thread.cpp revision 9801:80f8be586fae
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/codeCacheExtensions.hpp"
32#include "code/scopeDesc.hpp"
33#include "compiler/compileBroker.hpp"
34#include "gc/shared/gcId.hpp"
35#include "gc/shared/gcLocker.inline.hpp"
36#include "gc/shared/workgroup.hpp"
37#include "interpreter/interpreter.hpp"
38#include "interpreter/linkResolver.hpp"
39#include "interpreter/oopMapCache.hpp"
40#include "jvmtifiles/jvmtiEnv.hpp"
41#include "logging/logConfiguration.hpp"
42#include "memory/metaspaceShared.hpp"
43#include "memory/oopFactory.hpp"
44#include "memory/universe.inline.hpp"
45#include "oops/instanceKlass.hpp"
46#include "oops/objArrayOop.hpp"
47#include "oops/oop.inline.hpp"
48#include "oops/symbol.hpp"
49#include "oops/verifyOopClosure.hpp"
50#include "prims/jvm_misc.hpp"
51#include "prims/jvmtiExport.hpp"
52#include "prims/jvmtiThreadState.hpp"
53#include "prims/privilegedStack.hpp"
54#include "runtime/arguments.hpp"
55#include "runtime/atomic.inline.hpp"
56#include "runtime/biasedLocking.hpp"
57#include "runtime/commandLineFlagConstraintList.hpp"
58#include "runtime/commandLineFlagRangeList.hpp"
59#include "runtime/deoptimization.hpp"
60#include "runtime/fprofiler.hpp"
61#include "runtime/frame.inline.hpp"
62#include "runtime/globals.hpp"
63#include "runtime/init.hpp"
64#include "runtime/interfaceSupport.hpp"
65#include "runtime/java.hpp"
66#include "runtime/javaCalls.hpp"
67#include "runtime/jniPeriodicChecker.hpp"
68#include "runtime/memprofiler.hpp"
69#include "runtime/mutexLocker.hpp"
70#include "runtime/objectMonitor.hpp"
71#include "runtime/orderAccess.inline.hpp"
72#include "runtime/osThread.hpp"
73#include "runtime/safepoint.hpp"
74#include "runtime/sharedRuntime.hpp"
75#include "runtime/statSampler.hpp"
76#include "runtime/stubRoutines.hpp"
77#include "runtime/sweeper.hpp"
78#include "runtime/task.hpp"
79#include "runtime/thread.inline.hpp"
80#include "runtime/threadCritical.hpp"
81#include "runtime/vframe.hpp"
82#include "runtime/vframeArray.hpp"
83#include "runtime/vframe_hp.hpp"
84#include "runtime/vmThread.hpp"
85#include "runtime/vm_operations.hpp"
86#include "runtime/vm_version.hpp"
87#include "services/attachListener.hpp"
88#include "services/management.hpp"
89#include "services/memTracker.hpp"
90#include "services/threadService.hpp"
91#include "trace/traceMacros.hpp"
92#include "trace/tracing.hpp"
93#include "utilities/defaultStream.hpp"
94#include "utilities/dtrace.hpp"
95#include "utilities/events.hpp"
96#include "utilities/macros.hpp"
97#include "utilities/preserveException.hpp"
98#if INCLUDE_ALL_GCS
99#include "gc/cms/concurrentMarkSweepThread.hpp"
100#include "gc/g1/concurrentMarkThread.inline.hpp"
101#include "gc/parallel/pcTasks.hpp"
102#endif // INCLUDE_ALL_GCS
103#if INCLUDE_JVMCI
104#include "jvmci/jvmciCompiler.hpp"
105#include "jvmci/jvmciRuntime.hpp"
106#endif
107#ifdef COMPILER1
108#include "c1/c1_Compiler.hpp"
109#endif
110#ifdef COMPILER2
111#include "opto/c2compiler.hpp"
112#include "opto/idealGraphPrinter.hpp"
113#endif
114#if INCLUDE_RTM_OPT
115#include "runtime/rtmLocking.hpp"
116#endif
117
118#ifdef DTRACE_ENABLED
119
120// Only bother with this argument setup if dtrace is available
121
122  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
123  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
124
125  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
126    {                                                                      \
127      ResourceMark rm(this);                                               \
128      int len = 0;                                                         \
129      const char* name = (javathread)->get_thread_name();                  \
130      len = strlen(name);                                                  \
131      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
132        (char *) name, len,                                                \
133        java_lang_Thread::thread_id((javathread)->threadObj()),            \
134        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
135        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
136    }
137
138#else //  ndef DTRACE_ENABLED
139
140  #define DTRACE_THREAD_PROBE(probe, javathread)
141
142#endif // ndef DTRACE_ENABLED
143
144#ifndef USE_LIBRARY_BASED_TLS_ONLY
145// Current thread is maintained as a thread-local variable
146THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
147#endif
148
149// Class hierarchy
150// - Thread
151//   - VMThread
152//   - WatcherThread
153//   - ConcurrentMarkSweepThread
154//   - JavaThread
155//     - CompilerThread
156
157// ======= Thread ========
158// Support for forcing alignment of thread objects for biased locking
159void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
160  if (UseBiasedLocking) {
161    const int alignment = markOopDesc::biased_lock_alignment;
162    size_t aligned_size = size + (alignment - sizeof(intptr_t));
163    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
164                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
165                                                         AllocFailStrategy::RETURN_NULL);
166    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
167    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
168           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
169           "JavaThread alignment code overflowed allocated storage");
170    if (TraceBiasedLocking) {
171      if (aligned_addr != real_malloc_addr) {
172        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
173                      p2i(real_malloc_addr), p2i(aligned_addr));
174      }
175    }
176    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
177    return aligned_addr;
178  } else {
179    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
180                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
181  }
182}
183
184void Thread::operator delete(void* p) {
185  if (UseBiasedLocking) {
186    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
187    FreeHeap(real_malloc_addr);
188  } else {
189    FreeHeap(p);
190  }
191}
192
193
194// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
195// JavaThread
196
197
198Thread::Thread() {
199  // stack and get_thread
200  set_stack_base(NULL);
201  set_stack_size(0);
202  set_self_raw_id(0);
203  set_lgrp_id(-1);
204  DEBUG_ONLY(clear_suspendible_thread();)
205
206  // allocated data structures
207  set_osthread(NULL);
208  set_resource_area(new (mtThread)ResourceArea());
209  DEBUG_ONLY(_current_resource_mark = NULL;)
210  set_handle_area(new (mtThread) HandleArea(NULL));
211  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
212  set_active_handles(NULL);
213  set_free_handle_block(NULL);
214  set_last_handle_mark(NULL);
215
216  // This initial value ==> never claimed.
217  _oops_do_parity = 0;
218
219  // the handle mark links itself to last_handle_mark
220  new HandleMark(this);
221
222  // plain initialization
223  debug_only(_owned_locks = NULL;)
224  debug_only(_allow_allocation_count = 0;)
225  NOT_PRODUCT(_allow_safepoint_count = 0;)
226  NOT_PRODUCT(_skip_gcalot = false;)
227  _jvmti_env_iteration_count = 0;
228  set_allocated_bytes(0);
229  _vm_operation_started_count = 0;
230  _vm_operation_completed_count = 0;
231  _current_pending_monitor = NULL;
232  _current_pending_monitor_is_from_java = true;
233  _current_waiting_monitor = NULL;
234  _num_nested_signal = 0;
235  omFreeList = NULL;
236  omFreeCount = 0;
237  omFreeProvision = 32;
238  omInUseList = NULL;
239  omInUseCount = 0;
240
241#ifdef ASSERT
242  _visited_for_critical_count = false;
243#endif
244
245  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
246                         Monitor::_safepoint_check_sometimes);
247  _suspend_flags = 0;
248
249  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
250  _hashStateX = os::random();
251  _hashStateY = 842502087;
252  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
253  _hashStateW = 273326509;
254
255  _OnTrap   = 0;
256  _schedctl = NULL;
257  _Stalled  = 0;
258  _TypeTag  = 0x2BAD;
259
260  // Many of the following fields are effectively final - immutable
261  // Note that nascent threads can't use the Native Monitor-Mutex
262  // construct until the _MutexEvent is initialized ...
263  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
264  // we might instead use a stack of ParkEvents that we could provision on-demand.
265  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
266  // and ::Release()
267  _ParkEvent   = ParkEvent::Allocate(this);
268  _SleepEvent  = ParkEvent::Allocate(this);
269  _MutexEvent  = ParkEvent::Allocate(this);
270  _MuxEvent    = ParkEvent::Allocate(this);
271
272#ifdef CHECK_UNHANDLED_OOPS
273  if (CheckUnhandledOops) {
274    _unhandled_oops = new UnhandledOops(this);
275  }
276#endif // CHECK_UNHANDLED_OOPS
277#ifdef ASSERT
278  if (UseBiasedLocking) {
279    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
280    assert(this == _real_malloc_address ||
281           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
282           "bug in forced alignment of thread objects");
283  }
284#endif // ASSERT
285}
286
287void Thread::initialize_thread_current() {
288#ifndef USE_LIBRARY_BASED_TLS_ONLY
289  assert(_thr_current == NULL, "Thread::current already initialized");
290  _thr_current = this;
291#endif
292  assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
293  ThreadLocalStorage::set_thread(this);
294  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
295}
296
297void Thread::clear_thread_current() {
298  assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
299#ifndef USE_LIBRARY_BASED_TLS_ONLY
300  _thr_current = NULL;
301#endif
302  ThreadLocalStorage::set_thread(NULL);
303}
304
305void Thread::record_stack_base_and_size() {
306  set_stack_base(os::current_stack_base());
307  set_stack_size(os::current_stack_size());
308  if (is_Java_thread()) {
309    ((JavaThread*) this)->set_stack_overflow_limit();
310    ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
311  }
312  // CR 7190089: on Solaris, primordial thread's stack is adjusted
313  // in initialize_thread(). Without the adjustment, stack size is
314  // incorrect if stack is set to unlimited (ulimit -s unlimited).
315  // So far, only Solaris has real implementation of initialize_thread().
316  //
317  // set up any platform-specific state.
318  os::initialize_thread(this);
319
320#if INCLUDE_NMT
321  // record thread's native stack, stack grows downward
322  address stack_low_addr = stack_base() - stack_size();
323  MemTracker::record_thread_stack(stack_low_addr, stack_size());
324#endif // INCLUDE_NMT
325}
326
327
328Thread::~Thread() {
329  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
330  ObjectSynchronizer::omFlush(this);
331
332  EVENT_THREAD_DESTRUCT(this);
333
334  // stack_base can be NULL if the thread is never started or exited before
335  // record_stack_base_and_size called. Although, we would like to ensure
336  // that all started threads do call record_stack_base_and_size(), there is
337  // not proper way to enforce that.
338#if INCLUDE_NMT
339  if (_stack_base != NULL) {
340    address low_stack_addr = stack_base() - stack_size();
341    MemTracker::release_thread_stack(low_stack_addr, stack_size());
342#ifdef ASSERT
343    set_stack_base(NULL);
344#endif
345  }
346#endif // INCLUDE_NMT
347
348  // deallocate data structures
349  delete resource_area();
350  // since the handle marks are using the handle area, we have to deallocated the root
351  // handle mark before deallocating the thread's handle area,
352  assert(last_handle_mark() != NULL, "check we have an element");
353  delete last_handle_mark();
354  assert(last_handle_mark() == NULL, "check we have reached the end");
355
356  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
357  // We NULL out the fields for good hygiene.
358  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
359  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
360  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
361  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
362
363  delete handle_area();
364  delete metadata_handles();
365
366  // osthread() can be NULL, if creation of thread failed.
367  if (osthread() != NULL) os::free_thread(osthread());
368
369  delete _SR_lock;
370
371  // clear Thread::current if thread is deleting itself.
372  // Needed to ensure JNI correctly detects non-attached threads.
373  if (this == Thread::current()) {
374    clear_thread_current();
375  }
376
377  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
378}
379
380// NOTE: dummy function for assertion purpose.
381void Thread::run() {
382  ShouldNotReachHere();
383}
384
385#ifdef ASSERT
386// Private method to check for dangling thread pointer
387void check_for_dangling_thread_pointer(Thread *thread) {
388  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
389         "possibility of dangling Thread pointer");
390}
391#endif
392
393ThreadPriority Thread::get_priority(const Thread* const thread) {
394  ThreadPriority priority;
395  // Can return an error!
396  (void)os::get_priority(thread, priority);
397  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
398  return priority;
399}
400
401void Thread::set_priority(Thread* thread, ThreadPriority priority) {
402  debug_only(check_for_dangling_thread_pointer(thread);)
403  // Can return an error!
404  (void)os::set_priority(thread, priority);
405}
406
407
408void Thread::start(Thread* thread) {
409  // Start is different from resume in that its safety is guaranteed by context or
410  // being called from a Java method synchronized on the Thread object.
411  if (!DisableStartThread) {
412    if (thread->is_Java_thread()) {
413      // Initialize the thread state to RUNNABLE before starting this thread.
414      // Can not set it after the thread started because we do not know the
415      // exact thread state at that time. It could be in MONITOR_WAIT or
416      // in SLEEPING or some other state.
417      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
418                                          java_lang_Thread::RUNNABLE);
419    }
420    os::start_thread(thread);
421  }
422}
423
424// Enqueue a VM_Operation to do the job for us - sometime later
425void Thread::send_async_exception(oop java_thread, oop java_throwable) {
426  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
427  VMThread::execute(vm_stop);
428}
429
430
431// Check if an external suspend request has completed (or has been
432// cancelled). Returns true if the thread is externally suspended and
433// false otherwise.
434//
435// The bits parameter returns information about the code path through
436// the routine. Useful for debugging:
437//
438// set in is_ext_suspend_completed():
439// 0x00000001 - routine was entered
440// 0x00000010 - routine return false at end
441// 0x00000100 - thread exited (return false)
442// 0x00000200 - suspend request cancelled (return false)
443// 0x00000400 - thread suspended (return true)
444// 0x00001000 - thread is in a suspend equivalent state (return true)
445// 0x00002000 - thread is native and walkable (return true)
446// 0x00004000 - thread is native_trans and walkable (needed retry)
447//
448// set in wait_for_ext_suspend_completion():
449// 0x00010000 - routine was entered
450// 0x00020000 - suspend request cancelled before loop (return false)
451// 0x00040000 - thread suspended before loop (return true)
452// 0x00080000 - suspend request cancelled in loop (return false)
453// 0x00100000 - thread suspended in loop (return true)
454// 0x00200000 - suspend not completed during retry loop (return false)
455
456// Helper class for tracing suspend wait debug bits.
457//
458// 0x00000100 indicates that the target thread exited before it could
459// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
460// 0x00080000 each indicate a cancelled suspend request so they don't
461// count as wait failures either.
462#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
463
464class TraceSuspendDebugBits : public StackObj {
465 private:
466  JavaThread * jt;
467  bool         is_wait;
468  bool         called_by_wait;  // meaningful when !is_wait
469  uint32_t *   bits;
470
471 public:
472  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
473                        uint32_t *_bits) {
474    jt             = _jt;
475    is_wait        = _is_wait;
476    called_by_wait = _called_by_wait;
477    bits           = _bits;
478  }
479
480  ~TraceSuspendDebugBits() {
481    if (!is_wait) {
482#if 1
483      // By default, don't trace bits for is_ext_suspend_completed() calls.
484      // That trace is very chatty.
485      return;
486#else
487      if (!called_by_wait) {
488        // If tracing for is_ext_suspend_completed() is enabled, then only
489        // trace calls to it from wait_for_ext_suspend_completion()
490        return;
491      }
492#endif
493    }
494
495    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
496      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
497        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
498        ResourceMark rm;
499
500        tty->print_cr(
501                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
502                      jt->get_thread_name(), *bits);
503
504        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
505      }
506    }
507  }
508};
509#undef DEBUG_FALSE_BITS
510
511
512bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
513                                          uint32_t *bits) {
514  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
515
516  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
517  bool do_trans_retry;           // flag to force the retry
518
519  *bits |= 0x00000001;
520
521  do {
522    do_trans_retry = false;
523
524    if (is_exiting()) {
525      // Thread is in the process of exiting. This is always checked
526      // first to reduce the risk of dereferencing a freed JavaThread.
527      *bits |= 0x00000100;
528      return false;
529    }
530
531    if (!is_external_suspend()) {
532      // Suspend request is cancelled. This is always checked before
533      // is_ext_suspended() to reduce the risk of a rogue resume
534      // confusing the thread that made the suspend request.
535      *bits |= 0x00000200;
536      return false;
537    }
538
539    if (is_ext_suspended()) {
540      // thread is suspended
541      *bits |= 0x00000400;
542      return true;
543    }
544
545    // Now that we no longer do hard suspends of threads running
546    // native code, the target thread can be changing thread state
547    // while we are in this routine:
548    //
549    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
550    //
551    // We save a copy of the thread state as observed at this moment
552    // and make our decision about suspend completeness based on the
553    // copy. This closes the race where the thread state is seen as
554    // _thread_in_native_trans in the if-thread_blocked check, but is
555    // seen as _thread_blocked in if-thread_in_native_trans check.
556    JavaThreadState save_state = thread_state();
557
558    if (save_state == _thread_blocked && is_suspend_equivalent()) {
559      // If the thread's state is _thread_blocked and this blocking
560      // condition is known to be equivalent to a suspend, then we can
561      // consider the thread to be externally suspended. This means that
562      // the code that sets _thread_blocked has been modified to do
563      // self-suspension if the blocking condition releases. We also
564      // used to check for CONDVAR_WAIT here, but that is now covered by
565      // the _thread_blocked with self-suspension check.
566      //
567      // Return true since we wouldn't be here unless there was still an
568      // external suspend request.
569      *bits |= 0x00001000;
570      return true;
571    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
572      // Threads running native code will self-suspend on native==>VM/Java
573      // transitions. If its stack is walkable (should always be the case
574      // unless this function is called before the actual java_suspend()
575      // call), then the wait is done.
576      *bits |= 0x00002000;
577      return true;
578    } else if (!called_by_wait && !did_trans_retry &&
579               save_state == _thread_in_native_trans &&
580               frame_anchor()->walkable()) {
581      // The thread is transitioning from thread_in_native to another
582      // thread state. check_safepoint_and_suspend_for_native_trans()
583      // will force the thread to self-suspend. If it hasn't gotten
584      // there yet we may have caught the thread in-between the native
585      // code check above and the self-suspend. Lucky us. If we were
586      // called by wait_for_ext_suspend_completion(), then it
587      // will be doing the retries so we don't have to.
588      //
589      // Since we use the saved thread state in the if-statement above,
590      // there is a chance that the thread has already transitioned to
591      // _thread_blocked by the time we get here. In that case, we will
592      // make a single unnecessary pass through the logic below. This
593      // doesn't hurt anything since we still do the trans retry.
594
595      *bits |= 0x00004000;
596
597      // Once the thread leaves thread_in_native_trans for another
598      // thread state, we break out of this retry loop. We shouldn't
599      // need this flag to prevent us from getting back here, but
600      // sometimes paranoia is good.
601      did_trans_retry = true;
602
603      // We wait for the thread to transition to a more usable state.
604      for (int i = 1; i <= SuspendRetryCount; i++) {
605        // We used to do an "os::yield_all(i)" call here with the intention
606        // that yielding would increase on each retry. However, the parameter
607        // is ignored on Linux which means the yield didn't scale up. Waiting
608        // on the SR_lock below provides a much more predictable scale up for
609        // the delay. It also provides a simple/direct point to check for any
610        // safepoint requests from the VMThread
611
612        // temporarily drops SR_lock while doing wait with safepoint check
613        // (if we're a JavaThread - the WatcherThread can also call this)
614        // and increase delay with each retry
615        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
616
617        // check the actual thread state instead of what we saved above
618        if (thread_state() != _thread_in_native_trans) {
619          // the thread has transitioned to another thread state so
620          // try all the checks (except this one) one more time.
621          do_trans_retry = true;
622          break;
623        }
624      } // end retry loop
625
626
627    }
628  } while (do_trans_retry);
629
630  *bits |= 0x00000010;
631  return false;
632}
633
634// Wait for an external suspend request to complete (or be cancelled).
635// Returns true if the thread is externally suspended and false otherwise.
636//
637bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
638                                                 uint32_t *bits) {
639  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
640                             false /* !called_by_wait */, bits);
641
642  // local flag copies to minimize SR_lock hold time
643  bool is_suspended;
644  bool pending;
645  uint32_t reset_bits;
646
647  // set a marker so is_ext_suspend_completed() knows we are the caller
648  *bits |= 0x00010000;
649
650  // We use reset_bits to reinitialize the bits value at the top of
651  // each retry loop. This allows the caller to make use of any
652  // unused bits for their own marking purposes.
653  reset_bits = *bits;
654
655  {
656    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
657    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
658                                            delay, bits);
659    pending = is_external_suspend();
660  }
661  // must release SR_lock to allow suspension to complete
662
663  if (!pending) {
664    // A cancelled suspend request is the only false return from
665    // is_ext_suspend_completed() that keeps us from entering the
666    // retry loop.
667    *bits |= 0x00020000;
668    return false;
669  }
670
671  if (is_suspended) {
672    *bits |= 0x00040000;
673    return true;
674  }
675
676  for (int i = 1; i <= retries; i++) {
677    *bits = reset_bits;  // reinit to only track last retry
678
679    // We used to do an "os::yield_all(i)" call here with the intention
680    // that yielding would increase on each retry. However, the parameter
681    // is ignored on Linux which means the yield didn't scale up. Waiting
682    // on the SR_lock below provides a much more predictable scale up for
683    // the delay. It also provides a simple/direct point to check for any
684    // safepoint requests from the VMThread
685
686    {
687      MutexLocker ml(SR_lock());
688      // wait with safepoint check (if we're a JavaThread - the WatcherThread
689      // can also call this)  and increase delay with each retry
690      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
691
692      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
693                                              delay, bits);
694
695      // It is possible for the external suspend request to be cancelled
696      // (by a resume) before the actual suspend operation is completed.
697      // Refresh our local copy to see if we still need to wait.
698      pending = is_external_suspend();
699    }
700
701    if (!pending) {
702      // A cancelled suspend request is the only false return from
703      // is_ext_suspend_completed() that keeps us from staying in the
704      // retry loop.
705      *bits |= 0x00080000;
706      return false;
707    }
708
709    if (is_suspended) {
710      *bits |= 0x00100000;
711      return true;
712    }
713  } // end retry loop
714
715  // thread did not suspend after all our retries
716  *bits |= 0x00200000;
717  return false;
718}
719
720#ifndef PRODUCT
721void JavaThread::record_jump(address target, address instr, const char* file,
722                             int line) {
723
724  // This should not need to be atomic as the only way for simultaneous
725  // updates is via interrupts. Even then this should be rare or non-existent
726  // and we don't care that much anyway.
727
728  int index = _jmp_ring_index;
729  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
730  _jmp_ring[index]._target = (intptr_t) target;
731  _jmp_ring[index]._instruction = (intptr_t) instr;
732  _jmp_ring[index]._file = file;
733  _jmp_ring[index]._line = line;
734}
735#endif // PRODUCT
736
737// Called by flat profiler
738// Callers have already called wait_for_ext_suspend_completion
739// The assertion for that is currently too complex to put here:
740bool JavaThread::profile_last_Java_frame(frame* _fr) {
741  bool gotframe = false;
742  // self suspension saves needed state.
743  if (has_last_Java_frame() && _anchor.walkable()) {
744    *_fr = pd_last_frame();
745    gotframe = true;
746  }
747  return gotframe;
748}
749
750void Thread::interrupt(Thread* thread) {
751  debug_only(check_for_dangling_thread_pointer(thread);)
752  os::interrupt(thread);
753}
754
755bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
756  debug_only(check_for_dangling_thread_pointer(thread);)
757  // Note:  If clear_interrupted==false, this simply fetches and
758  // returns the value of the field osthread()->interrupted().
759  return os::is_interrupted(thread, clear_interrupted);
760}
761
762
763// GC Support
764bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
765  jint thread_parity = _oops_do_parity;
766  if (thread_parity != strong_roots_parity) {
767    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
768    if (res == thread_parity) {
769      return true;
770    } else {
771      guarantee(res == strong_roots_parity, "Or else what?");
772      return false;
773    }
774  }
775  return false;
776}
777
778void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
779  active_handles()->oops_do(f);
780  // Do oop for ThreadShadow
781  f->do_oop((oop*)&_pending_exception);
782  handle_area()->oops_do(f);
783}
784
785void Thread::nmethods_do(CodeBlobClosure* cf) {
786  // no nmethods in a generic thread...
787}
788
789void Thread::metadata_handles_do(void f(Metadata*)) {
790  // Only walk the Handles in Thread.
791  if (metadata_handles() != NULL) {
792    for (int i = 0; i< metadata_handles()->length(); i++) {
793      f(metadata_handles()->at(i));
794    }
795  }
796}
797
798void Thread::print_on(outputStream* st) const {
799  // get_priority assumes osthread initialized
800  if (osthread() != NULL) {
801    int os_prio;
802    if (os::get_native_priority(this, &os_prio) == OS_OK) {
803      st->print("os_prio=%d ", os_prio);
804    }
805    st->print("tid=" INTPTR_FORMAT " ", p2i(this));
806    ext().print_on(st);
807    osthread()->print_on(st);
808  }
809  debug_only(if (WizardMode) print_owned_locks_on(st);)
810}
811
812// Thread::print_on_error() is called by fatal error handler. Don't use
813// any lock or allocate memory.
814void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
815  if (is_VM_thread())                 st->print("VMThread");
816  else if (is_Compiler_thread())      st->print("CompilerThread");
817  else if (is_Java_thread())          st->print("JavaThread");
818  else if (is_GC_task_thread())       st->print("GCTaskThread");
819  else if (is_Watcher_thread())       st->print("WatcherThread");
820  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
821  else                                st->print("Thread");
822
823  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
824            p2i(_stack_base - _stack_size), p2i(_stack_base));
825
826  if (osthread()) {
827    st->print(" [id=%d]", osthread()->thread_id());
828  }
829}
830
831#ifdef ASSERT
832void Thread::print_owned_locks_on(outputStream* st) const {
833  Monitor *cur = _owned_locks;
834  if (cur == NULL) {
835    st->print(" (no locks) ");
836  } else {
837    st->print_cr(" Locks owned:");
838    while (cur) {
839      cur->print_on(st);
840      cur = cur->next();
841    }
842  }
843}
844
845static int ref_use_count  = 0;
846
847bool Thread::owns_locks_but_compiled_lock() const {
848  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
849    if (cur != Compile_lock) return true;
850  }
851  return false;
852}
853
854
855#endif
856
857#ifndef PRODUCT
858
859// The flag: potential_vm_operation notifies if this particular safepoint state could potential
860// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
861// no threads which allow_vm_block's are held
862void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
863  // Check if current thread is allowed to block at a safepoint
864  if (!(_allow_safepoint_count == 0)) {
865    fatal("Possible safepoint reached by thread that does not allow it");
866  }
867  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
868    fatal("LEAF method calling lock?");
869  }
870
871#ifdef ASSERT
872  if (potential_vm_operation && is_Java_thread()
873      && !Universe::is_bootstrapping()) {
874    // Make sure we do not hold any locks that the VM thread also uses.
875    // This could potentially lead to deadlocks
876    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
877      // Threads_lock is special, since the safepoint synchronization will not start before this is
878      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
879      // since it is used to transfer control between JavaThreads and the VMThread
880      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
881      if ((cur->allow_vm_block() &&
882           cur != Threads_lock &&
883           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
884           cur != VMOperationRequest_lock &&
885           cur != VMOperationQueue_lock) ||
886           cur->rank() == Mutex::special) {
887        fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
888      }
889    }
890  }
891
892  if (GCALotAtAllSafepoints) {
893    // We could enter a safepoint here and thus have a gc
894    InterfaceSupport::check_gc_alot();
895  }
896#endif
897}
898#endif
899
900bool Thread::is_in_stack(address adr) const {
901  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
902  address end = os::current_stack_pointer();
903  // Allow non Java threads to call this without stack_base
904  if (_stack_base == NULL) return true;
905  if (stack_base() >= adr && adr >= end) return true;
906
907  return false;
908}
909
910
911bool Thread::is_in_usable_stack(address adr) const {
912  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackReservedPages + StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
913  size_t usable_stack_size = _stack_size - stack_guard_size;
914
915  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
916}
917
918
919// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
920// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
921// used for compilation in the future. If that change is made, the need for these methods
922// should be revisited, and they should be removed if possible.
923
924bool Thread::is_lock_owned(address adr) const {
925  return on_local_stack(adr);
926}
927
928bool Thread::set_as_starting_thread() {
929  // NOTE: this must be called inside the main thread.
930  return os::create_main_thread((JavaThread*)this);
931}
932
933static void initialize_class(Symbol* class_name, TRAPS) {
934  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
935  InstanceKlass::cast(klass)->initialize(CHECK);
936}
937
938
939// Creates the initial ThreadGroup
940static Handle create_initial_thread_group(TRAPS) {
941  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
942  instanceKlassHandle klass (THREAD, k);
943
944  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
945  {
946    JavaValue result(T_VOID);
947    JavaCalls::call_special(&result,
948                            system_instance,
949                            klass,
950                            vmSymbols::object_initializer_name(),
951                            vmSymbols::void_method_signature(),
952                            CHECK_NH);
953  }
954  Universe::set_system_thread_group(system_instance());
955
956  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
957  {
958    JavaValue result(T_VOID);
959    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
960    JavaCalls::call_special(&result,
961                            main_instance,
962                            klass,
963                            vmSymbols::object_initializer_name(),
964                            vmSymbols::threadgroup_string_void_signature(),
965                            system_instance,
966                            string,
967                            CHECK_NH);
968  }
969  return main_instance;
970}
971
972// Creates the initial Thread
973static oop create_initial_thread(Handle thread_group, JavaThread* thread,
974                                 TRAPS) {
975  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
976  instanceKlassHandle klass (THREAD, k);
977  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
978
979  java_lang_Thread::set_thread(thread_oop(), thread);
980  java_lang_Thread::set_priority(thread_oop(), NormPriority);
981  thread->set_threadObj(thread_oop());
982
983  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
984
985  JavaValue result(T_VOID);
986  JavaCalls::call_special(&result, thread_oop,
987                          klass,
988                          vmSymbols::object_initializer_name(),
989                          vmSymbols::threadgroup_string_void_signature(),
990                          thread_group,
991                          string,
992                          CHECK_NULL);
993  return thread_oop();
994}
995
996static void call_initializeSystemClass(TRAPS) {
997  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
998  instanceKlassHandle klass (THREAD, k);
999
1000  JavaValue result(T_VOID);
1001  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1002                         vmSymbols::void_method_signature(), CHECK);
1003}
1004
1005char java_runtime_name[128] = "";
1006char java_runtime_version[128] = "";
1007
1008// extract the JRE name from sun.misc.Version.java_runtime_name
1009static const char* get_java_runtime_name(TRAPS) {
1010  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1011                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1012  fieldDescriptor fd;
1013  bool found = k != NULL &&
1014               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1015                                                        vmSymbols::string_signature(), &fd);
1016  if (found) {
1017    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1018    if (name_oop == NULL) {
1019      return NULL;
1020    }
1021    const char* name = java_lang_String::as_utf8_string(name_oop,
1022                                                        java_runtime_name,
1023                                                        sizeof(java_runtime_name));
1024    return name;
1025  } else {
1026    return NULL;
1027  }
1028}
1029
1030// extract the JRE version from sun.misc.Version.java_runtime_version
1031static const char* get_java_runtime_version(TRAPS) {
1032  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1033                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1034  fieldDescriptor fd;
1035  bool found = k != NULL &&
1036               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1037                                                        vmSymbols::string_signature(), &fd);
1038  if (found) {
1039    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1040    if (name_oop == NULL) {
1041      return NULL;
1042    }
1043    const char* name = java_lang_String::as_utf8_string(name_oop,
1044                                                        java_runtime_version,
1045                                                        sizeof(java_runtime_version));
1046    return name;
1047  } else {
1048    return NULL;
1049  }
1050}
1051
1052// General purpose hook into Java code, run once when the VM is initialized.
1053// The Java library method itself may be changed independently from the VM.
1054static void call_postVMInitHook(TRAPS) {
1055  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1056  instanceKlassHandle klass (THREAD, k);
1057  if (klass.not_null()) {
1058    JavaValue result(T_VOID);
1059    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1060                           vmSymbols::void_method_signature(),
1061                           CHECK);
1062  }
1063}
1064
1065static void reset_vm_info_property(TRAPS) {
1066  // the vm info string
1067  ResourceMark rm(THREAD);
1068  const char *vm_info = VM_Version::vm_info_string();
1069
1070  // java.lang.System class
1071  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1072  instanceKlassHandle klass (THREAD, k);
1073
1074  // setProperty arguments
1075  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1076  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1077
1078  // return value
1079  JavaValue r(T_OBJECT);
1080
1081  // public static String setProperty(String key, String value);
1082  JavaCalls::call_static(&r,
1083                         klass,
1084                         vmSymbols::setProperty_name(),
1085                         vmSymbols::string_string_string_signature(),
1086                         key_str,
1087                         value_str,
1088                         CHECK);
1089}
1090
1091
1092void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1093                                    bool daemon, TRAPS) {
1094  assert(thread_group.not_null(), "thread group should be specified");
1095  assert(threadObj() == NULL, "should only create Java thread object once");
1096
1097  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1098  instanceKlassHandle klass (THREAD, k);
1099  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1100
1101  java_lang_Thread::set_thread(thread_oop(), this);
1102  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1103  set_threadObj(thread_oop());
1104
1105  JavaValue result(T_VOID);
1106  if (thread_name != NULL) {
1107    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1108    // Thread gets assigned specified name and null target
1109    JavaCalls::call_special(&result,
1110                            thread_oop,
1111                            klass,
1112                            vmSymbols::object_initializer_name(),
1113                            vmSymbols::threadgroup_string_void_signature(),
1114                            thread_group, // Argument 1
1115                            name,         // Argument 2
1116                            THREAD);
1117  } else {
1118    // Thread gets assigned name "Thread-nnn" and null target
1119    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1120    JavaCalls::call_special(&result,
1121                            thread_oop,
1122                            klass,
1123                            vmSymbols::object_initializer_name(),
1124                            vmSymbols::threadgroup_runnable_void_signature(),
1125                            thread_group, // Argument 1
1126                            Handle(),     // Argument 2
1127                            THREAD);
1128  }
1129
1130
1131  if (daemon) {
1132    java_lang_Thread::set_daemon(thread_oop());
1133  }
1134
1135  if (HAS_PENDING_EXCEPTION) {
1136    return;
1137  }
1138
1139  KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1140  Handle threadObj(THREAD, this->threadObj());
1141
1142  JavaCalls::call_special(&result,
1143                          thread_group,
1144                          group,
1145                          vmSymbols::add_method_name(),
1146                          vmSymbols::thread_void_signature(),
1147                          threadObj,          // Arg 1
1148                          THREAD);
1149}
1150
1151// NamedThread --  non-JavaThread subclasses with multiple
1152// uniquely named instances should derive from this.
1153NamedThread::NamedThread() : Thread() {
1154  _name = NULL;
1155  _processed_thread = NULL;
1156  _gc_id = GCId::undefined();
1157}
1158
1159NamedThread::~NamedThread() {
1160  if (_name != NULL) {
1161    FREE_C_HEAP_ARRAY(char, _name);
1162    _name = NULL;
1163  }
1164}
1165
1166void NamedThread::set_name(const char* format, ...) {
1167  guarantee(_name == NULL, "Only get to set name once.");
1168  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1169  guarantee(_name != NULL, "alloc failure");
1170  va_list ap;
1171  va_start(ap, format);
1172  jio_vsnprintf(_name, max_name_len, format, ap);
1173  va_end(ap);
1174}
1175
1176void NamedThread::initialize_named_thread() {
1177  set_native_thread_name(name());
1178}
1179
1180void NamedThread::print_on(outputStream* st) const {
1181  st->print("\"%s\" ", name());
1182  Thread::print_on(st);
1183  st->cr();
1184}
1185
1186
1187// ======= WatcherThread ========
1188
1189// The watcher thread exists to simulate timer interrupts.  It should
1190// be replaced by an abstraction over whatever native support for
1191// timer interrupts exists on the platform.
1192
1193WatcherThread* WatcherThread::_watcher_thread   = NULL;
1194bool WatcherThread::_startable = false;
1195volatile bool  WatcherThread::_should_terminate = false;
1196
1197WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1198  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1199  if (os::create_thread(this, os::watcher_thread)) {
1200    _watcher_thread = this;
1201
1202    // Set the watcher thread to the highest OS priority which should not be
1203    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1204    // is created. The only normal thread using this priority is the reference
1205    // handler thread, which runs for very short intervals only.
1206    // If the VMThread's priority is not lower than the WatcherThread profiling
1207    // will be inaccurate.
1208    os::set_priority(this, MaxPriority);
1209    if (!DisableStartThread) {
1210      os::start_thread(this);
1211    }
1212  }
1213}
1214
1215int WatcherThread::sleep() const {
1216  // The WatcherThread does not participate in the safepoint protocol
1217  // for the PeriodicTask_lock because it is not a JavaThread.
1218  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1219
1220  if (_should_terminate) {
1221    // check for termination before we do any housekeeping or wait
1222    return 0;  // we did not sleep.
1223  }
1224
1225  // remaining will be zero if there are no tasks,
1226  // causing the WatcherThread to sleep until a task is
1227  // enrolled
1228  int remaining = PeriodicTask::time_to_wait();
1229  int time_slept = 0;
1230
1231  // we expect this to timeout - we only ever get unparked when
1232  // we should terminate or when a new task has been enrolled
1233  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1234
1235  jlong time_before_loop = os::javaTimeNanos();
1236
1237  while (true) {
1238    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1239                                            remaining);
1240    jlong now = os::javaTimeNanos();
1241
1242    if (remaining == 0) {
1243      // if we didn't have any tasks we could have waited for a long time
1244      // consider the time_slept zero and reset time_before_loop
1245      time_slept = 0;
1246      time_before_loop = now;
1247    } else {
1248      // need to recalculate since we might have new tasks in _tasks
1249      time_slept = (int) ((now - time_before_loop) / 1000000);
1250    }
1251
1252    // Change to task list or spurious wakeup of some kind
1253    if (timedout || _should_terminate) {
1254      break;
1255    }
1256
1257    remaining = PeriodicTask::time_to_wait();
1258    if (remaining == 0) {
1259      // Last task was just disenrolled so loop around and wait until
1260      // another task gets enrolled
1261      continue;
1262    }
1263
1264    remaining -= time_slept;
1265    if (remaining <= 0) {
1266      break;
1267    }
1268  }
1269
1270  return time_slept;
1271}
1272
1273void WatcherThread::run() {
1274  assert(this == watcher_thread(), "just checking");
1275
1276  this->record_stack_base_and_size();
1277  this->set_native_thread_name(this->name());
1278  this->set_active_handles(JNIHandleBlock::allocate_block());
1279  while (true) {
1280    assert(watcher_thread() == Thread::current(), "thread consistency check");
1281    assert(watcher_thread() == this, "thread consistency check");
1282
1283    // Calculate how long it'll be until the next PeriodicTask work
1284    // should be done, and sleep that amount of time.
1285    int time_waited = sleep();
1286
1287    if (is_error_reported()) {
1288      // A fatal error has happened, the error handler(VMError::report_and_die)
1289      // should abort JVM after creating an error log file. However in some
1290      // rare cases, the error handler itself might deadlock. Here we try to
1291      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1292      //
1293      // This code is in WatcherThread because WatcherThread wakes up
1294      // periodically so the fatal error handler doesn't need to do anything;
1295      // also because the WatcherThread is less likely to crash than other
1296      // threads.
1297
1298      for (;;) {
1299        if (!ShowMessageBoxOnError
1300            && (OnError == NULL || OnError[0] == '\0')
1301            && Arguments::abort_hook() == NULL) {
1302          os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1303          fdStream err(defaultStream::output_fd());
1304          err.print_raw_cr("# [ timer expired, abort... ]");
1305          // skip atexit/vm_exit/vm_abort hooks
1306          os::die();
1307        }
1308
1309        // Wake up 5 seconds later, the fatal handler may reset OnError or
1310        // ShowMessageBoxOnError when it is ready to abort.
1311        os::sleep(this, 5 * 1000, false);
1312      }
1313    }
1314
1315    if (_should_terminate) {
1316      // check for termination before posting the next tick
1317      break;
1318    }
1319
1320    PeriodicTask::real_time_tick(time_waited);
1321  }
1322
1323  // Signal that it is terminated
1324  {
1325    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1326    _watcher_thread = NULL;
1327    Terminator_lock->notify();
1328  }
1329}
1330
1331void WatcherThread::start() {
1332  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1333
1334  if (watcher_thread() == NULL && _startable) {
1335    _should_terminate = false;
1336    // Create the single instance of WatcherThread
1337    new WatcherThread();
1338  }
1339}
1340
1341void WatcherThread::make_startable() {
1342  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1343  _startable = true;
1344}
1345
1346void WatcherThread::stop() {
1347  {
1348    // Follow normal safepoint aware lock enter protocol since the
1349    // WatcherThread is stopped by another JavaThread.
1350    MutexLocker ml(PeriodicTask_lock);
1351    _should_terminate = true;
1352
1353    WatcherThread* watcher = watcher_thread();
1354    if (watcher != NULL) {
1355      // unpark the WatcherThread so it can see that it should terminate
1356      watcher->unpark();
1357    }
1358  }
1359
1360  MutexLocker mu(Terminator_lock);
1361
1362  while (watcher_thread() != NULL) {
1363    // This wait should make safepoint checks, wait without a timeout,
1364    // and wait as a suspend-equivalent condition.
1365    //
1366    // Note: If the FlatProfiler is running, then this thread is waiting
1367    // for the WatcherThread to terminate and the WatcherThread, via the
1368    // FlatProfiler task, is waiting for the external suspend request on
1369    // this thread to complete. wait_for_ext_suspend_completion() will
1370    // eventually timeout, but that takes time. Making this wait a
1371    // suspend-equivalent condition solves that timeout problem.
1372    //
1373    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1374                          Mutex::_as_suspend_equivalent_flag);
1375  }
1376}
1377
1378void WatcherThread::unpark() {
1379  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1380  PeriodicTask_lock->notify();
1381}
1382
1383void WatcherThread::print_on(outputStream* st) const {
1384  st->print("\"%s\" ", name());
1385  Thread::print_on(st);
1386  st->cr();
1387}
1388
1389// ======= JavaThread ========
1390
1391#if INCLUDE_JVMCI
1392
1393jlong* JavaThread::_jvmci_old_thread_counters;
1394
1395bool jvmci_counters_include(JavaThread* thread) {
1396  oop threadObj = thread->threadObj();
1397  return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1398}
1399
1400void JavaThread::collect_counters(typeArrayOop array) {
1401  if (JVMCICounterSize > 0) {
1402    MutexLocker tl(Threads_lock);
1403    for (int i = 0; i < array->length(); i++) {
1404      array->long_at_put(i, _jvmci_old_thread_counters[i]);
1405    }
1406    for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1407      if (jvmci_counters_include(tp)) {
1408        for (int i = 0; i < array->length(); i++) {
1409          array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1410        }
1411      }
1412    }
1413  }
1414}
1415
1416#endif // INCLUDE_JVMCI
1417
1418// A JavaThread is a normal Java thread
1419
1420void JavaThread::initialize() {
1421  // Initialize fields
1422
1423  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1424  set_claimed_par_id(UINT_MAX);
1425
1426  set_saved_exception_pc(NULL);
1427  set_threadObj(NULL);
1428  _anchor.clear();
1429  set_entry_point(NULL);
1430  set_jni_functions(jni_functions());
1431  set_callee_target(NULL);
1432  set_vm_result(NULL);
1433  set_vm_result_2(NULL);
1434  set_vframe_array_head(NULL);
1435  set_vframe_array_last(NULL);
1436  set_deferred_locals(NULL);
1437  set_deopt_mark(NULL);
1438  set_deopt_nmethod(NULL);
1439  clear_must_deopt_id();
1440  set_monitor_chunks(NULL);
1441  set_next(NULL);
1442  set_thread_state(_thread_new);
1443  _terminated = _not_terminated;
1444  _privileged_stack_top = NULL;
1445  _array_for_gc = NULL;
1446  _suspend_equivalent = false;
1447  _in_deopt_handler = 0;
1448  _doing_unsafe_access = false;
1449  _stack_guard_state = stack_guard_unused;
1450#if INCLUDE_JVMCI
1451  _pending_monitorenter = false;
1452  _pending_deoptimization = -1;
1453  _pending_failed_speculation = NULL;
1454  _pending_transfer_to_interpreter = false;
1455  _jvmci._alternate_call_target = NULL;
1456  assert(_jvmci._implicit_exception_pc == NULL, "must be");
1457  if (JVMCICounterSize > 0) {
1458    _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1459    memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1460  } else {
1461    _jvmci_counters = NULL;
1462  }
1463#endif // INCLUDE_JVMCI
1464  _reserved_stack_activation = NULL;  // stack base not known yet
1465  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1466  _exception_pc  = 0;
1467  _exception_handler_pc = 0;
1468  _is_method_handle_return = 0;
1469  _jvmti_thread_state= NULL;
1470  _should_post_on_exceptions_flag = JNI_FALSE;
1471  _jvmti_get_loaded_classes_closure = NULL;
1472  _interp_only_mode    = 0;
1473  _special_runtime_exit_condition = _no_async_condition;
1474  _pending_async_exception = NULL;
1475  _thread_stat = NULL;
1476  _thread_stat = new ThreadStatistics();
1477  _blocked_on_compilation = false;
1478  _jni_active_critical = 0;
1479  _pending_jni_exception_check_fn = NULL;
1480  _do_not_unlock_if_synchronized = false;
1481  _cached_monitor_info = NULL;
1482  _parker = Parker::Allocate(this);
1483
1484#ifndef PRODUCT
1485  _jmp_ring_index = 0;
1486  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1487    record_jump(NULL, NULL, NULL, 0);
1488  }
1489#endif // PRODUCT
1490
1491  set_thread_profiler(NULL);
1492  if (FlatProfiler::is_active()) {
1493    // This is where we would decide to either give each thread it's own profiler
1494    // or use one global one from FlatProfiler,
1495    // or up to some count of the number of profiled threads, etc.
1496    ThreadProfiler* pp = new ThreadProfiler();
1497    pp->engage();
1498    set_thread_profiler(pp);
1499  }
1500
1501  // Setup safepoint state info for this thread
1502  ThreadSafepointState::create(this);
1503
1504  debug_only(_java_call_counter = 0);
1505
1506  // JVMTI PopFrame support
1507  _popframe_condition = popframe_inactive;
1508  _popframe_preserved_args = NULL;
1509  _popframe_preserved_args_size = 0;
1510  _frames_to_pop_failed_realloc = 0;
1511
1512  pd_initialize();
1513}
1514
1515#if INCLUDE_ALL_GCS
1516SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1517DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1518#endif // INCLUDE_ALL_GCS
1519
1520JavaThread::JavaThread(bool is_attaching_via_jni) :
1521                       Thread()
1522#if INCLUDE_ALL_GCS
1523                       , _satb_mark_queue(&_satb_mark_queue_set),
1524                       _dirty_card_queue(&_dirty_card_queue_set)
1525#endif // INCLUDE_ALL_GCS
1526{
1527  initialize();
1528  if (is_attaching_via_jni) {
1529    _jni_attach_state = _attaching_via_jni;
1530  } else {
1531    _jni_attach_state = _not_attaching_via_jni;
1532  }
1533  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1534}
1535
1536bool JavaThread::reguard_stack(address cur_sp) {
1537  if (_stack_guard_state != stack_guard_yellow_disabled
1538      && _stack_guard_state != stack_guard_reserved_disabled) {
1539    return true; // Stack already guarded or guard pages not needed.
1540  }
1541
1542  if (register_stack_overflow()) {
1543    // For those architectures which have separate register and
1544    // memory stacks, we must check the register stack to see if
1545    // it has overflowed.
1546    return false;
1547  }
1548
1549  // Java code never executes within the yellow zone: the latter is only
1550  // there to provoke an exception during stack banging.  If java code
1551  // is executing there, either StackShadowPages should be larger, or
1552  // some exception code in c1, c2 or the interpreter isn't unwinding
1553  // when it should.
1554  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1555  if (_stack_guard_state == stack_guard_yellow_disabled) {
1556    enable_stack_yellow_zone();
1557    if (reserved_stack_activation() != stack_base()) {
1558      set_reserved_stack_activation(stack_base());
1559    }
1560  } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1561    set_reserved_stack_activation(stack_base());
1562    enable_stack_reserved_zone();
1563  }
1564  return true;
1565}
1566
1567bool JavaThread::reguard_stack(void) {
1568  return reguard_stack(os::current_stack_pointer());
1569}
1570
1571
1572void JavaThread::block_if_vm_exited() {
1573  if (_terminated == _vm_exited) {
1574    // _vm_exited is set at safepoint, and Threads_lock is never released
1575    // we will block here forever
1576    Threads_lock->lock_without_safepoint_check();
1577    ShouldNotReachHere();
1578  }
1579}
1580
1581
1582// Remove this ifdef when C1 is ported to the compiler interface.
1583static void compiler_thread_entry(JavaThread* thread, TRAPS);
1584static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1585
1586JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1587                       Thread()
1588#if INCLUDE_ALL_GCS
1589                       , _satb_mark_queue(&_satb_mark_queue_set),
1590                       _dirty_card_queue(&_dirty_card_queue_set)
1591#endif // INCLUDE_ALL_GCS
1592{
1593  initialize();
1594  _jni_attach_state = _not_attaching_via_jni;
1595  set_entry_point(entry_point);
1596  // Create the native thread itself.
1597  // %note runtime_23
1598  os::ThreadType thr_type = os::java_thread;
1599  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1600                                                     os::java_thread;
1601  os::create_thread(this, thr_type, stack_sz);
1602  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1603  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1604  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1605  // the exception consists of creating the exception object & initializing it, initialization
1606  // will leave the VM via a JavaCall and then all locks must be unlocked).
1607  //
1608  // The thread is still suspended when we reach here. Thread must be explicit started
1609  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1610  // by calling Threads:add. The reason why this is not done here, is because the thread
1611  // object must be fully initialized (take a look at JVM_Start)
1612}
1613
1614JavaThread::~JavaThread() {
1615
1616  // JSR166 -- return the parker to the free list
1617  Parker::Release(_parker);
1618  _parker = NULL;
1619
1620  // Free any remaining  previous UnrollBlock
1621  vframeArray* old_array = vframe_array_last();
1622
1623  if (old_array != NULL) {
1624    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1625    old_array->set_unroll_block(NULL);
1626    delete old_info;
1627    delete old_array;
1628  }
1629
1630  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1631  if (deferred != NULL) {
1632    // This can only happen if thread is destroyed before deoptimization occurs.
1633    assert(deferred->length() != 0, "empty array!");
1634    do {
1635      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1636      deferred->remove_at(0);
1637      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1638      delete dlv;
1639    } while (deferred->length() != 0);
1640    delete deferred;
1641  }
1642
1643  // All Java related clean up happens in exit
1644  ThreadSafepointState::destroy(this);
1645  if (_thread_profiler != NULL) delete _thread_profiler;
1646  if (_thread_stat != NULL) delete _thread_stat;
1647
1648#if INCLUDE_JVMCI
1649  if (JVMCICounterSize > 0) {
1650    if (jvmci_counters_include(this)) {
1651      for (int i = 0; i < JVMCICounterSize; i++) {
1652        _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1653      }
1654    }
1655    FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1656  }
1657#endif // INCLUDE_JVMCI
1658}
1659
1660
1661// The first routine called by a new Java thread
1662void JavaThread::run() {
1663  // initialize thread-local alloc buffer related fields
1664  this->initialize_tlab();
1665
1666  // used to test validity of stack trace backs
1667  this->record_base_of_stack_pointer();
1668
1669  // Record real stack base and size.
1670  this->record_stack_base_and_size();
1671
1672  this->create_stack_guard_pages();
1673
1674  this->cache_global_variables();
1675
1676  // Thread is now sufficient initialized to be handled by the safepoint code as being
1677  // in the VM. Change thread state from _thread_new to _thread_in_vm
1678  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1679
1680  assert(JavaThread::current() == this, "sanity check");
1681  assert(!Thread::current()->owns_locks(), "sanity check");
1682
1683  DTRACE_THREAD_PROBE(start, this);
1684
1685  // This operation might block. We call that after all safepoint checks for a new thread has
1686  // been completed.
1687  this->set_active_handles(JNIHandleBlock::allocate_block());
1688
1689  if (JvmtiExport::should_post_thread_life()) {
1690    JvmtiExport::post_thread_start(this);
1691  }
1692
1693  EventThreadStart event;
1694  if (event.should_commit()) {
1695    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1696    event.commit();
1697  }
1698
1699  // We call another function to do the rest so we are sure that the stack addresses used
1700  // from there will be lower than the stack base just computed
1701  thread_main_inner();
1702
1703  // Note, thread is no longer valid at this point!
1704}
1705
1706
1707void JavaThread::thread_main_inner() {
1708  assert(JavaThread::current() == this, "sanity check");
1709  assert(this->threadObj() != NULL, "just checking");
1710
1711  // Execute thread entry point unless this thread has a pending exception
1712  // or has been stopped before starting.
1713  // Note: Due to JVM_StopThread we can have pending exceptions already!
1714  if (!this->has_pending_exception() &&
1715      !java_lang_Thread::is_stillborn(this->threadObj())) {
1716    {
1717      ResourceMark rm(this);
1718      this->set_native_thread_name(this->get_thread_name());
1719    }
1720    HandleMark hm(this);
1721    this->entry_point()(this, this);
1722  }
1723
1724  DTRACE_THREAD_PROBE(stop, this);
1725
1726  this->exit(false);
1727  delete this;
1728}
1729
1730
1731static void ensure_join(JavaThread* thread) {
1732  // We do not need to grap the Threads_lock, since we are operating on ourself.
1733  Handle threadObj(thread, thread->threadObj());
1734  assert(threadObj.not_null(), "java thread object must exist");
1735  ObjectLocker lock(threadObj, thread);
1736  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1737  thread->clear_pending_exception();
1738  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1739  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1740  // Clear the native thread instance - this makes isAlive return false and allows the join()
1741  // to complete once we've done the notify_all below
1742  java_lang_Thread::set_thread(threadObj(), NULL);
1743  lock.notify_all(thread);
1744  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1745  thread->clear_pending_exception();
1746}
1747
1748
1749// For any new cleanup additions, please check to see if they need to be applied to
1750// cleanup_failed_attach_current_thread as well.
1751void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1752  assert(this == JavaThread::current(), "thread consistency check");
1753
1754  HandleMark hm(this);
1755  Handle uncaught_exception(this, this->pending_exception());
1756  this->clear_pending_exception();
1757  Handle threadObj(this, this->threadObj());
1758  assert(threadObj.not_null(), "Java thread object should be created");
1759
1760  if (get_thread_profiler() != NULL) {
1761    get_thread_profiler()->disengage();
1762    ResourceMark rm;
1763    get_thread_profiler()->print(get_thread_name());
1764  }
1765
1766
1767  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1768  {
1769    EXCEPTION_MARK;
1770
1771    CLEAR_PENDING_EXCEPTION;
1772  }
1773  if (!destroy_vm) {
1774    if (uncaught_exception.not_null()) {
1775      EXCEPTION_MARK;
1776      // Call method Thread.dispatchUncaughtException().
1777      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1778      JavaValue result(T_VOID);
1779      JavaCalls::call_virtual(&result,
1780                              threadObj, thread_klass,
1781                              vmSymbols::dispatchUncaughtException_name(),
1782                              vmSymbols::throwable_void_signature(),
1783                              uncaught_exception,
1784                              THREAD);
1785      if (HAS_PENDING_EXCEPTION) {
1786        ResourceMark rm(this);
1787        jio_fprintf(defaultStream::error_stream(),
1788                    "\nException: %s thrown from the UncaughtExceptionHandler"
1789                    " in thread \"%s\"\n",
1790                    pending_exception()->klass()->external_name(),
1791                    get_thread_name());
1792        CLEAR_PENDING_EXCEPTION;
1793      }
1794    }
1795
1796    // Called before the java thread exit since we want to read info
1797    // from java_lang_Thread object
1798    EventThreadEnd event;
1799    if (event.should_commit()) {
1800      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1801      event.commit();
1802    }
1803
1804    // Call after last event on thread
1805    EVENT_THREAD_EXIT(this);
1806
1807    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1808    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1809    // is deprecated anyhow.
1810    if (!is_Compiler_thread()) {
1811      int count = 3;
1812      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1813        EXCEPTION_MARK;
1814        JavaValue result(T_VOID);
1815        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1816        JavaCalls::call_virtual(&result,
1817                                threadObj, thread_klass,
1818                                vmSymbols::exit_method_name(),
1819                                vmSymbols::void_method_signature(),
1820                                THREAD);
1821        CLEAR_PENDING_EXCEPTION;
1822      }
1823    }
1824    // notify JVMTI
1825    if (JvmtiExport::should_post_thread_life()) {
1826      JvmtiExport::post_thread_end(this);
1827    }
1828
1829    // We have notified the agents that we are exiting, before we go on,
1830    // we must check for a pending external suspend request and honor it
1831    // in order to not surprise the thread that made the suspend request.
1832    while (true) {
1833      {
1834        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1835        if (!is_external_suspend()) {
1836          set_terminated(_thread_exiting);
1837          ThreadService::current_thread_exiting(this);
1838          break;
1839        }
1840        // Implied else:
1841        // Things get a little tricky here. We have a pending external
1842        // suspend request, but we are holding the SR_lock so we
1843        // can't just self-suspend. So we temporarily drop the lock
1844        // and then self-suspend.
1845      }
1846
1847      ThreadBlockInVM tbivm(this);
1848      java_suspend_self();
1849
1850      // We're done with this suspend request, but we have to loop around
1851      // and check again. Eventually we will get SR_lock without a pending
1852      // external suspend request and will be able to mark ourselves as
1853      // exiting.
1854    }
1855    // no more external suspends are allowed at this point
1856  } else {
1857    // before_exit() has already posted JVMTI THREAD_END events
1858  }
1859
1860  // Notify waiters on thread object. This has to be done after exit() is called
1861  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1862  // group should have the destroyed bit set before waiters are notified).
1863  ensure_join(this);
1864  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1865
1866  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1867  // held by this thread must be released. The spec does not distinguish
1868  // between JNI-acquired and regular Java monitors. We can only see
1869  // regular Java monitors here if monitor enter-exit matching is broken.
1870  //
1871  // Optionally release any monitors for regular JavaThread exits. This
1872  // is provided as a work around for any bugs in monitor enter-exit
1873  // matching. This can be expensive so it is not enabled by default.
1874  //
1875  // ensure_join() ignores IllegalThreadStateExceptions, and so does
1876  // ObjectSynchronizer::release_monitors_owned_by_thread().
1877  if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1878    // Sanity check even though JNI DetachCurrentThread() would have
1879    // returned JNI_ERR if there was a Java frame. JavaThread exit
1880    // should be done executing Java code by the time we get here.
1881    assert(!this->has_last_Java_frame(),
1882           "should not have a Java frame when detaching or exiting");
1883    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1884    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1885  }
1886
1887  // These things needs to be done while we are still a Java Thread. Make sure that thread
1888  // is in a consistent state, in case GC happens
1889  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1890
1891  if (active_handles() != NULL) {
1892    JNIHandleBlock* block = active_handles();
1893    set_active_handles(NULL);
1894    JNIHandleBlock::release_block(block);
1895  }
1896
1897  if (free_handle_block() != NULL) {
1898    JNIHandleBlock* block = free_handle_block();
1899    set_free_handle_block(NULL);
1900    JNIHandleBlock::release_block(block);
1901  }
1902
1903  // These have to be removed while this is still a valid thread.
1904  remove_stack_guard_pages();
1905
1906  if (UseTLAB) {
1907    tlab().make_parsable(true);  // retire TLAB
1908  }
1909
1910  if (JvmtiEnv::environments_might_exist()) {
1911    JvmtiExport::cleanup_thread(this);
1912  }
1913
1914  // We must flush any deferred card marks before removing a thread from
1915  // the list of active threads.
1916  Universe::heap()->flush_deferred_store_barrier(this);
1917  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1918
1919#if INCLUDE_ALL_GCS
1920  // We must flush the G1-related buffers before removing a thread
1921  // from the list of active threads. We must do this after any deferred
1922  // card marks have been flushed (above) so that any entries that are
1923  // added to the thread's dirty card queue as a result are not lost.
1924  if (UseG1GC) {
1925    flush_barrier_queues();
1926  }
1927#endif // INCLUDE_ALL_GCS
1928
1929  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1930  Threads::remove(this);
1931}
1932
1933#if INCLUDE_ALL_GCS
1934// Flush G1-related queues.
1935void JavaThread::flush_barrier_queues() {
1936  satb_mark_queue().flush();
1937  dirty_card_queue().flush();
1938}
1939
1940void JavaThread::initialize_queues() {
1941  assert(!SafepointSynchronize::is_at_safepoint(),
1942         "we should not be at a safepoint");
1943
1944  SATBMarkQueue& satb_queue = satb_mark_queue();
1945  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1946  // The SATB queue should have been constructed with its active
1947  // field set to false.
1948  assert(!satb_queue.is_active(), "SATB queue should not be active");
1949  assert(satb_queue.is_empty(), "SATB queue should be empty");
1950  // If we are creating the thread during a marking cycle, we should
1951  // set the active field of the SATB queue to true.
1952  if (satb_queue_set.is_active()) {
1953    satb_queue.set_active(true);
1954  }
1955
1956  DirtyCardQueue& dirty_queue = dirty_card_queue();
1957  // The dirty card queue should have been constructed with its
1958  // active field set to true.
1959  assert(dirty_queue.is_active(), "dirty card queue should be active");
1960}
1961#endif // INCLUDE_ALL_GCS
1962
1963void JavaThread::cleanup_failed_attach_current_thread() {
1964  if (get_thread_profiler() != NULL) {
1965    get_thread_profiler()->disengage();
1966    ResourceMark rm;
1967    get_thread_profiler()->print(get_thread_name());
1968  }
1969
1970  if (active_handles() != NULL) {
1971    JNIHandleBlock* block = active_handles();
1972    set_active_handles(NULL);
1973    JNIHandleBlock::release_block(block);
1974  }
1975
1976  if (free_handle_block() != NULL) {
1977    JNIHandleBlock* block = free_handle_block();
1978    set_free_handle_block(NULL);
1979    JNIHandleBlock::release_block(block);
1980  }
1981
1982  // These have to be removed while this is still a valid thread.
1983  remove_stack_guard_pages();
1984
1985  if (UseTLAB) {
1986    tlab().make_parsable(true);  // retire TLAB, if any
1987  }
1988
1989#if INCLUDE_ALL_GCS
1990  if (UseG1GC) {
1991    flush_barrier_queues();
1992  }
1993#endif // INCLUDE_ALL_GCS
1994
1995  Threads::remove(this);
1996  delete this;
1997}
1998
1999
2000
2001
2002JavaThread* JavaThread::active() {
2003  Thread* thread = Thread::current();
2004  if (thread->is_Java_thread()) {
2005    return (JavaThread*) thread;
2006  } else {
2007    assert(thread->is_VM_thread(), "this must be a vm thread");
2008    VM_Operation* op = ((VMThread*) thread)->vm_operation();
2009    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2010    assert(ret->is_Java_thread(), "must be a Java thread");
2011    return ret;
2012  }
2013}
2014
2015bool JavaThread::is_lock_owned(address adr) const {
2016  if (Thread::is_lock_owned(adr)) return true;
2017
2018  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2019    if (chunk->contains(adr)) return true;
2020  }
2021
2022  return false;
2023}
2024
2025
2026void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2027  chunk->set_next(monitor_chunks());
2028  set_monitor_chunks(chunk);
2029}
2030
2031void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2032  guarantee(monitor_chunks() != NULL, "must be non empty");
2033  if (monitor_chunks() == chunk) {
2034    set_monitor_chunks(chunk->next());
2035  } else {
2036    MonitorChunk* prev = monitor_chunks();
2037    while (prev->next() != chunk) prev = prev->next();
2038    prev->set_next(chunk->next());
2039  }
2040}
2041
2042// JVM support.
2043
2044// Note: this function shouldn't block if it's called in
2045// _thread_in_native_trans state (such as from
2046// check_special_condition_for_native_trans()).
2047void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2048
2049  if (has_last_Java_frame() && has_async_condition()) {
2050    // If we are at a polling page safepoint (not a poll return)
2051    // then we must defer async exception because live registers
2052    // will be clobbered by the exception path. Poll return is
2053    // ok because the call we a returning from already collides
2054    // with exception handling registers and so there is no issue.
2055    // (The exception handling path kills call result registers but
2056    //  this is ok since the exception kills the result anyway).
2057
2058    if (is_at_poll_safepoint()) {
2059      // if the code we are returning to has deoptimized we must defer
2060      // the exception otherwise live registers get clobbered on the
2061      // exception path before deoptimization is able to retrieve them.
2062      //
2063      RegisterMap map(this, false);
2064      frame caller_fr = last_frame().sender(&map);
2065      assert(caller_fr.is_compiled_frame(), "what?");
2066      if (caller_fr.is_deoptimized_frame()) {
2067        if (TraceExceptions) {
2068          ResourceMark rm;
2069          tty->print_cr("deferred async exception at compiled safepoint");
2070        }
2071        return;
2072      }
2073    }
2074  }
2075
2076  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2077  if (condition == _no_async_condition) {
2078    // Conditions have changed since has_special_runtime_exit_condition()
2079    // was called:
2080    // - if we were here only because of an external suspend request,
2081    //   then that was taken care of above (or cancelled) so we are done
2082    // - if we were here because of another async request, then it has
2083    //   been cleared between the has_special_runtime_exit_condition()
2084    //   and now so again we are done
2085    return;
2086  }
2087
2088  // Check for pending async. exception
2089  if (_pending_async_exception != NULL) {
2090    // Only overwrite an already pending exception, if it is not a threadDeath.
2091    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2092
2093      // We cannot call Exceptions::_throw(...) here because we cannot block
2094      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2095
2096      if (TraceExceptions) {
2097        ResourceMark rm;
2098        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2099        if (has_last_Java_frame()) {
2100          frame f = last_frame();
2101          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2102        }
2103        tty->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2104      }
2105      _pending_async_exception = NULL;
2106      clear_has_async_exception();
2107    }
2108  }
2109
2110  if (check_unsafe_error &&
2111      condition == _async_unsafe_access_error && !has_pending_exception()) {
2112    condition = _no_async_condition;  // done
2113    switch (thread_state()) {
2114    case _thread_in_vm: {
2115      JavaThread* THREAD = this;
2116      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2117    }
2118    case _thread_in_native: {
2119      ThreadInVMfromNative tiv(this);
2120      JavaThread* THREAD = this;
2121      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2122    }
2123    case _thread_in_Java: {
2124      ThreadInVMfromJava tiv(this);
2125      JavaThread* THREAD = this;
2126      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2127    }
2128    default:
2129      ShouldNotReachHere();
2130    }
2131  }
2132
2133  assert(condition == _no_async_condition || has_pending_exception() ||
2134         (!check_unsafe_error && condition == _async_unsafe_access_error),
2135         "must have handled the async condition, if no exception");
2136}
2137
2138void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2139  //
2140  // Check for pending external suspend. Internal suspend requests do
2141  // not use handle_special_runtime_exit_condition().
2142  // If JNIEnv proxies are allowed, don't self-suspend if the target
2143  // thread is not the current thread. In older versions of jdbx, jdbx
2144  // threads could call into the VM with another thread's JNIEnv so we
2145  // can be here operating on behalf of a suspended thread (4432884).
2146  bool do_self_suspend = is_external_suspend_with_lock();
2147  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2148    //
2149    // Because thread is external suspended the safepoint code will count
2150    // thread as at a safepoint. This can be odd because we can be here
2151    // as _thread_in_Java which would normally transition to _thread_blocked
2152    // at a safepoint. We would like to mark the thread as _thread_blocked
2153    // before calling java_suspend_self like all other callers of it but
2154    // we must then observe proper safepoint protocol. (We can't leave
2155    // _thread_blocked with a safepoint in progress). However we can be
2156    // here as _thread_in_native_trans so we can't use a normal transition
2157    // constructor/destructor pair because they assert on that type of
2158    // transition. We could do something like:
2159    //
2160    // JavaThreadState state = thread_state();
2161    // set_thread_state(_thread_in_vm);
2162    // {
2163    //   ThreadBlockInVM tbivm(this);
2164    //   java_suspend_self()
2165    // }
2166    // set_thread_state(_thread_in_vm_trans);
2167    // if (safepoint) block;
2168    // set_thread_state(state);
2169    //
2170    // but that is pretty messy. Instead we just go with the way the
2171    // code has worked before and note that this is the only path to
2172    // java_suspend_self that doesn't put the thread in _thread_blocked
2173    // mode.
2174
2175    frame_anchor()->make_walkable(this);
2176    java_suspend_self();
2177
2178    // We might be here for reasons in addition to the self-suspend request
2179    // so check for other async requests.
2180  }
2181
2182  if (check_asyncs) {
2183    check_and_handle_async_exceptions();
2184  }
2185}
2186
2187void JavaThread::send_thread_stop(oop java_throwable)  {
2188  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2189  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2190  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2191
2192  // Do not throw asynchronous exceptions against the compiler thread
2193  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2194  if (!can_call_java()) return;
2195
2196  {
2197    // Actually throw the Throwable against the target Thread - however
2198    // only if there is no thread death exception installed already.
2199    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2200      // If the topmost frame is a runtime stub, then we are calling into
2201      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2202      // must deoptimize the caller before continuing, as the compiled  exception handler table
2203      // may not be valid
2204      if (has_last_Java_frame()) {
2205        frame f = last_frame();
2206        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2207          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2208          RegisterMap reg_map(this, UseBiasedLocking);
2209          frame compiled_frame = f.sender(&reg_map);
2210          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2211            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2212          }
2213        }
2214      }
2215
2216      // Set async. pending exception in thread.
2217      set_pending_async_exception(java_throwable);
2218
2219      if (TraceExceptions) {
2220        ResourceMark rm;
2221        tty->print_cr("Pending Async. exception installed of type: %s", _pending_async_exception->klass()->external_name());
2222      }
2223      // for AbortVMOnException flag
2224      Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2225    }
2226  }
2227
2228
2229  // Interrupt thread so it will wake up from a potential wait()
2230  Thread::interrupt(this);
2231}
2232
2233// External suspension mechanism.
2234//
2235// Tell the VM to suspend a thread when ever it knows that it does not hold on
2236// to any VM_locks and it is at a transition
2237// Self-suspension will happen on the transition out of the vm.
2238// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2239//
2240// Guarantees on return:
2241//   + Target thread will not execute any new bytecode (that's why we need to
2242//     force a safepoint)
2243//   + Target thread will not enter any new monitors
2244//
2245void JavaThread::java_suspend() {
2246  { MutexLocker mu(Threads_lock);
2247    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2248      return;
2249    }
2250  }
2251
2252  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2253    if (!is_external_suspend()) {
2254      // a racing resume has cancelled us; bail out now
2255      return;
2256    }
2257
2258    // suspend is done
2259    uint32_t debug_bits = 0;
2260    // Warning: is_ext_suspend_completed() may temporarily drop the
2261    // SR_lock to allow the thread to reach a stable thread state if
2262    // it is currently in a transient thread state.
2263    if (is_ext_suspend_completed(false /* !called_by_wait */,
2264                                 SuspendRetryDelay, &debug_bits)) {
2265      return;
2266    }
2267  }
2268
2269  VM_ForceSafepoint vm_suspend;
2270  VMThread::execute(&vm_suspend);
2271}
2272
2273// Part II of external suspension.
2274// A JavaThread self suspends when it detects a pending external suspend
2275// request. This is usually on transitions. It is also done in places
2276// where continuing to the next transition would surprise the caller,
2277// e.g., monitor entry.
2278//
2279// Returns the number of times that the thread self-suspended.
2280//
2281// Note: DO NOT call java_suspend_self() when you just want to block current
2282//       thread. java_suspend_self() is the second stage of cooperative
2283//       suspension for external suspend requests and should only be used
2284//       to complete an external suspend request.
2285//
2286int JavaThread::java_suspend_self() {
2287  int ret = 0;
2288
2289  // we are in the process of exiting so don't suspend
2290  if (is_exiting()) {
2291    clear_external_suspend();
2292    return ret;
2293  }
2294
2295  assert(_anchor.walkable() ||
2296         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2297         "must have walkable stack");
2298
2299  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2300
2301  assert(!this->is_ext_suspended(),
2302         "a thread trying to self-suspend should not already be suspended");
2303
2304  if (this->is_suspend_equivalent()) {
2305    // If we are self-suspending as a result of the lifting of a
2306    // suspend equivalent condition, then the suspend_equivalent
2307    // flag is not cleared until we set the ext_suspended flag so
2308    // that wait_for_ext_suspend_completion() returns consistent
2309    // results.
2310    this->clear_suspend_equivalent();
2311  }
2312
2313  // A racing resume may have cancelled us before we grabbed SR_lock
2314  // above. Or another external suspend request could be waiting for us
2315  // by the time we return from SR_lock()->wait(). The thread
2316  // that requested the suspension may already be trying to walk our
2317  // stack and if we return now, we can change the stack out from under
2318  // it. This would be a "bad thing (TM)" and cause the stack walker
2319  // to crash. We stay self-suspended until there are no more pending
2320  // external suspend requests.
2321  while (is_external_suspend()) {
2322    ret++;
2323    this->set_ext_suspended();
2324
2325    // _ext_suspended flag is cleared by java_resume()
2326    while (is_ext_suspended()) {
2327      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2328    }
2329  }
2330
2331  return ret;
2332}
2333
2334#ifdef ASSERT
2335// verify the JavaThread has not yet been published in the Threads::list, and
2336// hence doesn't need protection from concurrent access at this stage
2337void JavaThread::verify_not_published() {
2338  if (!Threads_lock->owned_by_self()) {
2339    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2340    assert(!Threads::includes(this),
2341           "java thread shouldn't have been published yet!");
2342  } else {
2343    assert(!Threads::includes(this),
2344           "java thread shouldn't have been published yet!");
2345  }
2346}
2347#endif
2348
2349// Slow path when the native==>VM/Java barriers detect a safepoint is in
2350// progress or when _suspend_flags is non-zero.
2351// Current thread needs to self-suspend if there is a suspend request and/or
2352// block if a safepoint is in progress.
2353// Async exception ISN'T checked.
2354// Note only the ThreadInVMfromNative transition can call this function
2355// directly and when thread state is _thread_in_native_trans
2356void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2357  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2358
2359  JavaThread *curJT = JavaThread::current();
2360  bool do_self_suspend = thread->is_external_suspend();
2361
2362  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2363
2364  // If JNIEnv proxies are allowed, don't self-suspend if the target
2365  // thread is not the current thread. In older versions of jdbx, jdbx
2366  // threads could call into the VM with another thread's JNIEnv so we
2367  // can be here operating on behalf of a suspended thread (4432884).
2368  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2369    JavaThreadState state = thread->thread_state();
2370
2371    // We mark this thread_blocked state as a suspend-equivalent so
2372    // that a caller to is_ext_suspend_completed() won't be confused.
2373    // The suspend-equivalent state is cleared by java_suspend_self().
2374    thread->set_suspend_equivalent();
2375
2376    // If the safepoint code sees the _thread_in_native_trans state, it will
2377    // wait until the thread changes to other thread state. There is no
2378    // guarantee on how soon we can obtain the SR_lock and complete the
2379    // self-suspend request. It would be a bad idea to let safepoint wait for
2380    // too long. Temporarily change the state to _thread_blocked to
2381    // let the VM thread know that this thread is ready for GC. The problem
2382    // of changing thread state is that safepoint could happen just after
2383    // java_suspend_self() returns after being resumed, and VM thread will
2384    // see the _thread_blocked state. We must check for safepoint
2385    // after restoring the state and make sure we won't leave while a safepoint
2386    // is in progress.
2387    thread->set_thread_state(_thread_blocked);
2388    thread->java_suspend_self();
2389    thread->set_thread_state(state);
2390    // Make sure new state is seen by VM thread
2391    if (os::is_MP()) {
2392      if (UseMembar) {
2393        // Force a fence between the write above and read below
2394        OrderAccess::fence();
2395      } else {
2396        // Must use this rather than serialization page in particular on Windows
2397        InterfaceSupport::serialize_memory(thread);
2398      }
2399    }
2400  }
2401
2402  if (SafepointSynchronize::do_call_back()) {
2403    // If we are safepointing, then block the caller which may not be
2404    // the same as the target thread (see above).
2405    SafepointSynchronize::block(curJT);
2406  }
2407
2408  if (thread->is_deopt_suspend()) {
2409    thread->clear_deopt_suspend();
2410    RegisterMap map(thread, false);
2411    frame f = thread->last_frame();
2412    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2413      f = f.sender(&map);
2414    }
2415    if (f.id() == thread->must_deopt_id()) {
2416      thread->clear_must_deopt_id();
2417      f.deoptimize(thread);
2418    } else {
2419      fatal("missed deoptimization!");
2420    }
2421  }
2422}
2423
2424// Slow path when the native==>VM/Java barriers detect a safepoint is in
2425// progress or when _suspend_flags is non-zero.
2426// Current thread needs to self-suspend if there is a suspend request and/or
2427// block if a safepoint is in progress.
2428// Also check for pending async exception (not including unsafe access error).
2429// Note only the native==>VM/Java barriers can call this function and when
2430// thread state is _thread_in_native_trans.
2431void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2432  check_safepoint_and_suspend_for_native_trans(thread);
2433
2434  if (thread->has_async_exception()) {
2435    // We are in _thread_in_native_trans state, don't handle unsafe
2436    // access error since that may block.
2437    thread->check_and_handle_async_exceptions(false);
2438  }
2439}
2440
2441// This is a variant of the normal
2442// check_special_condition_for_native_trans with slightly different
2443// semantics for use by critical native wrappers.  It does all the
2444// normal checks but also performs the transition back into
2445// thread_in_Java state.  This is required so that critical natives
2446// can potentially block and perform a GC if they are the last thread
2447// exiting the GC_locker.
2448void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2449  check_special_condition_for_native_trans(thread);
2450
2451  // Finish the transition
2452  thread->set_thread_state(_thread_in_Java);
2453
2454  if (thread->do_critical_native_unlock()) {
2455    ThreadInVMfromJavaNoAsyncException tiv(thread);
2456    GC_locker::unlock_critical(thread);
2457    thread->clear_critical_native_unlock();
2458  }
2459}
2460
2461// We need to guarantee the Threads_lock here, since resumes are not
2462// allowed during safepoint synchronization
2463// Can only resume from an external suspension
2464void JavaThread::java_resume() {
2465  assert_locked_or_safepoint(Threads_lock);
2466
2467  // Sanity check: thread is gone, has started exiting or the thread
2468  // was not externally suspended.
2469  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2470    return;
2471  }
2472
2473  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2474
2475  clear_external_suspend();
2476
2477  if (is_ext_suspended()) {
2478    clear_ext_suspended();
2479    SR_lock()->notify_all();
2480  }
2481}
2482
2483void JavaThread::create_stack_guard_pages() {
2484  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2485  address low_addr = stack_base() - stack_size();
2486  size_t len = (StackReservedPages + StackYellowPages + StackRedPages) * os::vm_page_size();
2487
2488  int allocate = os::allocate_stack_guard_pages();
2489  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2490
2491  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2492    warning("Attempt to allocate stack guard pages failed.");
2493    return;
2494  }
2495
2496  if (os::guard_memory((char *) low_addr, len)) {
2497    _stack_guard_state = stack_guard_enabled;
2498  } else {
2499    warning("Attempt to protect stack guard pages failed.");
2500    if (os::uncommit_memory((char *) low_addr, len)) {
2501      warning("Attempt to deallocate stack guard pages failed.");
2502    }
2503  }
2504}
2505
2506void JavaThread::remove_stack_guard_pages() {
2507  assert(Thread::current() == this, "from different thread");
2508  if (_stack_guard_state == stack_guard_unused) return;
2509  address low_addr = stack_base() - stack_size();
2510  size_t len = (StackReservedPages + StackYellowPages + StackRedPages) * os::vm_page_size();
2511
2512  if (os::allocate_stack_guard_pages()) {
2513    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2514      _stack_guard_state = stack_guard_unused;
2515    } else {
2516      warning("Attempt to deallocate stack guard pages failed.");
2517    }
2518  } else {
2519    if (_stack_guard_state == stack_guard_unused) return;
2520    if (os::unguard_memory((char *) low_addr, len)) {
2521      _stack_guard_state = stack_guard_unused;
2522    } else {
2523      warning("Attempt to unprotect stack guard pages failed.");
2524    }
2525  }
2526}
2527
2528void JavaThread::enable_stack_reserved_zone() {
2529  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2530  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2531
2532  // The base notation is from the stack's point of view, growing downward.
2533  // We need to adjust it to work correctly with guard_memory()
2534  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2535
2536  guarantee(base < stack_base(),"Error calculating stack reserved zone");
2537  guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2538
2539  if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2540    _stack_guard_state = stack_guard_enabled;
2541  } else {
2542    warning("Attempt to guard stack reserved zone failed.");
2543  }
2544  enable_register_stack_guard();
2545}
2546
2547void JavaThread::disable_stack_reserved_zone() {
2548  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2549  assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2550
2551  // Simply return if called for a thread that does not use guard pages.
2552  if (_stack_guard_state == stack_guard_unused) return;
2553
2554  // The base notation is from the stack's point of view, growing downward.
2555  // We need to adjust it to work correctly with guard_memory()
2556  address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2557
2558  if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2559    _stack_guard_state = stack_guard_reserved_disabled;
2560  } else {
2561    warning("Attempt to unguard stack reserved zone failed.");
2562  }
2563  disable_register_stack_guard();
2564}
2565
2566void JavaThread::enable_stack_yellow_zone() {
2567  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2568  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2569
2570  // The base notation is from the stacks point of view, growing downward.
2571  // We need to adjust it to work correctly with guard_memory()
2572  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2573
2574  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2575  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2576
2577  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2578    _stack_guard_state = stack_guard_enabled;
2579  } else {
2580    warning("Attempt to guard stack yellow zone failed.");
2581  }
2582  enable_register_stack_guard();
2583}
2584
2585void JavaThread::disable_stack_yellow_zone() {
2586  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2587  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2588
2589  // Simply return if called for a thread that does not use guard pages.
2590  if (_stack_guard_state == stack_guard_unused) return;
2591
2592  // The base notation is from the stacks point of view, growing downward.
2593  // We need to adjust it to work correctly with guard_memory()
2594  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2595
2596  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2597    _stack_guard_state = stack_guard_yellow_disabled;
2598  } else {
2599    warning("Attempt to unguard stack yellow zone failed.");
2600  }
2601  disable_register_stack_guard();
2602}
2603
2604void JavaThread::enable_stack_red_zone() {
2605  // The base notation is from the stacks point of view, growing downward.
2606  // We need to adjust it to work correctly with guard_memory()
2607  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2608  address base = stack_red_zone_base() - stack_red_zone_size();
2609
2610  guarantee(base < stack_base(), "Error calculating stack red zone");
2611  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2612
2613  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2614    warning("Attempt to guard stack red zone failed.");
2615  }
2616}
2617
2618void JavaThread::disable_stack_red_zone() {
2619  // The base notation is from the stacks point of view, growing downward.
2620  // We need to adjust it to work correctly with guard_memory()
2621  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2622  address base = stack_red_zone_base() - stack_red_zone_size();
2623  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2624    warning("Attempt to unguard stack red zone failed.");
2625  }
2626}
2627
2628void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2629  // ignore is there is no stack
2630  if (!has_last_Java_frame()) return;
2631  // traverse the stack frames. Starts from top frame.
2632  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2633    frame* fr = fst.current();
2634    f(fr, fst.register_map());
2635  }
2636}
2637
2638
2639#ifndef PRODUCT
2640// Deoptimization
2641// Function for testing deoptimization
2642void JavaThread::deoptimize() {
2643  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2644  StackFrameStream fst(this, UseBiasedLocking);
2645  bool deopt = false;           // Dump stack only if a deopt actually happens.
2646  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2647  // Iterate over all frames in the thread and deoptimize
2648  for (; !fst.is_done(); fst.next()) {
2649    if (fst.current()->can_be_deoptimized()) {
2650
2651      if (only_at) {
2652        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2653        // consists of comma or carriage return separated numbers so
2654        // search for the current bci in that string.
2655        address pc = fst.current()->pc();
2656        nmethod* nm =  (nmethod*) fst.current()->cb();
2657        ScopeDesc* sd = nm->scope_desc_at(pc);
2658        char buffer[8];
2659        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2660        size_t len = strlen(buffer);
2661        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2662        while (found != NULL) {
2663          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2664              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2665            // Check that the bci found is bracketed by terminators.
2666            break;
2667          }
2668          found = strstr(found + 1, buffer);
2669        }
2670        if (!found) {
2671          continue;
2672        }
2673      }
2674
2675      if (DebugDeoptimization && !deopt) {
2676        deopt = true; // One-time only print before deopt
2677        tty->print_cr("[BEFORE Deoptimization]");
2678        trace_frames();
2679        trace_stack();
2680      }
2681      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2682    }
2683  }
2684
2685  if (DebugDeoptimization && deopt) {
2686    tty->print_cr("[AFTER Deoptimization]");
2687    trace_frames();
2688  }
2689}
2690
2691
2692// Make zombies
2693void JavaThread::make_zombies() {
2694  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2695    if (fst.current()->can_be_deoptimized()) {
2696      // it is a Java nmethod
2697      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2698      nm->make_not_entrant();
2699    }
2700  }
2701}
2702#endif // PRODUCT
2703
2704
2705void JavaThread::deoptimized_wrt_marked_nmethods() {
2706  if (!has_last_Java_frame()) return;
2707  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2708  StackFrameStream fst(this, UseBiasedLocking);
2709  for (; !fst.is_done(); fst.next()) {
2710    if (fst.current()->should_be_deoptimized()) {
2711      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2712    }
2713  }
2714}
2715
2716
2717// If the caller is a NamedThread, then remember, in the current scope,
2718// the given JavaThread in its _processed_thread field.
2719class RememberProcessedThread: public StackObj {
2720  NamedThread* _cur_thr;
2721 public:
2722  RememberProcessedThread(JavaThread* jthr) {
2723    Thread* thread = Thread::current();
2724    if (thread->is_Named_thread()) {
2725      _cur_thr = (NamedThread *)thread;
2726      _cur_thr->set_processed_thread(jthr);
2727    } else {
2728      _cur_thr = NULL;
2729    }
2730  }
2731
2732  ~RememberProcessedThread() {
2733    if (_cur_thr) {
2734      _cur_thr->set_processed_thread(NULL);
2735    }
2736  }
2737};
2738
2739void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2740  // Verify that the deferred card marks have been flushed.
2741  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2742
2743  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2744  // since there may be more than one thread using each ThreadProfiler.
2745
2746  // Traverse the GCHandles
2747  Thread::oops_do(f, cld_f, cf);
2748
2749  JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2750
2751  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2752         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2753
2754  if (has_last_Java_frame()) {
2755    // Record JavaThread to GC thread
2756    RememberProcessedThread rpt(this);
2757
2758    // Traverse the privileged stack
2759    if (_privileged_stack_top != NULL) {
2760      _privileged_stack_top->oops_do(f);
2761    }
2762
2763    // traverse the registered growable array
2764    if (_array_for_gc != NULL) {
2765      for (int index = 0; index < _array_for_gc->length(); index++) {
2766        f->do_oop(_array_for_gc->adr_at(index));
2767      }
2768    }
2769
2770    // Traverse the monitor chunks
2771    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2772      chunk->oops_do(f);
2773    }
2774
2775    // Traverse the execution stack
2776    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2777      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2778    }
2779  }
2780
2781  // callee_target is never live across a gc point so NULL it here should
2782  // it still contain a methdOop.
2783
2784  set_callee_target(NULL);
2785
2786  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2787  // If we have deferred set_locals there might be oops waiting to be
2788  // written
2789  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2790  if (list != NULL) {
2791    for (int i = 0; i < list->length(); i++) {
2792      list->at(i)->oops_do(f);
2793    }
2794  }
2795
2796  // Traverse instance variables at the end since the GC may be moving things
2797  // around using this function
2798  f->do_oop((oop*) &_threadObj);
2799  f->do_oop((oop*) &_vm_result);
2800  f->do_oop((oop*) &_exception_oop);
2801  f->do_oop((oop*) &_pending_async_exception);
2802
2803  if (jvmti_thread_state() != NULL) {
2804    jvmti_thread_state()->oops_do(f);
2805  }
2806}
2807
2808void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2809  Thread::nmethods_do(cf);  // (super method is a no-op)
2810
2811  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2812         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2813
2814  if (has_last_Java_frame()) {
2815    // Traverse the execution stack
2816    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2817      fst.current()->nmethods_do(cf);
2818    }
2819  }
2820}
2821
2822void JavaThread::metadata_do(void f(Metadata*)) {
2823  if (has_last_Java_frame()) {
2824    // Traverse the execution stack to call f() on the methods in the stack
2825    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2826      fst.current()->metadata_do(f);
2827    }
2828  } else if (is_Compiler_thread()) {
2829    // need to walk ciMetadata in current compile tasks to keep alive.
2830    CompilerThread* ct = (CompilerThread*)this;
2831    if (ct->env() != NULL) {
2832      ct->env()->metadata_do(f);
2833    }
2834    if (ct->task() != NULL) {
2835      ct->task()->metadata_do(f);
2836    }
2837  }
2838}
2839
2840// Printing
2841const char* _get_thread_state_name(JavaThreadState _thread_state) {
2842  switch (_thread_state) {
2843  case _thread_uninitialized:     return "_thread_uninitialized";
2844  case _thread_new:               return "_thread_new";
2845  case _thread_new_trans:         return "_thread_new_trans";
2846  case _thread_in_native:         return "_thread_in_native";
2847  case _thread_in_native_trans:   return "_thread_in_native_trans";
2848  case _thread_in_vm:             return "_thread_in_vm";
2849  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2850  case _thread_in_Java:           return "_thread_in_Java";
2851  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2852  case _thread_blocked:           return "_thread_blocked";
2853  case _thread_blocked_trans:     return "_thread_blocked_trans";
2854  default:                        return "unknown thread state";
2855  }
2856}
2857
2858#ifndef PRODUCT
2859void JavaThread::print_thread_state_on(outputStream *st) const {
2860  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2861};
2862void JavaThread::print_thread_state() const {
2863  print_thread_state_on(tty);
2864}
2865#endif // PRODUCT
2866
2867// Called by Threads::print() for VM_PrintThreads operation
2868void JavaThread::print_on(outputStream *st) const {
2869  st->print("\"%s\" ", get_thread_name());
2870  oop thread_oop = threadObj();
2871  if (thread_oop != NULL) {
2872    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2873    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2874    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2875  }
2876  Thread::print_on(st);
2877  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2878  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2879  if (thread_oop != NULL) {
2880    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2881  }
2882#ifndef PRODUCT
2883  print_thread_state_on(st);
2884  _safepoint_state->print_on(st);
2885#endif // PRODUCT
2886}
2887
2888// Called by fatal error handler. The difference between this and
2889// JavaThread::print() is that we can't grab lock or allocate memory.
2890void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2891  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2892  oop thread_obj = threadObj();
2893  if (thread_obj != NULL) {
2894    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2895  }
2896  st->print(" [");
2897  st->print("%s", _get_thread_state_name(_thread_state));
2898  if (osthread()) {
2899    st->print(", id=%d", osthread()->thread_id());
2900  }
2901  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2902            p2i(_stack_base - _stack_size), p2i(_stack_base));
2903  st->print("]");
2904  return;
2905}
2906
2907// Verification
2908
2909static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2910
2911void JavaThread::verify() {
2912  // Verify oops in the thread.
2913  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2914
2915  // Verify the stack frames.
2916  frames_do(frame_verify);
2917}
2918
2919// CR 6300358 (sub-CR 2137150)
2920// Most callers of this method assume that it can't return NULL but a
2921// thread may not have a name whilst it is in the process of attaching to
2922// the VM - see CR 6412693, and there are places where a JavaThread can be
2923// seen prior to having it's threadObj set (eg JNI attaching threads and
2924// if vm exit occurs during initialization). These cases can all be accounted
2925// for such that this method never returns NULL.
2926const char* JavaThread::get_thread_name() const {
2927#ifdef ASSERT
2928  // early safepoints can hit while current thread does not yet have TLS
2929  if (!SafepointSynchronize::is_at_safepoint()) {
2930    Thread *cur = Thread::current();
2931    if (!(cur->is_Java_thread() && cur == this)) {
2932      // Current JavaThreads are allowed to get their own name without
2933      // the Threads_lock.
2934      assert_locked_or_safepoint(Threads_lock);
2935    }
2936  }
2937#endif // ASSERT
2938  return get_thread_name_string();
2939}
2940
2941// Returns a non-NULL representation of this thread's name, or a suitable
2942// descriptive string if there is no set name
2943const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2944  const char* name_str;
2945  oop thread_obj = threadObj();
2946  if (thread_obj != NULL) {
2947    oop name = java_lang_Thread::name(thread_obj);
2948    if (name != NULL) {
2949      if (buf == NULL) {
2950        name_str = java_lang_String::as_utf8_string(name);
2951      } else {
2952        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2953      }
2954    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2955      name_str = "<no-name - thread is attaching>";
2956    } else {
2957      name_str = Thread::name();
2958    }
2959  } else {
2960    name_str = Thread::name();
2961  }
2962  assert(name_str != NULL, "unexpected NULL thread name");
2963  return name_str;
2964}
2965
2966
2967const char* JavaThread::get_threadgroup_name() const {
2968  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2969  oop thread_obj = threadObj();
2970  if (thread_obj != NULL) {
2971    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2972    if (thread_group != NULL) {
2973      // ThreadGroup.name can be null
2974      return java_lang_ThreadGroup::name(thread_group);
2975    }
2976  }
2977  return NULL;
2978}
2979
2980const char* JavaThread::get_parent_name() const {
2981  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2982  oop thread_obj = threadObj();
2983  if (thread_obj != NULL) {
2984    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2985    if (thread_group != NULL) {
2986      oop parent = java_lang_ThreadGroup::parent(thread_group);
2987      if (parent != NULL) {
2988        // ThreadGroup.name can be null
2989        return java_lang_ThreadGroup::name(parent);
2990      }
2991    }
2992  }
2993  return NULL;
2994}
2995
2996ThreadPriority JavaThread::java_priority() const {
2997  oop thr_oop = threadObj();
2998  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2999  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3000  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3001  return priority;
3002}
3003
3004void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3005
3006  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3007  // Link Java Thread object <-> C++ Thread
3008
3009  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3010  // and put it into a new Handle.  The Handle "thread_oop" can then
3011  // be used to pass the C++ thread object to other methods.
3012
3013  // Set the Java level thread object (jthread) field of the
3014  // new thread (a JavaThread *) to C++ thread object using the
3015  // "thread_oop" handle.
3016
3017  // Set the thread field (a JavaThread *) of the
3018  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3019
3020  Handle thread_oop(Thread::current(),
3021                    JNIHandles::resolve_non_null(jni_thread));
3022  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3023         "must be initialized");
3024  set_threadObj(thread_oop());
3025  java_lang_Thread::set_thread(thread_oop(), this);
3026
3027  if (prio == NoPriority) {
3028    prio = java_lang_Thread::priority(thread_oop());
3029    assert(prio != NoPriority, "A valid priority should be present");
3030  }
3031
3032  // Push the Java priority down to the native thread; needs Threads_lock
3033  Thread::set_priority(this, prio);
3034
3035  prepare_ext();
3036
3037  // Add the new thread to the Threads list and set it in motion.
3038  // We must have threads lock in order to call Threads::add.
3039  // It is crucial that we do not block before the thread is
3040  // added to the Threads list for if a GC happens, then the java_thread oop
3041  // will not be visited by GC.
3042  Threads::add(this);
3043}
3044
3045oop JavaThread::current_park_blocker() {
3046  // Support for JSR-166 locks
3047  oop thread_oop = threadObj();
3048  if (thread_oop != NULL &&
3049      JDK_Version::current().supports_thread_park_blocker()) {
3050    return java_lang_Thread::park_blocker(thread_oop);
3051  }
3052  return NULL;
3053}
3054
3055
3056void JavaThread::print_stack_on(outputStream* st) {
3057  if (!has_last_Java_frame()) return;
3058  ResourceMark rm;
3059  HandleMark   hm;
3060
3061  RegisterMap reg_map(this);
3062  vframe* start_vf = last_java_vframe(&reg_map);
3063  int count = 0;
3064  for (vframe* f = start_vf; f; f = f->sender()) {
3065    if (f->is_java_frame()) {
3066      javaVFrame* jvf = javaVFrame::cast(f);
3067      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3068
3069      // Print out lock information
3070      if (JavaMonitorsInStackTrace) {
3071        jvf->print_lock_info_on(st, count);
3072      }
3073    } else {
3074      // Ignore non-Java frames
3075    }
3076
3077    // Bail-out case for too deep stacks
3078    count++;
3079    if (MaxJavaStackTraceDepth == count) return;
3080  }
3081}
3082
3083
3084// JVMTI PopFrame support
3085void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3086  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3087  if (in_bytes(size_in_bytes) != 0) {
3088    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3089    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3090    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3091  }
3092}
3093
3094void* JavaThread::popframe_preserved_args() {
3095  return _popframe_preserved_args;
3096}
3097
3098ByteSize JavaThread::popframe_preserved_args_size() {
3099  return in_ByteSize(_popframe_preserved_args_size);
3100}
3101
3102WordSize JavaThread::popframe_preserved_args_size_in_words() {
3103  int sz = in_bytes(popframe_preserved_args_size());
3104  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3105  return in_WordSize(sz / wordSize);
3106}
3107
3108void JavaThread::popframe_free_preserved_args() {
3109  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3110  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3111  _popframe_preserved_args = NULL;
3112  _popframe_preserved_args_size = 0;
3113}
3114
3115#ifndef PRODUCT
3116
3117void JavaThread::trace_frames() {
3118  tty->print_cr("[Describe stack]");
3119  int frame_no = 1;
3120  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3121    tty->print("  %d. ", frame_no++);
3122    fst.current()->print_value_on(tty, this);
3123    tty->cr();
3124  }
3125}
3126
3127class PrintAndVerifyOopClosure: public OopClosure {
3128 protected:
3129  template <class T> inline void do_oop_work(T* p) {
3130    oop obj = oopDesc::load_decode_heap_oop(p);
3131    if (obj == NULL) return;
3132    tty->print(INTPTR_FORMAT ": ", p2i(p));
3133    if (obj->is_oop_or_null()) {
3134      if (obj->is_objArray()) {
3135        tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3136      } else {
3137        obj->print();
3138      }
3139    } else {
3140      tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3141    }
3142    tty->cr();
3143  }
3144 public:
3145  virtual void do_oop(oop* p) { do_oop_work(p); }
3146  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3147};
3148
3149
3150static void oops_print(frame* f, const RegisterMap *map) {
3151  PrintAndVerifyOopClosure print;
3152  f->print_value();
3153  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3154}
3155
3156// Print our all the locations that contain oops and whether they are
3157// valid or not.  This useful when trying to find the oldest frame
3158// where an oop has gone bad since the frame walk is from youngest to
3159// oldest.
3160void JavaThread::trace_oops() {
3161  tty->print_cr("[Trace oops]");
3162  frames_do(oops_print);
3163}
3164
3165
3166#ifdef ASSERT
3167// Print or validate the layout of stack frames
3168void JavaThread::print_frame_layout(int depth, bool validate_only) {
3169  ResourceMark rm;
3170  PRESERVE_EXCEPTION_MARK;
3171  FrameValues values;
3172  int frame_no = 0;
3173  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3174    fst.current()->describe(values, ++frame_no);
3175    if (depth == frame_no) break;
3176  }
3177  if (validate_only) {
3178    values.validate();
3179  } else {
3180    tty->print_cr("[Describe stack layout]");
3181    values.print(this);
3182  }
3183}
3184#endif
3185
3186void JavaThread::trace_stack_from(vframe* start_vf) {
3187  ResourceMark rm;
3188  int vframe_no = 1;
3189  for (vframe* f = start_vf; f; f = f->sender()) {
3190    if (f->is_java_frame()) {
3191      javaVFrame::cast(f)->print_activation(vframe_no++);
3192    } else {
3193      f->print();
3194    }
3195    if (vframe_no > StackPrintLimit) {
3196      tty->print_cr("...<more frames>...");
3197      return;
3198    }
3199  }
3200}
3201
3202
3203void JavaThread::trace_stack() {
3204  if (!has_last_Java_frame()) return;
3205  ResourceMark rm;
3206  HandleMark   hm;
3207  RegisterMap reg_map(this);
3208  trace_stack_from(last_java_vframe(&reg_map));
3209}
3210
3211
3212#endif // PRODUCT
3213
3214
3215javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3216  assert(reg_map != NULL, "a map must be given");
3217  frame f = last_frame();
3218  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3219    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3220  }
3221  return NULL;
3222}
3223
3224
3225Klass* JavaThread::security_get_caller_class(int depth) {
3226  vframeStream vfst(this);
3227  vfst.security_get_caller_frame(depth);
3228  if (!vfst.at_end()) {
3229    return vfst.method()->method_holder();
3230  }
3231  return NULL;
3232}
3233
3234static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3235  assert(thread->is_Compiler_thread(), "must be compiler thread");
3236  CompileBroker::compiler_thread_loop();
3237}
3238
3239static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3240  NMethodSweeper::sweeper_loop();
3241}
3242
3243// Create a CompilerThread
3244CompilerThread::CompilerThread(CompileQueue* queue,
3245                               CompilerCounters* counters)
3246                               : JavaThread(&compiler_thread_entry) {
3247  _env   = NULL;
3248  _log   = NULL;
3249  _task  = NULL;
3250  _queue = queue;
3251  _counters = counters;
3252  _buffer_blob = NULL;
3253  _compiler = NULL;
3254
3255#ifndef PRODUCT
3256  _ideal_graph_printer = NULL;
3257#endif
3258}
3259
3260bool CompilerThread::can_call_java() const {
3261  return _compiler != NULL && _compiler->is_jvmci();
3262}
3263
3264// Create sweeper thread
3265CodeCacheSweeperThread::CodeCacheSweeperThread()
3266: JavaThread(&sweeper_thread_entry) {
3267  _scanned_nmethod = NULL;
3268}
3269void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3270  JavaThread::oops_do(f, cld_f, cf);
3271  if (_scanned_nmethod != NULL && cf != NULL) {
3272    // Safepoints can occur when the sweeper is scanning an nmethod so
3273    // process it here to make sure it isn't unloaded in the middle of
3274    // a scan.
3275    cf->do_code_blob(_scanned_nmethod);
3276  }
3277}
3278
3279
3280// ======= Threads ========
3281
3282// The Threads class links together all active threads, and provides
3283// operations over all threads.  It is protected by its own Mutex
3284// lock, which is also used in other contexts to protect thread
3285// operations from having the thread being operated on from exiting
3286// and going away unexpectedly (e.g., safepoint synchronization)
3287
3288JavaThread* Threads::_thread_list = NULL;
3289int         Threads::_number_of_threads = 0;
3290int         Threads::_number_of_non_daemon_threads = 0;
3291int         Threads::_return_code = 0;
3292int         Threads::_thread_claim_parity = 0;
3293size_t      JavaThread::_stack_size_at_create = 0;
3294#ifdef ASSERT
3295bool        Threads::_vm_complete = false;
3296#endif
3297
3298// All JavaThreads
3299#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3300
3301// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3302void Threads::threads_do(ThreadClosure* tc) {
3303  assert_locked_or_safepoint(Threads_lock);
3304  // ALL_JAVA_THREADS iterates through all JavaThreads
3305  ALL_JAVA_THREADS(p) {
3306    tc->do_thread(p);
3307  }
3308  // Someday we could have a table or list of all non-JavaThreads.
3309  // For now, just manually iterate through them.
3310  tc->do_thread(VMThread::vm_thread());
3311  Universe::heap()->gc_threads_do(tc);
3312  WatcherThread *wt = WatcherThread::watcher_thread();
3313  // Strictly speaking, the following NULL check isn't sufficient to make sure
3314  // the data for WatcherThread is still valid upon being examined. However,
3315  // considering that WatchThread terminates when the VM is on the way to
3316  // exit at safepoint, the chance of the above is extremely small. The right
3317  // way to prevent termination of WatcherThread would be to acquire
3318  // Terminator_lock, but we can't do that without violating the lock rank
3319  // checking in some cases.
3320  if (wt != NULL) {
3321    tc->do_thread(wt);
3322  }
3323
3324  // If CompilerThreads ever become non-JavaThreads, add them here
3325}
3326
3327void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3328  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3329
3330  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3331    create_vm_init_libraries();
3332  }
3333
3334  initialize_class(vmSymbols::java_lang_String(), CHECK);
3335
3336  // Inject CompactStrings value after the static initializers for String ran.
3337  java_lang_String::set_compact_strings(CompactStrings);
3338
3339  // Initialize java_lang.System (needed before creating the thread)
3340  initialize_class(vmSymbols::java_lang_System(), CHECK);
3341  // The VM creates & returns objects of this class. Make sure it's initialized.
3342  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3343  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3344  Handle thread_group = create_initial_thread_group(CHECK);
3345  Universe::set_main_thread_group(thread_group());
3346  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3347  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3348  main_thread->set_threadObj(thread_object);
3349  // Set thread status to running since main thread has
3350  // been started and running.
3351  java_lang_Thread::set_thread_status(thread_object,
3352                                      java_lang_Thread::RUNNABLE);
3353
3354  // The VM preresolves methods to these classes. Make sure that they get initialized
3355  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3356  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3357  call_initializeSystemClass(CHECK);
3358
3359  // get the Java runtime name after java.lang.System is initialized
3360  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3361  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3362
3363  // an instance of OutOfMemory exception has been allocated earlier
3364  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3365  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3366  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3367  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3368  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3369  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3370  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3371  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3372}
3373
3374void Threads::initialize_jsr292_core_classes(TRAPS) {
3375  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3376  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3377  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3378}
3379
3380jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3381  extern void JDK_Version_init();
3382
3383  // Preinitialize version info.
3384  VM_Version::early_initialize();
3385
3386  // Check version
3387  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3388
3389  // Initialize the output stream module
3390  ostream_init();
3391
3392  // Process java launcher properties.
3393  Arguments::process_sun_java_launcher_properties(args);
3394
3395  // Initialize the os module before using TLS
3396  os::init();
3397
3398  // Record VM creation timing statistics
3399  TraceVmCreationTime create_vm_timer;
3400  create_vm_timer.start();
3401
3402  // Initialize system properties.
3403  Arguments::init_system_properties();
3404
3405  // So that JDK version can be used as a discriminator when parsing arguments
3406  JDK_Version_init();
3407
3408  // Update/Initialize System properties after JDK version number is known
3409  Arguments::init_version_specific_system_properties();
3410
3411  // Make sure to initialize log configuration *before* parsing arguments
3412  LogConfiguration::initialize(create_vm_timer.begin_time());
3413
3414  // Parse arguments
3415  jint parse_result = Arguments::parse(args);
3416  if (parse_result != JNI_OK) return parse_result;
3417
3418  os::init_before_ergo();
3419
3420  jint ergo_result = Arguments::apply_ergo();
3421  if (ergo_result != JNI_OK) return ergo_result;
3422
3423  // Final check of all ranges after ergonomics which may change values.
3424  if (!CommandLineFlagRangeList::check_ranges()) {
3425    return JNI_EINVAL;
3426  }
3427
3428  // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3429  bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3430  if (!constraint_result) {
3431    return JNI_EINVAL;
3432  }
3433
3434  if (PauseAtStartup) {
3435    os::pause();
3436  }
3437
3438  HOTSPOT_VM_INIT_BEGIN();
3439
3440  // Timing (must come after argument parsing)
3441  TraceTime timer("Create VM", TraceStartupTime);
3442
3443  // Initialize the os module after parsing the args
3444  jint os_init_2_result = os::init_2();
3445  if (os_init_2_result != JNI_OK) return os_init_2_result;
3446
3447  jint adjust_after_os_result = Arguments::adjust_after_os();
3448  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3449
3450  // Initialize library-based TLS
3451  ThreadLocalStorage::init();
3452
3453  // Initialize output stream logging
3454  ostream_init_log();
3455
3456  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3457  // Must be before create_vm_init_agents()
3458  if (Arguments::init_libraries_at_startup()) {
3459    convert_vm_init_libraries_to_agents();
3460  }
3461
3462  // Launch -agentlib/-agentpath and converted -Xrun agents
3463  if (Arguments::init_agents_at_startup()) {
3464    create_vm_init_agents();
3465  }
3466
3467  // Initialize Threads state
3468  _thread_list = NULL;
3469  _number_of_threads = 0;
3470  _number_of_non_daemon_threads = 0;
3471
3472  // Initialize global data structures and create system classes in heap
3473  vm_init_globals();
3474
3475#if INCLUDE_JVMCI
3476  if (JVMCICounterSize > 0) {
3477    JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3478    memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3479  } else {
3480    JavaThread::_jvmci_old_thread_counters = NULL;
3481  }
3482#endif // INCLUDE_JVMCI
3483
3484  // Attach the main thread to this os thread
3485  JavaThread* main_thread = new JavaThread();
3486  main_thread->set_thread_state(_thread_in_vm);
3487  main_thread->initialize_thread_current();
3488  // must do this before set_active_handles
3489  main_thread->record_stack_base_and_size();
3490  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3491
3492  if (!main_thread->set_as_starting_thread()) {
3493    vm_shutdown_during_initialization(
3494                                      "Failed necessary internal allocation. Out of swap space");
3495    delete main_thread;
3496    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3497    return JNI_ENOMEM;
3498  }
3499
3500  // Enable guard page *after* os::create_main_thread(), otherwise it would
3501  // crash Linux VM, see notes in os_linux.cpp.
3502  main_thread->create_stack_guard_pages();
3503
3504  // Initialize Java-Level synchronization subsystem
3505  ObjectMonitor::Initialize();
3506
3507  // Initialize global modules
3508  jint status = init_globals();
3509  if (status != JNI_OK) {
3510    delete main_thread;
3511    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3512    return status;
3513  }
3514
3515  // Should be done after the heap is fully created
3516  main_thread->cache_global_variables();
3517
3518  HandleMark hm;
3519
3520  { MutexLocker mu(Threads_lock);
3521    Threads::add(main_thread);
3522  }
3523
3524  // Any JVMTI raw monitors entered in onload will transition into
3525  // real raw monitor. VM is setup enough here for raw monitor enter.
3526  JvmtiExport::transition_pending_onload_raw_monitors();
3527
3528  // Create the VMThread
3529  { TraceTime timer("Start VMThread", TraceStartupTime);
3530    VMThread::create();
3531    Thread* vmthread = VMThread::vm_thread();
3532
3533    if (!os::create_thread(vmthread, os::vm_thread)) {
3534      vm_exit_during_initialization("Cannot create VM thread. "
3535                                    "Out of system resources.");
3536    }
3537
3538    // Wait for the VM thread to become ready, and VMThread::run to initialize
3539    // Monitors can have spurious returns, must always check another state flag
3540    {
3541      MutexLocker ml(Notify_lock);
3542      os::start_thread(vmthread);
3543      while (vmthread->active_handles() == NULL) {
3544        Notify_lock->wait();
3545      }
3546    }
3547  }
3548
3549  assert(Universe::is_fully_initialized(), "not initialized");
3550  if (VerifyDuringStartup) {
3551    // Make sure we're starting with a clean slate.
3552    VM_Verify verify_op;
3553    VMThread::execute(&verify_op);
3554  }
3555
3556  Thread* THREAD = Thread::current();
3557
3558  // At this point, the Universe is initialized, but we have not executed
3559  // any byte code.  Now is a good time (the only time) to dump out the
3560  // internal state of the JVM for sharing.
3561  if (DumpSharedSpaces) {
3562    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3563    ShouldNotReachHere();
3564  }
3565
3566  // Always call even when there are not JVMTI environments yet, since environments
3567  // may be attached late and JVMTI must track phases of VM execution
3568  JvmtiExport::enter_start_phase();
3569
3570  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3571  JvmtiExport::post_vm_start();
3572
3573  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3574
3575  // We need this for ClassDataSharing - the initial vm.info property is set
3576  // with the default value of CDS "sharing" which may be reset through
3577  // command line options.
3578  reset_vm_info_property(CHECK_JNI_ERR);
3579
3580  quicken_jni_functions();
3581
3582  // Must be run after init_ft which initializes ft_enabled
3583  if (TRACE_INITIALIZE() != JNI_OK) {
3584    vm_exit_during_initialization("Failed to initialize tracing backend");
3585  }
3586
3587  // Set flag that basic initialization has completed. Used by exceptions and various
3588  // debug stuff, that does not work until all basic classes have been initialized.
3589  set_init_completed();
3590
3591  LogConfiguration::post_initialize();
3592  Metaspace::post_initialize();
3593
3594  HOTSPOT_VM_INIT_END();
3595
3596  // record VM initialization completion time
3597#if INCLUDE_MANAGEMENT
3598  Management::record_vm_init_completed();
3599#endif // INCLUDE_MANAGEMENT
3600
3601  // Compute system loader. Note that this has to occur after set_init_completed, since
3602  // valid exceptions may be thrown in the process.
3603  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3604  // set_init_completed has just been called, causing exceptions not to be shortcut
3605  // anymore. We call vm_exit_during_initialization directly instead.
3606  SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3607
3608#if INCLUDE_ALL_GCS
3609  // Support for ConcurrentMarkSweep. This should be cleaned up
3610  // and better encapsulated. The ugly nested if test would go away
3611  // once things are properly refactored. XXX YSR
3612  if (UseConcMarkSweepGC || UseG1GC) {
3613    if (UseConcMarkSweepGC) {
3614      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3615    } else {
3616      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3617    }
3618  }
3619#endif // INCLUDE_ALL_GCS
3620
3621  // Always call even when there are not JVMTI environments yet, since environments
3622  // may be attached late and JVMTI must track phases of VM execution
3623  JvmtiExport::enter_live_phase();
3624
3625  // Signal Dispatcher needs to be started before VMInit event is posted
3626  os::signal_init();
3627
3628  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3629  if (!DisableAttachMechanism) {
3630    AttachListener::vm_start();
3631    if (StartAttachListener || AttachListener::init_at_startup()) {
3632      AttachListener::init();
3633    }
3634  }
3635
3636  // Launch -Xrun agents
3637  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3638  // back-end can launch with -Xdebug -Xrunjdwp.
3639  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3640    create_vm_init_libraries();
3641  }
3642
3643  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3644  JvmtiExport::post_vm_initialized();
3645
3646  if (TRACE_START() != JNI_OK) {
3647    vm_exit_during_initialization("Failed to start tracing backend.");
3648  }
3649
3650  if (CleanChunkPoolAsync) {
3651    Chunk::start_chunk_pool_cleaner_task();
3652  }
3653
3654#if INCLUDE_JVMCI
3655  if (EnableJVMCI) {
3656    const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler");
3657    if (jvmciCompiler != NULL) {
3658      JVMCIRuntime::save_compiler(jvmciCompiler);
3659    }
3660    JVMCIRuntime::maybe_print_flags(CHECK_JNI_ERR);
3661  }
3662#endif // INCLUDE_JVMCI
3663
3664  // initialize compiler(s)
3665#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3666  CompileBroker::compilation_init(CHECK_JNI_ERR);
3667#endif
3668
3669  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3670  // It is done after compilers are initialized, because otherwise compilations of
3671  // signature polymorphic MH intrinsics can be missed
3672  // (see SystemDictionary::find_method_handle_intrinsic).
3673  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3674
3675#if INCLUDE_MANAGEMENT
3676  Management::initialize(THREAD);
3677
3678  if (HAS_PENDING_EXCEPTION) {
3679    // management agent fails to start possibly due to
3680    // configuration problem and is responsible for printing
3681    // stack trace if appropriate. Simply exit VM.
3682    vm_exit(1);
3683  }
3684#endif // INCLUDE_MANAGEMENT
3685
3686  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3687  if (MemProfiling)                   MemProfiler::engage();
3688  StatSampler::engage();
3689  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3690
3691  BiasedLocking::init();
3692
3693#if INCLUDE_RTM_OPT
3694  RTMLockingCounters::init();
3695#endif
3696
3697  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3698    call_postVMInitHook(THREAD);
3699    // The Java side of PostVMInitHook.run must deal with all
3700    // exceptions and provide means of diagnosis.
3701    if (HAS_PENDING_EXCEPTION) {
3702      CLEAR_PENDING_EXCEPTION;
3703    }
3704  }
3705
3706  {
3707    MutexLocker ml(PeriodicTask_lock);
3708    // Make sure the WatcherThread can be started by WatcherThread::start()
3709    // or by dynamic enrollment.
3710    WatcherThread::make_startable();
3711    // Start up the WatcherThread if there are any periodic tasks
3712    // NOTE:  All PeriodicTasks should be registered by now. If they
3713    //   aren't, late joiners might appear to start slowly (we might
3714    //   take a while to process their first tick).
3715    if (PeriodicTask::num_tasks() > 0) {
3716      WatcherThread::start();
3717    }
3718  }
3719
3720  CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3721
3722  create_vm_timer.end();
3723#ifdef ASSERT
3724  _vm_complete = true;
3725#endif
3726  return JNI_OK;
3727}
3728
3729// type for the Agent_OnLoad and JVM_OnLoad entry points
3730extern "C" {
3731  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3732}
3733// Find a command line agent library and return its entry point for
3734//         -agentlib:  -agentpath:   -Xrun
3735// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3736static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3737                                    const char *on_load_symbols[],
3738                                    size_t num_symbol_entries) {
3739  OnLoadEntry_t on_load_entry = NULL;
3740  void *library = NULL;
3741
3742  if (!agent->valid()) {
3743    char buffer[JVM_MAXPATHLEN];
3744    char ebuf[1024] = "";
3745    const char *name = agent->name();
3746    const char *msg = "Could not find agent library ";
3747
3748    // First check to see if agent is statically linked into executable
3749    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3750      library = agent->os_lib();
3751    } else if (agent->is_absolute_path()) {
3752      library = os::dll_load(name, ebuf, sizeof ebuf);
3753      if (library == NULL) {
3754        const char *sub_msg = " in absolute path, with error: ";
3755        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3756        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3757        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3758        // If we can't find the agent, exit.
3759        vm_exit_during_initialization(buf, NULL);
3760        FREE_C_HEAP_ARRAY(char, buf);
3761      }
3762    } else {
3763      // Try to load the agent from the standard dll directory
3764      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3765                             name)) {
3766        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3767      }
3768      if (library == NULL) { // Try the local directory
3769        char ns[1] = {0};
3770        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3771          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3772        }
3773        if (library == NULL) {
3774          const char *sub_msg = " on the library path, with error: ";
3775          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3776          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3777          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3778          // If we can't find the agent, exit.
3779          vm_exit_during_initialization(buf, NULL);
3780          FREE_C_HEAP_ARRAY(char, buf);
3781        }
3782      }
3783    }
3784    agent->set_os_lib(library);
3785    agent->set_valid();
3786  }
3787
3788  // Find the OnLoad function.
3789  on_load_entry =
3790    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3791                                                          false,
3792                                                          on_load_symbols,
3793                                                          num_symbol_entries));
3794  return on_load_entry;
3795}
3796
3797// Find the JVM_OnLoad entry point
3798static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3799  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3800  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3801}
3802
3803// Find the Agent_OnLoad entry point
3804static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3805  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3806  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3807}
3808
3809// For backwards compatibility with -Xrun
3810// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3811// treated like -agentpath:
3812// Must be called before agent libraries are created
3813void Threads::convert_vm_init_libraries_to_agents() {
3814  AgentLibrary* agent;
3815  AgentLibrary* next;
3816
3817  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3818    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3819    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3820
3821    // If there is an JVM_OnLoad function it will get called later,
3822    // otherwise see if there is an Agent_OnLoad
3823    if (on_load_entry == NULL) {
3824      on_load_entry = lookup_agent_on_load(agent);
3825      if (on_load_entry != NULL) {
3826        // switch it to the agent list -- so that Agent_OnLoad will be called,
3827        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3828        Arguments::convert_library_to_agent(agent);
3829      } else {
3830        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3831      }
3832    }
3833  }
3834}
3835
3836// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3837// Invokes Agent_OnLoad
3838// Called very early -- before JavaThreads exist
3839void Threads::create_vm_init_agents() {
3840  extern struct JavaVM_ main_vm;
3841  AgentLibrary* agent;
3842
3843  JvmtiExport::enter_onload_phase();
3844
3845  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3846    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3847
3848    if (on_load_entry != NULL) {
3849      // Invoke the Agent_OnLoad function
3850      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3851      if (err != JNI_OK) {
3852        vm_exit_during_initialization("agent library failed to init", agent->name());
3853      }
3854    } else {
3855      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3856    }
3857  }
3858  JvmtiExport::enter_primordial_phase();
3859}
3860
3861extern "C" {
3862  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3863}
3864
3865void Threads::shutdown_vm_agents() {
3866  // Send any Agent_OnUnload notifications
3867  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3868  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3869  extern struct JavaVM_ main_vm;
3870  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3871
3872    // Find the Agent_OnUnload function.
3873    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3874                                                   os::find_agent_function(agent,
3875                                                   false,
3876                                                   on_unload_symbols,
3877                                                   num_symbol_entries));
3878
3879    // Invoke the Agent_OnUnload function
3880    if (unload_entry != NULL) {
3881      JavaThread* thread = JavaThread::current();
3882      ThreadToNativeFromVM ttn(thread);
3883      HandleMark hm(thread);
3884      (*unload_entry)(&main_vm);
3885    }
3886  }
3887}
3888
3889// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3890// Invokes JVM_OnLoad
3891void Threads::create_vm_init_libraries() {
3892  extern struct JavaVM_ main_vm;
3893  AgentLibrary* agent;
3894
3895  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3896    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3897
3898    if (on_load_entry != NULL) {
3899      // Invoke the JVM_OnLoad function
3900      JavaThread* thread = JavaThread::current();
3901      ThreadToNativeFromVM ttn(thread);
3902      HandleMark hm(thread);
3903      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3904      if (err != JNI_OK) {
3905        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3906      }
3907    } else {
3908      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3909    }
3910  }
3911}
3912
3913JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3914  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3915
3916  JavaThread* java_thread = NULL;
3917  // Sequential search for now.  Need to do better optimization later.
3918  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3919    oop tobj = thread->threadObj();
3920    if (!thread->is_exiting() &&
3921        tobj != NULL &&
3922        java_tid == java_lang_Thread::thread_id(tobj)) {
3923      java_thread = thread;
3924      break;
3925    }
3926  }
3927  return java_thread;
3928}
3929
3930
3931// Last thread running calls java.lang.Shutdown.shutdown()
3932void JavaThread::invoke_shutdown_hooks() {
3933  HandleMark hm(this);
3934
3935  // We could get here with a pending exception, if so clear it now.
3936  if (this->has_pending_exception()) {
3937    this->clear_pending_exception();
3938  }
3939
3940  EXCEPTION_MARK;
3941  Klass* k =
3942    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3943                                      THREAD);
3944  if (k != NULL) {
3945    // SystemDictionary::resolve_or_null will return null if there was
3946    // an exception.  If we cannot load the Shutdown class, just don't
3947    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3948    // and finalizers (if runFinalizersOnExit is set) won't be run.
3949    // Note that if a shutdown hook was registered or runFinalizersOnExit
3950    // was called, the Shutdown class would have already been loaded
3951    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3952    instanceKlassHandle shutdown_klass (THREAD, k);
3953    JavaValue result(T_VOID);
3954    JavaCalls::call_static(&result,
3955                           shutdown_klass,
3956                           vmSymbols::shutdown_method_name(),
3957                           vmSymbols::void_method_signature(),
3958                           THREAD);
3959  }
3960  CLEAR_PENDING_EXCEPTION;
3961}
3962
3963// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3964// the program falls off the end of main(). Another VM exit path is through
3965// vm_exit() when the program calls System.exit() to return a value or when
3966// there is a serious error in VM. The two shutdown paths are not exactly
3967// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3968// and VM_Exit op at VM level.
3969//
3970// Shutdown sequence:
3971//   + Shutdown native memory tracking if it is on
3972//   + Wait until we are the last non-daemon thread to execute
3973//     <-- every thing is still working at this moment -->
3974//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3975//        shutdown hooks, run finalizers if finalization-on-exit
3976//   + Call before_exit(), prepare for VM exit
3977//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3978//        currently the only user of this mechanism is File.deleteOnExit())
3979//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3980//        post thread end and vm death events to JVMTI,
3981//        stop signal thread
3982//   + Call JavaThread::exit(), it will:
3983//      > release JNI handle blocks, remove stack guard pages
3984//      > remove this thread from Threads list
3985//     <-- no more Java code from this thread after this point -->
3986//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3987//     the compiler threads at safepoint
3988//     <-- do not use anything that could get blocked by Safepoint -->
3989//   + Disable tracing at JNI/JVM barriers
3990//   + Set _vm_exited flag for threads that are still running native code
3991//   + Delete this thread
3992//   + Call exit_globals()
3993//      > deletes tty
3994//      > deletes PerfMemory resources
3995//   + Return to caller
3996
3997bool Threads::destroy_vm() {
3998  JavaThread* thread = JavaThread::current();
3999
4000#ifdef ASSERT
4001  _vm_complete = false;
4002#endif
4003  // Wait until we are the last non-daemon thread to execute
4004  { MutexLocker nu(Threads_lock);
4005    while (Threads::number_of_non_daemon_threads() > 1)
4006      // This wait should make safepoint checks, wait without a timeout,
4007      // and wait as a suspend-equivalent condition.
4008      //
4009      // Note: If the FlatProfiler is running and this thread is waiting
4010      // for another non-daemon thread to finish, then the FlatProfiler
4011      // is waiting for the external suspend request on this thread to
4012      // complete. wait_for_ext_suspend_completion() will eventually
4013      // timeout, but that takes time. Making this wait a suspend-
4014      // equivalent condition solves that timeout problem.
4015      //
4016      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4017                         Mutex::_as_suspend_equivalent_flag);
4018  }
4019
4020  // Hang forever on exit if we are reporting an error.
4021  if (ShowMessageBoxOnError && is_error_reported()) {
4022    os::infinite_sleep();
4023  }
4024  os::wait_for_keypress_at_exit();
4025
4026  // run Java level shutdown hooks
4027  thread->invoke_shutdown_hooks();
4028
4029  before_exit(thread);
4030
4031  thread->exit(true);
4032
4033  // Stop VM thread.
4034  {
4035    // 4945125 The vm thread comes to a safepoint during exit.
4036    // GC vm_operations can get caught at the safepoint, and the
4037    // heap is unparseable if they are caught. Grab the Heap_lock
4038    // to prevent this. The GC vm_operations will not be able to
4039    // queue until after the vm thread is dead. After this point,
4040    // we'll never emerge out of the safepoint before the VM exits.
4041
4042    MutexLocker ml(Heap_lock);
4043
4044    VMThread::wait_for_vm_thread_exit();
4045    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4046    VMThread::destroy();
4047  }
4048
4049  // clean up ideal graph printers
4050#if defined(COMPILER2) && !defined(PRODUCT)
4051  IdealGraphPrinter::clean_up();
4052#endif
4053
4054  // Now, all Java threads are gone except daemon threads. Daemon threads
4055  // running Java code or in VM are stopped by the Safepoint. However,
4056  // daemon threads executing native code are still running.  But they
4057  // will be stopped at native=>Java/VM barriers. Note that we can't
4058  // simply kill or suspend them, as it is inherently deadlock-prone.
4059
4060  VM_Exit::set_vm_exited();
4061
4062  notify_vm_shutdown();
4063
4064  delete thread;
4065
4066#if INCLUDE_JVMCI
4067  if (JVMCICounterSize > 0) {
4068    FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4069  }
4070#endif
4071
4072  // exit_globals() will delete tty
4073  exit_globals();
4074
4075  LogConfiguration::finalize();
4076
4077  return true;
4078}
4079
4080
4081jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4082  if (version == JNI_VERSION_1_1) return JNI_TRUE;
4083  return is_supported_jni_version(version);
4084}
4085
4086
4087jboolean Threads::is_supported_jni_version(jint version) {
4088  if (version == JNI_VERSION_1_2) return JNI_TRUE;
4089  if (version == JNI_VERSION_1_4) return JNI_TRUE;
4090  if (version == JNI_VERSION_1_6) return JNI_TRUE;
4091  if (version == JNI_VERSION_1_8) return JNI_TRUE;
4092  return JNI_FALSE;
4093}
4094
4095
4096void Threads::add(JavaThread* p, bool force_daemon) {
4097  // The threads lock must be owned at this point
4098  assert_locked_or_safepoint(Threads_lock);
4099
4100  // See the comment for this method in thread.hpp for its purpose and
4101  // why it is called here.
4102  p->initialize_queues();
4103  p->set_next(_thread_list);
4104  _thread_list = p;
4105  _number_of_threads++;
4106  oop threadObj = p->threadObj();
4107  bool daemon = true;
4108  // Bootstrapping problem: threadObj can be null for initial
4109  // JavaThread (or for threads attached via JNI)
4110  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4111    _number_of_non_daemon_threads++;
4112    daemon = false;
4113  }
4114
4115  ThreadService::add_thread(p, daemon);
4116
4117  // Possible GC point.
4118  Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4119}
4120
4121void Threads::remove(JavaThread* p) {
4122  // Extra scope needed for Thread_lock, so we can check
4123  // that we do not remove thread without safepoint code notice
4124  { MutexLocker ml(Threads_lock);
4125
4126    assert(includes(p), "p must be present");
4127
4128    JavaThread* current = _thread_list;
4129    JavaThread* prev    = NULL;
4130
4131    while (current != p) {
4132      prev    = current;
4133      current = current->next();
4134    }
4135
4136    if (prev) {
4137      prev->set_next(current->next());
4138    } else {
4139      _thread_list = p->next();
4140    }
4141    _number_of_threads--;
4142    oop threadObj = p->threadObj();
4143    bool daemon = true;
4144    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4145      _number_of_non_daemon_threads--;
4146      daemon = false;
4147
4148      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4149      // on destroy_vm will wake up.
4150      if (number_of_non_daemon_threads() == 1) {
4151        Threads_lock->notify_all();
4152      }
4153    }
4154    ThreadService::remove_thread(p, daemon);
4155
4156    // Make sure that safepoint code disregard this thread. This is needed since
4157    // the thread might mess around with locks after this point. This can cause it
4158    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4159    // of this thread since it is removed from the queue.
4160    p->set_terminated_value();
4161  } // unlock Threads_lock
4162
4163  // Since Events::log uses a lock, we grab it outside the Threads_lock
4164  Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4165}
4166
4167// Threads_lock must be held when this is called (or must be called during a safepoint)
4168bool Threads::includes(JavaThread* p) {
4169  assert(Threads_lock->is_locked(), "sanity check");
4170  ALL_JAVA_THREADS(q) {
4171    if (q == p) {
4172      return true;
4173    }
4174  }
4175  return false;
4176}
4177
4178// Operations on the Threads list for GC.  These are not explicitly locked,
4179// but the garbage collector must provide a safe context for them to run.
4180// In particular, these things should never be called when the Threads_lock
4181// is held by some other thread. (Note: the Safepoint abstraction also
4182// uses the Threads_lock to guarantee this property. It also makes sure that
4183// all threads gets blocked when exiting or starting).
4184
4185void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4186  ALL_JAVA_THREADS(p) {
4187    p->oops_do(f, cld_f, cf);
4188  }
4189  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4190}
4191
4192void Threads::change_thread_claim_parity() {
4193  // Set the new claim parity.
4194  assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4195         "Not in range.");
4196  _thread_claim_parity++;
4197  if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4198  assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4199         "Not in range.");
4200}
4201
4202#ifdef ASSERT
4203void Threads::assert_all_threads_claimed() {
4204  ALL_JAVA_THREADS(p) {
4205    const int thread_parity = p->oops_do_parity();
4206    assert((thread_parity == _thread_claim_parity),
4207           "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4208  }
4209}
4210#endif // ASSERT
4211
4212void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4213  int cp = Threads::thread_claim_parity();
4214  ALL_JAVA_THREADS(p) {
4215    if (p->claim_oops_do(is_par, cp)) {
4216      p->oops_do(f, cld_f, cf);
4217    }
4218  }
4219  VMThread* vmt = VMThread::vm_thread();
4220  if (vmt->claim_oops_do(is_par, cp)) {
4221    vmt->oops_do(f, cld_f, cf);
4222  }
4223}
4224
4225#if INCLUDE_ALL_GCS
4226// Used by ParallelScavenge
4227void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4228  ALL_JAVA_THREADS(p) {
4229    q->enqueue(new ThreadRootsTask(p));
4230  }
4231  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4232}
4233
4234// Used by Parallel Old
4235void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4236  ALL_JAVA_THREADS(p) {
4237    q->enqueue(new ThreadRootsMarkingTask(p));
4238  }
4239  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4240}
4241#endif // INCLUDE_ALL_GCS
4242
4243void Threads::nmethods_do(CodeBlobClosure* cf) {
4244  ALL_JAVA_THREADS(p) {
4245    p->nmethods_do(cf);
4246  }
4247  VMThread::vm_thread()->nmethods_do(cf);
4248}
4249
4250void Threads::metadata_do(void f(Metadata*)) {
4251  ALL_JAVA_THREADS(p) {
4252    p->metadata_do(f);
4253  }
4254}
4255
4256class ThreadHandlesClosure : public ThreadClosure {
4257  void (*_f)(Metadata*);
4258 public:
4259  ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4260  virtual void do_thread(Thread* thread) {
4261    thread->metadata_handles_do(_f);
4262  }
4263};
4264
4265void Threads::metadata_handles_do(void f(Metadata*)) {
4266  // Only walk the Handles in Thread.
4267  ThreadHandlesClosure handles_closure(f);
4268  threads_do(&handles_closure);
4269}
4270
4271void Threads::deoptimized_wrt_marked_nmethods() {
4272  ALL_JAVA_THREADS(p) {
4273    p->deoptimized_wrt_marked_nmethods();
4274  }
4275}
4276
4277
4278// Get count Java threads that are waiting to enter the specified monitor.
4279GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4280                                                         address monitor,
4281                                                         bool doLock) {
4282  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4283         "must grab Threads_lock or be at safepoint");
4284  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4285
4286  int i = 0;
4287  {
4288    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4289    ALL_JAVA_THREADS(p) {
4290      if (!p->can_call_java()) continue;
4291
4292      address pending = (address)p->current_pending_monitor();
4293      if (pending == monitor) {             // found a match
4294        if (i < count) result->append(p);   // save the first count matches
4295        i++;
4296      }
4297    }
4298  }
4299  return result;
4300}
4301
4302
4303JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4304                                                      bool doLock) {
4305  assert(doLock ||
4306         Threads_lock->owned_by_self() ||
4307         SafepointSynchronize::is_at_safepoint(),
4308         "must grab Threads_lock or be at safepoint");
4309
4310  // NULL owner means not locked so we can skip the search
4311  if (owner == NULL) return NULL;
4312
4313  {
4314    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4315    ALL_JAVA_THREADS(p) {
4316      // first, see if owner is the address of a Java thread
4317      if (owner == (address)p) return p;
4318    }
4319  }
4320  // Cannot assert on lack of success here since this function may be
4321  // used by code that is trying to report useful problem information
4322  // like deadlock detection.
4323  if (UseHeavyMonitors) return NULL;
4324
4325  // If we didn't find a matching Java thread and we didn't force use of
4326  // heavyweight monitors, then the owner is the stack address of the
4327  // Lock Word in the owning Java thread's stack.
4328  //
4329  JavaThread* the_owner = NULL;
4330  {
4331    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4332    ALL_JAVA_THREADS(q) {
4333      if (q->is_lock_owned(owner)) {
4334        the_owner = q;
4335        break;
4336      }
4337    }
4338  }
4339  // cannot assert on lack of success here; see above comment
4340  return the_owner;
4341}
4342
4343// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4344void Threads::print_on(outputStream* st, bool print_stacks,
4345                       bool internal_format, bool print_concurrent_locks) {
4346  char buf[32];
4347  st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4348
4349  st->print_cr("Full thread dump %s (%s %s):",
4350               Abstract_VM_Version::vm_name(),
4351               Abstract_VM_Version::vm_release(),
4352               Abstract_VM_Version::vm_info_string());
4353  st->cr();
4354
4355#if INCLUDE_SERVICES
4356  // Dump concurrent locks
4357  ConcurrentLocksDump concurrent_locks;
4358  if (print_concurrent_locks) {
4359    concurrent_locks.dump_at_safepoint();
4360  }
4361#endif // INCLUDE_SERVICES
4362
4363  ALL_JAVA_THREADS(p) {
4364    ResourceMark rm;
4365    p->print_on(st);
4366    if (print_stacks) {
4367      if (internal_format) {
4368        p->trace_stack();
4369      } else {
4370        p->print_stack_on(st);
4371      }
4372    }
4373    st->cr();
4374#if INCLUDE_SERVICES
4375    if (print_concurrent_locks) {
4376      concurrent_locks.print_locks_on(p, st);
4377    }
4378#endif // INCLUDE_SERVICES
4379  }
4380
4381  VMThread::vm_thread()->print_on(st);
4382  st->cr();
4383  Universe::heap()->print_gc_threads_on(st);
4384  WatcherThread* wt = WatcherThread::watcher_thread();
4385  if (wt != NULL) {
4386    wt->print_on(st);
4387    st->cr();
4388  }
4389  CompileBroker::print_compiler_threads_on(st);
4390  st->flush();
4391}
4392
4393// Threads::print_on_error() is called by fatal error handler. It's possible
4394// that VM is not at safepoint and/or current thread is inside signal handler.
4395// Don't print stack trace, as the stack may not be walkable. Don't allocate
4396// memory (even in resource area), it might deadlock the error handler.
4397void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4398                             int buflen) {
4399  bool found_current = false;
4400  st->print_cr("Java Threads: ( => current thread )");
4401  ALL_JAVA_THREADS(thread) {
4402    bool is_current = (current == thread);
4403    found_current = found_current || is_current;
4404
4405    st->print("%s", is_current ? "=>" : "  ");
4406
4407    st->print(PTR_FORMAT, p2i(thread));
4408    st->print(" ");
4409    thread->print_on_error(st, buf, buflen);
4410    st->cr();
4411  }
4412  st->cr();
4413
4414  st->print_cr("Other Threads:");
4415  if (VMThread::vm_thread()) {
4416    bool is_current = (current == VMThread::vm_thread());
4417    found_current = found_current || is_current;
4418    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4419
4420    st->print(PTR_FORMAT, p2i(VMThread::vm_thread()));
4421    st->print(" ");
4422    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4423    st->cr();
4424  }
4425  WatcherThread* wt = WatcherThread::watcher_thread();
4426  if (wt != NULL) {
4427    bool is_current = (current == wt);
4428    found_current = found_current || is_current;
4429    st->print("%s", is_current ? "=>" : "  ");
4430
4431    st->print(PTR_FORMAT, p2i(wt));
4432    st->print(" ");
4433    wt->print_on_error(st, buf, buflen);
4434    st->cr();
4435  }
4436  if (!found_current) {
4437    st->cr();
4438    st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4439    current->print_on_error(st, buf, buflen);
4440    st->cr();
4441  }
4442}
4443
4444// Internal SpinLock and Mutex
4445// Based on ParkEvent
4446
4447// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4448//
4449// We employ SpinLocks _only for low-contention, fixed-length
4450// short-duration critical sections where we're concerned
4451// about native mutex_t or HotSpot Mutex:: latency.
4452// The mux construct provides a spin-then-block mutual exclusion
4453// mechanism.
4454//
4455// Testing has shown that contention on the ListLock guarding gFreeList
4456// is common.  If we implement ListLock as a simple SpinLock it's common
4457// for the JVM to devolve to yielding with little progress.  This is true
4458// despite the fact that the critical sections protected by ListLock are
4459// extremely short.
4460//
4461// TODO-FIXME: ListLock should be of type SpinLock.
4462// We should make this a 1st-class type, integrated into the lock
4463// hierarchy as leaf-locks.  Critically, the SpinLock structure
4464// should have sufficient padding to avoid false-sharing and excessive
4465// cache-coherency traffic.
4466
4467
4468typedef volatile int SpinLockT;
4469
4470void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4471  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4472    return;   // normal fast-path return
4473  }
4474
4475  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4476  TEVENT(SpinAcquire - ctx);
4477  int ctr = 0;
4478  int Yields = 0;
4479  for (;;) {
4480    while (*adr != 0) {
4481      ++ctr;
4482      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4483        if (Yields > 5) {
4484          os::naked_short_sleep(1);
4485        } else {
4486          os::naked_yield();
4487          ++Yields;
4488        }
4489      } else {
4490        SpinPause();
4491      }
4492    }
4493    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4494  }
4495}
4496
4497void Thread::SpinRelease(volatile int * adr) {
4498  assert(*adr != 0, "invariant");
4499  OrderAccess::fence();      // guarantee at least release consistency.
4500  // Roach-motel semantics.
4501  // It's safe if subsequent LDs and STs float "up" into the critical section,
4502  // but prior LDs and STs within the critical section can't be allowed
4503  // to reorder or float past the ST that releases the lock.
4504  // Loads and stores in the critical section - which appear in program
4505  // order before the store that releases the lock - must also appear
4506  // before the store that releases the lock in memory visibility order.
4507  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4508  // the ST of 0 into the lock-word which releases the lock, so fence
4509  // more than covers this on all platforms.
4510  *adr = 0;
4511}
4512
4513// muxAcquire and muxRelease:
4514//
4515// *  muxAcquire and muxRelease support a single-word lock-word construct.
4516//    The LSB of the word is set IFF the lock is held.
4517//    The remainder of the word points to the head of a singly-linked list
4518//    of threads blocked on the lock.
4519//
4520// *  The current implementation of muxAcquire-muxRelease uses its own
4521//    dedicated Thread._MuxEvent instance.  If we're interested in
4522//    minimizing the peak number of extant ParkEvent instances then
4523//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4524//    as certain invariants were satisfied.  Specifically, care would need
4525//    to be taken with regards to consuming unpark() "permits".
4526//    A safe rule of thumb is that a thread would never call muxAcquire()
4527//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4528//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4529//    consume an unpark() permit intended for monitorenter, for instance.
4530//    One way around this would be to widen the restricted-range semaphore
4531//    implemented in park().  Another alternative would be to provide
4532//    multiple instances of the PlatformEvent() for each thread.  One
4533//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4534//
4535// *  Usage:
4536//    -- Only as leaf locks
4537//    -- for short-term locking only as muxAcquire does not perform
4538//       thread state transitions.
4539//
4540// Alternatives:
4541// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4542//    but with parking or spin-then-park instead of pure spinning.
4543// *  Use Taura-Oyama-Yonenzawa locks.
4544// *  It's possible to construct a 1-0 lock if we encode the lockword as
4545//    (List,LockByte).  Acquire will CAS the full lockword while Release
4546//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4547//    acquiring threads use timers (ParkTimed) to detect and recover from
4548//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4549//    boundaries by using placement-new.
4550// *  Augment MCS with advisory back-link fields maintained with CAS().
4551//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4552//    The validity of the backlinks must be ratified before we trust the value.
4553//    If the backlinks are invalid the exiting thread must back-track through the
4554//    the forward links, which are always trustworthy.
4555// *  Add a successor indication.  The LockWord is currently encoded as
4556//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4557//    to provide the usual futile-wakeup optimization.
4558//    See RTStt for details.
4559// *  Consider schedctl.sc_nopreempt to cover the critical section.
4560//
4561
4562
4563typedef volatile intptr_t MutexT;      // Mux Lock-word
4564enum MuxBits { LOCKBIT = 1 };
4565
4566void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4567  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4568  if (w == 0) return;
4569  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4570    return;
4571  }
4572
4573  TEVENT(muxAcquire - Contention);
4574  ParkEvent * const Self = Thread::current()->_MuxEvent;
4575  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4576  for (;;) {
4577    int its = (os::is_MP() ? 100 : 0) + 1;
4578
4579    // Optional spin phase: spin-then-park strategy
4580    while (--its >= 0) {
4581      w = *Lock;
4582      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4583        return;
4584      }
4585    }
4586
4587    Self->reset();
4588    Self->OnList = intptr_t(Lock);
4589    // The following fence() isn't _strictly necessary as the subsequent
4590    // CAS() both serializes execution and ratifies the fetched *Lock value.
4591    OrderAccess::fence();
4592    for (;;) {
4593      w = *Lock;
4594      if ((w & LOCKBIT) == 0) {
4595        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4596          Self->OnList = 0;   // hygiene - allows stronger asserts
4597          return;
4598        }
4599        continue;      // Interference -- *Lock changed -- Just retry
4600      }
4601      assert(w & LOCKBIT, "invariant");
4602      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4603      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4604    }
4605
4606    while (Self->OnList != 0) {
4607      Self->park();
4608    }
4609  }
4610}
4611
4612void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4613  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4614  if (w == 0) return;
4615  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4616    return;
4617  }
4618
4619  TEVENT(muxAcquire - Contention);
4620  ParkEvent * ReleaseAfter = NULL;
4621  if (ev == NULL) {
4622    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4623  }
4624  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4625  for (;;) {
4626    guarantee(ev->OnList == 0, "invariant");
4627    int its = (os::is_MP() ? 100 : 0) + 1;
4628
4629    // Optional spin phase: spin-then-park strategy
4630    while (--its >= 0) {
4631      w = *Lock;
4632      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4633        if (ReleaseAfter != NULL) {
4634          ParkEvent::Release(ReleaseAfter);
4635        }
4636        return;
4637      }
4638    }
4639
4640    ev->reset();
4641    ev->OnList = intptr_t(Lock);
4642    // The following fence() isn't _strictly necessary as the subsequent
4643    // CAS() both serializes execution and ratifies the fetched *Lock value.
4644    OrderAccess::fence();
4645    for (;;) {
4646      w = *Lock;
4647      if ((w & LOCKBIT) == 0) {
4648        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4649          ev->OnList = 0;
4650          // We call ::Release while holding the outer lock, thus
4651          // artificially lengthening the critical section.
4652          // Consider deferring the ::Release() until the subsequent unlock(),
4653          // after we've dropped the outer lock.
4654          if (ReleaseAfter != NULL) {
4655            ParkEvent::Release(ReleaseAfter);
4656          }
4657          return;
4658        }
4659        continue;      // Interference -- *Lock changed -- Just retry
4660      }
4661      assert(w & LOCKBIT, "invariant");
4662      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4663      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4664    }
4665
4666    while (ev->OnList != 0) {
4667      ev->park();
4668    }
4669  }
4670}
4671
4672// Release() must extract a successor from the list and then wake that thread.
4673// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4674// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4675// Release() would :
4676// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4677// (B) Extract a successor from the private list "in-hand"
4678// (C) attempt to CAS() the residual back into *Lock over null.
4679//     If there were any newly arrived threads and the CAS() would fail.
4680//     In that case Release() would detach the RATs, re-merge the list in-hand
4681//     with the RATs and repeat as needed.  Alternately, Release() might
4682//     detach and extract a successor, but then pass the residual list to the wakee.
4683//     The wakee would be responsible for reattaching and remerging before it
4684//     competed for the lock.
4685//
4686// Both "pop" and DMR are immune from ABA corruption -- there can be
4687// multiple concurrent pushers, but only one popper or detacher.
4688// This implementation pops from the head of the list.  This is unfair,
4689// but tends to provide excellent throughput as hot threads remain hot.
4690// (We wake recently run threads first).
4691//
4692// All paths through muxRelease() will execute a CAS.
4693// Release consistency -- We depend on the CAS in muxRelease() to provide full
4694// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4695// executed within the critical section are complete and globally visible before the
4696// store (CAS) to the lock-word that releases the lock becomes globally visible.
4697void Thread::muxRelease(volatile intptr_t * Lock)  {
4698  for (;;) {
4699    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4700    assert(w & LOCKBIT, "invariant");
4701    if (w == LOCKBIT) return;
4702    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4703    assert(List != NULL, "invariant");
4704    assert(List->OnList == intptr_t(Lock), "invariant");
4705    ParkEvent * const nxt = List->ListNext;
4706    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4707
4708    // The following CAS() releases the lock and pops the head element.
4709    // The CAS() also ratifies the previously fetched lock-word value.
4710    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4711      continue;
4712    }
4713    List->OnList = 0;
4714    OrderAccess::fence();
4715    List->unpark();
4716    return;
4717  }
4718}
4719
4720
4721void Threads::verify() {
4722  ALL_JAVA_THREADS(p) {
4723    p->verify();
4724  }
4725  VMThread* thread = VMThread::vm_thread();
4726  if (thread != NULL) thread->verify();
4727}
4728