thread.cpp revision 8569:5bbf25472731
1/*
2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#include "precompiled.hpp"
26#include "classfile/classLoader.hpp"
27#include "classfile/javaClasses.hpp"
28#include "classfile/systemDictionary.hpp"
29#include "classfile/vmSymbols.hpp"
30#include "code/codeCache.hpp"
31#include "code/scopeDesc.hpp"
32#include "compiler/compileBroker.hpp"
33#include "gc/shared/gcLocker.inline.hpp"
34#include "gc/shared/workgroup.hpp"
35#include "interpreter/interpreter.hpp"
36#include "interpreter/linkResolver.hpp"
37#include "interpreter/oopMapCache.hpp"
38#include "jvmtifiles/jvmtiEnv.hpp"
39#include "memory/metaspaceShared.hpp"
40#include "memory/oopFactory.hpp"
41#include "memory/universe.inline.hpp"
42#include "oops/instanceKlass.hpp"
43#include "oops/objArrayOop.hpp"
44#include "oops/oop.inline.hpp"
45#include "oops/symbol.hpp"
46#include "oops/verifyOopClosure.hpp"
47#include "prims/jvm_misc.hpp"
48#include "prims/jvmtiExport.hpp"
49#include "prims/jvmtiThreadState.hpp"
50#include "prims/privilegedStack.hpp"
51#include "runtime/arguments.hpp"
52#include "runtime/atomic.inline.hpp"
53#include "runtime/biasedLocking.hpp"
54#include "runtime/deoptimization.hpp"
55#include "runtime/fprofiler.hpp"
56#include "runtime/frame.inline.hpp"
57#include "runtime/globals.hpp"
58#include "runtime/init.hpp"
59#include "runtime/interfaceSupport.hpp"
60#include "runtime/java.hpp"
61#include "runtime/javaCalls.hpp"
62#include "runtime/jniPeriodicChecker.hpp"
63#include "runtime/memprofiler.hpp"
64#include "runtime/mutexLocker.hpp"
65#include "runtime/objectMonitor.hpp"
66#include "runtime/orderAccess.inline.hpp"
67#include "runtime/osThread.hpp"
68#include "runtime/safepoint.hpp"
69#include "runtime/sharedRuntime.hpp"
70#include "runtime/statSampler.hpp"
71#include "runtime/stubRoutines.hpp"
72#include "runtime/sweeper.hpp"
73#include "runtime/task.hpp"
74#include "runtime/thread.inline.hpp"
75#include "runtime/threadCritical.hpp"
76#include "runtime/threadLocalStorage.hpp"
77#include "runtime/vframe.hpp"
78#include "runtime/vframeArray.hpp"
79#include "runtime/vframe_hp.hpp"
80#include "runtime/vmThread.hpp"
81#include "runtime/vm_operations.hpp"
82#include "runtime/vm_version.hpp"
83#include "services/attachListener.hpp"
84#include "services/management.hpp"
85#include "services/memTracker.hpp"
86#include "services/threadService.hpp"
87#include "trace/traceMacros.hpp"
88#include "trace/tracing.hpp"
89#include "utilities/defaultStream.hpp"
90#include "utilities/dtrace.hpp"
91#include "utilities/events.hpp"
92#include "utilities/macros.hpp"
93#include "utilities/preserveException.hpp"
94#if INCLUDE_ALL_GCS
95#include "gc/cms/concurrentMarkSweepThread.hpp"
96#include "gc/g1/concurrentMarkThread.inline.hpp"
97#include "gc/parallel/pcTasks.hpp"
98#endif // INCLUDE_ALL_GCS
99#ifdef COMPILER1
100#include "c1/c1_Compiler.hpp"
101#endif
102#ifdef COMPILER2
103#include "opto/c2compiler.hpp"
104#include "opto/idealGraphPrinter.hpp"
105#endif
106#if INCLUDE_RTM_OPT
107#include "runtime/rtmLocking.hpp"
108#endif
109
110PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
111
112#ifdef DTRACE_ENABLED
113
114// Only bother with this argument setup if dtrace is available
115
116  #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
117  #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
118
119  #define DTRACE_THREAD_PROBE(probe, javathread)                           \
120    {                                                                      \
121      ResourceMark rm(this);                                               \
122      int len = 0;                                                         \
123      const char* name = (javathread)->get_thread_name();                  \
124      len = strlen(name);                                                  \
125      HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
126        (char *) name, len,                                                \
127        java_lang_Thread::thread_id((javathread)->threadObj()),            \
128        (uintptr_t) (javathread)->osthread()->thread_id(),                 \
129        java_lang_Thread::is_daemon((javathread)->threadObj()));           \
130    }
131
132#else //  ndef DTRACE_ENABLED
133
134  #define DTRACE_THREAD_PROBE(probe, javathread)
135
136#endif // ndef DTRACE_ENABLED
137
138
139// Class hierarchy
140// - Thread
141//   - VMThread
142//   - WatcherThread
143//   - ConcurrentMarkSweepThread
144//   - JavaThread
145//     - CompilerThread
146
147// ======= Thread ========
148// Support for forcing alignment of thread objects for biased locking
149void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
150  if (UseBiasedLocking) {
151    const int alignment = markOopDesc::biased_lock_alignment;
152    size_t aligned_size = size + (alignment - sizeof(intptr_t));
153    void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
154                                          : AllocateHeap(aligned_size, flags, CURRENT_PC,
155                                                         AllocFailStrategy::RETURN_NULL);
156    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
157    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
158           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
159           "JavaThread alignment code overflowed allocated storage");
160    if (TraceBiasedLocking) {
161      if (aligned_addr != real_malloc_addr) {
162        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
163                      real_malloc_addr, aligned_addr);
164      }
165    }
166    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
167    return aligned_addr;
168  } else {
169    return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
170                       : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
171  }
172}
173
174void Thread::operator delete(void* p) {
175  if (UseBiasedLocking) {
176    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
177    FreeHeap(real_malloc_addr);
178  } else {
179    FreeHeap(p);
180  }
181}
182
183
184// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
185// JavaThread
186
187
188Thread::Thread() {
189  // stack and get_thread
190  set_stack_base(NULL);
191  set_stack_size(0);
192  set_self_raw_id(0);
193  set_lgrp_id(-1);
194  DEBUG_ONLY(clear_suspendible_thread();)
195
196  // allocated data structures
197  set_osthread(NULL);
198  set_resource_area(new (mtThread)ResourceArea());
199  DEBUG_ONLY(_current_resource_mark = NULL;)
200  set_handle_area(new (mtThread) HandleArea(NULL));
201  set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
202  set_active_handles(NULL);
203  set_free_handle_block(NULL);
204  set_last_handle_mark(NULL);
205
206  // This initial value ==> never claimed.
207  _oops_do_parity = 0;
208
209  // the handle mark links itself to last_handle_mark
210  new HandleMark(this);
211
212  // plain initialization
213  debug_only(_owned_locks = NULL;)
214  debug_only(_allow_allocation_count = 0;)
215  NOT_PRODUCT(_allow_safepoint_count = 0;)
216  NOT_PRODUCT(_skip_gcalot = false;)
217  _jvmti_env_iteration_count = 0;
218  set_allocated_bytes(0);
219  _vm_operation_started_count = 0;
220  _vm_operation_completed_count = 0;
221  _current_pending_monitor = NULL;
222  _current_pending_monitor_is_from_java = true;
223  _current_waiting_monitor = NULL;
224  _num_nested_signal = 0;
225  omFreeList = NULL;
226  omFreeCount = 0;
227  omFreeProvision = 32;
228  omInUseList = NULL;
229  omInUseCount = 0;
230
231#ifdef ASSERT
232  _visited_for_critical_count = false;
233#endif
234
235  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
236                         Monitor::_safepoint_check_sometimes);
237  _suspend_flags = 0;
238
239  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
240  _hashStateX = os::random();
241  _hashStateY = 842502087;
242  _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
243  _hashStateW = 273326509;
244
245  _OnTrap   = 0;
246  _schedctl = NULL;
247  _Stalled  = 0;
248  _TypeTag  = 0x2BAD;
249
250  // Many of the following fields are effectively final - immutable
251  // Note that nascent threads can't use the Native Monitor-Mutex
252  // construct until the _MutexEvent is initialized ...
253  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
254  // we might instead use a stack of ParkEvents that we could provision on-demand.
255  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
256  // and ::Release()
257  _ParkEvent   = ParkEvent::Allocate(this);
258  _SleepEvent  = ParkEvent::Allocate(this);
259  _MutexEvent  = ParkEvent::Allocate(this);
260  _MuxEvent    = ParkEvent::Allocate(this);
261
262#ifdef CHECK_UNHANDLED_OOPS
263  if (CheckUnhandledOops) {
264    _unhandled_oops = new UnhandledOops(this);
265  }
266#endif // CHECK_UNHANDLED_OOPS
267#ifdef ASSERT
268  if (UseBiasedLocking) {
269    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
270    assert(this == _real_malloc_address ||
271           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
272           "bug in forced alignment of thread objects");
273  }
274#endif // ASSERT
275}
276
277// Non-inlined version to be used where thread.inline.hpp shouldn't be included.
278Thread* Thread::current_noinline() {
279  return Thread::current();
280}
281
282void Thread::initialize_thread_local_storage() {
283  // Note: Make sure this method only calls
284  // non-blocking operations. Otherwise, it might not work
285  // with the thread-startup/safepoint interaction.
286
287  // During Java thread startup, safepoint code should allow this
288  // method to complete because it may need to allocate memory to
289  // store information for the new thread.
290
291  // initialize structure dependent on thread local storage
292  ThreadLocalStorage::set_thread(this);
293}
294
295void Thread::record_stack_base_and_size() {
296  set_stack_base(os::current_stack_base());
297  set_stack_size(os::current_stack_size());
298  if (is_Java_thread()) {
299    ((JavaThread*) this)->set_stack_overflow_limit();
300  }
301  // CR 7190089: on Solaris, primordial thread's stack is adjusted
302  // in initialize_thread(). Without the adjustment, stack size is
303  // incorrect if stack is set to unlimited (ulimit -s unlimited).
304  // So far, only Solaris has real implementation of initialize_thread().
305  //
306  // set up any platform-specific state.
307  os::initialize_thread(this);
308
309#if INCLUDE_NMT
310  // record thread's native stack, stack grows downward
311  address stack_low_addr = stack_base() - stack_size();
312  MemTracker::record_thread_stack(stack_low_addr, stack_size());
313#endif // INCLUDE_NMT
314}
315
316
317Thread::~Thread() {
318  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
319  ObjectSynchronizer::omFlush(this);
320
321  EVENT_THREAD_DESTRUCT(this);
322
323  // stack_base can be NULL if the thread is never started or exited before
324  // record_stack_base_and_size called. Although, we would like to ensure
325  // that all started threads do call record_stack_base_and_size(), there is
326  // not proper way to enforce that.
327#if INCLUDE_NMT
328  if (_stack_base != NULL) {
329    address low_stack_addr = stack_base() - stack_size();
330    MemTracker::release_thread_stack(low_stack_addr, stack_size());
331#ifdef ASSERT
332    set_stack_base(NULL);
333#endif
334  }
335#endif // INCLUDE_NMT
336
337  // deallocate data structures
338  delete resource_area();
339  // since the handle marks are using the handle area, we have to deallocated the root
340  // handle mark before deallocating the thread's handle area,
341  assert(last_handle_mark() != NULL, "check we have an element");
342  delete last_handle_mark();
343  assert(last_handle_mark() == NULL, "check we have reached the end");
344
345  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
346  // We NULL out the fields for good hygiene.
347  ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
348  ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
349  ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
350  ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
351
352  delete handle_area();
353  delete metadata_handles();
354
355  // osthread() can be NULL, if creation of thread failed.
356  if (osthread() != NULL) os::free_thread(osthread());
357
358  delete _SR_lock;
359
360  // clear thread local storage if the Thread is deleting itself
361  if (this == Thread::current()) {
362    ThreadLocalStorage::set_thread(NULL);
363  } else {
364    // In the case where we're not the current thread, invalidate all the
365    // caches in case some code tries to get the current thread or the
366    // thread that was destroyed, and gets stale information.
367    ThreadLocalStorage::invalidate_all();
368  }
369  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
370}
371
372// NOTE: dummy function for assertion purpose.
373void Thread::run() {
374  ShouldNotReachHere();
375}
376
377#ifdef ASSERT
378// Private method to check for dangling thread pointer
379void check_for_dangling_thread_pointer(Thread *thread) {
380  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
381         "possibility of dangling Thread pointer");
382}
383#endif
384
385ThreadPriority Thread::get_priority(const Thread* const thread) {
386  ThreadPriority priority;
387  // Can return an error!
388  (void)os::get_priority(thread, priority);
389  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
390  return priority;
391}
392
393void Thread::set_priority(Thread* thread, ThreadPriority priority) {
394  debug_only(check_for_dangling_thread_pointer(thread);)
395  // Can return an error!
396  (void)os::set_priority(thread, priority);
397}
398
399
400void Thread::start(Thread* thread) {
401  // Start is different from resume in that its safety is guaranteed by context or
402  // being called from a Java method synchronized on the Thread object.
403  if (!DisableStartThread) {
404    if (thread->is_Java_thread()) {
405      // Initialize the thread state to RUNNABLE before starting this thread.
406      // Can not set it after the thread started because we do not know the
407      // exact thread state at that time. It could be in MONITOR_WAIT or
408      // in SLEEPING or some other state.
409      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
410                                          java_lang_Thread::RUNNABLE);
411    }
412    os::start_thread(thread);
413  }
414}
415
416// Enqueue a VM_Operation to do the job for us - sometime later
417void Thread::send_async_exception(oop java_thread, oop java_throwable) {
418  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
419  VMThread::execute(vm_stop);
420}
421
422
423// Check if an external suspend request has completed (or has been
424// cancelled). Returns true if the thread is externally suspended and
425// false otherwise.
426//
427// The bits parameter returns information about the code path through
428// the routine. Useful for debugging:
429//
430// set in is_ext_suspend_completed():
431// 0x00000001 - routine was entered
432// 0x00000010 - routine return false at end
433// 0x00000100 - thread exited (return false)
434// 0x00000200 - suspend request cancelled (return false)
435// 0x00000400 - thread suspended (return true)
436// 0x00001000 - thread is in a suspend equivalent state (return true)
437// 0x00002000 - thread is native and walkable (return true)
438// 0x00004000 - thread is native_trans and walkable (needed retry)
439//
440// set in wait_for_ext_suspend_completion():
441// 0x00010000 - routine was entered
442// 0x00020000 - suspend request cancelled before loop (return false)
443// 0x00040000 - thread suspended before loop (return true)
444// 0x00080000 - suspend request cancelled in loop (return false)
445// 0x00100000 - thread suspended in loop (return true)
446// 0x00200000 - suspend not completed during retry loop (return false)
447
448// Helper class for tracing suspend wait debug bits.
449//
450// 0x00000100 indicates that the target thread exited before it could
451// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
452// 0x00080000 each indicate a cancelled suspend request so they don't
453// count as wait failures either.
454#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
455
456class TraceSuspendDebugBits : public StackObj {
457 private:
458  JavaThread * jt;
459  bool         is_wait;
460  bool         called_by_wait;  // meaningful when !is_wait
461  uint32_t *   bits;
462
463 public:
464  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
465                        uint32_t *_bits) {
466    jt             = _jt;
467    is_wait        = _is_wait;
468    called_by_wait = _called_by_wait;
469    bits           = _bits;
470  }
471
472  ~TraceSuspendDebugBits() {
473    if (!is_wait) {
474#if 1
475      // By default, don't trace bits for is_ext_suspend_completed() calls.
476      // That trace is very chatty.
477      return;
478#else
479      if (!called_by_wait) {
480        // If tracing for is_ext_suspend_completed() is enabled, then only
481        // trace calls to it from wait_for_ext_suspend_completion()
482        return;
483      }
484#endif
485    }
486
487    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
488      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
489        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
490        ResourceMark rm;
491
492        tty->print_cr(
493                      "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
494                      jt->get_thread_name(), *bits);
495
496        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
497      }
498    }
499  }
500};
501#undef DEBUG_FALSE_BITS
502
503
504bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
505                                          uint32_t *bits) {
506  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
507
508  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
509  bool do_trans_retry;           // flag to force the retry
510
511  *bits |= 0x00000001;
512
513  do {
514    do_trans_retry = false;
515
516    if (is_exiting()) {
517      // Thread is in the process of exiting. This is always checked
518      // first to reduce the risk of dereferencing a freed JavaThread.
519      *bits |= 0x00000100;
520      return false;
521    }
522
523    if (!is_external_suspend()) {
524      // Suspend request is cancelled. This is always checked before
525      // is_ext_suspended() to reduce the risk of a rogue resume
526      // confusing the thread that made the suspend request.
527      *bits |= 0x00000200;
528      return false;
529    }
530
531    if (is_ext_suspended()) {
532      // thread is suspended
533      *bits |= 0x00000400;
534      return true;
535    }
536
537    // Now that we no longer do hard suspends of threads running
538    // native code, the target thread can be changing thread state
539    // while we are in this routine:
540    //
541    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
542    //
543    // We save a copy of the thread state as observed at this moment
544    // and make our decision about suspend completeness based on the
545    // copy. This closes the race where the thread state is seen as
546    // _thread_in_native_trans in the if-thread_blocked check, but is
547    // seen as _thread_blocked in if-thread_in_native_trans check.
548    JavaThreadState save_state = thread_state();
549
550    if (save_state == _thread_blocked && is_suspend_equivalent()) {
551      // If the thread's state is _thread_blocked and this blocking
552      // condition is known to be equivalent to a suspend, then we can
553      // consider the thread to be externally suspended. This means that
554      // the code that sets _thread_blocked has been modified to do
555      // self-suspension if the blocking condition releases. We also
556      // used to check for CONDVAR_WAIT here, but that is now covered by
557      // the _thread_blocked with self-suspension check.
558      //
559      // Return true since we wouldn't be here unless there was still an
560      // external suspend request.
561      *bits |= 0x00001000;
562      return true;
563    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
564      // Threads running native code will self-suspend on native==>VM/Java
565      // transitions. If its stack is walkable (should always be the case
566      // unless this function is called before the actual java_suspend()
567      // call), then the wait is done.
568      *bits |= 0x00002000;
569      return true;
570    } else if (!called_by_wait && !did_trans_retry &&
571               save_state == _thread_in_native_trans &&
572               frame_anchor()->walkable()) {
573      // The thread is transitioning from thread_in_native to another
574      // thread state. check_safepoint_and_suspend_for_native_trans()
575      // will force the thread to self-suspend. If it hasn't gotten
576      // there yet we may have caught the thread in-between the native
577      // code check above and the self-suspend. Lucky us. If we were
578      // called by wait_for_ext_suspend_completion(), then it
579      // will be doing the retries so we don't have to.
580      //
581      // Since we use the saved thread state in the if-statement above,
582      // there is a chance that the thread has already transitioned to
583      // _thread_blocked by the time we get here. In that case, we will
584      // make a single unnecessary pass through the logic below. This
585      // doesn't hurt anything since we still do the trans retry.
586
587      *bits |= 0x00004000;
588
589      // Once the thread leaves thread_in_native_trans for another
590      // thread state, we break out of this retry loop. We shouldn't
591      // need this flag to prevent us from getting back here, but
592      // sometimes paranoia is good.
593      did_trans_retry = true;
594
595      // We wait for the thread to transition to a more usable state.
596      for (int i = 1; i <= SuspendRetryCount; i++) {
597        // We used to do an "os::yield_all(i)" call here with the intention
598        // that yielding would increase on each retry. However, the parameter
599        // is ignored on Linux which means the yield didn't scale up. Waiting
600        // on the SR_lock below provides a much more predictable scale up for
601        // the delay. It also provides a simple/direct point to check for any
602        // safepoint requests from the VMThread
603
604        // temporarily drops SR_lock while doing wait with safepoint check
605        // (if we're a JavaThread - the WatcherThread can also call this)
606        // and increase delay with each retry
607        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
608
609        // check the actual thread state instead of what we saved above
610        if (thread_state() != _thread_in_native_trans) {
611          // the thread has transitioned to another thread state so
612          // try all the checks (except this one) one more time.
613          do_trans_retry = true;
614          break;
615        }
616      } // end retry loop
617
618
619    }
620  } while (do_trans_retry);
621
622  *bits |= 0x00000010;
623  return false;
624}
625
626// Wait for an external suspend request to complete (or be cancelled).
627// Returns true if the thread is externally suspended and false otherwise.
628//
629bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
630                                                 uint32_t *bits) {
631  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
632                             false /* !called_by_wait */, bits);
633
634  // local flag copies to minimize SR_lock hold time
635  bool is_suspended;
636  bool pending;
637  uint32_t reset_bits;
638
639  // set a marker so is_ext_suspend_completed() knows we are the caller
640  *bits |= 0x00010000;
641
642  // We use reset_bits to reinitialize the bits value at the top of
643  // each retry loop. This allows the caller to make use of any
644  // unused bits for their own marking purposes.
645  reset_bits = *bits;
646
647  {
648    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
649    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
650                                            delay, bits);
651    pending = is_external_suspend();
652  }
653  // must release SR_lock to allow suspension to complete
654
655  if (!pending) {
656    // A cancelled suspend request is the only false return from
657    // is_ext_suspend_completed() that keeps us from entering the
658    // retry loop.
659    *bits |= 0x00020000;
660    return false;
661  }
662
663  if (is_suspended) {
664    *bits |= 0x00040000;
665    return true;
666  }
667
668  for (int i = 1; i <= retries; i++) {
669    *bits = reset_bits;  // reinit to only track last retry
670
671    // We used to do an "os::yield_all(i)" call here with the intention
672    // that yielding would increase on each retry. However, the parameter
673    // is ignored on Linux which means the yield didn't scale up. Waiting
674    // on the SR_lock below provides a much more predictable scale up for
675    // the delay. It also provides a simple/direct point to check for any
676    // safepoint requests from the VMThread
677
678    {
679      MutexLocker ml(SR_lock());
680      // wait with safepoint check (if we're a JavaThread - the WatcherThread
681      // can also call this)  and increase delay with each retry
682      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
683
684      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
685                                              delay, bits);
686
687      // It is possible for the external suspend request to be cancelled
688      // (by a resume) before the actual suspend operation is completed.
689      // Refresh our local copy to see if we still need to wait.
690      pending = is_external_suspend();
691    }
692
693    if (!pending) {
694      // A cancelled suspend request is the only false return from
695      // is_ext_suspend_completed() that keeps us from staying in the
696      // retry loop.
697      *bits |= 0x00080000;
698      return false;
699    }
700
701    if (is_suspended) {
702      *bits |= 0x00100000;
703      return true;
704    }
705  } // end retry loop
706
707  // thread did not suspend after all our retries
708  *bits |= 0x00200000;
709  return false;
710}
711
712#ifndef PRODUCT
713void JavaThread::record_jump(address target, address instr, const char* file,
714                             int line) {
715
716  // This should not need to be atomic as the only way for simultaneous
717  // updates is via interrupts. Even then this should be rare or non-existent
718  // and we don't care that much anyway.
719
720  int index = _jmp_ring_index;
721  _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
722  _jmp_ring[index]._target = (intptr_t) target;
723  _jmp_ring[index]._instruction = (intptr_t) instr;
724  _jmp_ring[index]._file = file;
725  _jmp_ring[index]._line = line;
726}
727#endif // PRODUCT
728
729// Called by flat profiler
730// Callers have already called wait_for_ext_suspend_completion
731// The assertion for that is currently too complex to put here:
732bool JavaThread::profile_last_Java_frame(frame* _fr) {
733  bool gotframe = false;
734  // self suspension saves needed state.
735  if (has_last_Java_frame() && _anchor.walkable()) {
736    *_fr = pd_last_frame();
737    gotframe = true;
738  }
739  return gotframe;
740}
741
742void Thread::interrupt(Thread* thread) {
743  debug_only(check_for_dangling_thread_pointer(thread);)
744  os::interrupt(thread);
745}
746
747bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
748  debug_only(check_for_dangling_thread_pointer(thread);)
749  // Note:  If clear_interrupted==false, this simply fetches and
750  // returns the value of the field osthread()->interrupted().
751  return os::is_interrupted(thread, clear_interrupted);
752}
753
754
755// GC Support
756bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
757  jint thread_parity = _oops_do_parity;
758  if (thread_parity != strong_roots_parity) {
759    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
760    if (res == thread_parity) {
761      return true;
762    } else {
763      guarantee(res == strong_roots_parity, "Or else what?");
764      return false;
765    }
766  }
767  return false;
768}
769
770void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
771  active_handles()->oops_do(f);
772  // Do oop for ThreadShadow
773  f->do_oop((oop*)&_pending_exception);
774  handle_area()->oops_do(f);
775}
776
777void Thread::nmethods_do(CodeBlobClosure* cf) {
778  // no nmethods in a generic thread...
779}
780
781void Thread::metadata_handles_do(void f(Metadata*)) {
782  // Only walk the Handles in Thread.
783  if (metadata_handles() != NULL) {
784    for (int i = 0; i< metadata_handles()->length(); i++) {
785      f(metadata_handles()->at(i));
786    }
787  }
788}
789
790void Thread::print_on(outputStream* st) const {
791  // get_priority assumes osthread initialized
792  if (osthread() != NULL) {
793    int os_prio;
794    if (os::get_native_priority(this, &os_prio) == OS_OK) {
795      st->print("os_prio=%d ", os_prio);
796    }
797    st->print("tid=" INTPTR_FORMAT " ", this);
798    ext().print_on(st);
799    osthread()->print_on(st);
800  }
801  debug_only(if (WizardMode) print_owned_locks_on(st);)
802}
803
804// Thread::print_on_error() is called by fatal error handler. Don't use
805// any lock or allocate memory.
806void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
807  if (is_VM_thread())                 st->print("VMThread");
808  else if (is_Compiler_thread())      st->print("CompilerThread");
809  else if (is_Java_thread())          st->print("JavaThread");
810  else if (is_GC_task_thread())       st->print("GCTaskThread");
811  else if (is_Watcher_thread())       st->print("WatcherThread");
812  else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
813  else                                st->print("Thread");
814
815  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
816            _stack_base - _stack_size, _stack_base);
817
818  if (osthread()) {
819    st->print(" [id=%d]", osthread()->thread_id());
820  }
821}
822
823#ifdef ASSERT
824void Thread::print_owned_locks_on(outputStream* st) const {
825  Monitor *cur = _owned_locks;
826  if (cur == NULL) {
827    st->print(" (no locks) ");
828  } else {
829    st->print_cr(" Locks owned:");
830    while (cur) {
831      cur->print_on(st);
832      cur = cur->next();
833    }
834  }
835}
836
837static int ref_use_count  = 0;
838
839bool Thread::owns_locks_but_compiled_lock() const {
840  for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
841    if (cur != Compile_lock) return true;
842  }
843  return false;
844}
845
846
847#endif
848
849#ifndef PRODUCT
850
851// The flag: potential_vm_operation notifies if this particular safepoint state could potential
852// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
853// no threads which allow_vm_block's are held
854void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
855  // Check if current thread is allowed to block at a safepoint
856  if (!(_allow_safepoint_count == 0)) {
857    fatal("Possible safepoint reached by thread that does not allow it");
858  }
859  if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
860    fatal("LEAF method calling lock?");
861  }
862
863#ifdef ASSERT
864  if (potential_vm_operation && is_Java_thread()
865      && !Universe::is_bootstrapping()) {
866    // Make sure we do not hold any locks that the VM thread also uses.
867    // This could potentially lead to deadlocks
868    for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
869      // Threads_lock is special, since the safepoint synchronization will not start before this is
870      // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
871      // since it is used to transfer control between JavaThreads and the VMThread
872      // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
873      if ((cur->allow_vm_block() &&
874           cur != Threads_lock &&
875           cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
876           cur != VMOperationRequest_lock &&
877           cur != VMOperationQueue_lock) ||
878           cur->rank() == Mutex::special) {
879        fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
880      }
881    }
882  }
883
884  if (GCALotAtAllSafepoints) {
885    // We could enter a safepoint here and thus have a gc
886    InterfaceSupport::check_gc_alot();
887  }
888#endif
889}
890#endif
891
892bool Thread::is_in_stack(address adr) const {
893  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
894  address end = os::current_stack_pointer();
895  // Allow non Java threads to call this without stack_base
896  if (_stack_base == NULL) return true;
897  if (stack_base() >= adr && adr >= end) return true;
898
899  return false;
900}
901
902
903bool Thread::is_in_usable_stack(address adr) const {
904  size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
905  size_t usable_stack_size = _stack_size - stack_guard_size;
906
907  return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
908}
909
910
911// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
912// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
913// used for compilation in the future. If that change is made, the need for these methods
914// should be revisited, and they should be removed if possible.
915
916bool Thread::is_lock_owned(address adr) const {
917  return on_local_stack(adr);
918}
919
920bool Thread::set_as_starting_thread() {
921  // NOTE: this must be called inside the main thread.
922  return os::create_main_thread((JavaThread*)this);
923}
924
925static void initialize_class(Symbol* class_name, TRAPS) {
926  Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
927  InstanceKlass::cast(klass)->initialize(CHECK);
928}
929
930
931// Creates the initial ThreadGroup
932static Handle create_initial_thread_group(TRAPS) {
933  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
934  instanceKlassHandle klass (THREAD, k);
935
936  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
937  {
938    JavaValue result(T_VOID);
939    JavaCalls::call_special(&result,
940                            system_instance,
941                            klass,
942                            vmSymbols::object_initializer_name(),
943                            vmSymbols::void_method_signature(),
944                            CHECK_NH);
945  }
946  Universe::set_system_thread_group(system_instance());
947
948  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
949  {
950    JavaValue result(T_VOID);
951    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
952    JavaCalls::call_special(&result,
953                            main_instance,
954                            klass,
955                            vmSymbols::object_initializer_name(),
956                            vmSymbols::threadgroup_string_void_signature(),
957                            system_instance,
958                            string,
959                            CHECK_NH);
960  }
961  return main_instance;
962}
963
964// Creates the initial Thread
965static oop create_initial_thread(Handle thread_group, JavaThread* thread,
966                                 TRAPS) {
967  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
968  instanceKlassHandle klass (THREAD, k);
969  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
970
971  java_lang_Thread::set_thread(thread_oop(), thread);
972  java_lang_Thread::set_priority(thread_oop(), NormPriority);
973  thread->set_threadObj(thread_oop());
974
975  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
976
977  JavaValue result(T_VOID);
978  JavaCalls::call_special(&result, thread_oop,
979                          klass,
980                          vmSymbols::object_initializer_name(),
981                          vmSymbols::threadgroup_string_void_signature(),
982                          thread_group,
983                          string,
984                          CHECK_NULL);
985  return thread_oop();
986}
987
988static void call_initializeSystemClass(TRAPS) {
989  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
990  instanceKlassHandle klass (THREAD, k);
991
992  JavaValue result(T_VOID);
993  JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
994                         vmSymbols::void_method_signature(), CHECK);
995}
996
997char java_runtime_name[128] = "";
998char java_runtime_version[128] = "";
999
1000// extract the JRE name from sun.misc.Version.java_runtime_name
1001static const char* get_java_runtime_name(TRAPS) {
1002  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1003                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1004  fieldDescriptor fd;
1005  bool found = k != NULL &&
1006               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1007                                                        vmSymbols::string_signature(), &fd);
1008  if (found) {
1009    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1010    if (name_oop == NULL) {
1011      return NULL;
1012    }
1013    const char* name = java_lang_String::as_utf8_string(name_oop,
1014                                                        java_runtime_name,
1015                                                        sizeof(java_runtime_name));
1016    return name;
1017  } else {
1018    return NULL;
1019  }
1020}
1021
1022// extract the JRE version from sun.misc.Version.java_runtime_version
1023static const char* get_java_runtime_version(TRAPS) {
1024  Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1025                                    Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1026  fieldDescriptor fd;
1027  bool found = k != NULL &&
1028               InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1029                                                        vmSymbols::string_signature(), &fd);
1030  if (found) {
1031    oop name_oop = k->java_mirror()->obj_field(fd.offset());
1032    if (name_oop == NULL) {
1033      return NULL;
1034    }
1035    const char* name = java_lang_String::as_utf8_string(name_oop,
1036                                                        java_runtime_version,
1037                                                        sizeof(java_runtime_version));
1038    return name;
1039  } else {
1040    return NULL;
1041  }
1042}
1043
1044// General purpose hook into Java code, run once when the VM is initialized.
1045// The Java library method itself may be changed independently from the VM.
1046static void call_postVMInitHook(TRAPS) {
1047  Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1048  instanceKlassHandle klass (THREAD, k);
1049  if (klass.not_null()) {
1050    JavaValue result(T_VOID);
1051    JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1052                           vmSymbols::void_method_signature(),
1053                           CHECK);
1054  }
1055}
1056
1057static void reset_vm_info_property(TRAPS) {
1058  // the vm info string
1059  ResourceMark rm(THREAD);
1060  const char *vm_info = VM_Version::vm_info_string();
1061
1062  // java.lang.System class
1063  Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1064  instanceKlassHandle klass (THREAD, k);
1065
1066  // setProperty arguments
1067  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1068  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1069
1070  // return value
1071  JavaValue r(T_OBJECT);
1072
1073  // public static String setProperty(String key, String value);
1074  JavaCalls::call_static(&r,
1075                         klass,
1076                         vmSymbols::setProperty_name(),
1077                         vmSymbols::string_string_string_signature(),
1078                         key_str,
1079                         value_str,
1080                         CHECK);
1081}
1082
1083
1084void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1085                                    bool daemon, TRAPS) {
1086  assert(thread_group.not_null(), "thread group should be specified");
1087  assert(threadObj() == NULL, "should only create Java thread object once");
1088
1089  Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1090  instanceKlassHandle klass (THREAD, k);
1091  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1092
1093  java_lang_Thread::set_thread(thread_oop(), this);
1094  java_lang_Thread::set_priority(thread_oop(), NormPriority);
1095  set_threadObj(thread_oop());
1096
1097  JavaValue result(T_VOID);
1098  if (thread_name != NULL) {
1099    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1100    // Thread gets assigned specified name and null target
1101    JavaCalls::call_special(&result,
1102                            thread_oop,
1103                            klass,
1104                            vmSymbols::object_initializer_name(),
1105                            vmSymbols::threadgroup_string_void_signature(),
1106                            thread_group, // Argument 1
1107                            name,         // Argument 2
1108                            THREAD);
1109  } else {
1110    // Thread gets assigned name "Thread-nnn" and null target
1111    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1112    JavaCalls::call_special(&result,
1113                            thread_oop,
1114                            klass,
1115                            vmSymbols::object_initializer_name(),
1116                            vmSymbols::threadgroup_runnable_void_signature(),
1117                            thread_group, // Argument 1
1118                            Handle(),     // Argument 2
1119                            THREAD);
1120  }
1121
1122
1123  if (daemon) {
1124    java_lang_Thread::set_daemon(thread_oop());
1125  }
1126
1127  if (HAS_PENDING_EXCEPTION) {
1128    return;
1129  }
1130
1131  KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1132  Handle threadObj(THREAD, this->threadObj());
1133
1134  JavaCalls::call_special(&result,
1135                          thread_group,
1136                          group,
1137                          vmSymbols::add_method_name(),
1138                          vmSymbols::thread_void_signature(),
1139                          threadObj,          // Arg 1
1140                          THREAD);
1141}
1142
1143// NamedThread --  non-JavaThread subclasses with multiple
1144// uniquely named instances should derive from this.
1145NamedThread::NamedThread() : Thread() {
1146  _name = NULL;
1147  _processed_thread = NULL;
1148}
1149
1150NamedThread::~NamedThread() {
1151  if (_name != NULL) {
1152    FREE_C_HEAP_ARRAY(char, _name);
1153    _name = NULL;
1154  }
1155}
1156
1157void NamedThread::set_name(const char* format, ...) {
1158  guarantee(_name == NULL, "Only get to set name once.");
1159  _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1160  guarantee(_name != NULL, "alloc failure");
1161  va_list ap;
1162  va_start(ap, format);
1163  jio_vsnprintf(_name, max_name_len, format, ap);
1164  va_end(ap);
1165}
1166
1167void NamedThread::initialize_named_thread() {
1168  set_native_thread_name(name());
1169}
1170
1171void NamedThread::print_on(outputStream* st) const {
1172  st->print("\"%s\" ", name());
1173  Thread::print_on(st);
1174  st->cr();
1175}
1176
1177
1178// ======= WatcherThread ========
1179
1180// The watcher thread exists to simulate timer interrupts.  It should
1181// be replaced by an abstraction over whatever native support for
1182// timer interrupts exists on the platform.
1183
1184WatcherThread* WatcherThread::_watcher_thread   = NULL;
1185bool WatcherThread::_startable = false;
1186volatile bool  WatcherThread::_should_terminate = false;
1187
1188WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1189  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1190  if (os::create_thread(this, os::watcher_thread)) {
1191    _watcher_thread = this;
1192
1193    // Set the watcher thread to the highest OS priority which should not be
1194    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1195    // is created. The only normal thread using this priority is the reference
1196    // handler thread, which runs for very short intervals only.
1197    // If the VMThread's priority is not lower than the WatcherThread profiling
1198    // will be inaccurate.
1199    os::set_priority(this, MaxPriority);
1200    if (!DisableStartThread) {
1201      os::start_thread(this);
1202    }
1203  }
1204}
1205
1206int WatcherThread::sleep() const {
1207  // The WatcherThread does not participate in the safepoint protocol
1208  // for the PeriodicTask_lock because it is not a JavaThread.
1209  MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1210
1211  if (_should_terminate) {
1212    // check for termination before we do any housekeeping or wait
1213    return 0;  // we did not sleep.
1214  }
1215
1216  // remaining will be zero if there are no tasks,
1217  // causing the WatcherThread to sleep until a task is
1218  // enrolled
1219  int remaining = PeriodicTask::time_to_wait();
1220  int time_slept = 0;
1221
1222  // we expect this to timeout - we only ever get unparked when
1223  // we should terminate or when a new task has been enrolled
1224  OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1225
1226  jlong time_before_loop = os::javaTimeNanos();
1227
1228  while (true) {
1229    bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1230                                            remaining);
1231    jlong now = os::javaTimeNanos();
1232
1233    if (remaining == 0) {
1234      // if we didn't have any tasks we could have waited for a long time
1235      // consider the time_slept zero and reset time_before_loop
1236      time_slept = 0;
1237      time_before_loop = now;
1238    } else {
1239      // need to recalculate since we might have new tasks in _tasks
1240      time_slept = (int) ((now - time_before_loop) / 1000000);
1241    }
1242
1243    // Change to task list or spurious wakeup of some kind
1244    if (timedout || _should_terminate) {
1245      break;
1246    }
1247
1248    remaining = PeriodicTask::time_to_wait();
1249    if (remaining == 0) {
1250      // Last task was just disenrolled so loop around and wait until
1251      // another task gets enrolled
1252      continue;
1253    }
1254
1255    remaining -= time_slept;
1256    if (remaining <= 0) {
1257      break;
1258    }
1259  }
1260
1261  return time_slept;
1262}
1263
1264void WatcherThread::run() {
1265  assert(this == watcher_thread(), "just checking");
1266
1267  this->record_stack_base_and_size();
1268  this->initialize_thread_local_storage();
1269  this->set_native_thread_name(this->name());
1270  this->set_active_handles(JNIHandleBlock::allocate_block());
1271  while (true) {
1272    assert(watcher_thread() == Thread::current(), "thread consistency check");
1273    assert(watcher_thread() == this, "thread consistency check");
1274
1275    // Calculate how long it'll be until the next PeriodicTask work
1276    // should be done, and sleep that amount of time.
1277    int time_waited = sleep();
1278
1279    if (is_error_reported()) {
1280      // A fatal error has happened, the error handler(VMError::report_and_die)
1281      // should abort JVM after creating an error log file. However in some
1282      // rare cases, the error handler itself might deadlock. Here we try to
1283      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1284      //
1285      // This code is in WatcherThread because WatcherThread wakes up
1286      // periodically so the fatal error handler doesn't need to do anything;
1287      // also because the WatcherThread is less likely to crash than other
1288      // threads.
1289
1290      for (;;) {
1291        if (!ShowMessageBoxOnError
1292            && (OnError == NULL || OnError[0] == '\0')
1293            && Arguments::abort_hook() == NULL) {
1294          os::sleep(this, 2 * 60 * 1000, false);
1295          fdStream err(defaultStream::output_fd());
1296          err.print_raw_cr("# [ timer expired, abort... ]");
1297          // skip atexit/vm_exit/vm_abort hooks
1298          os::die();
1299        }
1300
1301        // Wake up 5 seconds later, the fatal handler may reset OnError or
1302        // ShowMessageBoxOnError when it is ready to abort.
1303        os::sleep(this, 5 * 1000, false);
1304      }
1305    }
1306
1307    if (_should_terminate) {
1308      // check for termination before posting the next tick
1309      break;
1310    }
1311
1312    PeriodicTask::real_time_tick(time_waited);
1313  }
1314
1315  // Signal that it is terminated
1316  {
1317    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1318    _watcher_thread = NULL;
1319    Terminator_lock->notify();
1320  }
1321
1322  // Thread destructor usually does this..
1323  ThreadLocalStorage::set_thread(NULL);
1324}
1325
1326void WatcherThread::start() {
1327  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1328
1329  if (watcher_thread() == NULL && _startable) {
1330    _should_terminate = false;
1331    // Create the single instance of WatcherThread
1332    new WatcherThread();
1333  }
1334}
1335
1336void WatcherThread::make_startable() {
1337  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1338  _startable = true;
1339}
1340
1341void WatcherThread::stop() {
1342  {
1343    // Follow normal safepoint aware lock enter protocol since the
1344    // WatcherThread is stopped by another JavaThread.
1345    MutexLocker ml(PeriodicTask_lock);
1346    _should_terminate = true;
1347
1348    WatcherThread* watcher = watcher_thread();
1349    if (watcher != NULL) {
1350      // unpark the WatcherThread so it can see that it should terminate
1351      watcher->unpark();
1352    }
1353  }
1354
1355  MutexLocker mu(Terminator_lock);
1356
1357  while (watcher_thread() != NULL) {
1358    // This wait should make safepoint checks, wait without a timeout,
1359    // and wait as a suspend-equivalent condition.
1360    //
1361    // Note: If the FlatProfiler is running, then this thread is waiting
1362    // for the WatcherThread to terminate and the WatcherThread, via the
1363    // FlatProfiler task, is waiting for the external suspend request on
1364    // this thread to complete. wait_for_ext_suspend_completion() will
1365    // eventually timeout, but that takes time. Making this wait a
1366    // suspend-equivalent condition solves that timeout problem.
1367    //
1368    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1369                          Mutex::_as_suspend_equivalent_flag);
1370  }
1371}
1372
1373void WatcherThread::unpark() {
1374  assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1375  PeriodicTask_lock->notify();
1376}
1377
1378void WatcherThread::print_on(outputStream* st) const {
1379  st->print("\"%s\" ", name());
1380  Thread::print_on(st);
1381  st->cr();
1382}
1383
1384// ======= JavaThread ========
1385
1386// A JavaThread is a normal Java thread
1387
1388void JavaThread::initialize() {
1389  // Initialize fields
1390
1391  // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1392  set_claimed_par_id(UINT_MAX);
1393
1394  set_saved_exception_pc(NULL);
1395  set_threadObj(NULL);
1396  _anchor.clear();
1397  set_entry_point(NULL);
1398  set_jni_functions(jni_functions());
1399  set_callee_target(NULL);
1400  set_vm_result(NULL);
1401  set_vm_result_2(NULL);
1402  set_vframe_array_head(NULL);
1403  set_vframe_array_last(NULL);
1404  set_deferred_locals(NULL);
1405  set_deopt_mark(NULL);
1406  set_deopt_nmethod(NULL);
1407  clear_must_deopt_id();
1408  set_monitor_chunks(NULL);
1409  set_next(NULL);
1410  set_thread_state(_thread_new);
1411  _terminated = _not_terminated;
1412  _privileged_stack_top = NULL;
1413  _array_for_gc = NULL;
1414  _suspend_equivalent = false;
1415  _in_deopt_handler = 0;
1416  _doing_unsafe_access = false;
1417  _stack_guard_state = stack_guard_unused;
1418  (void)const_cast<oop&>(_exception_oop = oop(NULL));
1419  _exception_pc  = 0;
1420  _exception_handler_pc = 0;
1421  _is_method_handle_return = 0;
1422  _jvmti_thread_state= NULL;
1423  _should_post_on_exceptions_flag = JNI_FALSE;
1424  _jvmti_get_loaded_classes_closure = NULL;
1425  _interp_only_mode    = 0;
1426  _special_runtime_exit_condition = _no_async_condition;
1427  _pending_async_exception = NULL;
1428  _thread_stat = NULL;
1429  _thread_stat = new ThreadStatistics();
1430  _blocked_on_compilation = false;
1431  _jni_active_critical = 0;
1432  _pending_jni_exception_check_fn = NULL;
1433  _do_not_unlock_if_synchronized = false;
1434  _cached_monitor_info = NULL;
1435  _parker = Parker::Allocate(this);
1436
1437#ifndef PRODUCT
1438  _jmp_ring_index = 0;
1439  for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1440    record_jump(NULL, NULL, NULL, 0);
1441  }
1442#endif // PRODUCT
1443
1444  set_thread_profiler(NULL);
1445  if (FlatProfiler::is_active()) {
1446    // This is where we would decide to either give each thread it's own profiler
1447    // or use one global one from FlatProfiler,
1448    // or up to some count of the number of profiled threads, etc.
1449    ThreadProfiler* pp = new ThreadProfiler();
1450    pp->engage();
1451    set_thread_profiler(pp);
1452  }
1453
1454  // Setup safepoint state info for this thread
1455  ThreadSafepointState::create(this);
1456
1457  debug_only(_java_call_counter = 0);
1458
1459  // JVMTI PopFrame support
1460  _popframe_condition = popframe_inactive;
1461  _popframe_preserved_args = NULL;
1462  _popframe_preserved_args_size = 0;
1463  _frames_to_pop_failed_realloc = 0;
1464
1465  pd_initialize();
1466}
1467
1468#if INCLUDE_ALL_GCS
1469SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1470DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1471#endif // INCLUDE_ALL_GCS
1472
1473JavaThread::JavaThread(bool is_attaching_via_jni) :
1474                       Thread()
1475#if INCLUDE_ALL_GCS
1476                       , _satb_mark_queue(&_satb_mark_queue_set),
1477                       _dirty_card_queue(&_dirty_card_queue_set)
1478#endif // INCLUDE_ALL_GCS
1479{
1480  initialize();
1481  if (is_attaching_via_jni) {
1482    _jni_attach_state = _attaching_via_jni;
1483  } else {
1484    _jni_attach_state = _not_attaching_via_jni;
1485  }
1486  assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1487}
1488
1489bool JavaThread::reguard_stack(address cur_sp) {
1490  if (_stack_guard_state != stack_guard_yellow_disabled) {
1491    return true; // Stack already guarded or guard pages not needed.
1492  }
1493
1494  if (register_stack_overflow()) {
1495    // For those architectures which have separate register and
1496    // memory stacks, we must check the register stack to see if
1497    // it has overflowed.
1498    return false;
1499  }
1500
1501  // Java code never executes within the yellow zone: the latter is only
1502  // there to provoke an exception during stack banging.  If java code
1503  // is executing there, either StackShadowPages should be larger, or
1504  // some exception code in c1, c2 or the interpreter isn't unwinding
1505  // when it should.
1506  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1507
1508  enable_stack_yellow_zone();
1509  return true;
1510}
1511
1512bool JavaThread::reguard_stack(void) {
1513  return reguard_stack(os::current_stack_pointer());
1514}
1515
1516
1517void JavaThread::block_if_vm_exited() {
1518  if (_terminated == _vm_exited) {
1519    // _vm_exited is set at safepoint, and Threads_lock is never released
1520    // we will block here forever
1521    Threads_lock->lock_without_safepoint_check();
1522    ShouldNotReachHere();
1523  }
1524}
1525
1526
1527// Remove this ifdef when C1 is ported to the compiler interface.
1528static void compiler_thread_entry(JavaThread* thread, TRAPS);
1529static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1530
1531JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1532                       Thread()
1533#if INCLUDE_ALL_GCS
1534                       , _satb_mark_queue(&_satb_mark_queue_set),
1535                       _dirty_card_queue(&_dirty_card_queue_set)
1536#endif // INCLUDE_ALL_GCS
1537{
1538  initialize();
1539  _jni_attach_state = _not_attaching_via_jni;
1540  set_entry_point(entry_point);
1541  // Create the native thread itself.
1542  // %note runtime_23
1543  os::ThreadType thr_type = os::java_thread;
1544  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1545                                                     os::java_thread;
1546  os::create_thread(this, thr_type, stack_sz);
1547  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1548  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1549  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1550  // the exception consists of creating the exception object & initializing it, initialization
1551  // will leave the VM via a JavaCall and then all locks must be unlocked).
1552  //
1553  // The thread is still suspended when we reach here. Thread must be explicit started
1554  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1555  // by calling Threads:add. The reason why this is not done here, is because the thread
1556  // object must be fully initialized (take a look at JVM_Start)
1557}
1558
1559JavaThread::~JavaThread() {
1560
1561  // JSR166 -- return the parker to the free list
1562  Parker::Release(_parker);
1563  _parker = NULL;
1564
1565  // Free any remaining  previous UnrollBlock
1566  vframeArray* old_array = vframe_array_last();
1567
1568  if (old_array != NULL) {
1569    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1570    old_array->set_unroll_block(NULL);
1571    delete old_info;
1572    delete old_array;
1573  }
1574
1575  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1576  if (deferred != NULL) {
1577    // This can only happen if thread is destroyed before deoptimization occurs.
1578    assert(deferred->length() != 0, "empty array!");
1579    do {
1580      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1581      deferred->remove_at(0);
1582      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1583      delete dlv;
1584    } while (deferred->length() != 0);
1585    delete deferred;
1586  }
1587
1588  // All Java related clean up happens in exit
1589  ThreadSafepointState::destroy(this);
1590  if (_thread_profiler != NULL) delete _thread_profiler;
1591  if (_thread_stat != NULL) delete _thread_stat;
1592}
1593
1594
1595// The first routine called by a new Java thread
1596void JavaThread::run() {
1597  // initialize thread-local alloc buffer related fields
1598  this->initialize_tlab();
1599
1600  // used to test validity of stack trace backs
1601  this->record_base_of_stack_pointer();
1602
1603  // Record real stack base and size.
1604  this->record_stack_base_and_size();
1605
1606  // Initialize thread local storage; set before calling MutexLocker
1607  this->initialize_thread_local_storage();
1608
1609  this->create_stack_guard_pages();
1610
1611  this->cache_global_variables();
1612
1613  // Thread is now sufficient initialized to be handled by the safepoint code as being
1614  // in the VM. Change thread state from _thread_new to _thread_in_vm
1615  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1616
1617  assert(JavaThread::current() == this, "sanity check");
1618  assert(!Thread::current()->owns_locks(), "sanity check");
1619
1620  DTRACE_THREAD_PROBE(start, this);
1621
1622  // This operation might block. We call that after all safepoint checks for a new thread has
1623  // been completed.
1624  this->set_active_handles(JNIHandleBlock::allocate_block());
1625
1626  if (JvmtiExport::should_post_thread_life()) {
1627    JvmtiExport::post_thread_start(this);
1628  }
1629
1630  EventThreadStart event;
1631  if (event.should_commit()) {
1632    event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1633    event.commit();
1634  }
1635
1636  // We call another function to do the rest so we are sure that the stack addresses used
1637  // from there will be lower than the stack base just computed
1638  thread_main_inner();
1639
1640  // Note, thread is no longer valid at this point!
1641}
1642
1643
1644void JavaThread::thread_main_inner() {
1645  assert(JavaThread::current() == this, "sanity check");
1646  assert(this->threadObj() != NULL, "just checking");
1647
1648  // Execute thread entry point unless this thread has a pending exception
1649  // or has been stopped before starting.
1650  // Note: Due to JVM_StopThread we can have pending exceptions already!
1651  if (!this->has_pending_exception() &&
1652      !java_lang_Thread::is_stillborn(this->threadObj())) {
1653    {
1654      ResourceMark rm(this);
1655      this->set_native_thread_name(this->get_thread_name());
1656    }
1657    HandleMark hm(this);
1658    this->entry_point()(this, this);
1659  }
1660
1661  DTRACE_THREAD_PROBE(stop, this);
1662
1663  this->exit(false);
1664  delete this;
1665}
1666
1667
1668static void ensure_join(JavaThread* thread) {
1669  // We do not need to grap the Threads_lock, since we are operating on ourself.
1670  Handle threadObj(thread, thread->threadObj());
1671  assert(threadObj.not_null(), "java thread object must exist");
1672  ObjectLocker lock(threadObj, thread);
1673  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1674  thread->clear_pending_exception();
1675  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1676  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1677  // Clear the native thread instance - this makes isAlive return false and allows the join()
1678  // to complete once we've done the notify_all below
1679  java_lang_Thread::set_thread(threadObj(), NULL);
1680  lock.notify_all(thread);
1681  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1682  thread->clear_pending_exception();
1683}
1684
1685
1686// For any new cleanup additions, please check to see if they need to be applied to
1687// cleanup_failed_attach_current_thread as well.
1688void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1689  assert(this == JavaThread::current(), "thread consistency check");
1690
1691  HandleMark hm(this);
1692  Handle uncaught_exception(this, this->pending_exception());
1693  this->clear_pending_exception();
1694  Handle threadObj(this, this->threadObj());
1695  assert(threadObj.not_null(), "Java thread object should be created");
1696
1697  if (get_thread_profiler() != NULL) {
1698    get_thread_profiler()->disengage();
1699    ResourceMark rm;
1700    get_thread_profiler()->print(get_thread_name());
1701  }
1702
1703
1704  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1705  {
1706    EXCEPTION_MARK;
1707
1708    CLEAR_PENDING_EXCEPTION;
1709  }
1710  if (!destroy_vm) {
1711    if (uncaught_exception.not_null()) {
1712      EXCEPTION_MARK;
1713      // Call method Thread.dispatchUncaughtException().
1714      KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1715      JavaValue result(T_VOID);
1716      JavaCalls::call_virtual(&result,
1717                              threadObj, thread_klass,
1718                              vmSymbols::dispatchUncaughtException_name(),
1719                              vmSymbols::throwable_void_signature(),
1720                              uncaught_exception,
1721                              THREAD);
1722      if (HAS_PENDING_EXCEPTION) {
1723        ResourceMark rm(this);
1724        jio_fprintf(defaultStream::error_stream(),
1725                    "\nException: %s thrown from the UncaughtExceptionHandler"
1726                    " in thread \"%s\"\n",
1727                    pending_exception()->klass()->external_name(),
1728                    get_thread_name());
1729        CLEAR_PENDING_EXCEPTION;
1730      }
1731    }
1732
1733    // Called before the java thread exit since we want to read info
1734    // from java_lang_Thread object
1735    EventThreadEnd event;
1736    if (event.should_commit()) {
1737      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1738      event.commit();
1739    }
1740
1741    // Call after last event on thread
1742    EVENT_THREAD_EXIT(this);
1743
1744    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1745    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1746    // is deprecated anyhow.
1747    if (!is_Compiler_thread()) {
1748      int count = 3;
1749      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1750        EXCEPTION_MARK;
1751        JavaValue result(T_VOID);
1752        KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1753        JavaCalls::call_virtual(&result,
1754                                threadObj, thread_klass,
1755                                vmSymbols::exit_method_name(),
1756                                vmSymbols::void_method_signature(),
1757                                THREAD);
1758        CLEAR_PENDING_EXCEPTION;
1759      }
1760    }
1761    // notify JVMTI
1762    if (JvmtiExport::should_post_thread_life()) {
1763      JvmtiExport::post_thread_end(this);
1764    }
1765
1766    // We have notified the agents that we are exiting, before we go on,
1767    // we must check for a pending external suspend request and honor it
1768    // in order to not surprise the thread that made the suspend request.
1769    while (true) {
1770      {
1771        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1772        if (!is_external_suspend()) {
1773          set_terminated(_thread_exiting);
1774          ThreadService::current_thread_exiting(this);
1775          break;
1776        }
1777        // Implied else:
1778        // Things get a little tricky here. We have a pending external
1779        // suspend request, but we are holding the SR_lock so we
1780        // can't just self-suspend. So we temporarily drop the lock
1781        // and then self-suspend.
1782      }
1783
1784      ThreadBlockInVM tbivm(this);
1785      java_suspend_self();
1786
1787      // We're done with this suspend request, but we have to loop around
1788      // and check again. Eventually we will get SR_lock without a pending
1789      // external suspend request and will be able to mark ourselves as
1790      // exiting.
1791    }
1792    // no more external suspends are allowed at this point
1793  } else {
1794    // before_exit() has already posted JVMTI THREAD_END events
1795  }
1796
1797  // Notify waiters on thread object. This has to be done after exit() is called
1798  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1799  // group should have the destroyed bit set before waiters are notified).
1800  ensure_join(this);
1801  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1802
1803  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1804  // held by this thread must be released.  A detach operation must only
1805  // get here if there are no Java frames on the stack.  Therefore, any
1806  // owned monitors at this point MUST be JNI-acquired monitors which are
1807  // pre-inflated and in the monitor cache.
1808  //
1809  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1810  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1811    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1812    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1813    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1814  }
1815
1816  // These things needs to be done while we are still a Java Thread. Make sure that thread
1817  // is in a consistent state, in case GC happens
1818  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1819
1820  if (active_handles() != NULL) {
1821    JNIHandleBlock* block = active_handles();
1822    set_active_handles(NULL);
1823    JNIHandleBlock::release_block(block);
1824  }
1825
1826  if (free_handle_block() != NULL) {
1827    JNIHandleBlock* block = free_handle_block();
1828    set_free_handle_block(NULL);
1829    JNIHandleBlock::release_block(block);
1830  }
1831
1832  // These have to be removed while this is still a valid thread.
1833  remove_stack_guard_pages();
1834
1835  if (UseTLAB) {
1836    tlab().make_parsable(true);  // retire TLAB
1837  }
1838
1839  if (JvmtiEnv::environments_might_exist()) {
1840    JvmtiExport::cleanup_thread(this);
1841  }
1842
1843  // We must flush any deferred card marks before removing a thread from
1844  // the list of active threads.
1845  Universe::heap()->flush_deferred_store_barrier(this);
1846  assert(deferred_card_mark().is_empty(), "Should have been flushed");
1847
1848#if INCLUDE_ALL_GCS
1849  // We must flush the G1-related buffers before removing a thread
1850  // from the list of active threads. We must do this after any deferred
1851  // card marks have been flushed (above) so that any entries that are
1852  // added to the thread's dirty card queue as a result are not lost.
1853  if (UseG1GC) {
1854    flush_barrier_queues();
1855  }
1856#endif // INCLUDE_ALL_GCS
1857
1858  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1859  Threads::remove(this);
1860}
1861
1862#if INCLUDE_ALL_GCS
1863// Flush G1-related queues.
1864void JavaThread::flush_barrier_queues() {
1865  satb_mark_queue().flush();
1866  dirty_card_queue().flush();
1867}
1868
1869void JavaThread::initialize_queues() {
1870  assert(!SafepointSynchronize::is_at_safepoint(),
1871         "we should not be at a safepoint");
1872
1873  ObjPtrQueue& satb_queue = satb_mark_queue();
1874  SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1875  // The SATB queue should have been constructed with its active
1876  // field set to false.
1877  assert(!satb_queue.is_active(), "SATB queue should not be active");
1878  assert(satb_queue.is_empty(), "SATB queue should be empty");
1879  // If we are creating the thread during a marking cycle, we should
1880  // set the active field of the SATB queue to true.
1881  if (satb_queue_set.is_active()) {
1882    satb_queue.set_active(true);
1883  }
1884
1885  DirtyCardQueue& dirty_queue = dirty_card_queue();
1886  // The dirty card queue should have been constructed with its
1887  // active field set to true.
1888  assert(dirty_queue.is_active(), "dirty card queue should be active");
1889}
1890#endif // INCLUDE_ALL_GCS
1891
1892void JavaThread::cleanup_failed_attach_current_thread() {
1893  if (get_thread_profiler() != NULL) {
1894    get_thread_profiler()->disengage();
1895    ResourceMark rm;
1896    get_thread_profiler()->print(get_thread_name());
1897  }
1898
1899  if (active_handles() != NULL) {
1900    JNIHandleBlock* block = active_handles();
1901    set_active_handles(NULL);
1902    JNIHandleBlock::release_block(block);
1903  }
1904
1905  if (free_handle_block() != NULL) {
1906    JNIHandleBlock* block = free_handle_block();
1907    set_free_handle_block(NULL);
1908    JNIHandleBlock::release_block(block);
1909  }
1910
1911  // These have to be removed while this is still a valid thread.
1912  remove_stack_guard_pages();
1913
1914  if (UseTLAB) {
1915    tlab().make_parsable(true);  // retire TLAB, if any
1916  }
1917
1918#if INCLUDE_ALL_GCS
1919  if (UseG1GC) {
1920    flush_barrier_queues();
1921  }
1922#endif // INCLUDE_ALL_GCS
1923
1924  Threads::remove(this);
1925  delete this;
1926}
1927
1928
1929
1930
1931JavaThread* JavaThread::active() {
1932  Thread* thread = ThreadLocalStorage::thread();
1933  assert(thread != NULL, "just checking");
1934  if (thread->is_Java_thread()) {
1935    return (JavaThread*) thread;
1936  } else {
1937    assert(thread->is_VM_thread(), "this must be a vm thread");
1938    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1939    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1940    assert(ret->is_Java_thread(), "must be a Java thread");
1941    return ret;
1942  }
1943}
1944
1945bool JavaThread::is_lock_owned(address adr) const {
1946  if (Thread::is_lock_owned(adr)) return true;
1947
1948  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1949    if (chunk->contains(adr)) return true;
1950  }
1951
1952  return false;
1953}
1954
1955
1956void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1957  chunk->set_next(monitor_chunks());
1958  set_monitor_chunks(chunk);
1959}
1960
1961void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1962  guarantee(monitor_chunks() != NULL, "must be non empty");
1963  if (monitor_chunks() == chunk) {
1964    set_monitor_chunks(chunk->next());
1965  } else {
1966    MonitorChunk* prev = monitor_chunks();
1967    while (prev->next() != chunk) prev = prev->next();
1968    prev->set_next(chunk->next());
1969  }
1970}
1971
1972// JVM support.
1973
1974// Note: this function shouldn't block if it's called in
1975// _thread_in_native_trans state (such as from
1976// check_special_condition_for_native_trans()).
1977void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1978
1979  if (has_last_Java_frame() && has_async_condition()) {
1980    // If we are at a polling page safepoint (not a poll return)
1981    // then we must defer async exception because live registers
1982    // will be clobbered by the exception path. Poll return is
1983    // ok because the call we a returning from already collides
1984    // with exception handling registers and so there is no issue.
1985    // (The exception handling path kills call result registers but
1986    //  this is ok since the exception kills the result anyway).
1987
1988    if (is_at_poll_safepoint()) {
1989      // if the code we are returning to has deoptimized we must defer
1990      // the exception otherwise live registers get clobbered on the
1991      // exception path before deoptimization is able to retrieve them.
1992      //
1993      RegisterMap map(this, false);
1994      frame caller_fr = last_frame().sender(&map);
1995      assert(caller_fr.is_compiled_frame(), "what?");
1996      if (caller_fr.is_deoptimized_frame()) {
1997        if (TraceExceptions) {
1998          ResourceMark rm;
1999          tty->print_cr("deferred async exception at compiled safepoint");
2000        }
2001        return;
2002      }
2003    }
2004  }
2005
2006  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2007  if (condition == _no_async_condition) {
2008    // Conditions have changed since has_special_runtime_exit_condition()
2009    // was called:
2010    // - if we were here only because of an external suspend request,
2011    //   then that was taken care of above (or cancelled) so we are done
2012    // - if we were here because of another async request, then it has
2013    //   been cleared between the has_special_runtime_exit_condition()
2014    //   and now so again we are done
2015    return;
2016  }
2017
2018  // Check for pending async. exception
2019  if (_pending_async_exception != NULL) {
2020    // Only overwrite an already pending exception, if it is not a threadDeath.
2021    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2022
2023      // We cannot call Exceptions::_throw(...) here because we cannot block
2024      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2025
2026      if (TraceExceptions) {
2027        ResourceMark rm;
2028        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2029        if (has_last_Java_frame()) {
2030          frame f = last_frame();
2031          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2032        }
2033        tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2034      }
2035      _pending_async_exception = NULL;
2036      clear_has_async_exception();
2037    }
2038  }
2039
2040  if (check_unsafe_error &&
2041      condition == _async_unsafe_access_error && !has_pending_exception()) {
2042    condition = _no_async_condition;  // done
2043    switch (thread_state()) {
2044    case _thread_in_vm: {
2045      JavaThread* THREAD = this;
2046      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2047    }
2048    case _thread_in_native: {
2049      ThreadInVMfromNative tiv(this);
2050      JavaThread* THREAD = this;
2051      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2052    }
2053    case _thread_in_Java: {
2054      ThreadInVMfromJava tiv(this);
2055      JavaThread* THREAD = this;
2056      THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2057    }
2058    default:
2059      ShouldNotReachHere();
2060    }
2061  }
2062
2063  assert(condition == _no_async_condition || has_pending_exception() ||
2064         (!check_unsafe_error && condition == _async_unsafe_access_error),
2065         "must have handled the async condition, if no exception");
2066}
2067
2068void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2069  //
2070  // Check for pending external suspend. Internal suspend requests do
2071  // not use handle_special_runtime_exit_condition().
2072  // If JNIEnv proxies are allowed, don't self-suspend if the target
2073  // thread is not the current thread. In older versions of jdbx, jdbx
2074  // threads could call into the VM with another thread's JNIEnv so we
2075  // can be here operating on behalf of a suspended thread (4432884).
2076  bool do_self_suspend = is_external_suspend_with_lock();
2077  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2078    //
2079    // Because thread is external suspended the safepoint code will count
2080    // thread as at a safepoint. This can be odd because we can be here
2081    // as _thread_in_Java which would normally transition to _thread_blocked
2082    // at a safepoint. We would like to mark the thread as _thread_blocked
2083    // before calling java_suspend_self like all other callers of it but
2084    // we must then observe proper safepoint protocol. (We can't leave
2085    // _thread_blocked with a safepoint in progress). However we can be
2086    // here as _thread_in_native_trans so we can't use a normal transition
2087    // constructor/destructor pair because they assert on that type of
2088    // transition. We could do something like:
2089    //
2090    // JavaThreadState state = thread_state();
2091    // set_thread_state(_thread_in_vm);
2092    // {
2093    //   ThreadBlockInVM tbivm(this);
2094    //   java_suspend_self()
2095    // }
2096    // set_thread_state(_thread_in_vm_trans);
2097    // if (safepoint) block;
2098    // set_thread_state(state);
2099    //
2100    // but that is pretty messy. Instead we just go with the way the
2101    // code has worked before and note that this is the only path to
2102    // java_suspend_self that doesn't put the thread in _thread_blocked
2103    // mode.
2104
2105    frame_anchor()->make_walkable(this);
2106    java_suspend_self();
2107
2108    // We might be here for reasons in addition to the self-suspend request
2109    // so check for other async requests.
2110  }
2111
2112  if (check_asyncs) {
2113    check_and_handle_async_exceptions();
2114  }
2115}
2116
2117void JavaThread::send_thread_stop(oop java_throwable)  {
2118  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2119  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2120  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2121
2122  // Do not throw asynchronous exceptions against the compiler thread
2123  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2124  if (is_Compiler_thread()) return;
2125
2126  {
2127    // Actually throw the Throwable against the target Thread - however
2128    // only if there is no thread death exception installed already.
2129    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2130      // If the topmost frame is a runtime stub, then we are calling into
2131      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2132      // must deoptimize the caller before continuing, as the compiled  exception handler table
2133      // may not be valid
2134      if (has_last_Java_frame()) {
2135        frame f = last_frame();
2136        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2137          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2138          RegisterMap reg_map(this, UseBiasedLocking);
2139          frame compiled_frame = f.sender(&reg_map);
2140          if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2141            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2142          }
2143        }
2144      }
2145
2146      // Set async. pending exception in thread.
2147      set_pending_async_exception(java_throwable);
2148
2149      if (TraceExceptions) {
2150        ResourceMark rm;
2151        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2152      }
2153      // for AbortVMOnException flag
2154      NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2155    }
2156  }
2157
2158
2159  // Interrupt thread so it will wake up from a potential wait()
2160  Thread::interrupt(this);
2161}
2162
2163// External suspension mechanism.
2164//
2165// Tell the VM to suspend a thread when ever it knows that it does not hold on
2166// to any VM_locks and it is at a transition
2167// Self-suspension will happen on the transition out of the vm.
2168// Catch "this" coming in from JNIEnv pointers when the thread has been freed
2169//
2170// Guarantees on return:
2171//   + Target thread will not execute any new bytecode (that's why we need to
2172//     force a safepoint)
2173//   + Target thread will not enter any new monitors
2174//
2175void JavaThread::java_suspend() {
2176  { MutexLocker mu(Threads_lock);
2177    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2178      return;
2179    }
2180  }
2181
2182  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2183    if (!is_external_suspend()) {
2184      // a racing resume has cancelled us; bail out now
2185      return;
2186    }
2187
2188    // suspend is done
2189    uint32_t debug_bits = 0;
2190    // Warning: is_ext_suspend_completed() may temporarily drop the
2191    // SR_lock to allow the thread to reach a stable thread state if
2192    // it is currently in a transient thread state.
2193    if (is_ext_suspend_completed(false /* !called_by_wait */,
2194                                 SuspendRetryDelay, &debug_bits)) {
2195      return;
2196    }
2197  }
2198
2199  VM_ForceSafepoint vm_suspend;
2200  VMThread::execute(&vm_suspend);
2201}
2202
2203// Part II of external suspension.
2204// A JavaThread self suspends when it detects a pending external suspend
2205// request. This is usually on transitions. It is also done in places
2206// where continuing to the next transition would surprise the caller,
2207// e.g., monitor entry.
2208//
2209// Returns the number of times that the thread self-suspended.
2210//
2211// Note: DO NOT call java_suspend_self() when you just want to block current
2212//       thread. java_suspend_self() is the second stage of cooperative
2213//       suspension for external suspend requests and should only be used
2214//       to complete an external suspend request.
2215//
2216int JavaThread::java_suspend_self() {
2217  int ret = 0;
2218
2219  // we are in the process of exiting so don't suspend
2220  if (is_exiting()) {
2221    clear_external_suspend();
2222    return ret;
2223  }
2224
2225  assert(_anchor.walkable() ||
2226         (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2227         "must have walkable stack");
2228
2229  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2230
2231  assert(!this->is_ext_suspended(),
2232         "a thread trying to self-suspend should not already be suspended");
2233
2234  if (this->is_suspend_equivalent()) {
2235    // If we are self-suspending as a result of the lifting of a
2236    // suspend equivalent condition, then the suspend_equivalent
2237    // flag is not cleared until we set the ext_suspended flag so
2238    // that wait_for_ext_suspend_completion() returns consistent
2239    // results.
2240    this->clear_suspend_equivalent();
2241  }
2242
2243  // A racing resume may have cancelled us before we grabbed SR_lock
2244  // above. Or another external suspend request could be waiting for us
2245  // by the time we return from SR_lock()->wait(). The thread
2246  // that requested the suspension may already be trying to walk our
2247  // stack and if we return now, we can change the stack out from under
2248  // it. This would be a "bad thing (TM)" and cause the stack walker
2249  // to crash. We stay self-suspended until there are no more pending
2250  // external suspend requests.
2251  while (is_external_suspend()) {
2252    ret++;
2253    this->set_ext_suspended();
2254
2255    // _ext_suspended flag is cleared by java_resume()
2256    while (is_ext_suspended()) {
2257      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2258    }
2259  }
2260
2261  return ret;
2262}
2263
2264#ifdef ASSERT
2265// verify the JavaThread has not yet been published in the Threads::list, and
2266// hence doesn't need protection from concurrent access at this stage
2267void JavaThread::verify_not_published() {
2268  if (!Threads_lock->owned_by_self()) {
2269    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2270    assert(!Threads::includes(this),
2271           "java thread shouldn't have been published yet!");
2272  } else {
2273    assert(!Threads::includes(this),
2274           "java thread shouldn't have been published yet!");
2275  }
2276}
2277#endif
2278
2279// Slow path when the native==>VM/Java barriers detect a safepoint is in
2280// progress or when _suspend_flags is non-zero.
2281// Current thread needs to self-suspend if there is a suspend request and/or
2282// block if a safepoint is in progress.
2283// Async exception ISN'T checked.
2284// Note only the ThreadInVMfromNative transition can call this function
2285// directly and when thread state is _thread_in_native_trans
2286void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2287  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2288
2289  JavaThread *curJT = JavaThread::current();
2290  bool do_self_suspend = thread->is_external_suspend();
2291
2292  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2293
2294  // If JNIEnv proxies are allowed, don't self-suspend if the target
2295  // thread is not the current thread. In older versions of jdbx, jdbx
2296  // threads could call into the VM with another thread's JNIEnv so we
2297  // can be here operating on behalf of a suspended thread (4432884).
2298  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2299    JavaThreadState state = thread->thread_state();
2300
2301    // We mark this thread_blocked state as a suspend-equivalent so
2302    // that a caller to is_ext_suspend_completed() won't be confused.
2303    // The suspend-equivalent state is cleared by java_suspend_self().
2304    thread->set_suspend_equivalent();
2305
2306    // If the safepoint code sees the _thread_in_native_trans state, it will
2307    // wait until the thread changes to other thread state. There is no
2308    // guarantee on how soon we can obtain the SR_lock and complete the
2309    // self-suspend request. It would be a bad idea to let safepoint wait for
2310    // too long. Temporarily change the state to _thread_blocked to
2311    // let the VM thread know that this thread is ready for GC. The problem
2312    // of changing thread state is that safepoint could happen just after
2313    // java_suspend_self() returns after being resumed, and VM thread will
2314    // see the _thread_blocked state. We must check for safepoint
2315    // after restoring the state and make sure we won't leave while a safepoint
2316    // is in progress.
2317    thread->set_thread_state(_thread_blocked);
2318    thread->java_suspend_self();
2319    thread->set_thread_state(state);
2320    // Make sure new state is seen by VM thread
2321    if (os::is_MP()) {
2322      if (UseMembar) {
2323        // Force a fence between the write above and read below
2324        OrderAccess::fence();
2325      } else {
2326        // Must use this rather than serialization page in particular on Windows
2327        InterfaceSupport::serialize_memory(thread);
2328      }
2329    }
2330  }
2331
2332  if (SafepointSynchronize::do_call_back()) {
2333    // If we are safepointing, then block the caller which may not be
2334    // the same as the target thread (see above).
2335    SafepointSynchronize::block(curJT);
2336  }
2337
2338  if (thread->is_deopt_suspend()) {
2339    thread->clear_deopt_suspend();
2340    RegisterMap map(thread, false);
2341    frame f = thread->last_frame();
2342    while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2343      f = f.sender(&map);
2344    }
2345    if (f.id() == thread->must_deopt_id()) {
2346      thread->clear_must_deopt_id();
2347      f.deoptimize(thread);
2348    } else {
2349      fatal("missed deoptimization!");
2350    }
2351  }
2352}
2353
2354// Slow path when the native==>VM/Java barriers detect a safepoint is in
2355// progress or when _suspend_flags is non-zero.
2356// Current thread needs to self-suspend if there is a suspend request and/or
2357// block if a safepoint is in progress.
2358// Also check for pending async exception (not including unsafe access error).
2359// Note only the native==>VM/Java barriers can call this function and when
2360// thread state is _thread_in_native_trans.
2361void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2362  check_safepoint_and_suspend_for_native_trans(thread);
2363
2364  if (thread->has_async_exception()) {
2365    // We are in _thread_in_native_trans state, don't handle unsafe
2366    // access error since that may block.
2367    thread->check_and_handle_async_exceptions(false);
2368  }
2369}
2370
2371// This is a variant of the normal
2372// check_special_condition_for_native_trans with slightly different
2373// semantics for use by critical native wrappers.  It does all the
2374// normal checks but also performs the transition back into
2375// thread_in_Java state.  This is required so that critical natives
2376// can potentially block and perform a GC if they are the last thread
2377// exiting the GC_locker.
2378void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2379  check_special_condition_for_native_trans(thread);
2380
2381  // Finish the transition
2382  thread->set_thread_state(_thread_in_Java);
2383
2384  if (thread->do_critical_native_unlock()) {
2385    ThreadInVMfromJavaNoAsyncException tiv(thread);
2386    GC_locker::unlock_critical(thread);
2387    thread->clear_critical_native_unlock();
2388  }
2389}
2390
2391// We need to guarantee the Threads_lock here, since resumes are not
2392// allowed during safepoint synchronization
2393// Can only resume from an external suspension
2394void JavaThread::java_resume() {
2395  assert_locked_or_safepoint(Threads_lock);
2396
2397  // Sanity check: thread is gone, has started exiting or the thread
2398  // was not externally suspended.
2399  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2400    return;
2401  }
2402
2403  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2404
2405  clear_external_suspend();
2406
2407  if (is_ext_suspended()) {
2408    clear_ext_suspended();
2409    SR_lock()->notify_all();
2410  }
2411}
2412
2413void JavaThread::create_stack_guard_pages() {
2414  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2415  address low_addr = stack_base() - stack_size();
2416  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2417
2418  int allocate = os::allocate_stack_guard_pages();
2419  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2420
2421  if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2422    warning("Attempt to allocate stack guard pages failed.");
2423    return;
2424  }
2425
2426  if (os::guard_memory((char *) low_addr, len)) {
2427    _stack_guard_state = stack_guard_enabled;
2428  } else {
2429    warning("Attempt to protect stack guard pages failed.");
2430    if (os::uncommit_memory((char *) low_addr, len)) {
2431      warning("Attempt to deallocate stack guard pages failed.");
2432    }
2433  }
2434}
2435
2436void JavaThread::remove_stack_guard_pages() {
2437  assert(Thread::current() == this, "from different thread");
2438  if (_stack_guard_state == stack_guard_unused) return;
2439  address low_addr = stack_base() - stack_size();
2440  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2441
2442  if (os::allocate_stack_guard_pages()) {
2443    if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2444      _stack_guard_state = stack_guard_unused;
2445    } else {
2446      warning("Attempt to deallocate stack guard pages failed.");
2447    }
2448  } else {
2449    if (_stack_guard_state == stack_guard_unused) return;
2450    if (os::unguard_memory((char *) low_addr, len)) {
2451      _stack_guard_state = stack_guard_unused;
2452    } else {
2453      warning("Attempt to unprotect stack guard pages failed.");
2454    }
2455  }
2456}
2457
2458void JavaThread::enable_stack_yellow_zone() {
2459  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2460  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2461
2462  // The base notation is from the stacks point of view, growing downward.
2463  // We need to adjust it to work correctly with guard_memory()
2464  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2465
2466  guarantee(base < stack_base(), "Error calculating stack yellow zone");
2467  guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2468
2469  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2470    _stack_guard_state = stack_guard_enabled;
2471  } else {
2472    warning("Attempt to guard stack yellow zone failed.");
2473  }
2474  enable_register_stack_guard();
2475}
2476
2477void JavaThread::disable_stack_yellow_zone() {
2478  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2479  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2480
2481  // Simply return if called for a thread that does not use guard pages.
2482  if (_stack_guard_state == stack_guard_unused) return;
2483
2484  // The base notation is from the stacks point of view, growing downward.
2485  // We need to adjust it to work correctly with guard_memory()
2486  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2487
2488  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2489    _stack_guard_state = stack_guard_yellow_disabled;
2490  } else {
2491    warning("Attempt to unguard stack yellow zone failed.");
2492  }
2493  disable_register_stack_guard();
2494}
2495
2496void JavaThread::enable_stack_red_zone() {
2497  // The base notation is from the stacks point of view, growing downward.
2498  // We need to adjust it to work correctly with guard_memory()
2499  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2500  address base = stack_red_zone_base() - stack_red_zone_size();
2501
2502  guarantee(base < stack_base(), "Error calculating stack red zone");
2503  guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2504
2505  if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2506    warning("Attempt to guard stack red zone failed.");
2507  }
2508}
2509
2510void JavaThread::disable_stack_red_zone() {
2511  // The base notation is from the stacks point of view, growing downward.
2512  // We need to adjust it to work correctly with guard_memory()
2513  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2514  address base = stack_red_zone_base() - stack_red_zone_size();
2515  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2516    warning("Attempt to unguard stack red zone failed.");
2517  }
2518}
2519
2520void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2521  // ignore is there is no stack
2522  if (!has_last_Java_frame()) return;
2523  // traverse the stack frames. Starts from top frame.
2524  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2525    frame* fr = fst.current();
2526    f(fr, fst.register_map());
2527  }
2528}
2529
2530
2531#ifndef PRODUCT
2532// Deoptimization
2533// Function for testing deoptimization
2534void JavaThread::deoptimize() {
2535  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2536  StackFrameStream fst(this, UseBiasedLocking);
2537  bool deopt = false;           // Dump stack only if a deopt actually happens.
2538  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2539  // Iterate over all frames in the thread and deoptimize
2540  for (; !fst.is_done(); fst.next()) {
2541    if (fst.current()->can_be_deoptimized()) {
2542
2543      if (only_at) {
2544        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2545        // consists of comma or carriage return separated numbers so
2546        // search for the current bci in that string.
2547        address pc = fst.current()->pc();
2548        nmethod* nm =  (nmethod*) fst.current()->cb();
2549        ScopeDesc* sd = nm->scope_desc_at(pc);
2550        char buffer[8];
2551        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2552        size_t len = strlen(buffer);
2553        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2554        while (found != NULL) {
2555          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2556              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2557            // Check that the bci found is bracketed by terminators.
2558            break;
2559          }
2560          found = strstr(found + 1, buffer);
2561        }
2562        if (!found) {
2563          continue;
2564        }
2565      }
2566
2567      if (DebugDeoptimization && !deopt) {
2568        deopt = true; // One-time only print before deopt
2569        tty->print_cr("[BEFORE Deoptimization]");
2570        trace_frames();
2571        trace_stack();
2572      }
2573      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2574    }
2575  }
2576
2577  if (DebugDeoptimization && deopt) {
2578    tty->print_cr("[AFTER Deoptimization]");
2579    trace_frames();
2580  }
2581}
2582
2583
2584// Make zombies
2585void JavaThread::make_zombies() {
2586  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2587    if (fst.current()->can_be_deoptimized()) {
2588      // it is a Java nmethod
2589      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2590      nm->make_not_entrant();
2591    }
2592  }
2593}
2594#endif // PRODUCT
2595
2596
2597void JavaThread::deoptimized_wrt_marked_nmethods() {
2598  if (!has_last_Java_frame()) return;
2599  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2600  StackFrameStream fst(this, UseBiasedLocking);
2601  for (; !fst.is_done(); fst.next()) {
2602    if (fst.current()->should_be_deoptimized()) {
2603      if (LogCompilation && xtty != NULL) {
2604        nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2605        xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2606                   this->name(), nm != NULL ? nm->compile_id() : -1);
2607      }
2608
2609      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2610    }
2611  }
2612}
2613
2614
2615// If the caller is a NamedThread, then remember, in the current scope,
2616// the given JavaThread in its _processed_thread field.
2617class RememberProcessedThread: public StackObj {
2618  NamedThread* _cur_thr;
2619 public:
2620  RememberProcessedThread(JavaThread* jthr) {
2621    Thread* thread = Thread::current();
2622    if (thread->is_Named_thread()) {
2623      _cur_thr = (NamedThread *)thread;
2624      _cur_thr->set_processed_thread(jthr);
2625    } else {
2626      _cur_thr = NULL;
2627    }
2628  }
2629
2630  ~RememberProcessedThread() {
2631    if (_cur_thr) {
2632      _cur_thr->set_processed_thread(NULL);
2633    }
2634  }
2635};
2636
2637void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2638  // Verify that the deferred card marks have been flushed.
2639  assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2640
2641  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2642  // since there may be more than one thread using each ThreadProfiler.
2643
2644  // Traverse the GCHandles
2645  Thread::oops_do(f, cld_f, cf);
2646
2647  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2648         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2649
2650  if (has_last_Java_frame()) {
2651    // Record JavaThread to GC thread
2652    RememberProcessedThread rpt(this);
2653
2654    // Traverse the privileged stack
2655    if (_privileged_stack_top != NULL) {
2656      _privileged_stack_top->oops_do(f);
2657    }
2658
2659    // traverse the registered growable array
2660    if (_array_for_gc != NULL) {
2661      for (int index = 0; index < _array_for_gc->length(); index++) {
2662        f->do_oop(_array_for_gc->adr_at(index));
2663      }
2664    }
2665
2666    // Traverse the monitor chunks
2667    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2668      chunk->oops_do(f);
2669    }
2670
2671    // Traverse the execution stack
2672    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2673      fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2674    }
2675  }
2676
2677  // callee_target is never live across a gc point so NULL it here should
2678  // it still contain a methdOop.
2679
2680  set_callee_target(NULL);
2681
2682  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2683  // If we have deferred set_locals there might be oops waiting to be
2684  // written
2685  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2686  if (list != NULL) {
2687    for (int i = 0; i < list->length(); i++) {
2688      list->at(i)->oops_do(f);
2689    }
2690  }
2691
2692  // Traverse instance variables at the end since the GC may be moving things
2693  // around using this function
2694  f->do_oop((oop*) &_threadObj);
2695  f->do_oop((oop*) &_vm_result);
2696  f->do_oop((oop*) &_exception_oop);
2697  f->do_oop((oop*) &_pending_async_exception);
2698
2699  if (jvmti_thread_state() != NULL) {
2700    jvmti_thread_state()->oops_do(f);
2701  }
2702}
2703
2704void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2705  Thread::nmethods_do(cf);  // (super method is a no-op)
2706
2707  assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2708         (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2709
2710  if (has_last_Java_frame()) {
2711    // Traverse the execution stack
2712    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2713      fst.current()->nmethods_do(cf);
2714    }
2715  }
2716}
2717
2718void JavaThread::metadata_do(void f(Metadata*)) {
2719  if (has_last_Java_frame()) {
2720    // Traverse the execution stack to call f() on the methods in the stack
2721    for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2722      fst.current()->metadata_do(f);
2723    }
2724  } else if (is_Compiler_thread()) {
2725    // need to walk ciMetadata in current compile tasks to keep alive.
2726    CompilerThread* ct = (CompilerThread*)this;
2727    if (ct->env() != NULL) {
2728      ct->env()->metadata_do(f);
2729    }
2730  }
2731}
2732
2733// Printing
2734const char* _get_thread_state_name(JavaThreadState _thread_state) {
2735  switch (_thread_state) {
2736  case _thread_uninitialized:     return "_thread_uninitialized";
2737  case _thread_new:               return "_thread_new";
2738  case _thread_new_trans:         return "_thread_new_trans";
2739  case _thread_in_native:         return "_thread_in_native";
2740  case _thread_in_native_trans:   return "_thread_in_native_trans";
2741  case _thread_in_vm:             return "_thread_in_vm";
2742  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2743  case _thread_in_Java:           return "_thread_in_Java";
2744  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2745  case _thread_blocked:           return "_thread_blocked";
2746  case _thread_blocked_trans:     return "_thread_blocked_trans";
2747  default:                        return "unknown thread state";
2748  }
2749}
2750
2751#ifndef PRODUCT
2752void JavaThread::print_thread_state_on(outputStream *st) const {
2753  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2754};
2755void JavaThread::print_thread_state() const {
2756  print_thread_state_on(tty);
2757}
2758#endif // PRODUCT
2759
2760// Called by Threads::print() for VM_PrintThreads operation
2761void JavaThread::print_on(outputStream *st) const {
2762  st->print("\"%s\" ", get_thread_name());
2763  oop thread_oop = threadObj();
2764  if (thread_oop != NULL) {
2765    st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2766    if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2767    st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2768  }
2769  Thread::print_on(st);
2770  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2771  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2772  if (thread_oop != NULL) {
2773    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2774  }
2775#ifndef PRODUCT
2776  print_thread_state_on(st);
2777  _safepoint_state->print_on(st);
2778#endif // PRODUCT
2779}
2780
2781// Called by fatal error handler. The difference between this and
2782// JavaThread::print() is that we can't grab lock or allocate memory.
2783void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2784  st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2785  oop thread_obj = threadObj();
2786  if (thread_obj != NULL) {
2787    if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2788  }
2789  st->print(" [");
2790  st->print("%s", _get_thread_state_name(_thread_state));
2791  if (osthread()) {
2792    st->print(", id=%d", osthread()->thread_id());
2793  }
2794  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2795            _stack_base - _stack_size, _stack_base);
2796  st->print("]");
2797  return;
2798}
2799
2800// Verification
2801
2802static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2803
2804void JavaThread::verify() {
2805  // Verify oops in the thread.
2806  oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2807
2808  // Verify the stack frames.
2809  frames_do(frame_verify);
2810}
2811
2812// CR 6300358 (sub-CR 2137150)
2813// Most callers of this method assume that it can't return NULL but a
2814// thread may not have a name whilst it is in the process of attaching to
2815// the VM - see CR 6412693, and there are places where a JavaThread can be
2816// seen prior to having it's threadObj set (eg JNI attaching threads and
2817// if vm exit occurs during initialization). These cases can all be accounted
2818// for such that this method never returns NULL.
2819const char* JavaThread::get_thread_name() const {
2820#ifdef ASSERT
2821  // early safepoints can hit while current thread does not yet have TLS
2822  if (!SafepointSynchronize::is_at_safepoint()) {
2823    Thread *cur = Thread::current();
2824    if (!(cur->is_Java_thread() && cur == this)) {
2825      // Current JavaThreads are allowed to get their own name without
2826      // the Threads_lock.
2827      assert_locked_or_safepoint(Threads_lock);
2828    }
2829  }
2830#endif // ASSERT
2831  return get_thread_name_string();
2832}
2833
2834// Returns a non-NULL representation of this thread's name, or a suitable
2835// descriptive string if there is no set name
2836const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2837  const char* name_str;
2838  oop thread_obj = threadObj();
2839  if (thread_obj != NULL) {
2840    oop name = java_lang_Thread::name(thread_obj);
2841    if (name != NULL) {
2842      if (buf == NULL) {
2843        name_str = java_lang_String::as_utf8_string(name);
2844      } else {
2845        name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2846      }
2847    } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2848      name_str = "<no-name - thread is attaching>";
2849    } else {
2850      name_str = Thread::name();
2851    }
2852  } else {
2853    name_str = Thread::name();
2854  }
2855  assert(name_str != NULL, "unexpected NULL thread name");
2856  return name_str;
2857}
2858
2859
2860const char* JavaThread::get_threadgroup_name() const {
2861  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2862  oop thread_obj = threadObj();
2863  if (thread_obj != NULL) {
2864    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2865    if (thread_group != NULL) {
2866      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2867      // ThreadGroup.name can be null
2868      if (name != NULL) {
2869        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2870        return str;
2871      }
2872    }
2873  }
2874  return NULL;
2875}
2876
2877const char* JavaThread::get_parent_name() const {
2878  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2879  oop thread_obj = threadObj();
2880  if (thread_obj != NULL) {
2881    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2882    if (thread_group != NULL) {
2883      oop parent = java_lang_ThreadGroup::parent(thread_group);
2884      if (parent != NULL) {
2885        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2886        // ThreadGroup.name can be null
2887        if (name != NULL) {
2888          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2889          return str;
2890        }
2891      }
2892    }
2893  }
2894  return NULL;
2895}
2896
2897ThreadPriority JavaThread::java_priority() const {
2898  oop thr_oop = threadObj();
2899  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2900  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2901  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2902  return priority;
2903}
2904
2905void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2906
2907  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2908  // Link Java Thread object <-> C++ Thread
2909
2910  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2911  // and put it into a new Handle.  The Handle "thread_oop" can then
2912  // be used to pass the C++ thread object to other methods.
2913
2914  // Set the Java level thread object (jthread) field of the
2915  // new thread (a JavaThread *) to C++ thread object using the
2916  // "thread_oop" handle.
2917
2918  // Set the thread field (a JavaThread *) of the
2919  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2920
2921  Handle thread_oop(Thread::current(),
2922                    JNIHandles::resolve_non_null(jni_thread));
2923  assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2924         "must be initialized");
2925  set_threadObj(thread_oop());
2926  java_lang_Thread::set_thread(thread_oop(), this);
2927
2928  if (prio == NoPriority) {
2929    prio = java_lang_Thread::priority(thread_oop());
2930    assert(prio != NoPriority, "A valid priority should be present");
2931  }
2932
2933  // Push the Java priority down to the native thread; needs Threads_lock
2934  Thread::set_priority(this, prio);
2935
2936  prepare_ext();
2937
2938  // Add the new thread to the Threads list and set it in motion.
2939  // We must have threads lock in order to call Threads::add.
2940  // It is crucial that we do not block before the thread is
2941  // added to the Threads list for if a GC happens, then the java_thread oop
2942  // will not be visited by GC.
2943  Threads::add(this);
2944}
2945
2946oop JavaThread::current_park_blocker() {
2947  // Support for JSR-166 locks
2948  oop thread_oop = threadObj();
2949  if (thread_oop != NULL &&
2950      JDK_Version::current().supports_thread_park_blocker()) {
2951    return java_lang_Thread::park_blocker(thread_oop);
2952  }
2953  return NULL;
2954}
2955
2956
2957void JavaThread::print_stack_on(outputStream* st) {
2958  if (!has_last_Java_frame()) return;
2959  ResourceMark rm;
2960  HandleMark   hm;
2961
2962  RegisterMap reg_map(this);
2963  vframe* start_vf = last_java_vframe(&reg_map);
2964  int count = 0;
2965  for (vframe* f = start_vf; f; f = f->sender()) {
2966    if (f->is_java_frame()) {
2967      javaVFrame* jvf = javaVFrame::cast(f);
2968      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2969
2970      // Print out lock information
2971      if (JavaMonitorsInStackTrace) {
2972        jvf->print_lock_info_on(st, count);
2973      }
2974    } else {
2975      // Ignore non-Java frames
2976    }
2977
2978    // Bail-out case for too deep stacks
2979    count++;
2980    if (MaxJavaStackTraceDepth == count) return;
2981  }
2982}
2983
2984
2985// JVMTI PopFrame support
2986void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2987  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2988  if (in_bytes(size_in_bytes) != 0) {
2989    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2990    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2991    Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2992  }
2993}
2994
2995void* JavaThread::popframe_preserved_args() {
2996  return _popframe_preserved_args;
2997}
2998
2999ByteSize JavaThread::popframe_preserved_args_size() {
3000  return in_ByteSize(_popframe_preserved_args_size);
3001}
3002
3003WordSize JavaThread::popframe_preserved_args_size_in_words() {
3004  int sz = in_bytes(popframe_preserved_args_size());
3005  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3006  return in_WordSize(sz / wordSize);
3007}
3008
3009void JavaThread::popframe_free_preserved_args() {
3010  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3011  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3012  _popframe_preserved_args = NULL;
3013  _popframe_preserved_args_size = 0;
3014}
3015
3016#ifndef PRODUCT
3017
3018void JavaThread::trace_frames() {
3019  tty->print_cr("[Describe stack]");
3020  int frame_no = 1;
3021  for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3022    tty->print("  %d. ", frame_no++);
3023    fst.current()->print_value_on(tty, this);
3024    tty->cr();
3025  }
3026}
3027
3028class PrintAndVerifyOopClosure: public OopClosure {
3029 protected:
3030  template <class T> inline void do_oop_work(T* p) {
3031    oop obj = oopDesc::load_decode_heap_oop(p);
3032    if (obj == NULL) return;
3033    tty->print(INTPTR_FORMAT ": ", p);
3034    if (obj->is_oop_or_null()) {
3035      if (obj->is_objArray()) {
3036        tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3037      } else {
3038        obj->print();
3039      }
3040    } else {
3041      tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3042    }
3043    tty->cr();
3044  }
3045 public:
3046  virtual void do_oop(oop* p) { do_oop_work(p); }
3047  virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3048};
3049
3050
3051static void oops_print(frame* f, const RegisterMap *map) {
3052  PrintAndVerifyOopClosure print;
3053  f->print_value();
3054  f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3055}
3056
3057// Print our all the locations that contain oops and whether they are
3058// valid or not.  This useful when trying to find the oldest frame
3059// where an oop has gone bad since the frame walk is from youngest to
3060// oldest.
3061void JavaThread::trace_oops() {
3062  tty->print_cr("[Trace oops]");
3063  frames_do(oops_print);
3064}
3065
3066
3067#ifdef ASSERT
3068// Print or validate the layout of stack frames
3069void JavaThread::print_frame_layout(int depth, bool validate_only) {
3070  ResourceMark rm;
3071  PRESERVE_EXCEPTION_MARK;
3072  FrameValues values;
3073  int frame_no = 0;
3074  for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3075    fst.current()->describe(values, ++frame_no);
3076    if (depth == frame_no) break;
3077  }
3078  if (validate_only) {
3079    values.validate();
3080  } else {
3081    tty->print_cr("[Describe stack layout]");
3082    values.print(this);
3083  }
3084}
3085#endif
3086
3087void JavaThread::trace_stack_from(vframe* start_vf) {
3088  ResourceMark rm;
3089  int vframe_no = 1;
3090  for (vframe* f = start_vf; f; f = f->sender()) {
3091    if (f->is_java_frame()) {
3092      javaVFrame::cast(f)->print_activation(vframe_no++);
3093    } else {
3094      f->print();
3095    }
3096    if (vframe_no > StackPrintLimit) {
3097      tty->print_cr("...<more frames>...");
3098      return;
3099    }
3100  }
3101}
3102
3103
3104void JavaThread::trace_stack() {
3105  if (!has_last_Java_frame()) return;
3106  ResourceMark rm;
3107  HandleMark   hm;
3108  RegisterMap reg_map(this);
3109  trace_stack_from(last_java_vframe(&reg_map));
3110}
3111
3112
3113#endif // PRODUCT
3114
3115
3116javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3117  assert(reg_map != NULL, "a map must be given");
3118  frame f = last_frame();
3119  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3120    if (vf->is_java_frame()) return javaVFrame::cast(vf);
3121  }
3122  return NULL;
3123}
3124
3125
3126Klass* JavaThread::security_get_caller_class(int depth) {
3127  vframeStream vfst(this);
3128  vfst.security_get_caller_frame(depth);
3129  if (!vfst.at_end()) {
3130    return vfst.method()->method_holder();
3131  }
3132  return NULL;
3133}
3134
3135static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3136  assert(thread->is_Compiler_thread(), "must be compiler thread");
3137  CompileBroker::compiler_thread_loop();
3138}
3139
3140static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3141  NMethodSweeper::sweeper_loop();
3142}
3143
3144// Create a CompilerThread
3145CompilerThread::CompilerThread(CompileQueue* queue,
3146                               CompilerCounters* counters)
3147                               : JavaThread(&compiler_thread_entry) {
3148  _env   = NULL;
3149  _log   = NULL;
3150  _task  = NULL;
3151  _queue = queue;
3152  _counters = counters;
3153  _buffer_blob = NULL;
3154  _compiler = NULL;
3155
3156#ifndef PRODUCT
3157  _ideal_graph_printer = NULL;
3158#endif
3159}
3160
3161// Create sweeper thread
3162CodeCacheSweeperThread::CodeCacheSweeperThread()
3163: JavaThread(&sweeper_thread_entry) {
3164  _scanned_nmethod = NULL;
3165}
3166void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3167  JavaThread::oops_do(f, cld_f, cf);
3168  if (_scanned_nmethod != NULL && cf != NULL) {
3169    // Safepoints can occur when the sweeper is scanning an nmethod so
3170    // process it here to make sure it isn't unloaded in the middle of
3171    // a scan.
3172    cf->do_code_blob(_scanned_nmethod);
3173  }
3174}
3175
3176
3177// ======= Threads ========
3178
3179// The Threads class links together all active threads, and provides
3180// operations over all threads.  It is protected by its own Mutex
3181// lock, which is also used in other contexts to protect thread
3182// operations from having the thread being operated on from exiting
3183// and going away unexpectedly (e.g., safepoint synchronization)
3184
3185JavaThread* Threads::_thread_list = NULL;
3186int         Threads::_number_of_threads = 0;
3187int         Threads::_number_of_non_daemon_threads = 0;
3188int         Threads::_return_code = 0;
3189int         Threads::_thread_claim_parity = 0;
3190size_t      JavaThread::_stack_size_at_create = 0;
3191#ifdef ASSERT
3192bool        Threads::_vm_complete = false;
3193#endif
3194
3195// All JavaThreads
3196#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3197
3198// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3199void Threads::threads_do(ThreadClosure* tc) {
3200  assert_locked_or_safepoint(Threads_lock);
3201  // ALL_JAVA_THREADS iterates through all JavaThreads
3202  ALL_JAVA_THREADS(p) {
3203    tc->do_thread(p);
3204  }
3205  // Someday we could have a table or list of all non-JavaThreads.
3206  // For now, just manually iterate through them.
3207  tc->do_thread(VMThread::vm_thread());
3208  Universe::heap()->gc_threads_do(tc);
3209  WatcherThread *wt = WatcherThread::watcher_thread();
3210  // Strictly speaking, the following NULL check isn't sufficient to make sure
3211  // the data for WatcherThread is still valid upon being examined. However,
3212  // considering that WatchThread terminates when the VM is on the way to
3213  // exit at safepoint, the chance of the above is extremely small. The right
3214  // way to prevent termination of WatcherThread would be to acquire
3215  // Terminator_lock, but we can't do that without violating the lock rank
3216  // checking in some cases.
3217  if (wt != NULL) {
3218    tc->do_thread(wt);
3219  }
3220
3221  // If CompilerThreads ever become non-JavaThreads, add them here
3222}
3223
3224void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3225  TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3226
3227  if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3228    create_vm_init_libraries();
3229  }
3230
3231  initialize_class(vmSymbols::java_lang_String(), CHECK);
3232
3233  // Initialize java_lang.System (needed before creating the thread)
3234  initialize_class(vmSymbols::java_lang_System(), CHECK);
3235  // The VM creates & returns objects of this class. Make sure it's initialized.
3236  initialize_class(vmSymbols::java_lang_Class(), CHECK);
3237  initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3238  Handle thread_group = create_initial_thread_group(CHECK);
3239  Universe::set_main_thread_group(thread_group());
3240  initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3241  oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3242  main_thread->set_threadObj(thread_object);
3243  // Set thread status to running since main thread has
3244  // been started and running.
3245  java_lang_Thread::set_thread_status(thread_object,
3246                                      java_lang_Thread::RUNNABLE);
3247
3248  // The VM preresolves methods to these classes. Make sure that they get initialized
3249  initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3250  initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3251  call_initializeSystemClass(CHECK);
3252
3253  // get the Java runtime name after java.lang.System is initialized
3254  JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3255  JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3256
3257  // an instance of OutOfMemory exception has been allocated earlier
3258  initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3259  initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3260  initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3261  initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3262  initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3263  initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3264  initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3265  initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3266}
3267
3268void Threads::initialize_jsr292_core_classes(TRAPS) {
3269  initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3270  initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3271  initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3272}
3273
3274jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3275  extern void JDK_Version_init();
3276
3277  // Check version
3278  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3279
3280  // Initialize the output stream module
3281  ostream_init();
3282
3283  // Process java launcher properties.
3284  Arguments::process_sun_java_launcher_properties(args);
3285
3286  // Initialize the os module before using TLS
3287  os::init();
3288
3289  // Initialize system properties.
3290  Arguments::init_system_properties();
3291
3292  // So that JDK version can be used as a discriminator when parsing arguments
3293  JDK_Version_init();
3294
3295  // Update/Initialize System properties after JDK version number is known
3296  Arguments::init_version_specific_system_properties();
3297
3298  // Parse arguments
3299  jint parse_result = Arguments::parse(args);
3300  if (parse_result != JNI_OK) return parse_result;
3301
3302  os::init_before_ergo();
3303
3304  jint ergo_result = Arguments::apply_ergo();
3305  if (ergo_result != JNI_OK) return ergo_result;
3306
3307  // Final check of all arguments after ergonomics which may change values.
3308  if (!CommandLineFlags::check_all_ranges_and_constraints()) {
3309    return JNI_EINVAL;
3310  }
3311
3312  if (PauseAtStartup) {
3313    os::pause();
3314  }
3315
3316  HOTSPOT_VM_INIT_BEGIN();
3317
3318  // Record VM creation timing statistics
3319  TraceVmCreationTime create_vm_timer;
3320  create_vm_timer.start();
3321
3322  // Timing (must come after argument parsing)
3323  TraceTime timer("Create VM", TraceStartupTime);
3324
3325  // Initialize the os module after parsing the args
3326  jint os_init_2_result = os::init_2();
3327  if (os_init_2_result != JNI_OK) return os_init_2_result;
3328
3329  jint adjust_after_os_result = Arguments::adjust_after_os();
3330  if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3331
3332  // initialize TLS
3333  ThreadLocalStorage::init();
3334
3335  // Initialize output stream logging
3336  ostream_init_log();
3337
3338  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3339  // Must be before create_vm_init_agents()
3340  if (Arguments::init_libraries_at_startup()) {
3341    convert_vm_init_libraries_to_agents();
3342  }
3343
3344  // Launch -agentlib/-agentpath and converted -Xrun agents
3345  if (Arguments::init_agents_at_startup()) {
3346    create_vm_init_agents();
3347  }
3348
3349  // Initialize Threads state
3350  _thread_list = NULL;
3351  _number_of_threads = 0;
3352  _number_of_non_daemon_threads = 0;
3353
3354  // Initialize global data structures and create system classes in heap
3355  vm_init_globals();
3356
3357  // Attach the main thread to this os thread
3358  JavaThread* main_thread = new JavaThread();
3359  main_thread->set_thread_state(_thread_in_vm);
3360  // must do this before set_active_handles and initialize_thread_local_storage
3361  // Note: on solaris initialize_thread_local_storage() will (indirectly)
3362  // change the stack size recorded here to one based on the java thread
3363  // stacksize. This adjusted size is what is used to figure the placement
3364  // of the guard pages.
3365  main_thread->record_stack_base_and_size();
3366  main_thread->initialize_thread_local_storage();
3367
3368  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3369
3370  if (!main_thread->set_as_starting_thread()) {
3371    vm_shutdown_during_initialization(
3372                                      "Failed necessary internal allocation. Out of swap space");
3373    delete main_thread;
3374    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3375    return JNI_ENOMEM;
3376  }
3377
3378  // Enable guard page *after* os::create_main_thread(), otherwise it would
3379  // crash Linux VM, see notes in os_linux.cpp.
3380  main_thread->create_stack_guard_pages();
3381
3382  // Initialize Java-Level synchronization subsystem
3383  ObjectMonitor::Initialize();
3384
3385  // Initialize global modules
3386  jint status = init_globals();
3387  if (status != JNI_OK) {
3388    delete main_thread;
3389    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3390    return status;
3391  }
3392
3393  // Should be done after the heap is fully created
3394  main_thread->cache_global_variables();
3395
3396  HandleMark hm;
3397
3398  { MutexLocker mu(Threads_lock);
3399    Threads::add(main_thread);
3400  }
3401
3402  // Any JVMTI raw monitors entered in onload will transition into
3403  // real raw monitor. VM is setup enough here for raw monitor enter.
3404  JvmtiExport::transition_pending_onload_raw_monitors();
3405
3406  // Create the VMThread
3407  { TraceTime timer("Start VMThread", TraceStartupTime);
3408    VMThread::create();
3409    Thread* vmthread = VMThread::vm_thread();
3410
3411    if (!os::create_thread(vmthread, os::vm_thread)) {
3412      vm_exit_during_initialization("Cannot create VM thread. "
3413                                    "Out of system resources.");
3414    }
3415
3416    // Wait for the VM thread to become ready, and VMThread::run to initialize
3417    // Monitors can have spurious returns, must always check another state flag
3418    {
3419      MutexLocker ml(Notify_lock);
3420      os::start_thread(vmthread);
3421      while (vmthread->active_handles() == NULL) {
3422        Notify_lock->wait();
3423      }
3424    }
3425  }
3426
3427  assert(Universe::is_fully_initialized(), "not initialized");
3428  if (VerifyDuringStartup) {
3429    // Make sure we're starting with a clean slate.
3430    VM_Verify verify_op;
3431    VMThread::execute(&verify_op);
3432  }
3433
3434  Thread* THREAD = Thread::current();
3435
3436  // At this point, the Universe is initialized, but we have not executed
3437  // any byte code.  Now is a good time (the only time) to dump out the
3438  // internal state of the JVM for sharing.
3439  if (DumpSharedSpaces) {
3440    MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3441    ShouldNotReachHere();
3442  }
3443
3444  // Always call even when there are not JVMTI environments yet, since environments
3445  // may be attached late and JVMTI must track phases of VM execution
3446  JvmtiExport::enter_start_phase();
3447
3448  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3449  JvmtiExport::post_vm_start();
3450
3451  initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3452
3453  // We need this for ClassDataSharing - the initial vm.info property is set
3454  // with the default value of CDS "sharing" which may be reset through
3455  // command line options.
3456  reset_vm_info_property(CHECK_JNI_ERR);
3457
3458  quicken_jni_functions();
3459
3460  // Must be run after init_ft which initializes ft_enabled
3461  if (TRACE_INITIALIZE() != JNI_OK) {
3462    vm_exit_during_initialization("Failed to initialize tracing backend");
3463  }
3464
3465  // Set flag that basic initialization has completed. Used by exceptions and various
3466  // debug stuff, that does not work until all basic classes have been initialized.
3467  set_init_completed();
3468
3469  Metaspace::post_initialize();
3470
3471  HOTSPOT_VM_INIT_END();
3472
3473  // record VM initialization completion time
3474#if INCLUDE_MANAGEMENT
3475  Management::record_vm_init_completed();
3476#endif // INCLUDE_MANAGEMENT
3477
3478  // Compute system loader. Note that this has to occur after set_init_completed, since
3479  // valid exceptions may be thrown in the process.
3480  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3481  // set_init_completed has just been called, causing exceptions not to be shortcut
3482  // anymore. We call vm_exit_during_initialization directly instead.
3483  SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3484
3485#if INCLUDE_ALL_GCS
3486  // Support for ConcurrentMarkSweep. This should be cleaned up
3487  // and better encapsulated. The ugly nested if test would go away
3488  // once things are properly refactored. XXX YSR
3489  if (UseConcMarkSweepGC || UseG1GC) {
3490    if (UseConcMarkSweepGC) {
3491      ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3492    } else {
3493      ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3494    }
3495  }
3496#endif // INCLUDE_ALL_GCS
3497
3498  // Always call even when there are not JVMTI environments yet, since environments
3499  // may be attached late and JVMTI must track phases of VM execution
3500  JvmtiExport::enter_live_phase();
3501
3502  // Signal Dispatcher needs to be started before VMInit event is posted
3503  os::signal_init();
3504
3505  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3506  if (!DisableAttachMechanism) {
3507    AttachListener::vm_start();
3508    if (StartAttachListener || AttachListener::init_at_startup()) {
3509      AttachListener::init();
3510    }
3511  }
3512
3513  // Launch -Xrun agents
3514  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3515  // back-end can launch with -Xdebug -Xrunjdwp.
3516  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3517    create_vm_init_libraries();
3518  }
3519
3520  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3521  JvmtiExport::post_vm_initialized();
3522
3523  if (TRACE_START() != JNI_OK) {
3524    vm_exit_during_initialization("Failed to start tracing backend.");
3525  }
3526
3527  if (CleanChunkPoolAsync) {
3528    Chunk::start_chunk_pool_cleaner_task();
3529  }
3530
3531  // initialize compiler(s)
3532#if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3533  CompileBroker::compilation_init();
3534#endif
3535
3536  // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3537  // It is done after compilers are initialized, because otherwise compilations of
3538  // signature polymorphic MH intrinsics can be missed
3539  // (see SystemDictionary::find_method_handle_intrinsic).
3540  initialize_jsr292_core_classes(CHECK_JNI_ERR);
3541
3542#if INCLUDE_MANAGEMENT
3543  Management::initialize(THREAD);
3544
3545  if (HAS_PENDING_EXCEPTION) {
3546    // management agent fails to start possibly due to
3547    // configuration problem and is responsible for printing
3548    // stack trace if appropriate. Simply exit VM.
3549    vm_exit(1);
3550  }
3551#endif // INCLUDE_MANAGEMENT
3552
3553  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3554  if (MemProfiling)                   MemProfiler::engage();
3555  StatSampler::engage();
3556  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3557
3558  BiasedLocking::init();
3559
3560#if INCLUDE_RTM_OPT
3561  RTMLockingCounters::init();
3562#endif
3563
3564  if (JDK_Version::current().post_vm_init_hook_enabled()) {
3565    call_postVMInitHook(THREAD);
3566    // The Java side of PostVMInitHook.run must deal with all
3567    // exceptions and provide means of diagnosis.
3568    if (HAS_PENDING_EXCEPTION) {
3569      CLEAR_PENDING_EXCEPTION;
3570    }
3571  }
3572
3573  {
3574    MutexLocker ml(PeriodicTask_lock);
3575    // Make sure the WatcherThread can be started by WatcherThread::start()
3576    // or by dynamic enrollment.
3577    WatcherThread::make_startable();
3578    // Start up the WatcherThread if there are any periodic tasks
3579    // NOTE:  All PeriodicTasks should be registered by now. If they
3580    //   aren't, late joiners might appear to start slowly (we might
3581    //   take a while to process their first tick).
3582    if (PeriodicTask::num_tasks() > 0) {
3583      WatcherThread::start();
3584    }
3585  }
3586
3587  create_vm_timer.end();
3588#ifdef ASSERT
3589  _vm_complete = true;
3590#endif
3591  return JNI_OK;
3592}
3593
3594// type for the Agent_OnLoad and JVM_OnLoad entry points
3595extern "C" {
3596  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3597}
3598// Find a command line agent library and return its entry point for
3599//         -agentlib:  -agentpath:   -Xrun
3600// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3601static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3602                                    const char *on_load_symbols[],
3603                                    size_t num_symbol_entries) {
3604  OnLoadEntry_t on_load_entry = NULL;
3605  void *library = NULL;
3606
3607  if (!agent->valid()) {
3608    char buffer[JVM_MAXPATHLEN];
3609    char ebuf[1024] = "";
3610    const char *name = agent->name();
3611    const char *msg = "Could not find agent library ";
3612
3613    // First check to see if agent is statically linked into executable
3614    if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3615      library = agent->os_lib();
3616    } else if (agent->is_absolute_path()) {
3617      library = os::dll_load(name, ebuf, sizeof ebuf);
3618      if (library == NULL) {
3619        const char *sub_msg = " in absolute path, with error: ";
3620        size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3621        char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3622        jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3623        // If we can't find the agent, exit.
3624        vm_exit_during_initialization(buf, NULL);
3625        FREE_C_HEAP_ARRAY(char, buf);
3626      }
3627    } else {
3628      // Try to load the agent from the standard dll directory
3629      if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3630                             name)) {
3631        library = os::dll_load(buffer, ebuf, sizeof ebuf);
3632      }
3633      if (library == NULL) { // Try the local directory
3634        char ns[1] = {0};
3635        if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3636          library = os::dll_load(buffer, ebuf, sizeof ebuf);
3637        }
3638        if (library == NULL) {
3639          const char *sub_msg = " on the library path, with error: ";
3640          size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3641          char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3642          jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3643          // If we can't find the agent, exit.
3644          vm_exit_during_initialization(buf, NULL);
3645          FREE_C_HEAP_ARRAY(char, buf);
3646        }
3647      }
3648    }
3649    agent->set_os_lib(library);
3650    agent->set_valid();
3651  }
3652
3653  // Find the OnLoad function.
3654  on_load_entry =
3655    CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3656                                                          false,
3657                                                          on_load_symbols,
3658                                                          num_symbol_entries));
3659  return on_load_entry;
3660}
3661
3662// Find the JVM_OnLoad entry point
3663static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3664  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3665  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3666}
3667
3668// Find the Agent_OnLoad entry point
3669static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3670  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3671  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3672}
3673
3674// For backwards compatibility with -Xrun
3675// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3676// treated like -agentpath:
3677// Must be called before agent libraries are created
3678void Threads::convert_vm_init_libraries_to_agents() {
3679  AgentLibrary* agent;
3680  AgentLibrary* next;
3681
3682  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3683    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3684    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3685
3686    // If there is an JVM_OnLoad function it will get called later,
3687    // otherwise see if there is an Agent_OnLoad
3688    if (on_load_entry == NULL) {
3689      on_load_entry = lookup_agent_on_load(agent);
3690      if (on_load_entry != NULL) {
3691        // switch it to the agent list -- so that Agent_OnLoad will be called,
3692        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3693        Arguments::convert_library_to_agent(agent);
3694      } else {
3695        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3696      }
3697    }
3698  }
3699}
3700
3701// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3702// Invokes Agent_OnLoad
3703// Called very early -- before JavaThreads exist
3704void Threads::create_vm_init_agents() {
3705  extern struct JavaVM_ main_vm;
3706  AgentLibrary* agent;
3707
3708  JvmtiExport::enter_onload_phase();
3709
3710  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3711    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3712
3713    if (on_load_entry != NULL) {
3714      // Invoke the Agent_OnLoad function
3715      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3716      if (err != JNI_OK) {
3717        vm_exit_during_initialization("agent library failed to init", agent->name());
3718      }
3719    } else {
3720      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3721    }
3722  }
3723  JvmtiExport::enter_primordial_phase();
3724}
3725
3726extern "C" {
3727  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3728}
3729
3730void Threads::shutdown_vm_agents() {
3731  // Send any Agent_OnUnload notifications
3732  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3733  size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3734  extern struct JavaVM_ main_vm;
3735  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3736
3737    // Find the Agent_OnUnload function.
3738    Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3739                                                   os::find_agent_function(agent,
3740                                                   false,
3741                                                   on_unload_symbols,
3742                                                   num_symbol_entries));
3743
3744    // Invoke the Agent_OnUnload function
3745    if (unload_entry != NULL) {
3746      JavaThread* thread = JavaThread::current();
3747      ThreadToNativeFromVM ttn(thread);
3748      HandleMark hm(thread);
3749      (*unload_entry)(&main_vm);
3750    }
3751  }
3752}
3753
3754// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3755// Invokes JVM_OnLoad
3756void Threads::create_vm_init_libraries() {
3757  extern struct JavaVM_ main_vm;
3758  AgentLibrary* agent;
3759
3760  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3761    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3762
3763    if (on_load_entry != NULL) {
3764      // Invoke the JVM_OnLoad function
3765      JavaThread* thread = JavaThread::current();
3766      ThreadToNativeFromVM ttn(thread);
3767      HandleMark hm(thread);
3768      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3769      if (err != JNI_OK) {
3770        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3771      }
3772    } else {
3773      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3774    }
3775  }
3776}
3777
3778JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3779  assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3780
3781  JavaThread* java_thread = NULL;
3782  // Sequential search for now.  Need to do better optimization later.
3783  for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3784    oop tobj = thread->threadObj();
3785    if (!thread->is_exiting() &&
3786        tobj != NULL &&
3787        java_tid == java_lang_Thread::thread_id(tobj)) {
3788      java_thread = thread;
3789      break;
3790    }
3791  }
3792  return java_thread;
3793}
3794
3795
3796// Last thread running calls java.lang.Shutdown.shutdown()
3797void JavaThread::invoke_shutdown_hooks() {
3798  HandleMark hm(this);
3799
3800  // We could get here with a pending exception, if so clear it now.
3801  if (this->has_pending_exception()) {
3802    this->clear_pending_exception();
3803  }
3804
3805  EXCEPTION_MARK;
3806  Klass* k =
3807    SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3808                                      THREAD);
3809  if (k != NULL) {
3810    // SystemDictionary::resolve_or_null will return null if there was
3811    // an exception.  If we cannot load the Shutdown class, just don't
3812    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3813    // and finalizers (if runFinalizersOnExit is set) won't be run.
3814    // Note that if a shutdown hook was registered or runFinalizersOnExit
3815    // was called, the Shutdown class would have already been loaded
3816    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3817    instanceKlassHandle shutdown_klass (THREAD, k);
3818    JavaValue result(T_VOID);
3819    JavaCalls::call_static(&result,
3820                           shutdown_klass,
3821                           vmSymbols::shutdown_method_name(),
3822                           vmSymbols::void_method_signature(),
3823                           THREAD);
3824  }
3825  CLEAR_PENDING_EXCEPTION;
3826}
3827
3828// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3829// the program falls off the end of main(). Another VM exit path is through
3830// vm_exit() when the program calls System.exit() to return a value or when
3831// there is a serious error in VM. The two shutdown paths are not exactly
3832// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3833// and VM_Exit op at VM level.
3834//
3835// Shutdown sequence:
3836//   + Shutdown native memory tracking if it is on
3837//   + Wait until we are the last non-daemon thread to execute
3838//     <-- every thing is still working at this moment -->
3839//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3840//        shutdown hooks, run finalizers if finalization-on-exit
3841//   + Call before_exit(), prepare for VM exit
3842//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3843//        currently the only user of this mechanism is File.deleteOnExit())
3844//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3845//        post thread end and vm death events to JVMTI,
3846//        stop signal thread
3847//   + Call JavaThread::exit(), it will:
3848//      > release JNI handle blocks, remove stack guard pages
3849//      > remove this thread from Threads list
3850//     <-- no more Java code from this thread after this point -->
3851//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3852//     the compiler threads at safepoint
3853//     <-- do not use anything that could get blocked by Safepoint -->
3854//   + Disable tracing at JNI/JVM barriers
3855//   + Set _vm_exited flag for threads that are still running native code
3856//   + Delete this thread
3857//   + Call exit_globals()
3858//      > deletes tty
3859//      > deletes PerfMemory resources
3860//   + Return to caller
3861
3862bool Threads::destroy_vm() {
3863  JavaThread* thread = JavaThread::current();
3864
3865#ifdef ASSERT
3866  _vm_complete = false;
3867#endif
3868  // Wait until we are the last non-daemon thread to execute
3869  { MutexLocker nu(Threads_lock);
3870    while (Threads::number_of_non_daemon_threads() > 1)
3871      // This wait should make safepoint checks, wait without a timeout,
3872      // and wait as a suspend-equivalent condition.
3873      //
3874      // Note: If the FlatProfiler is running and this thread is waiting
3875      // for another non-daemon thread to finish, then the FlatProfiler
3876      // is waiting for the external suspend request on this thread to
3877      // complete. wait_for_ext_suspend_completion() will eventually
3878      // timeout, but that takes time. Making this wait a suspend-
3879      // equivalent condition solves that timeout problem.
3880      //
3881      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3882                         Mutex::_as_suspend_equivalent_flag);
3883  }
3884
3885  // Hang forever on exit if we are reporting an error.
3886  if (ShowMessageBoxOnError && is_error_reported()) {
3887    os::infinite_sleep();
3888  }
3889  os::wait_for_keypress_at_exit();
3890
3891  // run Java level shutdown hooks
3892  thread->invoke_shutdown_hooks();
3893
3894  before_exit(thread);
3895
3896  thread->exit(true);
3897
3898  // Stop VM thread.
3899  {
3900    // 4945125 The vm thread comes to a safepoint during exit.
3901    // GC vm_operations can get caught at the safepoint, and the
3902    // heap is unparseable if they are caught. Grab the Heap_lock
3903    // to prevent this. The GC vm_operations will not be able to
3904    // queue until after the vm thread is dead. After this point,
3905    // we'll never emerge out of the safepoint before the VM exits.
3906
3907    MutexLocker ml(Heap_lock);
3908
3909    VMThread::wait_for_vm_thread_exit();
3910    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3911    VMThread::destroy();
3912  }
3913
3914  // clean up ideal graph printers
3915#if defined(COMPILER2) && !defined(PRODUCT)
3916  IdealGraphPrinter::clean_up();
3917#endif
3918
3919  // Now, all Java threads are gone except daemon threads. Daemon threads
3920  // running Java code or in VM are stopped by the Safepoint. However,
3921  // daemon threads executing native code are still running.  But they
3922  // will be stopped at native=>Java/VM barriers. Note that we can't
3923  // simply kill or suspend them, as it is inherently deadlock-prone.
3924
3925#ifndef PRODUCT
3926  // disable function tracing at JNI/JVM barriers
3927  TraceJNICalls = false;
3928  TraceJVMCalls = false;
3929  TraceRuntimeCalls = false;
3930#endif
3931
3932  VM_Exit::set_vm_exited();
3933
3934  notify_vm_shutdown();
3935
3936  delete thread;
3937
3938  // exit_globals() will delete tty
3939  exit_globals();
3940
3941  return true;
3942}
3943
3944
3945jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3946  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3947  return is_supported_jni_version(version);
3948}
3949
3950
3951jboolean Threads::is_supported_jni_version(jint version) {
3952  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3953  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3954  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3955  if (version == JNI_VERSION_1_8) return JNI_TRUE;
3956  return JNI_FALSE;
3957}
3958
3959
3960void Threads::add(JavaThread* p, bool force_daemon) {
3961  // The threads lock must be owned at this point
3962  assert_locked_or_safepoint(Threads_lock);
3963
3964  // See the comment for this method in thread.hpp for its purpose and
3965  // why it is called here.
3966  p->initialize_queues();
3967  p->set_next(_thread_list);
3968  _thread_list = p;
3969  _number_of_threads++;
3970  oop threadObj = p->threadObj();
3971  bool daemon = true;
3972  // Bootstrapping problem: threadObj can be null for initial
3973  // JavaThread (or for threads attached via JNI)
3974  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3975    _number_of_non_daemon_threads++;
3976    daemon = false;
3977  }
3978
3979  ThreadService::add_thread(p, daemon);
3980
3981  // Possible GC point.
3982  Events::log(p, "Thread added: " INTPTR_FORMAT, p);
3983}
3984
3985void Threads::remove(JavaThread* p) {
3986  // Extra scope needed for Thread_lock, so we can check
3987  // that we do not remove thread without safepoint code notice
3988  { MutexLocker ml(Threads_lock);
3989
3990    assert(includes(p), "p must be present");
3991
3992    JavaThread* current = _thread_list;
3993    JavaThread* prev    = NULL;
3994
3995    while (current != p) {
3996      prev    = current;
3997      current = current->next();
3998    }
3999
4000    if (prev) {
4001      prev->set_next(current->next());
4002    } else {
4003      _thread_list = p->next();
4004    }
4005    _number_of_threads--;
4006    oop threadObj = p->threadObj();
4007    bool daemon = true;
4008    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4009      _number_of_non_daemon_threads--;
4010      daemon = false;
4011
4012      // Only one thread left, do a notify on the Threads_lock so a thread waiting
4013      // on destroy_vm will wake up.
4014      if (number_of_non_daemon_threads() == 1) {
4015        Threads_lock->notify_all();
4016      }
4017    }
4018    ThreadService::remove_thread(p, daemon);
4019
4020    // Make sure that safepoint code disregard this thread. This is needed since
4021    // the thread might mess around with locks after this point. This can cause it
4022    // to do callbacks into the safepoint code. However, the safepoint code is not aware
4023    // of this thread since it is removed from the queue.
4024    p->set_terminated_value();
4025  } // unlock Threads_lock
4026
4027  // Since Events::log uses a lock, we grab it outside the Threads_lock
4028  Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4029}
4030
4031// Threads_lock must be held when this is called (or must be called during a safepoint)
4032bool Threads::includes(JavaThread* p) {
4033  assert(Threads_lock->is_locked(), "sanity check");
4034  ALL_JAVA_THREADS(q) {
4035    if (q == p) {
4036      return true;
4037    }
4038  }
4039  return false;
4040}
4041
4042// Operations on the Threads list for GC.  These are not explicitly locked,
4043// but the garbage collector must provide a safe context for them to run.
4044// In particular, these things should never be called when the Threads_lock
4045// is held by some other thread. (Note: the Safepoint abstraction also
4046// uses the Threads_lock to guarantee this property. It also makes sure that
4047// all threads gets blocked when exiting or starting).
4048
4049void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4050  ALL_JAVA_THREADS(p) {
4051    p->oops_do(f, cld_f, cf);
4052  }
4053  VMThread::vm_thread()->oops_do(f, cld_f, cf);
4054}
4055
4056void Threads::change_thread_claim_parity() {
4057  // Set the new claim parity.
4058  assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4059         "Not in range.");
4060  _thread_claim_parity++;
4061  if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4062  assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4063         "Not in range.");
4064}
4065
4066#ifdef ASSERT
4067void Threads::assert_all_threads_claimed() {
4068  ALL_JAVA_THREADS(p) {
4069    const int thread_parity = p->oops_do_parity();
4070    assert((thread_parity == _thread_claim_parity),
4071        err_msg("Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity));
4072  }
4073}
4074#endif // ASSERT
4075
4076void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4077  int cp = Threads::thread_claim_parity();
4078  ALL_JAVA_THREADS(p) {
4079    if (p->claim_oops_do(is_par, cp)) {
4080      p->oops_do(f, cld_f, cf);
4081    }
4082  }
4083  VMThread* vmt = VMThread::vm_thread();
4084  if (vmt->claim_oops_do(is_par, cp)) {
4085    vmt->oops_do(f, cld_f, cf);
4086  }
4087}
4088
4089#if INCLUDE_ALL_GCS
4090// Used by ParallelScavenge
4091void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4092  ALL_JAVA_THREADS(p) {
4093    q->enqueue(new ThreadRootsTask(p));
4094  }
4095  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4096}
4097
4098// Used by Parallel Old
4099void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4100  ALL_JAVA_THREADS(p) {
4101    q->enqueue(new ThreadRootsMarkingTask(p));
4102  }
4103  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4104}
4105#endif // INCLUDE_ALL_GCS
4106
4107void Threads::nmethods_do(CodeBlobClosure* cf) {
4108  ALL_JAVA_THREADS(p) {
4109    p->nmethods_do(cf);
4110  }
4111  VMThread::vm_thread()->nmethods_do(cf);
4112}
4113
4114void Threads::metadata_do(void f(Metadata*)) {
4115  ALL_JAVA_THREADS(p) {
4116    p->metadata_do(f);
4117  }
4118}
4119
4120class ThreadHandlesClosure : public ThreadClosure {
4121  void (*_f)(Metadata*);
4122 public:
4123  ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4124  virtual void do_thread(Thread* thread) {
4125    thread->metadata_handles_do(_f);
4126  }
4127};
4128
4129void Threads::metadata_handles_do(void f(Metadata*)) {
4130  // Only walk the Handles in Thread.
4131  ThreadHandlesClosure handles_closure(f);
4132  threads_do(&handles_closure);
4133}
4134
4135void Threads::deoptimized_wrt_marked_nmethods() {
4136  ALL_JAVA_THREADS(p) {
4137    p->deoptimized_wrt_marked_nmethods();
4138  }
4139}
4140
4141
4142// Get count Java threads that are waiting to enter the specified monitor.
4143GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4144                                                         address monitor,
4145                                                         bool doLock) {
4146  assert(doLock || SafepointSynchronize::is_at_safepoint(),
4147         "must grab Threads_lock or be at safepoint");
4148  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4149
4150  int i = 0;
4151  {
4152    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4153    ALL_JAVA_THREADS(p) {
4154      if (p->is_Compiler_thread()) continue;
4155
4156      address pending = (address)p->current_pending_monitor();
4157      if (pending == monitor) {             // found a match
4158        if (i < count) result->append(p);   // save the first count matches
4159        i++;
4160      }
4161    }
4162  }
4163  return result;
4164}
4165
4166
4167JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4168                                                      bool doLock) {
4169  assert(doLock ||
4170         Threads_lock->owned_by_self() ||
4171         SafepointSynchronize::is_at_safepoint(),
4172         "must grab Threads_lock or be at safepoint");
4173
4174  // NULL owner means not locked so we can skip the search
4175  if (owner == NULL) return NULL;
4176
4177  {
4178    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4179    ALL_JAVA_THREADS(p) {
4180      // first, see if owner is the address of a Java thread
4181      if (owner == (address)p) return p;
4182    }
4183  }
4184  // Cannot assert on lack of success here since this function may be
4185  // used by code that is trying to report useful problem information
4186  // like deadlock detection.
4187  if (UseHeavyMonitors) return NULL;
4188
4189  // If we didn't find a matching Java thread and we didn't force use of
4190  // heavyweight monitors, then the owner is the stack address of the
4191  // Lock Word in the owning Java thread's stack.
4192  //
4193  JavaThread* the_owner = NULL;
4194  {
4195    MutexLockerEx ml(doLock ? Threads_lock : NULL);
4196    ALL_JAVA_THREADS(q) {
4197      if (q->is_lock_owned(owner)) {
4198        the_owner = q;
4199        break;
4200      }
4201    }
4202  }
4203  // cannot assert on lack of success here; see above comment
4204  return the_owner;
4205}
4206
4207// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4208void Threads::print_on(outputStream* st, bool print_stacks,
4209                       bool internal_format, bool print_concurrent_locks) {
4210  char buf[32];
4211  st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4212
4213  st->print_cr("Full thread dump %s (%s %s):",
4214               Abstract_VM_Version::vm_name(),
4215               Abstract_VM_Version::vm_release(),
4216               Abstract_VM_Version::vm_info_string());
4217  st->cr();
4218
4219#if INCLUDE_SERVICES
4220  // Dump concurrent locks
4221  ConcurrentLocksDump concurrent_locks;
4222  if (print_concurrent_locks) {
4223    concurrent_locks.dump_at_safepoint();
4224  }
4225#endif // INCLUDE_SERVICES
4226
4227  ALL_JAVA_THREADS(p) {
4228    ResourceMark rm;
4229    p->print_on(st);
4230    if (print_stacks) {
4231      if (internal_format) {
4232        p->trace_stack();
4233      } else {
4234        p->print_stack_on(st);
4235      }
4236    }
4237    st->cr();
4238#if INCLUDE_SERVICES
4239    if (print_concurrent_locks) {
4240      concurrent_locks.print_locks_on(p, st);
4241    }
4242#endif // INCLUDE_SERVICES
4243  }
4244
4245  VMThread::vm_thread()->print_on(st);
4246  st->cr();
4247  Universe::heap()->print_gc_threads_on(st);
4248  WatcherThread* wt = WatcherThread::watcher_thread();
4249  if (wt != NULL) {
4250    wt->print_on(st);
4251    st->cr();
4252  }
4253  CompileBroker::print_compiler_threads_on(st);
4254  st->flush();
4255}
4256
4257// Threads::print_on_error() is called by fatal error handler. It's possible
4258// that VM is not at safepoint and/or current thread is inside signal handler.
4259// Don't print stack trace, as the stack may not be walkable. Don't allocate
4260// memory (even in resource area), it might deadlock the error handler.
4261void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4262                             int buflen) {
4263  bool found_current = false;
4264  st->print_cr("Java Threads: ( => current thread )");
4265  ALL_JAVA_THREADS(thread) {
4266    bool is_current = (current == thread);
4267    found_current = found_current || is_current;
4268
4269    st->print("%s", is_current ? "=>" : "  ");
4270
4271    st->print(PTR_FORMAT, thread);
4272    st->print(" ");
4273    thread->print_on_error(st, buf, buflen);
4274    st->cr();
4275  }
4276  st->cr();
4277
4278  st->print_cr("Other Threads:");
4279  if (VMThread::vm_thread()) {
4280    bool is_current = (current == VMThread::vm_thread());
4281    found_current = found_current || is_current;
4282    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4283
4284    st->print(PTR_FORMAT, VMThread::vm_thread());
4285    st->print(" ");
4286    VMThread::vm_thread()->print_on_error(st, buf, buflen);
4287    st->cr();
4288  }
4289  WatcherThread* wt = WatcherThread::watcher_thread();
4290  if (wt != NULL) {
4291    bool is_current = (current == wt);
4292    found_current = found_current || is_current;
4293    st->print("%s", is_current ? "=>" : "  ");
4294
4295    st->print(PTR_FORMAT, wt);
4296    st->print(" ");
4297    wt->print_on_error(st, buf, buflen);
4298    st->cr();
4299  }
4300  if (!found_current) {
4301    st->cr();
4302    st->print("=>" PTR_FORMAT " (exited) ", current);
4303    current->print_on_error(st, buf, buflen);
4304    st->cr();
4305  }
4306}
4307
4308// Internal SpinLock and Mutex
4309// Based on ParkEvent
4310
4311// Ad-hoc mutual exclusion primitives: SpinLock and Mux
4312//
4313// We employ SpinLocks _only for low-contention, fixed-length
4314// short-duration critical sections where we're concerned
4315// about native mutex_t or HotSpot Mutex:: latency.
4316// The mux construct provides a spin-then-block mutual exclusion
4317// mechanism.
4318//
4319// Testing has shown that contention on the ListLock guarding gFreeList
4320// is common.  If we implement ListLock as a simple SpinLock it's common
4321// for the JVM to devolve to yielding with little progress.  This is true
4322// despite the fact that the critical sections protected by ListLock are
4323// extremely short.
4324//
4325// TODO-FIXME: ListLock should be of type SpinLock.
4326// We should make this a 1st-class type, integrated into the lock
4327// hierarchy as leaf-locks.  Critically, the SpinLock structure
4328// should have sufficient padding to avoid false-sharing and excessive
4329// cache-coherency traffic.
4330
4331
4332typedef volatile int SpinLockT;
4333
4334void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4335  if (Atomic::cmpxchg (1, adr, 0) == 0) {
4336    return;   // normal fast-path return
4337  }
4338
4339  // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4340  TEVENT(SpinAcquire - ctx);
4341  int ctr = 0;
4342  int Yields = 0;
4343  for (;;) {
4344    while (*adr != 0) {
4345      ++ctr;
4346      if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4347        if (Yields > 5) {
4348          os::naked_short_sleep(1);
4349        } else {
4350          os::naked_yield();
4351          ++Yields;
4352        }
4353      } else {
4354        SpinPause();
4355      }
4356    }
4357    if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4358  }
4359}
4360
4361void Thread::SpinRelease(volatile int * adr) {
4362  assert(*adr != 0, "invariant");
4363  OrderAccess::fence();      // guarantee at least release consistency.
4364  // Roach-motel semantics.
4365  // It's safe if subsequent LDs and STs float "up" into the critical section,
4366  // but prior LDs and STs within the critical section can't be allowed
4367  // to reorder or float past the ST that releases the lock.
4368  // Loads and stores in the critical section - which appear in program
4369  // order before the store that releases the lock - must also appear
4370  // before the store that releases the lock in memory visibility order.
4371  // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4372  // the ST of 0 into the lock-word which releases the lock, so fence
4373  // more than covers this on all platforms.
4374  *adr = 0;
4375}
4376
4377// muxAcquire and muxRelease:
4378//
4379// *  muxAcquire and muxRelease support a single-word lock-word construct.
4380//    The LSB of the word is set IFF the lock is held.
4381//    The remainder of the word points to the head of a singly-linked list
4382//    of threads blocked on the lock.
4383//
4384// *  The current implementation of muxAcquire-muxRelease uses its own
4385//    dedicated Thread._MuxEvent instance.  If we're interested in
4386//    minimizing the peak number of extant ParkEvent instances then
4387//    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4388//    as certain invariants were satisfied.  Specifically, care would need
4389//    to be taken with regards to consuming unpark() "permits".
4390//    A safe rule of thumb is that a thread would never call muxAcquire()
4391//    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4392//    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4393//    consume an unpark() permit intended for monitorenter, for instance.
4394//    One way around this would be to widen the restricted-range semaphore
4395//    implemented in park().  Another alternative would be to provide
4396//    multiple instances of the PlatformEvent() for each thread.  One
4397//    instance would be dedicated to muxAcquire-muxRelease, for instance.
4398//
4399// *  Usage:
4400//    -- Only as leaf locks
4401//    -- for short-term locking only as muxAcquire does not perform
4402//       thread state transitions.
4403//
4404// Alternatives:
4405// *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4406//    but with parking or spin-then-park instead of pure spinning.
4407// *  Use Taura-Oyama-Yonenzawa locks.
4408// *  It's possible to construct a 1-0 lock if we encode the lockword as
4409//    (List,LockByte).  Acquire will CAS the full lockword while Release
4410//    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4411//    acquiring threads use timers (ParkTimed) to detect and recover from
4412//    the stranding window.  Thread/Node structures must be aligned on 256-byte
4413//    boundaries by using placement-new.
4414// *  Augment MCS with advisory back-link fields maintained with CAS().
4415//    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4416//    The validity of the backlinks must be ratified before we trust the value.
4417//    If the backlinks are invalid the exiting thread must back-track through the
4418//    the forward links, which are always trustworthy.
4419// *  Add a successor indication.  The LockWord is currently encoded as
4420//    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4421//    to provide the usual futile-wakeup optimization.
4422//    See RTStt for details.
4423// *  Consider schedctl.sc_nopreempt to cover the critical section.
4424//
4425
4426
4427typedef volatile intptr_t MutexT;      // Mux Lock-word
4428enum MuxBits { LOCKBIT = 1 };
4429
4430void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4431  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4432  if (w == 0) return;
4433  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4434    return;
4435  }
4436
4437  TEVENT(muxAcquire - Contention);
4438  ParkEvent * const Self = Thread::current()->_MuxEvent;
4439  assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4440  for (;;) {
4441    int its = (os::is_MP() ? 100 : 0) + 1;
4442
4443    // Optional spin phase: spin-then-park strategy
4444    while (--its >= 0) {
4445      w = *Lock;
4446      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4447        return;
4448      }
4449    }
4450
4451    Self->reset();
4452    Self->OnList = intptr_t(Lock);
4453    // The following fence() isn't _strictly necessary as the subsequent
4454    // CAS() both serializes execution and ratifies the fetched *Lock value.
4455    OrderAccess::fence();
4456    for (;;) {
4457      w = *Lock;
4458      if ((w & LOCKBIT) == 0) {
4459        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4460          Self->OnList = 0;   // hygiene - allows stronger asserts
4461          return;
4462        }
4463        continue;      // Interference -- *Lock changed -- Just retry
4464      }
4465      assert(w & LOCKBIT, "invariant");
4466      Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4467      if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4468    }
4469
4470    while (Self->OnList != 0) {
4471      Self->park();
4472    }
4473  }
4474}
4475
4476void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4477  intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4478  if (w == 0) return;
4479  if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4480    return;
4481  }
4482
4483  TEVENT(muxAcquire - Contention);
4484  ParkEvent * ReleaseAfter = NULL;
4485  if (ev == NULL) {
4486    ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4487  }
4488  assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4489  for (;;) {
4490    guarantee(ev->OnList == 0, "invariant");
4491    int its = (os::is_MP() ? 100 : 0) + 1;
4492
4493    // Optional spin phase: spin-then-park strategy
4494    while (--its >= 0) {
4495      w = *Lock;
4496      if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4497        if (ReleaseAfter != NULL) {
4498          ParkEvent::Release(ReleaseAfter);
4499        }
4500        return;
4501      }
4502    }
4503
4504    ev->reset();
4505    ev->OnList = intptr_t(Lock);
4506    // The following fence() isn't _strictly necessary as the subsequent
4507    // CAS() both serializes execution and ratifies the fetched *Lock value.
4508    OrderAccess::fence();
4509    for (;;) {
4510      w = *Lock;
4511      if ((w & LOCKBIT) == 0) {
4512        if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4513          ev->OnList = 0;
4514          // We call ::Release while holding the outer lock, thus
4515          // artificially lengthening the critical section.
4516          // Consider deferring the ::Release() until the subsequent unlock(),
4517          // after we've dropped the outer lock.
4518          if (ReleaseAfter != NULL) {
4519            ParkEvent::Release(ReleaseAfter);
4520          }
4521          return;
4522        }
4523        continue;      // Interference -- *Lock changed -- Just retry
4524      }
4525      assert(w & LOCKBIT, "invariant");
4526      ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4527      if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4528    }
4529
4530    while (ev->OnList != 0) {
4531      ev->park();
4532    }
4533  }
4534}
4535
4536// Release() must extract a successor from the list and then wake that thread.
4537// It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4538// similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4539// Release() would :
4540// (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4541// (B) Extract a successor from the private list "in-hand"
4542// (C) attempt to CAS() the residual back into *Lock over null.
4543//     If there were any newly arrived threads and the CAS() would fail.
4544//     In that case Release() would detach the RATs, re-merge the list in-hand
4545//     with the RATs and repeat as needed.  Alternately, Release() might
4546//     detach and extract a successor, but then pass the residual list to the wakee.
4547//     The wakee would be responsible for reattaching and remerging before it
4548//     competed for the lock.
4549//
4550// Both "pop" and DMR are immune from ABA corruption -- there can be
4551// multiple concurrent pushers, but only one popper or detacher.
4552// This implementation pops from the head of the list.  This is unfair,
4553// but tends to provide excellent throughput as hot threads remain hot.
4554// (We wake recently run threads first).
4555//
4556// All paths through muxRelease() will execute a CAS.
4557// Release consistency -- We depend on the CAS in muxRelease() to provide full
4558// bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4559// executed within the critical section are complete and globally visible before the
4560// store (CAS) to the lock-word that releases the lock becomes globally visible.
4561void Thread::muxRelease(volatile intptr_t * Lock)  {
4562  for (;;) {
4563    const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4564    assert(w & LOCKBIT, "invariant");
4565    if (w == LOCKBIT) return;
4566    ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4567    assert(List != NULL, "invariant");
4568    assert(List->OnList == intptr_t(Lock), "invariant");
4569    ParkEvent * const nxt = List->ListNext;
4570    guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4571
4572    // The following CAS() releases the lock and pops the head element.
4573    // The CAS() also ratifies the previously fetched lock-word value.
4574    if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4575      continue;
4576    }
4577    List->OnList = 0;
4578    OrderAccess::fence();
4579    List->unpark();
4580    return;
4581  }
4582}
4583
4584
4585void Threads::verify() {
4586  ALL_JAVA_THREADS(p) {
4587    p->verify();
4588  }
4589  VMThread* thread = VMThread::vm_thread();
4590  if (thread != NULL) thread->verify();
4591}
4592