Java nmethod
2700      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2701      nm->make_not_entrant();
2702    }
2703  }
2704}
2705#endif // PRODUCT
2706
2707
2708void JavaThread::deoptimized_wrt_marked_nmethods() {
2709  if (!has_last_Java_frame()) return;
2710  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2711  StackFrameStream fst(this, UseBiasedLocking);
2712  for (; !fst.is_done(); fst.next()) {
2713    if (fst.current()->should_be_deoptimized()) {
2714      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2715    }
2716  }
2717}
2718
2719
2720// If the caller is a NamedThread, then remember, in the current scope,
2721// the given JavaThread in its _processed_thread field.
2722class RememberProcessedThread: public StackObj {
2723  NamedThread* _cur_thr;
2724 public:
2725  RememberProcessedThread(JavaThread* jthr) {
2726    Thread* thread = Thread::current();
2727    if (thread->is_Named_thread()) {
2728      _cur_thr = (NamedThread *)thread;
2729      _cur_thr->set_processed_thread(jthr);
2730    } else {
2731      _cur_thr = NULL;
2732    }
2733  }
2734
2735  ~RememberProcessedThread() {
2736    if (_cur_thr) {
2737      _cur_thr->set_processed_thread(NULL);
2738    }
2739  }
2740};
2741
2742void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2743  // Verify that the deferred card marks have been flushed.
2744  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2745
2746  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2747  // since there may be more than one thread using each ThreadProfiler.
2748
2749  // Traverse the GCHandles
2750  Thread::oops_do(f, cld_f, cf);
2751
2752  JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2753
2754  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2755         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2756
2757  if (has_last_Java_frame()) {
2758    // Record JavaThread to GC thread
2759    RememberProcessedThread rpt(this);
2760
2761    // Traverse the privileged stack
2762    if (_privileged_stack_top != NULL) {
2763      _privileged_stack_top->oops_do(f);
2764    }
2765
2766    // traverse the registered growable array
2767    if (_array_for_gc != NULL) {
2768      for (int index = 0; index < _array_for_gc->length(); index++) {
2769        f->do_oop(_array_for_gc->adr_at(index));
2770      }
2771    }
2772
2773    // Traverse the monitor chunks
2774    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2775      chunk->oops_do(f);
2776    }
2777
2778    // Traverse the execution stack
2779    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2780      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2781    }
2782  }
2783
2784  // callee_target is never live across a gc point so NULL it here should
2785  // it still contain a methdOop.
2786
2787  set_callee_target(NULL);
2788
2789  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2790  // If we have deferred set_locals there might be oops waiting to be
2791  // written
2792  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2793  if (list != NULL) {
2794    for (int i = 0; i < list->length(); i++) {
2795      list->at(i)->oops_do(f);
2796    }
2797  }
2798
2799  // Traverse instance variables at the end since the GC may be moving things
2800  // around using this function
2801  f->do_oop((oop*) &_threadObj);
2802  f->do_oop((oop*) &_vm_result);
2803  f->do_oop((oop*) &_exception_oop);
2804  f->do_oop((oop*) &_pending_async_exception);
2805
2806  if (jvmti_thread_state() != NULL) {
2807    jvmti_thread_state()->oops_do(f);
2808  }
2809}
2810
2811void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2812  Thread::nmethods_do(cf);  // (super method is a no-op)
2813
2814  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2815         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2816
2817  if (has_last_Java_frame()) {
2818    // Traverse the execution stack
2819    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2820      fst.current()->nmethods_do(cf);
2821    }
2822  }
2823}
2824
2825void JavaThread::metadata_do(void f(Metadata*)) {
2826  if (has_last_Java_frame()) {
2827    // Traverse the execution stack to call f() on the methods in the stack
2828    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2829      fst.current()->metadata_do(f);
2830    }
2831  } else if (is_Compiler_thread()) {
2832    // need to walk ciMetadata in current compile tasks to keep alive.
2833    CompilerThread* ct = (CompilerThread*)this;
2834    if (ct->env() != NULL) {
2835      ct->env()->metadata_do(f);
2836    }
2837    if (ct->task() != NULL) {
2838      ct->task()->metadata_do(f);
2839    }
2840  }
2841}
2842
2843// Printing
2844const char* _get_thread_state_name(JavaThreadState _thread_state) {
2845  switch (_thread_state) {
2846  case _thread_uninitialized:     return "_thread_uninitialized";
2847  case _thread_new:               return "_thread_new";
2848  case _thread_new_trans:         return "_thread_new_trans";
2849  case _thread_in_native:         return "_thread_in_native";
2850  case _thread_in_native_trans:   return "_thread_in_native_trans";
2851  case _thread_in_vm:             return "_thread_in_vm";
2852  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2853  case _thread_in_Java:           return "_thread_in_Java";
2854  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2855  case _thread_blocked:           return "_thread_blocked";
2856  case _thread_blocked_trans:     return "_thread_blocked_trans";
2857  default:                        return "unknown thread state";
2858  }
2859}
2860
2861#ifndef PRODUCT
2862void JavaThread::print_thread_state_on(outputStream *st) const {
2863  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2864};
2865void JavaThread::print_thread_state() const {
2866  print_thread_state_on(tty);
2867}
2868#endif // PRODUCT
2869
2870// Called by Threads::print() for VM_PrintThreads operation
2871void JavaThread::print_on(outputStream *st) const {
2872  st->print("\"%s\" ", get_thread_name());
2873  oop thread_oop = threadObj();
2874  if (thread_oop != NULL) {
2875    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2876    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2877    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2878  }
2879  Thread::print_on(st);
2880  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2881  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2882  if (thread_oop != NULL) {
2883    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2884  }
2885#ifndef PRODUCT
2886  print_thread_state_on(st);
2887  _safepoint_state->print_on(st);
2888#endif // PRODUCT
2889}
2890
2891// Called by fatal error handler. The difference between this and
2892// JavaThread::print() is that we can't grab lock or allocate memory.
2893void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2894  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2895  oop thread_obj = threadObj();
2896  if (thread_obj != NULL) {
2897    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2898  }
2899  st->print(" [");
2900  st->print("%s", _get_thread_state_name(_thread_state));
2901  if (osthread()) {
2902    st->print(", id=%d", osthread()->thread_id());
2903  }
2904  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2905            p2i(stack_end()), p2i(stack_base()));
2906  st->print("]");
2907  return;
2908}
2909
2910// Verification
2911
2912static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2913
2914void JavaThread::verify() {
2915  // Verify oops in the thread.
2916  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2917
2918  // Verify the stack frames.
2919  frames_do(frame_verify);
2920}
2921
2922// CR 6300358 (sub-CR 2137150)
2923// Most callers of this method assume that it can't return NULL but a
2924// thread may not have a name whilst it is in the process of attaching to
2925// the VM - see CR 6412693, and there are places where a JavaThread can be
2926// seen prior to having it's threadObj set (eg JNI attaching threads and
2927// if vm exit occurs during initialization). These cases can all be accounted
2928// for such that this method never returns NULL.
2929const char* JavaThread::get_thread_name() const {
2930#ifdef ASSERT
2931  // early safepoints can hit while current thread does not yet have TLS
2932  if (!SafepointSynchronize::is_at_safepoint()) {
2933    Thread *cur = Thread::current();
2934    if (!(cur->is_Java_thread() && cur == this)) {
2935      // Current JavaThreads are allowed to get their own name without
2936      // the Threads_lock.
2937      assert_locked_or_safepoint(Threads_lock);
2938    }
2939  }
2940#endif // ASSERT
2941  return get_thread_name_string();
2942}
2943
2944// Returns a non-NULL representation of this thread's name, or a suitable
2945// descriptive string if there is no set name
2946const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2947  const char* name_str;
2948  oop thread_obj = threadObj();
2949  if (thread_obj != NULL) {
2950    oop name = java_lang_Thread::name(thread_obj);
2951    if (name != NULL) {
2952      if (buf == NULL) {
2953        name_str = java_lang_String::as_utf8_string(name);
2954      } else {
2955        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2956      }
2957    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2958      name_str = "<no-name - thread is attaching>";
2959    } else {
2960      name_str = Thread::name();
2961    }
2962  } else {
2963    name_str = Thread::name();
2964  }
2965  assert(name_str != NULL, "unexpected NULL thread name");
2966  return name_str;
2967}
2968
2969
2970const char* JavaThread::get_threadgroup_name() const {
2971  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2972  oop thread_obj = threadObj();
2973  if (thread_obj != NULL) {
2974    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2975    if (thread_group != NULL) {
2976      // ThreadGroup.name can be null
2977      return java_lang_ThreadGroup::name(thread_group);
2978    }
2979  }
2980  return NULL;
2981}
2982
2983const char* JavaThread::get_parent_name() const {
2984  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2985  oop thread_obj = threadObj();
2986  if (thread_obj != NULL) {
2987    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2988    if (thread_group != NULL) {
2989      oop parent = java_lang_ThreadGroup::parent(thread_group);
2990      if (parent != NULL) {
2991        // ThreadGroup.name can be null
2992        return java_lang_ThreadGroup::name(parent);
2993      }
2994    }
2995  }
2996  return NULL;
2997}
2998
2999ThreadPriority JavaThread::java_priority() const {
3000  oop thr_oop = threadObj();
3001  if (thr_oop == NULL) return NormPriority; // Bootstrapping
3002  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3003  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3004  return priority;
3005}
3006
3007void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3008
3009  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3010  // Link Java Thread object <-> C++ Thread
3011
3012  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3013  // and put it into a new Handle.  The Handle "thread_oop" can then
3014  // be used to pass the C++ thread object to other methods.
3015
3016  // Set the Java level thread object (jthread) field of the
3017  // new thread (a JavaThread *) to C++ thread object using the
3018  // "thread_oop" handle.
3019
3020  // Set the thread field (a JavaThread *) of the
3021  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3022
3023  Handle thread_oop(Thread::current(),
3024                    JNIHandles::resolve_non_null(jni_thread));
3025  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3026         "must be initialized");
3027  set_threadObj(thread_oop());
3028  java_lang_Thread::set_thread(thread_oop(), this);
3029
3030  if (prio == NoPriority) {
3031    prio = java_lang_Thread::priority(thread_oop());
3032    assert(prio != NoPriority, "A valid priority should be present");
3033  }
3034
3035  // Push the Java priority down to the native thread; needs Threads_lock
3036  Thread::set_priority(this, prio);
3037
3038  prepare_ext();
3039
3040  // Add the new thread to the Threads list and set it in motion.
3041  // We must have threads lock in order to call Threads::add.
3042  // It is crucial that we do not block before the thread is
3043  // added to the Threads list for if a GC happens, then the java_thread oop
3044  // will not be visited by GC.
3045  Threads::add(this);
3046}
3047
3048oop JavaThread::current_park_blocker() {
3049  // Support for JSR-166 locks
3050  oop thread_oop = threadObj();
3051  if (thread_oop != NULL &&
3052      JDK_Version::current().supports_thread_park_blocker()) {
3053    return java_lang_Thread::park_blocker(thread_oop);
3054  }
3055  return NULL;
3056}
3057
3058
3059void JavaThread::print_stack_on(outputStream* st) {
3060  if (!has_last_Java_frame()) return;
3061  ResourceMark rm;
3062  HandleMark   hm;
3063
3064  RegisterMap reg_map(this);
3065  vframe* start_vf = last_java_vframe(&reg_map);
3066  int count = 0;
3067  for (vframe* f = start_vf; f; f = f->sender()) {
3068    if (f->is_java_frame()) {
3069      javaVFrame* jvf = javaVFrame::cast(f);
3070      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3071
3072      // Print out lock information
3073      if (JavaMonitorsInStackTrace) {
3074        jvf->print_lock_info_on(st, count);
3075      }
3076    } else {
3077      // Ignore non-Java frames
3078    }
3079
3080    // Bail-out case for too deep stacks
3081    count++;
3082    if (MaxJavaStackTraceDepth == count) return;
3083  }
3084}
3085
3086
3087// JVMTI PopFrame support
3088void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3089  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3090  if (in_bytes(size_in_bytes) != 0) {
3091    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3092    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3093    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3094  }
3095}
3096
3097void* JavaThread::popframe_preserved_args() {
3098  return _popframe_preserved_args;
3099}
3100
3101ByteSize JavaThread::popframe_preserved_args_size() {
3102  return in_ByteSize(_popframe_preserved_args_size);
3103}
3104
3105WordSize JavaThread::popframe_preserved_args_size_in_words() {
3106  int sz = in_bytes(popframe_preserved_args_size());
3107  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3108  return in_WordSize(sz / wordSize);
3109}
3110
3111void JavaThread::popframe_free_preserved_args() {
3112  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3113  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3114  _popframe_preserved_args = NULL;
3115  _popframe_preserved_args_size = 0;
3116}
3117
3118#ifndef PRODUCT
3119
3120void JavaThread::trace_frames() {
3121  tty->print_cr("[Describe stack]");
3122  int frame_no = 1;
3123  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3124    tty->print("  %d. ", frame_no++);
3125    fst.current()->print_value_on(tty, this);
3126    tty->cr();
3127  }
3128}
3129
3130class PrintAndVerifyOopClosure: public OopClosure {
3131 protected:
3132  template <class T> inline void do_oop_work(T* p) {
3133    oop obj = oopDesc::load_decode_heap_oop(p);
3134    if (obj == NULL) return;
3135    tty->print(INTPTR_FORMAT ": ", p2i(p));
3136    if (obj->is_oop_or_null()) {
3137      if (obj->is_objArray()) {
3138        tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3139      } else {
3140        obj->print();
3141      }
3142    } else {
3143      tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3144    }
3145    tty->cr();
3146  }
3147 public:
3148  virtual void do_oop(oop* p) { do_oop_work(p); }
3149  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3150};
3151
3152
3153static void oops_print(frame* f, const RegisterMap *map) {
3154  PrintAndVerifyOopClosure print;
3155  f->print_value();
3156  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3157}
3158
3159// Print our all the locations that contain oops and whether they are
3160// valid or not.  This useful when trying to find the oldest frame
3161// where an oop has gone bad since the frame walk is from youngest to
3162// oldest.
3163void JavaThread::trace_oops() {
3164  tty->print_cr("[Trace oops]");
3165  frames_do(oops_print);
3166}
3167
3168
3169#ifdef ASSERT
3170// Print or validate the layout of stack frames
3171void JavaThread::print_frame_layout(int depth, bool validate_only) {
3172  ResourceMark rm;
3173  PRESERVE_EXCEPTION_MARK;
3174  FrameValues values;
3175  int frame_no = 0;
3176  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3177    fst.current()->describe(values, ++frame_no);
3178    if (depth == frame_no) break;
3179  }
3180  if (validate_only) {
3181    values.validate();
3182  } else {
3183    tty->print_cr("[Describe stack layout]");
3184    values.print(this);
3185  }
3186}
3187#endif
3188
3189void JavaThread::trace_stack_from(vframe* start_vf) {
3190  ResourceMark rm;
3191  int vframe_no = 1;
3192  for (vframe* f = start_vf; f; f = f->sender()) {
3193    if (f->is_java_frame()) {
3194      javaVFrame::cast(f)->print_activation(vframe_no++);
3195    } else {
3196      f->print();
3197    }
3198    if (vframe_no > StackPrintLimit) {
3199      tty->print_cr("...<more frames>...");
3200      return;
3201    }
3202  }
3203}
3204
3205
3206void JavaThread::trace_stack() {
3207  if (!has_last_Java_frame()) return;
3208  ResourceMark rm;
3209  HandleMark   hm;
3210  RegisterMap reg_map(this);
3211  trace_stack_from(last_java_vframe(&reg_map));
3212}
3213
3214
3215#endif // PRODUCT
3216
3217
3218javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3219  assert(reg_map != NULL, "a map must be given");
3220  frame f = last_frame();
3221  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3222    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3223  }
3224  return NULL;
3225}
3226
3227
3228Klass* JavaThread::security_get_caller_class(int depth) {
3229  vframeStream vfst(this);
3230  vfst.security_get_caller_frame(depth);
3231  if (!vfst.at_end()) {
3232    return vfst.method()->method_holder();
3233  }
3234  return NULL;
3235}
3236
3237static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3238  assert(thread->is_Compiler_thread(), "must be compiler thread");
3239  CompileBroker::compiler_thread_loop();
3240}
3241
3242static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3243  NMethodSweeper::sweeper_loop();
3244}
3245
3246// Create a CompilerThread
3247CompilerThread::CompilerThread(CompileQueue* queue,
3248                               CompilerCounters* counters)
3249                               : JavaThread(&compiler_thread_entry) {
3250  _env   = NULL;
3251  _log   = NULL;
3252  _task  = NULL;
3253  _queue = queue;
3254  _counters = counters;
3255  _buffer_blob = NULL;
3256  _compiler = NULL;
3257
3258#ifndef PRODUCT
3259  _ideal_graph_printer = NULL;
3260#endif
3261}
3262
3263bool CompilerThread::can_call_java() const {
3264  return _compiler != NULL && _compiler->is_jvmci();
3265}
3266
3267// Create sweeper thread
3268CodeCacheSweeperThread::CodeCacheSweeperThread()
3269: JavaThread(&sweeper_thread_entry) {
3270  _scanned_nmethod = NULL;
3271}
3272void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3273  JavaThread::oops_do(f, cld_f, cf);
3274  if (_scanned_nmethod != NULL && cf != NULL) {
3275    // Safepoints can occur when the sweeper is scanning an nmethod so
3276    // process it here to make sure it isn't unloaded in the middle of
3277    // a scan.
3278    cf->do_code_blob(_scanned_nmethod);
3279  }
3280}
3281
3282
3283// ======= Threads ========
3284
3285// The Threads class links together all active threads, and provides
3286// operations over all threads.  It is protected by its own Mutex
3287// lock, which is also used in other contexts to protect thread
3288// operations from having the thread being operated on from exiting
3289// and going away unexpectedly (e.g., safepoint synchronization)
3290
3291JavaThread* Threads::_thread_list = NULL;
3292int         Threads::_number_of_threads = 0;
3293int         Threads::_number_of_non_daemon_threads = 0;
3294int         Threads::_return_code = 0;
3295int         Threads::_thread_claim_parity = 0;
3296size_t      JavaThread::_stack_size_at_create = 0;
3297#ifdef ASSERT
3298bool        Threads::_vm_complete = false;
3299#endif
3300
3301// All JavaThreads
3302#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3303
3304// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3305void Threads::threads_do(ThreadClosure* tc) {
3306  assert_locked_or_safepoint(Threads_lock);
3307  // ALL_JAVA_THREADS iterates through all JavaThreads
3308  ALL_JAVA_THREADS(p) {
3309    tc->do_thread(p);
3310  }
3311  // Someday we could have a table or list of all non-JavaThreads.
3312  // For now, just manually iterate through them.
3313  tc->do_thread(VMThread::vm_thread());
3314  Universe::heap()->gc_threads_do(tc);
3315  WatcherThread *wt = WatcherThread::watcher_thread();
3316  // Strictly speaking, the following NULL check isn't sufficient to make sure
3317  // the data for WatcherThread is still valid upon being examined. However,
3318  // considering that WatchThread terminates when the VM is on the way to
3319  // exit at safepoint, the chance of the above is extremely small. The right
3320  // way to prevent termination of WatcherThread would be to acquire
3321  // Terminator_lock, but we can't do that without violating the lock rank
3322  // checking in some cases.
3323  if (wt != NULL) {
3324    tc->do_thread(wt);
3325  }
3326
3327  // If CompilerThreads ever become non-JavaThreads, add them here
3328}
3329
3330void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3331  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3332
3333  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3334    create_vm_init_libraries();
3335  }
3336
3337  initialize_class(vmSymbols::java_lang_String(), CHECK);
3338
3339  // Inject CompactStrings value after the static initializers for String ran.
3340  java_lang_String::set_compact_strings(CompactStrings);
3341
3342  // Initialize java_lang.System (needed before creating the thread)
3343  initialize_class(vmSymbols::java_lang_System(), CHECK);
3344  // The VM creates & returns objects of this class. Make sure it's initialized.
3345  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3346  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3347  Handle thread_group = create_initial_thread_group(CHECK);
3348  Universe::set_main_thread_group(thread_group());
3349  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3350  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3351  main_thread->set_threadObj(thread_object);
3352  // Set thread status to running since main thread has
3353  // been started and running.
3354  java_lang_Thread::set_thread_status(thread_object,
3355                                      java_lang_Thread::RUNNABLE);
3356
3357  // The VM preresolves methods to these classes. Make sure that they get initialized
3358  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3359  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3360  call_initializeSystemClass(CHECK);
3361
3362  // get the Java runtime name after java.lang.System is initialized
3363  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3364  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3365
3366  // an instance of OutOfMemory exception has been allocated earlier
3367  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3368  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3369  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3370  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3371  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3372  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3373  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3374  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3375}
3376
3377void Threads::initialize_jsr292_core_classes(TRAPS) {
3378  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3379  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3380  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3381}
3382
3383jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3384  extern void JDK_Version_init();
3385
3386  // Preinitialize version info.
3387  VM_Version::early_initialize();
3388
3389  // Check version
3390  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3391
3392  // Initialize the output stream module
3393  ostream_init();
3394
3395  // Process java launcher properties.
3396  Arguments::process_sun_java_launcher_properties(args);
3397
3398  // Initialize the os module before using TLS
3399  os::init();
3400
3401  // Record VM creation timing statistics
3402  TraceVmCreationTime create_vm_timer;
3403  create_vm_timer.start();
3404
3405  // Initialize system properties.
3406  Arguments::init_system_properties();
3407
3408  // So that JDK version can be used as a discriminator when parsing arguments
3409  JDK_Version_init();
3410
3411  // Update/Initialize System properties after JDK version number is known
3412  Arguments::init_version_specific_system_properties();
3413
3414  // Make sure to initialize log configuration *before* parsing arguments
3415  LogConfiguration::initialize(create_vm_timer.begin_time());
3416
3417  // Parse arguments
3418  jint parse_result = Arguments::parse(args);
3419  if (parse_result != JNI_OK) return parse_result;
3420
3421  os::init_before_ergo();
3422
3423  jint ergo_result = Arguments::apply_ergo();
3424  if (ergo_result != JNI_OK) return ergo_result;
3425
3426  // Final check of all ranges after ergonomics which may change values.
3427  if (!CommandLineFlagRangeList::check_ranges()) {
3428    return JNI_EINVAL;
3429  }
3430
3431  // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3432  bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3433  if (!constraint_result) {
3434    return JNI_EINVAL;
3435  }
3436
3437  if (PauseAtStartup) {
3438    os::pause();
3439  }
3440
3441  HOTSPOT_VM_INIT_BEGIN();
3442
3443  // Timing (must come after argument parsing)
3444  TraceTime timer("Create VM", TraceStartupTime);
3445
3446  // Initialize the os module after parsing the args
3447  jint os_init_2_result = os::init_2();
3448  if (os_init_2_result != JNI_OK) return os_init_2_result;
3449
3450  jint adjust_after_os_result = Arguments::adjust_after_os();
3451  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3452
3453  // Initialize library-based TLS
3454  ThreadLocalStorage::init();
3455
3456  // Initialize output stream logging
3457  ostream_init_log();
3458
3459  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3460  // Must be before create_vm_init_agents()
3461  if (Arguments::init_libraries_at_startup()) {
3462    convert_vm_init_libraries_to_agents();
3463  }
3464
3465  // Launch -agentlib/-agentpath and converted -Xrun agents
3466  if (Arguments::init_agents_at_startup()) {
3467    create_vm_init_agents();
3468  }
3469
3470  // Initialize Threads state
3471  _thread_list = NULL;
3472  _number_of_threads = 0;
3473  _number_of_non_daemon_threads = 0;
3474
3475  // Initialize global data structures and create system classes in heap
3476  vm_init_globals();
3477
3478#if INCLUDE_JVMCI
3479  if (JVMCICounterSize > 0) {
3480    JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3481    memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3482  } else {
3483    JavaThread::_jvmci_old_thread_counters = NULL;
3484  }
3485#endif // INCLUDE_JVMCI
3486
3487  // Attach the main thread to this os thread
3488  JavaThread* main_thread = new JavaThread();
3489  main_thread->set_thread_state(_thread_in_vm);
3490  main_thread->initialize_thread_current();
3491  // must do this before set_active_handles
3492  main_thread->record_stack_base_and_size();
3493  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3494
3495  if (!main_thread->set_as_starting_thread()) {
3496    vm_shutdown_during_initialization(
3497                                      "Failed necessary internal allocation. Out of swap space");
3498    delete main_thread;
3499    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3500    return JNI_ENOMEM;
3501  }
3502
3503  // Enable guard page *after* os::create_main_thread(), otherwise it would
3504  // crash Linux VM, see notes in os_linux.cpp.
3505  main_thread->create_stack_guard_pages();
3506
3507  // Initialize Java-Level synchronization subsystem
3508  ObjectMonitor::Initialize();
3509
3510  // Initialize global modules
3511  jint status = init_globals();
3512  if (status != JNI_OK) {
3513    delete main_thread;
3514    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3515    return status;
3516  }
3517
3518  // Should be done after the heap is fully created
3519  main_thread->cache_global_variables();
3520
3521  HandleMark hm;
3522
3523  { MutexLocker mu(Threads_lock);
3524    Threads::add(main_thread);
3525  }
3526
3527  // Any JVMTI raw monitors entered in onload will transition into
3528  // real raw monitor. VM is setup enough here for raw monitor enter.
3529  JvmtiExport::transition_pending_onload_raw_monitors();
3530
3531  // Create the VMThread
3532  { TraceTime timer("Start VMThread", TraceStartupTime);
3533    VMThread::create();
3534    Thread* vmthread = VMThread::vm_thread();
3535
3536    if (!os::create_thread(vmthread, os::vm_thread)) {
3537      vm_exit_during_initialization("Cannot create VM thread. "
3538                                    "Out of system resources.");
3539    }
3540
3541    // Wait for the VM thread to become ready, and VMThread::run to initialize
3542    // Monitors can have spurious returns, must always check another state flag
3543    {
3544      MutexLocker ml(Notify_lock);
3545      os::start_thread(vmthread);
3546      while (vmthread->active_handles() == NULL) {
3547        Notify_lock->wait();
3548      }
3549    }
3550  }
3551
3552  assert(Universe::is_fully_initialized(), "not initialized");
3553  if (VerifyDuringStartup) {
3554    // Make sure we're starting with a clean slate.
3555    VM_Verify verify_op;
3556    VMThread::execute(&verify_op);
3557  }
3558
3559  Thread* THREAD = Thread::current();
3560
3561  // At this point, the Universe is initialized, but we have not executed
3562  // any byte code.  Now is a good time (the only time) to dump out the
3563  // internal state of the JVM for sharing.
3564  if (DumpSharedSpaces) {
3565    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3566    ShouldNotReachHere();
3567  }
3568
3569  // Always call even when there are not JVMTI environments yet, since environments
3570  // may be attached late and JVMTI must track phases of VM execution
3571  JvmtiExport::enter_start_phase();
3572
3573  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3574  JvmtiExport::post_vm_start();
3575
3576  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3577
3578  // We need this for ClassDataSharing - the initial vm.info property is set
3579  // with the default value of CDS "sharing" which may be reset through
3580  // command line options.
3581  reset_vm_info_property(CHECK_JNI_ERR);
3582
3583  quicken_jni_functions();
3584
3585  // Must be run after init_ft which initializes ft_enabled
3586  if (TRACE_INITIALIZE() != JNI_OK) {
3587    vm_exit_during_initialization("Failed to initialize tracing backend");
3588  }
3589
3590  // Set flag that basic initialization has completed. Used by exceptions and various
3591  // debug stuff, that does not work until all basic classes have been initialized.
3592  set_init_completed();
3593
3594  LogConfiguration::post_initialize();
3595  Metaspace::post_initialize();
3596
3597  HOTSPOT_VM_INIT_END();
3598
3599  // record VM initialization completion time
3600#if INCLUDE_MANAGEMENT
3601  Management::record_vm_init_completed();
3602#endif // INCLUDE_MANAGEMENT
3603
3604  // Compute system loader. Note that this has to occur after set_init_completed, since
3605  // valid exceptions may be thrown in the process.
3606  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3607  // set_init_completed has just been called, causing exceptions not to be shortcut
3608  // anymore. We call vm_exit_during_initialization directly instead.
3609  SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3610
3611#if INCLUDE_ALL_GCS
3612  // Support for ConcurrentMarkSweep. This should be cleaned up
3613  // and better encapsulated. The ugly nested if test would go away
3614  // once things are properly refactored. XXX YSR
3615  if (UseConcMarkSweepGC || UseG1GC) {
3616    if (UseConcMarkSweepGC) {
3617      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3618    } else {
3619      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3620    }
3621  }
3622#endif // INCLUDE_ALL_GCS
3623
3624  // Always call even when there are not JVMTI environments yet, since environments
3625  // may be attached late and JVMTI must track phases of VM execution
3626  JvmtiExport::enter_live_phase();
3627
3628  // Signal Dispatcher needs to be started before VMInit event is posted
3629  os::signal_init();
3630
3631  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3632  if (!DisableAttachMechanism) {
3633    AttachListener::vm_start();
3634    if (StartAttachListener || AttachListener::init_at_startup()) {
3635      AttachListener::init();
3636    }
3637  }
3638
3639  // Launch -Xrun agents
3640  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3641  // back-end can launch with -Xdebug -Xrunjdwp.
3642  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3643    create_vm_init_libraries();
3644  }
3645
3646  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3647  JvmtiExport::post_vm_initialized();
3648
3649  if (TRACE_START() != JNI_OK) {
3650    vm_exit_during_initialization("Failed to start tracing backend.");
3651  }
3652
3653  if (CleanChunkPoolAsync) {
3654    Chunk::start_chunk_pool_cleaner_task();
3655  }
3656
3657#if INCLUDE_JVMCI
3658  if (EnableJVMCI) {
3659    const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3660    if (jvmciCompiler != NULL) {
3661      JVMCIRuntime::save_compiler(jvmciCompiler);
3662    }
3663    JVMCIRuntime::maybe_print_flags(CHECK_JNI_ERR);
3664  }
3665#endif // INCLUDE_JVMCI
3666
3667  // initialize compiler(s)
3668#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3669  CompileBroker::compilation_init();
3670#endif
3671
3672  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3673  // It is done after compilers are initialized, because otherwise compilations of
3674  // signature polymorphic MH intrinsics can be missed
3675  // (see SystemDictionary::find_method_handle_intrinsic).
3676  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3677
3678#if INCLUDE_MANAGEMENT
3679  Management::initialize(THREAD);
3680
3681  if (HAS_PENDING_EXCEPTION) {
3682    // management agent fails to start possibly due to
3683    // configuration problem and is responsible for printing
3684    // stack trace if appropriate. Simply exit VM.
3685    vm_exit(1);
3686  }
3687#endif // INCLUDE_MANAGEMENT
3688
3689  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3690  if (MemProfiling)                   MemProfiler::engage();
3691  StatSampler::engage();
3692  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3693
3694  BiasedLocking::init();
3695
3696#if INCLUDE_RTM_OPT
3697  RTMLockingCounters::init();
3698#endif
3699
3700  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3701    call_postVMInitHook(THREAD);
3702    // The Java side of PostVMInitHook.run must deal with all
3703    // exceptions and provide means of diagnosis.
3704    if (HAS_PENDING_EXCEPTION) {
3705      CLEAR_PENDING_EXCEPTION;
3706    }
3707  }
3708
3709  {
3710    MutexLocker ml(PeriodicTask_lock);
3711    // Make sure the WatcherThread can be started by WatcherThread::start()
3712    // or by dynamic enrollment.
3713    WatcherThread::make_startable();
3714    // Start up the WatcherThread if there are any periodic tasks
3715    // NOTE:  All PeriodicTasks should be registered by now. If they
3716    //   aren't, late joiners might appear to start slowly (we might
3717    //   take a while to process their first tick).
3718    if (PeriodicTask::num_tasks() > 0) {
3719      WatcherThread::start();
3720    }
3721  }
3722
3723  CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3724
3725  create_vm_timer.end();
3726#ifdef ASSERT
3727  _vm_complete = true;
3728#endif
3729  return JNI_OK;
3730}
3731
3732// type for the Agent_OnLoad and JVM_OnLoad entry points
3733extern "C" {
3734  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3735}
3736// Find a command line agent library and return its entry point for
3737//         -agentlib:  -agentpath:   -Xrun
3738// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3739static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3740                                    const char *on_load_symbols[],
3741                                    size_t num_symbol_entries) {
3742  OnLoadEntry_t on_load_entry = NULL;
3743  void *library = NULL;
3744
3745  if (!agent->valid()) {
3746    char buffer[JVM_MAXPATHLEN];
3747    char ebuf[1024] = "";
3748    const char *name = agent->name();
3749    const char *msg = "Could not find agent library ";
3750
3751    // First check to see if agent is statically linked into executable
3752    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3753      library = agent->os_lib();
3754    } else if (agent->is_absolute_path()) {
3755      library = os::dll_load(name, ebuf, sizeof ebuf);
3756      if (library == NULL) {
3757        const char *sub_msg = " in absolute path, with error: ";
3758        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3759        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3760        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3761        // If we can't find the agent, exit.
3762        vm_exit_during_initialization(buf, NULL);
3763        FREE_C_HEAP_ARRAY(char, buf);
3764      }
3765    } else {
3766      // Try to load the agent from the standard dll directory
3767      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3768                             name)) {
3769        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3770      }
3771      if (library == NULL) { // Try the local directory
3772        char ns[1] = {0};
3773        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3774          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3775        }
3776        if (library == NULL) {
3777          const char *sub_msg = " on the library path, with error: ";
3778          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3779          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3780          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3781          // If we can't find the agent, exit.
3782          vm_exit_during_initialization(buf, NULL);
3783          FREE_C_HEAP_ARRAY(char, buf);
3784        }
3785      }
3786    }
3787    agent->set_os_lib(library);
3788    agent->set_valid();
3789  }
3790
3791  // Find the OnLoad function.
3792  on_load_entry =
3793    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3794                                                          false,
3795                                                          on_load_symbols,
3796                                                          num_symbol_entries));
3797  return on_load_entry;
3798}
3799
3800// Find the JVM_OnLoad entry point
3801static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3802  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3803  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3804}
3805
3806// Find the Agent_OnLoad entry point
3807static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3808  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3809  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3810}
3811
3812// For backwards compatibility with -Xrun
3813// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3814// treated like -agentpath:
3815// Must be called before agent libraries are created
3816void Threads::convert_vm_init_libraries_to_agents() {
3817  AgentLibrary* agent;
3818  AgentLibrary* next;
3819
3820  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3821    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3822    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3823
3824    // If there is an JVM_OnLoad function it will get called later,
3825    // otherwise see if there is an Agent_OnLoad
3826    if (on_load_entry == NULL) {
3827      on_load_entry = lookup_agent_on_load(agent);
3828      if (on_load_entry != NULL) {
3829        // switch it to the agent list -- so that Agent_OnLoad will be called,
3830        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3831        Arguments::convert_library_to_agent(agent);
3832      } else {
3833        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3834      }
3835    }
3836  }
3837}
3838
3839// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3840// Invokes Agent_OnLoad
3841// Called very early -- before JavaThreads exist
3842void Threads::create_vm_init_agents() {
3843  extern struct JavaVM_ main_vm;
3844  AgentLibrary* agent;
3845
3846  JvmtiExport::enter_onload_phase();
3847
3848  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3849    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3850
3851    if (on_load_entry != NULL) {
3852      // Invoke the Agent_OnLoad function
3853      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3854      if (err != JNI_OK) {
3855        vm_exit_during_initialization("agent library failed to init", agent->name());
3856      }
3857    } else {
3858      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3859    }
3860  }
3861  JvmtiExport::enter_primordial_phase();
3862}
3863
3864extern "C" {
3865  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3866}
3867
3868void Threads::shutdown_vm_agents() {
3869  // Send any Agent_OnUnload notifications
3870  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3871  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3872  extern struct JavaVM_ main_vm;
3873  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3874
3875    // Find the Agent_OnUnload function.
3876    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3877                                                   os::find_agent_function(agent,
3878                                                   false,
3879                                                   on_unload_symbols,
3880                                                   num_symbol_entries));
3881
3882    // Invoke the Agent_OnUnload function
3883    if (unload_entry != NULL) {
3884      JavaThread* thread = JavaThread::current();
3885      ThreadToNativeFromVM ttn(thread);
3886      HandleMark hm(thread);
3887      (*unload_entry)(&main_vm);
3888    }
3889  }
3890}
3891
3892// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3893// Invokes JVM_OnLoad
3894void Threads::create_vm_init_libraries() {
3895  extern struct JavaVM_ main_vm;
3896  AgentLibrary* agent;
3897
3898  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3899    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3900
3901    if (on_load_entry != NULL) {
3902      // Invoke the JVM_OnLoad function
3903      JavaThread* thread = JavaThread::current();
3904      ThreadToNativeFromVM ttn(thread);
3905      HandleMark hm(thread);
3906      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3907      if (err != JNI_OK) {
3908        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3909      }
3910    } else {
3911      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3912    }
3913  }
3914}
3915
3916JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3917  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3918
3919  JavaThread* java_thread = NULL;
3920  // Sequential search for now.  Need to do better optimization later.
3921  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3922    oop tobj = thread->threadObj();
3923    if (!thread->is_exiting() &&
3924        tobj != NULL &&
3925        java_tid == java_lang_Thread::thread_id(tobj)) {
3926      java_thread = thread;
3927      break;
3928    }
3929  }
3930  return java_thread;
3931}
3932
3933
3934// Last thread running calls java.lang.Shutdown.shutdown()
3935void JavaThread::invoke_shutdown_hooks() {
3936  HandleMark hm(this);
3937
3938  // We could get here with a pending exception, if so clear it now.
3939  if (this->has_pending_exception()) {
3940    this->clear_pending_exception();
3941  }
3942
3943  EXCEPTION_MARK;
3944  Klass* k =
3945    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3946                                      THREAD);
3947  if (k != NULL) {
3948    // SystemDictionary::resolve_or_null will return null if there was
3949    // an exception.  If we cannot load the Shutdown class, just don't
3950    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3951    // and finalizers (if runFinalizersOnExit is set) won't be run.
3952    // Note that if a shutdown hook was registered or runFinalizersOnExit
3953    // was called, the Shutdown class would have already been loaded
3954    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3955    instanceKlassHandle shutdown_klass (THREAD, k);
3956    JavaValue result(T_VOID);
3957    JavaCalls::call_static(&result,
3958                           shutdown_klass,
3959                           vmSymbols::shutdown_method_name(),
3960                           vmSymbols::void_method_signature(),
3961                           THREAD);
3962  }
3963  CLEAR_PENDING_EXCEPTION;
3964}
3965
3966// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3967// the program falls off the end of main(). Another VM exit path is through
3968// vm_exit() when the program calls System.exit() to return a value or when
3969// there is a serious error in VM. The two shutdown paths are not exactly
3970// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3971// and VM_Exit op at VM level.
3972//
3973// Shutdown sequence:
3974//   + Shutdown native memory tracking if it is on
3975//   + Wait until we are the last non-daemon thread to execute
3976//     <-- every thing is still working at this moment -->
3977//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3978//        shutdown hooks, run finalizers if finalization-on-exit
3979//   + Call before_exit(), prepare for VM exit
3980//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3981//        currently the only user of this mechanism is File.deleteOnExit())
3982//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3983//        post thread end and vm death events to JVMTI,
3984//        stop signal thread
3985//   + Call JavaThread::exit(), it will:
3986//      > release JNI handle blocks, remove stack guard pages
3987//      > remove this thread from Threads list
3988//     <-- no more Java code from this thread after this point -->
3989//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3990//     the compiler threads at safepoint
3991//     <-- do not use anything that could get blocked by Safepoint -->
3992//   + Disable tracing at JNI/JVM barriers
3993//   + Set _vm_exited flag for threads that are still running native code
3994//   + Delete this thread
3995//   + Call exit_globals()
3996//      > deletes tty
3997//      > deletes PerfMemory resources
3998//   + Return to caller
3999
4000bool Threads::destroy_vm() {
4001  JavaThread* thread = JavaThread::current();
4002
4003#ifdef ASSERT
4004  _vm_complete = false;
4005#endif
4006  // Wait until we are the last non-daemon thread to execute
4007  { MutexLocker nu(Threads_lock);
4008    while (Threads::number_of_non_daemon_threads() > 1)
4009      // This wait should make safepoint checks, wait without a timeout,
4010      // and wait as a suspend-equivalent condition.
4011      //
4012      // Note: If the FlatProfiler is running and this thread is waiting
4013      // for another non-daemon thread to finish, then the FlatProfiler
4014      // is waiting for the external suspend request on this thread to
4015      // complete. wait_for_ext_suspend_completion() will eventually
4016      // timeout, but that takes time. Making this wait a suspend-
4017      // equivalent condition solves that timeout problem.
4018      //
4019      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4020                         Mutex::_as_suspend_equivalent_flag);
4021  }
4022
4023  // Hang forever on exit if we are reporting an error.
4024  if (ShowMessageBoxOnError && is_error_reported()) {
4025    os::infinite_sleep();
4026  }
4027  os::wait_for_keypress_at_exit();
4028
4029  // run Java level shutdown hooks
4030  thread->invoke_shutdown_hooks();
4031
4032  before_exit(thread);
4033
4034  thread->exit(true);
4035
4036  // Stop VM thread.
4037  {
4038    // 4945125 The vm thread comes to a safepoint during exit.
4039    // GC vm_operations can get caught at the safepoint, and the
4040    // heap is unparseable if they are caught. Grab the Heap_lock
4041    // to prevent this. The GC vm_operations will not be able to
4042    // queue until after the vm thread is dead. After this point,
4043    // we'll never emerge out of the safepoint before the VM exits.
4044
4045    MutexLocker ml(Heap_lock);
4046
4047    VMThread::wait_for_vm_thread_exit();
4048    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4049    VMThread::destroy();
4050  }
4051
4052  // clean up ideal graph printers
4053#if defined(COMPILER2) && !defined(PRODUCT)
4054  IdealGraphPrinter::clean_up();
4055#endif
4056
4057  // Now, all Java threads are gone except daemon threads. Daemon threads
4058  // running Java code or in VM are stopped by the Safepoint. However,
4059  // daemon threads executing native code are still running.  But they
4060  // will be stopped at native=>Java/VM barriers. Note that we can't
4061  // simply kill or suspend them, as it is inherently deadlock-prone.
4062
4063  VM_Exit::set_vm_exited();
4064
4065  notify_vm_shutdown();
4066
4067  delete thread;
4068
4069#if INCLUDE_JVMCI
4070  if (JVMCICounterSize > 0) {
4071    FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4072  }
4073#endif
4074
4075  // exit_globals() will delete tty
4076  exit_globals();
4077
4078  LogConfiguration::finalize();
4079
4080  return true;
4081}
4082
4083
4084jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4085  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4086  return is_supported_jni_version(version);
4087}
4088
4089
4090jboolean Threads::is_supported_jni_version(jint version) {
4091  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4092  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4093  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4094  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4095  return JNI_FALSE;
4096}
4097
4098
4099void Threads::add(JavaThread* p, bool force_daemon) {
4100  // The threads lock must be owned at this point
4101  assert_locked_or_safepoint(Threads_lock);
4102
4103  // See the comment for this method in thread.hpp for its purpose and
4104  // why it is called here.
4105  p->initialize_queues();
4106  p->set_next(_thread_list);
4107  _thread_list = p;
4108  _number_of_threads++;
4109  oop threadObj = p->threadObj();
4110  bool daemon = true;
4111  // Bootstrapping problem: threadObj can be null for initial
4112  // JavaThread (or for threads attached via JNI)
4113  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4114    _number_of_non_daemon_threads++;
4115    daemon = false;
4116  }
4117
4118  ThreadService::add_thread(p, daemon);
4119
4120  // Possible GC point.
4121  Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4122}
4123
4124void Threads::remove(JavaThread* p) {
4125  // Extra scope needed for Thread_lock, so we can check
4126  // that we do not remove thread without safepoint code notice
4127  { MutexLocker ml(Threads_lock);
4128
4129    assert(includes(p), "p must be present");
4130
4131    JavaThread* current = _thread_list;
4132    JavaThread* prev    = NULL;
4133
4134    while (current != p) {
4135      prev    = current;
4136      current = current->next();
4137    }
4138
4139    if (prev) {
4140      prev->set_next(current->next());
4141    } else {
4142      _thread_list = p->next();
4143    }
4144    _number_of_threads--;
4145    oop threadObj = p->threadObj();
4146    bool daemon = true;
4147    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4148      _number_of_non_daemon_threads--;
4149      daemon = false;
4150
4151      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4152      // on destroy_vm will wake up.
4153      if (number_of_non_daemon_threads() == 1) {
4154        Threads_lock->notify_all();
4155      }
4156    }
4157    ThreadService::remove_thread(p, daemon);
4158
4159    // Make sure that safepoint code disregard this thread. This is needed since
4160    // the thread might mess around with locks after this point. This can cause it
4161    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4162    // of this thread since it is removed from the queue.
4163    p->set_terminated_value();
4164  } // unlock Threads_lock
4165
4166  // Since Events::log uses a lock, we grab it outside the Threads_lock
4167  Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4168}
4169
4170// Threads_lock must be held when this is called (or must be called during a safepoint)
4171bool Threads::includes(JavaThread* p) {
4172  assert(Threads_lock->is_locked(), "sanity check");
4173  ALL_JAVA_THREADS(q) {
4174    if (q == p) {
4175      return true;
4176    }
4177  }
4178  return false;
4179}
4180
4181// Operations on the Threads list for GC.  These are not explicitly locked,
4182// but the garbage collector must provide a safe context for them to run.
4183// In particular, these things should never be called when the Threads_lock
4184// is held by some other thread. (Note: the Safepoint abstraction also
4185// uses the Threads_lock to guarantee this property. It also makes sure that
4186// all threads gets blocked when exiting or starting).
4187
4188void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4189  ALL_JAVA_THREADS(p) {
4190    p->oops_do(f, cld_f, cf);
4191  }
4192  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4193}
4194
4195void Threads::change_thread_claim_parity() {
4196  // Set the new claim parity.
4197  assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4198         "Not in range.");
4199  _thread_claim_parity++;
4200  if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4201  assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4202         "Not in range.");
4203}
4204
4205#ifdef ASSERT
4206void Threads::assert_all_threads_claimed() {
4207  ALL_JAVA_THREADS(p) {
4208    const int thread_parity = p->oops_do_parity();
4209    assert((thread_parity == _thread_claim_parity),
4210           "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4211  }
4212}
4213#endif // ASSERT
4214
4215void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4216  int cp = Threads::thread_claim_parity();
4217  ALL_JAVA_THREADS(p) {
4218    if (p->claim_oops_do(is_par, cp)) {
4219      p->oops_do(f, cld_f, cf);
4220    }
4221  }
4222  VMThread* vmt = VMThread::vm_thread();
4223  if (vmt->claim_oops_do(is_par, cp)) {
4224    vmt->oops_do(f, cld_f, cf);
4225  }
4226}
4227
4228#if INCLUDE_ALL_GCS
4229// Used by ParallelScavenge
4230void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4231  ALL_JAVA_THREADS(p) {
4232    q->enqueue(new ThreadRootsTask(p));
4233  }
4234  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4235}
4236
4237// Used by Parallel Old
4238void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4239  ALL_JAVA_THREADS(p) {
4240    q->enqueue(new ThreadRootsMarkingTask(p));
4241  }
4242  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4243}
4244#endif // INCLUDE_ALL_GCS
4245
4246void Threads::nmethods_do(CodeBlobClosure* cf) {
4247  ALL_JAVA_THREADS(p) {
4248    p->nmethods_do(cf);
4249  }
4250  VMThread::vm_thread()->nmethods_do(cf);
4251}
4252
4253void Threads::metadata_do(void f(Metadata*)) {
4254  ALL_JAVA_THREADS(p) {
4255    p->metadata_do(f);
4256  }
4257}
4258
4259class ThreadHandlesClosure : public ThreadClosure {
4260  void (*_f)(Metadata*);
4261 public:
4262  ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4263  virtual void do_thread(Thread* thread) {
4264    thread->metadata_handles_do(_f);
4265  }
4266};
4267
4268void Threads::metadata_handles_do(void f(Metadata*)) {
4269  // Only walk the Handles in Thread.
4270  ThreadHandlesClosure handles_closure(f);
4271  threads_do(&handles_closure);
4272}
4273
4274void Threads::deoptimized_wrt_marked_nmethods() {
4275  ALL_JAVA_THREADS(p) {
4276    p->deoptimized_wrt_marked_nmethods();
4277  }
4278}
4279
4280
4281// Get count Java threads that are waiting to enter the specified monitor.
4282GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4283                                                         address monitor,
4284                                                         bool doLock) {
4285  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4286         "must grab Threads_lock or be at safepoint");
4287  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4288
4289  int i = 0;
4290  {
4291    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4292    ALL_JAVA_THREADS(p) {
4293      if (!p->can_call_java()) continue;
4294
4295      address pending = (address)p->current_pending_monitor();
4296      if (pending == monitor) {             // found a match
4297        if (i < count) result->append(p);   // save the first count matches
4298        i++;
4299      }
4300    }
4301  }
4302  return result;
4303}
4304
4305
4306JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4307                                                      bool doLock) {
4308  assert(doLock ||
4309         Threads_lock->owned_by_self() ||
4310         SafepointSynchronize::is_at_safepoint(),
4311         "must grab Threads_lock or be at safepoint");
4312
4313  // NULL owner means not locked so we can skip the search
4314  if (owner == NULL) return NULL;
4315
4316  {
4317    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4318    ALL_JAVA_THREADS(p) {
4319      // first, see if owner is the address of a Java thread
4320      if (owner == (address)p) return p;
4321    }
4322  }
4323  // Cannot assert on lack of success here since this function may be
4324  // used by code that is trying to report useful problem information
4325  // like deadlock detection.
4326  if (UseHeavyMonitors) return NULL;
4327
4328  // If we didn't find a matching Java thread and we didn't force use of
4329  // heavyweight monitors, then the owner is the stack address of the
4330  // Lock Word in the owning Java thread's stack.
4331  //
4332  JavaThread* the_owner = NULL;
4333  {
4334    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4335    ALL_JAVA_THREADS(q) {
4336      if (q->is_lock_owned(owner)) {
4337        the_owner = q;
4338        break;
4339      }
4340    }
4341  }
4342  // cannot assert on lack of success here; see above comment
4343  return the_owner;
4344}
4345
4346// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4347void Threads::print_on(outputStream* st, bool print_stacks,
4348                       bool internal_format, bool print_concurrent_locks) {
4349  char buf[32];
4350  st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4351
4352  st->print_cr("Full thread dump %s (%s %s):",
4353               Abstract_VM_Version::vm_name(),
4354               Abstract_VM_Version::vm_release(),
4355               Abstract_VM_Version::vm_info_string());
4356  st->cr();
4357
4358#if INCLUDE_SERVICES
4359  // Dump concurrent locks
4360  ConcurrentLocksDump concurrent_locks;
4361  if (print_concurrent_locks) {
4362    concurrent_locks.dump_at_safepoint();
4363  }
4364#endif // INCLUDE_SERVICES
4365
4366  ALL_JAVA_THREADS(p) {
4367    ResourceMark rm;
4368    p->print_on(st);
4369    if (print_stacks) {
4370      if (internal_format) {
4371        p->trace_stack();
4372      } else {
4373        p->print_stack_on(st);
4374      }
4375    }
4376    st->cr();
4377#if INCLUDE_SERVICES
4378    if (print_concurrent_locks) {
4379      concurrent_locks.print_locks_on(p, st);
4380    }
4381#endif // INCLUDE_SERVICES
4382  }
4383
4384  VMThread::vm_thread()->print_on(st);
4385  st->cr();
4386  Universe::heap()->print_gc_threads_on(st);
4387  WatcherThread* wt = WatcherThread::watcher_thread();
4388  if (wt != NULL) {
4389    wt->print_on(st);
4390    st->cr();
4391  }
4392  CompileBroker::print_compiler_threads_on(st);
4393  st->flush();
4394}
4395
4396// Threads::print_on_error() is called by fatal error handler. It's possible
4397// that VM is not at safepoint and/or current thread is inside signal handler.
4398// Don't print stack trace, as the stack may not be walkable. Don't allocate
4399// memory (even in resource area), it might deadlock the error handler.
4400void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4401                             int buflen) {
4402  bool found_current = false;
4403  st->print_cr("Java Threads: ( => current thread )");
4404  ALL_JAVA_THREADS(thread) {
4405    bool is_current = (current == thread);
4406    found_current = found_current || is_current;
4407
4408    st->print("%s", is_current ? "=>" : "  ");
4409
4410    st->print(PTR_FORMAT, p2i(thread));
4411    st->print(" ");
4412    thread->print_on_error(st, buf, buflen);
4413    st->cr();
4414  }
4415  st->cr();
4416
4417  st->print_cr("Other Threads:");
4418  if (VMThread::vm_thread()) {
4419    bool is_current = (current == VMThread::vm_thread());
4420    found_current = found_current || is_current;
4421    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4422
4423    st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4424    st->print(" ");
4425    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4426    st->cr();
4427  }
4428  WatcherThread* wt = WatcherThread::watcher_thread();
4429  if (wt != NULL) {
4430    bool is_current = (current == wt);
4431    found_current = found_current || is_current;
4432    st->print("%s", is_current ? "=>" : "  ");
4433
4434    st->print(PTR_FORMAT, p2i(wt));
4435    st->print(" ");
4436    wt->print_on_error(st, buf, buflen);
4437    st->cr();
4438  }
4439  if (!found_current) {
4440    st->cr();
4441    st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4442    current->print_on_error(st, buf, buflen);
4443    st->cr();
4444  }
4445}
4446
4447// Internal SpinLock and Mutex
4448// Based on ParkEvent
4449
4450// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4451//
4452// We employ SpinLocks _only for low-contention, fixed-length
4453// short-duration critical sections where we're concerned
4454// about native mutex_t or HotSpot Mutex:: latency.
4455// The mux construct provides a spin-then-block mutual exclusion
4456// mechanism.
4457//
4458// Testing has shown that contention on the ListLock guarding gFreeList
4459// is common.  If we implement ListLock as a simple SpinLock it's common
4460// for the JVM to devolve to yielding with little progress.  This is true
4461// despite the fact that the critical sections protected by ListLock are
4462// extremely short.
4463//
4464// TODO-FIXME: ListLock should be of type SpinLock.
4465// We should make this a 1st-class type, integrated into the lock
4466// hierarchy as leaf-locks.  Critically, the SpinLock structure
4467// should have sufficient padding to avoid false-sharing and excessive
4468// cache-coherency traffic.
4469
4470
4471typedef volatile int SpinLockT;
4472
4473void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4474  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4475    return;   // normal fast-path return
4476  }
4477
4478  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4479  TEVENT(SpinAcquire - ctx);
4480  int ctr = 0;
4481  int Yields = 0;
4482  for (;;) {
4483    while (*adr != 0) {
4484      ++ctr;
4485      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4486        if (Yields > 5) {
4487          os::naked_short_sleep(1);
4488        } else {
4489          os::naked_yield();
4490          ++Yields;
4491        }
4492      } else {
4493        SpinPause();
4494      }
4495    }
4496    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4497  }
4498}
4499
4500void Thread::SpinRelease(volatile int * adr) {
4501  assert(*adr != 0, "invariant");
4502  OrderAccess::fence();      // guarantee at least release consistency.
4503  // Roach-motel semantics.
4504  // It's safe if subsequent LDs and STs float "up" into the critical section,
4505  // but prior LDs and STs within the critical section can't be allowed
4506  // to reorder or float past the ST that releases the lock.
4507  // Loads and stores in the critical section - which appear in program
4508  // order before the store that releases the lock - must also appear
4509  // before the store that releases the lock in memory visibility order.
4510  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4511  // the ST of 0 into the lock-word which releases the lock, so fence
4512  // more than covers this on all platforms.
4513  *adr = 0;
4514}
4515
4516// muxAcquire and muxRelease:
4517//
4518// *  muxAcquire and muxRelease support a single-word lock-word construct.
4519//    The LSB of the word is set IFF the lock is held.
4520//    The remainder of the word points to the head of a singly-linked list
4521//    of threads blocked on the lock.
4522//
4523// *  The current implementation of muxAcquire-muxRelease uses its own
4524//    dedicated Thread._MuxEvent instance.  If we're interested in
4525//    minimizing the peak number of extant ParkEvent instances then
4526//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4527//    as certain invariants were satisfied.  Specifically, care would need
4528//    to be taken with regards to consuming unpark() "permits".
4529//    A safe rule of thumb is that a thread would never call muxAcquire()
4530//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4531//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4532//    consume an unpark() permit intended for monitorenter, for instance.
4533//    One way around this would be to widen the restricted-range semaphore
4534//    implemented in park().  Another alternative would be to provide
4535//    multiple instances of the PlatformEvent() for each thread.  One
4536//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4537//
4538// *  Usage:
4539//    -- Only as leaf locks
4540//    -- for short-term locking only as muxAcquire does not perform
4541//       thread state transitions.
4542//
4543// Alternatives:
4544// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4545//    but with parking or spin-then-park instead of pure spinning.
4546// *  Use Taura-Oyama-Yonenzawa locks.
4547// *  It's possible to construct a 1-0 lock if we encode the lockword as
4548//    (List,LockByte).  Acquire will CAS the full lockword while Release
4549//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4550//    acquiring threads use timers (ParkTimed) to detect and recover from
4551//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4552//    boundaries by using placement-new.
4553// *  Augment MCS with advisory back-link fields maintained with CAS().
4554//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4555//    The validity of the backlinks must be ratified before we trust the value.
4556//    If the backlinks are invalid the exiting thread must back-track through the
4557//    the forward links, which are always trustworthy.
4558// *  Add a successor indication.  The LockWord is currently encoded as
4559//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4560//    to provide the usual futile-wakeup optimization.
4561//    See RTStt for details.
4562// *  Consider schedctl.sc_nopreempt to cover the critical section.
4563//
4564
4565
4566typedef volatile intptr_t MutexT;      // Mux Lock-word
4567enum MuxBits { LOCKBIT = 1 };
4568
4569void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4570  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4571  if (w == 0) return;
4572  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4573    return;
4574  }
4575
4576  TEVENT(muxAcquire - Contention);
4577  ParkEvent * const Self = Thread::current()->_MuxEvent;
4578  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4579  for (;;) {
4580    int its = (os::is_MP() ? 100 : 0) + 1;
4581
4582    // Optional spin phase: spin-then-park strategy
4583    while (--its >= 0) {
4584      w = *Lock;
4585      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4586        return;
4587      }
4588    }
4589
4590    Self->reset();
4591    Self->OnList = intptr_t(Lock);
4592    // The following fence() isn't _strictly necessary as the subsequent
4593    // CAS() both serializes execution and ratifies the fetched *Lock value.
4594    OrderAccess::fence();
4595    for (;;) {
4596      w = *Lock;
4597      if ((w & LOCKBIT) == 0) {
4598        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4599          Self->OnList = 0;   // hygiene - allows stronger asserts
4600          return;
4601        }
4602        continue;      // Interference -- *Lock changed -- Just retry
4603      }
4604      assert(w & LOCKBIT, "invariant");
4605      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4606      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4607    }
4608
4609    while (Self->OnList != 0) {
4610      Self->park();
4611    }
4612  }
4613}
4614
4615void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4616  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4617  if (w == 0) return;
4618  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4619    return;
4620  }
4621
4622  TEVENT(muxAcquire - Contention);
4623  ParkEvent * ReleaseAfter = NULL;
4624  if (ev == NULL) {
4625    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4626  }
4627  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4628  for (;;) {
4629    guarantee(ev->OnList == 0, "invariant");
4630    int its = (os::is_MP() ? 100 : 0) + 1;
4631
4632    // Optional spin phase: spin-then-park strategy
4633    while (--its >= 0) {
4634      w = *Lock;
4635      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4636        if (ReleaseAfter != NULL) {
4637          ParkEvent::Release(ReleaseAfter);
4638        }
4639        return;
4640      }
4641    }
4642
4643    ev->reset();
4644    ev->OnList = intptr_t(Lock);
4645    // The following fence() isn't _strictly necessary as the subsequent
4646    // CAS() both serializes execution and ratifies the fetched *Lock value.
4647    OrderAccess::fence();
4648    for (;;) {
4649      w = *Lock;
4650      if ((w & LOCKBIT) == 0) {
4651        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4652          ev->OnList = 0;
4653          // We call ::Release while holding the outer lock, thus
4654          // artificially lengthening the critical section.
4655          // Consider deferring the ::Release() until the subsequent unlock(),
4656          // after we've dropped the outer lock.
4657          if (ReleaseAfter != NULL) {
4658            ParkEvent::Release(ReleaseAfter);
4659          }
4660          return;
4661        }
4662        continue;      // Interference -- *Lock changed -- Just retry
4663      }
4664      assert(w & LOCKBIT, "invariant");
4665      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4666      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4667    }
4668
4669    while (ev->OnList != 0) {
4670      ev->park();
4671    }
4672  }
4673}
4674
4675// Release() must extract a successor from the list and then wake that thread.
4676// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4677// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4678// Release() would :
4679// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4680// (B) Extract a successor from the private list "in-hand"
4681// (C) attempt to CAS() the residual back into *Lock over null.
4682//     If there were any newly arrived threads and the CAS() would fail.
4683//     In that case Release() would detach the RATs, re-merge the list in-hand
4684//     with the RATs and repeat as needed.  Alternately, Release() might
4685//     detach and extract a successor, but then pass the residual list to the wakee.
4686//     The wakee would be responsible for reattaching and remerging before it
4687//     competed for the lock.
4688//
4689// Both "pop" and DMR are immune from ABA corruption -- there can be
4690// multiple concurrent pushers, but only one popper or detacher.
4691// This implementation pops from the head of the list.  This is unfair,
4692// but tends to provide excellent throughput as hot threads remain hot.
4693// (We wake recently run threads first).
4694//
4695// All paths through muxRelease() will execute a CAS.
4696// Release consistency -- We depend on the CAS in muxRelease() to provide full
4697// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4698// executed within the critical section are complete and globally visible before the
4699// store (CAS) to the lock-word that releases the lock becomes globally visible.
4700void Thread::muxRelease(volatile intptr_t * Lock)  {
4701  for (;;) {
4702    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4703    assert(w & LOCKBIT, "invariant");
4704    if (w == LOCKBIT) return;
4705    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4706    assert(List != NULL, "invariant");
4707    assert(List->OnList == intptr_t(Lock), "invariant");
4708    ParkEvent * const nxt = List->ListNext;
4709    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4710
4711    // The following CAS() releases the lock and pops the head element.
4712    // The CAS() also ratifies the previously fetched lock-word value.
4713    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4714      continue;
4715    }
4716    List->OnList = 0;
4717    OrderAccess::fence();
4718    List->unpark();
4719    return;
4720  }
4721}
4722
4723
4724void Threads::verify() {
4725  ALL_JAVA_THREADS(p) {
4726    p->verify();
4727  }
4728  VMThread* thread = VMThread::vm_thread();
4729  if (thread != NULL) thread->verify();
4730}
4731