thread.cpp revision 9056:dc9930a04ab0
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/codeCacheExtensions.hpp"
32#include "code/scopeDesc.hpp"
33#include "compiler/compileBroker.hpp"
34#include "gc/shared/gcLocker.inline.hpp"
35#include "gc/shared/workgroup.hpp"
36#include "interpreter/interpreter.hpp"
37#include "interpreter/linkResolver.hpp"
38#include "interpreter/oopMapCache.hpp"
39#include "jvmtifiles/jvmtiEnv.hpp"
40#include "logging/logConfiguration.hpp"
41#include "memory/metaspaceShared.hpp"
42#include "memory/oopFactory.hpp"
43#include "memory/universe.inline.hpp"
44#include "oops/instanceKlass.hpp"
45#include "oops/objArrayOop.hpp"
46#include "oops/oop.inline.hpp"
47#include "oops/symbol.hpp"
48#include "oops/verifyOopClosure.hpp"
49#include "prims/jvm_misc.hpp"
50#include "prims/jvmtiExport.hpp"
51#include "prims/jvmtiThreadState.hpp"
52#include "prims/privilegedStack.hpp"
53#include "runtime/arguments.hpp"
54#include "runtime/atomic.inline.hpp"
55#include "runtime/biasedLocking.hpp"
56#include "runtime/commandLineFlagConstraintList.hpp"
57#include "runtime/commandLineFlagRangeList.hpp"
58#include "runtime/deoptimization.hpp"
59#include "runtime/fprofiler.hpp"
60#include "runtime/frame.inline.hpp"
61#include "runtime/globals.hpp"
62#include "runtime/init.hpp"
63#include "runtime/interfaceSupport.hpp"
64#include "runtime/java.hpp"
65#include "runtime/javaCalls.hpp"
66#include "runtime/jniPeriodicChecker.hpp"
67#include "runtime/memprofiler.hpp"
68#include "runtime/mutexLocker.hpp"
69#include "runtime/objectMonitor.hpp"
70#include "runtime/orderAccess.inline.hpp"
71#include "runtime/osThread.hpp"
72#include "runtime/safepoint.hpp"
73#include "runtime/sharedRuntime.hpp"
74#include "runtime/statSampler.hpp"
75#include "runtime/stubRoutines.hpp"
76#include "runtime/sweeper.hpp"
77#include "runtime/task.hpp"
78#include "runtime/thread.inline.hpp"
79#include "runtime/threadCritical.hpp"
80#include "runtime/threadLocalStorage.hpp"
81#include "runtime/vframe.hpp"
82#include "runtime/vframeArray.hpp"
83#include "runtime/vframe_hp.hpp"
84#include "runtime/vmThread.hpp"
85#include "runtime/vm_operations.hpp"
86#include "runtime/vm_version.hpp"
87#include "services/attachListener.hpp"
88#include "services/management.hpp"
89#include "services/memTracker.hpp"
90#include "services/threadService.hpp"
91#include "trace/traceMacros.hpp"
92#include "trace/tracing.hpp"
93#include "utilities/defaultStream.hpp"
94#include "utilities/dtrace.hpp"
95#include "utilities/events.hpp"
96#include "utilities/macros.hpp"
97#include "utilities/preserveException.hpp"
98#if INCLUDE_ALL_GCS
99#include "gc/cms/concurrentMarkSweepThread.hpp"
100#include "gc/g1/concurrentMarkThread.inline.hpp"
101#include "gc/parallel/pcTasks.hpp"
102#endif // INCLUDE_ALL_GCS
103#ifdef COMPILER1
104#include "c1/c1_Compiler.hpp"
105#endif
106#ifdef COMPILER2
107#include "opto/c2compiler.hpp"
108#include "opto/idealGraphPrinter.hpp"
109#endif
110#if INCLUDE_RTM_OPT
111#include "runtime/rtmLocking.hpp"
112#endif
113
114PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
115
116#ifdef DTRACE_ENABLED
117
118// Only bother with this argument setup if dtrace is available
119
120  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
121  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
122
123  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
124    {                                                                      \
125      ResourceMark rm(this);                                               \
126      int len = 0;                                                         \
127      const char* name = (javathread)->get_thread_name();                  \
128      len = strlen(name);                                                  \
129      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
130        (char *) name, len,                                                \
131        java_lang_Thread::thread_id((javathread)->threadObj()),            \
132        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
133        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
134    }
135
136#else //  ndef DTRACE_ENABLED
137
138  #define DTRACE_THREAD_PROBE(probe, javathread)
139
140#endif // ndef DTRACE_ENABLED
141
142
143// Class hierarchy
144// - Thread
145//   - VMThread
146//   - WatcherThread
147//   - ConcurrentMarkSweepThread
148//   - JavaThread
149//     - CompilerThread
150
151// ======= Thread ========
152// Support for forcing alignment of thread objects for biased locking
153void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
154  if (UseBiasedLocking) {
155    const int alignment = markOopDesc::biased_lock_alignment;
156    size_t aligned_size = size + (alignment - sizeof(intptr_t));
157    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
158                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
159                                                         AllocFailStrategy::RETURN_NULL);
160    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
161    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
162           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
163           "JavaThread alignment code overflowed allocated storage");
164    if (TraceBiasedLocking) {
165      if (aligned_addr != real_malloc_addr) {
166        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
167                      real_malloc_addr, aligned_addr);
168      }
169    }
170    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
171    return aligned_addr;
172  } else {
173    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
174                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
175  }
176}
177
178void Thread::operator delete(void* p) {
179  if (UseBiasedLocking) {
180    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
181    FreeHeap(real_malloc_addr);
182  } else {
183    FreeHeap(p);
184  }
185}
186
187
188// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
189// JavaThread
190
191
192Thread::Thread() {
193  // stack and get_thread
194  set_stack_base(NULL);
195  set_stack_size(0);
196  set_self_raw_id(0);
197  set_lgrp_id(-1);
198  DEBUG_ONLY(clear_suspendible_thread();)
199
200  // allocated data structures
201  set_osthread(NULL);
202  set_resource_area(new (mtThread)ResourceArea());
203  DEBUG_ONLY(_current_resource_mark = NULL;)
204  set_handle_area(new (mtThread) HandleArea(NULL));
205  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
206  set_active_handles(NULL);
207  set_free_handle_block(NULL);
208  set_last_handle_mark(NULL);
209
210  // This initial value ==> never claimed.
211  _oops_do_parity = 0;
212
213  // the handle mark links itself to last_handle_mark
214  new HandleMark(this);
215
216  // plain initialization
217  debug_only(_owned_locks = NULL;)
218  debug_only(_allow_allocation_count = 0;)
219  NOT_PRODUCT(_allow_safepoint_count = 0;)
220  NOT_PRODUCT(_skip_gcalot = false;)
221  _jvmti_env_iteration_count = 0;
222  set_allocated_bytes(0);
223  _vm_operation_started_count = 0;
224  _vm_operation_completed_count = 0;
225  _current_pending_monitor = NULL;
226  _current_pending_monitor_is_from_java = true;
227  _current_waiting_monitor = NULL;
228  _num_nested_signal = 0;
229  omFreeList = NULL;
230  omFreeCount = 0;
231  omFreeProvision = 32;
232  omInUseList = NULL;
233  omInUseCount = 0;
234
235#ifdef ASSERT
236  _visited_for_critical_count = false;
237#endif
238
239  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
240                         Monitor::_safepoint_check_sometimes);
241  _suspend_flags = 0;
242
243  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
244  _hashStateX = os::random();
245  _hashStateY = 842502087;
246  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
247  _hashStateW = 273326509;
248
249  _OnTrap   = 0;
250  _schedctl = NULL;
251  _Stalled  = 0;
252  _TypeTag  = 0x2BAD;
253
254  // Many of the following fields are effectively final - immutable
255  // Note that nascent threads can't use the Native Monitor-Mutex
256  // construct until the _MutexEvent is initialized ...
257  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
258  // we might instead use a stack of ParkEvents that we could provision on-demand.
259  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
260  // and ::Release()
261  _ParkEvent   = ParkEvent::Allocate(this);
262  _SleepEvent  = ParkEvent::Allocate(this);
263  _MutexEvent  = ParkEvent::Allocate(this);
264  _MuxEvent    = ParkEvent::Allocate(this);
265
266#ifdef CHECK_UNHANDLED_OOPS
267  if (CheckUnhandledOops) {
268    _unhandled_oops = new UnhandledOops(this);
269  }
270#endif // CHECK_UNHANDLED_OOPS
271#ifdef ASSERT
272  if (UseBiasedLocking) {
273    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
274    assert(this == _real_malloc_address ||
275           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
276           "bug in forced alignment of thread objects");
277  }
278#endif // ASSERT
279}
280
281// Non-inlined version to be used where thread.inline.hpp shouldn't be included.
282Thread* Thread::current_noinline() {
283  return Thread::current();
284}
285
286void Thread::initialize_thread_local_storage() {
287  // Note: Make sure this method only calls
288  // non-blocking operations. Otherwise, it might not work
289  // with the thread-startup/safepoint interaction.
290
291  // During Java thread startup, safepoint code should allow this
292  // method to complete because it may need to allocate memory to
293  // store information for the new thread.
294
295  // initialize structure dependent on thread local storage
296  ThreadLocalStorage::set_thread(this);
297}
298
299void Thread::record_stack_base_and_size() {
300  set_stack_base(os::current_stack_base());
301  set_stack_size(os::current_stack_size());
302  if (is_Java_thread()) {
303    ((JavaThread*) this)->set_stack_overflow_limit();
304  }
305  // CR 7190089: on Solaris, primordial thread's stack is adjusted
306  // in initialize_thread(). Without the adjustment, stack size is
307  // incorrect if stack is set to unlimited (ulimit -s unlimited).
308  // So far, only Solaris has real implementation of initialize_thread().
309  //
310  // set up any platform-specific state.
311  os::initialize_thread(this);
312
313#if INCLUDE_NMT
314  // record thread's native stack, stack grows downward
315  address stack_low_addr = stack_base() - stack_size();
316  MemTracker::record_thread_stack(stack_low_addr, stack_size());
317#endif // INCLUDE_NMT
318}
319
320
321Thread::~Thread() {
322  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
323  ObjectSynchronizer::omFlush(this);
324
325  EVENT_THREAD_DESTRUCT(this);
326
327  // stack_base can be NULL if the thread is never started or exited before
328  // record_stack_base_and_size called. Although, we would like to ensure
329  // that all started threads do call record_stack_base_and_size(), there is
330  // not proper way to enforce that.
331#if INCLUDE_NMT
332  if (_stack_base != NULL) {
333    address low_stack_addr = stack_base() - stack_size();
334    MemTracker::release_thread_stack(low_stack_addr, stack_size());
335#ifdef ASSERT
336    set_stack_base(NULL);
337#endif
338  }
339#endif // INCLUDE_NMT
340
341  // deallocate data structures
342  delete resource_area();
343  // since the handle marks are using the handle area, we have to deallocated the root
344  // handle mark before deallocating the thread's handle area,
345  assert(last_handle_mark() != NULL, "check we have an element");
346  delete last_handle_mark();
347  assert(last_handle_mark() == NULL, "check we have reached the end");
348
349  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
350  // We NULL out the fields for good hygiene.
351  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
352  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
353  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
354  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
355
356  delete handle_area();
357  delete metadata_handles();
358
359  // osthread() can be NULL, if creation of thread failed.
360  if (osthread() != NULL) os::free_thread(osthread());
361
362  delete _SR_lock;
363
364  // clear thread local storage if the Thread is deleting itself
365  if (this == Thread::current()) {
366    ThreadLocalStorage::set_thread(NULL);
367  } else {
368    // In the case where we're not the current thread, invalidate all the
369    // caches in case some code tries to get the current thread or the
370    // thread that was destroyed, and gets stale information.
371    ThreadLocalStorage::invalidate_all();
372  }
373  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
374}
375
376// NOTE: dummy function for assertion purpose.
377void Thread::run() {
378  ShouldNotReachHere();
379}
380
381#ifdef ASSERT
382// Private method to check for dangling thread pointer
383void check_for_dangling_thread_pointer(Thread *thread) {
384  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
385         "possibility of dangling Thread pointer");
386}
387#endif
388
389ThreadPriority Thread::get_priority(const Thread* const thread) {
390  ThreadPriority priority;
391  // Can return an error!
392  (void)os::get_priority(thread, priority);
393  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
394  return priority;
395}
396
397void Thread::set_priority(Thread* thread, ThreadPriority priority) {
398  debug_only(check_for_dangling_thread_pointer(thread);)
399  // Can return an error!
400  (void)os::set_priority(thread, priority);
401}
402
403
404void Thread::start(Thread* thread) {
405  // Start is different from resume in that its safety is guaranteed by context or
406  // being called from a Java method synchronized on the Thread object.
407  if (!DisableStartThread) {
408    if (thread->is_Java_thread()) {
409      // Initialize the thread state to RUNNABLE before starting this thread.
410      // Can not set it after the thread started because we do not know the
411      // exact thread state at that time. It could be in MONITOR_WAIT or
412      // in SLEEPING or some other state.
413      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
414                                          java_lang_Thread::RUNNABLE);
415    }
416    os::start_thread(thread);
417  }
418}
419
420// Enqueue a VM_Operation to do the job for us - sometime later
421void Thread::send_async_exception(oop java_thread, oop java_throwable) {
422  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
423  VMThread::execute(vm_stop);
424}
425
426
427// Check if an external suspend request has completed (or has been
428// cancelled). Returns true if the thread is externally suspended and
429// false otherwise.
430//
431// The bits parameter returns information about the code path through
432// the routine. Useful for debugging:
433//
434// set in is_ext_suspend_completed():
435// 0x00000001 - routine was entered
436// 0x00000010 - routine return false at end
437// 0x00000100 - thread exited (return false)
438// 0x00000200 - suspend request cancelled (return false)
439// 0x00000400 - thread suspended (return true)
440// 0x00001000 - thread is in a suspend equivalent state (return true)
441// 0x00002000 - thread is native and walkable (return true)
442// 0x00004000 - thread is native_trans and walkable (needed retry)
443//
444// set in wait_for_ext_suspend_completion():
445// 0x00010000 - routine was entered
446// 0x00020000 - suspend request cancelled before loop (return false)
447// 0x00040000 - thread suspended before loop (return true)
448// 0x00080000 - suspend request cancelled in loop (return false)
449// 0x00100000 - thread suspended in loop (return true)
450// 0x00200000 - suspend not completed during retry loop (return false)
451
452// Helper class for tracing suspend wait debug bits.
453//
454// 0x00000100 indicates that the target thread exited before it could
455// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
456// 0x00080000 each indicate a cancelled suspend request so they don't
457// count as wait failures either.
458#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
459
460class TraceSuspendDebugBits : public StackObj {
461 private:
462  JavaThread * jt;
463  bool         is_wait;
464  bool         called_by_wait;  // meaningful when !is_wait
465  uint32_t *   bits;
466
467 public:
468  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
469                        uint32_t *_bits) {
470    jt             = _jt;
471    is_wait        = _is_wait;
472    called_by_wait = _called_by_wait;
473    bits           = _bits;
474  }
475
476  ~TraceSuspendDebugBits() {
477    if (!is_wait) {
478#if 1
479      // By default, don't trace bits for is_ext_suspend_completed() calls.
480      // That trace is very chatty.
481      return;
482#else
483      if (!called_by_wait) {
484        // If tracing for is_ext_suspend_completed() is enabled, then only
485        // trace calls to it from wait_for_ext_suspend_completion()
486        return;
487      }
488#endif
489    }
490
491    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
492      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
493        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
494        ResourceMark rm;
495
496        tty->print_cr(
497                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
498                      jt->get_thread_name(), *bits);
499
500        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
501      }
502    }
503  }
504};
505#undef DEBUG_FALSE_BITS
506
507
508bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
509                                          uint32_t *bits) {
510  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
511
512  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
513  bool do_trans_retry;           // flag to force the retry
514
515  *bits |= 0x00000001;
516
517  do {
518    do_trans_retry = false;
519
520    if (is_exiting()) {
521      // Thread is in the process of exiting. This is always checked
522      // first to reduce the risk of dereferencing a freed JavaThread.
523      *bits |= 0x00000100;
524      return false;
525    }
526
527    if (!is_external_suspend()) {
528      // Suspend request is cancelled. This is always checked before
529      // is_ext_suspended() to reduce the risk of a rogue resume
530      // confusing the thread that made the suspend request.
531      *bits |= 0x00000200;
532      return false;
533    }
534
535    if (is_ext_suspended()) {
536      // thread is suspended
537      *bits |= 0x00000400;
538      return true;
539    }
540
541    // Now that we no longer do hard suspends of threads running
542    // native code, the target thread can be changing thread state
543    // while we are in this routine:
544    //
545    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
546    //
547    // We save a copy of the thread state as observed at this moment
548    // and make our decision about suspend completeness based on the
549    // copy. This closes the race where the thread state is seen as
550    // _thread_in_native_trans in the if-thread_blocked check, but is
551    // seen as _thread_blocked in if-thread_in_native_trans check.
552    JavaThreadState save_state = thread_state();
553
554    if (save_state == _thread_blocked && is_suspend_equivalent()) {
555      // If the thread's state is _thread_blocked and this blocking
556      // condition is known to be equivalent to a suspend, then we can
557      // consider the thread to be externally suspended. This means that
558      // the code that sets _thread_blocked has been modified to do
559      // self-suspension if the blocking condition releases. We also
560      // used to check for CONDVAR_WAIT here, but that is now covered by
561      // the _thread_blocked with self-suspension check.
562      //
563      // Return true since we wouldn't be here unless there was still an
564      // external suspend request.
565      *bits |= 0x00001000;
566      return true;
567    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
568      // Threads running native code will self-suspend on native==>VM/Java
569      // transitions. If its stack is walkable (should always be the case
570      // unless this function is called before the actual java_suspend()
571      // call), then the wait is done.
572      *bits |= 0x00002000;
573      return true;
574    } else if (!called_by_wait && !did_trans_retry &&
575               save_state == _thread_in_native_trans &&
576               frame_anchor()->walkable()) {
577      // The thread is transitioning from thread_in_native to another
578      // thread state. check_safepoint_and_suspend_for_native_trans()
579      // will force the thread to self-suspend. If it hasn't gotten
580      // there yet we may have caught the thread in-between the native
581      // code check above and the self-suspend. Lucky us. If we were
582      // called by wait_for_ext_suspend_completion(), then it
583      // will be doing the retries so we don't have to.
584      //
585      // Since we use the saved thread state in the if-statement above,
586      // there is a chance that the thread has already transitioned to
587      // _thread_blocked by the time we get here. In that case, we will
588      // make a single unnecessary pass through the logic below. This
589      // doesn't hurt anything since we still do the trans retry.
590
591      *bits |= 0x00004000;
592
593      // Once the thread leaves thread_in_native_trans for another
594      // thread state, we break out of this retry loop. We shouldn't
595      // need this flag to prevent us from getting back here, but
596      // sometimes paranoia is good.
597      did_trans_retry = true;
598
599      // We wait for the thread to transition to a more usable state.
600      for (int i = 1; i <= SuspendRetryCount; i++) {
601        // We used to do an "os::yield_all(i)" call here with the intention
602        // that yielding would increase on each retry. However, the parameter
603        // is ignored on Linux which means the yield didn't scale up. Waiting
604        // on the SR_lock below provides a much more predictable scale up for
605        // the delay. It also provides a simple/direct point to check for any
606        // safepoint requests from the VMThread
607
608        // temporarily drops SR_lock while doing wait with safepoint check
609        // (if we're a JavaThread - the WatcherThread can also call this)
610        // and increase delay with each retry
611        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
612
613        // check the actual thread state instead of what we saved above
614        if (thread_state() != _thread_in_native_trans) {
615          // the thread has transitioned to another thread state so
616          // try all the checks (except this one) one more time.
617          do_trans_retry = true;
618          break;
619        }
620      } // end retry loop
621
622
623    }
624  } while (do_trans_retry);
625
626  *bits |= 0x00000010;
627  return false;
628}
629
630// Wait for an external suspend request to complete (or be cancelled).
631// Returns true if the thread is externally suspended and false otherwise.
632//
633bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
634                                                 uint32_t *bits) {
635  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
636                             false /* !called_by_wait */, bits);
637
638  // local flag copies to minimize SR_lock hold time
639  bool is_suspended;
640  bool pending;
641  uint32_t reset_bits;
642
643  // set a marker so is_ext_suspend_completed() knows we are the caller
644  *bits |= 0x00010000;
645
646  // We use reset_bits to reinitialize the bits value at the top of
647  // each retry loop. This allows the caller to make use of any
648  // unused bits for their own marking purposes.
649  reset_bits = *bits;
650
651  {
652    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
653    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
654                                            delay, bits);
655    pending = is_external_suspend();
656  }
657  // must release SR_lock to allow suspension to complete
658
659  if (!pending) {
660    // A cancelled suspend request is the only false return from
661    // is_ext_suspend_completed() that keeps us from entering the
662    // retry loop.
663    *bits |= 0x00020000;
664    return false;
665  }
666
667  if (is_suspended) {
668    *bits |= 0x00040000;
669    return true;
670  }
671
672  for (int i = 1; i <= retries; i++) {
673    *bits = reset_bits;  // reinit to only track last retry
674
675    // We used to do an "os::yield_all(i)" call here with the intention
676    // that yielding would increase on each retry. However, the parameter
677    // is ignored on Linux which means the yield didn't scale up. Waiting
678    // on the SR_lock below provides a much more predictable scale up for
679    // the delay. It also provides a simple/direct point to check for any
680    // safepoint requests from the VMThread
681
682    {
683      MutexLocker ml(SR_lock());
684      // wait with safepoint check (if we're a JavaThread - the WatcherThread
685      // can also call this)  and increase delay with each retry
686      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
687
688      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
689                                              delay, bits);
690
691      // It is possible for the external suspend request to be cancelled
692      // (by a resume) before the actual suspend operation is completed.
693      // Refresh our local copy to see if we still need to wait.
694      pending = is_external_suspend();
695    }
696
697    if (!pending) {
698      // A cancelled suspend request is the only false return from
699      // is_ext_suspend_completed() that keeps us from staying in the
700      // retry loop.
701      *bits |= 0x00080000;
702      return false;
703    }
704
705    if (is_suspended) {
706      *bits |= 0x00100000;
707      return true;
708    }
709  } // end retry loop
710
711  // thread did not suspend after all our retries
712  *bits |= 0x00200000;
713  return false;
714}
715
716#ifndef PRODUCT
717void JavaThread::record_jump(address target, address instr, const char* file,
718                             int line) {
719
720  // This should not need to be atomic as the only way for simultaneous
721  // updates is via interrupts. Even then this should be rare or non-existent
722  // and we don't care that much anyway.
723
724  int index = _jmp_ring_index;
725  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
726  _jmp_ring[index]._target = (intptr_t) target;
727  _jmp_ring[index]._instruction = (intptr_t) instr;
728  _jmp_ring[index]._file = file;
729  _jmp_ring[index]._line = line;
730}
731#endif // PRODUCT
732
733// Called by flat profiler
734// Callers have already called wait_for_ext_suspend_completion
735// The assertion for that is currently too complex to put here:
736bool JavaThread::profile_last_Java_frame(frame* _fr) {
737  bool gotframe = false;
738  // self suspension saves needed state.
739  if (has_last_Java_frame() && _anchor.walkable()) {
740    *_fr = pd_last_frame();
741    gotframe = true;
742  }
743  return gotframe;
744}
745
746void Thread::interrupt(Thread* thread) {
747  debug_only(check_for_dangling_thread_pointer(thread);)
748  os::interrupt(thread);
749}
750
751bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
752  debug_only(check_for_dangling_thread_pointer(thread);)
753  // Note:  If clear_interrupted==false, this simply fetches and
754  // returns the value of the field osthread()->interrupted().
755  return os::is_interrupted(thread, clear_interrupted);
756}
757
758
759// GC Support
760bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
761  jint thread_parity = _oops_do_parity;
762  if (thread_parity != strong_roots_parity) {
763    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
764    if (res == thread_parity) {
765      return true;
766    } else {
767      guarantee(res == strong_roots_parity, "Or else what?");
768      return false;
769    }
770  }
771  return false;
772}
773
774void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
775  active_handles()->oops_do(f);
776  // Do oop for ThreadShadow
777  f->do_oop((oop*)&_pending_exception);
778  handle_area()->oops_do(f);
779}
780
781void Thread::nmethods_do(CodeBlobClosure* cf) {
782  // no nmethods in a generic thread...
783}
784
785void Thread::metadata_handles_do(void f(Metadata*)) {
786  // Only walk the Handles in Thread.
787  if (metadata_handles() != NULL) {
788    for (int i = 0; i< metadata_handles()->length(); i++) {
789      f(metadata_handles()->at(i));
790    }
791  }
792}
793
794void Thread::print_on(outputStream* st) const {
795  // get_priority assumes osthread initialized
796  if (osthread() != NULL) {
797    int os_prio;
798    if (os::get_native_priority(this, &os_prio) == OS_OK) {
799      st->print("os_prio=%d ", os_prio);
800    }
801    st->print("tid=" INTPTR_FORMAT " ", this);
802    ext().print_on(st);
803    osthread()->print_on(st);
804  }
805  debug_only(if (WizardMode) print_owned_locks_on(st);)
806}
807
808// Thread::print_on_error() is called by fatal error handler. Don't use
809// any lock or allocate memory.
810void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
811  if (is_VM_thread())                 st->print("VMThread");
812  else if (is_Compiler_thread())      st->print("CompilerThread");
813  else if (is_Java_thread())          st->print("JavaThread");
814  else if (is_GC_task_thread())       st->print("GCTaskThread");
815  else if (is_Watcher_thread())       st->print("WatcherThread");
816  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
817  else                                st->print("Thread");
818
819  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
820            _stack_base - _stack_size, _stack_base);
821
822  if (osthread()) {
823    st->print(" [id=%d]", osthread()->thread_id());
824  }
825}
826
827#ifdef ASSERT
828void Thread::print_owned_locks_on(outputStream* st) const {
829  Monitor *cur = _owned_locks;
830  if (cur == NULL) {
831    st->print(" (no locks) ");
832  } else {
833    st->print_cr(" Locks owned:");
834    while (cur) {
835      cur->print_on(st);
836      cur = cur->next();
837    }
838  }
839}
840
841static int ref_use_count  = 0;
842
843bool Thread::owns_locks_but_compiled_lock() const {
844  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
845    if (cur != Compile_lock) return true;
846  }
847  return false;
848}
849
850
851#endif
852
853#ifndef PRODUCT
854
855// The flag: potential_vm_operation notifies if this particular safepoint state could potential
856// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
857// no threads which allow_vm_block's are held
858void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
859  // Check if current thread is allowed to block at a safepoint
860  if (!(_allow_safepoint_count == 0)) {
861    fatal("Possible safepoint reached by thread that does not allow it");
862  }
863  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
864    fatal("LEAF method calling lock?");
865  }
866
867#ifdef ASSERT
868  if (potential_vm_operation && is_Java_thread()
869      && !Universe::is_bootstrapping()) {
870    // Make sure we do not hold any locks that the VM thread also uses.
871    // This could potentially lead to deadlocks
872    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
873      // Threads_lock is special, since the safepoint synchronization will not start before this is
874      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
875      // since it is used to transfer control between JavaThreads and the VMThread
876      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
877      if ((cur->allow_vm_block() &&
878           cur != Threads_lock &&
879           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
880           cur != VMOperationRequest_lock &&
881           cur != VMOperationQueue_lock) ||
882           cur->rank() == Mutex::special) {
883        fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
884      }
885    }
886  }
887
888  if (GCALotAtAllSafepoints) {
889    // We could enter a safepoint here and thus have a gc
890    InterfaceSupport::check_gc_alot();
891  }
892#endif
893}
894#endif
895
896bool Thread::is_in_stack(address adr) const {
897  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
898  address end = os::current_stack_pointer();
899  // Allow non Java threads to call this without stack_base
900  if (_stack_base == NULL) return true;
901  if (stack_base() >= adr && adr >= end) return true;
902
903  return false;
904}
905
906
907bool Thread::is_in_usable_stack(address adr) const {
908  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
909  size_t usable_stack_size = _stack_size - stack_guard_size;
910
911  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
912}
913
914
915// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
916// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
917// used for compilation in the future. If that change is made, the need for these methods
918// should be revisited, and they should be removed if possible.
919
920bool Thread::is_lock_owned(address adr) const {
921  return on_local_stack(adr);
922}
923
924bool Thread::set_as_starting_thread() {
925  // NOTE: this must be called inside the main thread.
926  return os::create_main_thread((JavaThread*)this);
927}
928
929static void initialize_class(Symbol* class_name, TRAPS) {
930  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
931  InstanceKlass::cast(klass)->initialize(CHECK);
932}
933
934
935// Creates the initial ThreadGroup
936static Handle create_initial_thread_group(TRAPS) {
937  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
938  instanceKlassHandle klass (THREAD, k);
939
940  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
941  {
942    JavaValue result(T_VOID);
943    JavaCalls::call_special(&result,
944                            system_instance,
945                            klass,
946                            vmSymbols::object_initializer_name(),
947                            vmSymbols::void_method_signature(),
948                            CHECK_NH);
949  }
950  Universe::set_system_thread_group(system_instance());
951
952  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
953  {
954    JavaValue result(T_VOID);
955    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
956    JavaCalls::call_special(&result,
957                            main_instance,
958                            klass,
959                            vmSymbols::object_initializer_name(),
960                            vmSymbols::threadgroup_string_void_signature(),
961                            system_instance,
962                            string,
963                            CHECK_NH);
964  }
965  return main_instance;
966}
967
968// Creates the initial Thread
969static oop create_initial_thread(Handle thread_group, JavaThread* thread,
970                                 TRAPS) {
971  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
972  instanceKlassHandle klass (THREAD, k);
973  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
974
975  java_lang_Thread::set_thread(thread_oop(), thread);
976  java_lang_Thread::set_priority(thread_oop(), NormPriority);
977  thread->set_threadObj(thread_oop());
978
979  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
980
981  JavaValue result(T_VOID);
982  JavaCalls::call_special(&result, thread_oop,
983                          klass,
984                          vmSymbols::object_initializer_name(),
985                          vmSymbols::threadgroup_string_void_signature(),
986                          thread_group,
987                          string,
988                          CHECK_NULL);
989  return thread_oop();
990}
991
992static void call_initializeSystemClass(TRAPS) {
993  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
994  instanceKlassHandle klass (THREAD, k);
995
996  JavaValue result(T_VOID);
997  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
998                         vmSymbols::void_method_signature(), CHECK);
999}
1000
1001char java_runtime_name[128] = "";
1002char java_runtime_version[128] = "";
1003
1004// extract the JRE name from sun.misc.Version.java_runtime_name
1005static const char* get_java_runtime_name(TRAPS) {
1006  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1007                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1008  fieldDescriptor fd;
1009  bool found = k != NULL &&
1010               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1011                                                        vmSymbols::string_signature(), &fd);
1012  if (found) {
1013    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1014    if (name_oop == NULL) {
1015      return NULL;
1016    }
1017    const char* name = java_lang_String::as_utf8_string(name_oop,
1018                                                        java_runtime_name,
1019                                                        sizeof(java_runtime_name));
1020    return name;
1021  } else {
1022    return NULL;
1023  }
1024}
1025
1026// extract the JRE version from sun.misc.Version.java_runtime_version
1027static const char* get_java_runtime_version(TRAPS) {
1028  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1029                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1030  fieldDescriptor fd;
1031  bool found = k != NULL &&
1032               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1033                                                        vmSymbols::string_signature(), &fd);
1034  if (found) {
1035    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1036    if (name_oop == NULL) {
1037      return NULL;
1038    }
1039    const char* name = java_lang_String::as_utf8_string(name_oop,
1040                                                        java_runtime_version,
1041                                                        sizeof(java_runtime_version));
1042    return name;
1043  } else {
1044    return NULL;
1045  }
1046}
1047
1048// General purpose hook into Java code, run once when the VM is initialized.
1049// The Java library method itself may be changed independently from the VM.
1050static void call_postVMInitHook(TRAPS) {
1051  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1052  instanceKlassHandle klass (THREAD, k);
1053  if (klass.not_null()) {
1054    JavaValue result(T_VOID);
1055    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1056                           vmSymbols::void_method_signature(),
1057                           CHECK);
1058  }
1059}
1060
1061static void reset_vm_info_property(TRAPS) {
1062  // the vm info string
1063  ResourceMark rm(THREAD);
1064  const char *vm_info = VM_Version::vm_info_string();
1065
1066  // java.lang.System class
1067  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1068  instanceKlassHandle klass (THREAD, k);
1069
1070  // setProperty arguments
1071  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1072  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1073
1074  // return value
1075  JavaValue r(T_OBJECT);
1076
1077  // public static String setProperty(String key, String value);
1078  JavaCalls::call_static(&r,
1079                         klass,
1080                         vmSymbols::setProperty_name(),
1081                         vmSymbols::string_string_string_signature(),
1082                         key_str,
1083                         value_str,
1084                         CHECK);
1085}
1086
1087
1088void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1089                                    bool daemon, TRAPS) {
1090  assert(thread_group.not_null(), "thread group should be specified");
1091  assert(threadObj() == NULL, "should only create Java thread object once");
1092
1093  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1094  instanceKlassHandle klass (THREAD, k);
1095  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1096
1097  java_lang_Thread::set_thread(thread_oop(), this);
1098  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1099  set_threadObj(thread_oop());
1100
1101  JavaValue result(T_VOID);
1102  if (thread_name != NULL) {
1103    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1104    // Thread gets assigned specified name and null target
1105    JavaCalls::call_special(&result,
1106                            thread_oop,
1107                            klass,
1108                            vmSymbols::object_initializer_name(),
1109                            vmSymbols::threadgroup_string_void_signature(),
1110                            thread_group, // Argument 1
1111                            name,         // Argument 2
1112                            THREAD);
1113  } else {
1114    // Thread gets assigned name "Thread-nnn" and null target
1115    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1116    JavaCalls::call_special(&result,
1117                            thread_oop,
1118                            klass,
1119                            vmSymbols::object_initializer_name(),
1120                            vmSymbols::threadgroup_runnable_void_signature(),
1121                            thread_group, // Argument 1
1122                            Handle(),     // Argument 2
1123                            THREAD);
1124  }
1125
1126
1127  if (daemon) {
1128    java_lang_Thread::set_daemon(thread_oop());
1129  }
1130
1131  if (HAS_PENDING_EXCEPTION) {
1132    return;
1133  }
1134
1135  KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1136  Handle threadObj(THREAD, this->threadObj());
1137
1138  JavaCalls::call_special(&result,
1139                          thread_group,
1140                          group,
1141                          vmSymbols::add_method_name(),
1142                          vmSymbols::thread_void_signature(),
1143                          threadObj,          // Arg 1
1144                          THREAD);
1145}
1146
1147// NamedThread --  non-JavaThread subclasses with multiple
1148// uniquely named instances should derive from this.
1149NamedThread::NamedThread() : Thread() {
1150  _name = NULL;
1151  _processed_thread = NULL;
1152}
1153
1154NamedThread::~NamedThread() {
1155  if (_name != NULL) {
1156    FREE_C_HEAP_ARRAY(char, _name);
1157    _name = NULL;
1158  }
1159}
1160
1161void NamedThread::set_name(const char* format, ...) {
1162  guarantee(_name == NULL, "Only get to set name once.");
1163  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1164  guarantee(_name != NULL, "alloc failure");
1165  va_list ap;
1166  va_start(ap, format);
1167  jio_vsnprintf(_name, max_name_len, format, ap);
1168  va_end(ap);
1169}
1170
1171void NamedThread::initialize_named_thread() {
1172  set_native_thread_name(name());
1173}
1174
1175void NamedThread::print_on(outputStream* st) const {
1176  st->print("\"%s\" ", name());
1177  Thread::print_on(st);
1178  st->cr();
1179}
1180
1181
1182// ======= WatcherThread ========
1183
1184// The watcher thread exists to simulate timer interrupts.  It should
1185// be replaced by an abstraction over whatever native support for
1186// timer interrupts exists on the platform.
1187
1188WatcherThread* WatcherThread::_watcher_thread   = NULL;
1189bool WatcherThread::_startable = false;
1190volatile bool  WatcherThread::_should_terminate = false;
1191
1192WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1193  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1194  if (os::create_thread(this, os::watcher_thread)) {
1195    _watcher_thread = this;
1196
1197    // Set the watcher thread to the highest OS priority which should not be
1198    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1199    // is created. The only normal thread using this priority is the reference
1200    // handler thread, which runs for very short intervals only.
1201    // If the VMThread's priority is not lower than the WatcherThread profiling
1202    // will be inaccurate.
1203    os::set_priority(this, MaxPriority);
1204    if (!DisableStartThread) {
1205      os::start_thread(this);
1206    }
1207  }
1208}
1209
1210int WatcherThread::sleep() const {
1211  // The WatcherThread does not participate in the safepoint protocol
1212  // for the PeriodicTask_lock because it is not a JavaThread.
1213  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1214
1215  if (_should_terminate) {
1216    // check for termination before we do any housekeeping or wait
1217    return 0;  // we did not sleep.
1218  }
1219
1220  // remaining will be zero if there are no tasks,
1221  // causing the WatcherThread to sleep until a task is
1222  // enrolled
1223  int remaining = PeriodicTask::time_to_wait();
1224  int time_slept = 0;
1225
1226  // we expect this to timeout - we only ever get unparked when
1227  // we should terminate or when a new task has been enrolled
1228  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1229
1230  jlong time_before_loop = os::javaTimeNanos();
1231
1232  while (true) {
1233    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1234                                            remaining);
1235    jlong now = os::javaTimeNanos();
1236
1237    if (remaining == 0) {
1238      // if we didn't have any tasks we could have waited for a long time
1239      // consider the time_slept zero and reset time_before_loop
1240      time_slept = 0;
1241      time_before_loop = now;
1242    } else {
1243      // need to recalculate since we might have new tasks in _tasks
1244      time_slept = (int) ((now - time_before_loop) / 1000000);
1245    }
1246
1247    // Change to task list or spurious wakeup of some kind
1248    if (timedout || _should_terminate) {
1249      break;
1250    }
1251
1252    remaining = PeriodicTask::time_to_wait();
1253    if (remaining == 0) {
1254      // Last task was just disenrolled so loop around and wait until
1255      // another task gets enrolled
1256      continue;
1257    }
1258
1259    remaining -= time_slept;
1260    if (remaining <= 0) {
1261      break;
1262    }
1263  }
1264
1265  return time_slept;
1266}
1267
1268void WatcherThread::run() {
1269  assert(this == watcher_thread(), "just checking");
1270
1271  this->record_stack_base_and_size();
1272  this->initialize_thread_local_storage();
1273  this->set_native_thread_name(this->name());
1274  this->set_active_handles(JNIHandleBlock::allocate_block());
1275  while (true) {
1276    assert(watcher_thread() == Thread::current(), "thread consistency check");
1277    assert(watcher_thread() == this, "thread consistency check");
1278
1279    // Calculate how long it'll be until the next PeriodicTask work
1280    // should be done, and sleep that amount of time.
1281    int time_waited = sleep();
1282
1283    if (is_error_reported()) {
1284      // A fatal error has happened, the error handler(VMError::report_and_die)
1285      // should abort JVM after creating an error log file. However in some
1286      // rare cases, the error handler itself might deadlock. Here we try to
1287      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1288      //
1289      // This code is in WatcherThread because WatcherThread wakes up
1290      // periodically so the fatal error handler doesn't need to do anything;
1291      // also because the WatcherThread is less likely to crash than other
1292      // threads.
1293
1294      for (;;) {
1295        if (!ShowMessageBoxOnError
1296            && (OnError == NULL || OnError[0] == '\0')
1297            && Arguments::abort_hook() == NULL) {
1298          os::sleep(this, ErrorLogTimeout * 60 * 1000, false);
1299          fdStream err(defaultStream::output_fd());
1300          err.print_raw_cr("# [ timer expired, abort... ]");
1301          // skip atexit/vm_exit/vm_abort hooks
1302          os::die();
1303        }
1304
1305        // Wake up 5 seconds later, the fatal handler may reset OnError or
1306        // ShowMessageBoxOnError when it is ready to abort.
1307        os::sleep(this, 5 * 1000, false);
1308      }
1309    }
1310
1311    if (_should_terminate) {
1312      // check for termination before posting the next tick
1313      break;
1314    }
1315
1316    PeriodicTask::real_time_tick(time_waited);
1317  }
1318
1319  // Signal that it is terminated
1320  {
1321    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1322    _watcher_thread = NULL;
1323    Terminator_lock->notify();
1324  }
1325
1326  // Thread destructor usually does this..
1327  ThreadLocalStorage::set_thread(NULL);
1328}
1329
1330void WatcherThread::start() {
1331  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1332
1333  if (watcher_thread() == NULL && _startable) {
1334    _should_terminate = false;
1335    // Create the single instance of WatcherThread
1336    new WatcherThread();
1337  }
1338}
1339
1340void WatcherThread::make_startable() {
1341  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342  _startable = true;
1343}
1344
1345void WatcherThread::stop() {
1346  {
1347    // Follow normal safepoint aware lock enter protocol since the
1348    // WatcherThread is stopped by another JavaThread.
1349    MutexLocker ml(PeriodicTask_lock);
1350    _should_terminate = true;
1351
1352    WatcherThread* watcher = watcher_thread();
1353    if (watcher != NULL) {
1354      // unpark the WatcherThread so it can see that it should terminate
1355      watcher->unpark();
1356    }
1357  }
1358
1359  MutexLocker mu(Terminator_lock);
1360
1361  while (watcher_thread() != NULL) {
1362    // This wait should make safepoint checks, wait without a timeout,
1363    // and wait as a suspend-equivalent condition.
1364    //
1365    // Note: If the FlatProfiler is running, then this thread is waiting
1366    // for the WatcherThread to terminate and the WatcherThread, via the
1367    // FlatProfiler task, is waiting for the external suspend request on
1368    // this thread to complete. wait_for_ext_suspend_completion() will
1369    // eventually timeout, but that takes time. Making this wait a
1370    // suspend-equivalent condition solves that timeout problem.
1371    //
1372    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1373                          Mutex::_as_suspend_equivalent_flag);
1374  }
1375}
1376
1377void WatcherThread::unpark() {
1378  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1379  PeriodicTask_lock->notify();
1380}
1381
1382void WatcherThread::print_on(outputStream* st) const {
1383  st->print("\"%s\" ", name());
1384  Thread::print_on(st);
1385  st->cr();
1386}
1387
1388// ======= JavaThread ========
1389
1390// A JavaThread is a normal Java thread
1391
1392void JavaThread::initialize() {
1393  // Initialize fields
1394
1395  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1396  set_claimed_par_id(UINT_MAX);
1397
1398  set_saved_exception_pc(NULL);
1399  set_threadObj(NULL);
1400  _anchor.clear();
1401  set_entry_point(NULL);
1402  set_jni_functions(jni_functions());
1403  set_callee_target(NULL);
1404  set_vm_result(NULL);
1405  set_vm_result_2(NULL);
1406  set_vframe_array_head(NULL);
1407  set_vframe_array_last(NULL);
1408  set_deferred_locals(NULL);
1409  set_deopt_mark(NULL);
1410  set_deopt_nmethod(NULL);
1411  clear_must_deopt_id();
1412  set_monitor_chunks(NULL);
1413  set_next(NULL);
1414  set_thread_state(_thread_new);
1415  _terminated = _not_terminated;
1416  _privileged_stack_top = NULL;
1417  _array_for_gc = NULL;
1418  _suspend_equivalent = false;
1419  _in_deopt_handler = 0;
1420  _doing_unsafe_access = false;
1421  _stack_guard_state = stack_guard_unused;
1422  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1423  _exception_pc  = 0;
1424  _exception_handler_pc = 0;
1425  _is_method_handle_return = 0;
1426  _jvmti_thread_state= NULL;
1427  _should_post_on_exceptions_flag = JNI_FALSE;
1428  _jvmti_get_loaded_classes_closure = NULL;
1429  _interp_only_mode    = 0;
1430  _special_runtime_exit_condition = _no_async_condition;
1431  _pending_async_exception = NULL;
1432  _thread_stat = NULL;
1433  _thread_stat = new ThreadStatistics();
1434  _blocked_on_compilation = false;
1435  _jni_active_critical = 0;
1436  _pending_jni_exception_check_fn = NULL;
1437  _do_not_unlock_if_synchronized = false;
1438  _cached_monitor_info = NULL;
1439  _parker = Parker::Allocate(this);
1440
1441#ifndef PRODUCT
1442  _jmp_ring_index = 0;
1443  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1444    record_jump(NULL, NULL, NULL, 0);
1445  }
1446#endif // PRODUCT
1447
1448  set_thread_profiler(NULL);
1449  if (FlatProfiler::is_active()) {
1450    // This is where we would decide to either give each thread it's own profiler
1451    // or use one global one from FlatProfiler,
1452    // or up to some count of the number of profiled threads, etc.
1453    ThreadProfiler* pp = new ThreadProfiler();
1454    pp->engage();
1455    set_thread_profiler(pp);
1456  }
1457
1458  // Setup safepoint state info for this thread
1459  ThreadSafepointState::create(this);
1460
1461  debug_only(_java_call_counter = 0);
1462
1463  // JVMTI PopFrame support
1464  _popframe_condition = popframe_inactive;
1465  _popframe_preserved_args = NULL;
1466  _popframe_preserved_args_size = 0;
1467  _frames_to_pop_failed_realloc = 0;
1468
1469  pd_initialize();
1470}
1471
1472#if INCLUDE_ALL_GCS
1473SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1474DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1475#endif // INCLUDE_ALL_GCS
1476
1477JavaThread::JavaThread(bool is_attaching_via_jni) :
1478                       Thread()
1479#if INCLUDE_ALL_GCS
1480                       , _satb_mark_queue(&_satb_mark_queue_set),
1481                       _dirty_card_queue(&_dirty_card_queue_set)
1482#endif // INCLUDE_ALL_GCS
1483{
1484  initialize();
1485  if (is_attaching_via_jni) {
1486    _jni_attach_state = _attaching_via_jni;
1487  } else {
1488    _jni_attach_state = _not_attaching_via_jni;
1489  }
1490  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1491}
1492
1493bool JavaThread::reguard_stack(address cur_sp) {
1494  if (_stack_guard_state != stack_guard_yellow_disabled) {
1495    return true; // Stack already guarded or guard pages not needed.
1496  }
1497
1498  if (register_stack_overflow()) {
1499    // For those architectures which have separate register and
1500    // memory stacks, we must check the register stack to see if
1501    // it has overflowed.
1502    return false;
1503  }
1504
1505  // Java code never executes within the yellow zone: the latter is only
1506  // there to provoke an exception during stack banging.  If java code
1507  // is executing there, either StackShadowPages should be larger, or
1508  // some exception code in c1, c2 or the interpreter isn't unwinding
1509  // when it should.
1510  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1511
1512  enable_stack_yellow_zone();
1513  return true;
1514}
1515
1516bool JavaThread::reguard_stack(void) {
1517  return reguard_stack(os::current_stack_pointer());
1518}
1519
1520
1521void JavaThread::block_if_vm_exited() {
1522  if (_terminated == _vm_exited) {
1523    // _vm_exited is set at safepoint, and Threads_lock is never released
1524    // we will block here forever
1525    Threads_lock->lock_without_safepoint_check();
1526    ShouldNotReachHere();
1527  }
1528}
1529
1530
1531// Remove this ifdef when C1 is ported to the compiler interface.
1532static void compiler_thread_entry(JavaThread* thread, TRAPS);
1533static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1534
1535JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1536                       Thread()
1537#if INCLUDE_ALL_GCS
1538                       , _satb_mark_queue(&_satb_mark_queue_set),
1539                       _dirty_card_queue(&_dirty_card_queue_set)
1540#endif // INCLUDE_ALL_GCS
1541{
1542  initialize();
1543  _jni_attach_state = _not_attaching_via_jni;
1544  set_entry_point(entry_point);
1545  // Create the native thread itself.
1546  // %note runtime_23
1547  os::ThreadType thr_type = os::java_thread;
1548  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1549                                                     os::java_thread;
1550  os::create_thread(this, thr_type, stack_sz);
1551  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1552  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1553  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1554  // the exception consists of creating the exception object & initializing it, initialization
1555  // will leave the VM via a JavaCall and then all locks must be unlocked).
1556  //
1557  // The thread is still suspended when we reach here. Thread must be explicit started
1558  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1559  // by calling Threads:add. The reason why this is not done here, is because the thread
1560  // object must be fully initialized (take a look at JVM_Start)
1561}
1562
1563JavaThread::~JavaThread() {
1564
1565  // JSR166 -- return the parker to the free list
1566  Parker::Release(_parker);
1567  _parker = NULL;
1568
1569  // Free any remaining  previous UnrollBlock
1570  vframeArray* old_array = vframe_array_last();
1571
1572  if (old_array != NULL) {
1573    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1574    old_array->set_unroll_block(NULL);
1575    delete old_info;
1576    delete old_array;
1577  }
1578
1579  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1580  if (deferred != NULL) {
1581    // This can only happen if thread is destroyed before deoptimization occurs.
1582    assert(deferred->length() != 0, "empty array!");
1583    do {
1584      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1585      deferred->remove_at(0);
1586      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1587      delete dlv;
1588    } while (deferred->length() != 0);
1589    delete deferred;
1590  }
1591
1592  // All Java related clean up happens in exit
1593  ThreadSafepointState::destroy(this);
1594  if (_thread_profiler != NULL) delete _thread_profiler;
1595  if (_thread_stat != NULL) delete _thread_stat;
1596}
1597
1598
1599// The first routine called by a new Java thread
1600void JavaThread::run() {
1601  // initialize thread-local alloc buffer related fields
1602  this->initialize_tlab();
1603
1604  // used to test validity of stack trace backs
1605  this->record_base_of_stack_pointer();
1606
1607  // Record real stack base and size.
1608  this->record_stack_base_and_size();
1609
1610  // Initialize thread local storage; set before calling MutexLocker
1611  this->initialize_thread_local_storage();
1612
1613  this->create_stack_guard_pages();
1614
1615  this->cache_global_variables();
1616
1617  // Thread is now sufficient initialized to be handled by the safepoint code as being
1618  // in the VM. Change thread state from _thread_new to _thread_in_vm
1619  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1620
1621  assert(JavaThread::current() == this, "sanity check");
1622  assert(!Thread::current()->owns_locks(), "sanity check");
1623
1624  DTRACE_THREAD_PROBE(start, this);
1625
1626  // This operation might block. We call that after all safepoint checks for a new thread has
1627  // been completed.
1628  this->set_active_handles(JNIHandleBlock::allocate_block());
1629
1630  if (JvmtiExport::should_post_thread_life()) {
1631    JvmtiExport::post_thread_start(this);
1632  }
1633
1634  EventThreadStart event;
1635  if (event.should_commit()) {
1636    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1637    event.commit();
1638  }
1639
1640  // We call another function to do the rest so we are sure that the stack addresses used
1641  // from there will be lower than the stack base just computed
1642  thread_main_inner();
1643
1644  // Note, thread is no longer valid at this point!
1645}
1646
1647
1648void JavaThread::thread_main_inner() {
1649  assert(JavaThread::current() == this, "sanity check");
1650  assert(this->threadObj() != NULL, "just checking");
1651
1652  // Execute thread entry point unless this thread has a pending exception
1653  // or has been stopped before starting.
1654  // Note: Due to JVM_StopThread we can have pending exceptions already!
1655  if (!this->has_pending_exception() &&
1656      !java_lang_Thread::is_stillborn(this->threadObj())) {
1657    {
1658      ResourceMark rm(this);
1659      this->set_native_thread_name(this->get_thread_name());
1660    }
1661    HandleMark hm(this);
1662    this->entry_point()(this, this);
1663  }
1664
1665  DTRACE_THREAD_PROBE(stop, this);
1666
1667  this->exit(false);
1668  delete this;
1669}
1670
1671
1672static void ensure_join(JavaThread* thread) {
1673  // We do not need to grap the Threads_lock, since we are operating on ourself.
1674  Handle threadObj(thread, thread->threadObj());
1675  assert(threadObj.not_null(), "java thread object must exist");
1676  ObjectLocker lock(threadObj, thread);
1677  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1678  thread->clear_pending_exception();
1679  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1680  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1681  // Clear the native thread instance - this makes isAlive return false and allows the join()
1682  // to complete once we've done the notify_all below
1683  java_lang_Thread::set_thread(threadObj(), NULL);
1684  lock.notify_all(thread);
1685  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1686  thread->clear_pending_exception();
1687}
1688
1689
1690// For any new cleanup additions, please check to see if they need to be applied to
1691// cleanup_failed_attach_current_thread as well.
1692void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1693  assert(this == JavaThread::current(), "thread consistency check");
1694
1695  HandleMark hm(this);
1696  Handle uncaught_exception(this, this->pending_exception());
1697  this->clear_pending_exception();
1698  Handle threadObj(this, this->threadObj());
1699  assert(threadObj.not_null(), "Java thread object should be created");
1700
1701  if (get_thread_profiler() != NULL) {
1702    get_thread_profiler()->disengage();
1703    ResourceMark rm;
1704    get_thread_profiler()->print(get_thread_name());
1705  }
1706
1707
1708  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1709  {
1710    EXCEPTION_MARK;
1711
1712    CLEAR_PENDING_EXCEPTION;
1713  }
1714  if (!destroy_vm) {
1715    if (uncaught_exception.not_null()) {
1716      EXCEPTION_MARK;
1717      // Call method Thread.dispatchUncaughtException().
1718      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1719      JavaValue result(T_VOID);
1720      JavaCalls::call_virtual(&result,
1721                              threadObj, thread_klass,
1722                              vmSymbols::dispatchUncaughtException_name(),
1723                              vmSymbols::throwable_void_signature(),
1724                              uncaught_exception,
1725                              THREAD);
1726      if (HAS_PENDING_EXCEPTION) {
1727        ResourceMark rm(this);
1728        jio_fprintf(defaultStream::error_stream(),
1729                    "\nException: %s thrown from the UncaughtExceptionHandler"
1730                    " in thread \"%s\"\n",
1731                    pending_exception()->klass()->external_name(),
1732                    get_thread_name());
1733        CLEAR_PENDING_EXCEPTION;
1734      }
1735    }
1736
1737    // Called before the java thread exit since we want to read info
1738    // from java_lang_Thread object
1739    EventThreadEnd event;
1740    if (event.should_commit()) {
1741      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1742      event.commit();
1743    }
1744
1745    // Call after last event on thread
1746    EVENT_THREAD_EXIT(this);
1747
1748    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1749    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1750    // is deprecated anyhow.
1751    if (!is_Compiler_thread()) {
1752      int count = 3;
1753      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1754        EXCEPTION_MARK;
1755        JavaValue result(T_VOID);
1756        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1757        JavaCalls::call_virtual(&result,
1758                                threadObj, thread_klass,
1759                                vmSymbols::exit_method_name(),
1760                                vmSymbols::void_method_signature(),
1761                                THREAD);
1762        CLEAR_PENDING_EXCEPTION;
1763      }
1764    }
1765    // notify JVMTI
1766    if (JvmtiExport::should_post_thread_life()) {
1767      JvmtiExport::post_thread_end(this);
1768    }
1769
1770    // We have notified the agents that we are exiting, before we go on,
1771    // we must check for a pending external suspend request and honor it
1772    // in order to not surprise the thread that made the suspend request.
1773    while (true) {
1774      {
1775        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1776        if (!is_external_suspend()) {
1777          set_terminated(_thread_exiting);
1778          ThreadService::current_thread_exiting(this);
1779          break;
1780        }
1781        // Implied else:
1782        // Things get a little tricky here. We have a pending external
1783        // suspend request, but we are holding the SR_lock so we
1784        // can't just self-suspend. So we temporarily drop the lock
1785        // and then self-suspend.
1786      }
1787
1788      ThreadBlockInVM tbivm(this);
1789      java_suspend_self();
1790
1791      // We're done with this suspend request, but we have to loop around
1792      // and check again. Eventually we will get SR_lock without a pending
1793      // external suspend request and will be able to mark ourselves as
1794      // exiting.
1795    }
1796    // no more external suspends are allowed at this point
1797  } else {
1798    // before_exit() has already posted JVMTI THREAD_END events
1799  }
1800
1801  // Notify waiters on thread object. This has to be done after exit() is called
1802  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1803  // group should have the destroyed bit set before waiters are notified).
1804  ensure_join(this);
1805  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1806
1807  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1808  // held by this thread must be released. The spec does not distinguish
1809  // between JNI-acquired and regular Java monitors. We can only see
1810  // regular Java monitors here if monitor enter-exit matching is broken.
1811  //
1812  // Optionally release any monitors for regular JavaThread exits. This
1813  // is provided as a work around for any bugs in monitor enter-exit
1814  // matching. This can be expensive so it is not enabled by default.
1815  // ObjectMonitor::Knob_ExitRelease is a superset of the
1816  // JNIDetachReleasesMonitors option.
1817  //
1818  // ensure_join() ignores IllegalThreadStateExceptions, and so does
1819  // ObjectSynchronizer::release_monitors_owned_by_thread().
1820  if ((exit_type == jni_detach && JNIDetachReleasesMonitors) ||
1821      ObjectMonitor::Knob_ExitRelease) {
1822    // Sanity check even though JNI DetachCurrentThread() would have
1823    // returned JNI_ERR if there was a Java frame. JavaThread exit
1824    // should be done executing Java code by the time we get here.
1825    assert(!this->has_last_Java_frame(),
1826           "should not have a Java frame when detaching or exiting");
1827    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1828    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1829  }
1830
1831  // These things needs to be done while we are still a Java Thread. Make sure that thread
1832  // is in a consistent state, in case GC happens
1833  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1834
1835  if (active_handles() != NULL) {
1836    JNIHandleBlock* block = active_handles();
1837    set_active_handles(NULL);
1838    JNIHandleBlock::release_block(block);
1839  }
1840
1841  if (free_handle_block() != NULL) {
1842    JNIHandleBlock* block = free_handle_block();
1843    set_free_handle_block(NULL);
1844    JNIHandleBlock::release_block(block);
1845  }
1846
1847  // These have to be removed while this is still a valid thread.
1848  remove_stack_guard_pages();
1849
1850  if (UseTLAB) {
1851    tlab().make_parsable(true);  // retire TLAB
1852  }
1853
1854  if (JvmtiEnv::environments_might_exist()) {
1855    JvmtiExport::cleanup_thread(this);
1856  }
1857
1858  // We must flush any deferred card marks before removing a thread from
1859  // the list of active threads.
1860  Universe::heap()->flush_deferred_store_barrier(this);
1861  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1862
1863#if INCLUDE_ALL_GCS
1864  // We must flush the G1-related buffers before removing a thread
1865  // from the list of active threads. We must do this after any deferred
1866  // card marks have been flushed (above) so that any entries that are
1867  // added to the thread's dirty card queue as a result are not lost.
1868  if (UseG1GC) {
1869    flush_barrier_queues();
1870  }
1871#endif // INCLUDE_ALL_GCS
1872
1873  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1874  Threads::remove(this);
1875}
1876
1877#if INCLUDE_ALL_GCS
1878// Flush G1-related queues.
1879void JavaThread::flush_barrier_queues() {
1880  satb_mark_queue().flush();
1881  dirty_card_queue().flush();
1882}
1883
1884void JavaThread::initialize_queues() {
1885  assert(!SafepointSynchronize::is_at_safepoint(),
1886         "we should not be at a safepoint");
1887
1888  ObjPtrQueue& satb_queue = satb_mark_queue();
1889  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1890  // The SATB queue should have been constructed with its active
1891  // field set to false.
1892  assert(!satb_queue.is_active(), "SATB queue should not be active");
1893  assert(satb_queue.is_empty(), "SATB queue should be empty");
1894  // If we are creating the thread during a marking cycle, we should
1895  // set the active field of the SATB queue to true.
1896  if (satb_queue_set.is_active()) {
1897    satb_queue.set_active(true);
1898  }
1899
1900  DirtyCardQueue& dirty_queue = dirty_card_queue();
1901  // The dirty card queue should have been constructed with its
1902  // active field set to true.
1903  assert(dirty_queue.is_active(), "dirty card queue should be active");
1904}
1905#endif // INCLUDE_ALL_GCS
1906
1907void JavaThread::cleanup_failed_attach_current_thread() {
1908  if (get_thread_profiler() != NULL) {
1909    get_thread_profiler()->disengage();
1910    ResourceMark rm;
1911    get_thread_profiler()->print(get_thread_name());
1912  }
1913
1914  if (active_handles() != NULL) {
1915    JNIHandleBlock* block = active_handles();
1916    set_active_handles(NULL);
1917    JNIHandleBlock::release_block(block);
1918  }
1919
1920  if (free_handle_block() != NULL) {
1921    JNIHandleBlock* block = free_handle_block();
1922    set_free_handle_block(NULL);
1923    JNIHandleBlock::release_block(block);
1924  }
1925
1926  // These have to be removed while this is still a valid thread.
1927  remove_stack_guard_pages();
1928
1929  if (UseTLAB) {
1930    tlab().make_parsable(true);  // retire TLAB, if any
1931  }
1932
1933#if INCLUDE_ALL_GCS
1934  if (UseG1GC) {
1935    flush_barrier_queues();
1936  }
1937#endif // INCLUDE_ALL_GCS
1938
1939  Threads::remove(this);
1940  delete this;
1941}
1942
1943
1944
1945
1946JavaThread* JavaThread::active() {
1947  Thread* thread = ThreadLocalStorage::thread();
1948  assert(thread != NULL, "just checking");
1949  if (thread->is_Java_thread()) {
1950    return (JavaThread*) thread;
1951  } else {
1952    assert(thread->is_VM_thread(), "this must be a vm thread");
1953    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1954    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1955    assert(ret->is_Java_thread(), "must be a Java thread");
1956    return ret;
1957  }
1958}
1959
1960bool JavaThread::is_lock_owned(address adr) const {
1961  if (Thread::is_lock_owned(adr)) return true;
1962
1963  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1964    if (chunk->contains(adr)) return true;
1965  }
1966
1967  return false;
1968}
1969
1970
1971void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1972  chunk->set_next(monitor_chunks());
1973  set_monitor_chunks(chunk);
1974}
1975
1976void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1977  guarantee(monitor_chunks() != NULL, "must be non empty");
1978  if (monitor_chunks() == chunk) {
1979    set_monitor_chunks(chunk->next());
1980  } else {
1981    MonitorChunk* prev = monitor_chunks();
1982    while (prev->next() != chunk) prev = prev->next();
1983    prev->set_next(chunk->next());
1984  }
1985}
1986
1987// JVM support.
1988
1989// Note: this function shouldn't block if it's called in
1990// _thread_in_native_trans state (such as from
1991// check_special_condition_for_native_trans()).
1992void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1993
1994  if (has_last_Java_frame() && has_async_condition()) {
1995    // If we are at a polling page safepoint (not a poll return)
1996    // then we must defer async exception because live registers
1997    // will be clobbered by the exception path. Poll return is
1998    // ok because the call we a returning from already collides
1999    // with exception handling registers and so there is no issue.
2000    // (The exception handling path kills call result registers but
2001    //  this is ok since the exception kills the result anyway).
2002
2003    if (is_at_poll_safepoint()) {
2004      // if the code we are returning to has deoptimized we must defer
2005      // the exception otherwise live registers get clobbered on the
2006      // exception path before deoptimization is able to retrieve them.
2007      //
2008      RegisterMap map(this, false);
2009      frame caller_fr = last_frame().sender(&map);
2010      assert(caller_fr.is_compiled_frame(), "what?");
2011      if (caller_fr.is_deoptimized_frame()) {
2012        if (TraceExceptions) {
2013          ResourceMark rm;
2014          tty->print_cr("deferred async exception at compiled safepoint");
2015        }
2016        return;
2017      }
2018    }
2019  }
2020
2021  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2022  if (condition == _no_async_condition) {
2023    // Conditions have changed since has_special_runtime_exit_condition()
2024    // was called:
2025    // - if we were here only because of an external suspend request,
2026    //   then that was taken care of above (or cancelled) so we are done
2027    // - if we were here because of another async request, then it has
2028    //   been cleared between the has_special_runtime_exit_condition()
2029    //   and now so again we are done
2030    return;
2031  }
2032
2033  // Check for pending async. exception
2034  if (_pending_async_exception != NULL) {
2035    // Only overwrite an already pending exception, if it is not a threadDeath.
2036    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2037
2038      // We cannot call Exceptions::_throw(...) here because we cannot block
2039      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2040
2041      if (TraceExceptions) {
2042        ResourceMark rm;
2043        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2044        if (has_last_Java_frame()) {
2045          frame f = last_frame();
2046          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2047        }
2048        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2049      }
2050      _pending_async_exception = NULL;
2051      clear_has_async_exception();
2052    }
2053  }
2054
2055  if (check_unsafe_error &&
2056      condition == _async_unsafe_access_error && !has_pending_exception()) {
2057    condition = _no_async_condition;  // done
2058    switch (thread_state()) {
2059    case _thread_in_vm: {
2060      JavaThread* THREAD = this;
2061      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2062    }
2063    case _thread_in_native: {
2064      ThreadInVMfromNative tiv(this);
2065      JavaThread* THREAD = this;
2066      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2067    }
2068    case _thread_in_Java: {
2069      ThreadInVMfromJava tiv(this);
2070      JavaThread* THREAD = this;
2071      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2072    }
2073    default:
2074      ShouldNotReachHere();
2075    }
2076  }
2077
2078  assert(condition == _no_async_condition || has_pending_exception() ||
2079         (!check_unsafe_error && condition == _async_unsafe_access_error),
2080         "must have handled the async condition, if no exception");
2081}
2082
2083void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2084  //
2085  // Check for pending external suspend. Internal suspend requests do
2086  // not use handle_special_runtime_exit_condition().
2087  // If JNIEnv proxies are allowed, don't self-suspend if the target
2088  // thread is not the current thread. In older versions of jdbx, jdbx
2089  // threads could call into the VM with another thread's JNIEnv so we
2090  // can be here operating on behalf of a suspended thread (4432884).
2091  bool do_self_suspend = is_external_suspend_with_lock();
2092  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2093    //
2094    // Because thread is external suspended the safepoint code will count
2095    // thread as at a safepoint. This can be odd because we can be here
2096    // as _thread_in_Java which would normally transition to _thread_blocked
2097    // at a safepoint. We would like to mark the thread as _thread_blocked
2098    // before calling java_suspend_self like all other callers of it but
2099    // we must then observe proper safepoint protocol. (We can't leave
2100    // _thread_blocked with a safepoint in progress). However we can be
2101    // here as _thread_in_native_trans so we can't use a normal transition
2102    // constructor/destructor pair because they assert on that type of
2103    // transition. We could do something like:
2104    //
2105    // JavaThreadState state = thread_state();
2106    // set_thread_state(_thread_in_vm);
2107    // {
2108    //   ThreadBlockInVM tbivm(this);
2109    //   java_suspend_self()
2110    // }
2111    // set_thread_state(_thread_in_vm_trans);
2112    // if (safepoint) block;
2113    // set_thread_state(state);
2114    //
2115    // but that is pretty messy. Instead we just go with the way the
2116    // code has worked before and note that this is the only path to
2117    // java_suspend_self that doesn't put the thread in _thread_blocked
2118    // mode.
2119
2120    frame_anchor()->make_walkable(this);
2121    java_suspend_self();
2122
2123    // We might be here for reasons in addition to the self-suspend request
2124    // so check for other async requests.
2125  }
2126
2127  if (check_asyncs) {
2128    check_and_handle_async_exceptions();
2129  }
2130}
2131
2132void JavaThread::send_thread_stop(oop java_throwable)  {
2133  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2134  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2135  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2136
2137  // Do not throw asynchronous exceptions against the compiler thread
2138  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2139  if (is_Compiler_thread()) return;
2140
2141  {
2142    // Actually throw the Throwable against the target Thread - however
2143    // only if there is no thread death exception installed already.
2144    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2145      // If the topmost frame is a runtime stub, then we are calling into
2146      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2147      // must deoptimize the caller before continuing, as the compiled  exception handler table
2148      // may not be valid
2149      if (has_last_Java_frame()) {
2150        frame f = last_frame();
2151        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2152          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2153          RegisterMap reg_map(this, UseBiasedLocking);
2154          frame compiled_frame = f.sender(&reg_map);
2155          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2156            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2157          }
2158        }
2159      }
2160
2161      // Set async. pending exception in thread.
2162      set_pending_async_exception(java_throwable);
2163
2164      if (TraceExceptions) {
2165        ResourceMark rm;
2166        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2167      }
2168      // for AbortVMOnException flag
2169      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2170    }
2171  }
2172
2173
2174  // Interrupt thread so it will wake up from a potential wait()
2175  Thread::interrupt(this);
2176}
2177
2178// External suspension mechanism.
2179//
2180// Tell the VM to suspend a thread when ever it knows that it does not hold on
2181// to any VM_locks and it is at a transition
2182// Self-suspension will happen on the transition out of the vm.
2183// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2184//
2185// Guarantees on return:
2186//   + Target thread will not execute any new bytecode (that's why we need to
2187//     force a safepoint)
2188//   + Target thread will not enter any new monitors
2189//
2190void JavaThread::java_suspend() {
2191  { MutexLocker mu(Threads_lock);
2192    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2193      return;
2194    }
2195  }
2196
2197  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2198    if (!is_external_suspend()) {
2199      // a racing resume has cancelled us; bail out now
2200      return;
2201    }
2202
2203    // suspend is done
2204    uint32_t debug_bits = 0;
2205    // Warning: is_ext_suspend_completed() may temporarily drop the
2206    // SR_lock to allow the thread to reach a stable thread state if
2207    // it is currently in a transient thread state.
2208    if (is_ext_suspend_completed(false /* !called_by_wait */,
2209                                 SuspendRetryDelay, &debug_bits)) {
2210      return;
2211    }
2212  }
2213
2214  VM_ForceSafepoint vm_suspend;
2215  VMThread::execute(&vm_suspend);
2216}
2217
2218// Part II of external suspension.
2219// A JavaThread self suspends when it detects a pending external suspend
2220// request. This is usually on transitions. It is also done in places
2221// where continuing to the next transition would surprise the caller,
2222// e.g., monitor entry.
2223//
2224// Returns the number of times that the thread self-suspended.
2225//
2226// Note: DO NOT call java_suspend_self() when you just want to block current
2227//       thread. java_suspend_self() is the second stage of cooperative
2228//       suspension for external suspend requests and should only be used
2229//       to complete an external suspend request.
2230//
2231int JavaThread::java_suspend_self() {
2232  int ret = 0;
2233
2234  // we are in the process of exiting so don't suspend
2235  if (is_exiting()) {
2236    clear_external_suspend();
2237    return ret;
2238  }
2239
2240  assert(_anchor.walkable() ||
2241         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2242         "must have walkable stack");
2243
2244  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2245
2246  assert(!this->is_ext_suspended(),
2247         "a thread trying to self-suspend should not already be suspended");
2248
2249  if (this->is_suspend_equivalent()) {
2250    // If we are self-suspending as a result of the lifting of a
2251    // suspend equivalent condition, then the suspend_equivalent
2252    // flag is not cleared until we set the ext_suspended flag so
2253    // that wait_for_ext_suspend_completion() returns consistent
2254    // results.
2255    this->clear_suspend_equivalent();
2256  }
2257
2258  // A racing resume may have cancelled us before we grabbed SR_lock
2259  // above. Or another external suspend request could be waiting for us
2260  // by the time we return from SR_lock()->wait(). The thread
2261  // that requested the suspension may already be trying to walk our
2262  // stack and if we return now, we can change the stack out from under
2263  // it. This would be a "bad thing (TM)" and cause the stack walker
2264  // to crash. We stay self-suspended until there are no more pending
2265  // external suspend requests.
2266  while (is_external_suspend()) {
2267    ret++;
2268    this->set_ext_suspended();
2269
2270    // _ext_suspended flag is cleared by java_resume()
2271    while (is_ext_suspended()) {
2272      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2273    }
2274  }
2275
2276  return ret;
2277}
2278
2279#ifdef ASSERT
2280// verify the JavaThread has not yet been published in the Threads::list, and
2281// hence doesn't need protection from concurrent access at this stage
2282void JavaThread::verify_not_published() {
2283  if (!Threads_lock->owned_by_self()) {
2284    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2285    assert(!Threads::includes(this),
2286           "java thread shouldn't have been published yet!");
2287  } else {
2288    assert(!Threads::includes(this),
2289           "java thread shouldn't have been published yet!");
2290  }
2291}
2292#endif
2293
2294// Slow path when the native==>VM/Java barriers detect a safepoint is in
2295// progress or when _suspend_flags is non-zero.
2296// Current thread needs to self-suspend if there is a suspend request and/or
2297// block if a safepoint is in progress.
2298// Async exception ISN'T checked.
2299// Note only the ThreadInVMfromNative transition can call this function
2300// directly and when thread state is _thread_in_native_trans
2301void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2302  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2303
2304  JavaThread *curJT = JavaThread::current();
2305  bool do_self_suspend = thread->is_external_suspend();
2306
2307  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2308
2309  // If JNIEnv proxies are allowed, don't self-suspend if the target
2310  // thread is not the current thread. In older versions of jdbx, jdbx
2311  // threads could call into the VM with another thread's JNIEnv so we
2312  // can be here operating on behalf of a suspended thread (4432884).
2313  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2314    JavaThreadState state = thread->thread_state();
2315
2316    // We mark this thread_blocked state as a suspend-equivalent so
2317    // that a caller to is_ext_suspend_completed() won't be confused.
2318    // The suspend-equivalent state is cleared by java_suspend_self().
2319    thread->set_suspend_equivalent();
2320
2321    // If the safepoint code sees the _thread_in_native_trans state, it will
2322    // wait until the thread changes to other thread state. There is no
2323    // guarantee on how soon we can obtain the SR_lock and complete the
2324    // self-suspend request. It would be a bad idea to let safepoint wait for
2325    // too long. Temporarily change the state to _thread_blocked to
2326    // let the VM thread know that this thread is ready for GC. The problem
2327    // of changing thread state is that safepoint could happen just after
2328    // java_suspend_self() returns after being resumed, and VM thread will
2329    // see the _thread_blocked state. We must check for safepoint
2330    // after restoring the state and make sure we won't leave while a safepoint
2331    // is in progress.
2332    thread->set_thread_state(_thread_blocked);
2333    thread->java_suspend_self();
2334    thread->set_thread_state(state);
2335    // Make sure new state is seen by VM thread
2336    if (os::is_MP()) {
2337      if (UseMembar) {
2338        // Force a fence between the write above and read below
2339        OrderAccess::fence();
2340      } else {
2341        // Must use this rather than serialization page in particular on Windows
2342        InterfaceSupport::serialize_memory(thread);
2343      }
2344    }
2345  }
2346
2347  if (SafepointSynchronize::do_call_back()) {
2348    // If we are safepointing, then block the caller which may not be
2349    // the same as the target thread (see above).
2350    SafepointSynchronize::block(curJT);
2351  }
2352
2353  if (thread->is_deopt_suspend()) {
2354    thread->clear_deopt_suspend();
2355    RegisterMap map(thread, false);
2356    frame f = thread->last_frame();
2357    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2358      f = f.sender(&map);
2359    }
2360    if (f.id() == thread->must_deopt_id()) {
2361      thread->clear_must_deopt_id();
2362      f.deoptimize(thread);
2363    } else {
2364      fatal("missed deoptimization!");
2365    }
2366  }
2367}
2368
2369// Slow path when the native==>VM/Java barriers detect a safepoint is in
2370// progress or when _suspend_flags is non-zero.
2371// Current thread needs to self-suspend if there is a suspend request and/or
2372// block if a safepoint is in progress.
2373// Also check for pending async exception (not including unsafe access error).
2374// Note only the native==>VM/Java barriers can call this function and when
2375// thread state is _thread_in_native_trans.
2376void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2377  check_safepoint_and_suspend_for_native_trans(thread);
2378
2379  if (thread->has_async_exception()) {
2380    // We are in _thread_in_native_trans state, don't handle unsafe
2381    // access error since that may block.
2382    thread->check_and_handle_async_exceptions(false);
2383  }
2384}
2385
2386// This is a variant of the normal
2387// check_special_condition_for_native_trans with slightly different
2388// semantics for use by critical native wrappers.  It does all the
2389// normal checks but also performs the transition back into
2390// thread_in_Java state.  This is required so that critical natives
2391// can potentially block and perform a GC if they are the last thread
2392// exiting the GC_locker.
2393void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2394  check_special_condition_for_native_trans(thread);
2395
2396  // Finish the transition
2397  thread->set_thread_state(_thread_in_Java);
2398
2399  if (thread->do_critical_native_unlock()) {
2400    ThreadInVMfromJavaNoAsyncException tiv(thread);
2401    GC_locker::unlock_critical(thread);
2402    thread->clear_critical_native_unlock();
2403  }
2404}
2405
2406// We need to guarantee the Threads_lock here, since resumes are not
2407// allowed during safepoint synchronization
2408// Can only resume from an external suspension
2409void JavaThread::java_resume() {
2410  assert_locked_or_safepoint(Threads_lock);
2411
2412  // Sanity check: thread is gone, has started exiting or the thread
2413  // was not externally suspended.
2414  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2415    return;
2416  }
2417
2418  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2419
2420  clear_external_suspend();
2421
2422  if (is_ext_suspended()) {
2423    clear_ext_suspended();
2424    SR_lock()->notify_all();
2425  }
2426}
2427
2428void JavaThread::create_stack_guard_pages() {
2429  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2430  address low_addr = stack_base() - stack_size();
2431  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2432
2433  int allocate = os::allocate_stack_guard_pages();
2434  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2435
2436  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2437    warning("Attempt to allocate stack guard pages failed.");
2438    return;
2439  }
2440
2441  if (os::guard_memory((char *) low_addr, len)) {
2442    _stack_guard_state = stack_guard_enabled;
2443  } else {
2444    warning("Attempt to protect stack guard pages failed.");
2445    if (os::uncommit_memory((char *) low_addr, len)) {
2446      warning("Attempt to deallocate stack guard pages failed.");
2447    }
2448  }
2449}
2450
2451void JavaThread::remove_stack_guard_pages() {
2452  assert(Thread::current() == this, "from different thread");
2453  if (_stack_guard_state == stack_guard_unused) return;
2454  address low_addr = stack_base() - stack_size();
2455  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2456
2457  if (os::allocate_stack_guard_pages()) {
2458    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2459      _stack_guard_state = stack_guard_unused;
2460    } else {
2461      warning("Attempt to deallocate stack guard pages failed.");
2462    }
2463  } else {
2464    if (_stack_guard_state == stack_guard_unused) return;
2465    if (os::unguard_memory((char *) low_addr, len)) {
2466      _stack_guard_state = stack_guard_unused;
2467    } else {
2468      warning("Attempt to unprotect stack guard pages failed.");
2469    }
2470  }
2471}
2472
2473void JavaThread::enable_stack_yellow_zone() {
2474  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2475  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2476
2477  // The base notation is from the stacks point of view, growing downward.
2478  // We need to adjust it to work correctly with guard_memory()
2479  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2480
2481  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2482  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2483
2484  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2485    _stack_guard_state = stack_guard_enabled;
2486  } else {
2487    warning("Attempt to guard stack yellow zone failed.");
2488  }
2489  enable_register_stack_guard();
2490}
2491
2492void JavaThread::disable_stack_yellow_zone() {
2493  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2494  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2495
2496  // Simply return if called for a thread that does not use guard pages.
2497  if (_stack_guard_state == stack_guard_unused) return;
2498
2499  // The base notation is from the stacks point of view, growing downward.
2500  // We need to adjust it to work correctly with guard_memory()
2501  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2502
2503  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2504    _stack_guard_state = stack_guard_yellow_disabled;
2505  } else {
2506    warning("Attempt to unguard stack yellow zone failed.");
2507  }
2508  disable_register_stack_guard();
2509}
2510
2511void JavaThread::enable_stack_red_zone() {
2512  // The base notation is from the stacks point of view, growing downward.
2513  // We need to adjust it to work correctly with guard_memory()
2514  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2515  address base = stack_red_zone_base() - stack_red_zone_size();
2516
2517  guarantee(base < stack_base(), "Error calculating stack red zone");
2518  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2519
2520  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2521    warning("Attempt to guard stack red zone failed.");
2522  }
2523}
2524
2525void JavaThread::disable_stack_red_zone() {
2526  // The base notation is from the stacks point of view, growing downward.
2527  // We need to adjust it to work correctly with guard_memory()
2528  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2529  address base = stack_red_zone_base() - stack_red_zone_size();
2530  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2531    warning("Attempt to unguard stack red zone failed.");
2532  }
2533}
2534
2535void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2536  // ignore is there is no stack
2537  if (!has_last_Java_frame()) return;
2538  // traverse the stack frames. Starts from top frame.
2539  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2540    frame* fr = fst.current();
2541    f(fr, fst.register_map());
2542  }
2543}
2544
2545
2546#ifndef PRODUCT
2547// Deoptimization
2548// Function for testing deoptimization
2549void JavaThread::deoptimize() {
2550  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2551  StackFrameStream fst(this, UseBiasedLocking);
2552  bool deopt = false;           // Dump stack only if a deopt actually happens.
2553  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2554  // Iterate over all frames in the thread and deoptimize
2555  for (; !fst.is_done(); fst.next()) {
2556    if (fst.current()->can_be_deoptimized()) {
2557
2558      if (only_at) {
2559        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2560        // consists of comma or carriage return separated numbers so
2561        // search for the current bci in that string.
2562        address pc = fst.current()->pc();
2563        nmethod* nm =  (nmethod*) fst.current()->cb();
2564        ScopeDesc* sd = nm->scope_desc_at(pc);
2565        char buffer[8];
2566        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2567        size_t len = strlen(buffer);
2568        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2569        while (found != NULL) {
2570          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2571              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2572            // Check that the bci found is bracketed by terminators.
2573            break;
2574          }
2575          found = strstr(found + 1, buffer);
2576        }
2577        if (!found) {
2578          continue;
2579        }
2580      }
2581
2582      if (DebugDeoptimization && !deopt) {
2583        deopt = true; // One-time only print before deopt
2584        tty->print_cr("[BEFORE Deoptimization]");
2585        trace_frames();
2586        trace_stack();
2587      }
2588      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2589    }
2590  }
2591
2592  if (DebugDeoptimization && deopt) {
2593    tty->print_cr("[AFTER Deoptimization]");
2594    trace_frames();
2595  }
2596}
2597
2598
2599// Make zombies
2600void JavaThread::make_zombies() {
2601  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2602    if (fst.current()->can_be_deoptimized()) {
2603      // it is a Java nmethod
2604      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2605      nm->make_not_entrant();
2606    }
2607  }
2608}
2609#endif // PRODUCT
2610
2611
2612void JavaThread::deoptimized_wrt_marked_nmethods() {
2613  if (!has_last_Java_frame()) return;
2614  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2615  StackFrameStream fst(this, UseBiasedLocking);
2616  for (; !fst.is_done(); fst.next()) {
2617    if (fst.current()->should_be_deoptimized()) {
2618      if (LogCompilation && xtty != NULL) {
2619        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2620        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2621                   this->name(), nm != NULL ? nm->compile_id() : -1);
2622      }
2623
2624      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2625    }
2626  }
2627}
2628
2629
2630// If the caller is a NamedThread, then remember, in the current scope,
2631// the given JavaThread in its _processed_thread field.
2632class RememberProcessedThread: public StackObj {
2633  NamedThread* _cur_thr;
2634 public:
2635  RememberProcessedThread(JavaThread* jthr) {
2636    Thread* thread = Thread::current();
2637    if (thread->is_Named_thread()) {
2638      _cur_thr = (NamedThread *)thread;
2639      _cur_thr->set_processed_thread(jthr);
2640    } else {
2641      _cur_thr = NULL;
2642    }
2643  }
2644
2645  ~RememberProcessedThread() {
2646    if (_cur_thr) {
2647      _cur_thr->set_processed_thread(NULL);
2648    }
2649  }
2650};
2651
2652void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2653  // Verify that the deferred card marks have been flushed.
2654  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2655
2656  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2657  // since there may be more than one thread using each ThreadProfiler.
2658
2659  // Traverse the GCHandles
2660  Thread::oops_do(f, cld_f, cf);
2661
2662  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2663         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2664
2665  if (has_last_Java_frame()) {
2666    // Record JavaThread to GC thread
2667    RememberProcessedThread rpt(this);
2668
2669    // Traverse the privileged stack
2670    if (_privileged_stack_top != NULL) {
2671      _privileged_stack_top->oops_do(f);
2672    }
2673
2674    // traverse the registered growable array
2675    if (_array_for_gc != NULL) {
2676      for (int index = 0; index < _array_for_gc->length(); index++) {
2677        f->do_oop(_array_for_gc->adr_at(index));
2678      }
2679    }
2680
2681    // Traverse the monitor chunks
2682    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2683      chunk->oops_do(f);
2684    }
2685
2686    // Traverse the execution stack
2687    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2688      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2689    }
2690  }
2691
2692  // callee_target is never live across a gc point so NULL it here should
2693  // it still contain a methdOop.
2694
2695  set_callee_target(NULL);
2696
2697  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2698  // If we have deferred set_locals there might be oops waiting to be
2699  // written
2700  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2701  if (list != NULL) {
2702    for (int i = 0; i < list->length(); i++) {
2703      list->at(i)->oops_do(f);
2704    }
2705  }
2706
2707  // Traverse instance variables at the end since the GC may be moving things
2708  // around using this function
2709  f->do_oop((oop*) &_threadObj);
2710  f->do_oop((oop*) &_vm_result);
2711  f->do_oop((oop*) &_exception_oop);
2712  f->do_oop((oop*) &_pending_async_exception);
2713
2714  if (jvmti_thread_state() != NULL) {
2715    jvmti_thread_state()->oops_do(f);
2716  }
2717}
2718
2719void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2720  Thread::nmethods_do(cf);  // (super method is a no-op)
2721
2722  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2723         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2724
2725  if (has_last_Java_frame()) {
2726    // Traverse the execution stack
2727    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2728      fst.current()->nmethods_do(cf);
2729    }
2730  }
2731}
2732
2733void JavaThread::metadata_do(void f(Metadata*)) {
2734  if (has_last_Java_frame()) {
2735    // Traverse the execution stack to call f() on the methods in the stack
2736    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2737      fst.current()->metadata_do(f);
2738    }
2739  } else if (is_Compiler_thread()) {
2740    // need to walk ciMetadata in current compile tasks to keep alive.
2741    CompilerThread* ct = (CompilerThread*)this;
2742    if (ct->env() != NULL) {
2743      ct->env()->metadata_do(f);
2744    }
2745    if (ct->task() != NULL) {
2746      ct->task()->metadata_do(f);
2747    }
2748  }
2749}
2750
2751// Printing
2752const char* _get_thread_state_name(JavaThreadState _thread_state) {
2753  switch (_thread_state) {
2754  case _thread_uninitialized:     return "_thread_uninitialized";
2755  case _thread_new:               return "_thread_new";
2756  case _thread_new_trans:         return "_thread_new_trans";
2757  case _thread_in_native:         return "_thread_in_native";
2758  case _thread_in_native_trans:   return "_thread_in_native_trans";
2759  case _thread_in_vm:             return "_thread_in_vm";
2760  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2761  case _thread_in_Java:           return "_thread_in_Java";
2762  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2763  case _thread_blocked:           return "_thread_blocked";
2764  case _thread_blocked_trans:     return "_thread_blocked_trans";
2765  default:                        return "unknown thread state";
2766  }
2767}
2768
2769#ifndef PRODUCT
2770void JavaThread::print_thread_state_on(outputStream *st) const {
2771  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2772};
2773void JavaThread::print_thread_state() const {
2774  print_thread_state_on(tty);
2775}
2776#endif // PRODUCT
2777
2778// Called by Threads::print() for VM_PrintThreads operation
2779void JavaThread::print_on(outputStream *st) const {
2780  st->print("\"%s\" ", get_thread_name());
2781  oop thread_oop = threadObj();
2782  if (thread_oop != NULL) {
2783    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2784    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2785    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2786  }
2787  Thread::print_on(st);
2788  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2789  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2790  if (thread_oop != NULL) {
2791    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2792  }
2793#ifndef PRODUCT
2794  print_thread_state_on(st);
2795  _safepoint_state->print_on(st);
2796#endif // PRODUCT
2797}
2798
2799// Called by fatal error handler. The difference between this and
2800// JavaThread::print() is that we can't grab lock or allocate memory.
2801void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2802  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2803  oop thread_obj = threadObj();
2804  if (thread_obj != NULL) {
2805    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2806  }
2807  st->print(" [");
2808  st->print("%s", _get_thread_state_name(_thread_state));
2809  if (osthread()) {
2810    st->print(", id=%d", osthread()->thread_id());
2811  }
2812  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2813            _stack_base - _stack_size, _stack_base);
2814  st->print("]");
2815  return;
2816}
2817
2818// Verification
2819
2820static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2821
2822void JavaThread::verify() {
2823  // Verify oops in the thread.
2824  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2825
2826  // Verify the stack frames.
2827  frames_do(frame_verify);
2828}
2829
2830// CR 6300358 (sub-CR 2137150)
2831// Most callers of this method assume that it can't return NULL but a
2832// thread may not have a name whilst it is in the process of attaching to
2833// the VM - see CR 6412693, and there are places where a JavaThread can be
2834// seen prior to having it's threadObj set (eg JNI attaching threads and
2835// if vm exit occurs during initialization). These cases can all be accounted
2836// for such that this method never returns NULL.
2837const char* JavaThread::get_thread_name() const {
2838#ifdef ASSERT
2839  // early safepoints can hit while current thread does not yet have TLS
2840  if (!SafepointSynchronize::is_at_safepoint()) {
2841    Thread *cur = Thread::current();
2842    if (!(cur->is_Java_thread() && cur == this)) {
2843      // Current JavaThreads are allowed to get their own name without
2844      // the Threads_lock.
2845      assert_locked_or_safepoint(Threads_lock);
2846    }
2847  }
2848#endif // ASSERT
2849  return get_thread_name_string();
2850}
2851
2852// Returns a non-NULL representation of this thread's name, or a suitable
2853// descriptive string if there is no set name
2854const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2855  const char* name_str;
2856  oop thread_obj = threadObj();
2857  if (thread_obj != NULL) {
2858    oop name = java_lang_Thread::name(thread_obj);
2859    if (name != NULL) {
2860      if (buf == NULL) {
2861        name_str = java_lang_String::as_utf8_string(name);
2862      } else {
2863        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2864      }
2865    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2866      name_str = "<no-name - thread is attaching>";
2867    } else {
2868      name_str = Thread::name();
2869    }
2870  } else {
2871    name_str = Thread::name();
2872  }
2873  assert(name_str != NULL, "unexpected NULL thread name");
2874  return name_str;
2875}
2876
2877
2878const char* JavaThread::get_threadgroup_name() const {
2879  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2880  oop thread_obj = threadObj();
2881  if (thread_obj != NULL) {
2882    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2883    if (thread_group != NULL) {
2884      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2885      // ThreadGroup.name can be null
2886      if (name != NULL) {
2887        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2888        return str;
2889      }
2890    }
2891  }
2892  return NULL;
2893}
2894
2895const char* JavaThread::get_parent_name() const {
2896  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2897  oop thread_obj = threadObj();
2898  if (thread_obj != NULL) {
2899    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2900    if (thread_group != NULL) {
2901      oop parent = java_lang_ThreadGroup::parent(thread_group);
2902      if (parent != NULL) {
2903        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2904        // ThreadGroup.name can be null
2905        if (name != NULL) {
2906          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2907          return str;
2908        }
2909      }
2910    }
2911  }
2912  return NULL;
2913}
2914
2915ThreadPriority JavaThread::java_priority() const {
2916  oop thr_oop = threadObj();
2917  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2918  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2919  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2920  return priority;
2921}
2922
2923void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2924
2925  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2926  // Link Java Thread object <-> C++ Thread
2927
2928  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2929  // and put it into a new Handle.  The Handle "thread_oop" can then
2930  // be used to pass the C++ thread object to other methods.
2931
2932  // Set the Java level thread object (jthread) field of the
2933  // new thread (a JavaThread *) to C++ thread object using the
2934  // "thread_oop" handle.
2935
2936  // Set the thread field (a JavaThread *) of the
2937  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2938
2939  Handle thread_oop(Thread::current(),
2940                    JNIHandles::resolve_non_null(jni_thread));
2941  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2942         "must be initialized");
2943  set_threadObj(thread_oop());
2944  java_lang_Thread::set_thread(thread_oop(), this);
2945
2946  if (prio == NoPriority) {
2947    prio = java_lang_Thread::priority(thread_oop());
2948    assert(prio != NoPriority, "A valid priority should be present");
2949  }
2950
2951  // Push the Java priority down to the native thread; needs Threads_lock
2952  Thread::set_priority(this, prio);
2953
2954  prepare_ext();
2955
2956  // Add the new thread to the Threads list and set it in motion.
2957  // We must have threads lock in order to call Threads::add.
2958  // It is crucial that we do not block before the thread is
2959  // added to the Threads list for if a GC happens, then the java_thread oop
2960  // will not be visited by GC.
2961  Threads::add(this);
2962}
2963
2964oop JavaThread::current_park_blocker() {
2965  // Support for JSR-166 locks
2966  oop thread_oop = threadObj();
2967  if (thread_oop != NULL &&
2968      JDK_Version::current().supports_thread_park_blocker()) {
2969    return java_lang_Thread::park_blocker(thread_oop);
2970  }
2971  return NULL;
2972}
2973
2974
2975void JavaThread::print_stack_on(outputStream* st) {
2976  if (!has_last_Java_frame()) return;
2977  ResourceMark rm;
2978  HandleMark   hm;
2979
2980  RegisterMap reg_map(this);
2981  vframe* start_vf = last_java_vframe(&reg_map);
2982  int count = 0;
2983  for (vframe* f = start_vf; f; f = f->sender()) {
2984    if (f->is_java_frame()) {
2985      javaVFrame* jvf = javaVFrame::cast(f);
2986      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2987
2988      // Print out lock information
2989      if (JavaMonitorsInStackTrace) {
2990        jvf->print_lock_info_on(st, count);
2991      }
2992    } else {
2993      // Ignore non-Java frames
2994    }
2995
2996    // Bail-out case for too deep stacks
2997    count++;
2998    if (MaxJavaStackTraceDepth == count) return;
2999  }
3000}
3001
3002
3003// JVMTI PopFrame support
3004void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3005  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3006  if (in_bytes(size_in_bytes) != 0) {
3007    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3008    _popframe_preserved_args_size = in_bytes(size_in_bytes);
3009    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3010  }
3011}
3012
3013void* JavaThread::popframe_preserved_args() {
3014  return _popframe_preserved_args;
3015}
3016
3017ByteSize JavaThread::popframe_preserved_args_size() {
3018  return in_ByteSize(_popframe_preserved_args_size);
3019}
3020
3021WordSize JavaThread::popframe_preserved_args_size_in_words() {
3022  int sz = in_bytes(popframe_preserved_args_size());
3023  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3024  return in_WordSize(sz / wordSize);
3025}
3026
3027void JavaThread::popframe_free_preserved_args() {
3028  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3029  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3030  _popframe_preserved_args = NULL;
3031  _popframe_preserved_args_size = 0;
3032}
3033
3034#ifndef PRODUCT
3035
3036void JavaThread::trace_frames() {
3037  tty->print_cr("[Describe stack]");
3038  int frame_no = 1;
3039  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3040    tty->print("  %d. ", frame_no++);
3041    fst.current()->print_value_on(tty, this);
3042    tty->cr();
3043  }
3044}
3045
3046class PrintAndVerifyOopClosure: public OopClosure {
3047 protected:
3048  template <class T> inline void do_oop_work(T* p) {
3049    oop obj = oopDesc::load_decode_heap_oop(p);
3050    if (obj == NULL) return;
3051    tty->print(INTPTR_FORMAT ": ", p);
3052    if (obj->is_oop_or_null()) {
3053      if (obj->is_objArray()) {
3054        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3055      } else {
3056        obj->print();
3057      }
3058    } else {
3059      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3060    }
3061    tty->cr();
3062  }
3063 public:
3064  virtual void do_oop(oop* p) { do_oop_work(p); }
3065  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3066};
3067
3068
3069static void oops_print(frame* f, const RegisterMap *map) {
3070  PrintAndVerifyOopClosure print;
3071  f->print_value();
3072  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3073}
3074
3075// Print our all the locations that contain oops and whether they are
3076// valid or not.  This useful when trying to find the oldest frame
3077// where an oop has gone bad since the frame walk is from youngest to
3078// oldest.
3079void JavaThread::trace_oops() {
3080  tty->print_cr("[Trace oops]");
3081  frames_do(oops_print);
3082}
3083
3084
3085#ifdef ASSERT
3086// Print or validate the layout of stack frames
3087void JavaThread::print_frame_layout(int depth, bool validate_only) {
3088  ResourceMark rm;
3089  PRESERVE_EXCEPTION_MARK;
3090  FrameValues values;
3091  int frame_no = 0;
3092  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3093    fst.current()->describe(values, ++frame_no);
3094    if (depth == frame_no) break;
3095  }
3096  if (validate_only) {
3097    values.validate();
3098  } else {
3099    tty->print_cr("[Describe stack layout]");
3100    values.print(this);
3101  }
3102}
3103#endif
3104
3105void JavaThread::trace_stack_from(vframe* start_vf) {
3106  ResourceMark rm;
3107  int vframe_no = 1;
3108  for (vframe* f = start_vf; f; f = f->sender()) {
3109    if (f->is_java_frame()) {
3110      javaVFrame::cast(f)->print_activation(vframe_no++);
3111    } else {
3112      f->print();
3113    }
3114    if (vframe_no > StackPrintLimit) {
3115      tty->print_cr("...<more frames>...");
3116      return;
3117    }
3118  }
3119}
3120
3121
3122void JavaThread::trace_stack() {
3123  if (!has_last_Java_frame()) return;
3124  ResourceMark rm;
3125  HandleMark   hm;
3126  RegisterMap reg_map(this);
3127  trace_stack_from(last_java_vframe(&reg_map));
3128}
3129
3130
3131#endif // PRODUCT
3132
3133
3134javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3135  assert(reg_map != NULL, "a map must be given");
3136  frame f = last_frame();
3137  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3138    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3139  }
3140  return NULL;
3141}
3142
3143
3144Klass* JavaThread::security_get_caller_class(int depth) {
3145  vframeStream vfst(this);
3146  vfst.security_get_caller_frame(depth);
3147  if (!vfst.at_end()) {
3148    return vfst.method()->method_holder();
3149  }
3150  return NULL;
3151}
3152
3153static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3154  assert(thread->is_Compiler_thread(), "must be compiler thread");
3155  CompileBroker::compiler_thread_loop();
3156}
3157
3158static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3159  NMethodSweeper::sweeper_loop();
3160}
3161
3162// Create a CompilerThread
3163CompilerThread::CompilerThread(CompileQueue* queue,
3164                               CompilerCounters* counters)
3165                               : JavaThread(&compiler_thread_entry) {
3166  _env   = NULL;
3167  _log   = NULL;
3168  _task  = NULL;
3169  _queue = queue;
3170  _counters = counters;
3171  _buffer_blob = NULL;
3172  _compiler = NULL;
3173
3174#ifndef PRODUCT
3175  _ideal_graph_printer = NULL;
3176#endif
3177}
3178
3179// Create sweeper thread
3180CodeCacheSweeperThread::CodeCacheSweeperThread()
3181: JavaThread(&sweeper_thread_entry) {
3182  _scanned_nmethod = NULL;
3183}
3184void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3185  JavaThread::oops_do(f, cld_f, cf);
3186  if (_scanned_nmethod != NULL && cf != NULL) {
3187    // Safepoints can occur when the sweeper is scanning an nmethod so
3188    // process it here to make sure it isn't unloaded in the middle of
3189    // a scan.
3190    cf->do_code_blob(_scanned_nmethod);
3191  }
3192}
3193
3194
3195// ======= Threads ========
3196
3197// The Threads class links together all active threads, and provides
3198// operations over all threads.  It is protected by its own Mutex
3199// lock, which is also used in other contexts to protect thread
3200// operations from having the thread being operated on from exiting
3201// and going away unexpectedly (e.g., safepoint synchronization)
3202
3203JavaThread* Threads::_thread_list = NULL;
3204int         Threads::_number_of_threads = 0;
3205int         Threads::_number_of_non_daemon_threads = 0;
3206int         Threads::_return_code = 0;
3207int         Threads::_thread_claim_parity = 0;
3208size_t      JavaThread::_stack_size_at_create = 0;
3209#ifdef ASSERT
3210bool        Threads::_vm_complete = false;
3211#endif
3212
3213// All JavaThreads
3214#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3215
3216// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3217void Threads::threads_do(ThreadClosure* tc) {
3218  assert_locked_or_safepoint(Threads_lock);
3219  // ALL_JAVA_THREADS iterates through all JavaThreads
3220  ALL_JAVA_THREADS(p) {
3221    tc->do_thread(p);
3222  }
3223  // Someday we could have a table or list of all non-JavaThreads.
3224  // For now, just manually iterate through them.
3225  tc->do_thread(VMThread::vm_thread());
3226  Universe::heap()->gc_threads_do(tc);
3227  WatcherThread *wt = WatcherThread::watcher_thread();
3228  // Strictly speaking, the following NULL check isn't sufficient to make sure
3229  // the data for WatcherThread is still valid upon being examined. However,
3230  // considering that WatchThread terminates when the VM is on the way to
3231  // exit at safepoint, the chance of the above is extremely small. The right
3232  // way to prevent termination of WatcherThread would be to acquire
3233  // Terminator_lock, but we can't do that without violating the lock rank
3234  // checking in some cases.
3235  if (wt != NULL) {
3236    tc->do_thread(wt);
3237  }
3238
3239  // If CompilerThreads ever become non-JavaThreads, add them here
3240}
3241
3242void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3243  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3244
3245  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3246    create_vm_init_libraries();
3247  }
3248
3249  initialize_class(vmSymbols::java_lang_String(), CHECK);
3250
3251  // Initialize java_lang.System (needed before creating the thread)
3252  initialize_class(vmSymbols::java_lang_System(), CHECK);
3253  // The VM creates & returns objects of this class. Make sure it's initialized.
3254  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3255  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3256  Handle thread_group = create_initial_thread_group(CHECK);
3257  Universe::set_main_thread_group(thread_group());
3258  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3259  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3260  main_thread->set_threadObj(thread_object);
3261  // Set thread status to running since main thread has
3262  // been started and running.
3263  java_lang_Thread::set_thread_status(thread_object,
3264                                      java_lang_Thread::RUNNABLE);
3265
3266  // The VM preresolves methods to these classes. Make sure that they get initialized
3267  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3268  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3269  call_initializeSystemClass(CHECK);
3270
3271  // get the Java runtime name after java.lang.System is initialized
3272  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3273  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3274
3275  // an instance of OutOfMemory exception has been allocated earlier
3276  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3277  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3278  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3279  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3280  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3281  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3282  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3283  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3284}
3285
3286void Threads::initialize_jsr292_core_classes(TRAPS) {
3287  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3288  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3289  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3290}
3291
3292jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3293  extern void JDK_Version_init();
3294
3295  // Preinitialize version info.
3296  VM_Version::early_initialize();
3297
3298  // Check version
3299  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3300
3301  // Initialize the output stream module
3302  ostream_init();
3303
3304  // Process java launcher properties.
3305  Arguments::process_sun_java_launcher_properties(args);
3306
3307  // Initialize the os module before using TLS
3308  os::init();
3309
3310  // Record VM creation timing statistics
3311  TraceVmCreationTime create_vm_timer;
3312  create_vm_timer.start();
3313
3314  // Initialize system properties.
3315  Arguments::init_system_properties();
3316
3317  // So that JDK version can be used as a discriminator when parsing arguments
3318  JDK_Version_init();
3319
3320  // Update/Initialize System properties after JDK version number is known
3321  Arguments::init_version_specific_system_properties();
3322
3323  // Make sure to initialize log configuration *before* parsing arguments
3324  LogConfiguration::initialize(create_vm_timer.begin_time());
3325
3326  // Parse arguments
3327  jint parse_result = Arguments::parse(args);
3328  if (parse_result != JNI_OK) return parse_result;
3329
3330  os::init_before_ergo();
3331
3332  jint ergo_result = Arguments::apply_ergo();
3333  if (ergo_result != JNI_OK) return ergo_result;
3334
3335  // Final check of all ranges after ergonomics which may change values.
3336  if (!CommandLineFlagRangeList::check_ranges()) {
3337    return JNI_EINVAL;
3338  }
3339
3340  // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3341  bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3342  if (!constraint_result) {
3343    return JNI_EINVAL;
3344  }
3345
3346  if (PauseAtStartup) {
3347    os::pause();
3348  }
3349
3350  HOTSPOT_VM_INIT_BEGIN();
3351
3352  // Timing (must come after argument parsing)
3353  TraceTime timer("Create VM", TraceStartupTime);
3354
3355  // Initialize the os module after parsing the args
3356  jint os_init_2_result = os::init_2();
3357  if (os_init_2_result != JNI_OK) return os_init_2_result;
3358
3359  jint adjust_after_os_result = Arguments::adjust_after_os();
3360  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3361
3362  // initialize TLS
3363  ThreadLocalStorage::init();
3364
3365  // Initialize output stream logging
3366  ostream_init_log();
3367
3368  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3369  // Must be before create_vm_init_agents()
3370  if (Arguments::init_libraries_at_startup()) {
3371    convert_vm_init_libraries_to_agents();
3372  }
3373
3374  // Launch -agentlib/-agentpath and converted -Xrun agents
3375  if (Arguments::init_agents_at_startup()) {
3376    create_vm_init_agents();
3377  }
3378
3379  // Initialize Threads state
3380  _thread_list = NULL;
3381  _number_of_threads = 0;
3382  _number_of_non_daemon_threads = 0;
3383
3384  // Initialize global data structures and create system classes in heap
3385  vm_init_globals();
3386
3387  // Attach the main thread to this os thread
3388  JavaThread* main_thread = new JavaThread();
3389  main_thread->set_thread_state(_thread_in_vm);
3390  // must do this before set_active_handles and initialize_thread_local_storage
3391  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3392  // change the stack size recorded here to one based on the java thread
3393  // stacksize. This adjusted size is what is used to figure the placement
3394  // of the guard pages.
3395  main_thread->record_stack_base_and_size();
3396  main_thread->initialize_thread_local_storage();
3397
3398  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3399
3400  if (!main_thread->set_as_starting_thread()) {
3401    vm_shutdown_during_initialization(
3402                                      "Failed necessary internal allocation. Out of swap space");
3403    delete main_thread;
3404    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3405    return JNI_ENOMEM;
3406  }
3407
3408  // Enable guard page *after* os::create_main_thread(), otherwise it would
3409  // crash Linux VM, see notes in os_linux.cpp.
3410  main_thread->create_stack_guard_pages();
3411
3412  // Initialize Java-Level synchronization subsystem
3413  ObjectMonitor::Initialize();
3414
3415  // Initialize global modules
3416  jint status = init_globals();
3417  if (status != JNI_OK) {
3418    delete main_thread;
3419    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3420    return status;
3421  }
3422
3423  // Should be done after the heap is fully created
3424  main_thread->cache_global_variables();
3425
3426  HandleMark hm;
3427
3428  { MutexLocker mu(Threads_lock);
3429    Threads::add(main_thread);
3430  }
3431
3432  // Any JVMTI raw monitors entered in onload will transition into
3433  // real raw monitor. VM is setup enough here for raw monitor enter.
3434  JvmtiExport::transition_pending_onload_raw_monitors();
3435
3436  // Create the VMThread
3437  { TraceTime timer("Start VMThread", TraceStartupTime);
3438    VMThread::create();
3439    Thread* vmthread = VMThread::vm_thread();
3440
3441    if (!os::create_thread(vmthread, os::vm_thread)) {
3442      vm_exit_during_initialization("Cannot create VM thread. "
3443                                    "Out of system resources.");
3444    }
3445
3446    // Wait for the VM thread to become ready, and VMThread::run to initialize
3447    // Monitors can have spurious returns, must always check another state flag
3448    {
3449      MutexLocker ml(Notify_lock);
3450      os::start_thread(vmthread);
3451      while (vmthread->active_handles() == NULL) {
3452        Notify_lock->wait();
3453      }
3454    }
3455  }
3456
3457  assert(Universe::is_fully_initialized(), "not initialized");
3458  if (VerifyDuringStartup) {
3459    // Make sure we're starting with a clean slate.
3460    VM_Verify verify_op;
3461    VMThread::execute(&verify_op);
3462  }
3463
3464  Thread* THREAD = Thread::current();
3465
3466  // At this point, the Universe is initialized, but we have not executed
3467  // any byte code.  Now is a good time (the only time) to dump out the
3468  // internal state of the JVM for sharing.
3469  if (DumpSharedSpaces) {
3470    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3471    ShouldNotReachHere();
3472  }
3473
3474  // Always call even when there are not JVMTI environments yet, since environments
3475  // may be attached late and JVMTI must track phases of VM execution
3476  JvmtiExport::enter_start_phase();
3477
3478  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3479  JvmtiExport::post_vm_start();
3480
3481  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3482
3483  // We need this for ClassDataSharing - the initial vm.info property is set
3484  // with the default value of CDS "sharing" which may be reset through
3485  // command line options.
3486  reset_vm_info_property(CHECK_JNI_ERR);
3487
3488  quicken_jni_functions();
3489
3490  // Must be run after init_ft which initializes ft_enabled
3491  if (TRACE_INITIALIZE() != JNI_OK) {
3492    vm_exit_during_initialization("Failed to initialize tracing backend");
3493  }
3494
3495  // Set flag that basic initialization has completed. Used by exceptions and various
3496  // debug stuff, that does not work until all basic classes have been initialized.
3497  set_init_completed();
3498
3499  LogConfiguration::post_initialize();
3500  Metaspace::post_initialize();
3501
3502  HOTSPOT_VM_INIT_END();
3503
3504  // record VM initialization completion time
3505#if INCLUDE_MANAGEMENT
3506  Management::record_vm_init_completed();
3507#endif // INCLUDE_MANAGEMENT
3508
3509  // Compute system loader. Note that this has to occur after set_init_completed, since
3510  // valid exceptions may be thrown in the process.
3511  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3512  // set_init_completed has just been called, causing exceptions not to be shortcut
3513  // anymore. We call vm_exit_during_initialization directly instead.
3514  SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3515
3516#if INCLUDE_ALL_GCS
3517  // Support for ConcurrentMarkSweep. This should be cleaned up
3518  // and better encapsulated. The ugly nested if test would go away
3519  // once things are properly refactored. XXX YSR
3520  if (UseConcMarkSweepGC || UseG1GC) {
3521    if (UseConcMarkSweepGC) {
3522      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3523    } else {
3524      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3525    }
3526  }
3527#endif // INCLUDE_ALL_GCS
3528
3529  // Always call even when there are not JVMTI environments yet, since environments
3530  // may be attached late and JVMTI must track phases of VM execution
3531  JvmtiExport::enter_live_phase();
3532
3533  // Signal Dispatcher needs to be started before VMInit event is posted
3534  os::signal_init();
3535
3536  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3537  if (!DisableAttachMechanism) {
3538    AttachListener::vm_start();
3539    if (StartAttachListener || AttachListener::init_at_startup()) {
3540      AttachListener::init();
3541    }
3542  }
3543
3544  // Launch -Xrun agents
3545  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3546  // back-end can launch with -Xdebug -Xrunjdwp.
3547  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3548    create_vm_init_libraries();
3549  }
3550
3551  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3552  JvmtiExport::post_vm_initialized();
3553
3554  if (TRACE_START() != JNI_OK) {
3555    vm_exit_during_initialization("Failed to start tracing backend.");
3556  }
3557
3558  if (CleanChunkPoolAsync) {
3559    Chunk::start_chunk_pool_cleaner_task();
3560  }
3561
3562  // initialize compiler(s)
3563#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3564  CompileBroker::compilation_init();
3565#endif
3566
3567  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3568  // It is done after compilers are initialized, because otherwise compilations of
3569  // signature polymorphic MH intrinsics can be missed
3570  // (see SystemDictionary::find_method_handle_intrinsic).
3571  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3572
3573#if INCLUDE_MANAGEMENT
3574  Management::initialize(THREAD);
3575
3576  if (HAS_PENDING_EXCEPTION) {
3577    // management agent fails to start possibly due to
3578    // configuration problem and is responsible for printing
3579    // stack trace if appropriate. Simply exit VM.
3580    vm_exit(1);
3581  }
3582#endif // INCLUDE_MANAGEMENT
3583
3584  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3585  if (MemProfiling)                   MemProfiler::engage();
3586  StatSampler::engage();
3587  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3588
3589  BiasedLocking::init();
3590
3591#if INCLUDE_RTM_OPT
3592  RTMLockingCounters::init();
3593#endif
3594
3595  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3596    call_postVMInitHook(THREAD);
3597    // The Java side of PostVMInitHook.run must deal with all
3598    // exceptions and provide means of diagnosis.
3599    if (HAS_PENDING_EXCEPTION) {
3600      CLEAR_PENDING_EXCEPTION;
3601    }
3602  }
3603
3604  {
3605    MutexLocker ml(PeriodicTask_lock);
3606    // Make sure the WatcherThread can be started by WatcherThread::start()
3607    // or by dynamic enrollment.
3608    WatcherThread::make_startable();
3609    // Start up the WatcherThread if there are any periodic tasks
3610    // NOTE:  All PeriodicTasks should be registered by now. If they
3611    //   aren't, late joiners might appear to start slowly (we might
3612    //   take a while to process their first tick).
3613    if (PeriodicTask::num_tasks() > 0) {
3614      WatcherThread::start();
3615    }
3616  }
3617
3618  CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3619
3620  create_vm_timer.end();
3621#ifdef ASSERT
3622  _vm_complete = true;
3623#endif
3624  return JNI_OK;
3625}
3626
3627// type for the Agent_OnLoad and JVM_OnLoad entry points
3628extern "C" {
3629  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3630}
3631// Find a command line agent library and return its entry point for
3632//         -agentlib:  -agentpath:   -Xrun
3633// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3634static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3635                                    const char *on_load_symbols[],
3636                                    size_t num_symbol_entries) {
3637  OnLoadEntry_t on_load_entry = NULL;
3638  void *library = NULL;
3639
3640  if (!agent->valid()) {
3641    char buffer[JVM_MAXPATHLEN];
3642    char ebuf[1024] = "";
3643    const char *name = agent->name();
3644    const char *msg = "Could not find agent library ";
3645
3646    // First check to see if agent is statically linked into executable
3647    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3648      library = agent->os_lib();
3649    } else if (agent->is_absolute_path()) {
3650      library = os::dll_load(name, ebuf, sizeof ebuf);
3651      if (library == NULL) {
3652        const char *sub_msg = " in absolute path, with error: ";
3653        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3654        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3655        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3656        // If we can't find the agent, exit.
3657        vm_exit_during_initialization(buf, NULL);
3658        FREE_C_HEAP_ARRAY(char, buf);
3659      }
3660    } else {
3661      // Try to load the agent from the standard dll directory
3662      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3663                             name)) {
3664        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3665      }
3666      if (library == NULL) { // Try the local directory
3667        char ns[1] = {0};
3668        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3669          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3670        }
3671        if (library == NULL) {
3672          const char *sub_msg = " on the library path, with error: ";
3673          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3674          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3675          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3676          // If we can't find the agent, exit.
3677          vm_exit_during_initialization(buf, NULL);
3678          FREE_C_HEAP_ARRAY(char, buf);
3679        }
3680      }
3681    }
3682    agent->set_os_lib(library);
3683    agent->set_valid();
3684  }
3685
3686  // Find the OnLoad function.
3687  on_load_entry =
3688    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3689                                                          false,
3690                                                          on_load_symbols,
3691                                                          num_symbol_entries));
3692  return on_load_entry;
3693}
3694
3695// Find the JVM_OnLoad entry point
3696static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3697  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3698  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3699}
3700
3701// Find the Agent_OnLoad entry point
3702static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3703  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3704  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3705}
3706
3707// For backwards compatibility with -Xrun
3708// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3709// treated like -agentpath:
3710// Must be called before agent libraries are created
3711void Threads::convert_vm_init_libraries_to_agents() {
3712  AgentLibrary* agent;
3713  AgentLibrary* next;
3714
3715  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3716    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3717    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3718
3719    // If there is an JVM_OnLoad function it will get called later,
3720    // otherwise see if there is an Agent_OnLoad
3721    if (on_load_entry == NULL) {
3722      on_load_entry = lookup_agent_on_load(agent);
3723      if (on_load_entry != NULL) {
3724        // switch it to the agent list -- so that Agent_OnLoad will be called,
3725        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3726        Arguments::convert_library_to_agent(agent);
3727      } else {
3728        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3729      }
3730    }
3731  }
3732}
3733
3734// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3735// Invokes Agent_OnLoad
3736// Called very early -- before JavaThreads exist
3737void Threads::create_vm_init_agents() {
3738  extern struct JavaVM_ main_vm;
3739  AgentLibrary* agent;
3740
3741  JvmtiExport::enter_onload_phase();
3742
3743  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3744    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3745
3746    if (on_load_entry != NULL) {
3747      // Invoke the Agent_OnLoad function
3748      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3749      if (err != JNI_OK) {
3750        vm_exit_during_initialization("agent library failed to init", agent->name());
3751      }
3752    } else {
3753      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3754    }
3755  }
3756  JvmtiExport::enter_primordial_phase();
3757}
3758
3759extern "C" {
3760  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3761}
3762
3763void Threads::shutdown_vm_agents() {
3764  // Send any Agent_OnUnload notifications
3765  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3766  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3767  extern struct JavaVM_ main_vm;
3768  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3769
3770    // Find the Agent_OnUnload function.
3771    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3772                                                   os::find_agent_function(agent,
3773                                                   false,
3774                                                   on_unload_symbols,
3775                                                   num_symbol_entries));
3776
3777    // Invoke the Agent_OnUnload function
3778    if (unload_entry != NULL) {
3779      JavaThread* thread = JavaThread::current();
3780      ThreadToNativeFromVM ttn(thread);
3781      HandleMark hm(thread);
3782      (*unload_entry)(&main_vm);
3783    }
3784  }
3785}
3786
3787// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3788// Invokes JVM_OnLoad
3789void Threads::create_vm_init_libraries() {
3790  extern struct JavaVM_ main_vm;
3791  AgentLibrary* agent;
3792
3793  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3794    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3795
3796    if (on_load_entry != NULL) {
3797      // Invoke the JVM_OnLoad function
3798      JavaThread* thread = JavaThread::current();
3799      ThreadToNativeFromVM ttn(thread);
3800      HandleMark hm(thread);
3801      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3802      if (err != JNI_OK) {
3803        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3804      }
3805    } else {
3806      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3807    }
3808  }
3809}
3810
3811JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3812  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3813
3814  JavaThread* java_thread = NULL;
3815  // Sequential search for now.  Need to do better optimization later.
3816  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3817    oop tobj = thread->threadObj();
3818    if (!thread->is_exiting() &&
3819        tobj != NULL &&
3820        java_tid == java_lang_Thread::thread_id(tobj)) {
3821      java_thread = thread;
3822      break;
3823    }
3824  }
3825  return java_thread;
3826}
3827
3828
3829// Last thread running calls java.lang.Shutdown.shutdown()
3830void JavaThread::invoke_shutdown_hooks() {
3831  HandleMark hm(this);
3832
3833  // We could get here with a pending exception, if so clear it now.
3834  if (this->has_pending_exception()) {
3835    this->clear_pending_exception();
3836  }
3837
3838  EXCEPTION_MARK;
3839  Klass* k =
3840    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3841                                      THREAD);
3842  if (k != NULL) {
3843    // SystemDictionary::resolve_or_null will return null if there was
3844    // an exception.  If we cannot load the Shutdown class, just don't
3845    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3846    // and finalizers (if runFinalizersOnExit is set) won't be run.
3847    // Note that if a shutdown hook was registered or runFinalizersOnExit
3848    // was called, the Shutdown class would have already been loaded
3849    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3850    instanceKlassHandle shutdown_klass (THREAD, k);
3851    JavaValue result(T_VOID);
3852    JavaCalls::call_static(&result,
3853                           shutdown_klass,
3854                           vmSymbols::shutdown_method_name(),
3855                           vmSymbols::void_method_signature(),
3856                           THREAD);
3857  }
3858  CLEAR_PENDING_EXCEPTION;
3859}
3860
3861// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3862// the program falls off the end of main(). Another VM exit path is through
3863// vm_exit() when the program calls System.exit() to return a value or when
3864// there is a serious error in VM. The two shutdown paths are not exactly
3865// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3866// and VM_Exit op at VM level.
3867//
3868// Shutdown sequence:
3869//   + Shutdown native memory tracking if it is on
3870//   + Wait until we are the last non-daemon thread to execute
3871//     <-- every thing is still working at this moment -->
3872//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3873//        shutdown hooks, run finalizers if finalization-on-exit
3874//   + Call before_exit(), prepare for VM exit
3875//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3876//        currently the only user of this mechanism is File.deleteOnExit())
3877//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3878//        post thread end and vm death events to JVMTI,
3879//        stop signal thread
3880//   + Call JavaThread::exit(), it will:
3881//      > release JNI handle blocks, remove stack guard pages
3882//      > remove this thread from Threads list
3883//     <-- no more Java code from this thread after this point -->
3884//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3885//     the compiler threads at safepoint
3886//     <-- do not use anything that could get blocked by Safepoint -->
3887//   + Disable tracing at JNI/JVM barriers
3888//   + Set _vm_exited flag for threads that are still running native code
3889//   + Delete this thread
3890//   + Call exit_globals()
3891//      > deletes tty
3892//      > deletes PerfMemory resources
3893//   + Return to caller
3894
3895bool Threads::destroy_vm() {
3896  JavaThread* thread = JavaThread::current();
3897
3898#ifdef ASSERT
3899  _vm_complete = false;
3900#endif
3901  // Wait until we are the last non-daemon thread to execute
3902  { MutexLocker nu(Threads_lock);
3903    while (Threads::number_of_non_daemon_threads() > 1)
3904      // This wait should make safepoint checks, wait without a timeout,
3905      // and wait as a suspend-equivalent condition.
3906      //
3907      // Note: If the FlatProfiler is running and this thread is waiting
3908      // for another non-daemon thread to finish, then the FlatProfiler
3909      // is waiting for the external suspend request on this thread to
3910      // complete. wait_for_ext_suspend_completion() will eventually
3911      // timeout, but that takes time. Making this wait a suspend-
3912      // equivalent condition solves that timeout problem.
3913      //
3914      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3915                         Mutex::_as_suspend_equivalent_flag);
3916  }
3917
3918  // Hang forever on exit if we are reporting an error.
3919  if (ShowMessageBoxOnError && is_error_reported()) {
3920    os::infinite_sleep();
3921  }
3922  os::wait_for_keypress_at_exit();
3923
3924  // run Java level shutdown hooks
3925  thread->invoke_shutdown_hooks();
3926
3927  before_exit(thread);
3928
3929  thread->exit(true);
3930
3931  // Stop VM thread.
3932  {
3933    // 4945125 The vm thread comes to a safepoint during exit.
3934    // GC vm_operations can get caught at the safepoint, and the
3935    // heap is unparseable if they are caught. Grab the Heap_lock
3936    // to prevent this. The GC vm_operations will not be able to
3937    // queue until after the vm thread is dead. After this point,
3938    // we'll never emerge out of the safepoint before the VM exits.
3939
3940    MutexLocker ml(Heap_lock);
3941
3942    VMThread::wait_for_vm_thread_exit();
3943    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3944    VMThread::destroy();
3945  }
3946
3947  // clean up ideal graph printers
3948#if defined(COMPILER2) && !defined(PRODUCT)
3949  IdealGraphPrinter::clean_up();
3950#endif
3951
3952  // Now, all Java threads are gone except daemon threads. Daemon threads
3953  // running Java code or in VM are stopped by the Safepoint. However,
3954  // daemon threads executing native code are still running.  But they
3955  // will be stopped at native=>Java/VM barriers. Note that we can't
3956  // simply kill or suspend them, as it is inherently deadlock-prone.
3957
3958#ifndef PRODUCT
3959  // disable function tracing at JNI/JVM barriers
3960  TraceJNICalls = false;
3961  TraceJVMCalls = false;
3962  TraceRuntimeCalls = false;
3963#endif
3964
3965  VM_Exit::set_vm_exited();
3966
3967  notify_vm_shutdown();
3968
3969  delete thread;
3970
3971  // exit_globals() will delete tty
3972  exit_globals();
3973
3974  LogConfiguration::finalize();
3975
3976  return true;
3977}
3978
3979
3980jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3981  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3982  return is_supported_jni_version(version);
3983}
3984
3985
3986jboolean Threads::is_supported_jni_version(jint version) {
3987  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3988  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3989  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3990  if (version == JNI_VERSION_1_8) return JNI_TRUE;
3991  return JNI_FALSE;
3992}
3993
3994
3995void Threads::add(JavaThread* p, bool force_daemon) {
3996  // The threads lock must be owned at this point
3997  assert_locked_or_safepoint(Threads_lock);
3998
3999  // See the comment for this method in thread.hpp for its purpose and
4000  // why it is called here.
4001  p->initialize_queues();
4002  p->set_next(_thread_list);
4003  _thread_list = p;
4004  _number_of_threads++;
4005  oop threadObj = p->threadObj();
4006  bool daemon = true;
4007  // Bootstrapping problem: threadObj can be null for initial
4008  // JavaThread (or for threads attached via JNI)
4009  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4010    _number_of_non_daemon_threads++;
4011    daemon = false;
4012  }
4013
4014  ThreadService::add_thread(p, daemon);
4015
4016  // Possible GC point.
4017  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4018}
4019
4020void Threads::remove(JavaThread* p) {
4021  // Extra scope needed for Thread_lock, so we can check
4022  // that we do not remove thread without safepoint code notice
4023  { MutexLocker ml(Threads_lock);
4024
4025    assert(includes(p), "p must be present");
4026
4027    JavaThread* current = _thread_list;
4028    JavaThread* prev    = NULL;
4029
4030    while (current != p) {
4031      prev    = current;
4032      current = current->next();
4033    }
4034
4035    if (prev) {
4036      prev->set_next(current->next());
4037    } else {
4038      _thread_list = p->next();
4039    }
4040    _number_of_threads--;
4041    oop threadObj = p->threadObj();
4042    bool daemon = true;
4043    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4044      _number_of_non_daemon_threads--;
4045      daemon = false;
4046
4047      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4048      // on destroy_vm will wake up.
4049      if (number_of_non_daemon_threads() == 1) {
4050        Threads_lock->notify_all();
4051      }
4052    }
4053    ThreadService::remove_thread(p, daemon);
4054
4055    // Make sure that safepoint code disregard this thread. This is needed since
4056    // the thread might mess around with locks after this point. This can cause it
4057    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4058    // of this thread since it is removed from the queue.
4059    p->set_terminated_value();
4060  } // unlock Threads_lock
4061
4062  // Since Events::log uses a lock, we grab it outside the Threads_lock
4063  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4064}
4065
4066// Threads_lock must be held when this is called (or must be called during a safepoint)
4067bool Threads::includes(JavaThread* p) {
4068  assert(Threads_lock->is_locked(), "sanity check");
4069  ALL_JAVA_THREADS(q) {
4070    if (q == p) {
4071      return true;
4072    }
4073  }
4074  return false;
4075}
4076
4077// Operations on the Threads list for GC.  These are not explicitly locked,
4078// but the garbage collector must provide a safe context for them to run.
4079// In particular, these things should never be called when the Threads_lock
4080// is held by some other thread. (Note: the Safepoint abstraction also
4081// uses the Threads_lock to guarantee this property. It also makes sure that
4082// all threads gets blocked when exiting or starting).
4083
4084void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4085  ALL_JAVA_THREADS(p) {
4086    p->oops_do(f, cld_f, cf);
4087  }
4088  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4089}
4090
4091void Threads::change_thread_claim_parity() {
4092  // Set the new claim parity.
4093  assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4094         "Not in range.");
4095  _thread_claim_parity++;
4096  if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4097  assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4098         "Not in range.");
4099}
4100
4101#ifdef ASSERT
4102void Threads::assert_all_threads_claimed() {
4103  ALL_JAVA_THREADS(p) {
4104    const int thread_parity = p->oops_do_parity();
4105    assert((thread_parity == _thread_claim_parity),
4106           "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4107  }
4108}
4109#endif // ASSERT
4110
4111void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4112  int cp = Threads::thread_claim_parity();
4113  ALL_JAVA_THREADS(p) {
4114    if (p->claim_oops_do(is_par, cp)) {
4115      p->oops_do(f, cld_f, cf);
4116    }
4117  }
4118  VMThread* vmt = VMThread::vm_thread();
4119  if (vmt->claim_oops_do(is_par, cp)) {
4120    vmt->oops_do(f, cld_f, cf);
4121  }
4122}
4123
4124#if INCLUDE_ALL_GCS
4125// Used by ParallelScavenge
4126void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4127  ALL_JAVA_THREADS(p) {
4128    q->enqueue(new ThreadRootsTask(p));
4129  }
4130  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4131}
4132
4133// Used by Parallel Old
4134void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4135  ALL_JAVA_THREADS(p) {
4136    q->enqueue(new ThreadRootsMarkingTask(p));
4137  }
4138  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4139}
4140#endif // INCLUDE_ALL_GCS
4141
4142void Threads::nmethods_do(CodeBlobClosure* cf) {
4143  ALL_JAVA_THREADS(p) {
4144    p->nmethods_do(cf);
4145  }
4146  VMThread::vm_thread()->nmethods_do(cf);
4147}
4148
4149void Threads::metadata_do(void f(Metadata*)) {
4150  ALL_JAVA_THREADS(p) {
4151    p->metadata_do(f);
4152  }
4153}
4154
4155class ThreadHandlesClosure : public ThreadClosure {
4156  void (*_f)(Metadata*);
4157 public:
4158  ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4159  virtual void do_thread(Thread* thread) {
4160    thread->metadata_handles_do(_f);
4161  }
4162};
4163
4164void Threads::metadata_handles_do(void f(Metadata*)) {
4165  // Only walk the Handles in Thread.
4166  ThreadHandlesClosure handles_closure(f);
4167  threads_do(&handles_closure);
4168}
4169
4170void Threads::deoptimized_wrt_marked_nmethods() {
4171  ALL_JAVA_THREADS(p) {
4172    p->deoptimized_wrt_marked_nmethods();
4173  }
4174}
4175
4176
4177// Get count Java threads that are waiting to enter the specified monitor.
4178GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4179                                                         address monitor,
4180                                                         bool doLock) {
4181  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4182         "must grab Threads_lock or be at safepoint");
4183  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4184
4185  int i = 0;
4186  {
4187    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4188    ALL_JAVA_THREADS(p) {
4189      if (p->is_Compiler_thread()) continue;
4190
4191      address pending = (address)p->current_pending_monitor();
4192      if (pending == monitor) {             // found a match
4193        if (i < count) result->append(p);   // save the first count matches
4194        i++;
4195      }
4196    }
4197  }
4198  return result;
4199}
4200
4201
4202JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4203                                                      bool doLock) {
4204  assert(doLock ||
4205         Threads_lock->owned_by_self() ||
4206         SafepointSynchronize::is_at_safepoint(),
4207         "must grab Threads_lock or be at safepoint");
4208
4209  // NULL owner means not locked so we can skip the search
4210  if (owner == NULL) return NULL;
4211
4212  {
4213    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4214    ALL_JAVA_THREADS(p) {
4215      // first, see if owner is the address of a Java thread
4216      if (owner == (address)p) return p;
4217    }
4218  }
4219  // Cannot assert on lack of success here since this function may be
4220  // used by code that is trying to report useful problem information
4221  // like deadlock detection.
4222  if (UseHeavyMonitors) return NULL;
4223
4224  // If we didn't find a matching Java thread and we didn't force use of
4225  // heavyweight monitors, then the owner is the stack address of the
4226  // Lock Word in the owning Java thread's stack.
4227  //
4228  JavaThread* the_owner = NULL;
4229  {
4230    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4231    ALL_JAVA_THREADS(q) {
4232      if (q->is_lock_owned(owner)) {
4233        the_owner = q;
4234        break;
4235      }
4236    }
4237  }
4238  // cannot assert on lack of success here; see above comment
4239  return the_owner;
4240}
4241
4242// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4243void Threads::print_on(outputStream* st, bool print_stacks,
4244                       bool internal_format, bool print_concurrent_locks) {
4245  char buf[32];
4246  st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4247
4248  st->print_cr("Full thread dump %s (%s %s):",
4249               Abstract_VM_Version::vm_name(),
4250               Abstract_VM_Version::vm_release(),
4251               Abstract_VM_Version::vm_info_string());
4252  st->cr();
4253
4254#if INCLUDE_SERVICES
4255  // Dump concurrent locks
4256  ConcurrentLocksDump concurrent_locks;
4257  if (print_concurrent_locks) {
4258    concurrent_locks.dump_at_safepoint();
4259  }
4260#endif // INCLUDE_SERVICES
4261
4262  ALL_JAVA_THREADS(p) {
4263    ResourceMark rm;
4264    p->print_on(st);
4265    if (print_stacks) {
4266      if (internal_format) {
4267        p->trace_stack();
4268      } else {
4269        p->print_stack_on(st);
4270      }
4271    }
4272    st->cr();
4273#if INCLUDE_SERVICES
4274    if (print_concurrent_locks) {
4275      concurrent_locks.print_locks_on(p, st);
4276    }
4277#endif // INCLUDE_SERVICES
4278  }
4279
4280  VMThread::vm_thread()->print_on(st);
4281  st->cr();
4282  Universe::heap()->print_gc_threads_on(st);
4283  WatcherThread* wt = WatcherThread::watcher_thread();
4284  if (wt != NULL) {
4285    wt->print_on(st);
4286    st->cr();
4287  }
4288  CompileBroker::print_compiler_threads_on(st);
4289  st->flush();
4290}
4291
4292// Threads::print_on_error() is called by fatal error handler. It's possible
4293// that VM is not at safepoint and/or current thread is inside signal handler.
4294// Don't print stack trace, as the stack may not be walkable. Don't allocate
4295// memory (even in resource area), it might deadlock the error handler.
4296void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4297                             int buflen) {
4298  bool found_current = false;
4299  st->print_cr("Java Threads: ( => current thread )");
4300  ALL_JAVA_THREADS(thread) {
4301    bool is_current = (current == thread);
4302    found_current = found_current || is_current;
4303
4304    st->print("%s", is_current ? "=>" : "  ");
4305
4306    st->print(PTR_FORMAT, thread);
4307    st->print(" ");
4308    thread->print_on_error(st, buf, buflen);
4309    st->cr();
4310  }
4311  st->cr();
4312
4313  st->print_cr("Other Threads:");
4314  if (VMThread::vm_thread()) {
4315    bool is_current = (current == VMThread::vm_thread());
4316    found_current = found_current || is_current;
4317    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4318
4319    st->print(PTR_FORMAT, VMThread::vm_thread());
4320    st->print(" ");
4321    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4322    st->cr();
4323  }
4324  WatcherThread* wt = WatcherThread::watcher_thread();
4325  if (wt != NULL) {
4326    bool is_current = (current == wt);
4327    found_current = found_current || is_current;
4328    st->print("%s", is_current ? "=>" : "  ");
4329
4330    st->print(PTR_FORMAT, wt);
4331    st->print(" ");
4332    wt->print_on_error(st, buf, buflen);
4333    st->cr();
4334  }
4335  if (!found_current) {
4336    st->cr();
4337    st->print("=>" PTR_FORMAT " (exited) ", current);
4338    current->print_on_error(st, buf, buflen);
4339    st->cr();
4340  }
4341}
4342
4343// Internal SpinLock and Mutex
4344// Based on ParkEvent
4345
4346// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4347//
4348// We employ SpinLocks _only for low-contention, fixed-length
4349// short-duration critical sections where we're concerned
4350// about native mutex_t or HotSpot Mutex:: latency.
4351// The mux construct provides a spin-then-block mutual exclusion
4352// mechanism.
4353//
4354// Testing has shown that contention on the ListLock guarding gFreeList
4355// is common.  If we implement ListLock as a simple SpinLock it's common
4356// for the JVM to devolve to yielding with little progress.  This is true
4357// despite the fact that the critical sections protected by ListLock are
4358// extremely short.
4359//
4360// TODO-FIXME: ListLock should be of type SpinLock.
4361// We should make this a 1st-class type, integrated into the lock
4362// hierarchy as leaf-locks.  Critically, the SpinLock structure
4363// should have sufficient padding to avoid false-sharing and excessive
4364// cache-coherency traffic.
4365
4366
4367typedef volatile int SpinLockT;
4368
4369void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4370  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4371    return;   // normal fast-path return
4372  }
4373
4374  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4375  TEVENT(SpinAcquire - ctx);
4376  int ctr = 0;
4377  int Yields = 0;
4378  for (;;) {
4379    while (*adr != 0) {
4380      ++ctr;
4381      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4382        if (Yields > 5) {
4383          os::naked_short_sleep(1);
4384        } else {
4385          os::naked_yield();
4386          ++Yields;
4387        }
4388      } else {
4389        SpinPause();
4390      }
4391    }
4392    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4393  }
4394}
4395
4396void Thread::SpinRelease(volatile int * adr) {
4397  assert(*adr != 0, "invariant");
4398  OrderAccess::fence();      // guarantee at least release consistency.
4399  // Roach-motel semantics.
4400  // It's safe if subsequent LDs and STs float "up" into the critical section,
4401  // but prior LDs and STs within the critical section can't be allowed
4402  // to reorder or float past the ST that releases the lock.
4403  // Loads and stores in the critical section - which appear in program
4404  // order before the store that releases the lock - must also appear
4405  // before the store that releases the lock in memory visibility order.
4406  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4407  // the ST of 0 into the lock-word which releases the lock, so fence
4408  // more than covers this on all platforms.
4409  *adr = 0;
4410}
4411
4412// muxAcquire and muxRelease:
4413//
4414// *  muxAcquire and muxRelease support a single-word lock-word construct.
4415//    The LSB of the word is set IFF the lock is held.
4416//    The remainder of the word points to the head of a singly-linked list
4417//    of threads blocked on the lock.
4418//
4419// *  The current implementation of muxAcquire-muxRelease uses its own
4420//    dedicated Thread._MuxEvent instance.  If we're interested in
4421//    minimizing the peak number of extant ParkEvent instances then
4422//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4423//    as certain invariants were satisfied.  Specifically, care would need
4424//    to be taken with regards to consuming unpark() "permits".
4425//    A safe rule of thumb is that a thread would never call muxAcquire()
4426//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4427//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4428//    consume an unpark() permit intended for monitorenter, for instance.
4429//    One way around this would be to widen the restricted-range semaphore
4430//    implemented in park().  Another alternative would be to provide
4431//    multiple instances of the PlatformEvent() for each thread.  One
4432//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4433//
4434// *  Usage:
4435//    -- Only as leaf locks
4436//    -- for short-term locking only as muxAcquire does not perform
4437//       thread state transitions.
4438//
4439// Alternatives:
4440// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4441//    but with parking or spin-then-park instead of pure spinning.
4442// *  Use Taura-Oyama-Yonenzawa locks.
4443// *  It's possible to construct a 1-0 lock if we encode the lockword as
4444//    (List,LockByte).  Acquire will CAS the full lockword while Release
4445//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4446//    acquiring threads use timers (ParkTimed) to detect and recover from
4447//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4448//    boundaries by using placement-new.
4449// *  Augment MCS with advisory back-link fields maintained with CAS().
4450//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4451//    The validity of the backlinks must be ratified before we trust the value.
4452//    If the backlinks are invalid the exiting thread must back-track through the
4453//    the forward links, which are always trustworthy.
4454// *  Add a successor indication.  The LockWord is currently encoded as
4455//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4456//    to provide the usual futile-wakeup optimization.
4457//    See RTStt for details.
4458// *  Consider schedctl.sc_nopreempt to cover the critical section.
4459//
4460
4461
4462typedef volatile intptr_t MutexT;      // Mux Lock-word
4463enum MuxBits { LOCKBIT = 1 };
4464
4465void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4466  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4467  if (w == 0) return;
4468  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4469    return;
4470  }
4471
4472  TEVENT(muxAcquire - Contention);
4473  ParkEvent * const Self = Thread::current()->_MuxEvent;
4474  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4475  for (;;) {
4476    int its = (os::is_MP() ? 100 : 0) + 1;
4477
4478    // Optional spin phase: spin-then-park strategy
4479    while (--its >= 0) {
4480      w = *Lock;
4481      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4482        return;
4483      }
4484    }
4485
4486    Self->reset();
4487    Self->OnList = intptr_t(Lock);
4488    // The following fence() isn't _strictly necessary as the subsequent
4489    // CAS() both serializes execution and ratifies the fetched *Lock value.
4490    OrderAccess::fence();
4491    for (;;) {
4492      w = *Lock;
4493      if ((w & LOCKBIT) == 0) {
4494        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4495          Self->OnList = 0;   // hygiene - allows stronger asserts
4496          return;
4497        }
4498        continue;      // Interference -- *Lock changed -- Just retry
4499      }
4500      assert(w & LOCKBIT, "invariant");
4501      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4502      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4503    }
4504
4505    while (Self->OnList != 0) {
4506      Self->park();
4507    }
4508  }
4509}
4510
4511void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4512  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4513  if (w == 0) return;
4514  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4515    return;
4516  }
4517
4518  TEVENT(muxAcquire - Contention);
4519  ParkEvent * ReleaseAfter = NULL;
4520  if (ev == NULL) {
4521    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4522  }
4523  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4524  for (;;) {
4525    guarantee(ev->OnList == 0, "invariant");
4526    int its = (os::is_MP() ? 100 : 0) + 1;
4527
4528    // Optional spin phase: spin-then-park strategy
4529    while (--its >= 0) {
4530      w = *Lock;
4531      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4532        if (ReleaseAfter != NULL) {
4533          ParkEvent::Release(ReleaseAfter);
4534        }
4535        return;
4536      }
4537    }
4538
4539    ev->reset();
4540    ev->OnList = intptr_t(Lock);
4541    // The following fence() isn't _strictly necessary as the subsequent
4542    // CAS() both serializes execution and ratifies the fetched *Lock value.
4543    OrderAccess::fence();
4544    for (;;) {
4545      w = *Lock;
4546      if ((w & LOCKBIT) == 0) {
4547        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4548          ev->OnList = 0;
4549          // We call ::Release while holding the outer lock, thus
4550          // artificially lengthening the critical section.
4551          // Consider deferring the ::Release() until the subsequent unlock(),
4552          // after we've dropped the outer lock.
4553          if (ReleaseAfter != NULL) {
4554            ParkEvent::Release(ReleaseAfter);
4555          }
4556          return;
4557        }
4558        continue;      // Interference -- *Lock changed -- Just retry
4559      }
4560      assert(w & LOCKBIT, "invariant");
4561      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4562      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4563    }
4564
4565    while (ev->OnList != 0) {
4566      ev->park();
4567    }
4568  }
4569}
4570
4571// Release() must extract a successor from the list and then wake that thread.
4572// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4573// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4574// Release() would :
4575// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4576// (B) Extract a successor from the private list "in-hand"
4577// (C) attempt to CAS() the residual back into *Lock over null.
4578//     If there were any newly arrived threads and the CAS() would fail.
4579//     In that case Release() would detach the RATs, re-merge the list in-hand
4580//     with the RATs and repeat as needed.  Alternately, Release() might
4581//     detach and extract a successor, but then pass the residual list to the wakee.
4582//     The wakee would be responsible for reattaching and remerging before it
4583//     competed for the lock.
4584//
4585// Both "pop" and DMR are immune from ABA corruption -- there can be
4586// multiple concurrent pushers, but only one popper or detacher.
4587// This implementation pops from the head of the list.  This is unfair,
4588// but tends to provide excellent throughput as hot threads remain hot.
4589// (We wake recently run threads first).
4590//
4591// All paths through muxRelease() will execute a CAS.
4592// Release consistency -- We depend on the CAS in muxRelease() to provide full
4593// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4594// executed within the critical section are complete and globally visible before the
4595// store (CAS) to the lock-word that releases the lock becomes globally visible.
4596void Thread::muxRelease(volatile intptr_t * Lock)  {
4597  for (;;) {
4598    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4599    assert(w & LOCKBIT, "invariant");
4600    if (w == LOCKBIT) return;
4601    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4602    assert(List != NULL, "invariant");
4603    assert(List->OnList == intptr_t(Lock), "invariant");
4604    ParkEvent * const nxt = List->ListNext;
4605    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4606
4607    // The following CAS() releases the lock and pops the head element.
4608    // The CAS() also ratifies the previously fetched lock-word value.
4609    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4610      continue;
4611    }
4612    List->OnList = 0;
4613    OrderAccess::fence();
4614    List->unpark();
4615    return;
4616  }
4617}
4618
4619
4620void Threads::verify() {
4621  ALL_JAVA_THREADS(p) {
4622    p->verify();
4623  }
4624  VMThread* thread = VMThread::vm_thread();
4625  if (thread != NULL) thread->verify();
4626}
4627