thread.cpp revision 844:bd02caa94611
1/*
2 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
20 * CA 95054 USA or visit www.sun.com if you need additional information or
21 * have any questions.
22 *
23 */
24
25# include "incls/_precompiled.incl"
26# include "incls/_thread.cpp.incl"
27
28#ifdef DTRACE_ENABLED
29
30// Only bother with this argument setup if dtrace is available
31
32HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
33HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
34HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
35  intptr_t, intptr_t, bool);
36HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
37  intptr_t, intptr_t, bool);
38
39#define DTRACE_THREAD_PROBE(probe, javathread)                             \
40  {                                                                        \
41    ResourceMark rm(this);                                                 \
42    int len = 0;                                                           \
43    const char* name = (javathread)->get_thread_name();                    \
44    len = strlen(name);                                                    \
45    HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
46      name, len,                                                           \
47      java_lang_Thread::thread_id((javathread)->threadObj()),              \
48      (javathread)->osthread()->thread_id(),                               \
49      java_lang_Thread::is_daemon((javathread)->threadObj()));             \
50  }
51
52#else //  ndef DTRACE_ENABLED
53
54#define DTRACE_THREAD_PROBE(probe, javathread)
55
56#endif // ndef DTRACE_ENABLED
57
58// Class hierarchy
59// - Thread
60//   - VMThread
61//   - WatcherThread
62//   - ConcurrentMarkSweepThread
63//   - JavaThread
64//     - CompilerThread
65
66// ======= Thread ========
67
68// Support for forcing alignment of thread objects for biased locking
69void* Thread::operator new(size_t size) {
70  if (UseBiasedLocking) {
71    const int alignment = markOopDesc::biased_lock_alignment;
72    size_t aligned_size = size + (alignment - sizeof(intptr_t));
73    void* real_malloc_addr = CHeapObj::operator new(aligned_size);
74    void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
75    assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
76           ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
77           "JavaThread alignment code overflowed allocated storage");
78    if (TraceBiasedLocking) {
79      if (aligned_addr != real_malloc_addr)
80        tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
81                      real_malloc_addr, aligned_addr);
82    }
83    ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
84    return aligned_addr;
85  } else {
86    return CHeapObj::operator new(size);
87  }
88}
89
90void Thread::operator delete(void* p) {
91  if (UseBiasedLocking) {
92    void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
93    CHeapObj::operator delete(real_malloc_addr);
94  } else {
95    CHeapObj::operator delete(p);
96  }
97}
98
99
100// Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
101// JavaThread
102
103
104Thread::Thread() {
105  // stack
106  _stack_base   = NULL;
107  _stack_size   = 0;
108  _self_raw_id  = 0;
109  _lgrp_id      = -1;
110  _osthread     = NULL;
111
112  // allocated data structures
113  set_resource_area(new ResourceArea());
114  set_handle_area(new HandleArea(NULL));
115  set_active_handles(NULL);
116  set_free_handle_block(NULL);
117  set_last_handle_mark(NULL);
118  set_osthread(NULL);
119
120  // This initial value ==> never claimed.
121  _oops_do_parity = 0;
122
123  // the handle mark links itself to last_handle_mark
124  new HandleMark(this);
125
126  // plain initialization
127  debug_only(_owned_locks = NULL;)
128  debug_only(_allow_allocation_count = 0;)
129  NOT_PRODUCT(_allow_safepoint_count = 0;)
130  NOT_PRODUCT(_skip_gcalot = false;)
131  CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
132  _jvmti_env_iteration_count = 0;
133  _vm_operation_started_count = 0;
134  _vm_operation_completed_count = 0;
135  _current_pending_monitor = NULL;
136  _current_pending_monitor_is_from_java = true;
137  _current_waiting_monitor = NULL;
138  _num_nested_signal = 0;
139  omFreeList = NULL ;
140  omFreeCount = 0 ;
141  omFreeProvision = 32 ;
142
143  _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
144  _suspend_flags = 0;
145
146  // thread-specific hashCode stream generator state - Marsaglia shift-xor form
147  _hashStateX = os::random() ;
148  _hashStateY = 842502087 ;
149  _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
150  _hashStateW = 273326509 ;
151
152  _OnTrap   = 0 ;
153  _schedctl = NULL ;
154  _Stalled  = 0 ;
155  _TypeTag  = 0x2BAD ;
156
157  // Many of the following fields are effectively final - immutable
158  // Note that nascent threads can't use the Native Monitor-Mutex
159  // construct until the _MutexEvent is initialized ...
160  // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
161  // we might instead use a stack of ParkEvents that we could provision on-demand.
162  // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
163  // and ::Release()
164  _ParkEvent   = ParkEvent::Allocate (this) ;
165  _SleepEvent  = ParkEvent::Allocate (this) ;
166  _MutexEvent  = ParkEvent::Allocate (this) ;
167  _MuxEvent    = ParkEvent::Allocate (this) ;
168
169#ifdef CHECK_UNHANDLED_OOPS
170  if (CheckUnhandledOops) {
171    _unhandled_oops = new UnhandledOops(this);
172  }
173#endif // CHECK_UNHANDLED_OOPS
174#ifdef ASSERT
175  if (UseBiasedLocking) {
176    assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
177    assert(this == _real_malloc_address ||
178           this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
179           "bug in forced alignment of thread objects");
180  }
181#endif /* ASSERT */
182}
183
184void Thread::initialize_thread_local_storage() {
185  // Note: Make sure this method only calls
186  // non-blocking operations. Otherwise, it might not work
187  // with the thread-startup/safepoint interaction.
188
189  // During Java thread startup, safepoint code should allow this
190  // method to complete because it may need to allocate memory to
191  // store information for the new thread.
192
193  // initialize structure dependent on thread local storage
194  ThreadLocalStorage::set_thread(this);
195
196  // set up any platform-specific state.
197  os::initialize_thread();
198
199}
200
201void Thread::record_stack_base_and_size() {
202  set_stack_base(os::current_stack_base());
203  set_stack_size(os::current_stack_size());
204}
205
206
207Thread::~Thread() {
208  // Reclaim the objectmonitors from the omFreeList of the moribund thread.
209  ObjectSynchronizer::omFlush (this) ;
210
211  // deallocate data structures
212  delete resource_area();
213  // since the handle marks are using the handle area, we have to deallocated the root
214  // handle mark before deallocating the thread's handle area,
215  assert(last_handle_mark() != NULL, "check we have an element");
216  delete last_handle_mark();
217  assert(last_handle_mark() == NULL, "check we have reached the end");
218
219  // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
220  // We NULL out the fields for good hygiene.
221  ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
222  ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
223  ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
224  ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
225
226  delete handle_area();
227
228  // osthread() can be NULL, if creation of thread failed.
229  if (osthread() != NULL) os::free_thread(osthread());
230
231  delete _SR_lock;
232
233  // clear thread local storage if the Thread is deleting itself
234  if (this == Thread::current()) {
235    ThreadLocalStorage::set_thread(NULL);
236  } else {
237    // In the case where we're not the current thread, invalidate all the
238    // caches in case some code tries to get the current thread or the
239    // thread that was destroyed, and gets stale information.
240    ThreadLocalStorage::invalidate_all();
241  }
242  CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
243}
244
245// NOTE: dummy function for assertion purpose.
246void Thread::run() {
247  ShouldNotReachHere();
248}
249
250#ifdef ASSERT
251// Private method to check for dangling thread pointer
252void check_for_dangling_thread_pointer(Thread *thread) {
253 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
254         "possibility of dangling Thread pointer");
255}
256#endif
257
258
259#ifndef PRODUCT
260// Tracing method for basic thread operations
261void Thread::trace(const char* msg, const Thread* const thread) {
262  if (!TraceThreadEvents) return;
263  ResourceMark rm;
264  ThreadCritical tc;
265  const char *name = "non-Java thread";
266  int prio = -1;
267  if (thread->is_Java_thread()
268      && !thread->is_Compiler_thread()) {
269    // The Threads_lock must be held to get information about
270    // this thread but may not be in some situations when
271    // tracing  thread events.
272    bool release_Threads_lock = false;
273    if (!Threads_lock->owned_by_self()) {
274      Threads_lock->lock();
275      release_Threads_lock = true;
276    }
277    JavaThread* jt = (JavaThread *)thread;
278    name = (char *)jt->get_thread_name();
279    oop thread_oop = jt->threadObj();
280    if (thread_oop != NULL) {
281      prio = java_lang_Thread::priority(thread_oop);
282    }
283    if (release_Threads_lock) {
284      Threads_lock->unlock();
285    }
286  }
287  tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
288}
289#endif
290
291
292ThreadPriority Thread::get_priority(const Thread* const thread) {
293  trace("get priority", thread);
294  ThreadPriority priority;
295  // Can return an error!
296  (void)os::get_priority(thread, priority);
297  assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
298  return priority;
299}
300
301void Thread::set_priority(Thread* thread, ThreadPriority priority) {
302  trace("set priority", thread);
303  debug_only(check_for_dangling_thread_pointer(thread);)
304  // Can return an error!
305  (void)os::set_priority(thread, priority);
306}
307
308
309void Thread::start(Thread* thread) {
310  trace("start", thread);
311  // Start is different from resume in that its safety is guaranteed by context or
312  // being called from a Java method synchronized on the Thread object.
313  if (!DisableStartThread) {
314    if (thread->is_Java_thread()) {
315      // Initialize the thread state to RUNNABLE before starting this thread.
316      // Can not set it after the thread started because we do not know the
317      // exact thread state at that time. It could be in MONITOR_WAIT or
318      // in SLEEPING or some other state.
319      java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
320                                          java_lang_Thread::RUNNABLE);
321    }
322    os::start_thread(thread);
323  }
324}
325
326// Enqueue a VM_Operation to do the job for us - sometime later
327void Thread::send_async_exception(oop java_thread, oop java_throwable) {
328  VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
329  VMThread::execute(vm_stop);
330}
331
332
333//
334// Check if an external suspend request has completed (or has been
335// cancelled). Returns true if the thread is externally suspended and
336// false otherwise.
337//
338// The bits parameter returns information about the code path through
339// the routine. Useful for debugging:
340//
341// set in is_ext_suspend_completed():
342// 0x00000001 - routine was entered
343// 0x00000010 - routine return false at end
344// 0x00000100 - thread exited (return false)
345// 0x00000200 - suspend request cancelled (return false)
346// 0x00000400 - thread suspended (return true)
347// 0x00001000 - thread is in a suspend equivalent state (return true)
348// 0x00002000 - thread is native and walkable (return true)
349// 0x00004000 - thread is native_trans and walkable (needed retry)
350//
351// set in wait_for_ext_suspend_completion():
352// 0x00010000 - routine was entered
353// 0x00020000 - suspend request cancelled before loop (return false)
354// 0x00040000 - thread suspended before loop (return true)
355// 0x00080000 - suspend request cancelled in loop (return false)
356// 0x00100000 - thread suspended in loop (return true)
357// 0x00200000 - suspend not completed during retry loop (return false)
358//
359
360// Helper class for tracing suspend wait debug bits.
361//
362// 0x00000100 indicates that the target thread exited before it could
363// self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
364// 0x00080000 each indicate a cancelled suspend request so they don't
365// count as wait failures either.
366#define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
367
368class TraceSuspendDebugBits : public StackObj {
369 private:
370  JavaThread * jt;
371  bool         is_wait;
372  bool         called_by_wait;  // meaningful when !is_wait
373  uint32_t *   bits;
374
375 public:
376  TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
377                        uint32_t *_bits) {
378    jt             = _jt;
379    is_wait        = _is_wait;
380    called_by_wait = _called_by_wait;
381    bits           = _bits;
382  }
383
384  ~TraceSuspendDebugBits() {
385    if (!is_wait) {
386#if 1
387      // By default, don't trace bits for is_ext_suspend_completed() calls.
388      // That trace is very chatty.
389      return;
390#else
391      if (!called_by_wait) {
392        // If tracing for is_ext_suspend_completed() is enabled, then only
393        // trace calls to it from wait_for_ext_suspend_completion()
394        return;
395      }
396#endif
397    }
398
399    if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
400      if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
401        MutexLocker ml(Threads_lock);  // needed for get_thread_name()
402        ResourceMark rm;
403
404        tty->print_cr(
405            "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
406            jt->get_thread_name(), *bits);
407
408        guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
409      }
410    }
411  }
412};
413#undef DEBUG_FALSE_BITS
414
415
416bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
417  TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
418
419  bool did_trans_retry = false;  // only do thread_in_native_trans retry once
420  bool do_trans_retry;           // flag to force the retry
421
422  *bits |= 0x00000001;
423
424  do {
425    do_trans_retry = false;
426
427    if (is_exiting()) {
428      // Thread is in the process of exiting. This is always checked
429      // first to reduce the risk of dereferencing a freed JavaThread.
430      *bits |= 0x00000100;
431      return false;
432    }
433
434    if (!is_external_suspend()) {
435      // Suspend request is cancelled. This is always checked before
436      // is_ext_suspended() to reduce the risk of a rogue resume
437      // confusing the thread that made the suspend request.
438      *bits |= 0x00000200;
439      return false;
440    }
441
442    if (is_ext_suspended()) {
443      // thread is suspended
444      *bits |= 0x00000400;
445      return true;
446    }
447
448    // Now that we no longer do hard suspends of threads running
449    // native code, the target thread can be changing thread state
450    // while we are in this routine:
451    //
452    //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
453    //
454    // We save a copy of the thread state as observed at this moment
455    // and make our decision about suspend completeness based on the
456    // copy. This closes the race where the thread state is seen as
457    // _thread_in_native_trans in the if-thread_blocked check, but is
458    // seen as _thread_blocked in if-thread_in_native_trans check.
459    JavaThreadState save_state = thread_state();
460
461    if (save_state == _thread_blocked && is_suspend_equivalent()) {
462      // If the thread's state is _thread_blocked and this blocking
463      // condition is known to be equivalent to a suspend, then we can
464      // consider the thread to be externally suspended. This means that
465      // the code that sets _thread_blocked has been modified to do
466      // self-suspension if the blocking condition releases. We also
467      // used to check for CONDVAR_WAIT here, but that is now covered by
468      // the _thread_blocked with self-suspension check.
469      //
470      // Return true since we wouldn't be here unless there was still an
471      // external suspend request.
472      *bits |= 0x00001000;
473      return true;
474    } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
475      // Threads running native code will self-suspend on native==>VM/Java
476      // transitions. If its stack is walkable (should always be the case
477      // unless this function is called before the actual java_suspend()
478      // call), then the wait is done.
479      *bits |= 0x00002000;
480      return true;
481    } else if (!called_by_wait && !did_trans_retry &&
482               save_state == _thread_in_native_trans &&
483               frame_anchor()->walkable()) {
484      // The thread is transitioning from thread_in_native to another
485      // thread state. check_safepoint_and_suspend_for_native_trans()
486      // will force the thread to self-suspend. If it hasn't gotten
487      // there yet we may have caught the thread in-between the native
488      // code check above and the self-suspend. Lucky us. If we were
489      // called by wait_for_ext_suspend_completion(), then it
490      // will be doing the retries so we don't have to.
491      //
492      // Since we use the saved thread state in the if-statement above,
493      // there is a chance that the thread has already transitioned to
494      // _thread_blocked by the time we get here. In that case, we will
495      // make a single unnecessary pass through the logic below. This
496      // doesn't hurt anything since we still do the trans retry.
497
498      *bits |= 0x00004000;
499
500      // Once the thread leaves thread_in_native_trans for another
501      // thread state, we break out of this retry loop. We shouldn't
502      // need this flag to prevent us from getting back here, but
503      // sometimes paranoia is good.
504      did_trans_retry = true;
505
506      // We wait for the thread to transition to a more usable state.
507      for (int i = 1; i <= SuspendRetryCount; i++) {
508        // We used to do an "os::yield_all(i)" call here with the intention
509        // that yielding would increase on each retry. However, the parameter
510        // is ignored on Linux which means the yield didn't scale up. Waiting
511        // on the SR_lock below provides a much more predictable scale up for
512        // the delay. It also provides a simple/direct point to check for any
513        // safepoint requests from the VMThread
514
515        // temporarily drops SR_lock while doing wait with safepoint check
516        // (if we're a JavaThread - the WatcherThread can also call this)
517        // and increase delay with each retry
518        SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
519
520        // check the actual thread state instead of what we saved above
521        if (thread_state() != _thread_in_native_trans) {
522          // the thread has transitioned to another thread state so
523          // try all the checks (except this one) one more time.
524          do_trans_retry = true;
525          break;
526        }
527      } // end retry loop
528
529
530    }
531  } while (do_trans_retry);
532
533  *bits |= 0x00000010;
534  return false;
535}
536
537//
538// Wait for an external suspend request to complete (or be cancelled).
539// Returns true if the thread is externally suspended and false otherwise.
540//
541bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
542       uint32_t *bits) {
543  TraceSuspendDebugBits tsdb(this, true /* is_wait */,
544                             false /* !called_by_wait */, bits);
545
546  // local flag copies to minimize SR_lock hold time
547  bool is_suspended;
548  bool pending;
549  uint32_t reset_bits;
550
551  // set a marker so is_ext_suspend_completed() knows we are the caller
552  *bits |= 0x00010000;
553
554  // We use reset_bits to reinitialize the bits value at the top of
555  // each retry loop. This allows the caller to make use of any
556  // unused bits for their own marking purposes.
557  reset_bits = *bits;
558
559  {
560    MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
561    is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
562                                            delay, bits);
563    pending = is_external_suspend();
564  }
565  // must release SR_lock to allow suspension to complete
566
567  if (!pending) {
568    // A cancelled suspend request is the only false return from
569    // is_ext_suspend_completed() that keeps us from entering the
570    // retry loop.
571    *bits |= 0x00020000;
572    return false;
573  }
574
575  if (is_suspended) {
576    *bits |= 0x00040000;
577    return true;
578  }
579
580  for (int i = 1; i <= retries; i++) {
581    *bits = reset_bits;  // reinit to only track last retry
582
583    // We used to do an "os::yield_all(i)" call here with the intention
584    // that yielding would increase on each retry. However, the parameter
585    // is ignored on Linux which means the yield didn't scale up. Waiting
586    // on the SR_lock below provides a much more predictable scale up for
587    // the delay. It also provides a simple/direct point to check for any
588    // safepoint requests from the VMThread
589
590    {
591      MutexLocker ml(SR_lock());
592      // wait with safepoint check (if we're a JavaThread - the WatcherThread
593      // can also call this)  and increase delay with each retry
594      SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
595
596      is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
597                                              delay, bits);
598
599      // It is possible for the external suspend request to be cancelled
600      // (by a resume) before the actual suspend operation is completed.
601      // Refresh our local copy to see if we still need to wait.
602      pending = is_external_suspend();
603    }
604
605    if (!pending) {
606      // A cancelled suspend request is the only false return from
607      // is_ext_suspend_completed() that keeps us from staying in the
608      // retry loop.
609      *bits |= 0x00080000;
610      return false;
611    }
612
613    if (is_suspended) {
614      *bits |= 0x00100000;
615      return true;
616    }
617  } // end retry loop
618
619  // thread did not suspend after all our retries
620  *bits |= 0x00200000;
621  return false;
622}
623
624#ifndef PRODUCT
625void JavaThread::record_jump(address target, address instr, const char* file, int line) {
626
627  // This should not need to be atomic as the only way for simultaneous
628  // updates is via interrupts. Even then this should be rare or non-existant
629  // and we don't care that much anyway.
630
631  int index = _jmp_ring_index;
632  _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
633  _jmp_ring[index]._target = (intptr_t) target;
634  _jmp_ring[index]._instruction = (intptr_t) instr;
635  _jmp_ring[index]._file = file;
636  _jmp_ring[index]._line = line;
637}
638#endif /* PRODUCT */
639
640// Called by flat profiler
641// Callers have already called wait_for_ext_suspend_completion
642// The assertion for that is currently too complex to put here:
643bool JavaThread::profile_last_Java_frame(frame* _fr) {
644  bool gotframe = false;
645  // self suspension saves needed state.
646  if (has_last_Java_frame() && _anchor.walkable()) {
647     *_fr = pd_last_frame();
648     gotframe = true;
649  }
650  return gotframe;
651}
652
653void Thread::interrupt(Thread* thread) {
654  trace("interrupt", thread);
655  debug_only(check_for_dangling_thread_pointer(thread);)
656  os::interrupt(thread);
657}
658
659bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
660  trace("is_interrupted", thread);
661  debug_only(check_for_dangling_thread_pointer(thread);)
662  // Note:  If clear_interrupted==false, this simply fetches and
663  // returns the value of the field osthread()->interrupted().
664  return os::is_interrupted(thread, clear_interrupted);
665}
666
667
668// GC Support
669bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
670  jint thread_parity = _oops_do_parity;
671  if (thread_parity != strong_roots_parity) {
672    jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
673    if (res == thread_parity) return true;
674    else {
675      guarantee(res == strong_roots_parity, "Or else what?");
676      assert(SharedHeap::heap()->n_par_threads() > 0,
677             "Should only fail when parallel.");
678      return false;
679    }
680  }
681  assert(SharedHeap::heap()->n_par_threads() > 0,
682         "Should only fail when parallel.");
683  return false;
684}
685
686void Thread::oops_do(OopClosure* f) {
687  active_handles()->oops_do(f);
688  // Do oop for ThreadShadow
689  f->do_oop((oop*)&_pending_exception);
690  handle_area()->oops_do(f);
691}
692
693void Thread::nmethods_do() {
694}
695
696void Thread::print_on(outputStream* st) const {
697  // get_priority assumes osthread initialized
698  if (osthread() != NULL) {
699    st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
700    osthread()->print_on(st);
701  }
702  debug_only(if (WizardMode) print_owned_locks_on(st);)
703}
704
705// Thread::print_on_error() is called by fatal error handler. Don't use
706// any lock or allocate memory.
707void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
708  if      (is_VM_thread())                  st->print("VMThread");
709  else if (is_Compiler_thread())            st->print("CompilerThread");
710  else if (is_Java_thread())                st->print("JavaThread");
711  else if (is_GC_task_thread())             st->print("GCTaskThread");
712  else if (is_Watcher_thread())             st->print("WatcherThread");
713  else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
714  else st->print("Thread");
715
716  st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
717            _stack_base - _stack_size, _stack_base);
718
719  if (osthread()) {
720    st->print(" [id=%d]", osthread()->thread_id());
721  }
722}
723
724#ifdef ASSERT
725void Thread::print_owned_locks_on(outputStream* st) const {
726  Monitor *cur = _owned_locks;
727  if (cur == NULL) {
728    st->print(" (no locks) ");
729  } else {
730    st->print_cr(" Locks owned:");
731    while(cur) {
732      cur->print_on(st);
733      cur = cur->next();
734    }
735  }
736}
737
738static int ref_use_count  = 0;
739
740bool Thread::owns_locks_but_compiled_lock() const {
741  for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
742    if (cur != Compile_lock) return true;
743  }
744  return false;
745}
746
747
748#endif
749
750#ifndef PRODUCT
751
752// The flag: potential_vm_operation notifies if this particular safepoint state could potential
753// invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
754// no threads which allow_vm_block's are held
755void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
756    // Check if current thread is allowed to block at a safepoint
757    if (!(_allow_safepoint_count == 0))
758      fatal("Possible safepoint reached by thread that does not allow it");
759    if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
760      fatal("LEAF method calling lock?");
761    }
762
763#ifdef ASSERT
764    if (potential_vm_operation && is_Java_thread()
765        && !Universe::is_bootstrapping()) {
766      // Make sure we do not hold any locks that the VM thread also uses.
767      // This could potentially lead to deadlocks
768      for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
769        // Threads_lock is special, since the safepoint synchronization will not start before this is
770        // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
771        // since it is used to transfer control between JavaThreads and the VMThread
772        // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
773        if ( (cur->allow_vm_block() &&
774              cur != Threads_lock &&
775              cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
776              cur != VMOperationRequest_lock &&
777              cur != VMOperationQueue_lock) ||
778              cur->rank() == Mutex::special) {
779          warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
780        }
781      }
782    }
783
784    if (GCALotAtAllSafepoints) {
785      // We could enter a safepoint here and thus have a gc
786      InterfaceSupport::check_gc_alot();
787    }
788#endif
789}
790#endif
791
792bool Thread::is_in_stack(address adr) const {
793  assert(Thread::current() == this, "is_in_stack can only be called from current thread");
794  address end = os::current_stack_pointer();
795  if (stack_base() >= adr && adr >= end) return true;
796
797  return false;
798}
799
800
801// We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
802// However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
803// used for compilation in the future. If that change is made, the need for these methods
804// should be revisited, and they should be removed if possible.
805
806bool Thread::is_lock_owned(address adr) const {
807  return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
808}
809
810bool Thread::set_as_starting_thread() {
811 // NOTE: this must be called inside the main thread.
812  return os::create_main_thread((JavaThread*)this);
813}
814
815static void initialize_class(symbolHandle class_name, TRAPS) {
816  klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
817  instanceKlass::cast(klass)->initialize(CHECK);
818}
819
820
821// Creates the initial ThreadGroup
822static Handle create_initial_thread_group(TRAPS) {
823  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
824  instanceKlassHandle klass (THREAD, k);
825
826  Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
827  {
828    JavaValue result(T_VOID);
829    JavaCalls::call_special(&result,
830                            system_instance,
831                            klass,
832                            vmSymbolHandles::object_initializer_name(),
833                            vmSymbolHandles::void_method_signature(),
834                            CHECK_NH);
835  }
836  Universe::set_system_thread_group(system_instance());
837
838  Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
839  {
840    JavaValue result(T_VOID);
841    Handle string = java_lang_String::create_from_str("main", CHECK_NH);
842    JavaCalls::call_special(&result,
843                            main_instance,
844                            klass,
845                            vmSymbolHandles::object_initializer_name(),
846                            vmSymbolHandles::threadgroup_string_void_signature(),
847                            system_instance,
848                            string,
849                            CHECK_NH);
850  }
851  return main_instance;
852}
853
854// Creates the initial Thread
855static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
856  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
857  instanceKlassHandle klass (THREAD, k);
858  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
859
860  java_lang_Thread::set_thread(thread_oop(), thread);
861  java_lang_Thread::set_priority(thread_oop(), NormPriority);
862  thread->set_threadObj(thread_oop());
863
864  Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
865
866  JavaValue result(T_VOID);
867  JavaCalls::call_special(&result, thread_oop,
868                                   klass,
869                                   vmSymbolHandles::object_initializer_name(),
870                                   vmSymbolHandles::threadgroup_string_void_signature(),
871                                   thread_group,
872                                   string,
873                                   CHECK_NULL);
874  return thread_oop();
875}
876
877static void call_initializeSystemClass(TRAPS) {
878  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
879  instanceKlassHandle klass (THREAD, k);
880
881  JavaValue result(T_VOID);
882  JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
883                                         vmSymbolHandles::void_method_signature(), CHECK);
884}
885
886static void reset_vm_info_property(TRAPS) {
887  // the vm info string
888  ResourceMark rm(THREAD);
889  const char *vm_info = VM_Version::vm_info_string();
890
891  // java.lang.System class
892  klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
893  instanceKlassHandle klass (THREAD, k);
894
895  // setProperty arguments
896  Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
897  Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
898
899  // return value
900  JavaValue r(T_OBJECT);
901
902  // public static String setProperty(String key, String value);
903  JavaCalls::call_static(&r,
904                         klass,
905                         vmSymbolHandles::setProperty_name(),
906                         vmSymbolHandles::string_string_string_signature(),
907                         key_str,
908                         value_str,
909                         CHECK);
910}
911
912
913void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
914  assert(thread_group.not_null(), "thread group should be specified");
915  assert(threadObj() == NULL, "should only create Java thread object once");
916
917  klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
918  instanceKlassHandle klass (THREAD, k);
919  instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
920
921  java_lang_Thread::set_thread(thread_oop(), this);
922  java_lang_Thread::set_priority(thread_oop(), NormPriority);
923  set_threadObj(thread_oop());
924
925  JavaValue result(T_VOID);
926  if (thread_name != NULL) {
927    Handle name = java_lang_String::create_from_str(thread_name, CHECK);
928    // Thread gets assigned specified name and null target
929    JavaCalls::call_special(&result,
930                            thread_oop,
931                            klass,
932                            vmSymbolHandles::object_initializer_name(),
933                            vmSymbolHandles::threadgroup_string_void_signature(),
934                            thread_group, // Argument 1
935                            name,         // Argument 2
936                            THREAD);
937  } else {
938    // Thread gets assigned name "Thread-nnn" and null target
939    // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
940    JavaCalls::call_special(&result,
941                            thread_oop,
942                            klass,
943                            vmSymbolHandles::object_initializer_name(),
944                            vmSymbolHandles::threadgroup_runnable_void_signature(),
945                            thread_group, // Argument 1
946                            Handle(),     // Argument 2
947                            THREAD);
948  }
949
950
951  if (daemon) {
952      java_lang_Thread::set_daemon(thread_oop());
953  }
954
955  if (HAS_PENDING_EXCEPTION) {
956    return;
957  }
958
959  KlassHandle group(this, SystemDictionary::threadGroup_klass());
960  Handle threadObj(this, this->threadObj());
961
962  JavaCalls::call_special(&result,
963                         thread_group,
964                         group,
965                         vmSymbolHandles::add_method_name(),
966                         vmSymbolHandles::thread_void_signature(),
967                         threadObj,          // Arg 1
968                         THREAD);
969
970
971}
972
973// NamedThread --  non-JavaThread subclasses with multiple
974// uniquely named instances should derive from this.
975NamedThread::NamedThread() : Thread() {
976  _name = NULL;
977}
978
979NamedThread::~NamedThread() {
980  if (_name != NULL) {
981    FREE_C_HEAP_ARRAY(char, _name);
982    _name = NULL;
983  }
984}
985
986void NamedThread::set_name(const char* format, ...) {
987  guarantee(_name == NULL, "Only get to set name once.");
988  _name = NEW_C_HEAP_ARRAY(char, max_name_len);
989  guarantee(_name != NULL, "alloc failure");
990  va_list ap;
991  va_start(ap, format);
992  jio_vsnprintf(_name, max_name_len, format, ap);
993  va_end(ap);
994}
995
996// ======= WatcherThread ========
997
998// The watcher thread exists to simulate timer interrupts.  It should
999// be replaced by an abstraction over whatever native support for
1000// timer interrupts exists on the platform.
1001
1002WatcherThread* WatcherThread::_watcher_thread   = NULL;
1003bool           WatcherThread::_should_terminate = false;
1004
1005WatcherThread::WatcherThread() : Thread() {
1006  assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1007  if (os::create_thread(this, os::watcher_thread)) {
1008    _watcher_thread = this;
1009
1010    // Set the watcher thread to the highest OS priority which should not be
1011    // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1012    // is created. The only normal thread using this priority is the reference
1013    // handler thread, which runs for very short intervals only.
1014    // If the VMThread's priority is not lower than the WatcherThread profiling
1015    // will be inaccurate.
1016    os::set_priority(this, MaxPriority);
1017    if (!DisableStartThread) {
1018      os::start_thread(this);
1019    }
1020  }
1021}
1022
1023void WatcherThread::run() {
1024  assert(this == watcher_thread(), "just checking");
1025
1026  this->record_stack_base_and_size();
1027  this->initialize_thread_local_storage();
1028  this->set_active_handles(JNIHandleBlock::allocate_block());
1029  while(!_should_terminate) {
1030    assert(watcher_thread() == Thread::current(),  "thread consistency check");
1031    assert(watcher_thread() == this,  "thread consistency check");
1032
1033    // Calculate how long it'll be until the next PeriodicTask work
1034    // should be done, and sleep that amount of time.
1035    const size_t time_to_wait = PeriodicTask::time_to_wait();
1036    os::sleep(this, time_to_wait, false);
1037
1038    if (is_error_reported()) {
1039      // A fatal error has happened, the error handler(VMError::report_and_die)
1040      // should abort JVM after creating an error log file. However in some
1041      // rare cases, the error handler itself might deadlock. Here we try to
1042      // kill JVM if the fatal error handler fails to abort in 2 minutes.
1043      //
1044      // This code is in WatcherThread because WatcherThread wakes up
1045      // periodically so the fatal error handler doesn't need to do anything;
1046      // also because the WatcherThread is less likely to crash than other
1047      // threads.
1048
1049      for (;;) {
1050        if (!ShowMessageBoxOnError
1051         && (OnError == NULL || OnError[0] == '\0')
1052         && Arguments::abort_hook() == NULL) {
1053             os::sleep(this, 2 * 60 * 1000, false);
1054             fdStream err(defaultStream::output_fd());
1055             err.print_raw_cr("# [ timer expired, abort... ]");
1056             // skip atexit/vm_exit/vm_abort hooks
1057             os::die();
1058        }
1059
1060        // Wake up 5 seconds later, the fatal handler may reset OnError or
1061        // ShowMessageBoxOnError when it is ready to abort.
1062        os::sleep(this, 5 * 1000, false);
1063      }
1064    }
1065
1066    PeriodicTask::real_time_tick(time_to_wait);
1067
1068    // If we have no more tasks left due to dynamic disenrollment,
1069    // shut down the thread since we don't currently support dynamic enrollment
1070    if (PeriodicTask::num_tasks() == 0) {
1071      _should_terminate = true;
1072    }
1073  }
1074
1075  // Signal that it is terminated
1076  {
1077    MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1078    _watcher_thread = NULL;
1079    Terminator_lock->notify();
1080  }
1081
1082  // Thread destructor usually does this..
1083  ThreadLocalStorage::set_thread(NULL);
1084}
1085
1086void WatcherThread::start() {
1087  if (watcher_thread() == NULL) {
1088    _should_terminate = false;
1089    // Create the single instance of WatcherThread
1090    new WatcherThread();
1091  }
1092}
1093
1094void WatcherThread::stop() {
1095  // it is ok to take late safepoints here, if needed
1096  MutexLocker mu(Terminator_lock);
1097  _should_terminate = true;
1098  while(watcher_thread() != NULL) {
1099    // This wait should make safepoint checks, wait without a timeout,
1100    // and wait as a suspend-equivalent condition.
1101    //
1102    // Note: If the FlatProfiler is running, then this thread is waiting
1103    // for the WatcherThread to terminate and the WatcherThread, via the
1104    // FlatProfiler task, is waiting for the external suspend request on
1105    // this thread to complete. wait_for_ext_suspend_completion() will
1106    // eventually timeout, but that takes time. Making this wait a
1107    // suspend-equivalent condition solves that timeout problem.
1108    //
1109    Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1110                          Mutex::_as_suspend_equivalent_flag);
1111  }
1112}
1113
1114void WatcherThread::print_on(outputStream* st) const {
1115  st->print("\"%s\" ", name());
1116  Thread::print_on(st);
1117  st->cr();
1118}
1119
1120// ======= JavaThread ========
1121
1122// A JavaThread is a normal Java thread
1123
1124void JavaThread::initialize() {
1125  // Initialize fields
1126
1127  // Set the claimed par_id to -1 (ie not claiming any par_ids)
1128  set_claimed_par_id(-1);
1129
1130  set_saved_exception_pc(NULL);
1131  set_threadObj(NULL);
1132  _anchor.clear();
1133  set_entry_point(NULL);
1134  set_jni_functions(jni_functions());
1135  set_callee_target(NULL);
1136  set_vm_result(NULL);
1137  set_vm_result_2(NULL);
1138  set_vframe_array_head(NULL);
1139  set_vframe_array_last(NULL);
1140  set_deferred_locals(NULL);
1141  set_deopt_mark(NULL);
1142  clear_must_deopt_id();
1143  set_monitor_chunks(NULL);
1144  set_next(NULL);
1145  set_thread_state(_thread_new);
1146  _terminated = _not_terminated;
1147  _privileged_stack_top = NULL;
1148  _array_for_gc = NULL;
1149  _suspend_equivalent = false;
1150  _in_deopt_handler = 0;
1151  _doing_unsafe_access = false;
1152  _stack_guard_state = stack_guard_unused;
1153  _exception_oop = NULL;
1154  _exception_pc  = 0;
1155  _exception_handler_pc = 0;
1156  _exception_stack_size = 0;
1157  _jvmti_thread_state= NULL;
1158  _jvmti_get_loaded_classes_closure = NULL;
1159  _interp_only_mode    = 0;
1160  _special_runtime_exit_condition = _no_async_condition;
1161  _pending_async_exception = NULL;
1162  _is_compiling = false;
1163  _thread_stat = NULL;
1164  _thread_stat = new ThreadStatistics();
1165  _blocked_on_compilation = false;
1166  _jni_active_critical = 0;
1167  _do_not_unlock_if_synchronized = false;
1168  _cached_monitor_info = NULL;
1169  _parker = Parker::Allocate(this) ;
1170
1171#ifndef PRODUCT
1172  _jmp_ring_index = 0;
1173  for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1174    record_jump(NULL, NULL, NULL, 0);
1175  }
1176#endif /* PRODUCT */
1177
1178  set_thread_profiler(NULL);
1179  if (FlatProfiler::is_active()) {
1180    // This is where we would decide to either give each thread it's own profiler
1181    // or use one global one from FlatProfiler,
1182    // or up to some count of the number of profiled threads, etc.
1183    ThreadProfiler* pp = new ThreadProfiler();
1184    pp->engage();
1185    set_thread_profiler(pp);
1186  }
1187
1188  // Setup safepoint state info for this thread
1189  ThreadSafepointState::create(this);
1190
1191  debug_only(_java_call_counter = 0);
1192
1193  // JVMTI PopFrame support
1194  _popframe_condition = popframe_inactive;
1195  _popframe_preserved_args = NULL;
1196  _popframe_preserved_args_size = 0;
1197
1198  pd_initialize();
1199}
1200
1201#ifndef SERIALGC
1202SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1203DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1204#endif // !SERIALGC
1205
1206JavaThread::JavaThread(bool is_attaching) :
1207  Thread()
1208#ifndef SERIALGC
1209  , _satb_mark_queue(&_satb_mark_queue_set),
1210  _dirty_card_queue(&_dirty_card_queue_set)
1211#endif // !SERIALGC
1212{
1213  initialize();
1214  _is_attaching = is_attaching;
1215}
1216
1217bool JavaThread::reguard_stack(address cur_sp) {
1218  if (_stack_guard_state != stack_guard_yellow_disabled) {
1219    return true; // Stack already guarded or guard pages not needed.
1220  }
1221
1222  if (register_stack_overflow()) {
1223    // For those architectures which have separate register and
1224    // memory stacks, we must check the register stack to see if
1225    // it has overflowed.
1226    return false;
1227  }
1228
1229  // Java code never executes within the yellow zone: the latter is only
1230  // there to provoke an exception during stack banging.  If java code
1231  // is executing there, either StackShadowPages should be larger, or
1232  // some exception code in c1, c2 or the interpreter isn't unwinding
1233  // when it should.
1234  guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1235
1236  enable_stack_yellow_zone();
1237  return true;
1238}
1239
1240bool JavaThread::reguard_stack(void) {
1241  return reguard_stack(os::current_stack_pointer());
1242}
1243
1244
1245void JavaThread::block_if_vm_exited() {
1246  if (_terminated == _vm_exited) {
1247    // _vm_exited is set at safepoint, and Threads_lock is never released
1248    // we will block here forever
1249    Threads_lock->lock_without_safepoint_check();
1250    ShouldNotReachHere();
1251  }
1252}
1253
1254
1255// Remove this ifdef when C1 is ported to the compiler interface.
1256static void compiler_thread_entry(JavaThread* thread, TRAPS);
1257
1258JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1259  Thread()
1260#ifndef SERIALGC
1261  , _satb_mark_queue(&_satb_mark_queue_set),
1262  _dirty_card_queue(&_dirty_card_queue_set)
1263#endif // !SERIALGC
1264{
1265  if (TraceThreadEvents) {
1266    tty->print_cr("creating thread %p", this);
1267  }
1268  initialize();
1269  _is_attaching = false;
1270  set_entry_point(entry_point);
1271  // Create the native thread itself.
1272  // %note runtime_23
1273  os::ThreadType thr_type = os::java_thread;
1274  thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1275                                                     os::java_thread;
1276  os::create_thread(this, thr_type, stack_sz);
1277
1278  // The _osthread may be NULL here because we ran out of memory (too many threads active).
1279  // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1280  // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1281  // the exception consists of creating the exception object & initializing it, initialization
1282  // will leave the VM via a JavaCall and then all locks must be unlocked).
1283  //
1284  // The thread is still suspended when we reach here. Thread must be explicit started
1285  // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1286  // by calling Threads:add. The reason why this is not done here, is because the thread
1287  // object must be fully initialized (take a look at JVM_Start)
1288}
1289
1290JavaThread::~JavaThread() {
1291  if (TraceThreadEvents) {
1292      tty->print_cr("terminate thread %p", this);
1293  }
1294
1295  // JSR166 -- return the parker to the free list
1296  Parker::Release(_parker);
1297  _parker = NULL ;
1298
1299  // Free any remaining  previous UnrollBlock
1300  vframeArray* old_array = vframe_array_last();
1301
1302  if (old_array != NULL) {
1303    Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1304    old_array->set_unroll_block(NULL);
1305    delete old_info;
1306    delete old_array;
1307  }
1308
1309  GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1310  if (deferred != NULL) {
1311    // This can only happen if thread is destroyed before deoptimization occurs.
1312    assert(deferred->length() != 0, "empty array!");
1313    do {
1314      jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1315      deferred->remove_at(0);
1316      // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1317      delete dlv;
1318    } while (deferred->length() != 0);
1319    delete deferred;
1320  }
1321
1322  // All Java related clean up happens in exit
1323  ThreadSafepointState::destroy(this);
1324  if (_thread_profiler != NULL) delete _thread_profiler;
1325  if (_thread_stat != NULL) delete _thread_stat;
1326}
1327
1328
1329// The first routine called by a new Java thread
1330void JavaThread::run() {
1331  // initialize thread-local alloc buffer related fields
1332  this->initialize_tlab();
1333
1334  // used to test validitity of stack trace backs
1335  this->record_base_of_stack_pointer();
1336
1337  // Record real stack base and size.
1338  this->record_stack_base_and_size();
1339
1340  // Initialize thread local storage; set before calling MutexLocker
1341  this->initialize_thread_local_storage();
1342
1343  this->create_stack_guard_pages();
1344
1345  // Thread is now sufficient initialized to be handled by the safepoint code as being
1346  // in the VM. Change thread state from _thread_new to _thread_in_vm
1347  ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1348
1349  assert(JavaThread::current() == this, "sanity check");
1350  assert(!Thread::current()->owns_locks(), "sanity check");
1351
1352  DTRACE_THREAD_PROBE(start, this);
1353
1354  // This operation might block. We call that after all safepoint checks for a new thread has
1355  // been completed.
1356  this->set_active_handles(JNIHandleBlock::allocate_block());
1357
1358  if (JvmtiExport::should_post_thread_life()) {
1359    JvmtiExport::post_thread_start(this);
1360  }
1361
1362  // We call another function to do the rest so we are sure that the stack addresses used
1363  // from there will be lower than the stack base just computed
1364  thread_main_inner();
1365
1366  // Note, thread is no longer valid at this point!
1367}
1368
1369
1370void JavaThread::thread_main_inner() {
1371  assert(JavaThread::current() == this, "sanity check");
1372  assert(this->threadObj() != NULL, "just checking");
1373
1374  // Execute thread entry point. If this thread is being asked to restart,
1375  // or has been stopped before starting, do not reexecute entry point.
1376  // Note: Due to JVM_StopThread we can have pending exceptions already!
1377  if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1378    // enter the thread's entry point only if we have no pending exceptions
1379    HandleMark hm(this);
1380    this->entry_point()(this, this);
1381  }
1382
1383  DTRACE_THREAD_PROBE(stop, this);
1384
1385  this->exit(false);
1386  delete this;
1387}
1388
1389
1390static void ensure_join(JavaThread* thread) {
1391  // We do not need to grap the Threads_lock, since we are operating on ourself.
1392  Handle threadObj(thread, thread->threadObj());
1393  assert(threadObj.not_null(), "java thread object must exist");
1394  ObjectLocker lock(threadObj, thread);
1395  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1396  thread->clear_pending_exception();
1397  // It is of profound importance that we set the stillborn bit and reset the thread object,
1398  // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1399  // false. So in case another thread is doing a join on this thread , it will detect that the thread
1400  // is dead when it gets notified.
1401  java_lang_Thread::set_stillborn(threadObj());
1402  // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1403  java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1404  java_lang_Thread::set_thread(threadObj(), NULL);
1405  lock.notify_all(thread);
1406  // Ignore pending exception (ThreadDeath), since we are exiting anyway
1407  thread->clear_pending_exception();
1408}
1409
1410
1411// For any new cleanup additions, please check to see if they need to be applied to
1412// cleanup_failed_attach_current_thread as well.
1413void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1414  assert(this == JavaThread::current(),  "thread consistency check");
1415  if (!InitializeJavaLangSystem) return;
1416
1417  HandleMark hm(this);
1418  Handle uncaught_exception(this, this->pending_exception());
1419  this->clear_pending_exception();
1420  Handle threadObj(this, this->threadObj());
1421  assert(threadObj.not_null(), "Java thread object should be created");
1422
1423  if (get_thread_profiler() != NULL) {
1424    get_thread_profiler()->disengage();
1425    ResourceMark rm;
1426    get_thread_profiler()->print(get_thread_name());
1427  }
1428
1429
1430  // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1431  {
1432    EXCEPTION_MARK;
1433
1434    CLEAR_PENDING_EXCEPTION;
1435  }
1436  // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1437  // has to be fixed by a runtime query method
1438  if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1439    // JSR-166: change call from from ThreadGroup.uncaughtException to
1440    // java.lang.Thread.dispatchUncaughtException
1441    if (uncaught_exception.not_null()) {
1442      Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1443      Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1444        (address)uncaught_exception(), (address)threadObj(), (address)group());
1445      {
1446        EXCEPTION_MARK;
1447        // Check if the method Thread.dispatchUncaughtException() exists. If so
1448        // call it.  Otherwise we have an older library without the JSR-166 changes,
1449        // so call ThreadGroup.uncaughtException()
1450        KlassHandle recvrKlass(THREAD, threadObj->klass());
1451        CallInfo callinfo;
1452        KlassHandle thread_klass(THREAD, SystemDictionary::thread_klass());
1453        LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1454                                           vmSymbolHandles::dispatchUncaughtException_name(),
1455                                           vmSymbolHandles::throwable_void_signature(),
1456                                           KlassHandle(), false, false, THREAD);
1457        CLEAR_PENDING_EXCEPTION;
1458        methodHandle method = callinfo.selected_method();
1459        if (method.not_null()) {
1460          JavaValue result(T_VOID);
1461          JavaCalls::call_virtual(&result,
1462                                  threadObj, thread_klass,
1463                                  vmSymbolHandles::dispatchUncaughtException_name(),
1464                                  vmSymbolHandles::throwable_void_signature(),
1465                                  uncaught_exception,
1466                                  THREAD);
1467        } else {
1468          KlassHandle thread_group(THREAD, SystemDictionary::threadGroup_klass());
1469          JavaValue result(T_VOID);
1470          JavaCalls::call_virtual(&result,
1471                                  group, thread_group,
1472                                  vmSymbolHandles::uncaughtException_name(),
1473                                  vmSymbolHandles::thread_throwable_void_signature(),
1474                                  threadObj,           // Arg 1
1475                                  uncaught_exception,  // Arg 2
1476                                  THREAD);
1477        }
1478        CLEAR_PENDING_EXCEPTION;
1479      }
1480    }
1481
1482    // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1483    // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1484    // is deprecated anyhow.
1485    { int count = 3;
1486      while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1487        EXCEPTION_MARK;
1488        JavaValue result(T_VOID);
1489        KlassHandle thread_klass(THREAD, SystemDictionary::thread_klass());
1490        JavaCalls::call_virtual(&result,
1491                              threadObj, thread_klass,
1492                              vmSymbolHandles::exit_method_name(),
1493                              vmSymbolHandles::void_method_signature(),
1494                              THREAD);
1495        CLEAR_PENDING_EXCEPTION;
1496      }
1497    }
1498
1499    // notify JVMTI
1500    if (JvmtiExport::should_post_thread_life()) {
1501      JvmtiExport::post_thread_end(this);
1502    }
1503
1504    // We have notified the agents that we are exiting, before we go on,
1505    // we must check for a pending external suspend request and honor it
1506    // in order to not surprise the thread that made the suspend request.
1507    while (true) {
1508      {
1509        MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1510        if (!is_external_suspend()) {
1511          set_terminated(_thread_exiting);
1512          ThreadService::current_thread_exiting(this);
1513          break;
1514        }
1515        // Implied else:
1516        // Things get a little tricky here. We have a pending external
1517        // suspend request, but we are holding the SR_lock so we
1518        // can't just self-suspend. So we temporarily drop the lock
1519        // and then self-suspend.
1520      }
1521
1522      ThreadBlockInVM tbivm(this);
1523      java_suspend_self();
1524
1525      // We're done with this suspend request, but we have to loop around
1526      // and check again. Eventually we will get SR_lock without a pending
1527      // external suspend request and will be able to mark ourselves as
1528      // exiting.
1529    }
1530    // no more external suspends are allowed at this point
1531  } else {
1532    // before_exit() has already posted JVMTI THREAD_END events
1533  }
1534
1535  // Notify waiters on thread object. This has to be done after exit() is called
1536  // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1537  // group should have the destroyed bit set before waiters are notified).
1538  ensure_join(this);
1539  assert(!this->has_pending_exception(), "ensure_join should have cleared");
1540
1541  // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1542  // held by this thread must be released.  A detach operation must only
1543  // get here if there are no Java frames on the stack.  Therefore, any
1544  // owned monitors at this point MUST be JNI-acquired monitors which are
1545  // pre-inflated and in the monitor cache.
1546  //
1547  // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1548  if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1549    assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1550    ObjectSynchronizer::release_monitors_owned_by_thread(this);
1551    assert(!this->has_pending_exception(), "release_monitors should have cleared");
1552  }
1553
1554  // These things needs to be done while we are still a Java Thread. Make sure that thread
1555  // is in a consistent state, in case GC happens
1556  assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1557
1558  if (active_handles() != NULL) {
1559    JNIHandleBlock* block = active_handles();
1560    set_active_handles(NULL);
1561    JNIHandleBlock::release_block(block);
1562  }
1563
1564  if (free_handle_block() != NULL) {
1565    JNIHandleBlock* block = free_handle_block();
1566    set_free_handle_block(NULL);
1567    JNIHandleBlock::release_block(block);
1568  }
1569
1570  // These have to be removed while this is still a valid thread.
1571  remove_stack_guard_pages();
1572
1573  if (UseTLAB) {
1574    tlab().make_parsable(true);  // retire TLAB
1575  }
1576
1577  if (jvmti_thread_state() != NULL) {
1578    JvmtiExport::cleanup_thread(this);
1579  }
1580
1581#ifndef SERIALGC
1582  // We must flush G1-related buffers before removing a thread from
1583  // the list of active threads.
1584  if (UseG1GC) {
1585    flush_barrier_queues();
1586  }
1587#endif
1588
1589  // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1590  Threads::remove(this);
1591}
1592
1593#ifndef SERIALGC
1594// Flush G1-related queues.
1595void JavaThread::flush_barrier_queues() {
1596  satb_mark_queue().flush();
1597  dirty_card_queue().flush();
1598}
1599#endif
1600
1601void JavaThread::cleanup_failed_attach_current_thread() {
1602  if (get_thread_profiler() != NULL) {
1603    get_thread_profiler()->disengage();
1604    ResourceMark rm;
1605    get_thread_profiler()->print(get_thread_name());
1606  }
1607
1608  if (active_handles() != NULL) {
1609    JNIHandleBlock* block = active_handles();
1610    set_active_handles(NULL);
1611    JNIHandleBlock::release_block(block);
1612  }
1613
1614  if (free_handle_block() != NULL) {
1615    JNIHandleBlock* block = free_handle_block();
1616    set_free_handle_block(NULL);
1617    JNIHandleBlock::release_block(block);
1618  }
1619
1620  if (UseTLAB) {
1621    tlab().make_parsable(true);  // retire TLAB, if any
1622  }
1623
1624#ifndef SERIALGC
1625  if (UseG1GC) {
1626    flush_barrier_queues();
1627  }
1628#endif
1629
1630  Threads::remove(this);
1631  delete this;
1632}
1633
1634
1635
1636
1637JavaThread* JavaThread::active() {
1638  Thread* thread = ThreadLocalStorage::thread();
1639  assert(thread != NULL, "just checking");
1640  if (thread->is_Java_thread()) {
1641    return (JavaThread*) thread;
1642  } else {
1643    assert(thread->is_VM_thread(), "this must be a vm thread");
1644    VM_Operation* op = ((VMThread*) thread)->vm_operation();
1645    JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1646    assert(ret->is_Java_thread(), "must be a Java thread");
1647    return ret;
1648  }
1649}
1650
1651bool JavaThread::is_lock_owned(address adr) const {
1652  if (Thread::is_lock_owned(adr)) return true;
1653
1654  for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1655    if (chunk->contains(adr)) return true;
1656  }
1657
1658  return false;
1659}
1660
1661
1662void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1663  chunk->set_next(monitor_chunks());
1664  set_monitor_chunks(chunk);
1665}
1666
1667void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1668  guarantee(monitor_chunks() != NULL, "must be non empty");
1669  if (monitor_chunks() == chunk) {
1670    set_monitor_chunks(chunk->next());
1671  } else {
1672    MonitorChunk* prev = monitor_chunks();
1673    while (prev->next() != chunk) prev = prev->next();
1674    prev->set_next(chunk->next());
1675  }
1676}
1677
1678// JVM support.
1679
1680// Note: this function shouldn't block if it's called in
1681// _thread_in_native_trans state (such as from
1682// check_special_condition_for_native_trans()).
1683void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1684
1685  if (has_last_Java_frame() && has_async_condition()) {
1686    // If we are at a polling page safepoint (not a poll return)
1687    // then we must defer async exception because live registers
1688    // will be clobbered by the exception path. Poll return is
1689    // ok because the call we a returning from already collides
1690    // with exception handling registers and so there is no issue.
1691    // (The exception handling path kills call result registers but
1692    //  this is ok since the exception kills the result anyway).
1693
1694    if (is_at_poll_safepoint()) {
1695      // if the code we are returning to has deoptimized we must defer
1696      // the exception otherwise live registers get clobbered on the
1697      // exception path before deoptimization is able to retrieve them.
1698      //
1699      RegisterMap map(this, false);
1700      frame caller_fr = last_frame().sender(&map);
1701      assert(caller_fr.is_compiled_frame(), "what?");
1702      if (caller_fr.is_deoptimized_frame()) {
1703        if (TraceExceptions) {
1704          ResourceMark rm;
1705          tty->print_cr("deferred async exception at compiled safepoint");
1706        }
1707        return;
1708      }
1709    }
1710  }
1711
1712  JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1713  if (condition == _no_async_condition) {
1714    // Conditions have changed since has_special_runtime_exit_condition()
1715    // was called:
1716    // - if we were here only because of an external suspend request,
1717    //   then that was taken care of above (or cancelled) so we are done
1718    // - if we were here because of another async request, then it has
1719    //   been cleared between the has_special_runtime_exit_condition()
1720    //   and now so again we are done
1721    return;
1722  }
1723
1724  // Check for pending async. exception
1725  if (_pending_async_exception != NULL) {
1726    // Only overwrite an already pending exception, if it is not a threadDeath.
1727    if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::threaddeath_klass())) {
1728
1729      // We cannot call Exceptions::_throw(...) here because we cannot block
1730      set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1731
1732      if (TraceExceptions) {
1733        ResourceMark rm;
1734        tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1735        if (has_last_Java_frame() ) {
1736          frame f = last_frame();
1737          tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1738        }
1739        tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1740      }
1741      _pending_async_exception = NULL;
1742      clear_has_async_exception();
1743    }
1744  }
1745
1746  if (check_unsafe_error &&
1747      condition == _async_unsafe_access_error && !has_pending_exception()) {
1748    condition = _no_async_condition;  // done
1749    switch (thread_state()) {
1750    case _thread_in_vm:
1751      {
1752        JavaThread* THREAD = this;
1753        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1754      }
1755    case _thread_in_native:
1756      {
1757        ThreadInVMfromNative tiv(this);
1758        JavaThread* THREAD = this;
1759        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1760      }
1761    case _thread_in_Java:
1762      {
1763        ThreadInVMfromJava tiv(this);
1764        JavaThread* THREAD = this;
1765        THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1766      }
1767    default:
1768      ShouldNotReachHere();
1769    }
1770  }
1771
1772  assert(condition == _no_async_condition || has_pending_exception() ||
1773         (!check_unsafe_error && condition == _async_unsafe_access_error),
1774         "must have handled the async condition, if no exception");
1775}
1776
1777void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1778  //
1779  // Check for pending external suspend. Internal suspend requests do
1780  // not use handle_special_runtime_exit_condition().
1781  // If JNIEnv proxies are allowed, don't self-suspend if the target
1782  // thread is not the current thread. In older versions of jdbx, jdbx
1783  // threads could call into the VM with another thread's JNIEnv so we
1784  // can be here operating on behalf of a suspended thread (4432884).
1785  bool do_self_suspend = is_external_suspend_with_lock();
1786  if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1787    //
1788    // Because thread is external suspended the safepoint code will count
1789    // thread as at a safepoint. This can be odd because we can be here
1790    // as _thread_in_Java which would normally transition to _thread_blocked
1791    // at a safepoint. We would like to mark the thread as _thread_blocked
1792    // before calling java_suspend_self like all other callers of it but
1793    // we must then observe proper safepoint protocol. (We can't leave
1794    // _thread_blocked with a safepoint in progress). However we can be
1795    // here as _thread_in_native_trans so we can't use a normal transition
1796    // constructor/destructor pair because they assert on that type of
1797    // transition. We could do something like:
1798    //
1799    // JavaThreadState state = thread_state();
1800    // set_thread_state(_thread_in_vm);
1801    // {
1802    //   ThreadBlockInVM tbivm(this);
1803    //   java_suspend_self()
1804    // }
1805    // set_thread_state(_thread_in_vm_trans);
1806    // if (safepoint) block;
1807    // set_thread_state(state);
1808    //
1809    // but that is pretty messy. Instead we just go with the way the
1810    // code has worked before and note that this is the only path to
1811    // java_suspend_self that doesn't put the thread in _thread_blocked
1812    // mode.
1813
1814    frame_anchor()->make_walkable(this);
1815    java_suspend_self();
1816
1817    // We might be here for reasons in addition to the self-suspend request
1818    // so check for other async requests.
1819  }
1820
1821  if (check_asyncs) {
1822    check_and_handle_async_exceptions();
1823  }
1824}
1825
1826void JavaThread::send_thread_stop(oop java_throwable)  {
1827  assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1828  assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1829  assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1830
1831  // Do not throw asynchronous exceptions against the compiler thread
1832  // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1833  if (is_Compiler_thread()) return;
1834
1835  // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1836  if (java_throwable->is_a(SystemDictionary::threaddeath_klass())) {
1837    java_lang_Thread::set_stillborn(threadObj());
1838  }
1839
1840  {
1841    // Actually throw the Throwable against the target Thread - however
1842    // only if there is no thread death exception installed already.
1843    if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::threaddeath_klass())) {
1844      // If the topmost frame is a runtime stub, then we are calling into
1845      // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1846      // must deoptimize the caller before continuing, as the compiled  exception handler table
1847      // may not be valid
1848      if (has_last_Java_frame()) {
1849        frame f = last_frame();
1850        if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1851          // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1852          RegisterMap reg_map(this, UseBiasedLocking);
1853          frame compiled_frame = f.sender(&reg_map);
1854          if (compiled_frame.can_be_deoptimized()) {
1855            Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1856          }
1857        }
1858      }
1859
1860      // Set async. pending exception in thread.
1861      set_pending_async_exception(java_throwable);
1862
1863      if (TraceExceptions) {
1864       ResourceMark rm;
1865       tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1866      }
1867      // for AbortVMOnException flag
1868      NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1869    }
1870  }
1871
1872
1873  // Interrupt thread so it will wake up from a potential wait()
1874  Thread::interrupt(this);
1875}
1876
1877// External suspension mechanism.
1878//
1879// Tell the VM to suspend a thread when ever it knows that it does not hold on
1880// to any VM_locks and it is at a transition
1881// Self-suspension will happen on the transition out of the vm.
1882// Catch "this" coming in from JNIEnv pointers when the thread has been freed
1883//
1884// Guarantees on return:
1885//   + Target thread will not execute any new bytecode (that's why we need to
1886//     force a safepoint)
1887//   + Target thread will not enter any new monitors
1888//
1889void JavaThread::java_suspend() {
1890  { MutexLocker mu(Threads_lock);
1891    if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1892       return;
1893    }
1894  }
1895
1896  { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1897    if (!is_external_suspend()) {
1898      // a racing resume has cancelled us; bail out now
1899      return;
1900    }
1901
1902    // suspend is done
1903    uint32_t debug_bits = 0;
1904    // Warning: is_ext_suspend_completed() may temporarily drop the
1905    // SR_lock to allow the thread to reach a stable thread state if
1906    // it is currently in a transient thread state.
1907    if (is_ext_suspend_completed(false /* !called_by_wait */,
1908                                 SuspendRetryDelay, &debug_bits) ) {
1909      return;
1910    }
1911  }
1912
1913  VM_ForceSafepoint vm_suspend;
1914  VMThread::execute(&vm_suspend);
1915}
1916
1917// Part II of external suspension.
1918// A JavaThread self suspends when it detects a pending external suspend
1919// request. This is usually on transitions. It is also done in places
1920// where continuing to the next transition would surprise the caller,
1921// e.g., monitor entry.
1922//
1923// Returns the number of times that the thread self-suspended.
1924//
1925// Note: DO NOT call java_suspend_self() when you just want to block current
1926//       thread. java_suspend_self() is the second stage of cooperative
1927//       suspension for external suspend requests and should only be used
1928//       to complete an external suspend request.
1929//
1930int JavaThread::java_suspend_self() {
1931  int ret = 0;
1932
1933  // we are in the process of exiting so don't suspend
1934  if (is_exiting()) {
1935     clear_external_suspend();
1936     return ret;
1937  }
1938
1939  assert(_anchor.walkable() ||
1940    (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1941    "must have walkable stack");
1942
1943  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1944
1945  assert(!this->is_any_suspended(),
1946    "a thread trying to self-suspend should not already be suspended");
1947
1948  if (this->is_suspend_equivalent()) {
1949    // If we are self-suspending as a result of the lifting of a
1950    // suspend equivalent condition, then the suspend_equivalent
1951    // flag is not cleared until we set the ext_suspended flag so
1952    // that wait_for_ext_suspend_completion() returns consistent
1953    // results.
1954    this->clear_suspend_equivalent();
1955  }
1956
1957  // A racing resume may have cancelled us before we grabbed SR_lock
1958  // above. Or another external suspend request could be waiting for us
1959  // by the time we return from SR_lock()->wait(). The thread
1960  // that requested the suspension may already be trying to walk our
1961  // stack and if we return now, we can change the stack out from under
1962  // it. This would be a "bad thing (TM)" and cause the stack walker
1963  // to crash. We stay self-suspended until there are no more pending
1964  // external suspend requests.
1965  while (is_external_suspend()) {
1966    ret++;
1967    this->set_ext_suspended();
1968
1969    // _ext_suspended flag is cleared by java_resume()
1970    while (is_ext_suspended()) {
1971      this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
1972    }
1973  }
1974
1975  return ret;
1976}
1977
1978#ifdef ASSERT
1979// verify the JavaThread has not yet been published in the Threads::list, and
1980// hence doesn't need protection from concurrent access at this stage
1981void JavaThread::verify_not_published() {
1982  if (!Threads_lock->owned_by_self()) {
1983   MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
1984   assert( !Threads::includes(this),
1985           "java thread shouldn't have been published yet!");
1986  }
1987  else {
1988   assert( !Threads::includes(this),
1989           "java thread shouldn't have been published yet!");
1990  }
1991}
1992#endif
1993
1994// Slow path when the native==>VM/Java barriers detect a safepoint is in
1995// progress or when _suspend_flags is non-zero.
1996// Current thread needs to self-suspend if there is a suspend request and/or
1997// block if a safepoint is in progress.
1998// Async exception ISN'T checked.
1999// Note only the ThreadInVMfromNative transition can call this function
2000// directly and when thread state is _thread_in_native_trans
2001void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2002  assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2003
2004  JavaThread *curJT = JavaThread::current();
2005  bool do_self_suspend = thread->is_external_suspend();
2006
2007  assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2008
2009  // If JNIEnv proxies are allowed, don't self-suspend if the target
2010  // thread is not the current thread. In older versions of jdbx, jdbx
2011  // threads could call into the VM with another thread's JNIEnv so we
2012  // can be here operating on behalf of a suspended thread (4432884).
2013  if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2014    JavaThreadState state = thread->thread_state();
2015
2016    // We mark this thread_blocked state as a suspend-equivalent so
2017    // that a caller to is_ext_suspend_completed() won't be confused.
2018    // The suspend-equivalent state is cleared by java_suspend_self().
2019    thread->set_suspend_equivalent();
2020
2021    // If the safepoint code sees the _thread_in_native_trans state, it will
2022    // wait until the thread changes to other thread state. There is no
2023    // guarantee on how soon we can obtain the SR_lock and complete the
2024    // self-suspend request. It would be a bad idea to let safepoint wait for
2025    // too long. Temporarily change the state to _thread_blocked to
2026    // let the VM thread know that this thread is ready for GC. The problem
2027    // of changing thread state is that safepoint could happen just after
2028    // java_suspend_self() returns after being resumed, and VM thread will
2029    // see the _thread_blocked state. We must check for safepoint
2030    // after restoring the state and make sure we won't leave while a safepoint
2031    // is in progress.
2032    thread->set_thread_state(_thread_blocked);
2033    thread->java_suspend_self();
2034    thread->set_thread_state(state);
2035    // Make sure new state is seen by VM thread
2036    if (os::is_MP()) {
2037      if (UseMembar) {
2038        // Force a fence between the write above and read below
2039        OrderAccess::fence();
2040      } else {
2041        // Must use this rather than serialization page in particular on Windows
2042        InterfaceSupport::serialize_memory(thread);
2043      }
2044    }
2045  }
2046
2047  if (SafepointSynchronize::do_call_back()) {
2048    // If we are safepointing, then block the caller which may not be
2049    // the same as the target thread (see above).
2050    SafepointSynchronize::block(curJT);
2051  }
2052
2053  if (thread->is_deopt_suspend()) {
2054    thread->clear_deopt_suspend();
2055    RegisterMap map(thread, false);
2056    frame f = thread->last_frame();
2057    while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2058      f = f.sender(&map);
2059    }
2060    if (f.id() == thread->must_deopt_id()) {
2061      thread->clear_must_deopt_id();
2062      // Since we know we're safe to deopt the current state is a safe state
2063      f.deoptimize(thread, true);
2064    } else {
2065      fatal("missed deoptimization!");
2066    }
2067  }
2068}
2069
2070// Slow path when the native==>VM/Java barriers detect a safepoint is in
2071// progress or when _suspend_flags is non-zero.
2072// Current thread needs to self-suspend if there is a suspend request and/or
2073// block if a safepoint is in progress.
2074// Also check for pending async exception (not including unsafe access error).
2075// Note only the native==>VM/Java barriers can call this function and when
2076// thread state is _thread_in_native_trans.
2077void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2078  check_safepoint_and_suspend_for_native_trans(thread);
2079
2080  if (thread->has_async_exception()) {
2081    // We are in _thread_in_native_trans state, don't handle unsafe
2082    // access error since that may block.
2083    thread->check_and_handle_async_exceptions(false);
2084  }
2085}
2086
2087// We need to guarantee the Threads_lock here, since resumes are not
2088// allowed during safepoint synchronization
2089// Can only resume from an external suspension
2090void JavaThread::java_resume() {
2091  assert_locked_or_safepoint(Threads_lock);
2092
2093  // Sanity check: thread is gone, has started exiting or the thread
2094  // was not externally suspended.
2095  if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2096    return;
2097  }
2098
2099  MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2100
2101  clear_external_suspend();
2102
2103  if (is_ext_suspended()) {
2104    clear_ext_suspended();
2105    SR_lock()->notify_all();
2106  }
2107}
2108
2109void JavaThread::create_stack_guard_pages() {
2110  if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2111  address low_addr = stack_base() - stack_size();
2112  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2113
2114  int allocate = os::allocate_stack_guard_pages();
2115  // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2116
2117  if (allocate && !os::commit_memory((char *) low_addr, len)) {
2118    warning("Attempt to allocate stack guard pages failed.");
2119    return;
2120  }
2121
2122  if (os::guard_memory((char *) low_addr, len)) {
2123    _stack_guard_state = stack_guard_enabled;
2124  } else {
2125    warning("Attempt to protect stack guard pages failed.");
2126    if (os::uncommit_memory((char *) low_addr, len)) {
2127      warning("Attempt to deallocate stack guard pages failed.");
2128    }
2129  }
2130}
2131
2132void JavaThread::remove_stack_guard_pages() {
2133  if (_stack_guard_state == stack_guard_unused) return;
2134  address low_addr = stack_base() - stack_size();
2135  size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2136
2137  if (os::allocate_stack_guard_pages()) {
2138    if (os::uncommit_memory((char *) low_addr, len)) {
2139      _stack_guard_state = stack_guard_unused;
2140    } else {
2141      warning("Attempt to deallocate stack guard pages failed.");
2142    }
2143  } else {
2144    if (_stack_guard_state == stack_guard_unused) return;
2145    if (os::unguard_memory((char *) low_addr, len)) {
2146      _stack_guard_state = stack_guard_unused;
2147    } else {
2148        warning("Attempt to unprotect stack guard pages failed.");
2149    }
2150  }
2151}
2152
2153void JavaThread::enable_stack_yellow_zone() {
2154  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2155  assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2156
2157  // The base notation is from the stacks point of view, growing downward.
2158  // We need to adjust it to work correctly with guard_memory()
2159  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2160
2161  guarantee(base < stack_base(),"Error calculating stack yellow zone");
2162  guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2163
2164  if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2165    _stack_guard_state = stack_guard_enabled;
2166  } else {
2167    warning("Attempt to guard stack yellow zone failed.");
2168  }
2169  enable_register_stack_guard();
2170}
2171
2172void JavaThread::disable_stack_yellow_zone() {
2173  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2174  assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2175
2176  // Simply return if called for a thread that does not use guard pages.
2177  if (_stack_guard_state == stack_guard_unused) return;
2178
2179  // The base notation is from the stacks point of view, growing downward.
2180  // We need to adjust it to work correctly with guard_memory()
2181  address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2182
2183  if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2184    _stack_guard_state = stack_guard_yellow_disabled;
2185  } else {
2186    warning("Attempt to unguard stack yellow zone failed.");
2187  }
2188  disable_register_stack_guard();
2189}
2190
2191void JavaThread::enable_stack_red_zone() {
2192  // The base notation is from the stacks point of view, growing downward.
2193  // We need to adjust it to work correctly with guard_memory()
2194  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2195  address base = stack_red_zone_base() - stack_red_zone_size();
2196
2197  guarantee(base < stack_base(),"Error calculating stack red zone");
2198  guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2199
2200  if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2201    warning("Attempt to guard stack red zone failed.");
2202  }
2203}
2204
2205void JavaThread::disable_stack_red_zone() {
2206  // The base notation is from the stacks point of view, growing downward.
2207  // We need to adjust it to work correctly with guard_memory()
2208  assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2209  address base = stack_red_zone_base() - stack_red_zone_size();
2210  if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2211    warning("Attempt to unguard stack red zone failed.");
2212  }
2213}
2214
2215void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2216  // ignore is there is no stack
2217  if (!has_last_Java_frame()) return;
2218  // traverse the stack frames. Starts from top frame.
2219  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2220    frame* fr = fst.current();
2221    f(fr, fst.register_map());
2222  }
2223}
2224
2225
2226#ifndef PRODUCT
2227// Deoptimization
2228// Function for testing deoptimization
2229void JavaThread::deoptimize() {
2230  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2231  StackFrameStream fst(this, UseBiasedLocking);
2232  bool deopt = false;           // Dump stack only if a deopt actually happens.
2233  bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2234  // Iterate over all frames in the thread and deoptimize
2235  for(; !fst.is_done(); fst.next()) {
2236    if(fst.current()->can_be_deoptimized()) {
2237
2238      if (only_at) {
2239        // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2240        // consists of comma or carriage return separated numbers so
2241        // search for the current bci in that string.
2242        address pc = fst.current()->pc();
2243        nmethod* nm =  (nmethod*) fst.current()->cb();
2244        ScopeDesc* sd = nm->scope_desc_at( pc);
2245        char buffer[8];
2246        jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2247        size_t len = strlen(buffer);
2248        const char * found = strstr(DeoptimizeOnlyAt, buffer);
2249        while (found != NULL) {
2250          if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2251              (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2252            // Check that the bci found is bracketed by terminators.
2253            break;
2254          }
2255          found = strstr(found + 1, buffer);
2256        }
2257        if (!found) {
2258          continue;
2259        }
2260      }
2261
2262      if (DebugDeoptimization && !deopt) {
2263        deopt = true; // One-time only print before deopt
2264        tty->print_cr("[BEFORE Deoptimization]");
2265        trace_frames();
2266        trace_stack();
2267      }
2268      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2269    }
2270  }
2271
2272  if (DebugDeoptimization && deopt) {
2273    tty->print_cr("[AFTER Deoptimization]");
2274    trace_frames();
2275  }
2276}
2277
2278
2279// Make zombies
2280void JavaThread::make_zombies() {
2281  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2282    if (fst.current()->can_be_deoptimized()) {
2283      // it is a Java nmethod
2284      nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2285      nm->make_not_entrant();
2286    }
2287  }
2288}
2289#endif // PRODUCT
2290
2291
2292void JavaThread::deoptimized_wrt_marked_nmethods() {
2293  if (!has_last_Java_frame()) return;
2294  // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2295  StackFrameStream fst(this, UseBiasedLocking);
2296  for(; !fst.is_done(); fst.next()) {
2297    if (fst.current()->should_be_deoptimized()) {
2298      Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2299    }
2300  }
2301}
2302
2303
2304// GC support
2305static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2306
2307void JavaThread::gc_epilogue() {
2308  frames_do(frame_gc_epilogue);
2309}
2310
2311
2312static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2313
2314void JavaThread::gc_prologue() {
2315  frames_do(frame_gc_prologue);
2316}
2317
2318
2319void JavaThread::oops_do(OopClosure* f) {
2320  // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2321  // since there may be more than one thread using each ThreadProfiler.
2322
2323  // Traverse the GCHandles
2324  Thread::oops_do(f);
2325
2326  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2327          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2328
2329  if (has_last_Java_frame()) {
2330
2331    // Traverse the privileged stack
2332    if (_privileged_stack_top != NULL) {
2333      _privileged_stack_top->oops_do(f);
2334    }
2335
2336    // traverse the registered growable array
2337    if (_array_for_gc != NULL) {
2338      for (int index = 0; index < _array_for_gc->length(); index++) {
2339        f->do_oop(_array_for_gc->adr_at(index));
2340      }
2341    }
2342
2343    // Traverse the monitor chunks
2344    for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2345      chunk->oops_do(f);
2346    }
2347
2348    // Traverse the execution stack
2349    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2350      fst.current()->oops_do(f, fst.register_map());
2351    }
2352  }
2353
2354  // callee_target is never live across a gc point so NULL it here should
2355  // it still contain a methdOop.
2356
2357  set_callee_target(NULL);
2358
2359  assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2360  // If we have deferred set_locals there might be oops waiting to be
2361  // written
2362  GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2363  if (list != NULL) {
2364    for (int i = 0; i < list->length(); i++) {
2365      list->at(i)->oops_do(f);
2366    }
2367  }
2368
2369  // Traverse instance variables at the end since the GC may be moving things
2370  // around using this function
2371  f->do_oop((oop*) &_threadObj);
2372  f->do_oop((oop*) &_vm_result);
2373  f->do_oop((oop*) &_vm_result_2);
2374  f->do_oop((oop*) &_exception_oop);
2375  f->do_oop((oop*) &_pending_async_exception);
2376
2377  if (jvmti_thread_state() != NULL) {
2378    jvmti_thread_state()->oops_do(f);
2379  }
2380}
2381
2382void JavaThread::nmethods_do() {
2383  // Traverse the GCHandles
2384  Thread::nmethods_do();
2385
2386  assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2387          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2388
2389  if (has_last_Java_frame()) {
2390    // Traverse the execution stack
2391    for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2392      fst.current()->nmethods_do();
2393    }
2394  }
2395}
2396
2397// Printing
2398const char* _get_thread_state_name(JavaThreadState _thread_state) {
2399  switch (_thread_state) {
2400  case _thread_uninitialized:     return "_thread_uninitialized";
2401  case _thread_new:               return "_thread_new";
2402  case _thread_new_trans:         return "_thread_new_trans";
2403  case _thread_in_native:         return "_thread_in_native";
2404  case _thread_in_native_trans:   return "_thread_in_native_trans";
2405  case _thread_in_vm:             return "_thread_in_vm";
2406  case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2407  case _thread_in_Java:           return "_thread_in_Java";
2408  case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2409  case _thread_blocked:           return "_thread_blocked";
2410  case _thread_blocked_trans:     return "_thread_blocked_trans";
2411  default:                        return "unknown thread state";
2412  }
2413}
2414
2415#ifndef PRODUCT
2416void JavaThread::print_thread_state_on(outputStream *st) const {
2417  st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2418};
2419void JavaThread::print_thread_state() const {
2420  print_thread_state_on(tty);
2421};
2422#endif // PRODUCT
2423
2424// Called by Threads::print() for VM_PrintThreads operation
2425void JavaThread::print_on(outputStream *st) const {
2426  st->print("\"%s\" ", get_thread_name());
2427  oop thread_oop = threadObj();
2428  if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2429  Thread::print_on(st);
2430  // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2431  st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2432  if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2433    st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2434  }
2435#ifndef PRODUCT
2436  print_thread_state_on(st);
2437  _safepoint_state->print_on(st);
2438#endif // PRODUCT
2439}
2440
2441// Called by fatal error handler. The difference between this and
2442// JavaThread::print() is that we can't grab lock or allocate memory.
2443void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2444  st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2445  oop thread_obj = threadObj();
2446  if (thread_obj != NULL) {
2447     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2448  }
2449  st->print(" [");
2450  st->print("%s", _get_thread_state_name(_thread_state));
2451  if (osthread()) {
2452    st->print(", id=%d", osthread()->thread_id());
2453  }
2454  st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2455            _stack_base - _stack_size, _stack_base);
2456  st->print("]");
2457  return;
2458}
2459
2460// Verification
2461
2462static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2463
2464void JavaThread::verify() {
2465  // Verify oops in the thread.
2466  oops_do(&VerifyOopClosure::verify_oop);
2467
2468  // Verify the stack frames.
2469  frames_do(frame_verify);
2470}
2471
2472// CR 6300358 (sub-CR 2137150)
2473// Most callers of this method assume that it can't return NULL but a
2474// thread may not have a name whilst it is in the process of attaching to
2475// the VM - see CR 6412693, and there are places where a JavaThread can be
2476// seen prior to having it's threadObj set (eg JNI attaching threads and
2477// if vm exit occurs during initialization). These cases can all be accounted
2478// for such that this method never returns NULL.
2479const char* JavaThread::get_thread_name() const {
2480#ifdef ASSERT
2481  // early safepoints can hit while current thread does not yet have TLS
2482  if (!SafepointSynchronize::is_at_safepoint()) {
2483    Thread *cur = Thread::current();
2484    if (!(cur->is_Java_thread() && cur == this)) {
2485      // Current JavaThreads are allowed to get their own name without
2486      // the Threads_lock.
2487      assert_locked_or_safepoint(Threads_lock);
2488    }
2489  }
2490#endif // ASSERT
2491    return get_thread_name_string();
2492}
2493
2494// Returns a non-NULL representation of this thread's name, or a suitable
2495// descriptive string if there is no set name
2496const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2497  const char* name_str;
2498  oop thread_obj = threadObj();
2499  if (thread_obj != NULL) {
2500    typeArrayOop name = java_lang_Thread::name(thread_obj);
2501    if (name != NULL) {
2502      if (buf == NULL) {
2503        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2504      }
2505      else {
2506        name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2507      }
2508    }
2509    else if (is_attaching()) { // workaround for 6412693 - see 6404306
2510      name_str = "<no-name - thread is attaching>";
2511    }
2512    else {
2513      name_str = Thread::name();
2514    }
2515  }
2516  else {
2517    name_str = Thread::name();
2518  }
2519  assert(name_str != NULL, "unexpected NULL thread name");
2520  return name_str;
2521}
2522
2523
2524const char* JavaThread::get_threadgroup_name() const {
2525  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2526  oop thread_obj = threadObj();
2527  if (thread_obj != NULL) {
2528    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2529    if (thread_group != NULL) {
2530      typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2531      // ThreadGroup.name can be null
2532      if (name != NULL) {
2533        const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2534        return str;
2535      }
2536    }
2537  }
2538  return NULL;
2539}
2540
2541const char* JavaThread::get_parent_name() const {
2542  debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2543  oop thread_obj = threadObj();
2544  if (thread_obj != NULL) {
2545    oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2546    if (thread_group != NULL) {
2547      oop parent = java_lang_ThreadGroup::parent(thread_group);
2548      if (parent != NULL) {
2549        typeArrayOop name = java_lang_ThreadGroup::name(parent);
2550        // ThreadGroup.name can be null
2551        if (name != NULL) {
2552          const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2553          return str;
2554        }
2555      }
2556    }
2557  }
2558  return NULL;
2559}
2560
2561ThreadPriority JavaThread::java_priority() const {
2562  oop thr_oop = threadObj();
2563  if (thr_oop == NULL) return NormPriority; // Bootstrapping
2564  ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2565  assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2566  return priority;
2567}
2568
2569void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2570
2571  assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2572  // Link Java Thread object <-> C++ Thread
2573
2574  // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2575  // and put it into a new Handle.  The Handle "thread_oop" can then
2576  // be used to pass the C++ thread object to other methods.
2577
2578  // Set the Java level thread object (jthread) field of the
2579  // new thread (a JavaThread *) to C++ thread object using the
2580  // "thread_oop" handle.
2581
2582  // Set the thread field (a JavaThread *) of the
2583  // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2584
2585  Handle thread_oop(Thread::current(),
2586                    JNIHandles::resolve_non_null(jni_thread));
2587  assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2588    "must be initialized");
2589  set_threadObj(thread_oop());
2590  java_lang_Thread::set_thread(thread_oop(), this);
2591
2592  if (prio == NoPriority) {
2593    prio = java_lang_Thread::priority(thread_oop());
2594    assert(prio != NoPriority, "A valid priority should be present");
2595  }
2596
2597  // Push the Java priority down to the native thread; needs Threads_lock
2598  Thread::set_priority(this, prio);
2599
2600  // Add the new thread to the Threads list and set it in motion.
2601  // We must have threads lock in order to call Threads::add.
2602  // It is crucial that we do not block before the thread is
2603  // added to the Threads list for if a GC happens, then the java_thread oop
2604  // will not be visited by GC.
2605  Threads::add(this);
2606}
2607
2608oop JavaThread::current_park_blocker() {
2609  // Support for JSR-166 locks
2610  oop thread_oop = threadObj();
2611  if (thread_oop != NULL &&
2612      JDK_Version::current().supports_thread_park_blocker()) {
2613    return java_lang_Thread::park_blocker(thread_oop);
2614  }
2615  return NULL;
2616}
2617
2618
2619void JavaThread::print_stack_on(outputStream* st) {
2620  if (!has_last_Java_frame()) return;
2621  ResourceMark rm;
2622  HandleMark   hm;
2623
2624  RegisterMap reg_map(this);
2625  vframe* start_vf = last_java_vframe(&reg_map);
2626  int count = 0;
2627  for (vframe* f = start_vf; f; f = f->sender() ) {
2628    if (f->is_java_frame()) {
2629      javaVFrame* jvf = javaVFrame::cast(f);
2630      java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2631
2632      // Print out lock information
2633      if (JavaMonitorsInStackTrace) {
2634        jvf->print_lock_info_on(st, count);
2635      }
2636    } else {
2637      // Ignore non-Java frames
2638    }
2639
2640    // Bail-out case for too deep stacks
2641    count++;
2642    if (MaxJavaStackTraceDepth == count) return;
2643  }
2644}
2645
2646
2647// JVMTI PopFrame support
2648void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2649  assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2650  if (in_bytes(size_in_bytes) != 0) {
2651    _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2652    _popframe_preserved_args_size = in_bytes(size_in_bytes);
2653    Copy::conjoint_bytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2654  }
2655}
2656
2657void* JavaThread::popframe_preserved_args() {
2658  return _popframe_preserved_args;
2659}
2660
2661ByteSize JavaThread::popframe_preserved_args_size() {
2662  return in_ByteSize(_popframe_preserved_args_size);
2663}
2664
2665WordSize JavaThread::popframe_preserved_args_size_in_words() {
2666  int sz = in_bytes(popframe_preserved_args_size());
2667  assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2668  return in_WordSize(sz / wordSize);
2669}
2670
2671void JavaThread::popframe_free_preserved_args() {
2672  assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2673  FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2674  _popframe_preserved_args = NULL;
2675  _popframe_preserved_args_size = 0;
2676}
2677
2678#ifndef PRODUCT
2679
2680void JavaThread::trace_frames() {
2681  tty->print_cr("[Describe stack]");
2682  int frame_no = 1;
2683  for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2684    tty->print("  %d. ", frame_no++);
2685    fst.current()->print_value_on(tty,this);
2686    tty->cr();
2687  }
2688}
2689
2690
2691void JavaThread::trace_stack_from(vframe* start_vf) {
2692  ResourceMark rm;
2693  int vframe_no = 1;
2694  for (vframe* f = start_vf; f; f = f->sender() ) {
2695    if (f->is_java_frame()) {
2696      javaVFrame::cast(f)->print_activation(vframe_no++);
2697    } else {
2698      f->print();
2699    }
2700    if (vframe_no > StackPrintLimit) {
2701      tty->print_cr("...<more frames>...");
2702      return;
2703    }
2704  }
2705}
2706
2707
2708void JavaThread::trace_stack() {
2709  if (!has_last_Java_frame()) return;
2710  ResourceMark rm;
2711  HandleMark   hm;
2712  RegisterMap reg_map(this);
2713  trace_stack_from(last_java_vframe(&reg_map));
2714}
2715
2716
2717#endif // PRODUCT
2718
2719
2720javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2721  assert(reg_map != NULL, "a map must be given");
2722  frame f = last_frame();
2723  for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2724    if (vf->is_java_frame()) return javaVFrame::cast(vf);
2725  }
2726  return NULL;
2727}
2728
2729
2730klassOop JavaThread::security_get_caller_class(int depth) {
2731  vframeStream vfst(this);
2732  vfst.security_get_caller_frame(depth);
2733  if (!vfst.at_end()) {
2734    return vfst.method()->method_holder();
2735  }
2736  return NULL;
2737}
2738
2739static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2740  assert(thread->is_Compiler_thread(), "must be compiler thread");
2741  CompileBroker::compiler_thread_loop();
2742}
2743
2744// Create a CompilerThread
2745CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2746: JavaThread(&compiler_thread_entry) {
2747  _env   = NULL;
2748  _log   = NULL;
2749  _task  = NULL;
2750  _queue = queue;
2751  _counters = counters;
2752
2753#ifndef PRODUCT
2754  _ideal_graph_printer = NULL;
2755#endif
2756}
2757
2758
2759// ======= Threads ========
2760
2761// The Threads class links together all active threads, and provides
2762// operations over all threads.  It is protected by its own Mutex
2763// lock, which is also used in other contexts to protect thread
2764// operations from having the thread being operated on from exiting
2765// and going away unexpectedly (e.g., safepoint synchronization)
2766
2767JavaThread* Threads::_thread_list = NULL;
2768int         Threads::_number_of_threads = 0;
2769int         Threads::_number_of_non_daemon_threads = 0;
2770int         Threads::_return_code = 0;
2771size_t      JavaThread::_stack_size_at_create = 0;
2772
2773// All JavaThreads
2774#define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2775
2776void os_stream();
2777
2778// All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2779void Threads::threads_do(ThreadClosure* tc) {
2780  assert_locked_or_safepoint(Threads_lock);
2781  // ALL_JAVA_THREADS iterates through all JavaThreads
2782  ALL_JAVA_THREADS(p) {
2783    tc->do_thread(p);
2784  }
2785  // Someday we could have a table or list of all non-JavaThreads.
2786  // For now, just manually iterate through them.
2787  tc->do_thread(VMThread::vm_thread());
2788  Universe::heap()->gc_threads_do(tc);
2789  WatcherThread *wt = WatcherThread::watcher_thread();
2790  // Strictly speaking, the following NULL check isn't sufficient to make sure
2791  // the data for WatcherThread is still valid upon being examined. However,
2792  // considering that WatchThread terminates when the VM is on the way to
2793  // exit at safepoint, the chance of the above is extremely small. The right
2794  // way to prevent termination of WatcherThread would be to acquire
2795  // Terminator_lock, but we can't do that without violating the lock rank
2796  // checking in some cases.
2797  if (wt != NULL)
2798    tc->do_thread(wt);
2799
2800  // If CompilerThreads ever become non-JavaThreads, add them here
2801}
2802
2803jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2804
2805  extern void JDK_Version_init();
2806
2807  // Check version
2808  if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2809
2810  // Initialize the output stream module
2811  ostream_init();
2812
2813  // Process java launcher properties.
2814  Arguments::process_sun_java_launcher_properties(args);
2815
2816  // Initialize the os module before using TLS
2817  os::init();
2818
2819  // Initialize system properties.
2820  Arguments::init_system_properties();
2821
2822  // So that JDK version can be used as a discrimintor when parsing arguments
2823  JDK_Version_init();
2824
2825  // Parse arguments
2826  jint parse_result = Arguments::parse(args);
2827  if (parse_result != JNI_OK) return parse_result;
2828
2829  if (PauseAtStartup) {
2830    os::pause();
2831  }
2832
2833  HS_DTRACE_PROBE(hotspot, vm__init__begin);
2834
2835  // Record VM creation timing statistics
2836  TraceVmCreationTime create_vm_timer;
2837  create_vm_timer.start();
2838
2839  // Timing (must come after argument parsing)
2840  TraceTime timer("Create VM", TraceStartupTime);
2841
2842  // Initialize the os module after parsing the args
2843  jint os_init_2_result = os::init_2();
2844  if (os_init_2_result != JNI_OK) return os_init_2_result;
2845
2846  // Initialize output stream logging
2847  ostream_init_log();
2848
2849  // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2850  // Must be before create_vm_init_agents()
2851  if (Arguments::init_libraries_at_startup()) {
2852    convert_vm_init_libraries_to_agents();
2853  }
2854
2855  // Launch -agentlib/-agentpath and converted -Xrun agents
2856  if (Arguments::init_agents_at_startup()) {
2857    create_vm_init_agents();
2858  }
2859
2860  // Initialize Threads state
2861  _thread_list = NULL;
2862  _number_of_threads = 0;
2863  _number_of_non_daemon_threads = 0;
2864
2865  // Initialize TLS
2866  ThreadLocalStorage::init();
2867
2868  // Initialize global data structures and create system classes in heap
2869  vm_init_globals();
2870
2871  // Attach the main thread to this os thread
2872  JavaThread* main_thread = new JavaThread();
2873  main_thread->set_thread_state(_thread_in_vm);
2874  // must do this before set_active_handles and initialize_thread_local_storage
2875  // Note: on solaris initialize_thread_local_storage() will (indirectly)
2876  // change the stack size recorded here to one based on the java thread
2877  // stacksize. This adjusted size is what is used to figure the placement
2878  // of the guard pages.
2879  main_thread->record_stack_base_and_size();
2880  main_thread->initialize_thread_local_storage();
2881
2882  main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2883
2884  if (!main_thread->set_as_starting_thread()) {
2885    vm_shutdown_during_initialization(
2886      "Failed necessary internal allocation. Out of swap space");
2887    delete main_thread;
2888    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2889    return JNI_ENOMEM;
2890  }
2891
2892  // Enable guard page *after* os::create_main_thread(), otherwise it would
2893  // crash Linux VM, see notes in os_linux.cpp.
2894  main_thread->create_stack_guard_pages();
2895
2896  // Initialize Java-Leve synchronization subsystem
2897  ObjectSynchronizer::Initialize() ;
2898
2899  // Initialize global modules
2900  jint status = init_globals();
2901  if (status != JNI_OK) {
2902    delete main_thread;
2903    *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2904    return status;
2905  }
2906
2907  HandleMark hm;
2908
2909  { MutexLocker mu(Threads_lock);
2910    Threads::add(main_thread);
2911  }
2912
2913  // Any JVMTI raw monitors entered in onload will transition into
2914  // real raw monitor. VM is setup enough here for raw monitor enter.
2915  JvmtiExport::transition_pending_onload_raw_monitors();
2916
2917  if (VerifyBeforeGC &&
2918      Universe::heap()->total_collections() >= VerifyGCStartAt) {
2919    Universe::heap()->prepare_for_verify();
2920    Universe::verify();   // make sure we're starting with a clean slate
2921  }
2922
2923  // Create the VMThread
2924  { TraceTime timer("Start VMThread", TraceStartupTime);
2925    VMThread::create();
2926    Thread* vmthread = VMThread::vm_thread();
2927
2928    if (!os::create_thread(vmthread, os::vm_thread))
2929      vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
2930
2931    // Wait for the VM thread to become ready, and VMThread::run to initialize
2932    // Monitors can have spurious returns, must always check another state flag
2933    {
2934      MutexLocker ml(Notify_lock);
2935      os::start_thread(vmthread);
2936      while (vmthread->active_handles() == NULL) {
2937        Notify_lock->wait();
2938      }
2939    }
2940  }
2941
2942  assert (Universe::is_fully_initialized(), "not initialized");
2943  EXCEPTION_MARK;
2944
2945  // At this point, the Universe is initialized, but we have not executed
2946  // any byte code.  Now is a good time (the only time) to dump out the
2947  // internal state of the JVM for sharing.
2948
2949  if (DumpSharedSpaces) {
2950    Universe::heap()->preload_and_dump(CHECK_0);
2951    ShouldNotReachHere();
2952  }
2953
2954  // Always call even when there are not JVMTI environments yet, since environments
2955  // may be attached late and JVMTI must track phases of VM execution
2956  JvmtiExport::enter_start_phase();
2957
2958  // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
2959  JvmtiExport::post_vm_start();
2960
2961  {
2962    TraceTime timer("Initialize java.lang classes", TraceStartupTime);
2963
2964    if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
2965      create_vm_init_libraries();
2966    }
2967
2968    if (InitializeJavaLangString) {
2969      initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
2970    } else {
2971      warning("java.lang.String not initialized");
2972    }
2973
2974    if (AggressiveOpts) {
2975      {
2976        // Forcibly initialize java/util/HashMap and mutate the private
2977        // static final "frontCacheEnabled" field before we start creating instances
2978#ifdef ASSERT
2979        klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
2980        assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
2981#endif
2982        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
2983        KlassHandle k = KlassHandle(THREAD, k_o);
2984        guarantee(k.not_null(), "Must find java/util/HashMap");
2985        instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
2986        ik->initialize(CHECK_0);
2987        fieldDescriptor fd;
2988        // Possible we might not find this field; if so, don't break
2989        if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
2990          k()->bool_field_put(fd.offset(), true);
2991        }
2992      }
2993
2994      if (UseStringCache) {
2995        // Forcibly initialize java/lang/StringValue and mutate the private
2996        // static final "stringCacheEnabled" field before we start creating instances
2997        klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
2998        // Possible that StringValue isn't present: if so, silently don't break
2999        if (k_o != NULL) {
3000          KlassHandle k = KlassHandle(THREAD, k_o);
3001          instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3002          ik->initialize(CHECK_0);
3003          fieldDescriptor fd;
3004          // Possible we might not find this field: if so, silently don't break
3005          if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3006            k()->bool_field_put(fd.offset(), true);
3007          }
3008        }
3009      }
3010    }
3011
3012    // Initialize java_lang.System (needed before creating the thread)
3013    if (InitializeJavaLangSystem) {
3014      initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3015      initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3016      Handle thread_group = create_initial_thread_group(CHECK_0);
3017      Universe::set_main_thread_group(thread_group());
3018      initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3019      oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3020      main_thread->set_threadObj(thread_object);
3021      // Set thread status to running since main thread has
3022      // been started and running.
3023      java_lang_Thread::set_thread_status(thread_object,
3024                                          java_lang_Thread::RUNNABLE);
3025
3026      // The VM preresolve methods to these classes. Make sure that get initialized
3027      initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3028      initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3029      // The VM creates & returns objects of this class. Make sure it's initialized.
3030      initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3031      call_initializeSystemClass(CHECK_0);
3032    } else {
3033      warning("java.lang.System not initialized");
3034    }
3035
3036    // an instance of OutOfMemory exception has been allocated earlier
3037    if (InitializeJavaLangExceptionsErrors) {
3038      initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3039      initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3040      initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3041      initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3042      initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3043      initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3044      initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3045    } else {
3046      warning("java.lang.OutOfMemoryError has not been initialized");
3047      warning("java.lang.NullPointerException has not been initialized");
3048      warning("java.lang.ClassCastException has not been initialized");
3049      warning("java.lang.ArrayStoreException has not been initialized");
3050      warning("java.lang.ArithmeticException has not been initialized");
3051      warning("java.lang.StackOverflowError has not been initialized");
3052    }
3053  }
3054
3055  // See        : bugid 4211085.
3056  // Background : the static initializer of java.lang.Compiler tries to read
3057  //              property"java.compiler" and read & write property "java.vm.info".
3058  //              When a security manager is installed through the command line
3059  //              option "-Djava.security.manager", the above properties are not
3060  //              readable and the static initializer for java.lang.Compiler fails
3061  //              resulting in a NoClassDefFoundError.  This can happen in any
3062  //              user code which calls methods in java.lang.Compiler.
3063  // Hack :       the hack is to pre-load and initialize this class, so that only
3064  //              system domains are on the stack when the properties are read.
3065  //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3066  //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3067  // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3068  //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3069  //              Once that is done, we should remove this hack.
3070  initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3071
3072  // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3073  // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3074  // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3075  // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3076  // This should also be taken out as soon as 4211383 gets fixed.
3077  reset_vm_info_property(CHECK_0);
3078
3079  quicken_jni_functions();
3080
3081  // Set flag that basic initialization has completed. Used by exceptions and various
3082  // debug stuff, that does not work until all basic classes have been initialized.
3083  set_init_completed();
3084
3085  HS_DTRACE_PROBE(hotspot, vm__init__end);
3086
3087  // record VM initialization completion time
3088  Management::record_vm_init_completed();
3089
3090  // Compute system loader. Note that this has to occur after set_init_completed, since
3091  // valid exceptions may be thrown in the process.
3092  // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3093  // set_init_completed has just been called, causing exceptions not to be shortcut
3094  // anymore. We call vm_exit_during_initialization directly instead.
3095  SystemDictionary::compute_java_system_loader(THREAD);
3096  if (HAS_PENDING_EXCEPTION) {
3097    vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3098  }
3099
3100#ifndef SERIALGC
3101  // Support for ConcurrentMarkSweep. This should be cleaned up
3102  // and better encapsulated. The ugly nested if test would go away
3103  // once things are properly refactored. XXX YSR
3104  if (UseConcMarkSweepGC || UseG1GC) {
3105    if (UseConcMarkSweepGC) {
3106      ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3107    } else {
3108      ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3109    }
3110    if (HAS_PENDING_EXCEPTION) {
3111      vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3112    }
3113  }
3114#endif // SERIALGC
3115
3116  // Always call even when there are not JVMTI environments yet, since environments
3117  // may be attached late and JVMTI must track phases of VM execution
3118  JvmtiExport::enter_live_phase();
3119
3120  // Signal Dispatcher needs to be started before VMInit event is posted
3121  os::signal_init();
3122
3123  // Start Attach Listener if +StartAttachListener or it can't be started lazily
3124  if (!DisableAttachMechanism) {
3125    if (StartAttachListener || AttachListener::init_at_startup()) {
3126      AttachListener::init();
3127    }
3128  }
3129
3130  // Launch -Xrun agents
3131  // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3132  // back-end can launch with -Xdebug -Xrunjdwp.
3133  if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3134    create_vm_init_libraries();
3135  }
3136
3137  // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3138  JvmtiExport::post_vm_initialized();
3139
3140  Chunk::start_chunk_pool_cleaner_task();
3141
3142  // initialize compiler(s)
3143  CompileBroker::compilation_init();
3144
3145  Management::initialize(THREAD);
3146  if (HAS_PENDING_EXCEPTION) {
3147    // management agent fails to start possibly due to
3148    // configuration problem and is responsible for printing
3149    // stack trace if appropriate. Simply exit VM.
3150    vm_exit(1);
3151  }
3152
3153  if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3154  if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3155  if (MemProfiling)                   MemProfiler::engage();
3156  StatSampler::engage();
3157  if (CheckJNICalls)                  JniPeriodicChecker::engage();
3158
3159  BiasedLocking::init();
3160
3161
3162  // Start up the WatcherThread if there are any periodic tasks
3163  // NOTE:  All PeriodicTasks should be registered by now. If they
3164  //   aren't, late joiners might appear to start slowly (we might
3165  //   take a while to process their first tick).
3166  if (PeriodicTask::num_tasks() > 0) {
3167    WatcherThread::start();
3168  }
3169
3170  create_vm_timer.end();
3171  return JNI_OK;
3172}
3173
3174// type for the Agent_OnLoad and JVM_OnLoad entry points
3175extern "C" {
3176  typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3177}
3178// Find a command line agent library and return its entry point for
3179//         -agentlib:  -agentpath:   -Xrun
3180// num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3181static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3182  OnLoadEntry_t on_load_entry = NULL;
3183  void *library = agent->os_lib();  // check if we have looked it up before
3184
3185  if (library == NULL) {
3186    char buffer[JVM_MAXPATHLEN];
3187    char ebuf[1024];
3188    const char *name = agent->name();
3189
3190    if (agent->is_absolute_path()) {
3191      library = hpi::dll_load(name, ebuf, sizeof ebuf);
3192      if (library == NULL) {
3193        // If we can't find the agent, exit.
3194        vm_exit_during_initialization("Could not find agent library in absolute path", name);
3195      }
3196    } else {
3197      // Try to load the agent from the standard dll directory
3198      hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3199      library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3200#ifdef KERNEL
3201      // Download instrument dll
3202      if (library == NULL && strcmp(name, "instrument") == 0) {
3203        char *props = Arguments::get_kernel_properties();
3204        char *home  = Arguments::get_java_home();
3205        const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3206                      " sun.jkernel.DownloadManager -download client_jvm";
3207        int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3208        char *cmd = AllocateHeap(length);
3209        jio_snprintf(cmd, length, fmt, home, props);
3210        int status = os::fork_and_exec(cmd);
3211        FreeHeap(props);
3212        FreeHeap(cmd);
3213        if (status == -1) {
3214          warning(cmd);
3215          vm_exit_during_initialization("fork_and_exec failed: %s",
3216                                         strerror(errno));
3217        }
3218        // when this comes back the instrument.dll should be where it belongs.
3219        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3220      }
3221#endif // KERNEL
3222      if (library == NULL) { // Try the local directory
3223        char ns[1] = {0};
3224        hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3225        library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3226        if (library == NULL) {
3227          // If we can't find the agent, exit.
3228          vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
3229        }
3230      }
3231    }
3232    agent->set_os_lib(library);
3233  }
3234
3235  // Find the OnLoad function.
3236  for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3237    on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3238    if (on_load_entry != NULL) break;
3239  }
3240  return on_load_entry;
3241}
3242
3243// Find the JVM_OnLoad entry point
3244static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3245  const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3246  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3247}
3248
3249// Find the Agent_OnLoad entry point
3250static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3251  const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3252  return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3253}
3254
3255// For backwards compatibility with -Xrun
3256// Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3257// treated like -agentpath:
3258// Must be called before agent libraries are created
3259void Threads::convert_vm_init_libraries_to_agents() {
3260  AgentLibrary* agent;
3261  AgentLibrary* next;
3262
3263  for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3264    next = agent->next();  // cache the next agent now as this agent may get moved off this list
3265    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3266
3267    // If there is an JVM_OnLoad function it will get called later,
3268    // otherwise see if there is an Agent_OnLoad
3269    if (on_load_entry == NULL) {
3270      on_load_entry = lookup_agent_on_load(agent);
3271      if (on_load_entry != NULL) {
3272        // switch it to the agent list -- so that Agent_OnLoad will be called,
3273        // JVM_OnLoad won't be attempted and Agent_OnUnload will
3274        Arguments::convert_library_to_agent(agent);
3275      } else {
3276        vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3277      }
3278    }
3279  }
3280}
3281
3282// Create agents for -agentlib:  -agentpath:  and converted -Xrun
3283// Invokes Agent_OnLoad
3284// Called very early -- before JavaThreads exist
3285void Threads::create_vm_init_agents() {
3286  extern struct JavaVM_ main_vm;
3287  AgentLibrary* agent;
3288
3289  JvmtiExport::enter_onload_phase();
3290  for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3291    OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3292
3293    if (on_load_entry != NULL) {
3294      // Invoke the Agent_OnLoad function
3295      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3296      if (err != JNI_OK) {
3297        vm_exit_during_initialization("agent library failed to init", agent->name());
3298      }
3299    } else {
3300      vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3301    }
3302  }
3303  JvmtiExport::enter_primordial_phase();
3304}
3305
3306extern "C" {
3307  typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3308}
3309
3310void Threads::shutdown_vm_agents() {
3311  // Send any Agent_OnUnload notifications
3312  const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3313  extern struct JavaVM_ main_vm;
3314  for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3315
3316    // Find the Agent_OnUnload function.
3317    for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3318      Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3319               hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3320
3321      // Invoke the Agent_OnUnload function
3322      if (unload_entry != NULL) {
3323        JavaThread* thread = JavaThread::current();
3324        ThreadToNativeFromVM ttn(thread);
3325        HandleMark hm(thread);
3326        (*unload_entry)(&main_vm);
3327        break;
3328      }
3329    }
3330  }
3331}
3332
3333// Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3334// Invokes JVM_OnLoad
3335void Threads::create_vm_init_libraries() {
3336  extern struct JavaVM_ main_vm;
3337  AgentLibrary* agent;
3338
3339  for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3340    OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3341
3342    if (on_load_entry != NULL) {
3343      // Invoke the JVM_OnLoad function
3344      JavaThread* thread = JavaThread::current();
3345      ThreadToNativeFromVM ttn(thread);
3346      HandleMark hm(thread);
3347      jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3348      if (err != JNI_OK) {
3349        vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3350      }
3351    } else {
3352      vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3353    }
3354  }
3355}
3356
3357// Last thread running calls java.lang.Shutdown.shutdown()
3358void JavaThread::invoke_shutdown_hooks() {
3359  HandleMark hm(this);
3360
3361  // We could get here with a pending exception, if so clear it now.
3362  if (this->has_pending_exception()) {
3363    this->clear_pending_exception();
3364  }
3365
3366  EXCEPTION_MARK;
3367  klassOop k =
3368    SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3369                                      THREAD);
3370  if (k != NULL) {
3371    // SystemDictionary::resolve_or_null will return null if there was
3372    // an exception.  If we cannot load the Shutdown class, just don't
3373    // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3374    // and finalizers (if runFinalizersOnExit is set) won't be run.
3375    // Note that if a shutdown hook was registered or runFinalizersOnExit
3376    // was called, the Shutdown class would have already been loaded
3377    // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3378    instanceKlassHandle shutdown_klass (THREAD, k);
3379    JavaValue result(T_VOID);
3380    JavaCalls::call_static(&result,
3381                           shutdown_klass,
3382                           vmSymbolHandles::shutdown_method_name(),
3383                           vmSymbolHandles::void_method_signature(),
3384                           THREAD);
3385  }
3386  CLEAR_PENDING_EXCEPTION;
3387}
3388
3389// Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3390// the program falls off the end of main(). Another VM exit path is through
3391// vm_exit() when the program calls System.exit() to return a value or when
3392// there is a serious error in VM. The two shutdown paths are not exactly
3393// the same, but they share Shutdown.shutdown() at Java level and before_exit()
3394// and VM_Exit op at VM level.
3395//
3396// Shutdown sequence:
3397//   + Wait until we are the last non-daemon thread to execute
3398//     <-- every thing is still working at this moment -->
3399//   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3400//        shutdown hooks, run finalizers if finalization-on-exit
3401//   + Call before_exit(), prepare for VM exit
3402//      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3403//        currently the only user of this mechanism is File.deleteOnExit())
3404//      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3405//        post thread end and vm death events to JVMTI,
3406//        stop signal thread
3407//   + Call JavaThread::exit(), it will:
3408//      > release JNI handle blocks, remove stack guard pages
3409//      > remove this thread from Threads list
3410//     <-- no more Java code from this thread after this point -->
3411//   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3412//     the compiler threads at safepoint
3413//     <-- do not use anything that could get blocked by Safepoint -->
3414//   + Disable tracing at JNI/JVM barriers
3415//   + Set _vm_exited flag for threads that are still running native code
3416//   + Delete this thread
3417//   + Call exit_globals()
3418//      > deletes tty
3419//      > deletes PerfMemory resources
3420//   + Return to caller
3421
3422bool Threads::destroy_vm() {
3423  JavaThread* thread = JavaThread::current();
3424
3425  // Wait until we are the last non-daemon thread to execute
3426  { MutexLocker nu(Threads_lock);
3427    while (Threads::number_of_non_daemon_threads() > 1 )
3428      // This wait should make safepoint checks, wait without a timeout,
3429      // and wait as a suspend-equivalent condition.
3430      //
3431      // Note: If the FlatProfiler is running and this thread is waiting
3432      // for another non-daemon thread to finish, then the FlatProfiler
3433      // is waiting for the external suspend request on this thread to
3434      // complete. wait_for_ext_suspend_completion() will eventually
3435      // timeout, but that takes time. Making this wait a suspend-
3436      // equivalent condition solves that timeout problem.
3437      //
3438      Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3439                         Mutex::_as_suspend_equivalent_flag);
3440  }
3441
3442  // Hang forever on exit if we are reporting an error.
3443  if (ShowMessageBoxOnError && is_error_reported()) {
3444    os::infinite_sleep();
3445  }
3446
3447  if (JDK_Version::is_jdk12x_version()) {
3448    // We are the last thread running, so check if finalizers should be run.
3449    // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3450    HandleMark rm(thread);
3451    Universe::run_finalizers_on_exit();
3452  } else {
3453    // run Java level shutdown hooks
3454    thread->invoke_shutdown_hooks();
3455  }
3456
3457  before_exit(thread);
3458
3459  thread->exit(true);
3460
3461  // Stop VM thread.
3462  {
3463    // 4945125 The vm thread comes to a safepoint during exit.
3464    // GC vm_operations can get caught at the safepoint, and the
3465    // heap is unparseable if they are caught. Grab the Heap_lock
3466    // to prevent this. The GC vm_operations will not be able to
3467    // queue until after the vm thread is dead.
3468    MutexLocker ml(Heap_lock);
3469
3470    VMThread::wait_for_vm_thread_exit();
3471    assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3472    VMThread::destroy();
3473  }
3474
3475  // clean up ideal graph printers
3476#if defined(COMPILER2) && !defined(PRODUCT)
3477  IdealGraphPrinter::clean_up();
3478#endif
3479
3480  // Now, all Java threads are gone except daemon threads. Daemon threads
3481  // running Java code or in VM are stopped by the Safepoint. However,
3482  // daemon threads executing native code are still running.  But they
3483  // will be stopped at native=>Java/VM barriers. Note that we can't
3484  // simply kill or suspend them, as it is inherently deadlock-prone.
3485
3486#ifndef PRODUCT
3487  // disable function tracing at JNI/JVM barriers
3488  TraceHPI = false;
3489  TraceJNICalls = false;
3490  TraceJVMCalls = false;
3491  TraceRuntimeCalls = false;
3492#endif
3493
3494  VM_Exit::set_vm_exited();
3495
3496  notify_vm_shutdown();
3497
3498  delete thread;
3499
3500  // exit_globals() will delete tty
3501  exit_globals();
3502
3503  return true;
3504}
3505
3506
3507jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3508  if (version == JNI_VERSION_1_1) return JNI_TRUE;
3509  return is_supported_jni_version(version);
3510}
3511
3512
3513jboolean Threads::is_supported_jni_version(jint version) {
3514  if (version == JNI_VERSION_1_2) return JNI_TRUE;
3515  if (version == JNI_VERSION_1_4) return JNI_TRUE;
3516  if (version == JNI_VERSION_1_6) return JNI_TRUE;
3517  return JNI_FALSE;
3518}
3519
3520
3521void Threads::add(JavaThread* p, bool force_daemon) {
3522  // The threads lock must be owned at this point
3523  assert_locked_or_safepoint(Threads_lock);
3524  p->set_next(_thread_list);
3525  _thread_list = p;
3526  _number_of_threads++;
3527  oop threadObj = p->threadObj();
3528  bool daemon = true;
3529  // Bootstrapping problem: threadObj can be null for initial
3530  // JavaThread (or for threads attached via JNI)
3531  if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3532    _number_of_non_daemon_threads++;
3533    daemon = false;
3534  }
3535
3536  ThreadService::add_thread(p, daemon);
3537
3538  // Possible GC point.
3539  Events::log("Thread added: " INTPTR_FORMAT, p);
3540}
3541
3542void Threads::remove(JavaThread* p) {
3543  // Extra scope needed for Thread_lock, so we can check
3544  // that we do not remove thread without safepoint code notice
3545  { MutexLocker ml(Threads_lock);
3546
3547    assert(includes(p), "p must be present");
3548
3549    JavaThread* current = _thread_list;
3550    JavaThread* prev    = NULL;
3551
3552    while (current != p) {
3553      prev    = current;
3554      current = current->next();
3555    }
3556
3557    if (prev) {
3558      prev->set_next(current->next());
3559    } else {
3560      _thread_list = p->next();
3561    }
3562    _number_of_threads--;
3563    oop threadObj = p->threadObj();
3564    bool daemon = true;
3565    if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3566      _number_of_non_daemon_threads--;
3567      daemon = false;
3568
3569      // Only one thread left, do a notify on the Threads_lock so a thread waiting
3570      // on destroy_vm will wake up.
3571      if (number_of_non_daemon_threads() == 1)
3572        Threads_lock->notify_all();
3573    }
3574    ThreadService::remove_thread(p, daemon);
3575
3576    // Make sure that safepoint code disregard this thread. This is needed since
3577    // the thread might mess around with locks after this point. This can cause it
3578    // to do callbacks into the safepoint code. However, the safepoint code is not aware
3579    // of this thread since it is removed from the queue.
3580    p->set_terminated_value();
3581  } // unlock Threads_lock
3582
3583  // Since Events::log uses a lock, we grab it outside the Threads_lock
3584  Events::log("Thread exited: " INTPTR_FORMAT, p);
3585}
3586
3587// Threads_lock must be held when this is called (or must be called during a safepoint)
3588bool Threads::includes(JavaThread* p) {
3589  assert(Threads_lock->is_locked(), "sanity check");
3590  ALL_JAVA_THREADS(q) {
3591    if (q == p ) {
3592      return true;
3593    }
3594  }
3595  return false;
3596}
3597
3598// Operations on the Threads list for GC.  These are not explicitly locked,
3599// but the garbage collector must provide a safe context for them to run.
3600// In particular, these things should never be called when the Threads_lock
3601// is held by some other thread. (Note: the Safepoint abstraction also
3602// uses the Threads_lock to gurantee this property. It also makes sure that
3603// all threads gets blocked when exiting or starting).
3604
3605void Threads::oops_do(OopClosure* f) {
3606  ALL_JAVA_THREADS(p) {
3607    p->oops_do(f);
3608  }
3609  VMThread::vm_thread()->oops_do(f);
3610}
3611
3612void Threads::possibly_parallel_oops_do(OopClosure* f) {
3613  // Introduce a mechanism allowing parallel threads to claim threads as
3614  // root groups.  Overhead should be small enough to use all the time,
3615  // even in sequential code.
3616  SharedHeap* sh = SharedHeap::heap();
3617  bool is_par = (sh->n_par_threads() > 0);
3618  int cp = SharedHeap::heap()->strong_roots_parity();
3619  ALL_JAVA_THREADS(p) {
3620    if (p->claim_oops_do(is_par, cp)) {
3621      p->oops_do(f);
3622    }
3623  }
3624  VMThread* vmt = VMThread::vm_thread();
3625  if (vmt->claim_oops_do(is_par, cp))
3626    vmt->oops_do(f);
3627}
3628
3629#ifndef SERIALGC
3630// Used by ParallelScavenge
3631void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3632  ALL_JAVA_THREADS(p) {
3633    q->enqueue(new ThreadRootsTask(p));
3634  }
3635  q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3636}
3637
3638// Used by Parallel Old
3639void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3640  ALL_JAVA_THREADS(p) {
3641    q->enqueue(new ThreadRootsMarkingTask(p));
3642  }
3643  q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3644}
3645#endif // SERIALGC
3646
3647void Threads::nmethods_do() {
3648  ALL_JAVA_THREADS(p) {
3649    p->nmethods_do();
3650  }
3651  VMThread::vm_thread()->nmethods_do();
3652}
3653
3654void Threads::gc_epilogue() {
3655  ALL_JAVA_THREADS(p) {
3656    p->gc_epilogue();
3657  }
3658}
3659
3660void Threads::gc_prologue() {
3661  ALL_JAVA_THREADS(p) {
3662    p->gc_prologue();
3663  }
3664}
3665
3666void Threads::deoptimized_wrt_marked_nmethods() {
3667  ALL_JAVA_THREADS(p) {
3668    p->deoptimized_wrt_marked_nmethods();
3669  }
3670}
3671
3672
3673// Get count Java threads that are waiting to enter the specified monitor.
3674GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3675  address monitor, bool doLock) {
3676  assert(doLock || SafepointSynchronize::is_at_safepoint(),
3677    "must grab Threads_lock or be at safepoint");
3678  GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3679
3680  int i = 0;
3681  {
3682    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3683    ALL_JAVA_THREADS(p) {
3684      if (p->is_Compiler_thread()) continue;
3685
3686      address pending = (address)p->current_pending_monitor();
3687      if (pending == monitor) {             // found a match
3688        if (i < count) result->append(p);   // save the first count matches
3689        i++;
3690      }
3691    }
3692  }
3693  return result;
3694}
3695
3696
3697JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3698  assert(doLock ||
3699         Threads_lock->owned_by_self() ||
3700         SafepointSynchronize::is_at_safepoint(),
3701         "must grab Threads_lock or be at safepoint");
3702
3703  // NULL owner means not locked so we can skip the search
3704  if (owner == NULL) return NULL;
3705
3706  {
3707    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3708    ALL_JAVA_THREADS(p) {
3709      // first, see if owner is the address of a Java thread
3710      if (owner == (address)p) return p;
3711    }
3712  }
3713  assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3714  if (UseHeavyMonitors) return NULL;
3715
3716  //
3717  // If we didn't find a matching Java thread and we didn't force use of
3718  // heavyweight monitors, then the owner is the stack address of the
3719  // Lock Word in the owning Java thread's stack.
3720  //
3721  JavaThread* the_owner = NULL;
3722  {
3723    MutexLockerEx ml(doLock ? Threads_lock : NULL);
3724    ALL_JAVA_THREADS(q) {
3725      if (q->is_lock_owned(owner)) {
3726        the_owner = q;
3727        break;
3728      }
3729    }
3730  }
3731  assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3732  return the_owner;
3733}
3734
3735// Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3736void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3737  char buf[32];
3738  st->print_cr(os::local_time_string(buf, sizeof(buf)));
3739
3740  st->print_cr("Full thread dump %s (%s %s):",
3741                Abstract_VM_Version::vm_name(),
3742                Abstract_VM_Version::vm_release(),
3743                Abstract_VM_Version::vm_info_string()
3744               );
3745  st->cr();
3746
3747#ifndef SERIALGC
3748  // Dump concurrent locks
3749  ConcurrentLocksDump concurrent_locks;
3750  if (print_concurrent_locks) {
3751    concurrent_locks.dump_at_safepoint();
3752  }
3753#endif // SERIALGC
3754
3755  ALL_JAVA_THREADS(p) {
3756    ResourceMark rm;
3757    p->print_on(st);
3758    if (print_stacks) {
3759      if (internal_format) {
3760        p->trace_stack();
3761      } else {
3762        p->print_stack_on(st);
3763      }
3764    }
3765    st->cr();
3766#ifndef SERIALGC
3767    if (print_concurrent_locks) {
3768      concurrent_locks.print_locks_on(p, st);
3769    }
3770#endif // SERIALGC
3771  }
3772
3773  VMThread::vm_thread()->print_on(st);
3774  st->cr();
3775  Universe::heap()->print_gc_threads_on(st);
3776  WatcherThread* wt = WatcherThread::watcher_thread();
3777  if (wt != NULL) wt->print_on(st);
3778  st->cr();
3779  CompileBroker::print_compiler_threads_on(st);
3780  st->flush();
3781}
3782
3783// Threads::print_on_error() is called by fatal error handler. It's possible
3784// that VM is not at safepoint and/or current thread is inside signal handler.
3785// Don't print stack trace, as the stack may not be walkable. Don't allocate
3786// memory (even in resource area), it might deadlock the error handler.
3787void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3788  bool found_current = false;
3789  st->print_cr("Java Threads: ( => current thread )");
3790  ALL_JAVA_THREADS(thread) {
3791    bool is_current = (current == thread);
3792    found_current = found_current || is_current;
3793
3794    st->print("%s", is_current ? "=>" : "  ");
3795
3796    st->print(PTR_FORMAT, thread);
3797    st->print(" ");
3798    thread->print_on_error(st, buf, buflen);
3799    st->cr();
3800  }
3801  st->cr();
3802
3803  st->print_cr("Other Threads:");
3804  if (VMThread::vm_thread()) {
3805    bool is_current = (current == VMThread::vm_thread());
3806    found_current = found_current || is_current;
3807    st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3808
3809    st->print(PTR_FORMAT, VMThread::vm_thread());
3810    st->print(" ");
3811    VMThread::vm_thread()->print_on_error(st, buf, buflen);
3812    st->cr();
3813  }
3814  WatcherThread* wt = WatcherThread::watcher_thread();
3815  if (wt != NULL) {
3816    bool is_current = (current == wt);
3817    found_current = found_current || is_current;
3818    st->print("%s", is_current ? "=>" : "  ");
3819
3820    st->print(PTR_FORMAT, wt);
3821    st->print(" ");
3822    wt->print_on_error(st, buf, buflen);
3823    st->cr();
3824  }
3825  if (!found_current) {
3826    st->cr();
3827    st->print("=>" PTR_FORMAT " (exited) ", current);
3828    current->print_on_error(st, buf, buflen);
3829    st->cr();
3830  }
3831}
3832
3833
3834// Lifecycle management for TSM ParkEvents.
3835// ParkEvents are type-stable (TSM).
3836// In our particular implementation they happen to be immortal.
3837//
3838// We manage concurrency on the FreeList with a CAS-based
3839// detach-modify-reattach idiom that avoids the ABA problems
3840// that would otherwise be present in a simple CAS-based
3841// push-pop implementation.   (push-one and pop-all)
3842//
3843// Caveat: Allocate() and Release() may be called from threads
3844// other than the thread associated with the Event!
3845// If we need to call Allocate() when running as the thread in
3846// question then look for the PD calls to initialize native TLS.
3847// Native TLS (Win32/Linux/Solaris) can only be initialized or
3848// accessed by the associated thread.
3849// See also pd_initialize().
3850//
3851// Note that we could defer associating a ParkEvent with a thread
3852// until the 1st time the thread calls park().  unpark() calls to
3853// an unprovisioned thread would be ignored.  The first park() call
3854// for a thread would allocate and associate a ParkEvent and return
3855// immediately.
3856
3857volatile int ParkEvent::ListLock = 0 ;
3858ParkEvent * volatile ParkEvent::FreeList = NULL ;
3859
3860ParkEvent * ParkEvent::Allocate (Thread * t) {
3861  // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3862  ParkEvent * ev ;
3863
3864  // Start by trying to recycle an existing but unassociated
3865  // ParkEvent from the global free list.
3866  for (;;) {
3867    ev = FreeList ;
3868    if (ev == NULL) break ;
3869    // 1: Detach - sequester or privatize the list
3870    // Tantamount to ev = Swap (&FreeList, NULL)
3871    if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3872       continue ;
3873    }
3874
3875    // We've detached the list.  The list in-hand is now
3876    // local to this thread.   This thread can operate on the
3877    // list without risk of interference from other threads.
3878    // 2: Extract -- pop the 1st element from the list.
3879    ParkEvent * List = ev->FreeNext ;
3880    if (List == NULL) break ;
3881    for (;;) {
3882        // 3: Try to reattach the residual list
3883        guarantee (List != NULL, "invariant") ;
3884        ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3885        if (Arv == NULL) break ;
3886
3887        // New nodes arrived.  Try to detach the recent arrivals.
3888        if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3889            continue ;
3890        }
3891        guarantee (Arv != NULL, "invariant") ;
3892        // 4: Merge Arv into List
3893        ParkEvent * Tail = List ;
3894        while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
3895        Tail->FreeNext = Arv ;
3896    }
3897    break ;
3898  }
3899
3900  if (ev != NULL) {
3901    guarantee (ev->AssociatedWith == NULL, "invariant") ;
3902  } else {
3903    // Do this the hard way -- materialize a new ParkEvent.
3904    // In rare cases an allocating thread might detach a long list --
3905    // installing null into FreeList -- and then stall or be obstructed.
3906    // A 2nd thread calling Allocate() would see FreeList == null.
3907    // The list held privately by the 1st thread is unavailable to the 2nd thread.
3908    // In that case the 2nd thread would have to materialize a new ParkEvent,
3909    // even though free ParkEvents existed in the system.  In this case we end up
3910    // with more ParkEvents in circulation than we need, but the race is
3911    // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
3912    // is equal to the maximum # of threads that existed at any one time.
3913    // Because of the race mentioned above, segments of the freelist
3914    // can be transiently inaccessible.  At worst we may end up with the
3915    // # of ParkEvents in circulation slightly above the ideal.
3916    // Note that if we didn't have the TSM/immortal constraint, then
3917    // when reattaching, above, we could trim the list.
3918    ev = new ParkEvent () ;
3919    guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
3920  }
3921  ev->reset() ;                     // courtesy to caller
3922  ev->AssociatedWith = t ;          // Associate ev with t
3923  ev->FreeNext       = NULL ;
3924  return ev ;
3925}
3926
3927void ParkEvent::Release (ParkEvent * ev) {
3928  if (ev == NULL) return ;
3929  guarantee (ev->FreeNext == NULL      , "invariant") ;
3930  ev->AssociatedWith = NULL ;
3931  for (;;) {
3932    // Push ev onto FreeList
3933    // The mechanism is "half" lock-free.
3934    ParkEvent * List = FreeList ;
3935    ev->FreeNext = List ;
3936    if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
3937  }
3938}
3939
3940// Override operator new and delete so we can ensure that the
3941// least significant byte of ParkEvent addresses is 0.
3942// Beware that excessive address alignment is undesirable
3943// as it can result in D$ index usage imbalance as
3944// well as bank access imbalance on Niagara-like platforms,
3945// although Niagara's hash function should help.
3946
3947void * ParkEvent::operator new (size_t sz) {
3948  return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
3949}
3950
3951void ParkEvent::operator delete (void * a) {
3952  // ParkEvents are type-stable and immortal ...
3953  ShouldNotReachHere();
3954}
3955
3956
3957// 6399321 As a temporary measure we copied & modified the ParkEvent::
3958// allocate() and release() code for use by Parkers.  The Parker:: forms
3959// will eventually be removed as we consolide and shift over to ParkEvents
3960// for both builtin synchronization and JSR166 operations.
3961
3962volatile int Parker::ListLock = 0 ;
3963Parker * volatile Parker::FreeList = NULL ;
3964
3965Parker * Parker::Allocate (JavaThread * t) {
3966  guarantee (t != NULL, "invariant") ;
3967  Parker * p ;
3968
3969  // Start by trying to recycle an existing but unassociated
3970  // Parker from the global free list.
3971  for (;;) {
3972    p = FreeList ;
3973    if (p  == NULL) break ;
3974    // 1: Detach
3975    // Tantamount to p = Swap (&FreeList, NULL)
3976    if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
3977       continue ;
3978    }
3979
3980    // We've detached the list.  The list in-hand is now
3981    // local to this thread.   This thread can operate on the
3982    // list without risk of interference from other threads.
3983    // 2: Extract -- pop the 1st element from the list.
3984    Parker * List = p->FreeNext ;
3985    if (List == NULL) break ;
3986    for (;;) {
3987        // 3: Try to reattach the residual list
3988        guarantee (List != NULL, "invariant") ;
3989        Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3990        if (Arv == NULL) break ;
3991
3992        // New nodes arrived.  Try to detach the recent arrivals.
3993        if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3994            continue ;
3995        }
3996        guarantee (Arv != NULL, "invariant") ;
3997        // 4: Merge Arv into List
3998        Parker * Tail = List ;
3999        while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4000        Tail->FreeNext = Arv ;
4001    }
4002    break ;
4003  }
4004
4005  if (p != NULL) {
4006    guarantee (p->AssociatedWith == NULL, "invariant") ;
4007  } else {
4008    // Do this the hard way -- materialize a new Parker..
4009    // In rare cases an allocating thread might detach
4010    // a long list -- installing null into FreeList --and
4011    // then stall.  Another thread calling Allocate() would see
4012    // FreeList == null and then invoke the ctor.  In this case we
4013    // end up with more Parkers in circulation than we need, but
4014    // the race is rare and the outcome is benign.
4015    // Ideally, the # of extant Parkers is equal to the
4016    // maximum # of threads that existed at any one time.
4017    // Because of the race mentioned above, segments of the
4018    // freelist can be transiently inaccessible.  At worst
4019    // we may end up with the # of Parkers in circulation
4020    // slightly above the ideal.
4021    p = new Parker() ;
4022  }
4023  p->AssociatedWith = t ;          // Associate p with t
4024  p->FreeNext       = NULL ;
4025  return p ;
4026}
4027
4028
4029void Parker::Release (Parker * p) {
4030  if (p == NULL) return ;
4031  guarantee (p->AssociatedWith != NULL, "invariant") ;
4032  guarantee (p->FreeNext == NULL      , "invariant") ;
4033  p->AssociatedWith = NULL ;
4034  for (;;) {
4035    // Push p onto FreeList
4036    Parker * List = FreeList ;
4037    p->FreeNext = List ;
4038    if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4039  }
4040}
4041
4042void Threads::verify() {
4043  ALL_JAVA_THREADS(p) {
4044    p->verify();
4045  }
4046  VMThread* thread = VMThread::vm_thread();
4047  if (thread != NULL) thread->verify();
4048}
4049